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Abstract 

The decision-making and motion planning play a critical role in the autonomous driving by 

connecting the perception to the vehicle control. It aims at generating available paths in the 

specific driving environment considering vehicle safety and driving efficiency constraints as 

well as the ride comfort. The complexity of the decision-making depends on the target driving 

performances and the driving environment.  

The complexity of the future driving environment, due to the coexistence of automated and 

human-driven vehicles, makes the balance between safety, efficiency, and comfort much more 

challenging. Therefore, the focus of this research is to provide decision-making algorithms for 

an autonomous vehicle in the interactive driving environment where the surrounding vehicles 

are driven by human drivers who are unpredictable due to diverse driving behaviors. 

To tackle the above problem, tools from game theory are utilized to analyze the interactions 

between rational players. To consider the driver intentions of the surrounding vehicles, games 

with complete information and incomplete information are discussed. The driver behavior is 

learned during the driving process, based on the Gaussian Mixture Model (GMM) trained by 

the naturalistic driving data. Then the driver behavior of surrounding vehicles is transmitted to 

the incomplete information game model, so that the human preferences can be estimated and 

utilized by the ego vehicle to regulate the predictions of the driving environment. Based on the 

model of incomplete information game, the uncertainty and the variety of the surrounding 

human-driven vehicles are both focused. The driving decisions can be made adaptively 

according to the driving styles of the surrounding vehicles. 

The lane change scenario on a highway is selected as the research scene to test the performances 

of the proposed decision-making model. To make the simulation environment more realistic, 

the motions of the surrounding vehicles are modelled by the Intelligent Driver Model (IDM), 

whose driving styles are calibrated and classified in an explainable way based on the real 

driving data. Multiple scenarios are designed with driving style combinations of various 

surrounding vehicles. Moreover, the two-player game is extended to the multi-player game 

with the lateral behavior of the vehicles considered. Finally, the proposed model is validated 
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by comparing the generated driving decisions and trajectories with human drivers’ driving 

profiles under the same driving conditions extracted from the naturalistic driving data. The 

results show that the driver aggressiveness estimation could help the ego vehicle change lane 

more efficiently and guarantee safety under the incomplete information model. The developed 

game-based decision-making model shows high potential to handle the uncertain interaction 

between the autonomous vehicle and human-driven vehicles.  
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Chapter 1 

Introduction 

1.1 Motivation 

Approximately 1.35 million people die each year due to road traffic crashes in the world [1]. 

Highway-related accidents claimed 37,133 lives in 2017 only in America [2]. A study 

conducted by the National Highway Transportation Safety Administration (NHTSA) found that 

human error causes 94% of serious crashes [3]. The automated driving technology and 

Advanced Driving Assistance Systems (ADAS) have the potential to reduce and eventually 

eliminate human driving errors resulting in reducing road fatalities, increasing traffic efficiency 

and improving driving comfort. 

Since human-driven vehicles cannot be replaced in a short time period, it is foreseeable that 

automated and human-driven vehicles will coexist in the mixed traffic environment in a the 

foreseeable. One of the crucial tasks of automated vehicles is to make human-like driving 

decisions when interacting with human drivers to ensure safety and efficiency.  

Given the information about the road and surrounding obstacles, a decision-making and 

planning module is responsible for generating a feasible path that can avoid collisions, save 

traveling time, and make users feel comfortable. Decision-making algorithms still need 

significant improvement to be able to deal with complex interactive scenarios. Recent reviews 

show that Google cars cannot plan future trajectories and speed profiles when facing 

unpredictable actions of other human traffic participants [4], [5]. A human driver can 

understand the intentions of other drivers in decision-making especially in complex scenarios. 

It can be observed that most drivers can understand the intentions, predict the driving behaviors 

of other drivers, and make proper decisions in the strongly interactive scenarios. Therefore, the 

goal of this project is to enable the autonomous vehicles behave in a socially compliant way in 

highway lane change scenarios, which are common but highly interactive. Different from the 

non-interpretable methods, such as end-to-end, neural networks, and deep learning, the 
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interpretabilities are stressed in the proposed decision-making model. In fact, a well-established 

game theoretical framework has been utilized to describe such active interactions in multiple 

disciplines, such as economics [6], biology [7], and computer science [8]. Game theory is 

equipped with solid mathematical foundations to analyze the interactions between players. To 

effectively utilize the collected driving data, GMM is trained and utilized to determine the 

human drivers’ aggressiveness during the interactive driving. With human preferences learned, 

the proposed model can make adaptive decisions when interacting with drivers with different 

driving styles. Meanwhile, the generated paths can capture the patterns of human drivers. 

1.2 Research question 

Most decision-making models ignore or unreasonably simplify the interaction. The interactive behavior 

is a pervasive and complex behavior in human driver decision-making. Therefore, how to make safe 

and efficient driving decisions and enable the autonomous vehicles behave in a socially compliant way 

is the research question when interacting with other real human traffic participants. 

1.3 Objectives 

Compared with urban scenarios, highway driving is much simpler with respect to the types and 

numbers of traffic participants, traffic scenarios, and driving behavior. In highway traffic, car 

following (CF) and lane changing (LC) are two primary driving tasks. Considering the highly 

interactive characteristics of lane changing, developing the game theoretic decision-making 

model for interactive highway lane changing is the focus of this Ph.D. research. Hence, the 

research objectives are: 

Interactive lane change decision-making modeling based on game theory  

The lane change process will be analyzed first to determine the components under the 

framework of game theory. Meanwhile, the human behavior will be investigated, and some 

behavior patterns can be found for lane change modeling. The knowledge domain of the players 

is important in the game. Thus, the game with complete information and incomplete 

information will be discussed. The driver intentions of the surrounding vehicles will be studied 

and integrated in the game-based decision-making model, to consider the varieties of human 
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driving behaviors.  

Model tuning using real driving data  

To capture the driving behavior patterns of real human drivers, the physical motion model is 

utilized to mimic the human driving behavior from the naturalistic driving data. The model 

parameters are tuned based on the selected single-vehicle and interactive features. These 

decision patterns can be analyzed to obey the multi-dimensional Gaussian distribution. Then 

the connections are made between the driving features and learning-based parameters tuning. 

Upon such tuning, the proposed model could show optimal preferences defined by the users 

when interacting with different drivers. 

Validation of the decision-making model 

The proposed model will be evaluated and validated in different lane change scenarios first in 

a simulation environment and then using real driving data. The performances of the proposed 

decision-making model will be compared with other traditional models in different complex 

cases. Synthetic assessment criteria will be established to evaluate the decision-making model 

in terms of safety, speed efficiency, and lane change success rate.  

1.4 Thesis outline 

This research thesis is structured as follows. In the second chapter, the literature is reviewed 

regarding game theory based driving decision-making methods. In the third chapter, the 

proposed interactive lane change decision-making model is developed in terms of two-player 

game and multi-player game. The fourth chapter introduces the naturalistic driving data that 

are connected to the motion modeling of the environment vehicles and driver identification 

model. In the fifth chapter, the motion models of the surrounding vehicles and the driver type 

identification method are developed based on the human driving data. The sixth chapter shows 

simulation results and analysis. The human-driven vehicles are programmed to drive 

aggressively or cautiously, and the interaction results are used to assess the performance of the 

developed decision-making model. In the seventh chapter, the main findings in this study are 

concluded, and future work is highlighted.  
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Chapter 2  

Literature Review 

This chapter reviews the decision-making methods for autonomous vehicles, focusing on the 

issue of interactive behavior in the presence of other moving vehicles. Existing studies on 

conventional decision-making methods are reviewed first in Section 2.1. Then Section 2.2 

discusses the vehicles’ interactions in the highway lane change. The game-theoretical models 

are then reviewed to formalize the vehicle-vehicle interactive driving decision-making 

behavior in Section 2.3. The literature review is concluded in Section 2.4. 

2.1 Autonomous driving decision-making methods 

From the perspective of responding to the surrounding environment, driving decision-making 

can be divided into three stages, i.e., strategic, tactical and operational levels [9]–[12], or in 

other expressions, strategic, maneuvering and control levels, as shown in Fig. 2.1 [13].  

 

Figure 2.1. The hierarchical structure of the driving tasks [13] 

Strategic decisions are responsible for the choice of destination and global route, which take 

minutes or even hours to make [9][10]. Examples of tactical decisions include keeping lane, 

changing lane, accelerating, turning right, [11][12] etc. The strategic decision is composed of 

a series of tactical decisions, which take 5 to 30 seconds to complete [14]. In the operational 
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stage, the main issue is to decide when to execute the decisions and how to complete the 

required maneuvers with time scale of a short term [15]. According to this classification, the 

driving decision-making methods reviewed here is mainly focused on the tactical level.  

2.1.1 Rule-based methods 

State machine 

An intuitive solution for making decisions is the rule-based method, which is encoded with 

rules according to human experiences. In fact, most teams that finished the game in the 2007 

DARPA Urban Challenge utilized the State Machine to release the driving decisions, switching 

between predefined behaviors [16]–[18]. These predefined driving behaviors are selected in 

real time based on the current driving environment and vehicle states. This type of model 

mainly includes Finite State Machine (FSM) and Hierarchical State Machine (HSM).  

 

Figure 2.2. FSM that governs the robot’s behavior [18] 

FSM is a mathematical model that describes systems with discrete input-output, consisting of 

events, states, and state transitions. Fig. 2.2 shows the FSM model of Stanford’s robot “Junior” 

[18], which consists of 13 states (only 11 are shown), including initial state, lane keeping, 

crossing intersection, mission complete, etc. Because of its simple structure and clear control 
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logic, FSM has been adopted by the Champion Team A1 of the AVC in Korea in 2012 [19] and 

the Vislab’s robot “Terramax” [20].  

When the driving states increase, the structure of the FSM becomes messy and difficult to 

modify. To deal with this problem, HSM defines the high-level and low-level states. Fig. 2.3 

shows the HSM-based decision structures for the parking zone context of the Knight Rider 

autonomous vehicle in the DAPRA competition in 2007. When the top state (parking area 

driving state) is activated, the state machine starts working. HSM not only describes the driving 

state hierarchically but also limits the switch path of the state machine [21]. HSM was adopted 

by CMU’s BOSS and OSU-ACT in the 2007 DAPRA competition [16], [22]. 

 

Figure 2.3. HSM that governs the robot’s behavior [21] 

Decision tree-based methods 

A decision tree is composed of internal nodes and leaf nodes that can be used for classification 

and decision-making purposes. Claussmann et al. [23] planned a finite set of deterministic 

candidate driving decisions of right lane change, left lane change and keeping the same lane 

under the framework of binary decision diagrams. Team Cornell’s Skynet [24] in the DARPA 

Challenge adopted the decision tree to check the feasible passing maneuver in the face of other 
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moving vehicles. Li et al. [25] proposed an explicit decision tree approach to improve the 

performance in computational effort and state transition accuracy for a case study of 

autonomous driving on a two-lane highway. It was utilized as a benchmark to be compared 

with the method of the Stackelberg game theoretic decision-making process in terms of 

collision rates [26]. 

2.1.2 Knowledge-based models  

The knowledge-based reasoning decision-making model mimics the behavioral decision-

making process of human drivers through the mapping from scene features to driving actions.  

Neural network-based methods 

The mapping relationships between driving scene features and driving actions are 

automatically obtained by supervised learning in the neural network, which avoids the trivial 

work of manual feature extraction and strategy modifications. Dating back to 1989, the model 

adopted by Carnegie Mellon University consists of three layers of back propagation neural 

network, where the input is camera and lidar data, and the output is the direction control 

commands to the vehicle [27]. In recent years, deep learning has also been applied to the 

behavioral decision-making system of autonomous vehicles. Bojarski et al. [28] used the 

convolutional neural network (CNN) to learn the mapping function from the pixel-level 

features of perceived images to specific control commands to mimic the driving behavior of 

human driver. Similar approaches have been adopted by some other researchers [29].  

Bayesian network and its extensions 

Bayesian network (BN) is a kind of probabilistic graph model that stores the driving knowledge 

in the form of causal links between nodes based on probabilistic transitions. Ulbrich et al. [30] 

presented BN-based situation assessment approach in tactical behavior planning to determine 

the benefits and possibilities for lane changes. Schubert et al. [31] used an extended Bayesian 

network to derive lane-change maneuver decisions for highly automated driving. Kasper et al. 

[32] detected the lane change decisions based on the object-oriented Bayesian network 

(OOBN).  
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Dynamic Bayesian network (DBN) specifies causal relationships and temporal dependencies 

simultaneously. As Fig. 2.4 shows, Schulz et al. [33] modelled the interaction-aware behavior 

of drivers based on the constructed DBN. With the interaction-aware motion predictions, the 

autonomous vehicle is supposed to make proper decisions considering the uncertainty in 

measurements and human behavior. Hierarchical DBN integrates the physical relationships 

with the driver behaviors in [30], [31]. The interactions are considered through the intention 

predictions that are regarded as prior information for decision-making. 

 

Figure 2.4. Interaction-aware behavior of drivers based on the constructed DBN [33] 

2.1.3 Utility-based models 

The majority of the aforementioned behavioral decision-making methods employ heuristics to 

determine the best driving strategy based on prior driving experience. It is necessary for these 

methods to specify a driving strategy for each driving scenario, which is based on state 
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transition, rules generation or mapping relationships.  

Action evaluation based on predefined cost function 

According to the maximum utility theory, the basic idea of a utility/value-based decision model 

is to select the optimal driving action among multiple alternatives based on the selection criteria 

[34]. Furda et al. [35] proposed a multi-criteria decision-making to select the optimal one from 

the candidates. The behavioral decision system of the Caroline automated vehicle in the 2007 

DAPRA Challenge [36] is based on the distributed architecture for mobile navigation scheme 

(DAMN). A cluster of candidate driving trajectories was first generated, and then the votes 

were given based on multiple criteria. Similar to the scheme, the behavioral decision model 

based on Prediction-and-Cost-function (PCB) is proposed by Carnegie Mellon University. 

After the prediction of the surrounding traffic scenarios, the optimal strategy is obtained 

through evaluating the candidate strategy using the predefined cost function [37].  

Markov decision process-based models 

A Markov decision process (MDP) is models the decision-making process based on the Markov 

property. Guan et al. [38] modelled the driving task as MDP, considering safety, efficiency and 

comfort in a dynamic traffic environment. Since reinforcement learning (RL) is capable of 

finding optimal solutions to problems modelled by MDP, it is widely used in the autonomous 

driving decision-making issues. Loiacono et al. [39] trained the agent with simple RL to 

overtake the surrounding vehicles. Li et al. [40] compare the overtaking policies from Q-

learning and the expert system, and find that the former always obtains a higher reward under 

a series of traffic conditions. The results indicate that Q-learning performs better to ensure 

safety but is approximately the same in efficiency. Ngai et al. [41] propose a multiple-goal 

reinforcement learning (MGRL) framework to instruct the autonomous vehicle to overtake 

other cars when there are a large number of surrounding vehicles at different and varying speeds.  

As the number of states increases, standard Q-learning algorithms cannot find a feasible policy 

solution due to the computational effort. Another option is to use a Q-function approximator to 

output the Q values, which normally rely on the neural networks. Wang et al. [42] made the 

agent change lane automatically through a deep Q-learning algorithm that reduced the 
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computation in both continuous state space and action space.  

Table 2.1 Taxonomy of autonomous driving decision-making methods 

Algorithm 

group 
Technique Technique description 

How is interaction 

involved 

Implemented 

in 

Rule-based 

methods 

State machine 

Finite State Machine 

(FSM)  The interaction is specified 

by the transitions among 

states and modules 

[18]–[20] 

Hierarchical State 

Machine (HSM) 
[16], [21], [22] 

Decision tree 

The optimal path is 

selected by the attribute 

test with internal node, 

branch and leaf node 

The root node contain 

information with most 

interactions and the goal is 

to generate leaf nodes with 

less interaction information 

[23]–[26] 

Knowledge-

based 

methods 

Neural 

network 

The actions are executed 

according to the existed 

driving experience 

materialized to the network 

Interaction information is 

contained in the features and 

how they jointly predict the 

outcomes 

[27]–[29], [43] 

Bayesian 

network 

family 

The driving knowledges 

are stored in the form of 

causal links between nodes 

in the probabilistic graph 

The causal links model the 

interactions as probability 
[30]–[33] 

Utility-based 

models 

Multi-criteria 

decision-

making 

Each candidate driving 

action is evaluated by the 

utility in terms of safety, 

comfort, driving 

efficiency, etc. 

The interaction term is 

evaluated in the utility 
[35], [36] 

Prediction-

and-cost-

function 

Optimal strategy is 

obtained through 

evaluating the candidate 

strategy using the cost 

function 

Cost function quantifies the 

interaction 
[37] 

Markov 

decision 

process 

(MDP) 

Utilizing RL to solve it 

with unknown reward and 

transition functions Interaction can be included 

in the state transitions and 

reward function 

[38] 

Utilizing dynamic 

programming when the 

environment model is 

known 

[39]–[42], 

[44], [45] 
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Using Long Short-Term Memory (LSTM), they applied DRL in the on-ramp merge scenario, 

where the states contain historical driving information [44]. Hoel et al. [45] investigated fully 

connected neural networks (FCNN) and temporal convolutional neural networks (CNNs) to 

approximately calculate the optimal value function, and generate driving decisions for a truck-

trailer, which is also known as Deep Q-Network (DQN).  

In summary, the decision-making methods for autonomous driving are classified into three 

groups in terms of the principles that lead to the driving decisions from the goal setting, internal 

states, and environment information, as shown in Table 2.1. Each group can be further divided 

into specific algorithms or models. When reviewing these models, interactions become 

increasingly important, from traditional methods to the most recent studies.  

2.2 Vehicles interactions in the highway lane change 

Interaction, by definition, requires communication between the participants. Interacting agents 

make responses according to the observed information and the orders of the decision system, 

affecting the states of each agent. The literature is classified according to the intelligence level 

of the surrounding vehicles.  

2.2.1 Unidirectional reactive interaction  

For the unidirectional reactive interaction, the surrounding vehicle is supposed to follow a 

specific physics law, and does not consider the behavior of the autonomous vehicle (ego 

vehicle). Under this circumstance, the autonomous vehicle can achieve perfect accuracy if the 

physics law of the surrounding vehicle is captured. Some assumptions constrain the ego or 

surrounding vehicles to move straight, such as the Constant Velocity (CV) [46] and Constant 

Acceleration (CA) [47] models. To consider the planar motion, the yaw angle and yaw rate are 

introduced in the models such as Constant Turn Rate and Velocity (CTRV) and Constant Turn 

Rate and Acceleration (CTRA), where the parameters in the longitudinal and lateral directions 

are decoupled [48][49]. Furthermore, the Single-track Model (STM) [50] integrates the yaw 

rate and velocity to the state variables, while the bicycle model replaces the yaw rate with the 

steering angle. 
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As is presented in Fig. 2.5, the autonomous ego vehicle (EV) is affected by the surrounding 

vehicles, but the EV itself does not have any effects on the surrounding vehicles. The 

surrounding vehicles then follow the predefined motion laws without considering the EV’s 

current or future states, such as CA in car-following scenarios and CTRV in lane change cases. 

Simultaneously, the EV is required to predict the future states of the surrounding vehicles and 

make driving decisions. Therefore, the interaction is bidirectional and reactive. 

 Constant turning rate and velocity (CTRV)

EV at t1

LAV at t1

LAV at t2

 Constant acceleration model (CA)

EV at t1

FV at t1

FV at t2

 

Figure 2.5. The illustrative scenarios of unidirectional reactive interaction 

These single-vehicle feature-based prediction methods are often used for vehicle tracking 

control. When the surrounding vehicles are dominated by these physical models, the interaction 

only exists in the ego vehicle’s reaction to their motions. The complexity is greatly reduced 

when there is no coupling relationship between the autonomous vehicle and surrounding 

vehicles. 

