
Computing a Basis for an Integer Lattice

by

Haomin Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Haomin Li 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Consider an integer matrix A ∈ Zn×(n−1) that has full column rank n−1. The set of all
Z-linear combinations of the rows of A generates a lattice, denoted by L(A). An algorithm
is given that computes a matrix C ∈ Z(n−1)×n such that B := CA ∈ Z(n−1)×(n−1) is a basis
for A, that is, B has full row rank n − 1 and L(B) = L(A). The matrix C will satisfy
log ||C || ≤ 4 log n+ 2 log ||A|| (where || · || denotes the maximum entry in absolute value)
and will have at most n(1 + log2 n) nonzero entries. The cost of the algorithm is about
the same as that required to multiply together two square integer matrices of dimension n
that have magnitude of entries bounded by ||A||.

iii

Acknowledgements

My first acknowledgment must go to my supervisor Prof. Arne Storjohann for his
invaluable advice and endless care. His flawless guidance and mental support “safely” led
me through this two-year’s academia life during the pandemic. Thanks to him, I learned
how to define problems, research approaches, and practice meticulous academic writing.
His infinite enthusiasm for symbolic computation research and extensive knowledge of
English literature inspired me all the time. I am really lucky to be able to study with Prof.
Storjohann.

I also want to thank Prof. George Labahn. Three years ago, I took the Numerical
Computation course with Prof. Labahn, which introduced me to the world of symbolic
computation and was one of my most favorite courses during my undergraduate studies. I
would also like to express my gratitude to the Instructional Support Coordinator Karen
Anderson for offering me invaluable teaching opportunities at school and plenty of life
advice. She taught me that “Don’t sell yourself short. Hard work will pay off in the near
future”.

I gratefully appreciate my thesis committee members, Prof. George Labahn and
Prof. Eugene Zima, for their time reading my thesis and their constructive feedback.

I want to greatly thank my parents for their unconditional support and absolute trust.
In the critical moments of my life, in the highest highs and in the depths of true lows, I
have never had to turn to them, because they were already there.

I want to give plenty of appreciation to my friends for their companionship during my
graduate studies. Many thanks go to Symbolic Computation Group.

iv

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Cost model . 12

2 Mathematical results 14

2.1 Background on integer lattice . 14

2.2 Hadamard’s inequality and Cramer’s rule 18

2.3 Lattice generator via kernel basis . 18

3 Computational results 21

3.1 Computational tools . 21

3.2 Finding a maximal nonsingular submatrix 26

3.3 Kernel basis of nullity one . 27

3.4 Augmentation vector . 28

4 Sparse kernel basis of a vector 34

5 Kernel basis of a vector via Hermite normal form 39

5.1 Special Hermite normal form . 40

5.2 Kernel basis of a vector via Hermite normal form 41

v

6 Lattice generator 49

6.1 Sparse lattice generator . 50

6.2 Hermite lattice generator . 51

7 Extensions for the case: (r + k)× r 52

7.1 Method 1: Kernel of a vector . 53

7.2 Method 2: Kernel of a matrix . 53

8 Conclusions 55

References 57

vi

List of Figures

1.1 Lattice on 2D plane . 1

3.1 Algorithm VectorGcdex . 26

4.1 Example sparse kernel basis . 34

4.2 Algorithm SparseKernelBasis . 35

5.1 Algorithm KernelViaHermite . 42

vii

Chapter 1

Introduction

A lattice is an infinite set of points in n-th real coordinate dimension space with a regular
arrangement.

Figure 1.1: Lattice on 2D plane

It has the properties that two points in the lattice can produce another lattice point by
coordinate-wise addition and subtraction. An integer lattice is a lattice whose lattice
points are in integer space. Lattices have been studied since the late 18th century by
mathematicians, including Lagrange, Gauss, and Minkowski. Lattices have applications in
both computer science and mathematics, such as error encoding/decoding, the solution of
integer programming problems, cryptanalysis, and more.

In this thesis, we represent integer lattices in algebraic form. Let an integer matrix

1

A ∈ Zn×m be comprised of n row vectors a i ∈ Z1×m where 1 ≤ i ≤ n, that is,

A =

a1

a2
...
an

 ∈ Zn×m.

The integer lattice generated by the rows of A is the set

L(A) =

{
n∑

i=1

cia i | ci ∈ Z

}
=
{
c A | c ∈ Z1×n

}
.

We consider the problem of computing a basis for L(A). If the rank of a matrix A ∈
Zn×m is r, then a basis for A ∈ Zn×m is given by a matrix B ∈ Zr×m such L(A) = L(B).
Before continuing, we mention that L(A) will always denote the lattice generated by the
rows of A, and, for brevity, we will write “B is a basis for A” to mean “B is a basis for
L(A).”

A classical case of the problem is n = 2 and m = 1. Computing a basis for

A =

[
a1
a2

]
∈ Z2×1

corresponds to computing g = gcd(a1, a2). The extended gcd problem asks also for a lattice
generator C ∈ Z1×2 such that

CA =
[
c1 c2

] [a1
a2

]
=
[
g
]
.

We will use a cost function B such that the extended gcd problem can be solved in
O(B(log ||A||)) bit operations, where || · || denotes the maximal entry in absolute value.

Another case is n arbitrary and m = 1. Given A ∈ Zn×1, find g = gcd(A), the gcd of
all entries in A. Storjohann [2000, Corollary 6.5] gives an O(nB(log ||A||)) bit operations
algorithm that solves the vector extended gcd problem, producing aC ∈ Z1×n that satisfies
||C || ≤ ||A||.

2

Example 1. Let

A :=

336
−420
357
140
−322

 ∈ Z5×1,

where gcd(A) = 7. The algorithm of Storjohann [2000, Corollary 6.5] produces

C =
[
21 0 1 0 23

]
∈ Z1×5

such that CA = gcd(A).

The general version of the problem takes as input an A ∈ Zn×m with full column
rank, and asks as output a B ∈ Zm×m such that L(B) = L(A). Such a B is a basis
for L(A). Chen and Storjohann [2005] give a randomized algorithm that can produce a
C 1 ∈ Z(m+1)×n to compress A such that L(C 1A) = L(A). They show that if C 1 ∈
Z(m+1)×n has entries chosen uniformly and randomly from {0, 1, . . . , λ − 1} where λ ≥
1200m log(2nm||A||) and λ is a multiple of 30, then L(C 1A) = L(A) with probability
greater than 0.4.

Example 2. Consider the full column rank matrix

A :=

−309 1215 −747 −5199
2471 −3360 1318 3947
−2 −2120 −486 −236
3201 −2402 −890 3427
535 −201 2306 −59
1574 −458 845 4620

 ∈ Z6×4.

We pick λ = 86070 and randomly generate a matrix C 1 from {0, 1, . . . , λ− 1}:

C 1 =

36468 66377 81948 60787 63158 71845
72730 17619 25671 54005 61155 41887
42709 84439 51124 56075 59063 73771
311 50654 30932 32446 13213 10645
15545 22630 15747 1345 23270 50828

 ∈ Z5×6.

3

We have

Ā := C 1A =

494037806 −544058002 172667505 589567786
292529705 −186451821 84769921 60345497
522559774 −520557416 203169738 628677706
252691902 −320861930 62083966 350607272
147841898 −121720449 105974413 242847608

 ∈ Z5×4.

For this example the compression is successful and L(Ā) = L(A).

However, the technique of Chen and Storjohann [2005] cannot handle the final step,
that is, compressing an (m + 1) × m integer matrix with full column rank to an m × m
integer matrix.

A classic method to do this final step is to compute a basis H̄ ∈ Zm×m for a full column
rank integer matrix Ā ∈ Z(m+1)×m. The Hermite normal form is a canonical form over the
principal ideal domain Z, and can be considered to be a generalization of the reduced row
echelon form of a matrix over a field. In the case of full column rank matrices, a matrix
H is in Hermite normal form if

1. H is upper triangular,

2. diagonal entries of H are positive integers, and

3. off-diagonal entries in each column of H are non-negative and strictly smaller than
the diagonal entry.

The Hermite normal form of a matrix Ā has the same dimensions as Ā. By Hermite
basis of Ā, we mean the submatrix of the Hermite form restricted to its nonzero rows.

Example 3. Consider the full column rank matrix:

Ā :=

−309 1215 −747 −5199
2471 −3360 1318 3947
−2 −2120 −486 −236
3201 −2402 −890 3427
535 −201 2306 −59

 ∈ Z5×4.

4

The Hermite normal form of Ā is

H =

1 3 5 57332297439

7 13 23323233552
15 10443440106

164009996654
0

 ∈ Z5×4.

Therefore, the Hermite basis of Ā is

H̄ =

1 3 5 57332297439

7 13 23323233552
15 10443440106

164009996654

 ∈ Z4×4.

The Hermite basis H̄ ∈ Z4×4 gives a basis for the matrix A ∈ Z6×4 in previous Example 2.

By using the Hermite normal form, we can also obtain a basis generator C 2 ∈ Zm×(m+1)

such that C 2Ā is a basis for Ā. Given an integer matrix Ā ∈ Z(m+1)×m with full column
rank, we have

U Ā =

[
H̄
]

where H̄ ∈ Zm×m is the Hermite basis for Ā and U ∈ Z(m+1)×(m+1) is unimodular. Then,
the top m rows of U is our solution C 2 ∈ Zm×(m+1).

Example 4. Consider the same input matrix Ā ∈ Z5×4 as in Example 3:

Ā :=

−309 1215 −747 −5199
2471 −3360 1318 3947
−2 −2120 −486 −236
3201 −2402 −890 3427
535 −201 2306 −59

 ∈ Z5×4.

The Hermite normal form algorithm produces

U =

−15906805 −12537803 2023147 7267703 5244556
−6471015 −5100479 823033 2956560 2133528
−2897525 −2283840 368529 1323858 955329
−45504458 −35866786 5787601 20790656 15003058
−2 −5 3 3 4

 ∈ Z5×5

5

such that

H := UĀ =

1 3 5 57332297439
0 7 13 23323233552
0 0 15 10443440106
0 0 0 164009996654
0 0 0 0

 ∈ Z5×4

is in Hermite normal form. Then, we can take C 2 to be the top 4 rows of U :

C 2 :=

−15906805 −12537803 2023147 7267703 5244556
−6471015 −5100479 823033 2956560 2133528
−2897525 −2283840 368529 1323858 955329
−45504458 −35866786 5787601 20790656 15003058

 ∈ Z4×5

such that L(Ā) = L(C 2Ā). Note that H̄ := C 2Ā ∈ Z4×4 is the Hermite basis of Ā in
previous Example 3.

Although the Hermite normal form of Ā ∈ Z(m+1)×m gives a basis for the lattice of
A ∈ Zn×m, a problem with this method is that the best a priori bound for the magnitude of
entries in the Hermite basis H̄ ∈ Zm×m and the solution U ∈ Z(m+1)×(m+1) is mm/2 ||Ā||m
(Hadamard’s bound), where ||·|| for a matrix or vector denotes the largest entry in absolute
value. More clearly, the bitlength of entries in H̄ and U can be over m times the bitlength
of entries in Ā. Algorithms working with integer matrices typically have bit complexity
(running time) bounds given in terms of not only the dimension of the matrix but also the
bitlength of entries. This growth in the bitlength can adversely affect the complexity of
algorithms that work with U and H̄ .

