
Towards an Enhanced Dependency
Graph

by

Seyed Mehran Meidani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Seyed Mehran Meidani 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Dependency graphs are at the heart of software analytics tasks like change impact analysis,
test selection, and maintenance analysis. Despite their importance, current approaches to
extract and analyze dependency graphs overlook configuration settings and code-adjacent
artifacts in large software systems. These shortcomings directly affect the results of the
aforementioned analytics tasks. Indeed, changing a software application with many build-
time configuration settings may introduce unexpected side effects. For example, a change
intended to be specific to a platform (e.g., Windows) or product configuration (e.g., commu-
nity edition) might impact other platforms or configurations. Moreover, a change intended
to apply to a set of platforms or configurations may be unintentionally limited to a subset
of platforms. In addition to build-time configuration settings, software projects require a
broad range of expertise to develop. For example, to produce a video game, engineers,
like software developers, and artists, like 3D designers, must iterate on the same project
simultaneously. In such projects, a change to the work products of any of the teams can
impact the work of other teams. As a result, any analytics tasks should consider intra- and
inter-dependencies among artifacts produced by different teams. For instance, the focus
of the quality assurance team for a change local to a team differs from one that impacts
others.

Indeed, understanding the exposure of changes is an important risk mitigation step
in change-based development approaches. In this thesis, we first present DiPiDi, a new
approach to assess the exposure of source code changes under different build-time con-
figuration settings by statically analyzing build specifications. To evaluate our approach,
we produce a prototype implementation of DiPiDi for the CMake build system. We mea-
sure the effectiveness and efficiency of developers when performing five tasks in which they
must identify the deliverable(s) and conditions under which a source code change will prop-
agate. We assign participants into three groups: without explicit tool support, supported
by existing impact analysis tools, and supported by DiPiDi. While our study does not
have the statistical power to make generalized quantitative claims, we manually analyze
the full distribution of our study’s results and show that DiPiDi results in a net benefit
for its users. Through our experimental evaluation, we show that DiPiDi is associated
with a 36 percentage point improvement in F1-score on average when identifying impacted
deliverables and an average reduction of 0.62 units of distance when ranking impacted
patches. Furthermore, DiPiDi results in a 42% average task time reduction for our partici-
pants when compared to a competing impact analysis approach. DiPiDi’s improvements to
both effectiveness and efficiency are especially prevalent in complex programs with many
compile-time configurations.

iii

Next, to extract and analyze cross-disciplinary dependencies, we propose a multidis-
ciplinary dependency graph. We instantiate our idea by developing tools that extract
dependencies and construct the graph at a multinational video game organization with
more than 18,000 employees. Our analysis of the historical data from a recently launched
video game project demonstrates that 41% of the studied source code changes impact other
teams’ artifacts, highlighting the importance of analyzing inter-artifact dependencies. We
also observe that 66% of the studied changes do not modify the graph, suggesting that
prior graph versions are often accurate for analytics tasks (e.g., impact analysis); however,
rapid incremental approaches are needed to update the graph and ensure its usefulness for
all types of changes.

The enhanced dependency graph presented in this thesis can be leveraged to develop a
new generation of risk assessment, build failure prediction, and code review prioritization
tools.

iv

Acknowledgements

This thesis would not have been possible without the help, support and guidance of
many people. First and foremost, I am extremely grateful to my supervisor, Dr. Shane
McIntosh, for his support and help during my study at his lab. His immense knowledge and
experience have encouraged me throughout my academic research and daily life. I would
also like to thank Dr. Maxime Lamothe for providing guidance and feedback throughout
my study.

I am also grateful to Dr. Sarra Habchi and Mathieu Nayrolles for allowing me to
research at Ubisoft and guiding me throughout my internship there. Special thanks to Dr.
Mei Nagappan and Dr. Michael Godfrey for their time reading this thesis and giving me
constructive feedback.

I wanted to thank the brilliant students at the Software Repository Excavation and
Build Engineering Labs (The Software REBELs) who motivated me to work on this the-
sis; including Mahmoud, Farshad, Mahtab, Nimmi, Mingyang, Zhili, Gengyi, Sean, Eve,
Arsalan, Wen, and Gareema. Thanks should also go to Rasoul Akhavan Mahdavi and Ali
Abyaneh for being amazing housemates and friends.

Most importantly, none of this could have happened without my family. My grand-
mother, who raised me and my mother, for her incredible support and guidance.

v

Dedication

This is dedicated to all the brave Iranians who are fighting for their freedom, to Mahsa
Amini, and to Woman, Life, Freedom.

vi

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements v

Dedication vi

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Overview . 2

1.3 Statically Analyzing Build Files . 4

1.4 Code-Adjacent Artifacts . 4

1.5 Thesis Contributions . 5

1.5.1 Technical Contributions . 5

1.5.2 Empirical Contributions . 5

1.6 Thesis Organization . 6

vii

2 Background and Definitions 7

2.1 Build System . 7

2.1.1 Build Specification Files . 7

2.1.2 Deliverables . 8

2.1.3 Configuration Setting . 8

2.2 Analyzing Build Specification Files . 8

2.2.1 Abstract Syntax Tree . 8

2.2.2 Build Dependency Graph . 9

2.2.3 Graph Traversal . 10

2.3 Chapter Summary . 10

3 Related Research 11

3.1 Build System . 11

3.1.1 Co-evolution of Source and Build Code 11

3.2 Analysis of Build Code . 12

3.2.1 Dependency Graph . 12

3.2.2 Static Analysis of Build Code . 12

3.2.3 Dynamic Analysis of Build Code 12

3.3 Chapter Summary . 13

4 Assessing the Exposure of Software Changes, The DiPiDi Approach 14

4.1 Introduction . 14

4.2 Research Questions . 17

4.3 DiPiDi . 18

4.3.1 Indexing Phase . 19

4.3.2 Query Phase . 23

4.4 Research Protocol . 25

4.4.1 Variables . 25

viii

4.4.2 Materials . 30

4.4.3 Tasks . 35

4.4.4 Participants . 36

4.4.5 Execution Plan . 37

4.4.6 Analysis Plan . 39

4.4.7 Deviations From the Registered Report 40

4.5 Results . 42

4.5.1 RQ1: Does DiPiDi help developers assess the exposure of source
code changes more effectively? . 42

4.5.2 RQ2: Does DiPiDi help developers to assess the exposure of source
code changes more efficiently? . 47

4.5.3 Discussion . 49

4.6 Threats to Validity . 51

4.6.1 Threats to internal validity . 51

4.6.2 Threats to external validity . 52

4.6.3 Threats to construct validity . 52

4.7 Chapter Summary . 53

5 Dependency Extraction and Analysis for Multidisciplinary Teams: A
Case Study at Ubisoft 54

5.1 Introduction . 54

5.2 Extracting the Multidisciplinary Graph . 55

5.2.1 Data Extraction . 56

5.2.2 Graph Construction . 57

5.3 A Case Study . 61

5.3.1 RQ1: How often is the graph itself changed? 61

5.3.2 RQ2: How often does the impact of a change cross disciplinary
boundaries? . 62

5.4 Threats to Validity . 62

ix

5.4.1 Construct Validity . 63

5.4.2 Internal Validity . 63

5.4.3 External Validity . 63

5.5 Chapter Summary . 63

6 Conclusion 64

6.1 Contribution and Findings . 64

6.2 Opportunities for Future Research . 65

6.2.1 Enhanced Risk Assessment . 65

6.2.2 Leveraging Graph Metrics for CI Failure Prediction 66

6.2.3 Refactoring Build Code . 66

6.2.4 Graph Evolution . 66

References 67

APPENDICES 76

A Demographic Questions 77

B Post Study Questionnaire 78

B.1 Task A . 79

B.2 Task B - (Impacted Deliverables) . 80

B.3 Task B - (Impacted Variants) . 81

B.4 Task C - (Identify Commits Affect Deliverables) 82

B.5 Task C - (Identify Commits Affect Variant) 83

B.6 Task C - (Configuration Setting) . 84

x

List of Figures

1.1 An overview of the scope of this thesis . 3

2.1 A sample snippet of CMake build script from the ET: Legacy project. In
this sample, etl is the deliverable, FEATURE CURL is a build configuration,
and CLIENT SRC is a variable pointing to a list of zero or more source files. 8

2.2 A sample of the build dependency graph, which shows the Main executable
that depends on two libraries and a file. Additionally, lib1 depends on two
files. 9

4.1 A build dependency graph generated by DiPiDi for the code showed at
Figure 2.1. Arrows show dependency relation between a source node to the
destination. 16

4.2 An overview of the DiPiDi approach . 18

4.3 When flattening the second SelectNode in (a), the approach should remem-
ber the UNIX=False assumption from the first SelectNode, prune the True

path and only consider the False path. 22

4.4 An example of the output of the tool based on the given graph in Figure 4.1.
Each key in the root dictionary is a source file in the project. For each
source file, another dictionary with conditions as keys and targets as values
represents the impacted target given a change which includes the source file. 23

4.5 DiPiDi Web Query Interface . 34

4.6 Participants in the DiPiDi group outperform two other groups in all the
three metrics. While the Existing Tool group performs better than the No
Tool group, the difference is not negligible. 44

xi

4.7 Distance between the participant’s responses to the ground truth calculated
using Kendall tau rank distance formula. The larger the distance, the more
dissimilar the responses and the ground truth. 45

4.8 Participants in the DiPiDi group outperform two other groups in all the
three metrics in Task C. Interestingly, the No Tool group outperforms the
Existing Tool. 46

4.9 Participants in the DiPiDi group finish the tasks faster compared to other
groups. While the No Tool group performs more efficiently than the Existing
Tool, they are not necessarily more effective. 48

5.1 An overview of the graph extraction approach 55

5.2 A 3D object (.uasset) may depend on multiple object files (.OBJ), which
themselves depend on material files (.MTL) 57

5.3 A multidisciplinary graph extracted from a game project. Pink nodes are
code files, green are data files (e.g., textures, animations, and music), and
orange are the computational nodes that connect code and data. 60

xii

List of Tables

4.1 Type of nodes in Build Dependency Graph generated by DiPiDi after travers-
ing the AST . 21

4.2 The dependent variables of the study . 27

4.3 The confounding variables of the study . 29

4.4 Summary of the selected projects . 32

4.5 Demographic information about the participants 36

4.6 Participants’ expertise based on the demographic questions. Participants
can be in more than one experience category. 45

4.7 Summary of the result for each task per tooling level 47

4.8 Time it takes for each group of participants to do the tasks 49

4.9 Post Questionnaire Result . 49

xiii

Chapter 1

Introduction

Software development is a complex endeavour. Various software artifacts need to be care-
fully developed in order to produce a software system. Source code, which describes system
behaviour, is the software artifact that is traditionally associated with software. However,
source code is not the only software artifact. Indeed, test code which is used to verify the
system by exercising it using simulated conditions, and non-source code artifacts such as
machine learning models, user interface objects, and infrastructure specification files are
also commonly part of software systems. To weave these artifacts into a cohesive system,
software organizations rely on build systems. These build systems specify and resolve in-
ternal and external dependencies and the conditions under which they should be used.
In addition, build systems orchestrate the invocation of order-dependent commands that
preprocess, compile, assemble, link, analyze, and package software artifacts into deliver-
ables [26].

At their core, build systems specify and reason about which commands should be in-
voked using a dependency graph, i.e., a directed graph where nodes represent software
entities and directed edges indicate dependencies between artifacts. While the dependency
graph is crucial to build system execution, it is also useful for performing other sorts of
software analyses, such as failure prediction [87], maintenance analysis [7], quality improve-
ment [39], and impact analysis [80].

Complex software programs employ many compile-time configuration settings to build
different software products (a.k.a., variants) from the same artifacts (i.e., source files) [78].
For example, the Linux kernel has more than 10,000 compile-time configuration settings [74].
Additionally, in software development projects that involve personnel from different dis-
ciplines, the breadth of software artifacts can be vast [82]. For example, producing high-

1

budget video games (‘AAA games’) requires the careful coordination of personnel with
divergent expertise, such as technical software staff (e.g., developers, QA, and operators),
as well as creative staff (e.g., graphic artists, composers and musicians, script writers, and
level designers). AAA games are typically composed of millions of lines of code, as well as
hundreds of thousands of non-code files like textures and animations [61].

1.1 Problem Statement

Since a build dependency graph shows dependency relationships between files in a software
project, it can be used to assess the risk of software changes. However, in complex software
programs with many compile-time configuration settings or code-adjacent artifacts, current
approaches that extract and analyse the build dependency graph are incomplete:

Thesis Statement: A build dependency graph that captures build-time configuration
settings and code-adjacent artifacts can be leveraged to accurately assess the risk of
software changes.

Change Impact Analysis (CIA) is one way to determine the consequences of a change
on a software application [12]. Many CIA techniques have been proposed [7, 8, 29, 35, 49,
76]. However, to the best of our knowledge, prior approaches do not consider build-time
configuration settings or artifacts other than source files in the project. While build impact
analysis has been shown to be effective [7, 81], current techniques rely on a dynamic analysis
of build execution, which cannot expose the impact of a change on different environmental
and configuration settings. Furthermore, these techniques focus only on source files. Hence,
in this thesis, we explain how to enhance the build dependency graph by 1) statically
analyzing the build description files, and 2) extracting code-adjacent artifact dependency
relationships.

1.2 Thesis Overview

We now provide a brief overview of the thesis. Figure 1.1 provides an overview of the scope
of this thesis. We first provide the necessary background for our topic:

2

Enhancing Build Dependency Graphs

Leverging Static View of the
Build Time Architecture for

Impact Analysis

Extracting Dependencies
for Code-adjacent Artifacts

Controlled Impact Analysis
Experiment with 32 Developers Dependencies at Ubisoft Games

Topics

Studies

Outcome DiPiDi Multidisciplinary Build
Dependency Graph

Background

Chapter 2:

Background & Definitions

Chapter 3:

Related Research

Figure 1.1: An overview of the scope of this thesis

Chapter 2: Background and Definitions
Before discussing how to enhance the build dependency graph, we first
provide readers with background information and definitions of terms
that we use throughout this thesis.

Chapter 3: Related Work
To situate this thesis with prior studies, we present a survey of research
on build dependency graphs.

Next, we shift our focus to the main part of this thesis. In this thesis, we focus on how
to improve the build dependency graph by considering build-time configuration settings
through static analysis of build files and adding code-adjacent artifacts to the graph. Each
empirical study is presented in its own chapter, as explained in the subsection below.

3

1.3 Statically Analyzing Build Files

Complex software programs have multiple dependency paths to their source files from their
deliverables, i.e., software artifacts that users can interact with, such as executable files or
libraries. Build systems derive default configuration settings by analyzing the execution
environment or reading user override settings. Build systems use these settings to reason
about whether source files (or conditionally compiled code snippets) should be included or
excluded from the produced deliverables. Under some conditions, a source file may play a
role in one compiled deliverable without affecting others. For example, in the Linux kernel,
the source files written specifically for the ARM architecture will be excluded from the x86
version of the kernel [59]. In these complex systems, a change in a source file may have
unexpected side effects on deliverables outside of the current compilation path. Software
systems that support multiple variants can therefore create complex arrangements of effects
and side effects, where the deliverables exposed to a code-change can be unclear [15]. In
this thesis, we propose an approach to assess the impact of software changes to the source
code of systems using the build system specification files. One of the key roles of the
build system is finding and selecting files based on build scripts, build-time configurations,
and environmental variables [9, 73, 86]. By statically analyzing the build system and
constructing the Build Dependency Graph (BDG), we can assess the exposure of a change
on all software variants.