2.2.2 Bidirectional reactive interaction 

The prediction and decision-making based on the unidirectional reactive interaction do not 

account for the effects of the surrounding vehicles. This prediction model can be utilized for 

model-based state estimations and vehicle tracking control, but is too simple when there are 

other vehicles surrounding it. More recently, the bidirectional reactive interaction has attracted 

the attention because the mutual effects exist in real traffic. For the bidirectional reactive 

interaction, the surrounding vehicle is supposed to react to its driving environment, which 

means the connection is built from the ego vehicle to the surrounding vehicle.  

Potential field model is widely used to analyze the interactions between the autonomous vehicle 

and other traffic participants [51][52]. It can consider the vehicle types and road structures by 
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assigning different potential functions, so that the path can be generated depending on the 

driving environment. Obviously, the interactions are contained in the mutual effects of these 

potential functions. One important advantage of this pure physics-law-based method is that the 

calculation cost is low, and it can be applied to online decision-making.  

Since the main considerations for the surrounding vehicles are their longitudinal motions, the 

car-following models are used to capture the interactions between the lag vehicle and the lane 

change vehicle. Gazis-Herman-Rothery (GHR) model [53]–[55] considers the velocity 

difference between the subject vehicle and the preceding vehicle as the stimulus for generating 

the corresponding longitudinal acceleration, which is aimed at balancing the velocities and 

keeping a safe distance between two vehicles. Besides, there is a sensitivity parameter to 

regulate the value by introducing constant parameters, relative distance, lag vehicle’s speed, 

etc. Newell [56] proposed a car-following model whose output is the velocity of the following 

vehicle, where the maximum speed and the minimum space headway are included. Also, the 

spacing between the vehicles is an important parameter in this model. Intelligent driver model 

(IDM) is a typical reactive model that generates longitudinal acceleration according to the 

driver’s desire and driving environment [57]. This model is popular because it considers the 

driver’s desired driving states, and is thus adaptive by tuning the corresponding parts. More 

importantly, these parameters are interpretable. 

These models are essentially physics-laws-based models, while the parameters extend from the 

single-vehicle features to the interactive features. The interactions are formulated between the 

surrounding vehicles with those motion models and the ego autonomous vehicle with the 

proposed decision-making model in the literatures. Therefore, the human drivers are not 

required to participate as the surrounding vehicles to validate the proposed decision-making 

model, and this type of interaction is popular in the validation part of the literature that requires 

a large number of training episodes. 

2.2.3 Bidirectional active interaction 

The active interaction implies that the surrounding vehicles can predict future states and are 

aware of the ability to change those states through their actions. The active interaction involves 
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two aspects. The first one is the current states and future states. The second is between the ego 

and surrounding vehicles. What’s more complicated, these two issues can also be coupled. 

However, this type of interaction is what the real traffic shows.  

According to the definition of the bidirectional active interaction, the surrounding vehicle 

should have the ability to predict and consciously use this ability to interact with others. 

Dynamic Bayesian networks (DBN) describe the interactions in the form of probability and 

directed acyclic graphs. In the fully connected DBN, the actions and states of the ego and its 

surrounding vehicles are connected, representing the mutual effects between each other. 

Besides, the temporal dependencies and measurement uncertainties can also be considered. 

Schulz et al. [33] predict the behavior of other vehicles based on DBN, where the intentions of 

drivers and the trajectories interdependencies are considered. The results show that the 

interaction-aware model performs better than both CTRV and map-based models. Gonzalez et 

al. [58], [59] model the multi-vehicle dependencies based on DBN, where the surrounding 

vehicles’ maneuvers are sampled from the posterior distribution of each traffic participant, 

given the observations of all vehicles, while the ego vehicle’s action is determined by 

minimizing the cost after listing all the possibilities. Gindele et al. [60], [61] explicitly modeled 

the interactions between traffic participants using DBN. The vehicle behavior is estimated by 

evaluating the driving environment. However, graph models like DBN are actually intractable 

in most cases if the number of vehicles increases. The complexity of inference grows 

exponentially with the number of considered agents and possible intentions.  

Another option is to predict all the possible results, considering the reactions of the other 

drivers before making decisions. Game theory is a well-developed theoretical framework that 

can determine the solutions when the coupled relationships existed. The utilities can be 

determined assuming the decisions have been made. Since the combinations of each player’s 

actions are all considered, the active interactions are contained in the utility functions. For the 

static game, the interactions between merging and through vehicles are quantified by 

anticipating the other’s action [62], [63]. Also, the utility functions can be modelled with the 

cumulative rewards if the lane change is considered as a repeated game [64], [65]. For the 

dynamic game, the players are recognized as leader and follower, and the normal game is 
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switched to the game tree [66]. However, the transitions can be made so that the equilibriums 

can be solved in the same way.  

In summary, most research focuses on the unidirectional reactive interaction and bidirectional 

reactive interaction in the lane change modeling and later validation experiments. Game theory 

is found to be applicable in the scenarios with bidirectional active interaction. Many game 

theory models have been developed for highway lane change scenarios, however, lacking the 

considerations of the human drivers’ varieties, which are critical for human-like decision-

making. 

2.3 Game theory based driving decision-making methods 

As the aforementioned sections state, human drivers are not reactive agents, which means that 

they are able to observe the surrounding traffic participants, predict the future states of others, 

and make decisions considering the potential actions of other agents. More importantly, human 

drivers would have the same expectations from others, which makes it paradoxical to explain 

the human decision-making process solely using prediction-based methods because the 

predictions can be changed given the ability of active agents to predict others’ intentions.  

In fact, a well-established game theoretical framework has been utilized to describe such active 

interactions in multiple disciplines, such as economics [6], biology [7], and computer science 

[8]. Game theory is equipped with solid mathematical foundations to analyze the interactions 

between rational players with their anticipations of other players’ behavior considered. 

Compared with reactive models, the game theoretic frameworks can be utilized to describe the 

active interactions in the driving decision-making process.  

2.3.1 Static game-based driving decision-making  

In the static game, players are assumed to move simultaneously. A payoff matrix lists the 

players of a game, their strategies and related payoffs. As an earlier application of a static game 

in the highway merging scenario, Kita [62], [63] developed a game-based model to consider 

the interactions between merging and through vehicles, as shown in Fig. 2.6. The driving goal 
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of Vehicle 1 is to merge onto the main road within a limited distance, or the crash will happen. 

To achieve this goal, it needs to interact with other surrounding vehicles and decide when and 

how to change lanes. This process is modelled as a non-cooperative static game with complete 

information. The results indicate the capability to explain merging and give-way behaviors in 

the real world. 

 

Figure 2.6. Highway ramp merging scenario 

After Kita, Liu et al. [67] modelled the merging behavior at the highway on-ramp as a two-

player non-cooperative game. An important contribution is that the payoffs contain the 

predicted states and actions of both vehicles, which are conformed to the decision-making 

paradigm of human drivers. Kang et al. [68] first modelled the merging behavior as a one-time 

game that begins when the ego vehicle enters the merging lane. The merging vehicle can 

overtake the leading vehicle besides waiting for the lag vehicle and merging between the lead 

and lag vehicles. Safety and speed efficiency are two factors that each vehicle considers in their 

payoff functions. The proposed method avoids the potential difficulties of determining the 

exact decision time and position, however, it is not adaptive to the dynamic surrounding 

environment. 

Lane changing is another common and challenging driving behavior which includes rich 

interactions between lane changing vehicle and lag vehicle. Talebpour et al [69] presented a 

game-theoretical lane change model with two game types, where the difference is whether to 

know the driving intentions of the others through V2V communication. For the lane-changing 

vehicle, the payoff functions mainly consider safety and speed efficiency. To strictly guarantee 
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lane change safety in a dynamic environment, Meng et al. [70] introduce the concept of 

Receding Horizon Control (RHC) to handle uncertainties of the surrounding vehicles through 

reachability analysis. The reachable set is utilized to conduct safety assessments in autonomous 

driving. Instead of assuming the exact future information is known [68], upper and lower 

bounds are determined for the interested parameters in terms of the ranges of current states. By 

introducing RHC, new information is taken into account when making driving decisions, which 

is important for a safe and smooth lane change. 

2.3.2 Dynamic game-based driving decision-making 

The aforementioned game models assume both players should act simultaneously, while some 

other researchers believe there exists a leader who acts first, and the follower makes decisions 

according to both observations and the actions of the leader. Therefore, the game becomes 

dynamic, with the payoffs in the form of a game tree. 

In Kang’s later work, a repeated game was utilized to model the driver merging behavior by 

introducing successive decision-making, assuming driving decisions are made repeatedly to 

adapt to the dynamic surrounding environment. The payoffs are then calculated cumulatively 

over time period T rather than instantaneously. The model is evaluated using the NGSIM data, 

and the results show prediction accuracy is over 75% in terms of mean absolute error (MAE). 

Similarly, Ali et al. [71] modelled the merging behavior in the connected environment as a 

dynamic game. The difference is that the driving environment is determined with probability p 

to be a traditional environment, and 1-p to be a connected environment, which becomes another 

variable that can affect the driving decisions. 

Yoo et al [72], [73] modelled highway ramp merging as a Stackelberg game because it is similar 

to the hierarchical decision-making process in highway driving, in which information is 

transferred backward. For the utility design, positive and negative utilities are defined for 

merging and acceleration games, however, with different inputs. It is worth noting that the 

authors begin by considering the driver characteristics, which have a significant impact on 

utility determination and parameter setting, and thus influence driving decisions. Yu et al. [66] 

utilized game theory to determine when and how to change lanes with possible interaction 



 18 

between vehicles, as shown in Fig. 2.7. The payoff functions consist of safety and space payoffs. 

Since the drivers’ driving behaviors are various, the aggressiveness of competing vehicles is 

introduced as the indicator for driving style evaluation, which is used for weighting the safety 

and space payoffs. Specially, the aggressiveness of the competing vehicle is estimated and 

updated based on the interaction behavior. Therefore, the Stackelberg equilibrium would also 

change as the aggressiveness of competing vehicles changes at each time step, which explains 

human lane changing behavior in the real driving to some extent.  

 

Figure 2.7. Schematic diagram of Stackelberg game based lane change interaction model [66] 

2.3.3 Deep coupling of game theory and control module 

One disadvantage of hierarchical framework-based decision-making is that the decisions are 

discrete, which means that they can differ from one another many times in a short period of 

time. Some studies directly integrate the high-level decision-making and low-level control 

modules by combining game theory and control algorithms. In fact, this kind of idea has been 

applied in the area of engineering, such as in shared control [74], [75], where the cost function 

of Player A contains the interaction terms that are affected by Player B. The task is to solve the 

transformed optimization problem and generate the control variables under the constraints [76]. 
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Wang et al [77] combined the high-level lane change decisions and low-level controllers to 

determine the discrete lane change sequences and continuous accelerations, where the 

interactions can be considered through the cost functions. The joint cost function considers 

comprehensive factors that are composed of safety cost, equilibrium cost and control cost. The 

game theory-based model is proved to generate optimal lane change decisions in various 

scenarios.  

Other examples include the ramp merging and intersection left turn behaviors, where the cost 

functions are learned from data [76], [78], which avoids the complex induction of human 

preferences and their dependent relationship with each other. However, the learning-based 

reward functions are less interpretable compared with the rule-based ones. 

Table 2.2 Taxonomy of game theory-based decision-making models in traffic scenarios 

Game type Scenarios Information integrity Driver type recognition References 

Static game 

Ramp merging Complete No 
[62], [63], [67], 

[68] 

Lane change 
Complete No [69] 

Incomplete No [70] 

Dynamic game 
Ramp merging 

Complete No [64], [65], [71] 

Incomplete Yes [72], [73] 

Lane change Incomplete Yes [66] 

Coupled with 

control variable 

Ramp merging Incomplete Yes [76] 

Lane change Incomplete 
No [127] 

Yes [77]  

Behavioral game 
Ramp merging Complete No [79] 

Lane change Complete No [80] 

The game models applied in the interactive driving decision-making are summarized in Table 

2.2. In summary, game theory has been applied to describe the microscopic interaction behavior 

with different game types in the previous studies. The forms are also evolving from a 

hierarchical decision-making and planning framework to one that is deeply coupled with 

control variables and the cost function bridge. Some other game types, such as behavioral game 

theory, have also been developed and revised for making driving decisions with new 

assumptions in recent years [79], [80]. However, these assumptions and game models have not 

been verified in the on-field test and are not explained from the aspect of interaction 
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mechanisms. Therefore, the interaction mechanism needs further study to propose more 

reasonable assumptions and accurate game models. 

Driver characteristics or driver types are important when making lane change decisions 

[81][82]. Aggressive drivers move more drastically at the operational level, and are willing to 

taking higher driving risks when making decisions in the tactical level than cautious drivers. 

However, driving styles are not adequately reported with respect to many game theory-based 

decision-making models. Therefore, driver recognition methods need further investigation and 

will be indispensable in future game theory-based models. 

2.4 Summary 

Current decision-making methods for autonomous vehicles can be classified in terms of 

multiple perspectives, including rule-based, knowledge-based and utility-based methods. 

While the interaction is an important factor that determines the complexity of decision-making 

problem, the types of interaction are not well clarified. As the assumptions of the interaction 

level differ, the decision-making framework will vary greatly.  

It is clear that the bidirectional active interaction is what the autonomous vehicles have with 

human-driven vehicles in the real mixed traffic. Also, the competing vehicles type can 

influence the interaction results to some extent. Game theory is appropriate to obtain the 

human-like strategies when interacting with human drivers. Furthermore, human drivers are 

not homogeneous, leading to various decisions even under the same situation. Therefore, how 

to connect the decision-making model to the real driving data, and adaptively make human-

like decisions through data training is to be investigated.  
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Chapter 3  

Autonomous Lane Change Modeling Based on Game 

Theory 

In this chapter, the lane change behavior is firstly analyzed by dividing the stages into intention 

generation, preparation, and execution. The vehicle states, actions, goals and strategies are then 

formulated as the essentials for lane change decision-making. After that, the lane change 

decision process is modelled under the framework of game theory, and two types of games are 

presented as the assumptions for the information availability differ. Moreover, the two-player 

game is extended to a multi-player game with the lateral behavior of the players considered. 

The preliminary simulation results validate the proposed decision-making model.  

3.1 Lane change behavior analysis 

3.1.1 Lane change phase divisions 

Lane changing is a routine but complex and risky behavior in highway driving. As is shown in 

Fig. 3.1 (a), there are 4 surrounding vehicles after the ego vehicle (EV) determines which lane 

to change to. EV driver needs to observe the states of surrounding vehicles, including the front 

vehicle (FV) in the current lane, the leading vehicle (LEV) and the lag vehicle (LAV) in the 

target lane, and make decisions.  

The lane change process can be divided into three stages. The first stage is the lane change 

intention formation process. The motivations may include the speed efficiency and safety space 

in discretionary lane change, and ramp merging in mandatory lane change. In the stage 2, the 

driver would not execute a lane change immediately but hold the lane change intention and 

observe the surrounding traffic conditions to determine whether it is safe to change lane. In the 

third stage, the driver makes sure that the conditions are safe enough to change lane, and then 

the executions are conducted.  
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For the first stage, it is difficult to measure the driver’s intentions level for lane change from 

the observations. Essentially, the human intention changes without any observable motion 

pattern and human themselves are sometimes not sure whether the intention is lane change or 

lane keeping, regardless of the quantitative degree of intention. During this period, drivers are 

focused on pursuing better driving conditions which are mainly determined by FV and LEV. 

The turning signal should be turned on when the intention level exceeds a certain threshold 

value, which happens at time point T0 in Fig. 3.1. (b). 

For the second stage, the EV driver needs to observe the traffic conditions carefully to 

determine the object lane and the appropriate time point for lane change. In this stage, EV is 

required to adjust its longitudinal and lateral states to create a safe condition for future 

successful lane change. EV should consider the constraints of FV and LEV. Meanwhile, it is 

possible for EV to create safety gap between LAV through active interactions.  

Ego Vehicle 
(EV)

Front Vehicle 
(FV)

Leading 
Vehicle (LEV)

Lag Vehicle 
(LAV)

Following 
Vehicle (FOV)

(a)

Target lane

Current lane

(b)

Lag Vehicle 
(LAV)

Ego Vehicle 
(EV)

Target lane

Current lane

T1: Lane change 
execution 

T0: Lane change 
intention generation

T3: Vehicle center to 
lane boundary 

T4: Lane change 
finish 

T2: Vehicle boundary 
to lane boundary 

T2'

 

Figure 3.1. Schematic diagram of lane change scenario: (a) traffic environment, (b) lane change 

process division 

After the safe gaps have been created, the EV driver needs to execute lane change behavior in 
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the third stage. Defined by the time point when lateral speed is over 0.35 m/s [83], EV starts to 

change lane at T1, as is shown in Fig. 3.1. (b). There are three critical time points during vehicle 

crossing, which are T2, T3 and T2’, when the vehicle’s left boundary, center and right boundary 

cross the lane boundary. During vehicle crossing period [T2, T2’], the EV should maintain a 

safe distance to LAV. Once the entire vehicle body crosses the lane line, it becomes the LAV’s 

task to keep a safe distance from the EV, which shows the sudden responsibility transition in 

the lane change. Finally, the lane change finishes when the lateral speed decreases to 0.2 m/s 

at T4. 

3.1.2 Lane change process formalization 

Aiming at protecting the right-of-way of each participant [84], the rules-of-thumb in this traffic 

act are explained as follows: 

(1) For the car-following scenarios, the following car should be able to stop behind the front 

vehicle even if it suddenly brakes. 

(2) For the lane change scenarios, the lane change vehicle should not affect the normal driving 

of other vehicles in the target lane. 

EV FV

LEVLAV

FOV

Target lane

Current lane

T2

T2'
LAV, EV

safed
EV, LEV

safed

FOV, EV

safed
EV, FV

safed
 

Figure 3.2. Safe distances in the lane change 

According to the traffic rules, EV should be careful to avoid approaching the safe distance area 

in different stages, as shown in Fig. 3.2. Before T2, EV follows FV, so it is only required to be 

cautious of 𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐹𝑉

. During vehicle crossing period of [T2, T2’], EV should keep three safe 

distances from LAV, LEV and FV. After T2’, EV enters the target lane and follows LEV, so it 
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only needs to keep a safe distance 𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐿𝐸𝑉

 from LEV. 

Goals and constraints 

Drivers care about three aspects of goals in normal driving, namely driving safety, efficiency 

and comfort, so do they in lane change scenarios. Then the goal is modeled as a linear 

combination of driving safety, efficiency and comfort with corresponding weighting factors. 

 𝐽𝐸𝑉 = 𝜔𝑠
𝐸𝑉𝐽𝑠

𝐸𝑉 + 𝜔𝑒
𝐸𝑉𝐽𝑒

𝐸𝑉 + 𝜔𝑐
𝐸𝑉𝐽𝑐

𝐸𝑉 (3.1) 

where 𝜔𝑠
𝐸𝑉 , 𝜔𝑒

𝐸𝑉  and 𝜔𝑐
𝐸𝑉  are the weighting coefficients of the safety, efficiency and 

comfort costs. 