In this thesis, our goal is to produce a basis B ∈ Zm×m for Ā ∈ Z(m+1)×m that
has entries with bitlength not much larger than those of Ā. Formally, we require that
log ||B || ∈ O(log n+ log ||Ā||).

In this thesis, we present a method to do the final compressing step from full column
rank (m+1)×m to a nonsingular m×m basis with compressing deterministically. Going
forward, instead of assuming the input matrix is a full column rank Ā ∈ Z(m+1)×m, we will
assume the input matrix A ∈ Zn×(n−1) has full column rank; this change of notation will
be convenient for deriving magnitude, sparsity and complexity bounds.

To the best of our knowledge, the fastest previous algorithm to compute a basis B ∈
Z(n−1)×(n−1) for a full column rank matrix A ∈ Zn×(n−1) with log ||B || ∈ O(log n+log ||A||)
is that of Li and Nguyen [2019, Theorem 3.8], which solves the problem in the general
case, that is, for n, m and r arbitrary. Applied to the special case m = n − 1 = r that

6

we consider here, their algorithm has cost bounded by O(nω B(nd)) bit operations, where
d = log n + log ||A|| and ω is the exponent of matrix multiplication. In this thesis, we
give an algorithm that solves the problem in O(nω B(d)(log n)2) bit operations, so about a
factor of n faster than the previously known fastest algorithm. We remark that this cost
estimate matches that of the Smith form algorithm of Birmpilis et al. [2020] and thus our
technique can be used for the application given in the later paragraph, at least for the
special case m = n− 1 = r.

Instead of producing B ∈ Z(n−1)×(n−1) directly, we first compute a matrix C ∈ Z(n−1)×n

and then set B := CA. We show that log ||C || ≤ 4 log n+2 log ||A|| and that C will have
at most n(1 + log2 n) nonzero entries, independent of ||A||. To the best of our knowledge,
we are not aware that the existence of such a C with only O(n log n) nonzero entries was
previously known.

Example 5. Consider the same input matrix Ā ∈ Z5×4 as in Example 4 and rename the
matrix Ā to A:

A :=

−309 1215 −747 −5199
2471 −3360 1318 3947
−2 −2120 −486 −236
3201 −2402 −890 3427
535 −201 2306 −59

 ∈ Z5×4.

Our algorithm produces

C =

1 3

1
1

1

 ∈ Z4×5

and a basis

B := CA =

7104 −8865 3207 6642
−2 −2120 −486 −236
3201 −2402 −890 3427
535 −201 2306 −59

 ∈ Z4×4

such that L(A) = L(B) = L(CA). Note that the magnitudes of the entries in C ∈ Z4×5

and the basis B ∈ Z4×4 are much smaller than the magnitudes of the entries in C 2 ∈ Z4×5

and the Hermite basis H̄ ∈ Z4×4 shown in Example 4 respectively.

The sparsity of C ∈ Z(n−1)×n can be useful in some situations. For example, it can be
exploited to perform fast matrix multiplication. Suppose, in addition to the full column
rank input matrix A ∈ Zn×(n−1), we have linearly dependent columns Ā ∈ Zn×m. If C ∈

7

Z(n−1)×n is such that CA is a basis for A, then a basis for the rank n−1 augmented matrix[
A Ā

]
∈ Zn×((n−1)+m) is given by C

[
A Ā

]
. The additional cost to compute CĀ is

only O(nmM(d) log n) bit operations, where M is a cost function for integer multiplication,
and d = log n+ log ||Ā||.

We now give an outline of our approach to compute C . Our idea is to find a vector
v ∈ Zn×1 such that the augmented matrix[

A v
]
∈ Zn×n (1.1)

is nonsingular. Then we compute C ∈ Z(n−1)×n to be a left kernel basis of v that satisfies
||C || ≤ ||v ||2. Of course, the augmentation vector v must be special in order for this to
work. We show that if L(

[
A v

]
) contains the last row of I n, then a left kernel basis

C ∈ Z(n−1)×n of v has the property that CA is a basis for A. Our algorithm has three
main computational steps:

(1) Compute a left kernel basis w ∈ Z1×n of A.
(2) Compute an augmentation vector v ∈ Zn×1 from A and w .
(3) Compute a left kernel basis C ∈ Z(n−1)×n of v .

Example 6. Considering the same input matrix A ∈ Z5×4 as in Example 5:

A :=

−309 1215 −747 −5199
2471 −3360 1318 3947
−2 −2120 −486 −236
3201 −2402 −890 3427
535 −201 2306 −59

 ∈ Z5×4.

The step (1) computes a left kernel basis for A:

w :=
[
−2 −5 3 3 4

]
∈ Z1×5.

The step (2) then gives an augmentation vector for A ∈ Z5×4:

v :=

−3
1
0
0
0

 ∈ Z5×1.

8

such that

w
[

A v
]

=
[
−2 −5 3 3 4

]

−309 1215 −747 −5199 −3
2471 −3360 1318 3947 1
−2 −2120 −486 −236 0
3201 −2402 −890 3427 0
535 −201 2306 −59 0

=
[
0 0 0 0 1

]
The step (3) finally calculates a left kernel basis of v ∈ Z5×1:

C :=

1 3

1
1

1

 ∈ Z4×5,

which is shown in Example 5.

One of our motivations for studying the problem of computing a basis for a matrix A is
to extend fast algorithms for computing normal forms of integer matrices to input matrices
with arbitrary shapes and rank profiles. For example, the fastest algorithm for computing
the Smith form of an integer matrix by Birmpilis et al. [2020] requires as input a square
nonsingular input matrix.

The Smith normal form of a matrix is a canonical form over the principal ideal domain
Z and can be obtained from the original matrix by multiplying on the left and right by
unimodular square matrices. In the case of full column rank matrices, a matrix S is in
Smith normal form if

1. S is diagonal,

2. diagonal entries of S are positive integers,

3. each diagonal entry of S except for the last divides the next.

The Smith normal form of a matrix S has the same dimensions as A. There exists
unimodular matrices U ,V such that UAV = S .

9

Example 7. Consider an integer matrix

A :=

−18 −27 −113 57
35 28 63 −56
−25 −27 −92 57
−28 −28 −84 56
−24 −29 −97 55
−31 −29 −76 55

 ∈ Z6×4.

The Smith normal form of A is

S =

1

7
28

 ∈ Z6×4.

Suppose A ∈ Zn×m has rank r. By first producing a basis B ∈ Zr×m for A ∈ Zn×m,
then producing a basis B̄ ∈ Zr×r for Transpose(B) ∈ Zm×r, we can apply the Smith form
algorithm with the nonsingular input B̄ to obtain the Smith form of A.

Example 8. Consider the integer matrix with rank 3:

A :=

−18 −27 −113 57
35 28 63 −56
−25 −27 −92 57
−28 −28 −84 56
−24 −29 −97 55
−31 −29 −76 55

 ∈ Z6×4.

Firstly, we compute a basis for A:

B =

 2 3 −3 3
1 −2 −5 −2
−53 −34 −15 50

 ∈ Z3×4.

10

Then, we produce a basis for

Transpose(B) =

2 1 −53
3 −2 −34
−3 −5 −15
3 −2 50

 ∈ Z4×3,

that is,

B̄ =

 26 −1 −171
−3 −5 −15
3 −2 −34

 ∈ Z3×3.

The Smith form of B̄ is

S̄ =

 1
7

28

 ∈ Z3×3.

The Smith normal form S̄ is equal to the submatrix of the Smith normal form S of A
restricted to its nonzero rows and columns in Example 7.

Computing a lattice with entries not much larger than those of the input matrix has
many other applications, such as rational reconstruction, attacking GGH Public Key Cryp-
tosystem, solving Shortest Vector Problem, and so on.

The rest of this thesis is organised as follows.

In Chapter 2, we will provide the fundamental mathematical concepts for lattice, prim-
itive matrix, and left kernel matrix. We will also recall known theorems and lemmas used
in the later proofs, such as Hadamard’s inequality and Cramer’s rule. Next, we establish
the sufficient condition on the augmentation vector v obtained from the (2) step to ensure
that a left kernel basis C of v has the property that CA is a basis for the given integer
matrix A.

In Chapter 3, we will adapt from the literature some computational tools to deter-
ministically compute an augmentation vector v ∈ Zn×1 for input A ∈ Zn×(n−1) such that
L(
[
A v

]
) contains the last row of I n. We will cover deterministic algorithms for sys-

tem solving, 2-massager computation, LSP decomposition, and kernel basis problems. The
deterministic algorithms are used in the sub problems of finding a maximal nonsingular
submatrix of a full column rank matrix A ∈ Zn×m and computing a kernel basis of a
nullity-one matrix A ∈ Zn×(n−1). We will then combine the two subproblems to produce
the augmentation vector v .

11

In the next two chapters, we will develop two different methods for computing a left
kernel basis of a vector with nonzero entries. These two methods differ in bit operations
and the output left kernel bases from them also have different properties. Let v ∈ Zn×1

be a vector with nonzero entries. In Chapter 4, we will introduce a divide-and-conquer
algorithm that computes a sparse left kernel basis of any vectors with nonzero entries. The
output left kernel basis of input v ∈ Zn×1 from this method is sparse and its bitlength is
bounded by 2 log ||v ||. We will demonstrate the tightness and sparsity of the output basis
produced by the algorithm.

In Chapter 5, we will show a different approach to compute a left kernel basis of any
vectors with nonzero entries via Hermite norm form. Although the output left kernel basis
of v ∈ Zn×1 produced by this approach is not guaranteed to be sparse as in Chapter 4, its
bitlength is better: only bounded by log ||v ||.

In Chapter 6, we will present our main contribution that computes a lattice basis
generator C ∈ Z(n−1)×n for a given full column rank matrix A ∈ Zn×(n−1) such that CA is
a basis for A by using the two aforementioned different methods to compute a kernel basis
of a vector: sparse kernel basis from Chapter 4 and kernel basis of a vector via Hermite
normal form from Chapter 5.

In Chapter 7, we will discuss our further exploration by extending the algorithm to the
general case that the input matrix with full column rank can have more than one extra
row. That is, given a full column rank matrix A ∈ Zn×(n−k), we can deterministically
compute a lattice basis generator C ∈ Z(n−k)×n such that CA ∈ Z(n−k)×(n−k) is a basis
for A. We will discuss two approaches. The first approach is by iteratively applying our
lattice generator algorithm derived in Chapter 6. The second approach is by iteratively
applying the augmentation vector algorithm derived in Chapter 3 and then computing a
kernel of a matrix.

1.1 Cost model

In this section, we give definitions and assumptions regarding the cost model that we will
follow in this thesis.

We first recall that ω ∈ R is a feasible matrix multiplication exponent such that two
n × n matrices over field K can be multiplied with O(nω) operations in K. In this thesis,
we assume ω > 2.