Chapter 4: Assessing the Exposure of Software Changes, The DiPiDi Approach
To evaluate the proposed approach, we conduct an experiment to assess
the effect of our approach on the effectiveness and efficiency of deter-
mining the exposure of source code changes on projects that are using
CMake build system. To that end, we recruit 32 participants and form
three participant groups – those with no tool assistance, those with the
assistance of a CIA tool, and those with the assistance of a prototype
implementation of our approach called DiPiDi – and compare their effi-
ciency and effectiveness on prescribed tasks.

1.4 Code-Adjacent Artifacts

Software projects require a variety of expertise to develop. For example, to produce a video
game, engineers, like software developers, and artists, like 3D designers, should work on
the same project simultaneously. A change to any of the artifacts (i.e., work products)
of any of the teams can impact the work of other teams. As a result, any analytics tasks

4

should consider intra- and inter-dependencies among artifacts produced by different teams.
To this end, in this thesis, we introduce the multidisciplinary dependency graph.

Chapter 5: Dependency Extraction and Analysis for Multidisciplinary Teams: A
Case Study at Ubisoft
Multidisciplinary teams require a multidisciplinary dependency graph.
Consider a change to a source code file that repositions an object in a
game. This repositioning may have a transitive impact on other objects
within the location in the game. To trace the impact of that change,
we need a graph that captures the dependencies in code, data, and their
interdependencies. While dependency graphs have been explored in the
general development context [7, 39, 87], the multidisciplinary software
context introduces challenges in the extraction and analysis of depen-
dency graphs that need to be addressed. In this chapter, we show how
such a graph can be extracted from a large video game project and ex-
plore properties of the extracted graph.

1.5 Thesis Contributions

This thesis has both technical and empirical contributions as described below:

1.5.1 Technical Contributions

To evaluate the approaches proposed in this thesis, we develop following tools:

1. A prototype implementation of our approach to statically extract and analyze the
build dependency graph from CMake build system specification files containing all
the environmental and configuration settings (Chapter 4).

2. A script to find dependency relationships in code-adjacent artifacts and add the
corresponding nodes and edges to the dependency graph (Chapter 5).

1.5.2 Empirical Contributions

This thesis shows that:

5

1. Considering build-time configuration settings by statically analyzing build specifica-
tion files improves the efficiency and effectiveness of developers assessing the impact
of software changes (Chapter 4).

2. Changes to code and code-adjacent artifacts do not modify the multidisciplinary
graph in 66% of the cases, suggesting that the graph can be used for analytics tasks;
however, rapid incremental approaches are needed to update the graph and ensure
its usefulness for all types of changes (Chapter 5).

3. Extracting and analyzing inter-artifact dependencies using a multidisciplinary depen-
dency graph is important because 41% of the changes in the code files affect other
artifacts as well (Chapter 5).

1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background knowl-
edge and definitions of key terms. Chapter 3 surveys the related research on build depen-
dency graphs. Chapter 4 presents the results of an experiment to assess the impact of
our proposed approach on statically analyzing the build dependency graph and build-time
configuration settings. Chapter 5 presents an approach and evaluation of a dependency
graph which contains code-adjacent files as well as the code files. Finally, Chapter 6 draws
conclusions and discusses paths for future work.

6

Chapter 2

Background and Definitions

In this chapter, we define the core concepts of a build system. First, we provide an overview
of building a software system, and then we dive deep into the build system and its internal
data structure.

2.1 Build System

A build system is a program that uses a set of specifications that outlines how a software
system is assembled from its development artifacts (e.g., source files). The build system
plays a critical role in modern software development. It is used in testing, packaging, and
deploying a software program. In the remainder of this section, we describe the internal
architecture of build systems in more detail.

2.1.1 Build Specification Files

Build specification files describe necessary commands and the order in which they must be
executed in order to produce the final product correctly. Each build system has its own
specification language. Figure 2.1 shows a sample of a specification file for the CMake
build system [44].

7

0.8
(a)

if(FEATURE_CURL)

add_executable(etl ${CLIENT_SRC} dl_main_curl.c)

else()

add_executable(etl ${CLIENT_SRC} dl_main_stubs.c)

endif()

Figure 1: A sample snippet of CMake build script from the ET: Legacy project.
In this sample, etl is the deliverable, FEATURE CURL is a build configuration,
and CLIENT SRC is a variable pointing to the source files.

0.8
(a)

[width=1]Example.pdf

Figure 2: A build dependency graph generated by . Arrows show dependency
relation between a source node to the destination.

Figure 3: A real-world example of a small section of a CMake build script and
its corresponding Build Dependency Graph

1

Figure 2.1: A sample snippet of CMake build script from the ET: Legacy project. In this
sample, etl is the deliverable, FEATURE CURL is a build configuration, and CLIENT SRC is
a variable pointing to a list of zero or more source files.

2.1.2 Deliverables

The goal of the build system is to convert the artifacts in the project into deliverables.
These deliverables are in the form of executable files or libraries which will later be used
by other programs. The terms deliverable and target are often used interchangeably.

2.1.3 Configuration Setting

The configuration setting is a set of environmental and user-specified settings provided to
the build system. These settings will help the build system to produce different software
products (a.k.a. variants) from the same artifacts.

2.2 Analyzing Build Specification Files

Build specification files contain dependency information between software artifacts in a
project. This information can be leveraged for software analytics tasks such as impact
analysis and build failure prediction. In the remainder of this section, we explain how to
parse, extract, and analyze these files.

2.2.1 Abstract Syntax Tree

The Abstract Syntax Tree (AST) is a connected acyclic graph that represents the structure
of a file and is the output of the parser. This data structure has been widely used by
programming languages and software engineering tools [13, 85].

8

<executale>

Main

<library>

lib1

<library>

lib2

File1.cpp File2.cpp File3.cpp

File4.cpp

Figure 2.2: A sample of the build dependency graph, which shows the Main executable
that depends on two libraries and a file. Additionally, lib1 depends on two files.

Every build system has its own entry file for anchoring the dependency graph construc-
tion. For example, GNU Make by default expects a file named Makefile to exist in the
directory in which the command was invoked. The entry file describes how to build the
project using the build system-specific language. The project can contain helper build files
in other folders or split the entry file and relocate it in other folders. All of those files
should be addressed and included in the entry point file. To capture the content of the
build files, we parse the entry file and build an Abstract Syntax Tree (AST) using a parser
that understands the build system grammar. The output of the parser is an AST for one
build specification file.

2.2.2 Build Dependency Graph

In a software project, artifacts may depend on each other. For example, a C++ file may
include a header or another source file. At higher levels, an executable target may depend
on libraries and source files.

To successfully build a project, its build system should construct the deliverables in
the correct order. Building a deliverable earlier than the ones which it depends on will
result in a build failure. Thus, build systems use an internal data structure called the

9

build dependency graph to specify and reason about which commands should be invoked
in which order.

The build dependency graph is a directed acyclic graph BDG = (T,D), where graph
nodes represent build targets T = T f ∪ T p, where T f is the set of concrete files produced
or consumed by the build process, T p is the set of phony targets in the build process, and
T f ∩ T p = ∅. Directed edges represent dependencies d(t, t′) ∈ D from target t to target
t′ which means t should be updated when t′ changes. Figure 2.2 shows an example build
dependency graph. The build system starts processing the nodes in the dependency graph
in topological order. For instance, in Figure 2.2, the build system first generates lib1 and
lib2 before constructing the Main executable. Any further changes to children of lib1

will result in the reconstruction of Main executable as well.

2.2.3 Graph Traversal

The build dependency graph shows dependencies from targets to other targets or files.
However, in software analytics tasks like impact analysis, we are interested to see how
much of a graph will be exposed to a change on a file. Thus, in this thesis, we use the
Depth First Search (DFS) graph traversal algorithm to find exposed nodes to a change.

2.3 Chapter Summary

This chapter provides background knowledge of build systems and analyzing their specifica-
tion files. More specifically, we describe how build systems produce deliverables by parsing
the build specification files, considering the configuration settings, and constructing and
traversing the build dependency graph.

In the next chapter, we survey prior research on understanding and improving soft-
ware analytics tasks using the build dependency graph to situate our empirical studies of
enhancing the build dependency graph with respect to the broader body of knowledge.

10

Chapter 3

Related Research

In this section, we situate our study and its results with respect to the literature on the
(3.1.1) Co-evolution of Source and Build Code, (3.2.1) Dependency Graph, (3.2.2) Static
Analysis of Build Code, and (3.2.3) Dynamic Analysis of Build Code.

3.1 Build System

3.1.1 Co-evolution of Source and Build Code

There are plenty of empirical studies on the relationship between source code and its
corresponding build code. These studies have shown that changes to source code files may
lead to changes in the build files that are required to build software programs successfully.
McIntosh et al. [55] showed this relationship and concluded that, like source files, build
code evolves and may have defects. Hochstein et al. [40] found that 19%–58% of commits
change build files only, and 37%–65% of them touch at least one build file. Robles et al.
[68] found that many commits mainly involve a build file, showing frequent changes to
the build procedure. Also, studies have shown the relationship between the complexity of
source and build code [6, 54]. However, to the best of our knowledge, no prior work has
studied the relationship between source code changes and their exposure under different
configuration settings.

11

3.2 Analysis of Build Code

3.2.1 Dependency Graph

Dependency graphs have been used for software analysis tasks. For example, Ma et al. [51]
introduced Service Dependency Graph (SDG) to analyze and visualize the dependency re-
lationships between microservices. Dependency graphs have long been at the heart of soft-
ware build systems. For example, Feldman introduced the Make build system [26], which
uses a depth-first search of the file-level dependency graph to keep the program deliver-
ables up to date with their dependencies. Zimmermann et al. [87] used complexity metrics
extracted from dependency graphs to predict subsystem failures. Since incomplete graphs
can produce unreliable analytics, we propose the multidisciplinary dependency graph and
demonstrate its importance in video game projects, such as those at Ubisoft.

3.2.2 Static Analysis of Build Code

Build description files are often quite complex, making it difficult for any developer to
fully grasp all of their intricacies. Thus, it is often challenging to both identify bad design
practices within build files, and to improve them through refactoring efforts. To remedy
this situation, tools like SYMake [76] and HireBuild [37] have been proposed in prior works.
SYMake is a tool that can discover smells within build-system files and help developers to
refactor these files by building a symbolic dependency graph from GNUMake specifications.
Hassan et al. [37] developed a tool called HireBuild, which automatically fixes buggy build
files using a history-driven approach. These studies used properties of build specification
files to analyze the build systems themselves. In this thesis, we use build dependency
graphs to analyze the impact of the changes on software systems.

3.2.3 Dynamic Analysis of Build Code

Impact analysis of changes has applications both for researchers and practitioners. Wen
et al. [81] introduced BLIMP Tracer, an approach to integrate impact analysis with code
review. They showed that changes that impact critical deliverables may require more
reviewing efforts than others. In another study, Cao et al. [17] proposed a tool that can
estimate the duration of an incremental build using the build dependency graph, history of
the builds, and changed files. They created the graph using the output messages generated
by GNUMake. MAKAO is a tool developed by Adams et al. [7] which focuses on visualizing

12

Makefile contents to aid in refactoring them using an aspect-oriented approach. However,
these studies construct the graph based on a single execution environment and the build-
time configurations provided to the build system for that specific invocation. Thus, the
generated graph does not include the files and the dependencies for other configurations.
The graph generated using the approach introduced in this thesis considers all the possible
outcomes of the build system and produces a more global analysis result.

3.3 Chapter Summary

In this chapter, we survey prior research along the build systems and analysis of build
code. While related work shows active research on using build dependency graphs for
software analytics tasks, like impact analysis, the graph can be significantly enhanced by
(1) statically analyzing the build code and considering the build-time configuration settings
and (2) extracting and analyzing code-adjacent artifacts, like 3D objects in a game project
or machine learning models in an AI-based project.

Broadly speaking, we describe our empirical studies that set out to enhance the build
dependency graph in the remainder of this thesis. We begin, in the next chapter, by
introducing an approach that extracts configuration settings from build code and assesses
its impact on the efficiency and effectiveness of developers tasked with change impact and
risk awareness exercises.

13

Chapter 4

Assessing the Exposure of Software
Changes, The DiPiDi Approach

The research protocol used in this chapter has
been accepted by the Registered Reports track
of MSR 2021. Additionally, an earlier version
of the work in this chapter has been accepted
to the Springer Journal of Empirical Software
Engineering (EMSE).

4.1 Introduction

Software programs with various compile-time configurations have multiple dependency
paths to their source files from their deliverables, i.e., software artifacts that users can in-
teract with, such as executable files or libraries. Build systems derive default configuration
settings by analyzing the execution environment or reading user override settings. Build
systems use these settings to reason about whether source files (or conditionally compiled
code snippets) should be included or excluded from the produced deliverables. Under some
conditions, a source file may play a role in one compiled deliverable without affecting oth-
ers. For example, in the Linux kernel, the source files written specifically for the ARM
architecture will be excluded from the x86 version of the kernel [59]. In these complex
systems, a change in a source file may have unexpected side effects on deliverables out-
side of the current compilation path. Software systems that support multiple variants can

14

therefore create complex arrangements of effects and side effects, where the deliverables
exposed to a code-change can be unclear [15].

Software engineering practices that assess source code changes, like code review, are
expensive and time-consuming [16, 20]. Extra time and effort must be spent by developers
on activities like finding which deliverables are exposed to a change. In this chapter, we
define the exposure of a change as the set of deliverables affected by a change, including
executables and libraries, as well as the different build-time configuration and environment
settings under which the changes propagate. Changes that impact critical deliverables
or configurations may require more quality assurance effort than others to mitigate their
exposure risk [81].

When modifying complex software programs, source code changes may be localized or
broad. Figure 4.1 shows an example of a dependency graph for the ET: Legacy project.1

A change to the dl main curl.c file impacts the deliverable etl only if the FEATURE CURL

option is ON. On the other hand, changes to files represented by $CLIENT SRC will always
impact the deliverable. A change that only impacts one variant of a system may not be
as important as a change that affects all variants. Exposing the effect of a change under
different configuration settings can help developers assess the impact of that change.

Therefore, we propose DiPiDi, an approach to assess the exposure of changes to the
source code of systems using the build system specification files. One of the key roles of the
build system is finding and selecting files based on build scripts, build-time configurations,
and environmental variables [9, 73, 86]. By statically analyzing the build scripts and
constructing the Build Dependency Graph (BDG), we can assess the exposure of a change
on all software variants.

To evaluate the proposed approach, we conduct an experiment to assess the effect
of DiPiDi on the effectiveness and efficiency of determining the exposure of source code
changes on projects that are using CMake build system.2 To that end, we form three
participant groups – those with no tool assistance, those with the assistance of a CIA
tool, and those with the assistance of DiPiDi – and compare their efficiency and effective-
ness on prescribed tasks. The participants are asked to identify the impacted deliverables
and variants for given source code changes while we monitor their performance. A tool
that could significantly improve effectiveness and efficiency for these tasks could be useful
in many applications both for researchers who design experiments based on source code
change (e.g., mutation testing) [70] and practitioners in the allocation of quality assurance

1https://github.com/etlegacy/etlegacy
2This study has been reviewed and received ethics clearance through the University of Waterloo Re-

search Ethics Committee (ORE# 43727)

15

etl

Files

SELECT
FEATURE_CURL

dl_main_curl.c

CONCAT

True

 ${CLIENT_SRC}

CONCAT

False

dl_main_stubs.c

Figure 4.1: A build dependency graph generated by DiPiDi for the code showed at Fig-
ure 2.1. Arrows show dependency relation between a source node to the destination.

resources.