For lane change safety, the risks come from the surrounding vehicles if their positions overlap 

in both longitudinal and lateral directions simultaneously. There are sudden responsibility 

transitions in the lane change process when the ego vehicle finishes lane change. The previous 

LAV becomes the new following vehicle (FOV), and the responsibility to avoid collisions is 

transferred from the EV to the LAV. Therefore, the safety cost is related to the measured 

distance and the safe distance: 

𝐽𝑠
𝐸𝑉 = 𝑓1(𝑡) ∙ 𝑔 (

𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐹𝑉 − (𝑋𝐹𝑉(𝑡) − 𝑋𝐸𝑉(𝑡))

𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐹𝑉 ) + 𝑓2(𝑡)

∙ 𝑔 (
𝑑𝑠𝑎𝑓𝑒
𝐿𝐴𝑉,𝐸𝑉 − (𝑋𝐸𝑉(𝑡) − 𝑋𝐿𝐴𝑉(𝑡))

𝑑𝑠𝑎𝑓𝑒
𝐿𝐴𝑉,𝐸𝑉 ) + 𝑓3(𝑡)

∙ 𝑔 (
𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐿𝐸𝑉 − (𝑋𝐿𝐸𝑉(𝑡) − 𝑋𝐸𝑉(𝑡))

𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐿𝐸𝑉 ) 

(3.2) 

where functions 𝑓(∙) are used to indicate the risks from surrounding vehicles according to the 

lane change stages, 

𝑓1(𝑡) = {
1, 𝑡 ≤ 𝑇2′

0, 𝑒𝑙𝑠𝑒
, 𝑓2(𝑡) = {

1, 𝑇2 ≤ 𝑡 ≤ 𝑇2′

0, 𝑒𝑙𝑠𝑒
, 𝑓3(𝑡) = {

1, 𝑡 ≥ 𝑇2′

0, 𝑒𝑙𝑠𝑒
 (3.3) 

The indicator function 𝑔(∙) ensures the risk range [0, 1] 
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𝑔(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 0 < 𝑥 ≤ 1
1, 𝑥 ≥ 1

 (3.4) 

For the definition of safe distance, the model of Responsibility Sensitive Safety (RSS) is 

recently proposed by Intel on the premise of rigorous assumptions about the actions of other 

road users [85]. 

𝑑𝑠𝑎𝑓𝑒
𝑟,𝑓

= [𝑣𝑟𝜌 +
1

2
𝑎𝑚𝑎𝑥,𝑎𝑐𝑐𝜌

2 +
(𝑣𝑟 + 𝜌𝑎𝑚𝑎𝑥,𝑎𝑐𝑐)

2

2𝑎𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒
−

𝑣𝑓
2

2𝑎𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒
]

+

 (3.5) 

where subscripts r and f represent rear and front vehicles, separately. The notation [𝑥]+: =

𝑚𝑎𝑥{𝑥, 0}. The rear vehicle is assumed to accelerate with maximum acceleration when the 

front vehicle suddenly brakes with maximum deceleration. After ρ seconds, the rear vehicle 

starts to decelerate with minimum deceleration to avoid collisions with front vehicle. RSS 

model can guarantee safety in such a scenario, which indicates its conservation and potential 

to be a benchmark for absolute safety in the car-following scenario. 

The longitudinal speed is selected as the feature to model the travel efficiency goal, which is  

 𝐽𝑒
𝐸𝑉 = [𝑣𝑥

𝐸𝑉(𝑡) − 𝑣𝑥,𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝐸𝑉 ]

2
 (3.6) 

where 

 𝑣𝑥,𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝐸𝑉 = min⁡(𝑣𝑥,𝑚𝑎𝑥

𝐸𝑉 ,  𝑣𝑥
𝐿𝐸𝑉) (3.7) 

The cost term on ride comfort is related to longitudinal and lateral jerks, which can be written 

as 

 𝐽𝑐
𝐸𝑉 = 𝛼𝑥,𝑗𝑥

𝐸𝑉 (𝑗𝑥
𝐸𝑉(𝑡))2 + 𝛼𝑦,𝑗𝑦

𝐸𝑉 (𝑗𝑦
𝐸𝑉(𝑡))

2
, (3.8) 

where 𝛼𝑥,𝑗𝑥
𝐸𝑉  and 𝛼𝑦,𝑗𝑦

𝐸𝑉  are weighting coefficients; 𝑗𝑥
𝐸𝑉(𝑡) and 𝑗𝑦

𝐸𝑉(𝑡) are longitudinal and 

lateral jerks. 

The constraints come from the driving safety, efficiency and comfort. For driving safety, the 

distance between EV and other surrounding vehicles cannot be shorter than the corresponding 
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safe distances. Then the safety constraints for collision avoidance are 

 

{
 
 

 
 

𝑋𝐹𝑉(𝑡) − 𝑋𝐸𝑉(𝑡) ≥ 𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐹𝑉,⁡⁡⁡⁡𝑡 < 𝑇2

𝑋𝐹𝑉(𝑡) − 𝑋𝐸𝑉(𝑡) ≥ 𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐹𝑉 ⋏ 𝑋𝐸𝑉(𝑡) − 𝑋𝐿𝐴𝑉(𝑡) ≥ 𝑑𝑠𝑎𝑓𝑒

𝐿𝐴𝑉,𝐸𝑉

⋏ 𝑋𝐿𝐸𝑉(𝑡) − 𝑋𝐸𝑉(𝑡) ≥ 𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐿𝐸𝑉,⁡⁡⁡⁡𝑡 ∈ [𝑇2, 𝑇2′]

𝑋𝐿𝐸𝑉(𝑡) − 𝑋𝐸𝑉(𝑡) ≥ 𝑑𝑠𝑎𝑓𝑒
𝐸𝑉,𝐿𝐸𝑉,⁡⁡⁡⁡𝑡 > 𝑇2′

 (3.9) 

Also, vehicle stability is considered a part of driving safety, which is constrained by the vehicle 

system, including acceleration, front wheel steering angle, and their increments. 

 

{
 
 
 

 
 
 
|𝑎𝑥
𝐸𝑉(𝑡)| ≤ 𝑎𝑥

𝑚𝑎𝑥

|𝑎𝑦
𝐸𝑉(𝑡)| ≤ 𝑎𝑦

𝑚𝑎𝑥

|𝛿𝑓
𝐸𝑉(𝑡)| ≤ 𝛿𝑓

𝑚𝑎𝑥

|Δ𝑎𝑥
𝐸𝑉(𝑡)| ≤ Δ𝑎𝑥

𝑚𝑎𝑥

|Δ𝑎𝑦
𝐸𝑉(𝑡)| ≤ Δ𝑎𝑦

𝑚𝑎𝑥

|Δ𝛿𝑓
𝐸𝑉(𝑡)| ≤ Δ𝛿𝑓

𝑚𝑎𝑥

 (3.10) 

For travel efficiency constraints, EV is supposed to drive within an interval, 

 𝑣𝑥
𝑚𝑖𝑛 ≤ 𝑣𝑥

𝐸𝑉(𝑡) ≤ 𝑣𝑥
𝑚𝑎𝑥 (3.11) 

Driver comfort is mainly affected by the jerk, so it is formulized as 

 {
|𝑗𝑥
𝐸𝑉(𝑡)| ≤ 𝑗𝑥

𝑚𝑎𝑥

|𝑗𝑦
𝐸𝑉(𝑡)| ≤ 𝑗𝑦

𝑚𝑎𝑥 (3.12) 

To summarize, the lane change task of EV is modelled as an optimization problem with 

constraints from driving safety, vehicle dynamics, travel efficiency and driver comfort. 

Especially, for lane change decision-making, EV should consider the surrounding traffic 

conditions over the next few seconds so that the planned path is optimal without breaking the 

constraints. For each time point, the cost function is an accumulation of all time points in the 

prediction horizon. 

3.2 Lane change modeling as a two-player game 

The above analysis shows that the lane change vehicle has its own objective functions and 

constraints, which are related to the motions of surrounding vehicles. However, the interactions 

result in coupled effects between the EV and other surrounding vehicles, and the optimization-
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based decision-making model cannot handle it. For example, the lane change vehicle’s safety 

𝐽𝑠
𝐸𝑉 is closely related to the safety distance between it and other vehicles, which is determined 

by the behavior of both sides. Moreover, perfect predictions of other vehicles’ trajectories are 

impossible because there are time-dependent mutual effects between the EV’s action and other 

vehicles’ responses. Therefore, directly generating the motion profiles based on the defined 

objective functions and constraints is difficult.  

To avoid this situation, a hierarchical structure is adopted in this study, which is divided into 

decision-making, path planning and tracking control. The interaction is considered in the part 

of high-level game-based decision-making, where all the possibilities are listed and analyzed 

with the coupled effects considered. After the decision is made, the optimal trajectory will be 

selected from the candidate paths. The following section discusses the lane change interactions 

between two players, i.e., the ego vehicle and the lag vehicle. 

3.2.1 Interactions with complete information 

Fig. 3.3 depicts the lane change game. Different from the assumption in [66], where the ego 

vehicle acts first and the surrounding vehicle responds, both players have the same information 

and move simultaneously.  

Ego Vehicle 
(EV)

Front Vehicle 
(FV)

Leading 
Vehicle (LEV)

Lag Vehicle 
(LAV)

Following 
Vehicle (FOV)

Target lane

Current lane

Two players

Accelerate/Yield

Lane change/
Lane keeping

 

Figure 3.3. Lane change game played by EV and LAV 

A Nash equilibrium is a strategy profile in which no actor can increase its utility by unilaterally 

altering its strategy. 𝑆𝑖 denotes the strategy set of player 𝑖, and⁡ 𝑢𝑖(𝑠) is the utility function 

for player 𝑖 . 𝑠𝑖  ∈  𝑆𝑖  stands for the strategy profile of player 𝑖 , while 𝑠−𝑖  means the 

strategy profile of all other players. We use (𝑠𝑖, 𝑠−𝑖) to emphasize that player 𝑖⁡only has direct 
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influence over 𝑠𝑖, whereas 𝑠−𝑖 represents the decision variables of other players.  

A strategy profile 𝑠∗ = (𝑠1
∗, 𝑠2

∗, … , 𝑠𝑛
∗) is a Nash equilibrium if 

 𝒔𝑖
∗ = arg⁡ 𝑚𝑎𝑥

𝑠𝑖∈S𝑖(𝑠−𝑖
∗ )
 𝑢𝑖(𝒔𝑖, 𝒔−𝑖

∗ ), 𝑖 = 1,… , 𝑛. (3.13) 

In our settings of the lane change game, the ego vehicle in the current lane and the lag vehicle 

in the target lane are considered as the players 1 and 2, respectively, and the other vehicles are 

environment vehicles. Then the strategy spaces for two players are 𝑆1 = (𝐿𝐶, 𝐿𝐾) and 𝑆2 =

(𝑌𝑖𝑒𝑙𝑑, 𝐴𝑐𝑐). 

The factors that influence decisions for the utility functions of the players are primarily safety 

and speed efficiency costs. When the players choose different strategies, the utilities will differ. 

Therefore, the player 𝑖 ’s utilities in each scenario are essentially the function of the other 

player’s actions, which is formally described as 𝑢𝑖(𝑎𝑖
′, 𝑠−𝑖). 

The safety utility of two vehicles is related to three basic traffic indexes, i.e., relative distance, 

relative velocity and the absolute velocity of the following vehicle. The combinations of these 

parameters derive many surrogate safety measures [86], including THW (Time Headway), TTC 

(Time To Collisions), DRAC (Deceleration Rate to Avoid the Crash), etc. Besides, the driver 

response time also affects driving safety. To comprehensively consider these factors, the index 

“required deceleration” is proposed based on the revised RSS model [RSS], where the 

minimum and maximum parameters are replaced by the real time values, and the conditions 

will not be that strictly conservative in terms of safety. The revised RSS model is  

𝑑𝑠𝑎𝑓𝑒
𝑟,𝑓

= [𝑣𝑟𝜌 +
1

2
𝑎𝑟𝜌

2 +
(𝑣𝑟 + 𝜌𝑎𝑟)

2

2𝑎𝑟,𝑏𝑟𝑎𝑘𝑒
−

𝑣𝑓
2

2𝑎𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒
]
+

 (3.14) 

Compared with Eq. (3.5), the rear vehicle is supposed to maintain its motion instead of 

accelerating at maximum acceleration when the front vehicle suddenly decelerates during 

response time. The rear vehicle would decelerate with its comfortable deceleration instead of 

minimum deceleration once it realizes the front vehicle’s braking. If the current distance 𝑑𝑟,𝑓 

is given between front and rear vehicles, the required deceleration can be determined by 
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𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒 =
1

2
(𝑣𝑟 + 𝜌𝑎𝑟)

2/ [(𝑑𝑟,𝑓 +
𝑣𝑓
2

2𝑎𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒
) − ((𝑣𝑟𝜌 +

1

2
𝑎𝑟𝜌

2))] (3.15) 

After the determination of safety index, the safety utility functions can be determined according 

to the following and leading vehicles in different situations. For example, in the {Lane change, 

Yield} case, the safety utility of LAV is determined by the states of LAV and EV because EV 

will be its leading vehicle. The EV’s safety utility is determined by EV, LAV and LEV because 

the LEV is the expected leading vehicle of EV if making lane change. Also, the lane change 

vehicle should consider the effects on the lag vehicle.  

A pure strategy denotes the available choice of from the action space in games [87]. Suppose 

player 1 has 𝐾 pure strategies, and player 2 has 𝐽 pure strategies. Then the strategy spaces of 

two players are 𝑆1 = (𝑠11, ⋯ , 𝑠1𝐾)  and 𝑆2 = (𝑠21, ⋯ , 𝑠2𝐽) , respectively. Considering the 

weighting vector is introduced to balance the parameters range and preferences of different 

drivers, the safety utilities of players 1 and 2 in the {Lane change, Yield} case are 

 𝑢1,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠11, 𝑠21) = 𝛼1,11max⁡(𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,11
𝐸𝑉,𝐿𝐴𝑉 , 𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,11

𝐸𝑉,𝐿𝐸𝑉 ) (3.16) 

 𝑢2,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠11, 𝑠21) = 𝛼2,11𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,11
𝐸𝑉,𝐿𝐴𝑉

 (3.17) 

where the strategy pair (𝑠𝟏1, 𝑠𝟐1) means players 1 and 2 both choose the first strategy from 

their strategy spaces. The subscript “11” on the right-hand side of the equation means the 

strategy combinations of two players. The general safety utilities of each player in all possible 

situations can then be formalized as 

 𝑢1,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗) = 𝛼1,𝑘𝑗max⁡(𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,𝑘𝑗
𝐸𝑉,𝑉𝑒ℎ1𝑥 , 𝑎

𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,𝑘𝑗

𝐸𝑉,𝑉𝑒ℎ1𝑦 ) (3.18) 

 𝑢2,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗) = 𝛼2,𝑘𝑗𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,𝑘𝑗
𝐿𝐴𝑉,𝑉𝑒ℎ2𝑥  (3.19) 

where 𝑘 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝐽. In the Eq. (3.18), the required braking deceleration of the 

EV is determined by its actions. If the EV chooses to change the lane, 𝑉𝑒ℎ1𝑥 will be LAV, and 

𝑉𝑒ℎ1𝑦 will be LEV. If the action is keeping the lane, 𝑉𝑒ℎ1𝑥 will be FV in the current lane, 

and 𝑉𝑒ℎ1𝑦 will not exist. For the LAV in the Eq. (3.19), the 𝑉𝑒ℎ2𝑥 will be EV and LEV if 
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EV chooses LC and LK, respectively. When the front and rear vehicles are determined, the 

required deceleration can be calculated according to Eq. (3.15). 

The speed efficiency utility is defined by the expected speed gain. The expected speed should 

be less than or equal to the front car’s velocity in stable traffic. Then the efficiency utilities of 

players 1 and 2 in the {Lane change, Yield} case are 

 𝑢1,𝑒𝑓𝑓(𝑠11, 𝑠21) = 𝛽1,11(𝑣𝐿𝐸𝑉 − 𝑣𝐸𝑉) (3.20) 

 𝑢2,𝑒𝑓𝑓(𝑠11, 𝑠21) = 𝛽2,11(𝑣𝐸𝑉 − 𝑣𝐿𝐴𝑉) (3.21) 

The general efficiency utilities of each player in all possible situations can then be formalized 

as 

 𝑢1,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗) = 𝛽1,𝑘𝑗(𝑣𝑉𝑒ℎ1𝑧 − 𝑣𝐸𝑉) (3.22) 

 𝑢2,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗) = 𝛽2,𝑘𝑗(𝑣𝑉𝑒ℎ2𝑦 − 𝑣𝐿𝐴𝑉) (3.23) 

where 𝑘 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝐽. For the EV in the Eq. (3.22), the 𝑉𝑒ℎ1𝑧 will be LEV and 

FV if EV chooses LC and LK, respectively. For the LAV in the Eq. (3.23), the 𝑉𝑒ℎ2𝑦 will be 

EV and LEV if EV chooses LC and LK, respectively. 

The lane change penalty is introduced to avoid the situation where the EV changes lanes when 

there is enough space to accelerate. Therefore, the lane change cost is defined as 

𝑓𝐿𝐶(∆𝑥𝐸𝐹) =

{
 

 
0 ∆𝑥𝐸𝐹 < 𝑑𝑡ℎ1

(
1

𝑑𝑡ℎ2 − 𝑑𝑡ℎ1
∆𝑥𝐸𝐹 −

𝑑𝑡ℎ1
𝑑𝑡ℎ2 − 𝑑𝑡ℎ1

) 𝑑𝑡ℎ1 < ∆𝑥𝐸𝐹 < 𝑑𝑡ℎ2

1 ∆𝑥𝐸𝐹 > 𝑑𝑡ℎ2

 (3.24) 

where ∆𝑥𝐸𝐹 is the distance between EV and FV in the current lane; 𝑑𝑡ℎ1 and 𝑑𝑡ℎ2 are the 

threshold distances that determine the lane change cost. If the EV changes the lane when the 

EV-FV distance exceeds 𝑑𝑡ℎ1 , the lane change penalty will be effective. The general lane 

change penalty in all possible situations can then be formalized as 

 𝑢1,𝐿𝐶(𝑠11, 𝑠2𝑗) = 𝛾1,1𝑗𝑓𝐿𝐶(∆𝑥𝐸𝐹) (3.25) 

The lane change cost only exists for the player 1 (lane change vehicle) when it chooses to 
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change lane, and the actual distance is bigger than the threshold value 𝑑𝑡ℎ1. 

The comprehensive utility functions of each player are defined as the linear combinations of 

safety and speed costs. Therefore, the utility functions of each player in all the possible 

situations are 

 𝑢1(𝑠1𝑘, 𝑠2𝑗) = 𝑢1,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗) + 𝑢1,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗) + 𝑢1,𝐿𝐶(𝑠11, 𝑠2𝑗) (3.26) 

 𝑢2(𝑠1𝑘, 𝑠2𝑗) = 𝑢2,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗) + 𝑢2,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗) (3.27) 

In the pure strategy based game, the Nash equilibrium may not exist, which cannot be applied 

in our decision-making framework. Therefore, the mixed strategies are introduced in this study. 

Then the decisions of each player in any scenario is determined by the strategy with higher 

probability in the Nash equilibrium. The utilities function in the pure strategy based game will 

be revised to the expected utilities with the probability distribution 𝜎𝑖 over 𝑆𝑖 introduced. 