Following von zur Gathen and Gerhard [2013, Section 8.3], cost estimates are given
using a function M(d) that bounds the number of bit operations required to multiply two

12

integers bounded in magnitude by 2d. The recent algorithm of [Harvey and van der Hoeven,
2021] allows for M(d) ∈ O(d log d).

Moreover, we assume that M holds the following assumptions:

(1) Superlinearity: M(a) +M(b) ≤ M(a+ b) for a, b ∈ Z≥1.
(2) Subquadratic: M(d) ∈ O(d2).
(3) Submultiplicativity: M(ab) ≤ M(a)M(b) for a, b ∈ Z≥1.
(4) Fast matrix implies fast integer: M(d) ∈ O(dω−1).

The first two assumptions are from von zur Gathen and Gerhard [2013, Definition 8.26].
The last two assumptions are commonly used such as in Storjohann [2005], Birmpilis et al.
[2020]. Assumption (4) simply stipulates that if fast matrix multiplication techniques are
used, then fast integer multiplication techniques should also be used.

In addition, following Storjohann [2000, Section 1.2], we use B(d) to bound the cost of
integer gcd-related computations with two integers bounded in magnitude by 2d such as
the extended euclidean algorithm. This means that B(d) = O(M(d) log d) if pseudo-linear
integer multiplication is used, or B(d) ∈ O(M(d)) if M(d) ∈ Ω(d1+ϵ) for some ϵ > 0. The
four assumptions given above for M also apply to B.

The motivation behind our cost model is that almost all of our algorithms are reduced
to a number of matrix multiplications with integer matrices that have sizes similar to the
size of the input matrix in the overall problem. For example, two n × n integer matrices
with entries bounded by 2d can be multiplied in O(nω M(log n+ d)) bit operations.

The following lemma follows from the assumptions above M and B cost functions. The
lemma will be used to simplify the cost estimate throughout the thesis.

Lemma 9. B(nd) ∈ O(nω−1 B(d)).

Proof. Since B is submultiplicative, we have B(nd) ≤ B(n)B(d). By the assumption that
fast matrix multiplication implies fast integer multiplication, we have B(n) ∈ O(nω−1). It
now follows that B(nd) ∈ O(nω−1 B(d)).

13

Chapter 2

Mathematical results

This chapter has three subsections. The first two subsections give background. Section 2.1
adapts from the literature some basic concepts related to lattices, primitive matrices, and
left kernel basis. Section 2.2 recalls two classical theorems: Hadamard’s inequality and
Cramer’s rule. Hadamard’s inequality is useful for determining a bound on the determinant
of a matrix. Cramer’s rule can be used to relate the solution of a linear system equation
to the determinant of matrices. We will use these two theorems to give the bound on the
outputted kernel basis of an input matrix with nullity one in our established algorithm.
So the outputted kernel basis can be applied to the 2-massager system solving algorithm
from [Birmpilis et al., 2019, Section 11].

Section 2.3 gives a new result. We establish, via a more general case, the sufficient
condition on the augmentation vector. Given a full column rank matrix A ∈ Zn×(n−1),
v ∈ Zn×1 is an augmentation vector for matrix A if L(

[
A v

]
) contains the last row of

I n. We show that if v ∈ Zn×1 is an augmentation vector for a full column rank matrix
A ∈ Zn×(n−1), then a left kernel basis C ∈ Z(n−1)×n of v has the property that CA is a
basis for A.

In the next Chapter, we present an algorithm to compute an augmentation vector
v ∈ Zn×1 for a given full column rank matrix A ∈ Zn×(n−1) efficiently.

2.1 Background on integer lattice

We begin with the definition of a left nullspace basis of a matrix over the field of rational
numbers Q.

14

Definition 10 (Left nullspace basis of a rational matrix). A left nullspace basis of an
A ∈ Qn×m of rank r is a matrix N ∈ Q(n−r)×n such that

(i) N has rank n− r, and

(ii) NA is the (n− r)×m zero matrix.

Property (ii) of Definition 10 is equivalent to the set of all Q-linear combinations of the
rows of N generating {v ∈ Q1×n | vA = 0}.

One way to define a kernel basis is by using the property of a matrix being primitive.
An important notion for us is that of a primitive integer matrix.

Definition 11 (Primitive matrix). A matrix A ∈ Zn×m is primitive if one of the following
conditions hold.

(i) (n > m) A has full column rank m and Im is a basis for A.

(ii) (n < m) A has full row rank n and In is a basis for Transpose(A).

(iii) (n = m) A is unimodular (that is, detA = ±1).

Combining the above two definitions, we can formally define the notion of a left kernel
basis of an integer matrix.

Definition 12 (Left kernel basis of an integer matrix). A left kernel basis of an A ∈ Zn×m

with rank of r is a matrix K ∈ Z(n−r)×n such that

(i) K has rank n− r,

(ii) KA is the (n− r)×m zero matrix, and

(iii) K is primitive.

We remark that a matrixK that satisfies only properties (i) and (ii) of Definition 12 is a
nullspace basis of A over Q: property (ii) ensures that the set of all Q-linear combinations
of the rows of K generates {v ∈ Q1×n | vA = 0 1×m}. The additional property (iii) in
Definition 12 ensures that K satisfies L(K) = {v ∈ Z1×n | vA = 0 1×m}.

The following example illustrates the difference between a left kernel over Q and a left
kernel basis over Z.

15

Example 13. Let

A =

 1
2
3

 ∈ Z3×1.

The matrix

N =

[
3 0 −1
2 11 −8

]
∈ Z2×3.

is a left kernel of A over Q but not a left kernel basis of A over Z. In particular, for
u =

[
1 7 −5

]
∈ Z1×3, we have uA = 01×3 but u ̸∈ L(N). Note that

u =
[
− 1

11
7
11

]
N .

The matrix

K =

[
1 1 −1
0 3 −2

]
∈ Z2×3

is a left kernel of A and is also primitive. Note that

u =
[
1 2

]
K .

Lemma 14. Let A ∈ Zn×m have full column rank. If B ∈ Zm×m is a basis for A, then
AB−1 is integral and primitive.

Proof. Since B is a basis for A, B is nonsingular and we have

UA =

 B
 (2.1)

for some unimodular matrix U ∈ Zn×n. Postmultiplying both sides of (2.1) by B−1 gives

UAB−1 =

 Im

 . (2.2)

16

Premultiplying both sides of equation (2.2) by U −1 gives

AB−1 = U −1

 Im

 . (2.3)

Since U is unimodular, U −1 is integral. The right side of equation (2.3) is integral. Hence,
AB−1 is integral. It follows from equation (2.2) that AB−1 is primitive.

The next lemma was given by Storjohann [2000, Lemma 5.9] but without proof. We
offer a proof here.

Lemma 15 (Pasting lemma). Let A ∈ Zn×m of rank r be given. If C ∈ Zr×n is such that
CA is a basis for A, and K ∈ Z(n−r)×n is a left kernel basis of A, then[

C
K

]
∈ Zn×n (2.4)

is unimodular.

Proof. SinceK is primitive, it follows from Definition 11.(ii) that there exists a unimodular
matrix U such that KU =

[
I n−r

]
. Let[

C
K

]
U =

[
V ∗

I n−r

]
(2.5)

and

U −1A =

[
A1

A2

]
, (2.6)

where A1 ∈ Zr×m. Multiplying the right hand side of (2.5) by that of (2.6) gives[
V ∗

I n−r

] [
A1

A2

]
=

[
CA

]
. (2.7)

We conclude from (2.7) that A2 is the zero matrix and then from (2.6) that A1 is a basis
for A. Since CA is also a basis for A, the matrix V must be unimodular. The result now
follows from (2.5).

17

2.2 Hadamard’s inequality and Cramer’s rule

The following two theorems are classical.

Theorem 16 (Hadamard’s inequality). Let A ∈ Rn×n, with row vectors f 1, . . . , f n, and
B ∈ R such that all entries of A are at most B in absolute value. Then

| detA| ≤ ||f 1|| . . . ||f n|| ≤ nn/2Bn

The proof of Hadamard’s inequality is covered in [von zur Gathen and Gerhard, 2013,
Theorem 16.6].

Theorem 17 (Cramer’s rule). Let A ∈ Fn×n be nonsingular and b ∈ Fn. Then the
coefficients of the unique solution y = (y1, . . . , yn)

T ∈ Fn of the linear system Ay = b are
given by

yi =
detAi

detA
,

where Ai ∈ Fn×n is the matrix A with the ith column replaced by b.

The proof of Cramer’s rule is covered in [von zur Gathen and Gerhard, 2013, Theorem
25.6].

2.3 Lattice generator via kernel basis

SupposeA ∈ Zn×(n−1) and v ∈ Zn×1 are such that
[
A v

]
is nonsingular. In this section,

we establish a sufficient condition on v to ensure that a left kernel basis C ∈ Z(n−1)×n of
v has the property that CA is a basis for A.

We rely on the following theorem that applies only to those nonsingular matrices A ∈
Zn×n for which there exists a unimodular decoupling matrix U ∈ Zn×n such that

UA =

[
∗1

∗2

]
.

Note that for such an A, we have L(A) =
{[
L(∗1) L(∗2)

]}
.

Theorem 18. Let A =
[
A1 A2

]
∈ Zn×n be nonsingular, where A1 ∈ Zn×m1 and

A2 ∈ Zn×m2. For any C 1 ∈ Zm1×n and C 2 ∈ Zm2×n, we have

18

(a)

[
C 1

C 2

] [
A1 A2

]
=

[
C 1A1

C2A2

]
∈ Zn×n, with

(b) C 1A1 a basis for A1, and

(c) C 2A2 a basis for A2

if and only if

(i)

[
C 1

C 2

]
∈ Zn×n is unimodular,

(ii) C 1 is a kernel basis for A2, and

(iii) C 2 is a kernel basis for A1.

Proof. (Only if:) Assume that (a), (b) and (c) hold. Since A =
[
A1 A2

]
is nonsingu-

lar, Ai has full column rank (i = 1, 2). From (b) and (c), we have that C iAi ∈ Zmi×mi

also has full column rank (i = 1, 2). It follows that C iAi is nonsingular (i = 1, 2).

Postmultiplying both sides of the equation in (a) by[
(C 1A1)

−1

(C 2A2)
−1

]

gives [
C 1

C 2

] [
A1 (C 1A1)

−1 A2 (C 2A2)
−1
]
=

[
Im1

Im2

]
. (2.8)

Since (C iAi) is a basis for Ai (i = 1, 2), it follows from Lemma 14 that

U :=
[
A1 (C 1A1)

−1 A2 (C 2A2)
−1
]

is an integer matrix. Therefore,

det

([
C 1

C 2

])
= ±1

and property (i) holds. It remains to show that (ii) and (iii) hold. Since U is an integer
matrix, it follows from (2.8) that C 1 satisfies the properties required by Definition 12 to

19

be a left kernel of A2. In particular, C 1 is primitive and C 1A2 = 0m1×m2 . Similarly, C 2

is a left kernel of A1.

(If:) Assume that (i), (ii) and (iii) hold. It follows from (ii) and (iii) that (a) holds. It
now follows from property (i) that

L
([

A1 A2

])
= L

([
C 1A1

C 2A2

])
.