Result: Our results indicate that without tool support, identifying impacted deliverables
is a difficult task, even for experienced developers. Members of the No Tool group ob-
tained the lowest F1-score in Task Type A and the highest rank distance in Task Type
B despite having more experienced developers and professional CMake users than other
groups. Moreover, our results suggest that DiPiDi helps developers to identify impacted
deliverables more effectively than current solutions. Indeed, the identified impacted deliv-
erables by the members of the DiPiDi group are 32, 40, 36 average percentage points better
in terms of precision, recall, and F1-score over the members of the Existing Tool group.
Moreover, we find that developers using our approach identify impacted targets more effi-
ciently than others. DiPiDi results in 42% average task time reduction when compared to
the approach used in the positive control group.

The remainder of this chapter is organized as follows. We first describe our research
questions in Section 4.2. In Section 4.3, we present and describe our approach called DiPiDi
and its prototype implementation. In Section 4.4, we describe the design of the experiment
that we use to evaluate DiPiDi. In Section 4.5, we present the results of our experiments.
Section 4.6 discloses the threats to the validity of our approach and experiments, and

16

finally, Section 4.7 concludes the chapter.

4.2 Research Questions

In this study, we aim to determine whether a static analysis of build systems can improve
the effectiveness and efficiency of software developers striving to assess the exposure of a
source code change.

Despite the importance of understanding exposure, we conjecture that it is difficult to
assess without tool support. To this end, we propose DiPiDi to improve awareness of the
exposure of changes. We hypothesize that DiPiDi will allow developers to more efficiently
and effectively determine the exposure of source code changes.

A source code change, or patch, that impacts an application under a specific and rare
configuration would likely not merit as much developer attention as a source code change
that always impacts the application. A change that impacts more deliverables and/or
configurations (high-exposure) has a broader “surface area” and a greater potential to
impact users, should a defect be introduced, than a change with low-exposure. Therefore,
we believe that knowing which deliverables are affected by a source code change or a
patch can allow developers to make more informed decisions when making source code
changes. To investigate whether DiPiDi approach help developers to identify the impacted
deliverables, we formulate the following research question:

RQ1: Does DiPiDi help developers assess the exposure of source code changes more
effectively?

While finding all of the deliverables impacted by a change is important, it also is time-
consuming because it requires project-wide knowledge, an understanding of the relations
between the files and the build system. Developers attempting this task must identify the
modified source code throughout the project and trace them through the build dependency
graph, while taking care to consider build-time configuration settings. Some of these
configurations may be related to the environment of the user, like the operating system.
So, a change may have a side-effect on one machine without appearing on others. On
the other hand, build-scripts may use wildcard addressing, like *.cpp, for the source files,
making it challenging to follow a complete compilation path from a deliverable to the
changed source file. Therefore, developers may rely on heuristics (e.g., directory structure),
or worse, ignore this important step in assessing the risk of a change. We pose the following
research question to explore the efficiency of developers while using DiPiDi:

17

Build System
Files

Version
Control
System

I1) Extract Abstract
Syntax Tree

Include other build files

I2) Construct Dependency Graph

I3) Dereference Variables

Indexing Phase

Q1) Extract
Change Set

Query Phase

Q2) Traverse
Compilation Paths

Q3) Simplify
Conditions

Indexed Data

AST

Build Dependency Graph

Commit

File Names

Impacted Targets
Under Different

Configuration Settings

Figure 4.2: An overview of the DiPiDi approach

RQ2: Does DiPiDi help developers assess the exposure of source code changes more
efficiently?

4.3 DiPiDi

An overview of the DiPiDi approach can be found in Figure 4.2. The approach has two
main phases, the Indexing Phase and the Query Phase. The purpose of the Indexing Phase
is to construct an internal representation of the build system. This internal representation
includes all the possible compilation paths from each deliverable to the source files. This
data can be stored and used later in the Query Phase. The purpose of the Query Phase
is to allow DiPiDi to leverage the data constructed by the Index Phase and to output the
impacted deliverables under different configuration settings given a set of changed file.

18

Implementation: In order to conduct our study, we produce a prototype implementation
of DiPiDi for the CMake build system. CMake is a cross-platform build system that builds
deliverables from artifacts, like source files [44]. CMake has two distinct phases. First, it
generates platform-based low-level build specifications (e.g., Makefiles, Visual Studio #.sln
files, or Ninja files) [53]. Then, CMake invokes the low-level build tool like make to build
the project. Our implementation is available online on our public GitHub repository.3

We explain each step of the approach presented in Figure 4.2 in more detail below.

4.3.1 Indexing Phase

We explain our approach for each step in the Indexing Phase in more detail below. Some
steps may require an implementation tailored to the build system being used. In those
cases, we also explain our implementation for the prototype of DiPiDi.

I1) Extract Abstract Syntax Tree

Every build system has its own entry file to start building the project. For example, GNU
Make looks for a file named Makefile in the root of the project. The entry file describes
how to build the project using the build system specific language. The project can contain
helper build files in other folders or split the entry file and relocate it into multiple folders.
All of those files should be addressed and included in the entry point file. To capture the
content of the build files, we parse the entry file and build an Abstract Syntax Tree (AST)
using a parser that understands the build system grammar. The output of this stage is an
AST for one build system related file.

Implementation: Projects using CMake should contain CMakeLists.txt in their root
directory as the entry file for CMake. Other helper files which have .cmake extensions
can be in other folders. The tool first parses the CMake specifications starting with the
CMakeLists.txt file in the project root directory. We use ANTLR [63] to parse and
build the Abstract Syntax Tree (AST) from the CMake file. The grammar for CMake is
straightforward since CMake commands follow the same structure which can be captured
by the following parser rule:

command_invocation

: Identifier ‘(’ (single_argument|compound_argument)* ‘)’

;

3https://github.com/software-rebels/cmake-inspector

19

I2) Construct Dependency Graph

Next, we traverse the AST to construct the Build Dependency Graph, which represents the
relationship between the deliverables, source files, and the conditions in each compilation
path from deliverables to source files. Table 4.1 shows the different node types used in
DiPiDi to construct the Build Dependency Graph from the AST. In this step, DiPiDi also
creates a lookup table for each of the variables and targets found while traversing the AST.
Some build systems like CMake support scoping for the variables, while others like GNU
Make do not. To enable scoping, the lookup table dynamically changes as we parse other
files or functions.

As we reach each AST node, based on the name of the command, we select a corre-
sponding node from Table 4.1 and use the lookup table to find the variables and other
nodes that this node may depend on. In this step, we cannot assign values to the variables
since they might have different values based on the paths we took to reach to them. As
an example, consider a variable called srcs holding a list of source files. Based on the
operating system, the build system may append some additional files, like foo arm.cc, to
that variable. Thus, we only keep the nodes and their dependencies. At this level, we
may need to include and parse other build-related files found while traversing the AST by
repeating the previous step.

At the end of this step, DiPiDi has a graph and a lookup table representing the whole
project under analysis, variables, source files, conditions, and targets.

I3) Dereference Variables

Often in large software applications, there are build-time configuration and environ-
mental settings that help the build system to reason about different variants of the sys-
tem [40, 50]. These settings create different dependency paths from the deliverable to the
source files. In the generated Build Dependency Graph, the target nodes which represent
the deliverables reside at the top and the leaves are source files represented by LiteralN-
odes. Using this graph and starting from a target node, we traverse the graph down to the
leaves and resolve variables to their values under different build-time configuration settings
(i.e., flatten the variables).

By flattening the variables, we obtain all of the possible values for each variable for all
configuration settings. This information is then saved and can be accessed through an API
when attempting to determine the exposure of a source code change.

4https://gitee.com/openeuler/iSulad

20

https://gitee.com/openeuler/iSulad

Table 4.1: Type of nodes in Build Dependency Graph generated by DiPiDi after traversing
the AST

Type Description Example Command

TargetNode Represents a target or deliverables
in the project. This node may de-
pend on other nodes to show depen-
dency between a deliverable on li-
braries, variables, or a list of source
files.

add executable

RefNode Shows explicitly defined or environ-
mental variables. This node often
depends on another node such as a
ConcatNode to represent a list or a
LiteralNode to show the value of the
variable

set

OptionNode Shows the user-defined build-time
configurations in the project.

option

LiteralNode Represents literal strings or num-
bers. RefNodes or TargetNodes may
point to these nodes to show the
value of a variable or source files for
a target.

“foo.cc”

SelectNode Shows conditional paths which have
three properties: a condition, a True
path, and a False path.

if

ConcatNode Represents multiple possible values
for a node which should be concate-
nated together and it points to two
or more other nodes

list

CustomCommandNode All other commands in CMake are
represented by this node which can
point to an arbitrary number of
nodes showing different arguments
for a command

find

21

...
False

SELECT

{UNIX}

False True

SELECT

{GRPC_CONNECTOR

AND UNIX}

librest libgrpc

rest_client.c grpc_client.c

(a) Part of a dependency
graph from the iSulad
project.4

def flatten(node , cond):

if instance(node , SelectNode):

if satisfiable(cond + node.cond):

result += flatten(node.trueNode , cond + node.

cond)

if satisfiable(cond + Not(node.cond)):

result += flatten(node.falseNode , cond + Not(

node.cond))

elif instance(node , ConcatNode):

result += flatten(child) for child in node.

getChildren ()

elif instance(node , LiterlNode):

result += node.getValue (), cond

elif ...

pass

return result

(b) Flattening algorithm for the SelectNode

Figure 4.3: When flattening the second SelectNode in (a), the approach should remember
the UNIX=False assumption from the first SelectNode, prune the True path and only
consider the False path.

22

1 {
2 "dl_main_curl.c": {
3 "FEATURE_CURL": ["etl"]
4 },
5 "dl_main_stubs.c":{
6 "NOT FEATURE_CURL": ["etl"]
7 },
8 "common.c": {
9 "": ["etl"]

10 }
11 }

1

Figure 4.4: An example of the output of the tool based on the given graph in Figure 4.1.
Each key in the root dictionary is a source file in the project. For each source file, another
dictionary with conditions as keys and targets as values represents the impacted target
given a change which includes the source file.

To evaluate the expressions and conditions while flattening the variables, we used Z3
[57], a library that determines whether a formula is satisfiable, developed by Microsoft
Research. Z3 supports formulas involving Boolean, numbers, and strings. We keep track
of the evaluation of each condition along the path to prune the build dependency graph
while reaching each SelectNode. Figure 4.3(a) shows two SelectNodes in one compilation
path. The algorithm does not have any assumption about the variables when it reaches
the first SelectNode, which has a condition on the UNIX variable. Thus, it expands both
paths and calls the algorithm to flatten each path with different assumptions, UNIX=True
for the True path and UNIX=False for the False path. Given the assumption for the False
path, when the algorithm reaches the second SelectNode, which has a condition on UNIX

And GRPC CONNECTOR, it does not expand the True path because it is not satisfiable, as
UNIX is False. The output of this phase is all the compilation paths from each target down
to the source files with the conditions that are being held as True during the path. An
example of the output is shown in Figure 4.4.

4.3.2 Query Phase

This phase uses the index data generated from the previous phase to find the impacted
deliverables. The steps of this phase are described below:

23

Q1) Extract Change Set

A commit in the version control systems contains a list of changed files. Since DiPiDi
operates at the file level, which is the same granularity as the build system, we need the
changed file names to start the impact analysis. The output of this step is a list of changed
source files in a commit.

Q2) Traverse Compilation Paths

Given a list of file names and the output of the Index Phase, we can search all of the
compilation paths that include the changed file and create a list of exposed targets. In this
step, the user can optionally add some assumptions on the configuration settings. Since
we store the required conditions for each path, we can use the Z3 library to filter out the
paths which are not reachable given the conditions set by the user. The output of this step
is a list of exposed targets and the conditions under which each target will be impacted by
the change.

Q3) Simplify Conditions

Since we add each condition to our assumptions while traversing a compilation path, the
list of conditions generated by the previous step may contain duplicates and can be sim-
plified. In Z3, we can pass functions to the reasoning engine for custom processing steps.
These functions are also known as tactics.4 We use the following tactics to simplify the
assumptions:

• propagate-values: This tactic propagates the value of each variable between as-
sumptions. For example, if we have an assumption that a = 0 and b > a, we can
simplify the second assumption to b > 0.

• propagate-ineqs: We then propagate the inequalities and remove the subsumed
ones. For example, if we have a > 10 and a > 2 in our assumptions, we can remove
the second one since it is always True if a is greater than 10.

• ctx-solver-simplify: Finally, we remove the assumptions that are always True.
As an example, if we have a, b, a AND b in our assumptions, we can remove the
third one as it is True.

4https://www.philipzucker.com/z3-rise4fun/strategies.html

24

The output of this step is the same as the previous one with some simplification on the
condition list.

4.4 Research Protocol

To test our hypotheses, we conduct randomized controlled experiments with the three
groups defined. Study participants are asked to perform a set of prescribed tasks with
their usual development setup without additional help (control group), with a baseline
change impact analysis tool (positive control group), and with DiPiDi (treatment group).
We measure the effectiveness of our tool by comparing the responses of the participants with
an established ground truth. We measure the efficiency of our participants by comparing
the duration of each task across the groups.

4.4.1 Variables

This section presents an overview of the study variables, which are further described below.

Independent Variable

In our study design, the tool support provided to the participants varies (No Tool, With
Existing Tool, and With DiPiDi) which is represented by the Tooling Level independent
variable. All tooling levels have access to the same information and interface. The only
difference in access is the additional output of the Existing Tool/DiPiDi for the relevant
groups. More specifically, each group is defined as follows:

1. No Tool. This group has access to the code change and other files in the project,
including the build specifications. They can use their preferred development environ-
ment to perform the tasks. This group is a control group and represents the current
practices used by software developers attempting to determine which deliverables are
affected by a source code change.

2. Existing Tool. This group has access to the same environment as the No Tool
group, as well as the output of the change impact analysis generated using the Un-
derstand Tool [72]. This group is a positive control group and represents the current
approaches used by software engineering research to aid software developers attempt-
ing to determine which deliverables are affected by a source code change.

25

3. DiPiDi: This group – the treatment group – has access to the same environment
as the No Tool group, as well as DiPiDi. The participant can interact with the tool
using the Query Interface as described in Section 4.3. Our tool can print the impacted
deliverables at the file level. Although the file granularity may overestimate the true
impact of a change, it is the granularity at which the build system operates.

Participants in all groups may use any external tool that they feel may be helpful.
Thus, even the results from the No Tool group can be viewed as a baseline set of current
approaches used by the developers. We collect the names of the tools that our participants
used and report them in Section 4.5.

For this user experiment, we use a Between-subjects study design. This means that each
participant is only exposed to a single tooling group. Participants are asked to complete
five highly cognitive tasks, which take time to finish. Additionally, the DiPiDi and the
Existing Tool group participants must learn to use the tool. Designing a within-subjects
study would have required training and preparation for each setting for each participant,
making the study longer and, likely, more difficult to complete. For example, if a participant
who only recently figured out how to work with DiPiDi is then asked to complete the next
task using a different (baseline) tool, the participant should go through additional steps to
learn and set up this tool, adding an extra burden to the study. While a within-subjects
study requires fewer participants, we did not have such a concern when designing the study
and submitting the protocol for review. At the time, we were planning to recruit at least
66 people, which was suitable for a between-subjects study. However, due to unforeseeable
circumstances, we did not attract all of our anticipated subjects in the end. To keep the
methodology as close to the original protocol as possible, we retained our Between-subjects
study design and attempted to recruit as many participants as possible.

Dependent Variables

Our dependent variables are outlined in Table 4.2. We discuss our reasoning for these
variables below.