The element 𝜎1𝑘 is the probability that the player 1 selects the pure strategy 𝑠1𝑘. The expected 

utility of player 1 when choosing 𝜎1 = (𝜎11, ⋯ , 𝜎1𝐾) is 

𝑣1(𝜎1, 𝜎2) = ∑  

𝐾

𝑘=1

 𝜎1𝑘∑ 

𝐽

𝑗=1

𝜎2𝑗𝑢1(𝑠1𝑘, 𝑠2𝑗) = ∑  

𝐾

𝑘=1

 ∑  

𝐽

𝑗=1

 𝜎1𝑘𝜎2𝑗𝑢1(𝑠1𝑘 , 𝑠2𝑗) (3.28) 

Similarly, the expected utility of player 2 when choosing 𝜎2 = (𝜎21, ⋯ , 𝜎2𝐽) is 

𝑣2(𝜎1, 𝜎2) =∑  

𝐽

𝑗=1

 𝜎2𝑗∑ 

𝐾

𝑘=1

 𝜎1𝑘𝑢2(𝑠1𝑘, 𝑠2𝑗) = ∑  

𝐾

𝑘=1

 ∑  

𝐽

𝑗=1

 𝜎1𝑘𝜎2𝑗𝑢2(𝑠1𝑘 , 𝑠2𝑗) (3.29) 

The Nash equilibrium under the mixed strategies is then defined as  

A strategy profile of mixed strategies (𝜎1, … , 𝜎𝑛) for an n-player normal form game 

(𝐼, (𝑆𝑖), (𝑢𝑖)) is a Nash equilibrium in mixed strategies if for each 𝑖 and any alternative 

mixed strategy 𝜎𝑖
′, 

 𝑣𝑖(𝜎𝑖, 𝜎−𝑖) ≥ 𝑣𝑖(𝜎𝑖
′, 𝜎−𝑖) (3.30) 

In this section, the utility functions of two players are modelled in terms of driving safety and 
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efficiency. The mixed strategies are introduced, and the discrete decisions are determined by 

the probabilities over the strategy space in the Nash equilibrium. However, the type of LAV 

could be various in real traffic, leading to different driving behaviors. EV is required to estimate 

the driver type of the LAV and calculate the expected utilities with a new theoretical method, 

which will be discussed in the next section. 

3.2.2 Interactions with incomplete information 

In the complete information game, the players know the strategy space and utility functions of 

each other. The assumptions in the complete information game are actually too strong for the 

lane change interactions. In the lane change scenario, it is probable that the drivers do not know 

the utility functions without the communications. Even the popularization of V2X technology 

in future smart transportation could decrease the uncertainty to some degree, the information 

cannot be fully known by each other. Therefore, the previous model needs to be revised based 

on the framework of the incomplete information game. 

In the lane change scenario, the lane change vehicle EV is assumed to be player 1. For the lag 

vehicle LAV in the target lane driven by human drivers, it is supposed to be equipped with 

multiple types, such as aggressive, normal and cautious. The EV does not know the specific 

type of the LAV, but knows the probability distribution 𝑝( 𝜃2 ∣∣ 𝜃1 ) . This conditional 

probability distribution is the common knowledge, and each player knows it. If there are finite 

possible types for player 2 (LAV), then Θ2 = (𝜃21, … , 𝜃2𝐿), and the sum of the conditional 

probability is 1 

∑ 𝑝1( 𝜃2𝑙 ∣∣ 𝜃1 )
𝐿

𝑙=1
= 1 (3.31) 

Considering the mixed strategy based utility function with complete information in Eq. (3.31), 

the expected utility of player 1 with incomplete information will be 

𝑤1(𝜎1, 𝜎2, 𝜃1) ∶=∑ 𝑝1( 𝜃2𝑙 ∣∣ 𝜃1 )𝑣1(𝜎1, 𝜎2, 𝜃1, 𝜃2)
𝐿

𝑙=1
 (3.32) 

where  
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𝑣1(𝜎1, 𝜎2, 𝜃1, 𝜃2) = ∑  

𝐾

𝑘=1

 ∑  

𝐽

𝑗=1

 𝜎1𝑘(𝜃1)𝜎2𝑗(𝜃2)𝑢1(𝑠1𝑘, 𝑠2𝑗) (3.33) 

If the player 2 has continuous types 𝜃2 ∈ Θ2 and take Θ2 = [0, 1] without loss of generality, 

then the integration of the conditional probability over Θ2 is 1 

∫ 𝑝1( 𝜃2 ∣∣ 𝜃1 )
1

0

𝑑𝜃2 = 1 (3.34) 

The expected utility of player 1 with incomplete information will be 

𝑤1(𝜎1, 𝜎2, 𝜃1) ∶= ∫ 𝑝1( 𝜃2 ∣∣ 𝜃1 )𝑣1(𝜎1, 𝜎2, 𝜃1, 𝜃2)
1

0

𝑑𝜃2 (3.35) 

According to the definition of the Bayesian equilibrium in Eq. (A.4), player 1 will choose the 

strategy that maximizes 𝑤1(𝜎1, 𝜎2, 𝜃1) . The integration range Θ2 = [0, 1]  denotes that the 

LAV’s type is continuous given the EV belongs to type 𝜃1. 𝑣1(𝜎1, 𝜎2, 𝜃1, 𝜃2) the utility of the 

EV over the mixed strategy space under different types of two players. Through the integration 

of 𝑣1(𝜎1, 𝜎2, 𝜃1, 𝜃2) over the LAV’s type 𝜃2, the EV’s utility will only depends on its own type. 

In this section, the lane change is modelled based on the two-player-game under the condition 

of incomplete information, where the EV is required to consider different types of LAV. The 

LAV has a continuous aggressiveness whose probability distribution can be extracted from the 

naturalistic driving data. This information can be encoded to EV’s prior knowledge so that the 

proposed model could make more human-like driving decisions by learning from the driving 

data. The Bayesian Nash equilibrium based mixed strategy of the EV (player 1) is expected to 

rely on the LAV’s aggressiveness according to Eq. (3.35), which is consistent with our driving 

experience. The next section will discuss the trajectories generation after the decisions are made. 

3.3 Path planning based on quintic polynomial spline 

After the high-level lane change or lane keeping decisions are made, the trajectory is generated 

through candidate trajectories generation and optimal path selection that are processed in the 

lower-level path planning module. The EV is driving in the middle lane, and the future 

trajectories can be widely distributed based on the driving decisions and measured kinematics 

parameters, such as the relative distances, THW, TTC, etc., as is shown in Fig. 3.4.  
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EV FV

LEV 1LAV 1

FOV

Target lane 1

Current lane

Target lane 2

LEV 2LAV 2  

Figure 3.4 Trajectory generation considering surrounding vehicles 

After the driving decisions are obtained, the path planning module is designed by assuming the 

driver can predict the target vehicle states in a short time period. The longitudinal goal speed 

and future lateral positions can be estimated by the human driver, where the latter is obtained 

according to the lane keep or lane change decisions. Thus, the polynomial curves are chosen to 

plan the path in both lateral and longitudinal axis after obtaining the driving decisions 

 {
𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2 + 𝑎3𝑡
3 + 𝑎4𝑡

4

𝑦(𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡
2 + 𝑏3𝑡

3 + 𝑏4𝑡
4 + 𝑏5𝑡

5 (3.36) 

where {𝑎0, … , 𝑎4} and {𝑏0, … , 𝑏5} are coefficients of polynomial functions that are estimated 

through following boundary conditions. 

 {
𝑥(0) = 𝑥0, 𝑥̇(0) = 𝑣𝑥0, 𝑥̈(0) = 𝑎𝑥0, 𝑥̇(𝑇) = 𝑣𝑥𝑇 , 𝑥̈(𝑇) = 𝑎𝑥𝑇
𝑦(0) = 𝑦0, 𝑦̇(0) = 𝑣𝑦0, 𝑦̈(0) = 𝑎𝑦0, 𝑦(𝑇) = 𝑦𝑇 , 𝑦̇(𝑇) = 𝑣𝑦𝑇 , 𝑦̈(𝑇) = 𝑎𝑦𝑇

 (3.37) 

where {𝑥0, 𝑣𝑥0, 𝑎𝑥0, 𝑦0, 𝑣𝑦0, 𝑎𝑦0}  are the initial states on 𝑡 = 0 ; 𝑇  is the lane-change 

duration. A set of different trajectories are generated through sampling the terminal states space 

{𝑣𝑥𝑇 , 𝑎𝑥𝑇 , 𝑦𝑇 , 𝑣𝑦𝑇 , 𝑎𝑦𝑇 , 𝑇}. The centerline of the target lane is set to the future lateral position. 

Other variables, such as the accelerations and lateral velocity, are assumed zero if the lane 

change is finished. Therefore, the sample spaces are simplified to cover all possible motions: 

 
𝑇 ∈ [𝑇min, 𝑇max]

𝑣𝑥𝑇 ∈ [max(𝑣𝑥𝑇 − Δ𝑣, 0), max(𝑣𝑥𝑇 + Δ𝑣, 𝑣𝑥max)]
⁡ (3.38) 

The following multi-objective optimization problem is built to obtain an optimal trajectory 

from the candidates 
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𝜉𝑗∗ , 𝑗
∗ = arg⁡min𝑗  𝑓(𝜉𝑗 ∣ 𝑆,𝝎) 

𝑠. 𝑡.⁡⁡𝒙̇𝜉𝑗 = 𝑔 (𝒙𝜉𝑗 , 𝜉𝑗) 

{
𝑦𝑗 ∈ [𝑦min, 𝑦max], 𝑓𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝜉𝑗) = 0,

𝒙𝜉𝑗 ∈ Ω
 

(3.39) 

where 𝑓 is the cost function with weighting parameters 𝝎 when driving in the environment 

𝑆; 𝑦min and 𝑦max are the lateral positions of the lane boundaries; Ω denotes the envelope 

constraints when the vehicle tracks the trajectory 𝜉𝑗. 

The optimization objectives, i.e., elements of the cost function 𝑓, are presented in detail, which 

consist of safety, vehicle stability, and driving efficiency. 

1) Safety: The candidate trajectories that satisfy the constraints are collision-free, while all 

candidates have different risk levels. We define an exponential function of time headway to 

select a trajectory with lower risk in terms of the FV, LAV and LEV. 

 𝑓1(𝜉𝑗) = max𝑡∈(0,𝑇𝑗)  (𝑒
−𝑇𝐻𝑊𝑖(𝑡)), 𝑖 = 𝑓𝑟𝑜𝑛𝑡, 𝑙𝑒𝑎𝑑, 𝑙𝑎𝑔 (3.40) 

2) Ride comfort: The lateral acceleration is applied to evaluate the passenger comfort for all of 

the trajectory candidates. 

𝑓2(𝜉𝑗) =
1

𝑇𝑗
∫  |𝑎𝑦(𝑡)|
𝑇𝑗

0

𝑑𝑡 (3.41) 

3) Driving efficiency: Human drivers are inclined to complete a lane-change maneuver as fast 

as possible, which is reflected in higher speed. 

𝑓3(𝜉𝑗) =
1

𝑇𝑗
∫  |𝑣𝑥(𝑡)|
𝑇𝑗

0

𝑑𝑡 (3.42) 

Combining the above cost, the cost function is proposed to evaluate the trajectory candidates. 

𝑓(𝜉𝑗 ∣ 𝑆,𝝎) = ∑𝜔𝑘𝑓𝑘(𝜉𝑗)

3

𝑘=1

 (3.43) 
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3.4 Extensions from two-player to multi-player game 

In some conditions, the two-player lane change game is necessary to be extended, if the 

behavior of other vehicles has the influence on the lane change interaction. For example, the 

EV is intended to change the lane when it approaches the slow moving FV, as is shown in Fig. 

3.5. 

Ego Vehicle 
(EV)

Front Vehicle 
(FV)

Leading 
Vehicle (LEV)

Lag Vehicle 
(LAV)

Following 
Vehicle (FOV)

Target lane

Current lane

Three players LEV 2

 

Figure 3.5 Multi-player lane change game considering the LEV’s lateral behavior 

Simultaneously, the LEV in the other lane is the potential lane change vehicle, observing the 

gap between EV and FV is long enough for a safe maneuver. Apparently, EV may change lane 

in advance or decelerate to avoid collisions, if LEV conducts the cut-in behavior. On the other 

hand, the acceleration behavior of the EV may force the LEV to cancel the lane change 

intention. Therefore, the EV is required to pay attention to the LEV’s lateral behavior when 

making lane change or lane keeping decisions, besides the longitudinal behavior of LAV. 

Consequently, the two-player game is extended to the multiplayer game, which covers any 

possible case in the highway lane change without assuming the simplified motions of other 

vehicles. 

3.4.1 Multi-player complete information game 

Following equation (3.13), the strategy of each player is generated according to the Nash 

equilibrium. The EV, LAV and LEV are regarded as the players 1, 2 and 3, respectively, and 

the other vehicles are environment vehicles. Then the strategy spaces for three players are 𝑆1 =

(𝐿𝐶, 𝐿𝐾),⁡ 𝑆2 = (𝑌𝑖𝑒𝑙𝑑, 𝐴𝑐𝑐), and 𝑆3 = (𝐶𝑢𝑡 − 𝑖𝑛, 𝐿𝐾). 

On the basis of the analysis of the utilities in the two-player game, the utilities of the LEV also 
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include the safety and speed efficiency costs. Suppose player 3 has 𝐻 pure strategies, then the 

strategy spaces of three players are 𝑆1 = (𝑠11, ⋯ , 𝑠1𝐾)  and 𝑆2 = (𝑠21, ⋯ , 𝑠2𝐽) , and 𝑆3 =

(𝑠31, ⋯ , 𝑠3𝐻)  respectively. Considering the weighting vector is introduced to balance the 

parameters range and preferences of different drivers, the safety utilities of players 1, 2 and 3 

in the {Lane change, Yield, Cut-in} case are 

 𝑢1,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠11, 𝑠21, 𝑠31) = 𝛼1,111max⁡(𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,111
𝐸𝑉,𝐿𝐴𝑉 , 𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,111

𝐸𝑉,𝐿𝐸𝑉2 ) (3.44) 

 𝑢2,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠11, 𝑠21) = 𝛼2,111𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,111
𝐸𝑉,𝐿𝐴𝑉

 (3.45) 

 𝑢3,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠11, 𝑠21, 𝑠31) = 𝛼3,111max⁡(𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,111
𝐿𝐸𝑉,𝐹𝑂𝑉 , 𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,111

𝐿𝐸𝑉,𝐹𝑉 ) (3.46) 

where the strategy pair (𝑠𝟏1, 𝑠𝟐1, 𝑠𝟑1) means players 1, 2 and 3 all choose the first strategy 

from their strategy spaces. The subscript “111” on the right-hand side of the equation means 

the strategy combinations of three players. The general safety utilities of each player in all 

possible situations can then be formalized as 

 𝑢1,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ) = 𝛼1,𝑘𝑗ℎmax⁡(𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,𝑘𝑗ℎ
𝐸𝑉,𝑉𝑒ℎ1𝑥 , 𝑎

𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,𝑘𝑗ℎ

𝐸𝑉,𝑉𝑒ℎ1𝑦 ) (3.47) 

 𝑢2,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ) = 𝛼2,𝑘𝑗ℎ𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,𝑘𝑗ℎ
𝐿𝐴𝑉,𝑉𝑒ℎ2𝑥  (3.48) 

 𝑢3,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ) = 𝛼1,𝑘𝑗ℎmax⁡(𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,𝑘𝑗ℎ
𝐿𝐸𝑉,𝑉𝑒ℎ3𝑥 , 𝑎

𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒,𝑘𝑗ℎ

𝐿𝐸𝑉,𝑉𝑒ℎ3𝑦 ) (3.49) 

where 𝑘 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝐽; ℎ = 1,2, … ,𝐻.  In the Eq. (3.49), the required braking 

deceleration of the LEV is determined by its actions. If the LEV chooses to cut in, 𝑉𝑒ℎ1𝑥 will 

be FOV, and 𝑉𝑒ℎ1𝑦 will be FV. If the action is keeping the lane, 𝑉𝑒ℎ1𝑥 will be LEV 2 in the 

target lane, and 𝑉𝑒ℎ1𝑦 will not exist. When the front and rear vehicles are determined, the 

required deceleration can be calculated according to Eq. (3.15). 

The speed efficiency utility is defined by the expected speed gain. The expected speed should 

be less than or equal to the front vehicle’s speed in the stable traffic. Then the efficiency utilities 

of players 1 and 2 in the {Lane change, Yield} case are 

 𝑢1,𝑒𝑓𝑓(𝑠11, 𝑠21, 𝑠31) = 𝛽1,111(𝑣𝐿𝐸𝑉 − 𝑣𝐸𝑉) (3.50) 
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 𝑢2,𝑒𝑓𝑓(𝑠11, 𝑠21, 𝑠31) = 𝛽2,111(𝑣𝐸𝑉 − 𝑣𝐿𝐴𝑉) (3.51) 

 𝑢3,𝑒𝑓𝑓(𝑠11, 𝑠21, 𝑠31) = 𝛽3,111(𝑣𝐹𝑉 − 𝑣𝐿𝐸𝑉) (3.52) 

The general efficiency utilities of each player in all possible situations can then be formalized 

as 

 𝑢1,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ) = 𝛽1,𝑘𝑗ℎ(𝑣𝑉𝑒ℎ1𝑧 − 𝑣𝐸𝑉) (3.53) 

 𝑢2,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗 , 𝑠3ℎ) = 𝛽2,𝑘𝑗ℎ(𝑣𝑉𝑒ℎ2𝑦 − 𝑣𝐿𝐴𝑉) (3.54) 

 𝑢1,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ) = 𝛽3,𝑘𝑗ℎ(𝑣𝑉𝑒ℎ3𝑧 − 𝑣𝐸𝑉) (3.55) 

where 𝑘 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝐽; ℎ = 1,2, … ,𝐻. For the LEV in the Eq. (3.53), the 𝑉𝑒ℎ1𝑧 

will be FV and LEV2 if LEV chooses Cut-in and LK, respectively.  