Properties (b) and (c) now follow by noting that Ai and C iAi have the same column
dimension (i = 1, 2).

The following corollary identifies a particular class of matrices for which Theorem 18
applies.

Corollary 19. Let A =
[
A1 A2

]
∈ Zn×n be nonsingular, where A1 ∈ Zn×m1 and

A2 ∈ Zn×m2. If L(A) contains the last m2 rows of I n, then any left kernel basis C ∈ Zm1×n

of A2 has the property that CA1 is a basis for A1.

Proof. Since L(A) contains the last m2 rows of I n, there exists a unimodular matrix
U ∈ Zn×n such that

UA =

[
∗

Im2

]
.

Decompose U as

U =

[
C 1

C 2

]
,

where C 1 ∈ Zm1×n and C 2 ∈ Zm2×n. Then the equation in the property (a) of Theorem 18
holds, and from the unimodularity of U , it follows that C 1 is a left kernel basis for A2,
and C 2 is a left kernel basis for A1. We are thus exactly in the situation of Theorem 18,
and can conclude that C 1A1 is a basis for A1. Since any two left kernel bases of A2 are
left equivalent, we can replace C 1 with C in U and the matrix remains unimodular.

20

Chapter 3

Computational results

In this chapter, we present some computational results that we will need throughout the
rest of the thesis in order to deterministically compute an augmentation vector v ∈ Zn×1

for input matrix A ∈ Zn×(n−1) such that L(
[
A v

]
) contains the last row of I n.

Section 3.1 recalls some essential computational tools that we will need throughout the
rest of the thesis in order to establish the complexity bounds of our algorithms. Section 3.2
shows how to find a maximal nonsingular submatrix of any full column rank matrix. Sec-
tion 3.3 then shows how to compute a left kernel basis of a full column rank input matrix
A ∈ Zn×(n−1) after finding a maximal nonsingular submatrix of A. Section 3.4 gives an
algorithm to find an augmentation vector v ∈ Zn×1 such that L(

[
A v

]
) contains the

last row of I n with entries not much larger than those of input matrix A.

3.1 Computational tools

In this section, we present some essential computational tools related to deterministic
system solving.

The main computational tool we need is an algorithm for nonsingular linear system
solving. A deterministic algorithm has recently been given by Birmpilis et al. [2019, Sec-
tion 11], but was analyzed under a more restrictive cost model than we are using in this
thesis. We restate the result here.

Theorem 20 (System solving). There exists an algorithm that takes as input a nonsingular
matrix A ∈ Zn×n and a vector b ∈ Zn×1, and returns as output A−1b ∈ Qn×1, together

21

with the minimal e ∈ Z>0 such that eA−1b is integral. Let d = log n + log ||A||. If
log ||b|| ∈ O(nd), the running time of the algorithm is O(nω B(d)(log n)2) bit operations.

Proof. [Birmpilis et al., 2019, Section 11] gives an algorithm that computes an integer
vector x ∈ Zn×1 together with an f ∈ Z≥0 such that 2fA−1b can be recovered from x using
rational number reconstruction. The cost bound of [Birmpilis et al., 2019, Theorem 22] is

O(nω M(d)(log n+ loglog ||A||)(log n)). (3.1)

The cost model used in [Birmpilis et al., 2019] does not make the assumption that ω > 2
and M(d) ∈ O(dω−1). If we do make these assumptions, and we replace the subroutine in
[Birmpilis et al., 2019, Section 6] with the integer analogue of the algorithm supporting
[Gupta et al., 2012, Theorem 7], the loglog ||A|| term in (3.1) can be avoided, giving the
cost bound O(nω M(d)(log n)2) to recover x .

To recover A−1b from x requires rational number reconstruction. By [von zur Gathen
and Gerhard, 2013, Section 5.10], the cost of computing e and eA−1b is O(nB(nd)) bit
operations; this simplifies to O(nω B(d)) using the assumptions B(nd) ∈ O(B(n)B(d)) and
B(n) ∈ O(nω−1 B(d)).

The algorithm supporting Theorem 20 (System solving) was based on computing a
2-massager for the input matrix. Although originally defined for nonsingular matrices, the
notion of a 2-massager extends directly to matrices of full column rank.

Definition 21 (2-Smith form). Let A ∈ Zn×m have full column rank m. The 2-Smith form
of A is the matrix diag(2e1 , 2e2 , ..., 2em) with 2ei the largest power of two which divides the
invariant factor i of the Smith form of A over Z, 1 ≤ i ≤ m.

Definition 22 (2-massager). Let A ∈ Zn×m have full column rank m. A 2-massager for
A is a triple of matrices (P ,S ,M) from Zm×m such that,

• P is a permutation,

• S = diag(s1, . . . , sm) is the 2-Smith form of A,

• M is unit upper triangular, and

• APMS−1 is integral with Rem(APMS−1, 2) ∈ Z/(2)n×m having full column rank
over Z/(2).

22

(P ,S ,M) is a reduced 2-massager if entries in column i of M are from [0, . . . si − 1],
1 ≤ i ≤ n.

Example 23. A 2-massager for the matrix

A :=

92 27 99
−124 32 116
556 −42 −150
176 249 77
−8 195 −121

 ∈ Z5×3

is given by

P ,S ,M :=

 1
1

1

 ,

 1
4

16

 ,

 1 3 5
1 15

1

 .

The massaged matrix

B := APMS−1 =

27 45 107
32 53 111
−42 −69 −119
249 206 161
195 116 −53

has full column rank over Z/(2).

Birmpilis et al. [2019, Section 10] give an algorithm to compute a 2-massager of a
nonsingular matrix. The algorithm extends naturally to an n ×m matrix of full column
rank m.

Theorem 24 (2-massager computation). There exists an algorithm that takes as input a
full column rank A ∈ Zn×m, and returns as output a reduced 2-massager for A together with
the massaged matrix B := APMS−1. The cost of the algorithm is O(nmω−1M(d)(logm)2)
bit operations, where d = logm+ log ||A||.

Proof. Similar to the proof of Theorem 20 (System solving), if we replace the subroutine
in [Birmpilis et al., 2019, Section 6] with the integer analogue of the algorithm supporting
[Gupta et al., 2012, Theorem 7], then [Birmpilis et al., 2019, Theorem 21] establishes the
theorem in the case n = m, that is, for a square nonsingular m × m input matrix, a

23

2-massager can be computed in

O(mω M(d)(logm)2)

bit operations. The only required modifications now to handle the case of a full column rank
rectangular n×m input matrix is to incorporate blocking into steps 1–4 of the algorithm
supporting [Birmpilis et al., 2019, Theorem 19].

Step 1 computes an LQUP decomposition of an m×m matrix over Z/(2) at a cost of
O(nω) bit operations. In the rectangular case, this costs O(nmω−1) bit operations.

Step 2 computes a single nonsingular system solution of dimensionm. In the rectangular
case, step 2 can be accomplished by computing ⌈n/m⌉ such linear systems, thus replacing
the mω term in the cost estimate for the square case by nmω−1.

Steps 3 and 4 compute a triangular Smith form of a square matrix over the ring. In
the rectangular case, these steps are accomplished using the integer analogue of [Gupta
et al., 2012, Theorem 7] followed up by the triangularization of a matrix that, compared
to the square case, has row dimension now bounded by n. The cost increases similarly as
for step 2.

The LSP decomposition of Ibarra et al. [1982] will be used in finding a maximal non-
singular submatrix later.

Definition 25 (LSP decomposition). An LSP decomposition of a matrix A ∈ Zn×m is
a triple of matrices (L,S ,P), where L ∈ Zn×n is a lower triangular matrix with 1’s on
the main diagonal, S ∈ Zn×m is semi-upper triangular (i.e. deleting the zero rows of S
yields an upper triangular matrix whose entries on the main diagonal are nonzero), and
P ∈ Zn×n is a permutation matrix.

The following example comes from Jeannerod et al. [2013].

Example 26.

APT

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

=

L

1
∗ 1
∗ 1
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ 1

S

∗̄1 ∗ ∗ ∗ ∗

∗̄2 ∗ ∗ ∗
∗̄3 ∗ ∗

24

The matrix S reveals that the row rank profile of A is [1, 4, 5].

Recall that the row rank profile of a matrix A ∈ Zn×m of rank r is the lexicographically
minimal list of row indices [i1, i2, . . . , ir] such that the corresponding rows of A are linearly
independent. The rank profile corresponds to the pivot entries in the column echelon form.

Example 27. If A ∈ Z6×4 has column echelon form
1
∗
∗ 1
∗ ∗ 1
∗ ∗ ∗
∗ ∗ ∗ 1

 ∈ Q6×4,

then the row rank profile of A is [1, 3, 4, 6].

The following theorem is due to Ibarra et al. [1982, Theorem 3.2].

Theorem 28 (LSP decomposition solver). There is an algorithm to find an LSP decom-
position of any n × m matrix over field K, where m ≤ n. The cost is O(mω−1n) field
operation.

Storjohann [2000, Section 6.2] provided an algorithm to construct a kernel basis for a
matrix A ∈ Zn×m with rank(A) = r bounded by m. We will use this algorithm in the last
section.

Theorem 29 (Kernel of matrices). There exists an algorithm that takes input as a non-
zeros matrix A ∈ Zn×m with rank(A) = r bounded by m, and returns the output as a
kernel basis M ∈ Z(n−r)×n for A. The cost of the algorithm is O(nmω−1 log(2n/m)B(d))
word operations, where d = m log(m/2) + m log ||A||. The kernel basis M will satisfy
log ||M || ≤ (1 +m) logm+ 2m log ||A||.

One additional algorithm that we need is a fast solution to the vector extended gcd
problem [Storjohann, 2000, Corollary 6.5].

25

Algorithm 1: VectorGcdex(w , n)

Input : w ∈ Zn×1, n ∈ Z
Output : (e , g) ∈ (Z1×n,Z), satisfying

• ew = g, with g = gcd(w),

• ||e || ≤ ||w ||, and

• the number of nonzero entries in e is bounded by 1 + log2 ||w ||.

Runtime: O(nB(log ||w ||)) bit operations

Figure 3.1: Algorithm VectorGcdex

3.2 Finding a maximal nonsingular submatrix

In this section, we show how to deterministically find a maximal nonsingular submatrix of
a full column rank matrix A ∈ Zn×m by using Theorem 24 (2-massager computation) and
Theorem 28 (LSP decomposition solver).

Theorem 30 (Maximal nonsingular submatrix). A permutation matrix Q ∈ Zn×n for a
full column rank matrix A ∈ Zn×m such that

QA =

[
Ā
...

]
∈ Zn×m (3.2)

with Ā ∈ Zm×m nonsingular can be computed in O(nmω−1M(d)(logm)2) bit operations,
where d = logm+ log ||A||.

Proof. To find a suitable Q , compute a 2-massager (P ,M ,S) of A together with the
massaged matrix B = APMS−1. The massaged matrix B has full column rank modulo
2. Working modulo 2, use the LSP decomposition of Ibarra et al. [1982, Theorem 3.2] to
compute the row rank profile [i1, i2, . . . , in] of B over Z/(2). Since PMS−1 is nonsingular,
the submatrix of A comprised of rows i1, i2, . . . , in is also nonsingular. Define Q accord-
ingly. The claim cost bound follows from Theorem 24 (2-massager computation) and 28
(LSP decomposition).