1. Exposure analysis effectiveness: The score from each task indicates how close the
answers of the participants are to the ground truth. We could alternatively determine
if a participant provides fully correct answers for each task and consider the ratio of
correct answers to total tasks. However, we believe that our approach, which indicates
how close participants are to fully correct answers, allows us to obtain a finer-grained
insight into how participants complete their tasks. Thus, we consider our task scores

26

Table 4.2: The dependent variables of the study

Name Description Scale Operationalization
Number of cor-
rectly identified
deliverables

Ratio of the impacted deliverables
correctly identified by the partic-
ipants under a specific build-time
configuration over the known im-
pacted deliverables (RQ1)

ratio Computed at the
end using the
harmonic mean
(F-measure) for
task types A & C.
See Sections 4.4.3
& 4.4.6

Relative rate of
correctly identi-
fied deliverables

Normalized pairwise disagreements
between participant rankings of
patches in terms of the number of
impacted deliverables, and known
correct rankings (RQ1)

ratio Calculated at the
end for tasks of type
B. See Section 4.4.6

Exposure analysis
effectiveness

The sum of the number of correctly
identified deliverables and relative
rate of correctly identified deliver-
ables (RQ1)

ratio Computed at the
end using the num-
ber of correctly
identified deliv-
erables and the
relative rate of
correctly identified
deliverables.

Task time The time needed for each partici-
pant to complete a task subtracting
pauses (RQ2)

ratio Measured by our
web application.
The participant can
pause a task and
resume manually.
See Section 4.4.2

Exposure analysis
efficiency

Ratio of the total score of the partic-
ipant over the sum of all Task times
(RQ2)

ratio Total score is the
sum of the scores of
all of the individ-
ual tasks. See Sec-
tion 4.4.6

27

(i.e., Number of correctly identified deliverables & Relative rate of correctly identified
deliverables) to be good proxies for exposure analysis effectiveness.

2. Exposure analysis efficiency: We define exposure analysis efficiency as the dura-
tion from the initiation to completion of each task in seconds. As a result, completing
tasks more rapidly will result in higher efficiency. This way, we consider both the
fully correct answers and the partial ones, especially in the rank-based tasks (see
Section 4.4.3).

28

Confounding Variables

Table 4.3: The confounding variables of the study

Name Description Scale Operationalization
CMake experi-
ence

Participant’s experience in work-
ing with CMake build system

ordinal Measured: 3-point
scale (“none”,
“tried”, “used
in professional
development”);
questionnaire

Code changes Changed code in diff format along
with the other source files of the
project

nominal Design: each
participant gets
patches from three
real-world projects

Configuration set-
tings

Environmental and build configu-
ration settings of the build system:
default configuration, custom

nominal Design: for appli-
cable tasks, each
participant gets
two configurations
for build settings.

Current program-
ming practice

How often the participant cur-
rently programs

ordinal Measured: 3-
point scale (“not”,
“sometimes”,
“often”); question-
naire

Development ex-
perience

Participant’s software develop-
ment experience in years

ordinal Measured: 5-point
scale (“less than a
year” ... “10 years
or more”); ques-
tionnaire

Fitness Physical fitness of the participant,
like tiredness, during the experi-
ment

ordinal Measured: 5-point
scale (“very tired”
... “very fit”); ques-
tionnaire

29

Perceived task
difficulty

Participant’s overall perception of
the task provided during the ex-
periment

ordinal Measured: 3-point
scale (“easy”, “av-
erage”, “hard”);
questionnaire at
the end

Project-specific
experience

Participant’s past experience with
the provided project and patch

ordinal Measured: 3-point
scale (“none”,
“user”, “contribu-
tor”); questionnaire
at the end

Because different code changes might affect the results of our participants, we control
the code changes made available to them. The confounding variables that we consider for
our study are presented in Table 4.3. We present patches from three different projects to
ensure our results are not biased towards any single project. We also control build-time
configuration settings to evaluate tooling levels with multiple build configurations without
introducing confounding factors. We gather demographic information like the Development
experience in order to control their correlation with the dependent variables. We also use
these variables to inform our data preprocessing (e.g., provide context to determine why a
participant might not have finished a task) and for further analysis. We use this data to
augment the statistical analysis and make decisions about whether a participant is suitable
for a task.

4.4.2 Materials

In this section, we describe the materials that we use in this study.

DiPiDi

We developed a prototype implementation of DiPiDi to reveal the exposure of a change
in a structured manner. In a nutshell, our tool processes build specifications statically to
produce a Build Dependency Graph (BDG), which we traverse to assess exposure. Before
conducting the experiments, we perform the Indexing Phase on the projects that are being
presented to our participants and save the output. Participants in the DiPiDi tooling level
of the experiment use tool’s querying features to perform the assigned tasks.

30

Existing tool

To assess whether the improvements in the DiPiDi tooling level (treatment) group are
related to the approach implemented by our tool, we select a recent and available impact
analysis tool to employ in the Existing tool (positive control) group.

Unfortunately, most of the proposed impact analysis tools are prototypes [49]. Addi-
tionally, due to our project selection and since our implementation of the DiPiDi approach
supports CMake build specifications, the impact analysis tool must support the C++ pro-
gramming language. For example, we had originally selected Frama-C; a tool proposed
by [43]. Frama-C is an industrial-grade static analysis tool, which can perform impact
analysis on C and C++ projects. However, Frama-C only works on C++ projects with
the help of an early access plugin, which has limited support called Frama-Clang, which
converts C++ code to plain C code before running other analysis in Frama-C. This plugin
is in its early stage of development and has known issues, as mentioned on the official
Frama-C website.5 While we originally believed that this plugin would allow us to com-
plete comparisons with DiPiDi, in our case, Frama-C could not parse or convert any of the
projects that we analyzed in the study. This appears to be due to new syntax introduced
in C++17 which is currently not supported by the Frama-Clang plugin.

Therefore, as a replacement, we decided to use Understand, a commercial tool developed
by [72] and used in previous studies [27, 62]. Understand is a comprehensive static analysis
tool with more than 100 features. However, acquiring a license, installing, and applying
the Understand to each of the studied projects would be unwieldy for our participants;
thus, it is not applicable to use in our study as is. Fortunately, Understand’s features
are also available through a Python API. Therefore, we develop a presentation layer for
Understand’s impact analysis API and represent the result in a web application for the
participants. This allows our participants to access useful Understand functionality without
the burden of installing and applying it. More specifically, for each project:

1. We extract the list of function-level dependencies from Understand.

2. We keep track of where functions are defined in each file as reported by the Under-
stand tool.

3. We persist the result in a structured format (i.e., JSON) that can be consumed by
our web application.

5https://frama-c.com/fc-plugins/frama-clang.html

31

https://frama-c.com/fc-plugins/frama-clang.html

Later during the study, the participants can paste a commit ID into the web application
to produce Understand-based impact result for the changed program elements. The web
application extracts a list of changed functions from the commit and identifies impacted
files by traversing the dependencies that Understand computes. Note that the existing tool
provided to the participants is simply a presentation layer for the Understand tool—all of
the results presented to the participants are therefore calculated by Understand.

The difference between Understand and Frama-C is that Understand operates at the
function level, while Frama-C can analyze impacts at the statement level. However, when
using Frama-C, the user should install the tool, import the project, and manually select the
statements that changed in the commit. By leveraging the API of Understand, however,
we make the results of the existing tool accessible through a web interface. The script we
use to persist the structured function-level data is available in our repository.6

While DiPiDi identifies the impacted deliverables by statically analyzing the build code
and considering all build-time configurations, Understand (and other impact analysis tools
available today) identify the impacted files by analyzing the source code of the project,
without considering build configurations. Then, it is the responsibility of the developer to
find the impacted deliverable by matching the file names with the build code.

Studied Projects

Table 4.4: Summary of the selected projects

Name Line of Codes Commits

ET: Legacy 3,706,703 11,047
libuv 113,414 4,928
Box2D 128,474 1,282

We select three projects using GitHub search. We first select projects that mentioned
CMake in their README file, and then sort by the number of stars for each project. A
summary of the selected projects is presented in Table 4.4.

As explained in Section 4.4.3, participants are asked to rank three patches based on
their impact on the project, e.g., a patch that impacts three platform-specific versions
of the project has higher rank than a patch that impacts one platform-specific version.

6https://github.com/software-rebels/cmake-inspector/blob/master/UNDGraph.py

32

https://github.com/software-rebels/cmake-inspector/blob/master/UNDGraph.py

Participants are also asked to identify the configuration settings in which the changes in
the patch propagate to the project deliverables. Thus, for each studied project, we iterate
over patches in reverse chronological order, selecting patches that impact a different number
of deliverables under different configuration settings until three patches have been selected
(nine patches in total). To identify the impacted deliverables, we manually inspect the
source files and find the deliverables that are impacted by the changed code. We use this as
our ground truth. While DiPiDi reports changes at the file-level, in this study, participants
are asked to report impacted deliverables at the code level, a subset of reported deliverables
by the tool.

Experiment UI

Figure 4.5 shows the web interface for our prototype. As soon as DiPiDi completes the
indexing phase, the web interface connects to the tool using a Remote Procedure Call. In
the first section, the user can either choose a changed file or select a commit. In the second
section, the user can add the build configuration settings, which can be Boolean, string, or
arithmetic conditions. Although more complex types of expressions are possible, we leave
their evaluation for future work, since simple expressions are already pushing the limits
of what our control group can handle. Additionally, we only support the equal operator
in the web interface; however, DiPiDi supports other operators (e.g., >, <, etc.). The
web application issues the request to a backend service, which processes the DiPiDi query.
The results are then communicated to the frontend, and the impacted deliverables are
presented in the third section. On the backend side, DiPiDi first iterates over the indexed
data to identify the targets that are impacted by the changed files. Then, DiPiDi applies
the specified conditions (if any were provided) using the Z3 library. If the conditions are
still specifiable, DiPiDi adds the target to the impacted list and returns the final list to
the web application. This application is available in our repository.7

We additionally developed an interactive Web based application to allow us to conduct
our experiment with a diverse range of participants and allow our participants to rely
on their own development environments. The application retains a log of answers and
the duration of each task. The experiment UI randomly assigns each participant to a
tooling level group and randomly assigns tasks to the participants, all the while logging
which project and tasks are assigned to whom. Participant information was only be made
available to the researchers after all the results had been scored to reduce experimenter
bias [69]. The interactive UI is also available in our repository.8

7https://github.com/software-rebels/dipidi-experiment-ui
8https://github.com/software-rebels/dipidi-participants-ui

33

Figure 4.5: DiPiDi Web Query Interface

34

4.4.3 Tasks

We ask our participants to complete five tasks, one Type A task, two Type B tasks, and
two Type C tasks. After a participant initiates our experiment through our experiment
UI, they are randomly assigned to a tooling level and the tasks are randomly ordered and
logged. The order of the tasks is randomized to account for learning effects that could
occur if developers improve by learning from previous tasks. Furthermore, we construct
each task using three different open-source projects, and randomly assign each task to each
participant. Therefore, participants cannot share answers with each other, and tasks are
less biased towards a specific project or task. Participants must obtain the data and files
required to complete each task through our experiment UI and must also provide their
answers through it.

Our tasks are constructed to answer both RQ1 and RQ2. The results obtained for each
task can be used to answer our first research question (i.e., RQ1), while the duration of the
tasks can be compared for each group to answer RQ2. The three task types are as follows.

Task Type A: The purpose of this task is to compare the exposure assessment ef-
fectiveness and efficiency of the participants in different tooling levels. The participant is
provided with the names of changed files and a set of build specifications. The partici-
pant is then asked to list impacted deliverables (without having the source code). The
experiment UI provides a text input field for the participant to identify those deliverables.

Task Type B: The purpose of these tasks is to determine the effect of presenting expo-
sure reports on the effectiveness and efficiency of developers assessing the relative exposure
of patches. The participant is assigned three patches and a set of build specifications. We
ask the participant to rank the patches listed in the experiment UI based on (a) the num-
ber of impacted deliverables; and (b) the number of impacted application variants (e.g.,
number of affected OS). We ensure that the patches do not affect the same number of de-
liverables and application variants. Furthermore, the patches are sampled from a different
project than the ones studied for other tasks.

Task Type C: The purpose of these tasks is to determine the impact of DiPiDi when
participants are particularly interested in the exposure in a given setting. Participants are
presented with three patches and asked to identify those that (a) affect a specified set of
deliverables; (b) affect a specific variant of the software; and (c) identify the configuration
settings under which the changes will propagate. For this task type, we use a different
project than for tasks of types A and B to make sure that all of the participants see
examples from each of the three projects that we selected for this study.

35

4.4.4 Participants

Table 4.5: Demographic information about the participants

Tooling
Level

ID Programming
Experience

CMake Familiarity Current Programming
Practice

D
iP
iD

i

P1 five years or more Tried it at least once More than once per week
P2 five years or more Used in professional

development
More than once per week

P3 five years or more Tried it at least once More than once per week
P4 two to five years Tried it at least once More than once per week
P5 five years or more None More than once per week
P6 five years or more None More than once per week
P7 two to five years Tried it at least once Sometimes
P8 two to five years Tried it at least once More than once per week
P9 five years or more Tried it at least once More than once per week
P10 a year to two

years
None Sometimes

P11 two to five years Tried it at least once Sometimes

E
x
is
ti
n
g
T
o
ol

P12 two to five years Tried it at least once More than once per week
P13 five years or more Tried it at least once More than once per week
P14 two to five years Tried it at least once Sometimes
P15 five years or more Tried it at least once More than once per week
P16 two to five years Tried it at least once More than once per week
P17 a year to two

years
Tried it at least once More than once per week

P18 two to five years None More than once per week

N
o
T
o
ol

P19 five years or more Used in professional
development

More than once per week

P20 two to five years Used in professional
development

More than once per week

P21 five years or more Used in professional
development

More than once per week

P22 five years or more Used in professional
development

More than once per week

P23 five years or more Tried it at least once More than once per week

36

P24 two to five years None More than once per week
P25 five years or more Tried it at least once More than once per week
P26 two to five years Tried it at least once More than once per week
P27 two to five years Tried it at least once More than once per week
P28 two to five years None More than once per week
P29 five years or more Tried it at least once More than once per week
P30 five years or more Tried it at least once More than once per week
P31 two to five years Tried it at least once More than once per week
P32 five years or more Used in professional

development
More than once per week

Since our tasks are centred around specific software engineering practices, our partici-
pants should have the programming experience necessary to allow them to find the deliv-
erables impacted by a source code change. We therefore populate our pool of participants
with software developers, or individuals with programming experience.

We solicited participation from CMake user web forums, the developer mailing lists
of large projects that are implemented in CMake (e.g., KDE, Qt), at a user summit of
a code reviewing platform, via our personal contacts on social media, and a local group
of graduate students, all of whom have developed software in a practical setting. A total
of 72 participants enrolled in the study. We piloted the experiment UI and tasks with
two participants. The pilot results are not included in our reported findings below. The
remaining 70 participants were invited to participate in the study. Out of those, 34 partic-
ipants completed the set of tasks. Of those who finished, two participants skipped at least
3 tasks, so we exclude them from further analysis. In the end, 32 participants remain –
eleven in the DiPiDi group, seven in the Existing Tool group, and fourteen in the No Tool
group. Table 4.5 shows an overview of the profiles of the participants in this study.

4.4.5 Execution Plan

We provided our participants with access to our web application in batches of three. This
staged approach allowed us to fix any potential problems without invalidating too large of
a subset of our participant data. Based on the feedback that we received, we clarified the
task descriptions with additional detail, but the tasks themselves remained the same. We
enhanced the experiment UI to indicate when the backend is processing the issued query,
as processing queries took on the order of five to ten seconds, and users would mistakenly
submit multiple requests. The application has the following procedure for each participant:

37

Welcome Page

Participants are first presented with an outline of the tasks and an estimate of the time
required to complete the tasks. In addition, we request the consent of participants to
participate in the experiment. The participants are asked to refrain from sharing task
information with other participants. For ethical compliance reasons, participants are also
informed that they may stop the experiment at any time for any reason.