For the lane change penalty, the distance between LEV and LEV2 ∆𝑥𝐿𝐸𝐹 is selected as the 

factor for quantification. Then the general lane change penalty of the player 1 and 3 in all 

possible situations can then be formalized as 

 𝑢1,𝐿𝐶(𝑠11, 𝑠2𝑗 , 𝑠3ℎ) = 𝛾1,1𝑗ℎ𝑓𝐿𝐶(∆𝑥𝐸𝐹) (3.56) 

 𝑢3,𝐿𝐶(𝑠1𝑖, 𝑠2𝑗, 𝑠31) = 𝛾3,𝑖𝑗1𝑓𝐿𝐶(∆𝑥𝐿𝐸𝐹) (3.57) 

The comprehensive utility functions of each player are defined as the linear combinations of 

safety and speed costs. Therefore, the utility functions of each player in all the possible 

situations are 

 𝑢1(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ) = 𝑢1,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗 , 𝑠3ℎ) + 𝑢1,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ) + 𝑢1,𝐿𝐶(𝑠11, 𝑠2𝑗 , 𝑠3ℎ)

 (3.58) 

 𝑢2(𝑠1𝑘 , 𝑠2𝑗 , 𝑠3ℎ) = 𝑢2,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠11, 𝑠2𝑗, 𝑠3ℎ) + 𝑢2,𝑒𝑓𝑓(𝑠11, 𝑠2𝑗 , 𝑠3ℎ) (3.59) 

𝑢3(𝑠1𝑘, 𝑠2𝑗 , 𝑠3ℎ) = 𝑢3,𝑠𝑎𝑓𝑒𝑡𝑦(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ) + 𝑢3,𝑒𝑓𝑓(𝑠1𝑘, 𝑠2𝑗 , 𝑠3ℎ) + 𝑢3,𝐿𝐶(𝑠1𝑖, 𝑠2𝑗, 𝑠31) (3.60) 

The mixed strategy space and expected utilities are introduced considering the probability 
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distributions of the players’ types. Then the expected utility of player 1 when choosing 𝜎1 =

(𝜎11, ⋯ , 𝜎1𝐾) is 

𝑣1(𝜎1, 𝜎2, 𝜎3) = ∑  

𝐻

ℎ=1

 𝜎3ℎ∑ 

𝐾

𝑘=1

 𝜎1𝑘∑ 

𝐽

𝑗=1

𝜎2𝑗𝑢1(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ)

= ∑∑∑𝜎1𝑘𝜎2𝑗𝜎3ℎ𝑢1(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ)

𝐻

ℎ=1

𝐽

𝑗=1

𝐾

𝑘=1

 

(3.61) 

Similarly, the expected utility of player 2 when choosing 𝜎2 = (𝜎21, ⋯ , 𝜎2𝐽) is 

𝑣2(𝜎1, 𝜎2, 𝜎3) = ∑  

𝐻

ℎ=1

 𝜎3ℎ∑ 

𝐽

𝑗=1

 𝜎2𝑗∑ 

𝐾

𝑘=1

 𝜎1𝑘𝑢2(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ)

= ∑∑∑𝜎1𝑘𝜎2𝑗𝜎3ℎ𝑢2(𝑠1𝑘 , 𝑠2𝑗, 𝑠3ℎ)

𝐻

ℎ=1

𝐽

𝑗=1

𝐾

𝑘=1

 

(3.62) 

Finally, the expected utility of player 2 when choosing 𝜎3 = (𝜎31, ⋯ , 𝜎3𝐻) is 

𝑣3(𝜎1, 𝜎2, 𝜎3) =∑  

𝐽

𝑗=1

 𝜎2𝑗∑ 

𝐾

𝑘=1

 𝜎1𝑘∑  

𝐻

ℎ=1

 𝜎3ℎ𝑢3(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ)

= ∑∑∑𝜎1𝑘𝜎2𝑗𝜎3ℎ𝑢3(𝑠1𝑘 , 𝑠2𝑗, 𝑠3ℎ)

𝐻

ℎ=1

𝐽

𝑗=1

𝐾

𝑘=1

 

(3.63) 

In this section, the two-player lane change game was extended to the multi-player complete 

information game, where the cut-in and lane keeping behavior of LEV is considered to the 

interaction. The next section will discuss the effects of the player type on the decision-making. 

3.4.2 Multi-player incomplete information game 

For the driver type distribution, the EV is supposed to know the probability distribution 

𝑝( 𝜃2, 𝜃3 ∣∣ 𝜃1 ). The sum of the conditional probability distribution over the driver type space 

of LAV and LEV is 1 

∑ ∑ 𝑝
1
( 𝜃2𝑙, 𝜃3𝑠 ∣∣ 𝜃1 )

𝐿

𝑙=1
= 1

𝑆

𝑠=1
 (3.64) 

Considering the mixed strategy based utility function with complete information in Eq. (3.64), 
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the expected utility of player 1 with incomplete information will be 

𝑤1(𝜎1, 𝜎2, 𝜎3, 𝜃1) ∶=∑ ∑ 𝑝1( 𝜃2𝑙, 𝜃3𝑠 ∣∣ 𝜃1 )𝑣1(𝜎1, 𝜎2, 𝜎3, 𝜃1, 𝜃2, 𝜃3)
𝐿

𝑙=1

𝑆

𝑠=1
 (3.65) 

where  

𝑣1(𝜎1, 𝜎2, 𝜎3, 𝜃1, 𝜃2, 𝜃3) = ∑∑∑𝜎1𝑘(𝜃1)𝜎2𝑗(𝜃2)𝜎3ℎ(𝜃3)𝑢1(𝑠1𝑘, 𝑠2𝑗, 𝑠3ℎ)

𝐻

ℎ=1

𝐽

𝑗=1

𝐾

𝑘=1

 (3.66) 

If the players’ types are continuous, then the integration of the conditional probability over the 

driver type space is 

∫ ∫ 𝑝1( 𝜃2, 𝜃3 ∣∣ 𝜃1 )
1

0

𝑑𝜃2𝑑𝜃3

1

0

= 1 (3.67) 

The expected utility of player 1 with incomplete information will be 

𝑤1(𝜎1, 𝜎2, 𝜎3, 𝜃1) ∶= ∫ ∫ 𝑝1( 𝜃2, 𝜃3 ∣∣ 𝜃1 )𝑣1(𝜎1, 𝜎2, 𝜎3, 𝜃1, 𝜃2, 𝜃3)
1

0

𝑑𝜃2𝑑𝜃3

1

0

 (3.68) 

The player 1 will choose the strategy that maximizes 𝑤1(𝜎1, 𝜎2, 𝜎3, 𝜃1). The integration range 

Θ2 = [0, 1] and Θ3 = [0, 1] denotes that the types of LAV and LEV are continuous given the 

EV belongs to type 𝜃1. 𝑣1(𝜎1, 𝜎2, 𝜎3, 𝜃1, 𝜃2, 𝜃3) is the utility of the EV over the mixed strategy 

space under different types of three players.  

In this part, the lane change decision-making is modelled with the multi-player game under the 

condition of incomplete information, where the EV is required to consider the types of LAV 

and LEV. The joint probability distribution 𝑝1( 𝜃2, 𝜃3 ∣∣ 𝜃1 )  given the type of EV can be 

obtained from the section of driver identification from naturalistic driving data. Then the 

proposed model could make more human-like driving decisions with this information encoded. 

3.5 Simulation results  

The performances of the proposed decision-making model are evaluated. In the two-player 

game simulation, two different types of the lag vehicles are designed to test the adaptivity of 

the developed decision-making model, including aggressive and cautious driver types. In the 

multi-player simulation, the combinations of LAV and LEV are designed to evaluate the 
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proposed model. The simulations are implemented on the MATLAB/Simulink platform. 

3.5.1 Simulation environment setup 

The simulation scenario in this work is extracted from the highD dataset, which collects the 

naturalistic vehicle trajectories on the highway with plenty of passenger car data. One typical 

interactive scenario is selected to verify the proposed model with strong interactions between 

the EV and the LAV, as is shown in Fig. 3.6. In the dataset, the real drivers’ actions can be 

observed. In the simulation, the EV is replaced by the proposed decision-making model with 

environment vehicles maintaining their states except the LAV. In this way, the interaction 

environment is mainly controlled by the EV-LAV relationship, when other surrounding 

vehicles’ states remain unchanged in the two compared scenarios.   

The speed limit is 35 m/s, and the perception distances are 200 m. Regarding the candidate 

trajectories generation, the lane change duration T is sampled from [3, 6] s with an interval of 

1s, and the velocity difference range is [-2, 2] m/s with an interval of 0.5 m/s.  

EV FV

LEVLAV

FOV

Target lane 

Current lane

Proposed model

Two-player game
Surrounding vehicles 

from data

Player 1

 

Figure 3.6. Simulation driving environment for two-player complete information game 

For the risk assessment, three discrete risk levels are defined as a random variable Ξ ∈

{𝐷, 𝐴, 𝑆}  with respect to the values of the aforementioned metrics vectors, including 

Dangerous, Alert and Safe. Three risk measures are selected to quantify the driving risks, 

including TTC, THW and the relative distance between two vehicles. Then two critical values 

are required to map the observed traffic conditions to the corresponding risk levels. In this work, 

the following S-shaped membership function is adopted to determine the likelihood function, 

which generates the probability for each risk measure:  
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𝑃(𝑋 = 𝑥𝑚 ∣ Ξ = 𝜉𝑖) =

{
 
 

 
 (2 − 4𝛽)/ (1 + 𝑒𝑥𝑝 (−𝛼𝑥𝑚(𝑥𝑚 − 𝜉

‾
𝑖
𝑐𝑟))) + (3𝛽 − 1),  𝑖𝑓 𝑥𝑚 > 𝜉‾𝑖

𝑐𝑟

(4𝛽 − 2)/ (1 + 𝑒𝑥𝑝⁡ (−𝛼𝑥𝑚(𝑥𝑚 − 𝜉𝑖
𝑐𝑟))) + (1 − 𝛽),  𝑖𝑓 𝑥𝑚 ≤ 𝜉𝑖

𝑐𝑟

𝛽,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3.69) 

where 𝑥𝑚  is the measured value of an element in the threat metrics vector 𝚽 ; 𝜉𝑖  is the 

inferred risk level; 𝛼𝑥𝑚 is the shape parameter, representing the uncertainty of the observed 

threat metrics; 𝛽 is the regularization factor and is assigned 0.9 in this work; 𝜉‾𝑖
𝑐𝑟 and 𝜉𝑖

𝑐𝑟 

are upper and bottom thresholds, respectively. 

The posterior probability can be determined and normalized with weightings of multiple threat 

metrics, and then the probability of a certain risk level with all threat metrics measured can be 

obtained 

𝑃(Ξ = 𝜉𝑖 ∣ 𝑋𝑗 = 𝑥𝑚
𝑗
) =

∑  
𝑁0
𝑗=1  𝜔𝑗𝑃(Ξ = 𝜉𝑖 ∣ 𝑋 = 𝑥𝑚)

∑  
𝑁𝑧
𝑖=1  𝜔𝑗

, 𝑗 = 1,2,3 (3.70) 

For a specific lane change, the risks are from the LAV and LEV. Therefore, the lane change 

risks probabilities should be a combination of each risk level with a new function. 

 {

𝑃(Ξ𝑙 = 𝐷) = 1 −∏  𝑘=𝐿AV,𝐿𝐸𝑉  𝑃(Ξ𝑘 = −𝐷 ∣ 𝑋𝑗
𝑘 = 𝑥𝑚

𝑗,𝑘
)

𝑃(Ξ𝑙 = 𝑆) = ∏  𝑘=𝐿𝐴𝑉,𝐿𝐿𝑉  𝑃(Ξ𝑘 = 𝑆 ∣ 𝑋𝑗
𝑘 = 𝑥𝑚

𝑗,𝑘
)

𝑃(Ξ𝑙 = 𝐴) = 1 − 𝑃(Ξ𝑙 = 𝐷) − 𝑃(Ξ𝑙 = 𝑆)

 (3.71) 

where 𝑋𝑗
𝐿𝐴𝑉 and 𝑋𝑗

𝐿𝐸𝑉 are the random variables that represent the threat metrics of LAV and 

LEV; 𝑥𝑚
𝑗,𝐿𝐴𝑉

 and 𝑥𝑚
𝑗,𝐿𝐸𝑉

 denote their measured values. 

The inferred risk level can then be determined by finding the maximum probability of candidate 

risk levels 

 Ξ̂𝑙 = arg⁡max
Ξ𝑙

𝑃(Ξ = 𝜉𝑖) (3.72) 

Through evaluating the lane change risks, the driving conditions around the ego vehicle are 

quantified, which quantitatively evaluates the performance of the decision-making model to 

guarantee the driving safety. 
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3.5.2 Two-player complete information game  

In this part, two cases are presented to evaluate the performances of the lane change decision-

making model based on the complete information game. 

Interacting with an aggressive driver 

The scenario in this case is constructed based on the extracted interactive lane change scenario 

in the naturalistic real data. The EV is initially located in the leftmost lane, denoted by the red 

color, as shown in Fig. 3.7 (a).  

t=0 t=6.4s, LC starts t=10s, LC cancels t=15.16s, second LC starts

 

Figure 3.7. The autonomous vehicle interacts with the aggressive lag vehicle driver. (a) EV motion 

profile. (b) Risk level. (c) Relative distances. (d) Vehicle speed. 
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Specifically, the probability of each risk level is presented and analyzed according to the risk 

measures, including TTC, THW and relative distance. Moreover, the relative distances between 

EV and other surrounding vehicles, and the vehicles’ speed are shown to describe the driving 

process. 

The initial position coordinates of EV, FV, LEV, and the LAV are (10.18, 2.19), (59.97, 2.09), 

(44.05, 5.82) and (9.15, 5.99), separately. Moreover, the initial longitudinal speeds of EV, FV, 

LEV, and the LAV are 20.25 m/s, 19.6 m/s, 22.73 m/s, and 22.44 m/s, respectively.  

It can be seen from the initial condition that the EV drives faster than the FV, but the distance 

between them is large enough that the EV can accelerate to reach a higher speed. In terms of 

the left lane, the LAV actually overlaps with the EV and overtakes it in the next few seconds. 

Therefore, the EV is not motivated to change lane and the driving risk is high in the target lane 

at the beginning of the period. 

The surrounding vehicles drive along the profiles as the real data present until the EV generates 

the lane change decision based on the noncooperative game played by EV and LAV at 5.4 s, 

when the risk level is “Safe”. The LAV is set to be aggressive and accelerate at 2 m/s2 if it 

detects the lane change intention of the EV. Therefore, the LAV’s speed increases, and the 

distance from the LAV to the EV decreases rapidly several seconds after the lane change 

decision-making time step, as shown in Fig. 3.7 (d) and (c).  

Since the LAV keeps accelerating and does not yield to EV, the EV has to cancel the lane change 

and get back to the original lane at t=10 s, as shown in Fig. 3.7 (a). Although the distances are 

both over 20 m from the EV to the LAV and LEV, and the probability of being “Safe” is close 

to the peak value, the EV predicts the worse safety condition because the term is included to 

estimate the future driving environment. Therefore, the EV successfully avoids the potential 

collision with the LAV by recognizing the surrounding environment and following Nash 

equilibrium.  

The last decision change happens at t=15.16s when the EV intends to make the second lane 

change. The EV is expected to change lane successfully because the LAV is over 60 m from 

EV, and the speed difference is around 0. More importantly, the risk level has stayed “Safe” for 
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the last several seconds. However, the result is unknown because of the limit range of the data 

collection. 

This noncooperative game begins at 𝑡 = 0, when it is only known by the EV because the LAV 

follows the motion profile in the real data. At the lane change time step, the game is known to 

both players, but the LAV does not follow the Nash equilibrium because the test scenario 

requires the specific driving characteristic for the opponent of the EV. During this process, the 

EV follows the Nash equilibrium and decides to keep or change lane according to the driving 

environment. When the LAV drives forward and becomes the LEV, the game ends, and another 

one starts until the next time the EV generates the lane change decision at t=15.16 s. 

Interacting with a cautious driver 

For this scenario of interacting with the cautious driver, the states stay the same as the previous 

one until t=6.4 s. The LAV detects the lane change intention of the EV and decelerates at -0.5 

m/s2.  

As the Fig. 3.8 (c) and (d) shows, the relative distance between LAV and EV is around 45 m, 

and the speed difference is less than 2 m/s although LAV is faster. The LAV cannot overtake 

EV within such a large distance considering it will decelerate at -0.5 m/s2. Moreover, the risk 

level in Fig. 3.8 (b) shows that the probability of being “Safe” is increasing after the EV makes 

lane change. 

After the EV successfully changes lane, the dense traffic flow in the leftmost lane results in a 

high probability of the “Dangerous” risk level. Therefore, the EV keeps the lane and follows 

the new FV until the end of the data collection range. 
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t=0 t=6.4s, LC starts

t=12.32s, LC ends

 

Figure 3.8. The autonomous vehicle interacts with the cautious lag vehicle driver. (a) EV motion 

profile. (b) Risk level. (c) Relative distances. (d) Vehicle speed. 

3.5.3 Multi-player complete information game 

This section introduces how the multi-player game is used in the conditions where the LEV 

cuts in. 

LEV cuts in and LAV accelerates 

The environment vehicles and the states in this case are kept as same as them of the two-player 

game, except for the controlled vehicles, including LEV, EV and LAV. As is shown in Fig. 3.9 

(a), the brown vehicle in this scenario is initially overlapped with the red EV and identified as 
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the LAV at 𝑡 = 0. Because it travels much faster than an EV, it is quickly identified as a LEV 

and performs the cut-in behavior when it reaches around 100 meters. At 𝑡 = 5.16⁡𝑠, the LEV 

crosses the lane boundary, and it is recognized as the front vehicle (FV) by EV. Thus, the EV 

starts to change lane for a larger safety space and higher efficiency when the probability of 

being “Safe” in the target lane is 1. The critical time steps in the cut-in process of the LEV are 

marked by the squares along with its trajectory, while the corresponding points are marked by 

the star for the EV. The EV stays a relatively safe distance from the LEV during the whole 

process, which is indicated in Fig. 3.9 (c). 

t=0 t=5.16s, LC starts t=11.96s, second LC starts

t=17.36s, LC ends

 

Figure 3.9. The autonomous vehicle interacts with the aggressive lag vehicle driver when LEV cuts in. 

(a) Motion profiles. (b) Risk level. (c) Relative distances. (d) Vehicle speed. 
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The light green LAV is set to accelerate at 1.5 m/s2 if it detects the lane change intention of the 

EV. Therefore, the LAV’s speed increases, and the distance from the LAV to the EV decreases 

rapidly, as shown in Fig. 3.9 (d) and (c). Since the LAV does not yield to the lane changing EV 

and the distance from EV to the currently identified EV is not large, the EV cancels the lane 

change at around 160 meters, and drives at nearly constant speed. After the LAV overtakes EV 

and EV is approaching to the FV at 𝑡 = 12.56⁡𝑠, EV starts its second lane change. Although 

the current risk level of being “dangerous” occupies the highest probability due to the small 

relative distance between the light green LEV and EV, the probability of being “safe” increases 

rapidly because the LEV drives much faster than the EV with their speeds being 32 m/s and 20 

m/s, separately, presented in Fig. 3.9 (c). Moreover, the ego vehicle crosses the lane boundary 

after driving over 50 meters, when the distance between EV and LEV is nearly 40 meters. 

Therefore, the EV changes lane safely at the appropriate time. 

After the EV successfully changes lane and switches to the middle lane, the dense traffic flow 

in the leftmost lane and large space in the current lane make the EV accelerate until the end of 

the data collection range. 

LEV cuts in and LAV yields 

Instead of accelerating and overtaking the EV, LAV in this scenario detects the lane change 

intention of the EV and decelerates at -0.5 m/s2. As Fig. 3.10 (a) shows, the motion states of all 

the vehicles stay the same until the EV changes lane at 𝑡 = 5.16⁡𝑠, when the EV-FV distance 

drops to less than 10 meters because of the cut-in of the LEV. The EV changes lane without the 

disturbance of the LAV. In terms of the risk level for EV in the target lane, the probability of 

being “Safe” is 1 during whole lane change process, as shown in Fig. 3.10 (b). The distances 

in Fig. 3.10 (c) between EV and other vehicles are all more than 20 meters and do not decrease 

too much until the EV finishes a lane change. 
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t=0 t=5.16s, LC starts t=8.56s, LC ends

 

Figure 3.10. The autonomous vehicle interacts with the cautious lag vehicle driver when LEV cuts in. 

(a) Motion profiles. (b) Risk level. (c) Relative distances. (d) Vehicle speed. 

Compared with the two-player game scenario, the ego vehicle’s driving decisions are affected 

by both LEV and LAV in the multi-player game scenarios. The lateral behavior of the LEV is 

considered to affect the EV’s driving space, and the lane change behavior is triggered in 

advance compared with two-player game scenarios. In some cases, the driving conditions are 

safety-critical, such as when the LEV cuts in from a short distance and the LAV accelerates 

simultaneously. The ego vehicle can either cancel the lane change or brake hard to guarantee 

driving safety. 
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3.6 Summary 

In this chapter, the lane change behavior was analyzed and modelled under the framework of 

game theory. The game model was classified to complete and incomplete information game 

based on the information availability in real traffic. In particular, the incomplete information 

game with mixed strategies was emphasized accounting for the uncertainty of the enviroment 

vehicles in real traffic. After that, the optimal path was generated after candidate trajectory 

generation and path selection considering some important driving indexes based on the 

polynomial splines. Moreover, the two-player lane change game was extended to the multi-

player game with the LEV’s lateral behavior considered. Finally, the developed model was 

validated in the case of both two-player and multi-player games. 
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Chapter 4  

Lane Change Model Training Based on Naturalistic Driving 

Data 

In this chapter, the proposed decision-making model is trained by the naturalistic driving data 

so that it becomes as close as possible to the human decision. To achieve this goal, the 

interactive driving data are firstly extracted to ensure the interactions. Next, the connection 

from driving data to the motion modeling of the environment vehicles and driver identification 

model is introduced. 