26

Remark 31. Despite that we can find the maximal singular submatrix of A using the
massaged matrix B , the row rank profile between A and B may not be equivalent.

For example, let A =
[
2 1

]T
, we have

B = Rem(APMS−1, 2) = Rem

([
2
1

]
, 2

)
=

[
0
1

]
Therefore, the row rank profile of B is 2 while the row rank profile of A is 1.

3.3 Kernel basis of nullity one

In this section, we give a deterministic algorithm to compute a left kernel basis w ∈ Z1×n

of a full column rank input matrix A ∈ Zn×(n−1).

In this special case, where the nullity of A is one, the kernel basis w is unique (up
to sign) and can be computed using nonsingular linear system solving. If Q ∈ Zn×n is a
permutation such that

QA =

[
Ā
a

]
∈ Zn×(n−1) (3.3)

with Ā ∈ Z(n−1)×(n−1) nonsingular, then a left nullspace of QA over Q is[
aĀ

−1 −1
]
∈ Q1×n.

If e ∈ Z>0 is minimal such that eaĀ
−1

is integral, then

w = Q
[
eaĀ

−1 −e
]
∈ Z1×n (3.4)

is primitive and is thus a kernel basis of A (Definition 12).

Theorem 32 (Kernel of nullity one). A left kernel basis of w ∈ Z1×n of a full column
rank A ∈ Zn×(n−1) can be computed in O(nω B(d)(log n)2) bit operations, where d = log n+
log ||A||.

Proof. Firstly, compute the permutation matrix Q ∈ Zn×n for A ∈ Zn×(n−1) and return a
nonsingular submatrix Ā ∈ Z(n−1)×(n−1) of QA as in (3.3). Then, compute the minimal

e ∈ Z>0 such that eaĀ
−1

is integral, and compute eaĀ
−1

itself. In the end, return w as

27

in (3.4). The claimed cost bound follows from Theorems 30 (Maximal singular submatrix)
and 20 (System solving).

Corollary 33. The kernel basis produced by Theorem 32 (Kernel of nullity one) satisfies
log ||w || ∈ O(nd).

Proof. Let b := aĀ
−1
. Post-multiply both sides by Ā, we obtain bĀ = a .

By Theorem 17 (Cramer’s rule), we have |e| ≤ det
(
Ā
)
and

||eb|| ≤ || det
(
Ā
)
b|| ≤ maxi|| det Āi|| (3.5)

where Āi ∈ Z(n−1)×(n−1) is the matrix Ā with the ith row replaced by a . Since ||a ||, ||Ā|| ≤
||A||, by Theorem 16 (Hadamard’s inequality), we can compute

det Āi ≤ (n− 1)n−1/2||A||n−1 (3.6)

and
det Ā ≤ nn||A||n (3.7)

The bound now follows from (3.4-3.7).

3.4 Augmentation vector

In this section, we give a deterministic algorithm to find an augmentation vector v ∈ Zn×1

such that L(
[
A v

]
) contains the last row of I n with entries not much larger than those

of input matrix A ∈ Zn×(n−1).

We start with the definition of Hermite normal form over Z.

Definition 34 (Hermite normal form). A nonsingular matrix H ∈ Zn×n is said to be in
Hermite normal form if all the following conditions are satisfied:

• H is upper-triangular

• H i,i ≥ 1, for 1 ≤ i ≤ n

• 0 ≤ H i,j < H j,j, for all 1 ≤ i < j ≤ n

28

Example 35.
2 0 2 4

1 0 15
6 4

16

 ∈ Z4×4

is in Hermite normal form.

Storjohann [2005, Section 13] describes a Las Vegas randomized algorithm DetReduction

that takes as input a nonsingular integer input matrix and replaces the last column to ob-
tain a new matrix whose lattice contains the last row of I . In other words, the new matrix
has the same Hermite form H as the original matrix except with the last column equal to
that of the identity matrix of the same dimension.

H =

∗ ∗ ∗
∗ ∗
∗

1

Example 36. Consider the following input matrix

−66 −65 20 −90 30
55 5 −7 −21 62
68 66 16 −56 −79
13 −41 −62 −50 28
26 −36 −34 −8 −71

 ∈ Z5×5

with Hermite normal form
1 0 0 10 260246748

1 0 2 292062707
1 7 244095302

14 342954195
344319363

 .

29

Algorithm DetReduction produces the matrix
−66 −65 20 −90 3
55 5 −7 −21 46
68 66 16 −56 79
13 −41 −62 −50 −15
26 −36 −34 −8 2

with Hermite normal form

1 0 0 10
1 0 2

1 7
14

1

A detailed description of algorithm DetReduction was not offered in Storjohann [2005,

Chapter 6.1]; instead, a reference was given to a description of the polynomial analogue
of the problem. For completeness, we give the details here. In addition, Algorithm
DetReduction exploits the fact that the input matrix is nonsingular. Here, we adapt
the approach to obtain the following result. In the proof of the following result, we focus
mainly on showing how to avoid the requirement that the input matrix be nonsingular,
and how to avoid randomization by using the subroutines developed in previous sections.

Theorem 37 (Augmentation vector). There exists an algorithm that takes as input a full
column rank integer matrix A ∈ Zn×(n−1), and returns as output an integer vector v ∈ Zn×1

such that

1. L(
[
A v

]
) contains the last row of I n, and

2. ||v || ≤ n2||A||.

The cost of the algorithm is O(nω B(d)(log n)2) bit operations, where d = log n+ log ||A||.

Proof. Compute a kernel basis w ∈ Z1×n of A. Let P ∈ Zn×n be a permutation matrix
such that wP has the last entry of maximal magnitude. Then

(wP)(P−1A) =
[

w̄ wn

] Ā

a

 = 0 1×(n−1)

30

where |wn| = ||w || and Ā ∈ Z(n−1)×(n−1) is nonsingular since wn ̸= 0. Going forward, we
will assume, without loss of generality, that P = I n.

Use Algorithm 1 (VectorGcdex) to compute a vector b ∈ Zn×1 such that

w b =
[

w̄ wn

] b̄

bn

 = 1.

Then

[
w̄ wn

] Ā b̄

a bn

 =
[

1
]
. (3.8)

It follows from (3.8) that L(
[
A b

]
) contains the last row of I n, and thus b is candidate

for our solution vector. However, the entries of b can be too large.

We now show how to adjust b to obtain a reduced solution v . Postmultiplying both
sides of equation (3.8) by a unimodular matrix[

I n−1 −ȳ
1

]
∈ Zn×n

gives

[
w̄ wn

] Ā b̄ − Āȳ

a bn − aȳ

 =
[

1
]
. (3.9)

Let y ∈ Q(n−1)×1 be the solution to the linear system Āy = b̄. Let ȳ ∈ Z(n−1)×n be the
integral part of y , that is, ȳ is the unique integer vector such that ||y − ȳ || < 1. Then
||̄b − Āȳ || ≤ n||A||. We choose our solution vector to be v := b − Aȳ . It remains to
show that the last entry vn = bn − aȳ of v has magnitude bounded by n2||A||. From
equation (3.9), we have w̄ v̄ + wn vn = 1. It follows that

|vn| =
∥∥∥∥ w̄wn

v̄ − 1

wn

∥∥∥∥ ≤ ∥∥∥∥ w̄wn

v̄

∥∥∥∥+ ∣∣∣∣ 1wn

∣∣∣∣ .

31

Since w̄ has column dimension n− 1, ||w̄ || ≤ |wn| = ||w ||, and ||v̄ || ≤ n||A||, we have

|vn| ≤ (n− 1)||v̄ ||+ 1 ≤ (n− 1)n||A||+ 1 ≤ n2||A||.

Corollary 33 gives the bound log ||w || ∈ O(nd). From the specification of Algorithm 1
(VectorGcdex), we have ||b|| ≤ ||w ||, so log ||b|| ∈ O(nd) also. The claimed running
time bound now follows from Theorem 32 (Kernel of nullity one), the running time of
Algorithm 1 (VectorGcdex), and Theorem 20 (System solving).

Example 38. The input matrix

A =

231 303 −118 16
344 202 −389 163
185 190 −80 136
263 189 196 66
259 157 131 136

 ∈ Z5×4

has left kernel

w =
[
−3330033 825718 4373666 7018431 −8377548

]
.

VectorGcdex computes a b ∈ Z5×1 such that

[
A b

]
=

 Ā b̄

a b5

 =

231 303 −118 16 −2022969
344 202 −389 163 0
185 190 −80 136 2
263 189 196 66 0
259 157 131 136 804121

with L(

[
A b

]
) containing the last row of I 5. Decompose y = Ā

−1
b̄ = ȳ + r where

ȳ ∈ Z4×1 and r ∈ Q4×1 with ||r || < 1:

y =

219432205277
94247415

−10934282147281
1319463810

896384538211
527785524

709438547431
75397932

= ȳ + r =

2328

−8286

1698

9409

+

24223157
94247415

−1205017621
1319463810

204718459
527785524

19405243
75397932

.

32

Our augmentation vector is given by

v = b −Aȳ =

−259
−205
−122
−12
9

 .

33

Chapter 4

Sparse kernel basis of a vector

In this chapter, we present a divide-and-conquer approach to compute a sparse left kernel
basis of any non-zero vectors and demonstrate the properties of the output basis. The
output basis is sparse, with the number of its nonzero entries bounded by O(n log n). We
derive an explicit upper bound on the number of non-zero entries in the output basis, as
well as an explicit bound on the magnitude of entries.

The following example illustrates the sparsity of an output basis produced by our
algorithm with a 16× 1 non-zero input vector.

Example 39. Given an input vector v ∈ Z16×1 with all non-zero entries, our algorithm
will output a sparse kernel basis K ∈ Z15×16 of v that has the shape as

K =

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗ ∗
∗ ∗

∗ ∗

∈ Z15×16.

Figure 4.1: Example sparse kernel basis

34

The algorithm we give is closely based on a more general algorithm [Storjohann, 2000,
Chapter 6.2] that computes a left kernel basis for an n×m integer matrix. The variation
we give here for the special case m = 1 is simpler and allows us to obtain a tighter explicit
bound on the number of nonzero entries in the kernel.

Algorithm 2: SparseKernelBasis(v , n)

Input : v ∈ Zn×1 with all entries nonzero, n ∈ Z
Output : K ∈ Z(n−1)×n, a left kernel basis of v satisfying

• ||K || ≤ ||v ||2, and

• the number of nonzero entries in K is bounded by n(1 + log2 n).

Runtime: O(nB(log ||v ||) log n) bit operations
1 if n = 1 then
2 return the 0× 1 matrix

3 n1 := ⌊n/2⌋
4 n2 := n− n1

5 Decompose v =

[
v 1

v 2

]
where v 1 ∈ Zn1×1 and v 2 ∈ Zn2×1

6 K 1 := SparseKernelBasis(v 1, n1)
7 K 2 := SparseKernelBasis(v 2, n2)
8 e1, g1 := VectorGcdex(v 1, n1)
9 e2, g2 := VectorGcdex(v 2, n2)

10 g := gcd(g1, g2)

11 return

−(g2/g) e1 (g1/g) e2

K 1

K 2

Figure 4.2: Algorithm SparseKernelBasis

We will prove the correctness of Algorithm SparseKernelBasis using three lemmas.
The first lemma shows that the output is indeed a kernel basis. The second lemma es-

35

tablishes that the output satisfies the two stated conditions. The third lemma gives an
analysis of the running time.