Onboarding

After obtaining consent from the participants, we provide a more detailed explanation of
the specific set of tasks to be completed during the experiment. Based on the tooling
level assigned to the participant, we explain the steps required to prepare the environment
and the tool (if applicable). We inform participants that they may use their preferred
development tools (e.g., CLI tools, IDE). Participants are also informed that each task is
timed, that their responses will remain anonymous unless they explicitly request otherwise,
and that they may skip individual tasks.

Tasks

We present our participants with the tasks outlined in Section 4.4.3 in a random order. For
each task, our application provides a hyperlink to download the source code. A timer begins
as soon as the task page is loaded. We also record when checkpoints are reached during the
experiment. Before showing the description of the task, we provide the download link and
the necessary steps to prepare the environment. The participants must click on the “ready”
button to initiate the experiment. We also log the moments that the participants begin
to enter their responses. The page describes the task and shows the configuration settings
that the participant should consider. We present the results of the tools in the experiment
UI for participants in the ‘Existing Tool’ and ‘DiPiDi’ tooling levels in an interactive way
through a Web interface. The application provides input spaces for the participant to
enter their responses. The application logs the time that the participant spent on each
task. The participant may click a pause button to pause the timer if a distraction of any
kind interrupts their focus. A skip button allows the participant to move on if they feel
that they cannot complete a task. A sample of each task is provided in appendices B.1
to B.6.

38

Questionnaire

Prior to the start of the experiment, the participants are asked demographic questions
about their background and programming experience. The questionnaire is included in
Appendix A. After a participant completes their five tasks, we follow up with a question-
naire which is included in Appendix B. The purpose of the post-study questionnaire is to
collect tool usage questions about the CLI tools, IDEs, and/or other tools that were used
to complete the tasks. Additionally, we ask whether the participants found the provided
tool useful. We also ask participants to comment on any problems that they may have
encountered during the experiment. Finally, we thank the participants and invite them to
provide other feedback if they desire. The results of the post-questionnaire are presented
in Table 4.9.

4.4.6 Analysis Plan

In this section, we describe the analysis plan we use in this study.

Data Cleaning

We assign each participant five tasks to complete. However, it is possible for a participant
to exit the application before completing all of their assigned tasks. Since the experiment
UI accepts input from participants in any text format, we manually check that answers
are acceptable before analyzing them. Next, we review the participant’s questionnaire
submission and feedback for mentions of problems that may (partially) invalidate their
submission, removing their invalid answers when appropriate. Additionally, we use outlier
detection approaches, i.e., Tukey’s fences [79] and box plots, which do not require regression
models. If there are outliers, we analyze them by hand to gain insight into them. Finally,
we remove those data if we find enough evidence to do so after both outlier detection and
manual evaluation.

Measuring Effectiveness

For rank-based tasks, i.e., task type B, we use Kendall’s tau ranking distance formula [42]
to compute the distance between participant answers and the ground truth. Kendall’s tau
ranking is defined as:

39

Kd(τ1, τ2) =
∑

{i,j}∈P,i<j

K̄i,j(τ1, τ2)

where P is the pairwise set of elements in τ1 and τ2, K̄i,j(τ1, τ2) is 0 if i and j are in the
same order in τ1 and τ2 otherwise it is 1. For example, the Kendall’s tau distance between
2,1,3 and 1,2,3 is one because pair {2, 1} are in different order. We report the distance
as a number between zero and three for those tasks.

For list-based tasks, i.e., task types A and C, like previous studies, we compute precision
and recall. As discussed, the goal of this study is to expose the change under different
configuration settings and help developers to identify impacted deliverables for a specific
configuration setting. To compute the correctness and completeness of the participant’s
Estimated Impacted Deliverables (EID), we compare them to Actual Impacted Deliverables
(AID) using the following precision (correctness) and recall (completeness) formulas:

Precision =
EID ∩ AID

EID
;Recall =

EID ∩ AID

AID

Due to the natural trade-off between precision and recall, we calculate the F1-score (i.e., the
harmonic mean of the precision and recall) to get an overall impression of task effectiveness.

4.4.7 Deviations From the Registered Report

The study design and analysis protocol used in this study has been reviewed and accepted
at the MSR 2021 registered report track [56]. To complete the study, we had to deviate
from our original registered report protocol during the course of this thesis. In this section,
we summarise the deviations from the original protocol.

Replacing the Frama-C Tool

While the Frama-C tool was our original choice to compare DiPiDi to an existing tool, we
could not make use of it as discussed in Section 4.4.2. We decided to make use of another
existing tool capable of analysing code impacted by a code change. The Understand tool
has features that allow developers to trace a change and find the parts of a program
that it impacts. However, installing the tool, and learning to use it, was not feasible for
the participants given the constraints of the study (time and computing environment).
Thus, we developed a UI tool that consumes the output of the Understand API, and

40

represents the result in a web application for the participants. Thus, the tool that we
develop is a presentation layer for the Understand results. We therefore switched Frama-C
for Understand.

Unfortunately, our initial tool selection could not analyze the studied projects; however,
we believe that switching from Frama-C to Understand will not substantially impact the
performance of the positive control group because (1) both tools are commercial grade
and (2) both tools can perform similar styles of change impact analysis via source code
analysis. While our original choice may have been easier to use for our participants, we
believe that our presentation layer wrapper bridges that gap.

Change of Studied Projects

Originally, we wanted to conduct the study on projects from the KDE and QT communities.
However, we found that projects in those communities use customized CMake commands
to maximize reuse and productivity among the projects.9

Developing support for this set of commands required additional engineering effort for
DiPiDi. Unfortunately, we did not have sufficient time to invest the engineering time to
implement these supports for custom commands. Therefore, we systematically selected
alternative projects that use the ‘vanilla’ version of CMake specifications. To identify
candidate projects, we sorted repositories that are hosted on GitHub and use CMake, by
the number of stars, which we believe is a good proxy of the popularity of a project. We
believe that improvements that can work on popular projects are more likely to benefit
a larger number of developers. From that list of projects, we selected three projects of
varying size and domain for our experiment. Table 4.4 provides an overview of the studied
projects.

Number of Participants

In our registered report, we set out to conduct our study with 66 participants to be able
to compare the groups with large effect sizes using one-way ANOVA. Since participants
are required to be developers who are familiar with build systems, we faced difficulties
recruiting such a large number of developers for this study. We recruited participants using
a variety of communication channels, such as social media (Twitter, LinkedIn, Reddit),
mailing lists of open-source projects, developer forums, and developer conferences. After

9https://linux.die.net/man/1/kdecmake

41

leveraging those channels, we ended up with 72 candidates who signed up to participate
in the study. Of those, 32 completed at least 4 of the 5 tasks, 11 in the DiPiDi group, 7 in
the Existing Tool group, and 14 in the No Tool group.

Due to the limited number of participants, we could not conduct our planned ANOVA
analysis. Therefore, we follow our contingency plan and conduct a preliminary analysis of
our results instead. The details of our analysis can be found in Section 4.5.

4.5 Results

In this section, we present the results of our experiment with respect to our two research
questions.

4.5.1 RQ1: Does DiPiDi help developers assess the exposure of
source code changes more effectively?

The participants in the DiPiDi tooling level outperformed the other two groups
in terms of their accuracy in identifying the impacted deliverables and assessing
the magnitude of the impact. As shown in Table 4.7, the DiPiDi group outperforms
the Existing Tool group by 42 and 31 percentage points in terms of F1-score for Task Type
A and Task Type C, respectively. Moreover, the DiPiDi group outperforms the Existing
Tool group by 0.62 units of distance in the impact ranking task (Task Type B).

As described in Section 4.4.3, we assign one Task Type A out of three, two Task
Type B out of six and two Task Type C out of nine to each participant. To calculate
the metrics shown in Table 4.7, we compute the average (mean) performance measure
across participants in each group to aggregate the measures to the granularity of group
comparison. For Task Type B, the distance represents the number of pairwise ranking
swaps required to change the order of the participant’s answer to match the ground truth.
Since we asked the participants to order exactly three commits in Task Type B, the upper
bound for this number is three, meaning the order is reversed.

The effectiveness of DiPiDi in Task Type A is also illustrated in Figure 4.6, which shows
the distribution of the Precision, Recall, and F1-score for Task Type A and each tooling
level. In the DiPiDi group, 10 out of 11 participants perform better than the Existing
Tool and No Tool groups, achieving an F1-score of 1 as shown in Figure 4.6c. However,
it also shows a tail extending to 0.33 (P1) in the DiPiDi group. We reached out to P1 to

42

understand if there was any problem with the tasks. P1’s experience and familiarity with
CMake were limited to a classroom setting. P1 reported that it was difficult to understand
the tasks, but despite P1’s lack of experience, DiPiDi did help P1 to complete the tasks to
a certain degree.

For Task Type B, Figure 4.7 shows that DiPiDi is effective in identifying the most im-
pactful commits. We believe that accuracy in assessing the riskiness of changes relative to
each other can help reviewers and quality assurance teams to manage their resources. Cur-
rent impact analysis approaches, including the one used for the Existing Tool tooling level,
do not consider the build-time configuration settings and, therefore, report the impacted
file or statements for a single set of configuration settings (often, the default settings).

Finally, in Task Type C, Figure 4.8 shows that participants in the DiPiDi tooling level
outperform others. The F1-score for 10 out of 11 participants is greater than 0.9 in the
DiPiDi group. Surprisingly, the No Tool group outperforms the Existing Tool group. Since
in Task Type C, participants are asked to identify the patches that impact the deliverables
under a specific set of configuration settings, a tool that does not consider all the build-time
configurations, like the existing tool, may have misled the participants.

Table 4.6 shows the participants’ expertise in each group. We consider participants to
be experienced developers if they have more than five years of programming experience.
Additionally, we identify the participants who use CMake in a professional setting. Par-
ticipants can be neither experienced developers nor professional CMake users if they have
two to five years of programming experience and tried CMake at least once. As shown in
Tables 4.6 and 4.7, assessing the exposure without any tooling support is difficult, even for
those participants with extensive professional experience and those who use CMake in a
professional setting. Table 4.9 shows an overview of the post-study questionnaire results.
In general, participants in the DiPiDi group find the tool useful and find the tasks less
difficult in comparison to other groups. Although we do not draw any firm conclusions
about this, the fact that fewer participants find the study difficult suggests that performing
with build-related tasks without tool support is daunting.

The DiPiDi approach helps practitioners and researchers to identify the impacted de-
liverables given a change under different build-time configuration settings. In an ex-
perimental evaluation, our prototype implementation of DiPiDi outperforms a current
impact analysis tool by 36 average percentage points in F1-score when identifying im-
pacted deliverables. More importantly, participants in the DiPiDi group could assess
the riskiness of changes relative to each other with less error.

43

0.0 0.2 0.4 0.6 0.8 1.0
Precision

No Tool

Existing Tool

DiPiDi

(a) Participant precision for Task A

0.0 0.2 0.4 0.6 0.8 1.0
Recall

No Tool

Existing Tool

DiPiDi

(b) Participant recall for Task A

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1

No Tool

Existing Tool

DiPiDi

(c) Participant F1 Score for Task A

Figure 4.6: Participants in the DiPiDi group outperform two other groups in all the three
metrics. While the Existing Tool group performs better than the No Tool group, the
difference is not negligible.

44

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance to Ground Truth

No Tool

Existing Tool

DiPiDi

Figure 4.7: Distance between the participant’s responses to the ground truth calculated
using Kendall tau rank distance formula. The larger the distance, the more dissimilar the
responses and the ground truth.

Table 4.6: Participants’ expertise based on the demographic questions. Participants can
be in more than one experience category.

Tooling Level Total Experienced Developers Professional CMake Users

No Tool 14 8 5
Existing Tool 7 2 0
DiPiDi 11 6 1

45

0.0 0.2 0.4 0.6 0.8 1.0
Precision

No Tool

Existing Tool

DiPiDi

(a) Participant precision for Task C

0.0 0.2 0.4 0.6 0.8 1.0
Recall

No Tool

Existing Tool

DiPiDi

(b) Participant recall for Task C

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1

No Tool

Existing Tool

DiPiDi

(c) Participant F1 Score for Task C

Figure 4.8: Participants in the DiPiDi group outperform two other groups in all the three
metrics in Task C. Interestingly, the No Tool group outperforms the Existing Tool.

46

Table 4.7: Summary of the result for each task per tooling level

A B C
Tooling Level Precision Recall F1 Distance Precision Recall F1

No Tool 0.52 0.33 0.40 1.5 0.77 0.58 0.66
Existing Tool 0.60 0.47 0.52 0.67 0.61 0.52 0.57
DiPiDi 0.94 0.94 0.94 0.05 0.92 0.85 0.88

4.5.2 RQ2: Does DiPiDi help developers to assess the exposure
of source code changes more efficiently?

The DiPiDi approach helps developers to assess the exposure of changes more
efficiently than baseline approaches. Table 4.8 shows that the DiPiDi group spent
on average 137, 219, 151 fewer seconds on tasks A, B, C, respectively. Figure 4.9 shows
the distribution of duration for each task type in each tooling group. As shown, the
majority of the participants in the DiPiDi group complete the tasks more quickly than the
participants in the other groups. More specifically, 70%, 81%, and 80% of the participants
in other groups performs slower than DiPiDi group in Task Type A, B, and C respectively.

However, P6 took 20 times longer to complete the Task A than other participants in
the DiPiDi group. Indeed, P6 completed Task A in 2625 seconds, while the average of the
other participants in this group is 127.5 seconds. P6 reported in the feedback form that ‘It
was hard to understand what to look at in the beginning. My first task is probably affected
by that’. P6 performs very well in other tasks and, based on their feedback, believes the
tool is very useful. Similarly, P25 in the No Tool group took 3371 seconds to complete
Task Type B, which like the above case, was their first task. The average for the No Tool
group in Task Type B without P25 is 469 seconds. P25 reported that the experiment was
‘Time-consuming and difficult’. Removing those two cases reduce the standard deviation
for Task Type A and Task Type B to 67 in DiPiDi group and 256 in No Tool group,
respectively and makes all standard deviations less than equal to the average.

Interestingly, except for Task Type B, the No Tool group performs more efficiently
than the Existing Tool group. While the Existing Tool group achieves slightly better
correctness scores than the No Tool group as shown in Figures 4.6 and 4.7, we suspect that
the additional information provided to the participants by the existing tool reduced their
efficiency.

Still, even for the tasks that require more creative ways of interacting with the tool
(e.g., Task Type C), considerable efficiency improvements are detected. For Task Type B,

47

0 500 1000 1500 2000 2500
Time in Second

No Tool

Existing Tool

DiPiDi

(a) Duration for Task A in Seconds

0 500 1000 1500 2000 2500
Time in Second

No Tool

Existing Tool

DiPiDi

(b) Duration for Task B in Seconds

0 500 1000 1500 2000 2500
Time in Second

No Tool

Existing Tool

DiPiDi

(c) Duration for Task C in Seconds

Figure 4.9: Participants in the DiPiDi group finish the tasks faster compared to other
groups. While the No Tool group performs more efficiently than the Existing Tool, they
are not necessarily more effective.

48

Table 4.8: Time it takes for each group of participants to do the tasks

A B C
Tooling Level Skips Time S.D Skips Time S.D Skips Time S.D

No Tool 3 383 248 2 364 787 3 269 261
Existing Tool 2 570 510 2 401 299 1 552 486
DiPiDi 0 354 720 1 163 133 2 229 236

the average time taken for the No Tool and Existing Tool groups is 1.5 standard deviations
larger than that of the DiPiDi group. However, for Task Type A and C the difference
between the means is less than one standard deviation. We suspect that the differences
are not as pronounced because DiPiDi reports many possible compilation paths and par-
ticipants confirm their answer with the code and the build script in addition to the output
of the tool, a time consuming affair.