4.1 Dataset selection 

4.1.1 Naturalistic datasets investigation 

Naturalistic and simulation driving data 

To let the model learn from the data, the driving data should be collected first. There are two 

types of data, namely naturalistic data and simulation data. The naturalistic data can be 

collected by the real vehicle traveling in the traffic roads equipped with multiple sensors, and 

monitoring equipment that records the traffic flow in several fixed road segments. Collecting 

simulation data requires human drivers to operate the driving simulator and finish several 

driving tasks. The driving behaviors in the driving simulator are not as authentic as real driving. 

Also, the surrounding vehicles in the driving simulator are set by the researchers instead of 

intelligent human drivers, so the recorded behaviour would be skewed and would leave out the 

rare occurrences that occur in the real world. Interaction related studies require the driving 

behavior to be as naturalistic as possible. Therefore, the naturalistic driving data are 

investigated for dataset selection. 
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(a)  

 

(b) 

Figure 4.1. Description figures of KITTI dataset [88]. (a) Recording platform. (b) Example scenarios. 

Perception and trajectory datasets 

Naturalistic datasets can be divided into two categories: perception and trajectory. For 

perception datasets collected by a real vehicle with sophisticated sensors, the raw data include 

multiple formats, including video, lidar point cloud and GPS positions. Road user trajectories 

are not included in datasets like KITTI [88] (see Fig. 4.1) or the Waymo Open Dataset [89], 

and can only be derived in a limited and difficult way from perception data. Accurate 
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environment information sensing requires highly advanced technologies of computer vision, 

information fusion and data filtering, while it is the biggest challenge for current AV research. 

Furthermore, some problems cannot even be solved due to the limitations of sensors. Therefore, 

the trajectory datasets are the focus for the research. 

The earliest trajectories dataset NGSIM [14] is published to the public in 2006 and is intended 

for traffic flow related research. The data were collected with a sampling frequency of 10 Hz, 

which recorded the traffic flow on U.S. Highway 101 and the Interstate 80 (I-80) Freeway. 

Multiple kinematics information of the vehicles was collected, including position, speed, 

acceleration, etc. However, the raw data of the NGSIM trajectories cannot be utilized for further 

analysis due to large amount of noise, especially the speed and acceleration data. One reason 

is the trajectory data are extracted based on the video data while the computer vision technology 

at the beginning of the 21st century was not as advanced as it is now. Also, the filter is not 

adopted to the speed and acceleration when they are derived from position data using derivation 

equations. Researchers proposed methods [90], [91] to reduce the errors, but they could only 

work for a small part of the dataset. 

Other trajectories datasets inspired by NGSIM are recorded from a bird's-eye view to clearly 

record the information of surrounding road users. The Stanford Drone Dataset [92] was 

released in 2016, and it contains data collected from road users using a drone on the Stanford 

University campus. Bicyclists (1748) and pedestrians (1036) make up the majority of traffic 

participants, with vehicles (260) accounting for a small share. The low resolution of the 

recorded videos and inaccurate detections result in noisy trajectory data. Because there are 

many walkers and bicyclists on campus, the recorded driving behavior is likely to differ from 

that on public highways. The same drawbacks happen in the CITR dataset and DUT dataset 

[93], which were published by the Control and Intelligent Transportation Research (CITR) Lab 

at The Ohio State University (OSU) in 2019. The highD dataset [94] is one of the large-scale 

trajectory databases based on the videos collected by the aerial drone. Descriptions of the 

INTERACTION [95], inD [96], and rounD [97] datasets were released during the construction 

of the openDD dataset. The INTERACTION dataset contains data from 11 intersections, 

including 5 roundabouts, 3 unsignalized intersections, 2 merging and lane change scenarios, 
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and 1 signalized intersection, and lasts roughly 16.5 hours. The inD dataset [96], which includes 

10 hours of data captured by a drone, distinguishes walkers, bicycles, vehicles, trucks, and 

buses. 

The rounD dataset includes three recording sites in and around Aachen, Germany's 

westernmost city, with almost 6 hours of footage and 13746 road users. The naturalistic 

trajectory datasets are summarized as Table 4.1. 

Table 4.1. Overview of naturalistic trajectory datasets published in recent years. 

Dataset Name Length Scenarios # locations # tracks Road User Types 

NGSIM [14] 2.5 h Freeway and arterial 

road 

4 16557 Cars, trucks, motorcycles 

Stanford Drone 

[92] 

9 h Campus 8 10240 Pedestrians, bicycles, cars, 

buses, skateboards, carts 

highD [94] 16.5 h Highway 6 110000 Cars, trucks 

CTTR [93] 0.21 h Parking lots 1 340 Pedestrians 

DUT [93] 0.16 h Urban intersections, 

shared space 

2 1793 Pedestrians 

inD [96] 10 h Urban intersections 4 11500 Pedestrians, bicycles, cars, 

trucks, buses 

rounD [97] Over 6 

h 

Roundabouts 3 13746 cars, vans, trucks, buses, 

pedestrians, bicycles, 

motorcycles 

INTERACTION 

[95] 

16.5 h Urban intersections, 

highway, 

roundabouts 

11 40054 Cars, pedestrians 

In summary, current naturalistic trajectory datasets are mostly focused on scenarios in urban 

traffic, such as intersections and roundabouts. The researchers intend to include as many road 

user types as possible such that the dataset seems more comprehensive. However, for the 

microscopic interaction mechanism study between two vehicles, the scenarios should not be 
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very complicated without the disturbances caused by other types of road users. The driving 

environment should be structured public roads so that the driver can behave naturally. Also, the 

mechanism may be different while the driver interacts with more than one driver during a 

complete driving task. Therefore, highD dataset is chosen as the objective data for interaction 

mechanism study. 

4.1.2 HighD dataset 

HighD dataset [94] contains 16.5 hours records of naturalistic driving data from six German 

highways around Cologne with 110,000 vehicles during 2017 and 2018. Sixty recordings were 

made along a 420-meter stretch of road at six different locations, with an average length of 17 

minutes (16.5 hours total). The computer vision technologies were utilized to extract the 

vehicles from the raw video data and the infrastructure were annotated manually. 

 

(a) 

 

(b) 

Figure 4.2. Description figures of the highD dataset. (a) Example of a recorded highway. (b) Bird’s 

eye view of the highway road section. [94] 

To get all the information required by the many scenario-based validations, a drone was used 
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to record 4K 25 frames per second videos to capture every vehicle’s movements from a bird’s 

eye view. Each recording has four files in the dataset, i.e., three CSV files with location, vehicle, 

and trajectory data, as well as an aerial view of the specified highway area. The first file 

contains information about the site's location, driving lanes, traffic signs, and lane speed limits. 

A summary of each track is included in the second file, which includes vehicle size, vehicle 

class, driving direction, and average speed. Each track's specific information, such as speeds, 

accelerations, lane locations, and a description of neighboring vehicles, is included in the last 

file. 

Fig. 4.2 is an illustration of the dataset. Red boxes with different labels and the red lines show 

the trajectories, vehicle classes and id, as well as the velocity. By using some state-of-the-art 

computer vision algorithms, the dataset achieves decimeter accuracy. 

4.2 Interactive driving data extractions 

From the analysis above, the uncertainties in the surrounding vehicles are major sources of the 

lane change complexity. Specially, for the LEV and FV, EV is not able to change their future 

behavior but reactively act according to the prediction information due to the responsibility 

division criteria by the traffic law. However, EV can negotiate with LAV and change its future 

action to create a chance for lane change in dense traffic, which is not handled well in current 

methods. To emphasize this problem, the interactive lane change scenarios should be first 

defined so that the interactions can be analyzed. The research goal is to investigate the 

bidirectional active interaction between EV and LAV.  

Interaction range limitation 

To guarantee the EV and LAV can interact with each other, an intuitive idea is to set a limited 

gap distance when the EV starts to change lanes. However, as driving velocities differ, the 

interaction range should not be fixed. Therefore, time headway (THW) is introduced to define 

the interaction range, which is defined by the gap distance and the speed of following vehicle: 

𝑇𝐻𝑊 =
𝛥𝑋

𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
 (4.1) 
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where 𝛥𝑋 is the gap distance between two vehicles, and 𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 is the speed of following 

vehicle. Time headway defines the collision risks in the form of time. Two-second rule [98] 

states that drivers should at least stay “two seconds” behind the front vehicle for a good space 

cushion, which indicates the interaction level is high enough when THW is within two seconds. 

Therefore, interactive lane changes are firstly filtered by excluding those scenarios where THW 

is over 2 seconds at T1.  

Looking into the reactions of lag vehicle during a lane change, it can choose to 

accelerate/decelerate in the longitudinal dimension or change to the other lane and adjust 

longitudinal velocity simultaneously. These behaviors are conducted because the ego vehicle 

has effects on the lag vehicle through interactions. The scenarios where LAV changes lanes are 

excluded considering the majority of LAV drivers respond by staying in their lane. More 

importantly, increasing the action dimension of the lag vehicle from one to two dimensions will 

lead to analytical difficulties and increase the complexity of the problem.  

4.3 Applications of real data on motion modeling and driver identification 

4.3.1 Physical motion model of surrounding vehicles 

For the validation of the proposed decision-making model, the behaviors of the surrounding 

vehicles are critical. The traffic environment is required to be like real-world traffic, where the 

surrounding vehicles should drive like real human drivers. Therefore, the motion model should 

be various to represent the driving behaviors of different types of drivers. Moreover, human 

behavior is essentially stochastic. The uncertainty always exists which is affected by the traffic 

environment and their internal behavior generation. To meet this requirement, the real driving 

data are essential.  

A general motion model for a specific surrounding vehicle 𝑆𝑉𝑖 can be formulized as 

𝒙𝑖(𝑡: 𝑡 + 𝑇𝑓) = 𝑓(𝒙1:𝑁(𝑡 − 𝑇ℎ: 𝑡 − 1), 𝜀𝑖) (4.2) 

where 𝒙  is the state vector that can include position, velocity, yaw angle, etc.; 𝑇𝑓  is the 

prediction horizon; 𝑇ℎ is the history horizon; 𝜀𝑖 represents the uncertainty of 𝑆𝑉𝑖; 𝑁 is the 
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number of vehicles that influence the behavior of 𝑆𝑉𝑖; 𝑥1:𝑁(𝑡 − 𝑇ℎ: 𝑡 − 1) is the model input, 

i.e., the history states of the involved vehicles related to 𝑆𝑉𝑖; 𝒙𝑖(𝑡: 𝑡 + 𝑇𝑓) is the model output, 

i.e., the future states of 𝑆𝑉𝑖 during the prediction horizon. 

In some conditions, Eq. (4.2) can be revised as 

𝒂𝑖(𝑡 − 1) = 𝑓(𝒙1:𝑁(𝑡 − 𝑇ℎ: 𝑡 − 1), 𝜀𝑖) (4.3) 

where 𝒂𝑖(𝑡 − 1) is the action of 𝑆𝑉𝑖 at time step 𝑡 − 1, and the future states 𝒙𝑖(𝑡: 𝑡 + 𝑇𝑓) 

can be updated iteratively according to 

𝒙𝑖(𝑡) = 𝑓(𝒙𝑖(𝑡 − 1), 𝒂𝑖(𝑡 − 1), 𝜀𝑖) (4.4) 

For the motion model Eq. (4.2), the parameters can be calibrated according to the designer’s 

experience. However, this model may not represent the driving behavior features of the real 

human drivers. The resulted vehicle motions can be unrealistic and do not conform to the social 

attributes when interacting with other human-driven vehicles in the real traffic. 

The introduction of the naturalistic driving data can help to calibrate the motion model 

parameters reasonably. To specifically demonstrate how the parameters are determined, the 

observations 𝑦𝑡1:𝑡2 during a period [𝑡1, 𝑡2] are firstly extracted. Then the mean square error 

(MSE) is utilized to represent the loss function 

MSE =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̃𝑖)
2 (4.5) 

where 𝑛  is the number of steps during [𝑡1, 𝑡2] ; 𝑦𝑖  is the actual observations; 𝑦̃𝑖  is the 

motion model output. The calibrated parameters are obtained by minimizing the MSE 

𝜽 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̃𝑖)
2 (4.6) 

where 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑘)
𝑇 is the parameters set or vector in the motion model. If this group 

of drivers can represent the majority of all the human drivers, we can use their driving data to 

model the driving behavior of the normal drivers. In terms of the variety of the driving styles 

in the dataset, an option is preparing several parameters set or setting up other parameters to 
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control the driving style. The latter method requires the prior knowledge about the statistical 

law of the different extent to the aggressiveness of the driving behavior. For the former method, 

the only extra step is to classify the drivers. After that, the parameters can be sampled randomly 

from the probability distribution.  

From the analysis above, the physical motion model of the surrounding vehicles is more 

human-like and can represent the various driving styles of the real human drivers after the 

calibration based on the naturalistic driving data. Then the simulation results of the proposed 

decision-making model are more realistic because the interactions are generated by the vehicles 

that capture the human-likeliness and variety of human drivers. The performances are then 

analyzed to evaluate the proposed decision-making model. 

4.3.2 Driver identification model 

To interact with the surrounding vehicles effectively and safely, the ego autonomous vehicle is 

required to identify their driving styles and make decisions adaptively. For example, the ego 

vehicle is more likely to keep the lane even if its front vehicle drives slowly, if the lag vehicle 

in the target lane drives fast. In other words, the ego vehicle recognizes that the lag vehicle is 

aggressive and chooses to keep lane considering the driving safety, even the driving efficiency 

decreases due to the slow front vehicle. Conversely, the ego vehicle is likely to change the lane 

if the lag vehicle drives cautiously under the same driving conditions. The driver recognitions 

show the future expectations of the ego vehicle to the possible driving behavior of surrounding 

vehicles.  

We can learn from the examples above that the driver types of the surrounding vehicles greatly 

affect the driving decisions of the ego vehicle. The utilities or rewards are directly related to 

the driver types in the decision-making model. This factor shows how the ego vehicle 

adaptively makes decisions when interacting with different drivers.  

The driver identification can be formulated as a classification problem, where 𝒙 is a sample 

including 𝑛 driving features, and 𝑌 is a label set that contain 𝑘 labels. The driving data are 

consisted of the sequence 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑇} . The objective of the classification is to 
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determine the label of a specific driver according to the observed driving data 𝑋 , i.e., 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑝( 𝑦𝑖 ∣∣ 𝑋 )).  

Discriminative model or generative model can be adopted to deal with the classification 

problem. For the generative model, the posterior probability is calculated by 

𝑝(𝑦𝑖 ∣ 𝑋) =
𝑝(𝑦𝑖)𝑝(𝑋 ∣ 𝑦𝑖)

∑ 𝑝(𝑦𝑖)𝑝(𝑋 ∣ 𝑦𝑖)𝑌
 (4.7) 

where 𝑝(𝑦𝑖) is the prior probability of label that can be assigned to normal distribution or 

uniform distribution based on the experience; 𝑝(𝑋 ∣ 𝑦𝑖) is the likelihood probability function 

that needs to be estimated. In the generative model, the label set 𝑌 is open, where the new data 

can be supplemented, while all drivers’ data are required to retrain the model parameters using 

the discriminative model. This is because the discriminative model directly estimates the 

posterior probability 𝑝(𝑦𝑖 ∣ 𝑋). Therefore, very complicated and non-interruptible models are 

utilized to minimize the designed loss function based on the numerical optimization method, 

such as deep neural network. 

Both classification models require the training process based on the driving data. For the driver 

identification modeling, the driving data are needed to learn the knowledge from the 

demonstrations of real human drivers. The real driving data can offer the feature distribution 

so that the statistical law can be learned.  

4.4 Summary 

In this chapter, the interactive driving data were extracted from the naturalistic driving data, 

i.e., the highD dataset, so that the interactions were guaranteed between the lane change vehicle 

and lag vehicle. Then the applications of the real driving data were introduced on the motion 

modeling of the environment vehicles and driver identification model, which would be realized 

in the next chapter. 
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Chapter 5  

Motion modeling and identifications of the surrounding 

vehicles 

In this chapter, the motion models of the surrounding vehicles are presented, including the car-

following behavior of the lag vehicle in the two-player game and the lateral cut-in behavior of 

the leading vehicle in the multi-player game. The naturalistic driving data are utilized for 

driving style classification and model calibration so that the driving behavior of the surrounding 

vehicles can be more human-like. After the motion modeling, the driver identifications are 

presented to offer the necessary information to the decision-making of the ego autonomous 

vehicle. Then the ego vehicle can make decisions adaptively according to the types of other 

surrounding vehicles. 

5.1 Introduction to Intelligent Driver Model (IDM) 

A popular rule-based kinetics model to describe human driving behavior is the Intelligent 

Driver Model (IDM) [57]. Following this model, the objective car can be controlled to drive at 

a desired speed and keep a specific distance from the front vehicle. It is applied to the 

microscopic traffic flow under many conditions, such as on-ramp, off-ramp, lane change, etc. 

This model is used to simulate the driving behavior of real drivers combing with other decision-

making models. For example, the lane change model MOBIL [99], another rule-based model, 

is adopted with IDM to simulate the multilane traffic. Eq. (5.1) presents the mathematical 

formulation of the IDM. 

𝑎IDM(𝑠, 𝑣, Δ𝑣) =
d𝑣

d𝑡
= 𝑎 [1 − (

𝑣

𝑣0
)
𝛿

− (
𝑠∗(𝑣, Δ𝑣)

𝑠
)
2

] (5.1) 

where  

𝑠∗(𝑣, Δ𝑣) = 𝑠0 + 𝑣𝑇 +
𝑣Δ𝑣

2√𝑎𝑏
 (5.2) 
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The model contains the acceleration strategy in the free traffic flow 

𝑣̇free(𝑣) = 𝑎 [1 − (
𝑣̇

𝑣0
)
4

] (5.3) 

toward a desired speed 𝑣0 under the constraints of the maximum acceleration 𝑎. Meanwhile, 

the braking strategy also exists in this model 

𝑣̇brake(𝑠, 𝑣, Δ𝑣) = −𝑎 (
𝑠∗

𝑠
)
2

 (5.4) 

where 𝑠(𝑡) is the current gap, 𝑠∗(𝑣, Δ𝑣) is the desired minimum gap: 

𝑠∗(𝑣, Δ𝑣) = 𝑠0 + 𝑣𝑇 +
𝑣Δ𝑣

2√𝑎𝑏
 (5.5) 

The minimum distance 𝑠0 and desired time headway 𝑇 are always positive, and the second 

term 𝑣𝑇 in Eq. (5.5) is adaptive according to the driving speed of the following car. For the 

driving speed difference, if the following car drives faster than the preceding car, the Δ𝑣 is 

positive and 𝑠∗(𝑣, Δ𝑣)  is large to increase the weightings in deceleration. The comfortable 

deceleration 𝑏 is designed to limit the braking decelerations, while however, the car brakes 

harder than 𝑏 if current gap is too small. All IDM parameters 𝑣0, 𝑇, 𝑠0, 𝑎, and 𝑏, are defined 

by positive values. 