Lemma 40. SparseKernelBasis outputs a kernel basis for v .

Proof. The algorithm uses a divide-and-conquer approach. The output of the base case
(n = 1) is correct since v ∈ Z1×1 is nonzero by assumption.

For the recursive case (n > 1), we have subproblems of size n1 and n2, with n = n1+n2.
By Lemma 15 (Pasting lemma), the matrix

U i =

e i

K i

 ∈ Zni×ni

is unimodular (i = 1, 2). The matrix U := diag(U 1,U 2) ∈ Zn×n is thus unimodular, and
by construction we have

U
U 1

U 2

v
v 1

v 2

=
c
g1

g2

∈ Zn×1, (4.1)

where c contains only two nonzero entries, g1 at index 1 and g2 at index n1 + 1.

Note that the vector
[
−g2/g g1/g

]
∈ Z1×2 is primitive and thus can be extended to

a unimodular matrix [
∗1 ∗2
−g2/g g1/g

]
∈ Z2×2

that satisfies [
∗1 ∗2
−g2/g g1/g

] [
g1
g2

]
=

[
g
]
.

36

Let E be equal to I n except with principal (n1 + 1)× (n1 + 1) submatrix equals to
∗1 ∗2

1
. . .

1
−g2/g g1/g

 ∈ Z(n1+1)×(n1+1).

Then E is unimodular with

E

∗1 ∗2
. . .

1
−g2/g g1/g

. . .

1

c
g1

g2

=
c̄
g
 (4.2)

By (4.1) and (4.2), (EU)v = c̄. Since the last n − 1 entries of c̄ are zeros, and EU is
unimodular, the last n− 1 rows of EU is a kernel basis of v . The algorithm outputs the
last n− 1 rows of EU , except with row 1 and row n1 + 1 interchanged.

Lemma 41. The output ||K || of SparseKernelBasis satisfies:

(i) ||K || ≤ ||v ||2, and

(ii) the number of nonzero entries in K is bounded by n(1 + log2 n).

Proof. The algorithm splits the problem into two subproblems with input v 1 ∈ Z⌈n/2⌉×1,
and v 2 ∈ Z⌊n/2⌋×1. The kernel basis K for v is comprised of the kernel basis K i of v i

(i = 1, 2), and one extra row

e :=
[
−(g2/g) e1 (g1/g) e2

]
∈ Z1×n,

which we focus on to establish properties (i) and (ii).

First, consider property (i). Since gi = gcd(v i), we have |gi/g| ≤ ||v || (i = 1, 2).
According to the output specification of Algorithm 1 (VectorGcdex), we have ||e i|| ≤
||v i|| ≤ ||v || (i = 1, 2). It follows that ||e || ≤ ||v ||2. Induction on n (base cases n = 1, 2)
now shows that property (i) holds.

37

Now consider property (ii). Since the extra row e has at most n nonzero entries, an
upper bound on the number of nonzero entries in K satisfies the recurrence

T (n) = T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+ n, T (1) = 0.

From Sloane and Inc. [2020], we obtain that

T (n) = n(⌊log2 n⌋+ 3)− 2⌈log2 n⌉+1.

Dropping the floor and ceiling and simplifying yields the claimed upper bound.

Lemma 42. The running time of SparseKernelBasis is bounded by O(nB(log ||v ||) log n)
bit operations.

Proof. The nonrecursive work is dominated by the calls to Algorithm 1 (VectorGcdex)
which has cost O(nB(log ||v ||)). The running time of the algorithm thus satisfies the
recurrence

T (n) = T
(⌊n

2

⌋)
+ T

(⌈n
2

⌉)
+O(nB(log ||v ||)),

which solves to the running time bound stated in the lemma.

Theorem 43 (Sparse kernel basis of vectors). There exists an algorithm that takes as input
a nonzero vector v ∈ Zn×1, and returns as output a left kernel basis K ∈ Z(n−1)×n for v .
The cost of the algorithm is O(nB(log ||v ||) log n) bit operations. The output will satisfy
||K || ≤ ||v ||2. The number of nonzero entries in K will be bounded by n(1 + log2 n).

Proof. Suppose v has m nonzero entries. Let P be an n×n permutation matrix such that

Pv =

 v̄

 ∈ Zn×1

with all entries in v̄ ∈ Zm×1 nonzero. Use Algorithm SparseKernel-Basis to compute a
kernel basis K̄ for v̄ . Then [

K̄
I n−m

]
P

is a kernel basis for v . The result now follows from Lemmas 40–42.

38

Chapter 5

Kernel basis of a vector via Hermite
normal form

In Chapter 4 (Sparse kernel basis of a vector), we show how to compute a sparse left kernel
basis of a non-zero column vector using a divide-and-conquer approach.

In this chapter, we provide a different approach to compute a left kernel basis of a
non-zero vector via Hermite norm form. The output basis is no longer sparse, and the
complexity of the method is a factor of n higher than the previous approach, but the
magnitude bound on the output basis is smaller than that of the sparse kernel basis.

The idea of our approach is as follows. Decompose our input vector v ∈ Zn×1 as[
v1
v̄

]
∈ Zn×1,

where v̄ ∈ Z(n−1)×1 is the subvector comprised of the last n− 1 entries of v . Let

A =

[
v1
v̄ I n−1

]
∈ Zn×n. (5.1)

Then, we compute matrices H ,U ∈ Zn×n such that UA = H , where H is the Hermite
normal form of A and U ∈ Zn×n is a unimodular matrix.
We decompose H and U as

H =

[
∗ ∗

H̄

]
∈ Zn×n (5.2)

39

and

U =

[
∗ ∗
K 1 H̄

]
∈ Zn×n (5.3)

where K 1 ∈ Z(n−1)×1 and H̄ ∈ Z(n−1)×(n−1).
Then K =

[
K 1 H̄

]
∈ Z(n−1)×n is a left kernel of v .

Section 5.1 applies the Hermite normal form algorithm from Storjohann and Labahn
[1996, Theorem 5] to compute the Hermite normal form (5.2) of the specially constructed
matrix (5.1). Section 5.2 presents the algorithm to compute a left kernel basis of a non-zero
vector by using the method described in the former section and shows the complexity of
the algorithm and the magnitude bound of the output basis.

5.1 Special Hermite normal form

Let v =
[
v1 v2 v3 . . . vn

]T ∈ Zn×1 with v1 ̸= 0. In this section, we show how to
compute the Hermite normal form of the structured matrix

A =

v1
v2 1
v3 1
...

. . .

vn 1

 ∈ Zn×n. (5.4)

Storjohann and Labahn [1996, Theorem 5] has given a deterministic algorithm to pro-
duce the Hermite normal form of a full column rank matrix A ∈ Zn×m in
O(mω−1n log(2n/m)B(m logm||A||)) bit operations. The term inside the B function is the
bound of log detA by Theorem 16 (Hadamard’s inequality).

We notice that, in our constructed matrix A (5.4), we have

detA = v1 ≤ ||v || (5.5)

Since each step of computation in Storjohann and Labahn [1996, Theorem 5] has modulo
detA, it follows from (5.5) that the term inside the B function for the given input (5.4)
can be replaced by log ||v ||. Here is the algorithm:

40

Theorem 44 (Special Hermite computation). There exists a deterministic algorithm that
takes as input v ∈ Zn×1, and returns as output a H ∈ Zn×n such that H is the Hermite
normal form of (5.4). The cost of the algorithm is O(nω B(log ||v ||)) bit operations.

We remark that the algorithm does not fully exploit the shape of our specially con-
structed matrix (5.4) but the cost of the Hermite form computation does not dominate the
cost in our application.

5.2 Kernel basis of a vector via Hermite normal form

Let v ∈ Zn×1 where v1 ̸= 0 be given. In this section, we give an algorithm to compute
a left kernel basis K ∈ Z(n−1)×n for v by using the Hermite normal form algorithm in
Theorem 44 (Special Hermite computation).

Let v =
[
v1 v2 v3 . . . vn

]T ∈ Zn×1 with v1 ̸= 0. We have

U

v1
v2 1
...

. . .

vn 1

 =

H
h1 ∗ . . . ∗

h2 . . . ∗
. . .

...
hn

 (5.6)

with unimodular matrix U ∈ Zn×n and the right hand side in Hermite normal form. We
can decompose H as:

H =

[
∗ ∗

H̄

]
where H̄ ∈ Z(n−1)×(n−1)

Notice that H 2..n,1 = 0 (n−1)×1 and by equation (5.6), we have U 2..n,2..n v = 0 (n−1)×1.
Since U is a unimodular matrix, U 2..n,2..n is a kernel basis of v . Therefore, we don’t need
to compute all of U . We only need to compute U 2..n,2..n.

Decompose U as:

U =

[
∗ ∗
K 1 K 2

]

41

where K 1 ∈ Z(n−1)×1 and K 2 ∈ Z(n−1)×(n−1). In fact K 2 = H̄ by equation (5.6), and we
only need to construct the column K 1.

Algorithm 3: KernelViaHermite(v , n)

Input : v ∈ Zn×1, n ∈ Z where v1 ̸= 0
Output : K ∈ Z(n−1)×n is a kernel basis of v where ||K || ≤ ||v ||

1 v̄ := v 2,...,n;

2 Compute Hermite basis: H :=

[
∗ ∗

H̄

]
of

[
v 1

v̄ I n−1

]
where

H̄ ∈ Z(n−1)×(n−1);

3 return
[
−H̄ v̄/v1 H̄

]
Figure 5.1: Algorithm KernelViaHermite

Lemma 45. Algorithm KernelViaHermite is correct.

Proof. Decompose v as [
v1
v̄

]
∈ Zn×1,

where v̄ ∈ Z(n−1)×1 is the subvector comprised of the last n− 1 entries of v . Let

A =

[
v1
v̄ I n−1

]
∈ Zn×n. (5.7)

Let H ∈ Zn×n be the Hermite form of A and UA = H , where U ∈ Zn×n is a unimodular
matrix. Decompose H and U as

H =

[
∗ ∗

H̄

]
∈ Zn×n (5.8)

U =

[
∗ ∗
K 1 H̄

]
∈ Zn×n (5.9)

where K 1 ∈ Z(n−1)×1 and H̄ ∈ Z(n−1)×(n−1).

Then K =
[
K 1 H̄

]
∈ Z(n−1)×n is a left kernel of v .

42

H̄ can be obtained from the corresponding positions of the Hermite matrix H as in
equation (5.8). K 1 can be obtained by using the formula:

K 1 =
−H̄ v̄

v1
(5.10)

Since H 2..n,1 = 0 (n−1)×1 and for 2 ≤ i ≤ n, H i,1 = U i,1A1,1 + U i,2..nA2..n,1 = U i,1v1 +
U i,2..nv̄ , we have K 1v1 + H̄ v̄ = 0 (n−1)×1.