The DiPiDi approach increases the efficiency of identifying impacted deliverables under
different build-time configuration settings. We show that our prototype implementation
reduces the time required to assess the exposure of changes by 42% on average. More
notably, participants in the DiPiDi group assess the riskiness of changes relative to each
other with 92% less error in 59% of the time with 1.7 standard deviations difference over
the existing approaches.

4.5.3 Discussion

Table 4.9: Post Questionnaire Result

Tooling
Level

ID Another
Tool

Tool Usefulness Fitness Difficulty Experience

D
iP
iD

i

P1 Somehow Tired Hard None
P2 Energetic Easy None
P3 Very Useful Neutral Average None
P4 Intellij

IDE
Somehow Neutral Average None

P5 VSCode Very Useful Very Energetic Average None
P6 VSCode Very Useful Very Tired Hard None
P7 Very Useful Energetic Average User

49

P8 Very Useful Neutral Average User
P9 Neutral Easy None
P10 Very Useful Neutral Easy None
P11 VS Code Very Useful Tired Average None

E
x
is
ti
n
g
T
o
ol

P12 VSCode Somehow Neutral Average None
P13 VSCode Very Useful Neutral Hard None
P14 VSCode Somehow Very Tired Hard None
P15 Github

Online
Very Useful Energetic Average User

P16 Very Tired Average None
P17 Clion Not Useful Very Tired Hard None
P18 Somehow Tired Hard None

N
o
T
o
ol

P19 Sublime Tired Average User
P20 Bash Tired Average User
P21 Neutral Easy User
P22 Nvim,

ripgrep,
fzf

Neutral Average User

P23 Git Tired Hard None
P24 Tired Hard None
P25 Very Tired Hard
P26 Very Tired Average None
P27 Neutral Hard None
P28 Neutral Hard None
P29 Neutral Hard None
P30 Very Tired Hard None
P31 Very Tired Hard None
P32 Very Tired Hard None

In this section, we discuss the results of the study, including the pre- and post- ques-
tionnaire data.

Three of the 32 reported that they had difficulty understanding what to do in their first
task. However, since we shuffle the order of tasks before assigning them to the participants,
the effect of this difficulty is distributed throughout the tasks. For example, Figures 4.9a
and 4.9b shows two tails in the DiPiDi and No Tool groups. In both cases, the participant’s
first task takes longer than the average because they are struggling to understand the tasks.

50

Some participants with strong programming experience familiar with build systems
performed well even without tool support. For example, P32, who worked with C and
build systems during their time researching operating systems in grad school, achieved
Precision of 1 and Recall of 0.83 in Task Type A without tool support.

Table 4.9 shows the results of our post-experiment questionnaire for each participant.
We assign numbers to the fitness level, i.e., 1 = very tired, and 5 = very energetic. The
average fitness level for DiPiDi, Existing Tool, and No Tool tooling groups are 3, 2.14, and
2 respectively. This shows that participants assigned to the DiPiDi group felt slightly less
fatigued after the study.

Interestingly, some participants who were in the No Tool group and found the experi-
ment difficult, suggested that having a tool that can track the dependencies would be very
useful. For example, P30, said ‘The tracking of configurations and conditions was almost
infeasible. Maybe a visualization tool where user can navigate dependencies and targets
can help’. P14 also reported that ‘Looking for variables, targets, and file names at the
same time was exhausting’. Feedback like this provides more motivation for the need for
build-aware tools, such as DiPiDi.

4.6 Threats to Validity

In this section, we discuss the threats to the validity of our study.

4.6.1 Threats to internal validity

Participants may vary in their capacity to estimate exposure. Due to the challenges associ-
ated with recruiting a large sample of software developers, participant characteristics that
may interact with or confound our dependant variables, (e.g., experience), could not be
controlled to a statically significant degree. Nevertheless, we strove to mitigate this threat
by randomly assigning tasks to participants and by recruiting participants with varying
levels of experience. Additionally, due to the Hawthorne effect, our participants were likely
to behave differently in our experimental setting because they were aware that they were
being monitored. We attempted to mitigate this threat by giving developers realistic tasks,
letting them work on their own computers at a time and place of their choosing. Further-
more, we did not discuss the hypotheses of the study with the participants until after they
completed their tasks.

51

We observed differences in the self reported fitness levels in each tooling groups. There
are two potential reasons for these differences. First, the tooling provided by DiPiDi may
reduce the cognitive load on the participants in that group. Or second, it is possible that
this is simply a random occurrence due to the participants being randomly assigned to a
group. We suspect this is the former because we observed a trend in the fitness level based
on the tooling group with No Tool presenting the least fit participants.

Finally, in this study, we did not have participants with the necessary project expertise
to observe how DiPiDi could affect developers that are intimately familiar with a code
base. Nonetheless, we show that the DiPiDi approach is helpful for newcomers, making it
suitable for onboarding new people.

4.6.2 Threats to external validity

Although we believe that the DiPiDi approach is general enough to apply to most build
systems, our prototype implementation only supports CMake. Therefore, our findings
might be limited in scope to the CMake context. On the other hand, CMake shares several
concepts with other build systems, especially those based on a platform abstraction layer.
For example, GNU Autotools also uses a target-based representation and generates low-
level build code (i.e., Makefiles) from higher abstractions and contextual information from
the build execution environment. While we believe the results are likely to generalize,
replication of the study in the context of other build systems may be fruitful.

4.6.3 Threats to construct validity

Our selected measurements may not fully capture the phenomena that we set out to mea-
sure (i.e., effectiveness and efficiency of assessing patch exposure). Nonetheless, we selected
a broad range of measurements and tasks that we believe to be meaningfully representative
of the underlying phenomena of interest.

In this study, we assume that the build specifications are a complete representation of
the build-time variability of the studied systems. However, in reality, build systems may
use dynamic features to alter the state of build specifications during build execution. These
dynamically generated specifications will not be included in the graph since we generate it
statically. To tackle this problem, we choose to prototype DiPiDi on CMake because we
believe it is less prone to dynamic build time variability than older build technologies (e.g.,
Make). In fact, CMake is designed to statically represent this dynamic behaviour using

52

its built-in abstractions for platform-specific language toolchains. Nonetheless, porting
DiPiDi to other technologies may present these kinds of challenges.

4.7 Chapter Summary

To assess the risk of a change, it is important to identify the set of deliverables and con-
figurations that are impacted. To do so, We introduced DiPiDi, an approach that we
developed to assess the impact of changes by statically analyzing the build system specifi-
cation files. To evaluate our approach, we implemented a prototype of our approach and
designed an experiment to evaluate whether DiPiDi is associated with improvements to the
effectiveness and efficiency of developers performing impact assessment tasks. The result of
that experiment suggests that (1) DiPiDi approach helps practitioners and researchers to
identify the impacted deliverables given a change under different build-time configuration
settings. Our prototype implementation of DiPiDi outperforms current impact analysis
tool by 36 average percentage points in F1-score when identifying impacted deliverables.
More importantly, participants in the DiPiDi group could assess the riskiness of changes
relative to each other with fewer errors; and (2) the DiPiDi approach increases the efficiency
of identifying impacted deliverables under different build-time configuration settings. We
show that our prototype implementation reduces the time required to assess the exposure
of changes by 42% on average. More notably, participants in the DiPiDi group assess the
riskiness of changes relative to each other with 0.05 units of distance in 53% of the time
with 1.5 standard deviations difference over the existing approaches.

53

Chapter 5

Dependency Extraction and Analysis
for Multidisciplinary Teams: A Case
Study at Ubisoft

An earlier version of the work in this chapter
has been submitted to an international confer-
ence.

5.1 Introduction

In software development projects that involve personnel from different disciplines, the
breadth of software artifacts can be vast [82]. For example, producing high-budget video
games (‘AAA games’) requires the careful coordination of personnel with divergent ex-
pertise, such as technical software staff (e.g., developers, QA, and operators), as well
as creative staff (e.g., graphic artists, composers and musicians, script writers, and level
designers). AAA games are typically composed of millions of lines of code, as well as
hundreds of thousands of non-code files (a.k.a. code-adjacent artifacts) like textures and
animations [61].

Multidisciplinary teams require a multidisciplinary dependency graph. Consider a
change to a source code file that repositions an object in a game. This repositioning
may have a transitive impact on other objects within the location in the game. To trace
the impact of that change, we need a graph that captures the dependencies in code as

54

Figure 5.1: An overview of the graph extraction approach

well as data and their interdependencies. Inaccurate impact analysis due to an incomplete
dependency graph will lead to under- or over-estimating the risk of a change.

While dependency graphs have been explored in the general development context [7,
39, 87], the multidisciplinary software context introduces challenges in the extraction and
analysis of dependency graphs that need to be addressed. In this chapter, we show how
such a graph can be extracted from a large video game project and explore properties of
the extracted graph. A preliminary analysis of 4,256 revisions of the studied game project
shows that 66% of the changes do not modify the structure of the graph. This number is
78% in a code-only dependency graph [17]. The 12 percentage point difference suggests
that tools and approaches proposed in the previous works that use a prior version of the
graph to analyse the current changes are applicable in multidisciplinary graphs; however,
rapid incremental approaches are needed to update the graph and ensure its usefulness for
all types of changes. We also show that 41% of the changes in the code files affect the
data files as well, further emphasizing the importance of the multidisciplinary dependency
graph.

The remainder of this chapter is organized as follows. We first describe our approach to
extract the multidisciplinary graph in Section 5.2. Then, we present our research questions
in Section 5.3. Section 5.4 discloses the threats to the validity of this study, and finally,
Section 5.5 concludes the chapter.

5.2 Extracting the Multidisciplinary Graph

In this section, we present our graph extraction approach. Figure 5.1 provides an overview
of our approach.

55

5.2.1 Data Extraction

We first group artifacts into code and data categories. Source code, header files, and
libraries are categorized as code artifacts, while the rest of the files are categorized as
data artifacts. This may include machine learning models, animations, sound, 3D models,
and textures. Based on this categorization, the data extraction is split into tasks that we
explain below.

DE1) Extract Data Changes

Nowadays, software projects may contain hundreds of thousands of non-code artifacts.
These artifacts may depend on each other. For instance, the 3D model of a table in a game
contains a surface, four legs, and a texture. The texture describes the characteristics of
the surface like its hardness and smoothness. Similar to source code, to enable reuse, the
surface, legs, and the texture are separate files on which the table model depends.

To keep the graph updated, we construct the next version of data dependency graph
incrementally based on the previous graph and the changes. Thus, in this step, we extract
all changed files and the corresponding actions in one specific commit from the version
control system. This data helps the next step to build the data graph based on the action
for each changed file.

DE2) Extract Compilation Database

We rely on the import statements in each source file to find other dependent source files.
For example, in C++, the #include preprocessor directive imports referenced file within
the context of the file in which the statement appears. The preprocessor resolves imported
files by searching a list of directories called search path. While there are default search
locations, the search path is often updated within the build system configuration files. In
this study, we extract this information from the build system.

The compile commands.json file is a clang standard file1 that the build system can
generate. For example, the studied project uses Sharpmake2, a build automation tool simi-
lar to CMake. Sharpmake generates the aforementioned file by passing -compdb argument.
This text file contains the following information for each compilation unit:

1https://clang.llvm.org/docs/JSONCompilationDatabase.html
2https://github.com/ubisoft/Sharpmake

56

https://clang.llvm.org/docs/JSONCompilationDatabase.html

Animation

Material

Object

Material

Object

Complete 3D Object

Figure 5.2: A 3D object (.uasset) may depend on multiple object files (.OBJ), which
themselves depend on material files (.MTL)

• file: Path of the file in the compilation process.

• directory: The location from which relative paths are resolved.

• command: An array of arguments passed to the compiler for this specific compila-
tion unit.

5.2.2 Graph Construction

Each node in the multidisciplinary dependency graph represents a code or data file. Edges
in this directed graph indicate a dependency from a source file to a destination file. In the
following steps, we describe how to construct the graph given the data extracted in the
previous steps.

GC1) Build Data Dependency Graph

There are plenty of file types among the data artifacts. For example, animation files are
different from 3D model files in terms of content and format. An OBJ 3D object file depends

57

on MTL material files using mtllib statement, and MTL files may use .MPC color texture files
using map Ka statement [2]. To account for this variety, we build a specific parser for each
file extension. The parser analyses data files with the aim of identifying dependent files. At
higher levels, files depend on multiple artifacts to build more complex objects. For example,
.uasset file format from the Unreal game engine may contain animations, sounds, and
textures to draw an object within the game. Figure 5.2 illustrates an example of such a
hierarchy. We 1) read and parse each data file with the appropriate parser, 2) add the
file to the graph, 3) mark it as visited to avoid adding duplicate nodes, and 4) recursively
run the same algorithm on its children. Since this process is time-consuming and there
are plenty of data files in a typical game project, we build the data graph incrementally.
We start with the onerous creation of the initial graph but can then update it based on
changed files. More specifically, after each commit, we perform one of the following actions:

• Add: For each added file, we add a new node to the graph and parse it.

• Remove: When a file is removed, the corresponding node and its edges are removed
from the graph.

• Rescan: For each edited file, we remove the node and its edges, and reparse the file
from the scratch. By removing the node and the edges, we ensure that we do not
create duplicate dependencies from the edited node.

The output of this step is a directed graph representing the dependency among the
data files.

GC2) Build Code Dependency Graph

File-level dependencies in code files are indicated using the #include preprocessor directive.
In this step, we iterate over the compilation database file generated by step DE2 to identify
source code files. We also analyze the ‘-I’ arguments in the command section for each file
and store them in a list with the same order as the compilation database. The ‘-I’ argument
specifies additional search locations for the preprocessor. Next, we resolve each file name
passed to #include by checking the search locations in the same order of precedence as the
preprocessor. If a node with the exact path does not exist in the graph, we create the node
and recursively call the algorithm for this newly created node to traverse its dependencies.
Finally, we connect the source node to the dependency under analysis to connect it to the
rest of the graph. Note that it is guaranteed that the algorithm stops eventually, since we
do not analyze existing (visited) nodes. The output of this step is an adjacency list, which
represents the file-level dependency graph for code files.

58

GC3) Extract Computational Nodes

Eventually, the artifacts produced by different teams must be integrated to build the
final software [60]. For example, in a game project, while artists are producing graphical
artifacts, developers are working on the game engine and AI engineers are constructing
better machine learning models. The game engine often enables a data-driven development
approach [32]. Thus, developers provide generic and game-specific computational nodes
to the engine, which can be later used by artists. For instance, the Move node takes a
3D model and changes its position from point A to B. These computational nodes are the
bridge between code and data nodes [64].

In our study, computational nodes are defined as classes that inherit from the ‘Node-
Graph’ class. The exact class name also appears in the data files, which are inputs to these
nodes. We process each source file to detect classes that are defined in header files and
implemented in C++ files. While this step is project specific, the general idea remains
the same. In this project, the game has been developed with a data-driven approach.
Developers do not dynamically load graphic files to avoid unexpected memory and CPU
usage. Thus, dependencies flow from data to the code. In other projects, developers using
dynamic loading may introduce dependencies from other directions as well. In either case,
the output of this step is a map holding the one-to-many relationship between a class (i.e.,
computational node) and code files.

GC4) Merge Data and Code Graphs

The intersection between the data and code graphs are the computational nodes (i.e.,
edges from data to computational node as inputs, and from computational node to the
code files where the node is implemented). Using the map generated by GC3, we identify
the corresponding files for those computational nodes, and add edges from the data graph
to the code graph (generated in GC2).

Since the dependency flow is from data to code, data nodes tend to have a larger
outdegree, i.e., number of edges directed out of the node, whereas code nodes have a larger
indegree, i.e., number of edges directed into the node. However, the centrality of code
nodes, i.e., how critical a node is in the graph, tends to be larger than that of the data
node, since reuse of code seems more prevalent than reuse of data.