The model can be used to describe the longitudinal behavior of various drivers after being 

calibrated based on the real driving data. However, it does not, 1) show real human driving 

behavior because the parameters are determined subjectively according to the individual 

driving experience, and 2) consider personal driving behavior, which requires multiple sets of 

parameters. The parameters determination relies on the predefined rules and cannot be 

generalized to the diverse scenarios. Thus, the individual variations should be accounted by 

introducing the real driving data. The IDM model can be extended to the personalized model 

that shows the driving preferences. In the next sections, the cut-in scenarios will be extracted, 

and the car-following data of the lag vehicle in the target lane during the cut-in period are 

expected to analyze the longitudinal driving behavior of real human drivers and calibrate the 

IDM model. 
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5.2 Driving style classification based on an explainable way  

To capture the variety of responses in the cut-in scenarios, the car-following driving style of 

the LAV is classified during the interactive lane changes. The information can be utilized to 

model the driving behavior of different lag vehicles, so that the motion model of surrounding 

vehicles can be human-like, and the simulation traffic environment is diverse and realistic. 

Moreover, the driver identification model can also be trained by learning the corresponding 

parameters from real data. The identification results can help the decision-making model 

generate more adaptive decisions according to the observations of other vehicles. 

The interactive lane change is defined in Section 4.2. The THW between the lane change 

vehicle and the lag vehicle should be lower than 2 seconds, so that the interactions are 

guaranteed. The responses of the LAV are worth studying when the EV conducts a lane change 

behavior. The LAV type can then be estimated by learning the prior knowledge from real data. 

Therefore, the data from 𝑇3 to 𝑇4 are collected and analyzed to classify the car-following 

style when there is a cut-in behavior, as is shown in Fig. 5.1. The lane change intent or behavior 

is assumed to be completely known by the LAV at 𝑇3 when the center of EV crosses the lane 

line. The observations end when the ego vehicle finishes the lane change at 𝑇4.  

Target lane

Current lane

Lag Vehicle 
(LAV)

T3: Vehicle center to 
lane boundary 

T4: Lane change 
finish 

Ego Vehicle 
(EV)

T3 T4 

 

Figure 5.1. The diagram of the cut-in scenario 

Different from the machine learning or deep learning-based driving style classifications, the 

car-following style is classified based on an explainable way in this work. Considering there 

are measurements of relative distance and relative velocity in the IDM model, the parameters 

set can be calibrated respectively according to the clustering or classification based on the 

observation of these data. The differences between each set will be significant. Therefore, the 
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relative distance and relative velocity are introduced as the features to represent the 

environment risk. For the longitudinal responses, acceleration is the most relevant term to show 

the driving behavior. Moreover, the output of the IDM model happens to be the longitudinal 

acceleration. Therefore, the remaining parameters can be determined with significant 

differences with these three terms involved. 

Acceleration (m/s2)

O

Aggressive samples

Cautious samples

Driving risks (e.g., THW/s)
 

Figure 5.2. Diagram of the classification rule 

The driver type plot is then constructed by taking the driving environment risk as the X-axis 

and the longitudinal vehicle behavior as the Y-axis. The slope of each data point is the driver 

aggressiveness, as shown in Fig. 5.2. If the vehicle drives in a risky environment and shows 

acceleration behavior, then the driver's longitudinal driving is aggressive. Conversely, if the 

vehicle slows down even in the relatively safe driving environment, then the driver 

aggressiveness is low. Following this criterion, the driving risk and longitudinal driving 

behavior are introduced to quantify the driving style of a specific driver. The area division in 

Fig. 5.3 can be expressed with the following mathematical formulation 

𝜀𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ 𝜀𝑖𝑗 (5.6) 

where 𝜀𝑖𝑗 and 𝜀𝑖𝑗 are the upper and lower percentile of the driving features; 𝑓𝑖𝑗 is the 𝑗𝑡ℎ 

feature of the 𝑖𝑡ℎ  driving style; 𝑖 = 1,2,3  represents the three different driving styles, 

including cautious, moderate and aggressive drivers; 𝑗 = 1,2,3  is the driving features 

extracted from real data, including relative distance, relative speed and measured longitudinal 
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acceleration. 

The participant drivers are classified into cautious, moderate, and aggressive styles. It can be 

seen from figures 5.3 and 5.4 that the cautious drivers have a longer relative distance, a lower 

relative speed, and less acceleration, compared with the moderate and aggressive drivers. The 

moderate drivers account for roughly 60% in the whole driver group. The aggressive drivers 

have the shortest relative distance, the highest relative speed, and greatest acceleration. The 

results in Fig. 5.4 show that all the cautious drivers decelerate when the driving risks are 

relatively low, with a larger relative distance and a lower relative speed. More than 50% of 

aggressive drivers choose to accelerate when their driving risks are widely higher than those of 

cautious drivers. Therefore, the driving style classification is reasonable and meets the original 

design requirement. 

 

Figure 5.3. Classification results of the driver samples 
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(a) (b)

(c)
 

Figure 5.4. Boxplots of the driving features for three different driving styles 

5.3 IDM parameters calibration based on the real data 

After the classification, the parameters in the IDM can be calibrated for each type of driver, 

separately. The results show the variation of real drivers in terms of the car-following behavior. 

The data to be used are introduced in Section 5.2. The estimated model acceleration is 

generated by the IDM model with the measured input, including relative distance, the speed of 

lag vehicle and relative speed. Simultaneously, the actual accelerations are available in the real 

data. Therefore, the IDM parameters of a specific driver 𝑘 can be calibrated using the metric 

of mean square error based on time series driving data 

𝜽𝑘 = argmin
𝜽𝑘

1

𝑁
∑  

𝑁

𝑖=1

(𝑦𝑖 − 𝑦̃𝑖(𝛀|𝜽𝑘))
2 (5.7) 
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where 𝑖 is the 𝑖𝑡ℎ time step, and 𝑁 is the number of observations in the trajectory; 𝜽𝑘 =

(𝑣0, 𝑇, 𝑠0, 𝑎, 𝑏)
𝑇 is the parameters vector in the IDM model; 𝛀 = (𝑠(𝑖), 𝑣(𝑖), ∆𝑣(𝑖))𝑇 is the 

measurement vector at 𝑖𝑡ℎ time step. Because the parameter vector to be estimated is highly 

dimensional, dimension reduction is implemented while keeping the model's generalization 

and simplicity in mind, without affecting its accuracy in describing human car-following 

behavior. 

(a) (b)

(c)
 

Figure 5.5. Histograms of the desired time headway for different driving styles 

In the published literature, the desired time headway 𝑇 and maximum acceleration 𝑎 are two 

promising parameters that affect the car-following behavior in terms of the platoon oscillation 

stability [100] and variance contributions in the analysis of variance (ANOVA). Furthermore, 

both papers demonstrated that adjusting the desired time headway 𝑇 is the most contributing 
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factor in their corresponding research. Therefore, in this study, 𝑇 is calibrated to replace the 

previous parameter vector 𝛀.  

The calibration results are shown in figures 5.5 and 5.6. It is shown that the calibrated 𝑇 in 

three driver groups follow the normal distribution with mean values of 1.17 s, 0.7 s, and 0.41 

s, separately. The results show that over 75% of the cautious drivers have a higher desired time 

headway than it of 75% of moderate drivers and nearly 100% of aggressive drivers. The 

significant differences exist between cautious drivers and the other two groups of drivers. This 

result will be used in the behavior model of the surrounding vehicles through setting up various 

driving styles, so that the model can be validated in the real traffic environment to some extent. 

Corresponding simulations will be conducted in the next chapter. 

 

Figure 5.6. Boxplot of the desired time headway for different driving styles 

5.4 GMM based driver aggressiveness determination 

5.4.1 GMM-based LAV trajectory predictions 

The naturalistic driving data help determine the driver type of the surrounding vehicles. In this 

study, the driver identification is conducted by predicting the future trajectories based on the 

naturalistic driving data. The Gaussian mixture model (GMM) combines multiple Gaussian 

distributions, and has great strength to address and model problems with uncertainty due to its 
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excellent approximation properties [101]. Therefore, it is chosen here to construct the 

relationship between the past driving states and the probability distributions of the future 

motion trajectory. 

To predict the motion of the LAV from the aspect of the EV, several features are considered. 

Firstly, the historical motion information of the LAV itself is critical for the prediction. 

Secondly, the historical information of the longitudinal gap distance and relative speed between 

it and EV can affect the longitudinal decision. Considering these features can be deduced by 

the velocities and yaw angles of the LAV and EV, the inputs of the trajectory prediction model 

are 

𝒔(𝜏) = [𝑣𝐿𝐴𝑉(𝜏)⁡⁡𝜑𝐿𝐴𝑉(𝜏)⁡⁡𝑣𝐸𝑉(𝜏)⁡⁡𝜑𝐸𝑉(𝜏)⁡⁡∆𝑑𝑥(𝜏)⁡⁡∆𝑑𝑦(𝜏)], 𝜏 ∈ [𝑡 − 𝑇ℎ , 𝑡] (5.8) 

where ∆𝑑𝑥  and ∆𝑑𝑦  denote the longitudinal and lateral distances between LAV and EV, 

separately; 𝑇ℎ is the historical horizon. And the outputs of the model are the future velocity 

and yaw angle of the LAV: 

𝒛(Τ) = [𝑣𝐿𝐴𝑉(Τ) 𝜑𝐿𝐴𝑉(Τ)], Τ ∈ [𝑡, 𝑡 + 𝑇𝑓] (5.9) 

where 𝑇ℎ  is the prediction horizon. Using the GMM method, the trajectory prediction is 

equivalent to inferring the following joint probability distribution: 

𝑝(𝑥‾) = ∑  

𝐾

𝑘=1

 𝜋𝑘𝑁(𝒙̅ ∣ 𝝁𝒌, 𝚺𝒌)

{

0 ≤ 𝜋𝑘 ≤ 1

∑  

𝐾

𝑘=1

 𝜋𝑘 = 1

 (5.10) 

where 𝒙̅ is a multi-dimensional random variable and it is represented as 𝒙̅ = [𝒔(𝜏), 𝒛(Τ)]; 

𝐾 indicates the number of Gaussian components; 𝑘 indicates a specific Gaussian component; 

𝜋𝑘, 𝝁𝒌 , and 𝚺𝒌  are the estimated parameters of GMM, which represent the weighting of 

components, mean value matrix and covariance matrix. 

Given a history feature input 𝒔𝒕, the future motion states can be predicted by calculating the 

following conditional distribution of the estimated output 𝒛𝒕.  
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𝑝(𝒛𝒕 ∣ 𝒔𝒕) =
𝑝(𝒛𝒕, 𝒔𝒕)

∫ 𝑝(𝒛𝒕, 𝒔𝒕) 𝑑𝒛𝒕
=∑  

𝐾

𝑘=1

𝜋̃𝑘𝑁(𝒛𝒕 ∣ 𝒔𝒕, 𝝁̃𝒌, 𝚺̃𝒌) (5.11) 

where 𝜋̃𝑘,  μ̃k , 𝚺̃𝒌  are the parameters of Gaussian distribution and satisfy the following 

conditional mixture [101]: 

𝝁̃𝒌 = 𝝁𝒌
𝑧𝑡 + 𝚺𝒌

𝒛𝒕,𝒔𝒕(𝚺𝒌
𝒔𝒕,𝒔𝒕)

−1
(𝒔𝒕 − 𝝁𝒌

𝑠𝑡) (5.12) 

𝜋̃𝑘 =
𝜋𝑘𝑁(𝒔𝒕 ∣ 𝝁𝒌

𝒔𝒕 , 𝚺𝒌
𝒔𝒕,𝒔𝒕)

∑𝑖=1
𝐾  𝜋𝑖𝑁(𝒔𝒕 ∣ 𝝁𝒊

𝒔𝒕 , 𝚺𝒊
𝒔𝒕,𝒔𝒕)

 (5.13) 

𝚺̃𝒌 = 𝚺𝒌
𝒛𝒕,𝒛𝒕 − 𝚺𝒌

𝒛𝒕,𝒔𝒕(𝚺𝒌
𝒔𝒕,𝒔𝒕)

−1
𝚺𝒌
𝒔𝒕,𝒛𝒕 (5.14) 

The mean value matrix and covariance matrix are presented as: 

𝝁𝑘 = [
𝝁𝑘
𝑠𝑡

𝝁𝑘
𝑧𝑡
] ⁡ and ⁡𝚺𝑘 = [

𝚺𝒌
𝒔𝒕,𝒔𝒕 𝚺𝒌

𝒔𝒕,𝒛𝒕

𝚺𝒌
𝒛𝒕,𝒔𝒕 𝚺𝒌

𝒛𝒕,𝒛𝒕] (5.15) 

where 𝚺𝑘
𝑧𝑡,𝑧𝑡  and ∑𝒌

𝒔𝒕,𝒔𝒕  denote the auto-covariance matrices regarding 𝒔𝒕  and 𝒛𝒕 

respectively; 𝚺
𝒌

𝒔𝒕,𝒛𝒕𝒕  and ∑𝒌
𝒛𝒕⋅𝒔𝒕 denote the cross-covariance matrices; μ

k

st and μ
k

zt are mean-

value matrices. 

The parameters set (𝚽 = {𝜋𝑘, 𝝁𝒌, 𝚺𝒌}) related to GMM can be estimated through the standard 

expectation maximization (EM) algorithm by using the naturalistic driving data. 

5.3.2 Driver aggressiveness recognitions  

Now that the LAV’s trajectories have been predicted, the driver aggressiveness could be 

obtained from this information. The driver aggressiveness is defined to be determined by two 

factors, namely the current driving environment and the longitudinal behavior of the vehicle. 

If the vehicle drives in a risky environment and shows acceleration behavior, then the driver's 

longitudinal driving is considered to be aggressive. Conversely, if the vehicle slows down even 

in the relatively safe driving environment, then the driver aggressiveness is low. Following this 

criterion, the driving risk and longitudinal driving behavior are introduced to quantify the 
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aggressiveness of a specific driver. The driving risk is characterized by the normalized THW, 

and the longitudinal driving behavior is determined by the percentage of the predicted 

trajectory to the expected trajectory range. The formula for the percentage ratio is 

𝑟𝑎𝑡𝑖𝑜 =
𝑥𝐺𝑀𝑀 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (5.16) 

where 𝑥𝐺𝑀𝑀 is the predicted trajectory based on GMM given the historical information and 

prediction horizon 

𝑥𝐺𝑀𝑀(𝑡 + 𝑇𝑓) = 𝑓𝐺(𝒔𝑡−𝑇ℎ:𝑡|𝚽) (5.17) 

where 𝑓𝐺(∙) is the trained GMM model. The minimum and maximum accelerations can be 

investigated from the existed driving dataset. 

The schematic diagram is shown in Fig. 5.7. As can be seen from the figure, the LAV trajectory 

predicted by GMM is uncertain, and follows the normal distribution. The longitudinal behavior 

of the LAV is not purely quantified by the acceleration, considering the longitudinal behaviors 

corresponding to the same acceleration possess great differences if the longitudinal speeds of 

the vehicle are different. Therefore, the trajectory occupancy ratio is used to quantify the 

longitudinal behavior of LAV. 

Xmin Xmax

Longitudinal 
driving distance

xGMM

Prediction uncertainty area

X0  

Figure 5.7. Motion prediction based on GMM with uncertainty 

The driver type plot is constructed by taking the driving environment risk as the X-axis and the 

longitudinal vehicle behavior as the Y-axis. The slope of each data point is the driver 

aggressiveness, as shown in Fig. 5.8. Since the driving environment risk on the X-axis is a 

determined value, driver aggressiveness is still a random variable following the Gaussian 

distribution. 

After calculating the aggressiveness of all drivers in the dataset, the normalized driver 

aggressiveness is then determined using the method of maximum-minimum normalization. 

From the above discussion, the transformation process from the predicted trajectory to the 
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normalized driver aggressiveness is linear, and the predicted trajectory follows the normal 

distribution, then the normalized driver aggressiveness also follows the normal distribution 

𝜒𝑖 ∼ 𝒩(𝜇𝑖 , 𝛿𝑖
2) (5.18) 

where 𝜒𝑖 is the aggressiveness for the 𝑖th driver. The driver aggressiveness can interpretably 

show how the lane change vehicle becomes adaptive when it interacts with the LAV according 

to its aggressiveness, which is discussed in the next section. 

Response/Ratio (%)

Risk/THW (s)0 2

100

Aggressive sample k1

Cautious sample k2

 

Figure 5.8. Driver aggressiveness definition based on driving environment and driver response 

5.3.3 EV utilities modeling considering LAV type 

According to the previous discussions, the utilities for the EV decision-making contain both 

safety and efficiency factors. The definition of incomplete information game states that when 

the opponent's participant type is uncertain, one's utilities will be given in the form of 

expectations. Following Eq. (3.35), and the definition of the normalized driver aggressiveness, 

the utility of EV considering the effects of the LAV’s type is 

𝑤1(𝜎1, 𝜎2, 𝜃1) ∶= ∫ 𝑓Χ2(𝜒2)𝑣1(𝜎1, 𝜎2, 𝜃1, 𝜒2)
𝜇𝑖+𝛿𝑖

𝜇𝑖−𝛿𝑖

𝑑𝜒2 (5.19) 

where 𝑣1(𝜎1, 𝜎2, 𝜃1, 𝜒2) is the expected utility of player 1 when he chooses the mixed strategy 

𝜎1 = (𝜎11, ⋯ , 𝜎1𝐾) and player 2 chooses the mixed strategy 𝜎2 = (𝜎21, ⋯ , 𝜎2𝐽) , which is 

shown as 
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𝑣1(𝜎1, 𝜎2, 𝜃1,𝜒2) = ∑  

𝐾

𝑘=1

 ∑  

𝐽

𝑗=1

 𝜎1𝑘(𝜃1)𝜎2𝑗(𝜒2)𝑢1(𝑠1𝑘, 𝑠2𝑗) (5.20) 

where 𝜒2 is the LAV’s driver aggressiveness, which is a random variable and follows the 

normal distribution according to Eq. (5.18); 𝜎1 and 𝜎2 are the mixed strategies of two players, 

replacing the pure strategies 𝑠1 and 𝑠2; 𝑓Χ2(𝜒2) is the probability density function (pdf) of 

the driver aggressiveness. The LAV’s driver aggressiveness affects the expectation of the EV 

about the possible acceleration or deceleration in different cases, which is represented as 

𝑎𝑒𝑥𝑝 = (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)𝜒2 + 𝑎𝑚𝑖𝑛 (5.21) 

𝑏𝑒𝑥𝑝 = (𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛)𝜒2 + 𝑏𝑚𝑖𝑛 (5.22) 

where 𝑎𝑒𝑥𝑝 and 𝑏𝑒𝑥𝑝 are the acceleration and deceleration of the LAV that are predicted by 

the EV after the prediction horizon 𝑇𝑝 ; 𝑎𝑚𝑎𝑥  and 𝑎𝑚𝑖𝑛  are the maximum and minimum 

positive accelerations; 𝑏𝑚𝑎𝑥  and 𝑏𝑚𝑖𝑛  are the maximum and minimum decelerations, 

separately. The estimated parameters 𝑎𝑒𝑥𝑝 and 𝑏𝑒𝑥𝑝 are substituted into Eq. (3.15), and the 

safety indicator 𝑎𝑟𝑒𝑞,𝑏𝑟𝑎𝑘𝑒 can be obtained. Finally, 𝑣1(𝜎1, 𝜎2, 𝜃1, 𝜒2) becomes the function 

of the LAV’s driver aggressiveness, with the safety utility affected by it. 

5.5 Summary 

In this chapter, the motions of the surrounding vehicles are modelled by the IDM. The driving 

styles are classified in an explainable way based on the real driving data. After that, the IDM 

model is calibrated separately to show the variances of surrounding vehicles in the simulation. 