Lemma 46. Algorithm KernelViaHermite runs in time O(nω B(log ||v ||)) bit operations.

Proof. H̄ can be computed in O(nω B(log ||v ||)) bit operations as in Theorem 44 (Special
Hermite computation). To compute K 1, we have a dot product between a (n−1)× (n−1)
matrix and a (n − 1) × 1 vector. This gives us O(n2M(log ||v ||)) bit operations. Hence,
the total cost is O(nω B(log ||v ||)) bit operations.

The remainder of this section is devoted to establishing the following result.

Theorem 47 (Magnitude bound). The output kernel K of Algorithm KernelViaHermite

satisfies ||K || ≤ ||v ||.

Since K =
[
K 1 H̄

]
, we will firstly show ||H̄ || ≤ ||v || and then show ||K 1|| ≤ ||v ||.

We will establish a sequence of lemmas to prove Theorem 47. We begin with the
following remark.

Remark 48.
Initial matrix
1 3 6 0 2

5 4 0 1
7 0 2

1 1
3

swap col: 3,4
swap row: 3,4
swap col: 2,3
swap row: 2,3−−−−−−−−→

final matrix
1 0 3 6 2

1 0 0 1
5 4 1

7 2
3

 (5.11)

Denote the number of diagonal entries of a Hermite form matrix H ∈ Zn×n that are
> 1 by k where k ∈ [0, n]. The number of 1 in the diagonal entries of H is n− k.
The Hermite form matrix H can be arranged by row and column permutations as in equa-
tion (5.11) such that the first (n− k) diagonal entries are 1 and the last k diagonal entries
are > 1.

43

Lemma 49. We have h1h2 · · ·hn = |v1|, where h1, . . . , hn are the diagonal entries of the
Hermite form H .

Proof. Because H is unimodularly left equivalent to A, we have detH = | detA|. The
lemma now follows from the fact in equation (5.7) that detA = v1 and detH = h1h2 · · ·hn.

With equation (5.8) and Lemma 49, we have ||H̄ || ≤ |v1| ≤ ||v ||. Therefore, H̄ ≤ ||v ||
is proved. Next, we will focus on proving K 1 ≤ ||v ||. We will firstly establish an inequality
for ||K 1||:

Denote ki for 2 ≤ i ≤ n as the ith entries of K 1.

From equation (5.10), it follows that

ki = −(
n∑

j=i

H i,jvj)/v1

|ki| = |
n∑

j=i

H i,jvj/v1| = |
1

v1

n∑
j=i

H i,jvj|

||K 1|| =
1

|v1|
max

i
|

n∑
j=i

H i,jvj| (5.12)

We now establish a bound for the right-hand side of inequality (5.10) using a sequence of
lemmas.

Without loss of generality, we can assume that the first (n− k) diagonal entries of the
Hermite matrix H in equation (5.8) are 1 and the last k diagonal entries are > 1.

Lemma 50. For 1 ≤ i ≤ n, we have hi ≤ |v1|
2k−1 where k ∈ [0, n] is the number of diagonal

entries that are > 1.

Proof. Since the first n− k diagonal entries = 1, with Lemma 49,

|v1| =
n∏

i=1

hi =

(
n−k∏
i=1

1

)(
n∏

i=n−k+1

hi

)
=

n∏
i=n−k+1

hi

44

Since hi > 1 and hi must be integer, we have hi ≥ 2. In addition, there are k such hi which
implies the inequality:

|v1| ≥ 2k−1hi

hi ≤
|v1|
2k−1

Therefore, hi ≤ |v1|
2k−1 and the statement is proved.

Lemma 51. maxi(
∑

j H i,j) ≤ |v1|

Proof. By the definition of Hermite form, we have H i,j < H i,i = hi.
Without loss of generality, let v1 > 0.

If k = 0 (equivalent to v1 = 1), the Hermite matrix H would be an identity matrix.
Therefore, maxi(

∑
j H ij) = 1 = v1. Next, we will prove the inequality when v1 > 1 (equiv-

alent to 1 ≤ k ≤ n).

In the following, with Lemma 50, we will firstly establish an inequality

n∑
j=1

H i,j ≤ k
v1
2k−1

− k + 1 (5.13)

by illustrating two cases in terms of the row i. Then we will show the right-hand side of
the equation (5.13) ≤ v1.

As in Remark 48, the diagonal entries in the first n − k rows are 1 and the diagonal
entries in the last k rows are > 1. By the definition of the Row Hermite normal form, each
diagonal entry has the largest value in its column. The two different cases can be defined
as hi = 1 and hi > 1.

1 ∗ ∗ ∗ ← case 1: hi = 1
1 ∗ ∗ ∗

. . . ∗ ∗ ∗
hn−k+1 ∗ ∗ ← case 2: hi > 1

. . . ∗
hn

45

Case 1: hi = 1:

For j ∈ [i + 1, n − k], H i,j = 0 and for j ∈ [n − k + 1, n], 0 ≤ H ij ≤ hj − 1, we can
establish the following equation:

n∑
j=1

H i,j = 1 +
n∑

j=n−k+1

(H i,j − 1)

≤ 1 +
n∑

j=n−k+1

(hj − 1)

≤ 1 + k
(v1
2k−1

− 1
)

≤ k
v1
2k−1

− k + 1

Case 2: hi > 1:

For j ∈ [i+ 1, n], H i,j ≥ 0, we can establish the following equation:

n∑
j=1

H i,j = hi +
n∑

j=i+1

H i,j

≤ hi +
n∑

j=n−k+2

H i,j

≤ hi +
n∑

j=n−k+2

(hj − 1)

≤ v1
2k−1

+ (k − 1)
(v1
2k−1

− 1
)

≤ k
v1
2k−1

− k + 1

We now show that
k

v1
2k−1

− k + 1 ≤ v1 (5.14)

where k ∈ [1, n]. We will prove Inequality (5.14) by using derivative of f(x) = x v1
2x−1 −x+1

and show that f(x) is a decreasing function. Then, we can derive that f(x) ≤ f(1) = v1:

46

Let f(x) = x(v1
2x−1)− x+ 1

df

dx
=

d

dx
(x)
(v1
2x−1

)
+

d

dx

(v1
2x−1

)
x

=
v1
2x−1

+ (−2−x+1v1 ln 2)x

=
v1(1− ln 2)x

2x−1
− 1

Since v1 > 0 and (1 − ln 2) < 0, df
dx

< 0 when x ∈ [1, n] and f(x) is decreasing when
x ∈ [1, n].

f(k) ≤ f(1) for k ∈ [1, n]

n∑
j=1

H i,j ≤ f(k) ≤ f(1) = v1 − 1 + 1 = v1

Hence, we have proved that maxi(
∑

j H i,j) ≤ |v1|.

Proof. (Of Theorem 47)

H̄ ≤ ||v || has been proved after Lemma 49.

We now prove K 1 ≤ ||v ||:
By Lemma 51 and Equation (5.10),

||K 1|| =
1

|v1|
max

i
|

n∑
j=i

H i,jvj|

≤ 1

|v1|
max

i
|

n∑
j=i

H i,j| · ||v ||

≤ 1

|v1|
|v1| · ||v ||

≤ ||v ||

Since ||K 1|| ≤ ||v ||, ||H̄ || ≤ ||v || and K =
[
K 1 H̄

]
, ||K || ≤ ||v ||.

Theorem 52 (Kernel basis of vectors via Hermite). There exists an algorithm that takes
as input a nonzero vector v ∈ Zn×1, and returns as output a left kernel basis K ∈ Z(n−1)×n

for v . The cost of the algorithm is O(nω B(log ||v ||)) bit operations. The output will satisfy
||K || ≤ ||v ||.

47

Proof. Suppose v has m nonzero entries. Let P be an n×n permutation matrix such that

Pv =

 v̄

 ∈ Zn×1

with all entries in v̄ ∈ Zm×1 nonzero. Use Algorithm KernelViaHermite to compute a
kernel basis K̄ for v̄ . Then [

K̄
I n−m

]
P

is a kernel basis for v . The result now follows from Lemmas 45–46 and Theorem 47
(Magnitude bound).

48

Chapter 6

Lattice generator

In this chapter, we introduce our two main deterministic algorithms to compute a lattice
basis generator C ∈ Z(n−1)×n for a given full column rank matrix A ∈ Zn×(n−1) using two
different methods to compute a kernel basis of a vector: sparse kernel basis and kernel
basis of a vector via Hermite normal form.

Both our algorithms share the same idea but are different in the last step that computing
a left kernel basis of a vector. We now give an outline of our approaches to compute C .

Our idea is to find a vector v ∈ Zn×1 for the input A ∈ Zn×(n−1) such that the
augmented matrix [

A v
]
∈ Zn×n (6.1)

is nonsingular and L(
[
A v

]
) contains the last row of I n. Then we compute C ∈

Z(n−1)×n to be a left kernel basis of v such that CA is a basis for A. In summary, the
idea has three main computational steps:

1. Compute the left kernel basis w ∈ Z1×n of A by Theorem 32 (Kernel of nullity one).

2. Compute an augmentation vector v ∈ Zn×1 from A and w by Theorem 37 (Aug-
mentation vector).

3. Compute a left kernel basis C ∈ Z(n−1)×n of v by Theorem 43 (Sparse kernel basis
of vectors) or Theorem 52 (Kernel basis of vectors via Hermite).

Section 6.1 shows how to compute a lattice basis generator C ∈ Z(n−1)×n for a given
full column rank matrix A ∈ Zn×(n−1) by Theorem 43 (Sparse kernel basis of vectors) and

49

also shows that ||C || ≤ n4||A||2 and that C will have at most n(1+log2 n) nonzero entries,
independent of ||A||.

Section 6.2 shows how to compute a lattice basis generator C ∈ Z(n−1)×n for a given full
column rank matrix A ∈ Zn×(n−1) by Theorem 52 (Kernel basis of vectors via Hermite)
and also show that ||C || ≤ n2||A||. Compared to the returned basis generator by the
previous approach, the magnitude bound of C is smaller but is no longer guaranteed to
be sparse.

6.1 Sparse lattice generator

In this section, we present a deterministic algorithm to compute a lattice basis generator
C ∈ Z(n−1)×n for a matrix A ∈ Zn×(n−1) via sparse kernel basis method.

Theorem 53 (Sparse Lattice generator). There exists an algorithm that takes as input a
full column rank A ∈ Zn×(n−1), and returns as output a C ∈ Z(n−1)×n such that CA is
a basis for A. The output will satisfy ||C || ≤ n4||A||2 and the number of nonzero entries
in C will be bounded by n(1 + log2 n). The cost of the algorithm is O(nω B(d)(log n)2) bit
operations, where d = log n+ log ||A||.

Proof. Use the algorithm supporting Theorem 37 (Augmentation vector) to compute a
v ∈ Zn×1 such that L(

[
A v

]
) contains the last row of I n. Use the algorithm supporting

Theorem 43 (Sparse kernel basis) to compute a left kernel C of v . Return C . Correctness
follows from Corollary 19.