59

Figure 5.3: A multidisciplinary graph extracted from a game project. Pink nodes are
code files, green are data files (e.g., textures, animations, and music), and orange are the
computational nodes that connect code and data.

60

5.3 A Case Study

In this section, we present a case study of the multidisciplinary graph extracted from a
large game project at a multinational video game organization. Video game development
is a good example of the type of development that involves a complex combination of code
and data.

Figure 5.3 provides a visual overview of the multidisciplinary graph extracted from the
studied game, which has been under active development since 2019. At the time of this
writing, the project contains 13,555 commits to the code directory and 82,126 commits
to the data directory. The latest version of the multidisciplinary graph includes 2,050,093
nodes and 7,516,457 edges. Data nodes dominate the graph, accounting for 98% of the
nodes, while code and computation nodes represent the other 2%.

5.3.1 RQ1: How often is the graph itself changed?

Motivation: We plan to leverage the multidisciplinary graph to enable or enhance various
software analytics tasks, e.g., code quality assessment and failure prediction. The envi-
sioned approaches will leverage a prior version of the graph to provide value for a current
or future version. If most of the graph is frequently changed, the previous graph version
might be obsolete and inadequate for our analytics task, and as a result, our analytical
insights will be of limited value. To better understand the stability of the graph, we set
out to analyze how often graph-modifying changes occur in a real project.

Approach: We analyze the replayed history of dependency graphs for both the code and
data changes generated in Section 5.2. We merge the commit identifiers for changes in
data and code locations within the codebase and sort them in ascending order by commit
time. Then, for each unique commit, we look up the closest multidisciplinary graph in
our historical records. Finally, using the depth-first search algorithm, we traverse both the
prior and modified graphs and compare the nodes to gain more insight into how graphs
are being modified.

Results: The graph is modified by 58% of the studied commits. A close inspection reveals
that only 34% of the total commits invalidate the graph for dependency analytics (e.g.,
change impact analysis). Indeed, the rest of the modifications only add new nodes (files)
that are not yet connected to the rest of the graph. In other words, these new files are
either orphan nodes or do not impact other nodes if they are changed (i.e., they do not
have predecessors in the graph). Thus, the graph can still be safely used for dependency
analysis; however, incremental updates are required to keep the graph valid for analytics

61

tasks. Additionally, faster parsers and graph travel algorithms can help updating the graph
for each change before doing any analysis, which is beyond the scope of this study.

5.3.2 RQ2: How often does the impact of a change cross disci-
plinary boundaries?

Motivation: Change impact analysis helps developers to understand the amount of work
required to implement a change [11], perform risk assessment [5], and identify test results
that have been invalidated and must be refreshed [71]. However, in multidisciplinary
projects, changes may impact other file types as well. Therefore, in this question, we
assess the frequency of changes with an impact that crosses the boundary between code
and data.

Approach: We extract the graph for each change in the data or code locations within
the codebase between early March and late May 2022. Out of 4,256 commits, we only
keep ones that contain changed or deleted files because adding a new file without changing
current ones will not impact existing nodes. Since the direction of edges in the graph is
from a dependent node to its dependency, we need to reverse all the edges to analyze the
impact. Next, we locate each node corresponding to the changed files and compute the
transitive closure of each changed node to identify all the reachable nodes. Finally, we
check the type of the nodes, i.e., code, data, or computational, and compare it to the type
of the change node. If node types differ, a cross-disciplinary impact has been detected.

Result: We find that 237 of the 2,620 analyzed commits (9%) have an impact that crosses
disciplinary boundaries. While this is a small proportion of the overall commits, it accounts
for 47% of the commits that change the source code. Note that changes in data cannot
impact code nodes, since there are no dependencies from code to data. By comparison,
commits that do not cross disciplinary boundaries impact a mean of 762,292 nodes and a
median of 386,542 nodes. This suggests that the multidisciplinary graph adds substantial
perspective for analytics.

5.4 Threats to Validity

In this section, we discuss the threats to the validity of our study.

62

5.4.1 Construct Validity

We extract the code dependency at the file level by reading the content of the source
files and looking for import statements. In some cases, the import statement is inside
a conditional statement. For example, some platform-dependent libraries are different
between the deliverables built for Windows or PlayStation. While this may add extra
nodes and edges to the graph, it does not affect the concepts introduced in this chapter.

Additionally, the compilation database generated in Section 5.2 is for the executable
version of the game for Windows operating system. Each game can be compiled for different
platforms, which generates different a compilation database. However, all the development
related to the game in Ubisoft are platform-independent. Thus, this should not affect the
results and concepts introduced in this study.

5.4.2 Internal Validity

Since the graphs generated for each revision is big enough for any graph traversal algorithm
to perform quickly, we limited our study to the revisions generated from March 1st until
the end of April. While there could be other explanations for the observations we present
in this chapter, like a maintenance period or inactivity, we talk to the project managers
and make sure that the project is under normal development.

5.4.3 External Validity

The results for the preliminary analysis and the research question comes from one project at
Ubisoft. While this may hurt the generalizability of the study, it does not affect the concept
of the multidisciplinary dependency graphs and its usage for future research and practical
tools. Nonetheless, replication studies may help to improve the strength of generalizations
that can be drawn.

5.5 Chapter Summary

In projects with a variety of artifacts, a dependency graph containing the relationship
between the boundary of artifacts is needed. Therefore, we introduce the multidisciplinary
dependency graph to connect the work products of different teams into a cohesive model
of the system. Through a case study of a game project, we demonstrate the importance of
the multidisciplinary graph in analytics tasks for multidisciplinary projects.

63

Chapter 6

Conclusion

Large-scale software systems often produce different variants that execute on different
hardware and software platforms, or that restrict access to features. The projects might
also involve teams specializing in different disciplines (e.g., developers and artists), who
produce various code-adjacent artifacts (e.g., source code and 3D models). In these software
projects, a change in the source code may impact a subset of the variants of the system
while others remain unchanged. Additionally, that change may also impact the work of
other teams, crossing the boundaries of code and other artifacts.

Software analytics tasks like impact analysis, planning for quality improvements, and
predicting build failures rely on dependency information about software artifacts. However,
current approaches that extract and analyze dependencies ignore these complexities. In
this thesis, we empirically study how to enhance the dependency graph by including code-
adjacent artifacts and different configuration settings. In the remainder of this section, we
outline the contribution of this thesis and draw paths for future research.

6.1 Contribution and Findings

This thesis aims to enhance the build dependency graph to increase the accuracy of analyt-
ics tasks. To do so, we statically analyze the build specification files in highly configurable
software projects and projects with multidisciplinary personnel. We claim that:

64

Thesis Statement: A build dependency graph that captures build-time configuration
settings and code-adjacent artifacts can be leveraged to accurately assess the risk of
software changes.

We propose an approach to extract and analyze the build-time configuration settings
and code-adjacent artifacts to enhance the build dependency graph. In doing so, we per-
form two empirical studies. Below, we reiterate the key findings of the studies presented
in this thesis:

1. Assessing the Exposure of Software Changes, The DiPiDi Approach
By statically analyzing build specification files, we produce a dependency graph
containing different build-time configuration settings. We show that such a graph
can increase the efficiency and effectiveness of developers while assessing the risk
of software changes. (Chapter 4)

2. Dependency Extraction and Analysis for Multidisciplinary Teams: A Case Study
at Ubisoft
Teams working on a software project may develop non-code artifacts, depending
on each other or the code artifacts. A change in one of the artifacts may impact
other types as well. In this thesis, we introduced the multidisciplinary dependency
graph to represent the relationship between all the artifacts in one graph. We also
show the importance of the multidisciplinary graph in software analytics tasks.
(Chapter 5)

6.2 Opportunities for Future Research

This thesis provides approaches to enhance the dependency graph and provides evidence
of its importance in research and practical tools. With this purpose in mind, there are
plenty of opportunities for future research and practical tools. Below, we describe three
paths for future work.

6.2.1 Enhanced Risk Assessment

We believe a change that impacts more software variants is inherently riskier than a change
that impacts fewer variants. Additionally, a change that impacts the work of other teams
may be riskier than a change that is local to a single team. For example, in a game project,
a change to the code that impacts all of its targeted gaming platforms requires more effort
from the quality assurance team than a change that only affects a single (and potentially

65

unpopular) gaming platform. Similarly, a change impacting rendering 3D objects requires
more attention than a change to a single animation file. Both metrics (number of im-
pacted variants and number of impacted artifact types) can be extracted by traversing the
enhanced graph introduced in this thesis.

6.2.2 Leveraging Graph Metrics for CI Failure Prediction

A CI/CD pipeline contains steps to build the program, integrate multiple modules, run
tests, and deploy software. We believe a change with higher centrality, i.e., how critical a
node is in the graph, higher degree, i.e., number of in and out edges, and a higher number
of predecessors is more likely to cause a CI failure. In large software projects, a CI pipeline
may take hours to complete. When multiple changes are pushed to the repository in a
short period, they should wait in a pending state until the CI pipeline starts for them.
Since the CI/CD service server has limited resources, prioritizing the jobs with a higher
likelihood of failure will result in faster notifications to developers while changes are still
fresh in their minds.

6.2.3 Refactoring Build Code

Since the graph introduced in this thesis contains all the configuration settings and com-
pilation paths for a software project, it can be leveraged to detect bad smells in the build
specification files. For example, a code file might be excluded in all the configuration
settings, so it should be safe to remove it from the project.

6.2.4 Graph Evolution

In this thesis, we did not study how many differences occur among the dependency graphs
across different configuration settings. This is because the size of the impact on the struc-
ture of the graph was not the goal of this study. Nevertheless, we show that developers
using our approach identified the impacted deliverables and the configuration settings more
accurately and efficiently. Future work studying graph evolution would be interesting as
it can be leveraged to study the impact of the changes on the build process itself.

66

References

[1] Json compilation database format specification.

[2] Mtl material format (lightwave, obj).

[3] CMake Official Grammar. https://cmake.org/cmake/help/v3.0/manual/

cmake-language.7.html#syntax.

[4] GNU make. https://www.gnu.org/software/make/.

[5] Mithun Acharya and Brian Robinson. Practical change impact analysis based on static
program slicing for industrial software systems. In 2011 33rd International Conference
on Software Engineering (ICSE), pages 746–755. IEEE, 2011.

[6] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. The
evolution of the linux build system. Electronic Communications of the EASST, 8,
2008.

[7] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. Design
recovery and maintenance of build systems. In 2007 IEEE International Conference
on Software Maintenance, pages 114–123. IEEE, 2007.

[8] Syed Nadeem Ahsan and Franz Wotawa. Impact analysis of scrs using single and
multi-label machine learning classification. In Proceedings of the 2010 ACM-IEEE
international symposium on empirical software engineering and measurement, pages
1–4, 2010.

[9] J. M. Al-Kofahi, H. V. Nguyen, A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen.
Detecting semantic changes in makefile build code. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pages 150–159, 2012.

67

https://cmake.org/cmake/help/v3.0/manual/cmake-language.7.html#syntax
https://cmake.org/cmake/help/v3.0/manual/cmake-language.7.html#syntax
https://www.gnu.org/software/make/

[10] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Efficient and
precise dynamic impact analysis using execute-after sequences. In Proceedings of the
27th International Conference on Software Engineering, ICSE ’05, page 432–441, New
York, NY, USA, 2005. Association for Computing Machinery.

[11] Robert S Arnold. Software change impact analysis. IEEE Computer Society Press,
1996.

[12] Robert S Arnold and Shawn A Bohner. Impact analysis-towards a framework for
comparison. In 1993 Conference on Software Maintenance, pages 292–301. IEEE,
1993.

[13] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier.
Clone detection using abstract syntax trees. In Proceedings. International Conference
on Software Maintenance (Cat. No. 98CB36272), pages 368–377. IEEE, 1998.

[14] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers test?
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 2, pages 559–562. IEEE, 2015.

[15] Cor-Paul Bezemer, Shane McIntosh, Bram Adams, Daniel M German, and Ahmed E
Hassan. An empirical study of unspecified dependencies in make-based build systems.
Empirical Software Engineering, 22(6):3117–3148, 2017.

[16] Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of useful
code reviews: An empirical study at microsoft. In Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR ’15, page 146–156. IEEE Press,
2015.

[17] Qi Cao, Ruiyin Wen, and Shane McIntosh. Forecasting the duration of incremental
build jobs. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 524–528. IEEE, 2017.

[18] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. An empirical analysis of the docker container ecosystem on github.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), pages 323–333. IEEE, 2017.

[19] Jacob Cohen. Statistical power analysis. Current directions in psychological science,
1(3):98–101, 1992.

68

[20] Jason Cohen. Modern code review. Making Software: What Really Works, and Why
We Believe It, pages 329–336, 2010.

[21] KDE Community. About kde, 2013.

[22] The Qt Company. Qt, 2020.

[23] Jacek Czerwonka, Michaela Greiler, and Jack Tilford. Code reviews do not find
bugs. how the current code review best practice slows us down. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, volume 2, pages 27–28.
IEEE, 2015.

[24] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. A robust approach for variability extraction from the linux build system.
In Proceedings of the 16th International Software Product Line Conference-Volume 1,
pages 21–30, 2012.

[25] Olive Jean Dunn. Multiple comparisons among means. Journal of the American
statistical association, 56(293):52–64, 1961.

[26] Stuart I Feldman. Make—a program for maintaining computer programs. Software:
Practice and experience, 9(4):255–265, 1979.

[27] Francesca Arcelli Fontana, Elia Mariani, Andrea Mornioli, Raul Sormani, and Al-
berto Tonello. An experience report on using code smells detection tools. In 2011
IEEE fourth international conference on software testing, verification and validation
workshops, pages 450–457. IEEE, 2011.

[28] Krita Foundation. Digital painting. creative freedom., Aug 2020.

[29] Malcom Gethers and Denys Poshyvanyk. Using relational topic models to capture cou-
pling among classes in object-oriented software systems. In 2010 IEEE International
Conference on Software Maintenance, pages 1–10. IEEE, 2010.

[30] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny Van Velzen, Iman
Narasamdya, and Benjamin Livshits. Automated migration of build scripts using
dynamic analysis and search-based refactoring. ACM SIGPLAN Notices, 49(10):599–
616, 2014.

[31] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

69

[32] Jason Gregory. Game engine architecture. AK Peters/CRC Press, 2018.

[33] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang. An
extensible, regular-expression-based tool for multi-language mutant generation. In
2018 IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion), pages 25–28. IEEE, 2018.

[34] Carl A Gunter. Abstracting dependencies between software configuration items. ACM
Transactions on Software Engineering and Methodology (TOSEM), 9(1):94–131, 2000.

[35] Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush. Refining interprocedural
change-impact analysis using equivalence relations. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2017,
page 318–328, New York, NY, USA, 2017. Association for Computing Machinery.

[36] Frank E Harrell Jr, Maintainer Frank E Harrell Jr, and Depends Hmisc. Package
‘rms’. Vanderbilt University, 229, 2017.

[37] Foyzul Hassan and Xiaoyin Wang. Hirebuild: An automatic approach to history-
driven repair of build scripts. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 1078–1089. IEEE, 2018.

[38] Lile Hattori, Dalton Guerrero, Jorge Figueiredo, Joao Brunet, and Jemerson Damásio.
On the precision and accuracy of impact analysis techniques. In Seventh IEEE/ACIS
International Conference on Computer and Information Science (icis 2008), pages
513–518. IEEE, 2008.

[39] Yoshiki Higo and Shinji Kusumoto. Enhancing quality of code clone detection with
program dependency graph. In 2009 16th Working Conference on Reverse Engineer-
ing, pages 315–316. IEEE, 2009.

[40] Lorin Hochstein and Yang Jiao. The cost of the build tax in scientific software. In
2011 International Symposium on Empirical Software Engineering and Measurement,
pages 384–387. IEEE, 2011.