By Theorem 37, v satisfies ||v || ≤ n2||A||. The claimed bound for ||C || and the bound
on the number of nonzero entries in C follow from Theorem 43. The runtime bound also
follows from Theorems 37 and 43.

To the best of our knowledge, we are not aware that the existence of such a C with only
O(n log n) nonzero entries was previously known. The sparsity of C can be useful in some
situations. Suppose, in addition to the full column rank input matrix A ∈ Zn×(n−1), we
have additional linearly dependent columns Ā ∈ Zn×m. If C ∈ Z(n−1)×n is such that CA
is a basis for A, then a basis for the rank n−1 augmented matrix

[
A Ā

]
∈ Zn×((n−1)+m)

is given by C
[
A Ā

]
. The additional cost to compute CĀ is only O(nmM(d) log n) bit

operations, where M is a cost function for integer multiplication, and d = log n+ log ||Ā||.

50

6.2 Hermite lattice generator

In this section, we present a deterministic algorithm to compute a lattice basis for a matrix
A ∈ Zn×(n−1) via Hermite normal form method.

Theorem 54 (Hermite lattice generator). There exists an algorithm that takes as input
a full column rank A ∈ Zn×(n−1), and returns as output a C ∈ Z(n−1)×n such that CA
is a basis for A. The output will satisfy ||C || ≤ n2||A||. The cost of the algorithm is
O(nω B(d)(log n)2) bit operations, where d = log n+ log ||A||.

Proof. Use the algorithm supporting Theorem 37 (Augmentation vector) to compute a
v ∈ Zn×1 such that L(

[
A v

]
) contains the last row of I n. Use the algorithm supporting

Theorem 52 (Kernel basis via Hermite) to compute a left kernel C of v . Return C .
Correctness follows from Corollary 19.

By Theorem 37, v satisfies ||v || ≤ n2||A||. The claimed bound for ||C || follows from
Theorem 52. The runtime bound also follows from Theorems 37 and 52.

51

Chapter 7

Extensions for the case: (r + k)× r

Given a full column rank A ∈ Zn×(n−1), we have given two deterministic algorithms that
produces a C ∈ Z(n−1)×n such that CA is a basis for A. Note that any such C must have
at least n− 1 nonzero entries, otherwise it would be rank deficient. We show that the C
produced by our algorithm has various properties in terms of each method.

A natural direction for further research is to extend the approach to a matrix A ∈
Zn×(n−k) of full column rank n − k. In this chapter, we show two methods to extend the
two deterministic approaches to the general case.

Using the idea in the first part of the proof of Theorem 32 (Kernel of nullity one), we
may firstly assume, up to permuting the rows of A, that we can write A as

A =

Ā
a1
...
ak

 ∈ Zn×(n−k) (7.1)

where Ā ∈ Z(n−k)×(n−k) is nonsingular.

Section 7.1 presents an approach to compute a lattice basis generator C ∈ Z(n−k)×n

for a given full column rank matrix A ∈ Zn×(n−k) by iteratively applying one of our lattice
generator algorithms between Theorem 53 (Sparse Lattice generator) and 54 (Hermite
lattice generator).

Section 7.2 shows how to apply Theorem 37 (Augmentation vector) iteratively and then
use Theorem 29 (Kernel of matrices) to obtain the general lattice basis generator.

52

7.1 Method 1: Kernel of a vector

Then k applications of the algorithm supporting Theorem 53 (Sparse Lattice generator)
can be used to produce a C ∈ Z(n−k)×n such that CA ∈ Z(n−k)×(n−k) is a basis for
A ∈ Zn×(n−k) from (7.1).

Initialize S 0 = Ā. For i = 1, 2, . . . , k in succession, let

S̄ i :=

 S i−1

a i

and use Theorem 53 to find a C̄ i such that S i := C̄ iS̄ i is a basis for S̄ i. To combine the
C̄ i, set

C i =

[
C̄ i

I k−i

]
∈ Z(n−i)×(n−i+1)

for 1 ≤ i ≤ k. The final lattice basis generator is then given by

C = C kC k−1 . . .C 1.

If k = O(1), then the C produced will still satisfy log ||C || ∈ O(log n + log ||A||), but is
no longer guaranteed to be sparse.

7.2 Method 2: Kernel of a matrix

From (7.1), we initialize

S 1 =

 Ā

a1

 ∈ Z(r+1)×r.

Then we compute b1 ∈ Z(r+1)×1 such that the Hermite normal form of
[
S 1 b1

]
has

the last corner entry as 1 by using DetReduction on the matrix S 1 ∈ Z(r+1)×r.

53

Next, we let

S 2 =

 S 1 b1

a2

 ∈ Z(r+2)×(r+1)

where S 1 is defined and b1 is obtained in the previous step.

Again, we compute b2 ∈ Z(r+2)×1 such that the Hermite norm form of
[
S 2 b2

]
has

the last corner entry as 1 by using DetReduction on the matrix S 2 ∈ Z(r+2)×(r+1).

After iterating the aforementioned process k times, we obtain b i ∈ Z(r+i)×1 for i = 1..k
such that the Hermite norm form of

[
S i b i

]
has the last corner entry as 1 where

S i =

 S i−1 b i−1

a i

 ∈ Z(r+i)×(r+i−1)

We can construct a non-zeros matrix B ∈ Z(r+k)×k where

B =
[
b1 b2 . . . bk

]
=

∗ ∗ . . . ∗
... ∗ . . . ∗
∗ ∗ . . . ∗
∗ . . . ∗

. . . ∗
∗

We compute a kernel C ∈ Zr×(r+k) of B (r+k)×k by Theorem 29 (Kernel of matrices).

The algorithm then returns C as the solution to this problem.

54

Chapter 8

Conclusions

In this thesis, we give the simplest but not trivial extension of the scalar extended gcd
problem on two integers to the case of integer input matrices. We present a deterministic
algorithm that takes as input a full column rank A ∈ Zn×(n−1), and returns as output
a matrix C ∈ Z(n−1)×n such that B := CA ∈ Z(n−1)×(n−1) satisfies L(B) = L(A).
The matrix C is sparse, with at most O(n log n) nonzero entries, and satisfies log ||C || ∈
Θ(log n + log ||A||). More precisely, we show that at most n(1 + log2 n) entries of C
will be nonzero, and that log ||C || ≤ 4 log n + 2 log ||A||. The cost of the algorithm is
O(nω B(d)(log n)2) bit operations, where d = log n + log ||A|| and ω is the exponent of
matrix multiplication. This cost estimate is about the same as that required to multiply
together two square integer matrices of dimension n that have magnitude of entries bounded
by ||A||.

Our algorithm to compute the basisB improves by about a factor of n on the fastest pre-
vious algorithm presented by Li and Nguyen [2019, Theorem 3.8] which requiresO(nω B(nd))
bit operations. We remark that our algorithm can also be used to handle the general case in
a Las Vegas fashion: given a full column rank matrix A ∈ Zn×m, find a matrix B ∈ Zm×m

such that L(A) = L(B). The steps are as follows:

1. First, we use the Monte Carlo technique in Chen and Storjohann [2005] to compress
from A ∈ Zn×m to Ā ∈ Z(m+1)×m.

2. Next, we use our algorithm to compress from Ā ∈ Z(m+1)×m to B ∈ Zm×m.

3. Finally, we can use integrality certification by Birmpilis et al. [2023, Theorem 17
(3.4)] to assay if AB−1 is integral. If AB−1 is integral, then B ∈ Zm×m is a basis
for A ∈ Zn×m. Otherwise, we repeat step 1.

55

The Las Vegas algorithm just described has expected running time O(nmω−1 log ||A||) bit
operations and produces a basis B with log ||B || ∈ O(log n+ log ||A||).

We remark that the algorithm of Li and Nguyen [2019] also handles the more general
case of the problem: given an A ∈ Zn×m, it can compute a basis B ∈ Zm×m for A in
O∼(nmω log ||A||) bit operations. A natural direction for further research is whether this
cost estimate can be improved by a factor of m. We end with the following open problem.

Open Problem 1. Given a full column rank matrix A ∈ Zn×m, compute a basis B ∈
Zm×m for A that satisfies log ||B || ∈ O(n+log ||A||) in O∼(nmω−1 log ||A||) bit operations.

56

References

S. Birmpilis, G. Labahn, and A. Storjohann. Deterministic reduction of integer nonsingular
linear system solving to matrix multiplication. In Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’19, page 58–65, New York, NY, USA, 2019. ACM.

S. Birmpilis, G. Labahn, and A. Storjohann. A Las Vegas algorithm for computing the
Smith form of a nonsingular integer matrix. In Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’20, page 38–45, New York, NY, USA, 2020. ACM.

S. Birmpilis, G. Labahn, and A. Storjohann. A fast algorithm for computing the smith
normal form with multipliers for a nonsingular integer matrix. Journal of Symbolic
Computation, 116:146–182, 2023.

Z. Chen and A. Storjohann. Lattice compression of integer matrices. Journal of Symbolic
Computation, 2005.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 3rd edition, 2013.

S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis decompositions
and derandomization of linear algebra algorithms over K[x]. Journal of Symbolic Com-
putation, 47(4), 2012. Festschrift for the 60th Birthday of Joachim von zur Gathen.

D. Harvey and J. van der Hoeven. Integer multiplication in time O(n log n). Annals of
Mathematics, 193(2):563–617, 2021.

O. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition
algorithm and applications. Journal of Algorithms, 3:45–56, 1982.

C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile revealing Gaussian elimina-
tion and the CUP matrix decomposition. Journal of Symbolic Computation, 56:56–58,
2013.

57

J. Li and P. Q. Nguyen. Computing a lattice basis revisited. In Proc. Int’l. Symp. on
Symbolic and Algebraic Computation: ISSAC’19, page 275–282, New York, NY, USA,
2019. ACM.

N. J. A. Sloane and The OEIS Foundation Inc. Entry a033156 in the on-line encyclopedia
of integer sequences, 2020. URL http://oeis.org/A033156.

A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal Institute
of Technology, ETH–Zurich, 2000.

A. Storjohann. The shifted number system for fast linear algebra on integer matrices.
Journal of Complexity, 21(4):609–650, 2005. Festschrift for the 70th Birthday of Arnold
Schönhage.

A. Storjohann and G. Labahn. Asymptotically fast computation of Hermite normal forms
of integer matrices. In Y. N. Lakshman, editor, Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’96, pages 259–266. ACM Press, New York, 1996.

58

http://oeis.org/A033156

	List of Figures
	Introduction
	Cost model

	Mathematical results
	Background on integer lattice
	Hadamard's inequality and Cramer's rule
	Lattice generator via kernel basis

	Computational results
	Computational tools
	Finding a maximal nonsingular submatrix
	Kernel basis of nullity one
	Augmentation vector

	Sparse kernel basis of a vector
	Kernel basis of a vector via Hermite normal form
	Special Hermite normal form
	Kernel basis of a vector via Hermite normal form

	Lattice generator
	Sparse lattice generator
	Hermite lattice generator

	Extensions for the case: t
	Method 1: Kernel of a vector
	Method 2: Kernel of a matrix

	Conclusions
	References