[41] Kdenlive. Libre video editor, 2020.

[42] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93,
1938.

70

[43] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-c: A software analysis perspective. Formal Aspects of Computing,
27(3):573–609, 2015.

[44] Kitware. CMake, 2020. https://cmake.org.

[45] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[46] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. Software fault interactions
and implications for software testing. IEEE transactions on software engineering,
30(6):418–421, 2004.

[47] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[48] ET: Legacy. Et: Legacy, 2021.

[49] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. A survey of code-based change
impact analysis techniques. Software Testing, Verification and Reliability, 23(8):613–
646, 2013.

[50] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. An analysis of the variability in forty preprocessor-based software product
lines. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 105–114, 2010.

[51] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, Wen-Tin Lee, Shin-Jie Lee, and Nien-
Lin Hsueh. Using service dependency graph to analyze and test microservices. In 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
volume 2, pages 81–86. IEEE, 2018.

[52] Sasu Mäkinen, Henrik Skogström, Eero Laaksonen, and Tommi Mikkonen. Who needs
mlops: What data scientists seek to accomplish and how can mlops help? In 2021
IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for AI (WAIN),
pages 109–112. IEEE, 2021.

[53] Ken Martin and Bill Hoffman. Mastering CMake: a cross-platform build system.
Kitware, 2010.

[54] Shane McIntosh, Bram Adams, and Ahmed E Hassan. The evolution of ant build
systems. In 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), pages 42–51. IEEE, 2010.

71

[55] Shane McIntosh, Bram Adams, Thanh HD Nguyen, Yasutaka Kamei, and Ahmed E
Hassan. An empirical study of build maintenance effort. In 2011 33rd International
Conference on Software Engineering (ICSE), pages 141–150. IEEE, 2011.

[56] Mehran Meidani, Maxime Lamothe, and Shane McIntosh. Assessing the exposure of
software changes: The dipidi approach. arXiv preprint arXiv:2104.00725, 2021.

[57] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[58] Sarah Nadi and Ric Holt. Mining kbuild to detect variability anomalies in linux.
In Proceedings of the 2012 16th European Conference on Software Maintenance and
Reengineering, CSMR ’12, page 107–116, USA, 2012. IEEE Computer Society.

[59] Sarah Nadi and Ric Holt. The linux kernel: A case study of build system variability.
Journal of Software: Evolution and Process, 26(8):730–746, 2014.

[60] Matthew O’Connell, Cameron Druyor, Kyle B Thompson, Kevin Jacobson, William K
Anderson, Eric J Nielsen, Jan-Reneé Carlson, Michael A Park, William T Jones,
Robert Biedron, et al. Application of the dependency inversion principle to multi-
disciplinary software development. In 2018 Fluid Dynamics Conference, page 3856,
2018.

[61] Doriane Olewicki, Mathieu Nayrolles, and Bram Adams. Towards language-
independent brown build detection. 2022.

[62] Matteo Orrú, Ewan Tempero, Michele Marchesi, Roberto Tonelli, and Giuseppe Deste-
fanis. A curated benchmark collection of python systems for empirical studies on soft-
ware engineering. In Proceedings of the 11th International Conference on Predictive
Models and Data Analytics in Software Engineering, pages 1–4, 2015.

[63] Terence J. Parr and Russell W. Quong. Antlr: A predicated-ll (k) parser generator.
Software: Practice and Experience, 25(7):789–810, 1995.

[64] Partha Sarathi Paul, Surajit Goon, and Abhishek Bhattacharya. History and com-
parative study of modern game engines. International Journal of Advanced Computed
and Mathematical Sciences, 3(2):245–249, 2012.

[65] Maksym Petrenko and Václav Rajlich. Variable granularity for improving precision
of impact analysis. In 2009 IEEE 17th International Conference on Program Com-
prehension, pages 10–19. IEEE, 2009.

72

[66] Christopher Preschern. Patterns to escape the# ifdef hell. In Proceedings of the 24th
European Conference on Pattern Languages of Programs, pages 1–12, 2019.

[67] Vaclav Rajlich and Prashant Gosavi. Incremental change in object-oriented program-
ming. IEEE software, 21(4):62–69, 2004.

[68] Gregorio Robles, Jesus M Gonzalez-Barahona, and Juan Julian Merelo. Beyond source
code: the importance of other artifacts in software development (a case study). Journal
of Systems and Software, 79(9):1233–1248, 2006.

[69] Robert Rosenthal. Experimenter effects in behavioral research. Irvington, 1976.

[70] Per Roveg̊ard, Lefteris Angelis, and Claes Wohlin. An empirical study on views of
importance of change impact analysis issues. IEEE Transactions on Software Engi-
neering, 34(4):516–530, 2008.

[71] Barbara G Ryder and Frank Tip. Change impact analysis for object-oriented pro-
grams. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 46–53, 2001.

[72] SciTools. Understand, 2022.

[73] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert
Bowdidge. Programmers’ build errors: A case study (at google). In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014, page 724–734,
New York, NY, USA, 2014. Association for Computing Machinery.

[74] Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and Olaf Spinczyk. Is
the linux kernel a software product line. In Proc. SPLC Workshop on Open Source
Software and Product Lines, 2007.

[75] Davide Spadini, Mauŕıcio Aniche, and Alberto Bacchelli. PyDriller: Python frame-
work for mining software repositories. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering - ESEC/FSE 2018, pages 908–911, New York, New
York, USA, 2018. ACM Press.

[76] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen. Build
code analysis with symbolic evaluation. In 2012 34th International Conference on
Software Engineering (ICSE), pages 650–660. IEEE, 2012.

73

[77] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
Symake: a build code analysis and refactoring tool for makefiles. In 2012 Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering,
pages 366–369. IEEE, 2012.

[78] Qiang Tu and Michael W Godfrey. The build-time software architecture view. In
Proceedings IEEE International Conference on Software Maintenance. ICSM 2001,
pages 398–407. IEEE, 2001.

[79] John W Tukey et al. Exploratory data analysis, volume 2. Reading, Mass., 1977.

[80] Shuying Wang and Miriam AM Capretz. A dependency impact analysis model for web
services evolution. In 2009 IEEE International Conference on Web Services, pages
359–365. IEEE, 2009.

[81] Ruiyin Wen, David Gilbert, Michael G Roche, and Shane McIntosh. Blimp tracer:
integrating build impact analysis with code review. In 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pages 685–694. IEEE, 2018.

[82] Mark Werner. Barriers to a collaborative, multidisciplinary pedagogy [software devel-
opment teams]. In Proceedings 1996 International Conference Software Engineering:
Education and Practice, pages 203–210. IEEE, 1996.

[83] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. Build system analysis with link
prediction. SAC ’14, page 1184–1186, New York, NY, USA, 2014. Association for
Computing Machinery.

[84] Cemal Yilmaz, Myra B Cohen, and Adam A Porter. Covering arrays for efficient fault
characterization in complex configuration spaces. IEEE Transactions on Software
Engineering, 32(1):20–34, 2006.

[85] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. A novel neural source code representation based on abstract syntax tree. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages
783–794. IEEE, 2019.

[86] B. Zhou, X. Xia, D. Lo, and X. Wang. Build predictor: More accurate missed depen-
dency prediction in build configuration files. In 2014 IEEE 38th Annual Computer
Software and Applications Conference, pages 53–58, 2014.

74

[87] Thomas Zimmermann and Nachiappan Nagappan. Predicting subsystem failures us-
ing dependency graph complexities. In The 18th IEEE International Symposium on
Software Reliability (ISSRE’07), pages 227–236. IEEE, 2007.

75

APPENDICES

76

Appendix A

Demographic Questions

1. How much experience do you have in programming?

• None

• Less than a year

• a year to two years

• two to five years

• five years or more

2. How much are you familiar with CMake?

• None

• Tried it at least once

• Used in professional development

3. How often do you currently program?

• Never

• Sometimes

• More than once per week

77

Appendix B

Post Study Questionnaire

1. If you used any other tool(s) (CLI/IDE) please name it here:

2. If we provided a tool for you to use, how useful it was?

3. How do you feel? (1=Very Tired, 2=Tired, 3=Neutral, 4=Energetic, 5=Very Ener-
getic)

4. How difficult were the tasks? (1=easy, 2=average, 3=hard)

5. How much experience did you have with the projects provided to you?

6. Did you encounter any problem during the experiment?

7. Any feedback about the experiment?

8. Can we contact you for a follow up interview?

78

B.1 Task A

You will be provided with the names of changed files and a set of build specifications.
Your task is to list impacted deliverables (targets). Deliverables are defined in CMake files
(CMakeLists.txt or .cmake files) using add library or add executable commands. You
can find these files in the project repository. These commands take a target name and
a list of files which impact the target. Some files may be excluded under different con-
figuration. As an example, a code file related to ARM processor may not be included in
the deliverable for Intel CPUs. Read more at https://cmake.org/cmake/help/latest/
manual/cmake-buildsystem.7.html#binary-targets. The experiment UI provides text
inputs for you to list those deliverables.

Follow the steps below to prepare for the task. Once you completed the steps, click on
ready and the task will begin.

1. Access DiPiDi tool at ...

2. Clone the repository from https://github.com/libuv/libuv

Given the following commit id and the build time configuration, please find the impacted
targets (deliverables). There maybe more input fields than necessary to complete the task.

1. Change Commit ID: cdced3a3ad1b3e4287f92c9d434b543a9e509938

2. Build Configuration: APPLE==False

Input1: ...
Input2: ...

79

https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#binary-targets
https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#binary-targets
https://github.com/libuv/libuv

B.2 Task B - (Impacted Deliverables)

You will be shown three commits and a set of build specifications which are the conditions
passed to the build system and may change the build process. These conditions are defined
using option or if commands. Read more at https://cmake.org/cmake/help/latest/

command/if.html. We ask you to rank the commits listed in the experiment UI based on
the number of impacted deliverables. Rank the commits in an ascending order (1=Most
Impact, 3=Less Impact)

Follow the steps below to prepare for the task. Once you completed the steps, click on
ready and the task will begin.

1. Access DiPiDi tool at ...

2. Clone the repository from https://github.com/libuv/libuv

Given the following build time configurations, please rank the commits based on the
given criteria.

1. Build Configurations: MAKE SYSTEM NAME==APPLE

2. Criteria: Impacted Deliverables

1. e89abc80ea43065a726ade191b810af53ec6158a: ...

2. 953f901dd2330a9979838cd43ff04eacde71b25a: ...

3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ...

80

https://cmake.org/cmake/help/latest/command/if.html
https://cmake.org/cmake/help/latest/command/if.html
https://github.com/libuv/libuv

B.3 Task B - (Impacted Variants)

You will be shown three commits and a set of build specifications which are the conditions
passed to the build system and may change the build process. These conditions are defined
using option or if commands. Read more at https://cmake.org/cmake/help/latest/

command/if.html. We ask you to rank the commits listed in the experiment UI based
on the number of impacted application variants (e.g., number of affected OS). Rank the
commits in an ascending order (1=Most Impact, 3=Less Impact)

Follow the steps below to prepare for the task. Once you completed the steps, click on
ready and the task will begin.

1. Access DiPiDi tool at ...

2. Clone the repository from https://github.com/libuv/libuv

Given the following build time configurations, please rank the commits based on the
given criteria.

1. Build Configurations: LIBUV BUILD TESTS==False

2. Impacted Application Variants (Operating systems)

1. e89abc80ea43065a726ade191b810af53ec6158a: ...

2. 953f901dd2330a9979838cd43ff04eacde71b25a: ...

3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ...

81

https://cmake.org/cmake/help/latest/command/if.html
https://cmake.org/cmake/help/latest/command/if.html
https://github.com/libuv/libuv

B.4 Task C - (Identify Commits Affect Deliverables)

You will be shown three commits and asked to identify the commits that affect a specified
set of deliverables.

Follow the steps below to prepare for the task. Once you completed the steps, click on
ready and the task will begin.

1. Access DiPiDi tool at ...

2. Clone the repository from https://github.com/libuv/libuv

Identify the commits which affect these deliverables: [‘uv’]

1. e89abc80ea43065a726ade191b810af53ec6158a: ?

2. 953f901dd2330a9979838cd43ff04eacde71b25a: ?

3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ?

82

https://github.com/libuv/libuv

B.5 Task C - (Identify Commits Affect Variant)

You will be shown three commits and asked to identify the commits that affect a specific
variant of the software.

Follow the steps below to prepare for the task. Once you completed the steps, click on
ready and the task will begin.

1. Access DiPiDi tool at ...

2. Clone the repository from https://github.com/libuv/libuv

Identify the commits which affect this variant: BSD Operating System

1. e89abc80ea43065a726ade191b810af53ec6158a: ?

2. 953f901dd2330a9979838cd43ff04eacde71b25a: ?

3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ?

83

https://github.com/libuv/libuv

B.6 Task C - (Configuration Setting)

You will be shown three commits and asked to identify the configuration settings under
which the changes will affect at least one target. The build configurations may exclude or
include a file in the build process for an specific target using conditional commands in the
CMake files. Read more at https://cmake.org/cmake/help/latest/command/if.html
CMake website.

Follow the steps below to prepare for the task. Once you completed the steps, click on
ready and the task will begin.

1. Access DiPiDi tool at ...

2. Clone the repository from https://github.com/libuv/libuv

For each of the given commits, identify at least one configuration setting under which
the change will propagate to at least one deliverable(target). If the change will propagate
irrespective of the conditional settings, enter the term ”ALL”.

1. e89abc80ea43065a726ade191b810af53ec6158a: ...

2. 953f901dd2330a9979838cd43ff04eacde71b25a: ...

3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ...

84

https://cmake.org/cmake/help/latest/command/if.html
https://github.com/libuv/libuv

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Thesis Overview
	Statically Analyzing Build Files
	Code-Adjacent Artifacts
	Thesis Contributions
	Technical Contributions
	Empirical Contributions

	Thesis Organization

	Background and Definitions
	Build System
	Build Specification Files
	Deliverables
	Configuration Setting

	Analyzing Build Specification Files
	Abstract Syntax Tree
	Build Dependency Graph
	Graph Traversal

	Chapter Summary

	Related Research
	Build System
	Co-evolution of Source and Build Code

	Analysis of Build Code
	Dependency Graph
	Static Analysis of Build Code
	Dynamic Analysis of Build Code

	Chapter Summary

	Assessing the Exposure of Software Changes, The DiPiDi Approach
	Introduction
	Research Questions
	DiPiDi
	Indexing Phase
	Query Phase

	Research Protocol
	Variables
	Materials
	Tasks
	Participants
	Execution Plan
	Analysis Plan
	Deviations From the Registered Report

	Results
	RQ1: Does DiPiDi help developers assess the exposure of source code changes more effectively?
	RQ2: Does DiPiDi help developers to assess the exposure of source code changes more efficiently?
	Discussion

	Threats to Validity
	Threats to internal validity
	Threats to external validity
	Threats to construct validity

	Chapter Summary

	Dependency Extraction and Analysis for Multidisciplinary Teams: A Case Study at Ubisoft
	Introduction
	Extracting the Multidisciplinary Graph
	Data Extraction
	Graph Construction

	A Case Study
	RQ1: How often is the graph itself changed?
	RQ2: How often does the impact of a change cross disciplinary boundaries?

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Chapter Summary

	Conclusion
	Contribution and Findings
	Opportunities for Future Research
	Enhanced Risk Assessment
	Leveraging Graph Metrics for CI Failure Prediction
	Refactoring Build Code
	Graph Evolution

	References
	APPENDICES
	Demographic Questions
	Post Study Questionnaire
	Task A
	Task B - (Impacted Deliverables)
	Task B - (Impacted Variants)
	Task C - (Identify Commits Affect Deliverables)
	Task C - (Identify Commits Affect Variant)
	Task C - (Configuration Setting)