Moreover, the driver identification model is realized relying on the trajectory predictions based 

on the GMM model and real driving data. The results in this chapter will be applied in the 

simulation and validation, which is the content of the next chapter. 
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Chapter 6  

Simulation and Validations 

In this chapter, the performances of the developed lane change decision-making model are 

evaluated based on the incomplete information game model. Two other models, namely the 

game model without driver identification and the rule-based model MOBIL are presented and 

compared with the proposed model in various scenarios. Moreover, the surrounding vehicles 

are extended to change lanes to test the model performances in the multi-player case. For the 

validations, the lane change scenarios are extracted from the real driving data. The lane change 

decisions and trajectories generated by the proposed model are compared with those of human 

drivers  

6.1 Two-player incomplete information game simulations 

In the two-player incomplete information game, the EV does not know the exact type of LAV, 

but can estimate the probability distributions of the driver type according to the equipped driver 

identification module. As is shown in Fig. 6.1, the LAV follows the IDM with different driving 

styles, which were discussed in Sections 5.2 and 5.3.  

EV FV

LEVLAV

FOV

Target lane 

Current lane

Aggressive/Moderate 
Cautious/ drivers Proposed model

Two-player game
Surrounding vehicles 

from data

 

Figure 6.1. The two-player lane change game with incomplete information 

The red ego vehicle (EV) drives in the rightmost lane when the simulation starts, surrounded 

by the slower yellow front vehicle (FV) in the current lane, green leading vehicle (LEV) and 

blue lag vehicle (LAV) in the target lane. The lane width is set to 4 m. The length and width of 

each vehicle are set to 5 and 2.2 meters, separately. When the simulation starts, the LAV is 

moderate and follows the EV at a normal distance. If the EV generates the lane change intention 
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and plans to change lane, the signal will be sent to the LAV and the car-following style will be 

switched to the target one. 

For each scenario, the initial positions of EV, FV, LEV, and LAV are (60, 2), (85, 2), (70, 6) 

and (35, 6), respectively. The initial longitudinal speeds of EV, FV, LEV, and the LAV are 25 

m/s, 24 m/s, 26 m/s, and 25 m/s, respectively. For the simulation in each scenario, the EV is 

controlled to keep the lane, and the driver aggressiveness is at its maximum in the first 3 

seconds. This is because the aggressiveness prediction model requires the historical data for 3 

seconds. After that, the driver aggressiveness can be estimated and the decision-making model 

generates the lane keeping or lane change decision adaptively with the aggressiveness 

considered. Therefore, the simulation results are plotted from the third second, when the EV is 

located at around 130 m. The critical time steps are marked with the light-colored bars in each 

figure. 

For the model comparisons, two benchmark models are introduced. The first one is the rule-

based lane change model, namely the MOBIL model. This model is widely accepted by the 

researchers through considering the brake decelerations differences between the LAV and EV 

itself. The model defines the lane change criterion as 

𝑎̃𝐸𝑉 − 𝑎𝐸𝑉 > 𝑝[𝑎̃𝐿𝐴𝑉 − 𝑎𝐿𝐴𝑉] + 𝑎𝑡ℎ𝑟 

where 𝑎𝐸𝑉 and 𝑎𝐿𝐴𝑉 are the actual IDM accelerations of EV and LAV; 𝑎̃𝐸𝑉 and 𝑎̃𝐿𝐴𝑉 are 

the accelerations after possible lane change; 𝑝 is the politeness factor; 𝑎𝑡ℎ𝑟 is the minimum 

net acceleration required to avoid unnecessary lane changes for marginal advantages. 

The other benchmark model is the game model without a driver identification module. In this 

case, the EV assumes the LAV as the moderate style without any updates. The simulation 

results are analyzed to show the performances of the proposed lane change model.  

6.1.1 Interacting with a cautious driver 

In this scenario, the EV drives faster than the FV, but the distance between them is big enough 

that the EV can accelerate to reach a higher speed. Therefore, the EV is not motivated to change 

lane in the beginning. The FV and LEV drive at constant speed, and the LAV switches from 
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moderate to cautious driving style when the EV is supposed to show its lane change intention 

by the turning signals because the EV-FV distance is not big enough for the EV to pursue higher 

speed.  

t=9.7s, LC starts

t=14.4s, LC ends

 

Figure 6.2. The simulation results when interacting with the cautious driver. (a) Motion profiles. (b) 

LAV’s driver aggressiveness. (c) The distances between EV and LAV. (d) Vehicle speeds 

As is shown in Fig. 6.2 (a), the EV generates the lane change decision based on the 

noncooperative game played by EV and LAV at 9.7 s, when their relative distance is 20 m 

(shown in Fig. 6.2 (c)), and their speeds are 24.2 and 23.2 m/s (shown in Fig. 6.2 (d)), 

respectively. Therefore, the safety risk is decreasing, and the EV changes lane successfully. 
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When the lane change ends, the new LAV in the leftmost lane is set to be in the same state as 

the old one, and the new LEV is set to be several meters before the EV. Therefore, the EV keeps 

following the new FV until the simulation finishes. 

It can be seen from Fig. 6.2 (b) that the LAV’s aggressiveness is around 0.42 in the first several 

seconds of simulation, where the aggressiveness varies from 0 to 1. This is because the LAV 

follows the IDM with moderate driving style. At t=8.3 s, the LAV starts to decelerate and the 

EV-LAV distance increases because the IDM style switches to cautious driving. Consequently, 

the estimated driver aggressiveness decreases and stabilizes at 0.25. Then the EV conducts the 

lane change safely until t=14.4 s, when the lane change ends. 

Considering the aggressiveness helps to generate more efficient decisions. For the EV 

controlled by the game model without driver identification (DI), it starts to change lane at 10.8 

s although the risk is acceptable 1 s ago. This is because the aggressiveness is not recognized, 

resulting in the conservative decision. For the MOBIL model, it changes lane very early when 

the EV-LEV distance is big enough for acceleration. This is because the MOBIL model makes 

lane change decisions based on the deceleration differences, instead of the actual driver 

requirements, such as safety and efficiency. 

6.1.2 Interacting with an aggressive driver 

Fig. 6.3 shows the results when the EV interacts with the aggressive LAV. The initial driving 

condition is set the same as the last scenario. The LAV switches to the aggressive car-following 

style when the EV generates the lane change intention at t=8.3 s. Then the LAV accelerates and 

the EV-LAV distance decreases slowly. As the driver aggressiveness keeps increasing from 

around 0.5 to a higher value, the EV recognizes the driving style of the LAV is aggressive. 

Therefore, the EV does not change lane but follows the FV at a constant speed. It is shown that 

the proposed model can avoid collisions by determining the driver type of surrounding vehicles. 

For the benchmark model without DI, the controlled EV keeps lane all the time because it 

assumes the LAV is moderate, and the driving conditions does not allow the lane change even 

if the driver recognition is inaccurate. For the EV controlled by the MOBIL model, it keeps 
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lane for a while in the beginning, and changes lane although the risk is high when the EV-LAV 

distance is around 13 m. This is because the LEV in the target lane drives far from EV, and the 

lane change profit surges compared with following a slow moving FV in the current lane. The 

collision does not happen because the LAV is designed to follow the EV, although the car-

following distance is short. It can be inferred that the collision risks are unacceptable if the 

LAV has the intention to overtake the EV. 

t=8.3s, LC intention 
generates

 

Figure 6.3. The simulation results when interacting with the aggressive driver. (a) Motion profiles. (b) 

LAV’s driver aggressiveness. (c) The distances between EV and LAV. (d) Vehicle speeds 
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6.1.3 Interacting with an overtaking car 

In this scenario, the LAV is designed to overtake the EV when detecting the lane change 

intention. Different from the previous scenarios, the LAV is controlled manually to not follow 

the car-following rule but accelerate slowly. This is because the overtaking behavior cannot be 

conducted in the IDM.  

t=5.6s, LC starts
t=7.9s, LC cancels

 

Figure 6.4. The simulation results when the LAV overtakes EV. (a) Motion profiles. (b) LAV’s driver 

aggressiveness. (c) The distances between EV and LAV. (d) Vehicle speeds 

As is shown in Fig. 6.4 (a), the EV starts to change lane at t=5.6 s when the EV-LAV distance 
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is around 18 m, and the driver aggressiveness is 0.55, showing moderate driving style. After 

that, the speed difference between LAV and EV increases continuously, and the driver 

aggressiveness increases to 0.8 at t=7.9 s, when the EV cancels the lane change. The LAV 

drives almost 4 m/s faster than EV, and their distance gap decreases to 10.5 m. The driving 

risks are high with the TTC of 2.6 s and the THW of 0.38 s. Therefore, the aggressiveness 

recognition in the proposed model helps the EV avoid the potential collision with the LAV. 

In terms of the benchmark models, the game model without DI cancels the lane change with a 

lateral deviation of 4.2 m, which is larger than the 3.6 m of the proposed model. This result 

shows that the driver identification helps detect collision risks and respond. For the MOBIL 

model, the derivation is much higher than the game models and reaches 5.2 m, indicating its 

reckless driving style and higher driving risks, because returning back to the safe lane requires 

more time in this case. Compared with the benchmark models, the proposed model could 

recognize the intention of the LAV and responds to the driving environment change more 

quickly. 

6.2 Multi-player incomplete information game simulations 

In the multi-player game, the LEV in the target lane is required to cut into the current lane and 

affect the decisions of the ego vehicle, as is shown in Fig. 6.5. The player LAV is deigned to 

behave differently with yielding to the EV’s lane change or accelerate to compete for the right 

of way. The LEV 2 is located in front of the LEV as the constraints of the EV’s infinite 

acceleration. 

For each scenario, he initial positions of EV, FV, LEV, LEV 2 and the LAV are (60, 2), (95, 2), 

(80, 6), (95, 6) and (45, 6), separately. The initial longitudinal speeds of EV, FV, LEV, LEV 2 

and the LAV are 25 m/s, 25.5 m/s, 26 m/s, 26 m/s, and 25 m/s, respectively. The LEV is 

controlled to change lane in the same time. The LAV follows the IDM motion rule when it 

yields to the EV. In the case of accelerating, LAV is manually controlled because IDM cannot 

generate overtaking behavior. 
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Figure 6.5. The multi-player lane change game with incomplete information 

6.2.1 LEV cuts in and LAV yields 

The motion profiles of the lane change EV and cut-in LEV are shown in Fig. 6.6. Specifically, 

the cut-in process of the LEV is labelled by the square marker, and the corresponding positions 

of the EV are marked by the pentagram. It is shown that the cut-in LEV makes the EV change 

lane in advance since there is enough space for it to accelerate in the current lane. The risk level 

in the target lane suddenly changes due to the variation of FV and LEV. The EV-FV distance 

drops from 25 m to around 12 m. Therefore, the lane change desire surges. Simultaneously, the 

LAV switches from moderate to cautious driving style, and the EV-LAV distance keeps 

increasing. The EV changes lane successfully from t=4.4 s to t=10.1 s. 
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t=4.4s, LC starts

t=10.1s, LC ends

 

Figure 6.6. The autonomous vehicle interacts with the cautious lag vehicle driver when LEV cuts in. 

(a) Motion profiles. (b) Risk level. (c) Relative distances. (d) Vehicle speed. 

6.2.2 LEV cuts in and LAV accelerates 

In this case, the LAV accelerates to compete for the driving space while the driving 

environment and the motions of other surrounding vehicles are kept the same as the previous 

one, as is shown in Fig. 6.7. The lane change behavior is conducted at t=4.4 s, however, the 

EV-LAV distance keeps decreasing and the probability difference declines gradually between 

being safe and dangerous in the target lane. The EV thus cancels the lane change and gets back 

at t=6.5 s, when the EV-LAV distance is 10 m. The LAV keeps accelerating and overtakes the 

EV at t=10.5 s, and the simulation ends.  
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t=4.4s, LC starts
t=10.5s, overtaking finishes

 

Figure 6.7. The autonomous vehicle interacts with the aggressive lag vehicle driver when LEV cuts in. 

(a) Motion profiles. (b) Risk level. (c) Relative distances. (d) Vehicle speed. 

6.3 Validations based on real driving data 

In this section, the proposed decision-making model is validated by comparisons with the 

motion profiles of real human drivers. Two scenarios are extracted from the naturalistic driving 

data, i.e., the LEV keeps lane and the LEV cuts in. Thus, two-player game and multi-player 

game are utilized to model the driving decisions of the EV separately.  

6.3.1 LEV keeps lane  

When the LEV keeps lane, the EV makes driving decisions based on the two-player game. The 
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initial positions of EV, FV, LEV, and the LAV are (6.48, -2.12), (55.91, -2.27), (46.09, 2) and 

(-12.8, 2.2), separately. The initial longitudinal speeds of the EV, FV, LEV, and LAV are 23.57 

m/s, 21.85 m/s, 27.52 m/s, and 27.62 m/s, respectively.  

t=9.68s, LC starts

t=14.72s, LC ends

 

Figure 6.8. The comparisons of the human driving and proposed model when LEV keeps lane. (a) 

Motion profiles. (b) Risk level. (c) Relative distances. (d) Vehicle speed. 

The EV accelerates at the beginning because the EV-FV distance is large, while the human 

driver adopts a different strategy by waiting and yielding to the LEV in the target lane. 

Therefore, the EV controlled by the proposed model drives faster than the human driver. When 

the EV approaches the FV, it decelerates to keep a safe distance without changing lane because 

the LAV in the target lane is close and the probability of being dangerous is 1. Since the human-
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driven EV yields to the LEV at the beginning, it changes lane earlier than the car controlled by 

the proposed model. The proposed decision-making model tends to keep lane unless the driving 

space decreases to a threshold value. 

In terms of the driving efficiency, the proposed model drives to 424.85 m during the validation, 

while the human-driven car stops at 413.03 m. The result shows that their driving efficiencies 

are close. 

6.3.2 LEV cuts in  

When the LEV changes lane and affects the driving safety and efficiency of the EV, the 

validation is modelled as the multi-player game. The initial positions of the EV, FV, LEV, and 

LAV are (17.97, 3.69), (155.34, 2.5), (29.8, 7.59) and (9.07, 7.26), separately. The initial 

longitudinal speeds of EV, FV, LEV, and the LAV are 18.74 m/s, 18.51 m/s, 19.53 m/s, and 

19.64 m/s, respectively. It seems that the EV could accelerate greatly since the EV-FV distance 

is over 100 meters, however, the LEV near the EV shows its lane change intention and changes 

lane slowly. Therefore, the EV decelerates and yields to the LEV after it finishes the lane 

change. Thereafter, the EV starts to change lane without the disturbance of the LAV and LEV. 

In terms of the driving efficiency, the proposed model drives to 412.4 m during the validation, 

while the human-driven car stops at 412.69 m. The result shows that their driving efficiencies 

are close. 

It can be summarized from the validations compared with the human driving that the proposed 

model tends to explore the driving space in the current lane first and consider the opportunity 

for lane change. The human drivers can make predictions in the longer term, and consider the 

driving environment more comprehensively. Moreover, the variations exist among human 

drivers, and the vehicle trajectories may cover a range if more scenarios are analyzed. 

Compared with the human driver, the proposed model follows a relatively reasonable decision-

making logic, which guarantees the driving safety and achieves similar driving efficiency with 

real drivers. 
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t=12.16s, LC starts

t=17.4s, LC ends

 

Figure 6.9. The comparisons of the human driving and proposed model when LEV cuts in. (a) Motion 

profiles. (b) Risk level. (c) Relative distances. (d) Vehicle speed. 

6.4 Summary 

In this chapter, two simulations and one validation were presented. In the first simulation, three 

scenarios were designed with the LAV style varying from cautious to overtaking car. Moreover, 

two other models were introduced for performances comparisons, namely the game model 

without driver identification and the rule-based model MOBIL. In the second simulation, the 

LEV cut in to the front area of the EV, and the LAVs responded differently to the EV’s lane 

change. In the validation part, the scenarios were extracted from the real driving data, and the 
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human driving behaviors were used for comparisons. The simulation and validation results 

showed that the proposed model could help the ego vehicles make safe and efficient driving 

decisions in the highway lane change. The human-likeliness is also indicated in the 

comparisons with human drivers.  
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Chapter 7.   

Conclusions and future work 

In this chapter, the findings of this research are concluded, and some future works are pointed 

out. 

7.1 Conclusions 

In this research, a game theory based decision-making model was proposed to deal with the 

strong interactions between an autonomous vehicle and human-driven vehicles in highway lane 

change scenarios. This research offered some insights to enable autonomous vehicles to make 

safe and efficient driving decisions and behave in a human-like way in a mixed traffic 

environment. The performances of the developed model were evaluated under various 

conditions by assigning different driving styles to the human-driven vehicles, which were 

learned from the real driving data. The simulation results showed that the proposed lane change 

decision-making model could identify the types drivers in the surrounding vehicles and make 

safe and efficient driving decisions adaptively, based on the identification results and driving 

environment. The comparisons with the human driving data in the validations showed the 

human-likeliness of the proposed model through the analysis of the lane change decision-

making process. 

The lane change process was firstly analyzed to identify the components related to driving 

decision-making. The lane change was modelled to capture the interactions under the 

framework of game theory. The information was found to be important in the lane change game 

modeling, and the games with complete information and incomplete information were both 

discussed. The incomplete information game was more likely to happen in real traffic due to 

the unavailability of information sharing. Therefore, the probabilistic models were further 

introduced in the game to estimate the needed information. It was demonstrated that the driver 

identifications helped the decision-making model evaluate the driving behaviors of other 

vehicles and make driving decisions more decisively, compared with the one without the driver 
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identifications. 

To model the lane change decision-making in realistic traffic scenarios, the two-player model 

was extended to the multi-player game model, and the lateral driving behaviors of the 

surrounding vehicles were considered. Compared with the two-player game, the scenarios in 

the multi-player game were more complex. The combinations of the behaviors of multiple 

surrounding vehicles led to the scenarios varieties. It was shown that the game-based decision-

making model made driving decisions adaptively according to the types of the lag vehicle when 

the leading vehicle in the other lane cut in. 

The interactive driving data were utilized to model the behavior of the surrounding vehicles, 

and the simulation environment became more realistic. Moreover, the data were utilized to the 

decision-making model by introducing driver aggressiveness recognition based on GMM. With 

the introduction of the real driving data, the surrounding vehicles’ motions and the decision-

making model were both connected to human driving behavior. The interactions between the 

ego vehicle and the surrounding vehicles were more realistic, and the generated driving 

decisions were more human-like.  

The decision-making model was evaluated in the dense highway traffic environment with 

strong interactions, including two-player game and multi-player game. The driver 

aggressiveness was recognized and transited to the decision-making model. The human-driven 

vehicles were equipped with various aggressiveness in these scenarios. The simulation results 

showed that the proposed model could determine the driving styles of the surrounding vehicles, 

and make safe and efficient driving decisions. The comparisons with the real human drivers in 

the validations showed that the proposed model generated human-like decisions and 

trajectories. 

Overall, this research developed a game theory based decision-making model for highway 

driving. T Real-world driving data were used to train the driver identification module and 

model the behaviour of surrounding vehicles, ensuring interactions in a realistic traffic 

environment. The evaluations demonstrated that the proposed model made safe and efficient 

driving decisions in various scenarios. This research offered some insights in the field of 



 90 

developing a human-like decision-making model when interacting with human-driven vehicles 

in mixed traffic. 

7.2 Future work 

In the future work, more validations can be implemented on a real vehicle. Also, the behavior 

of the surrounding vehicles needs further study. The traffic rules and constraints are not 

considered in this research, which is worth studying to make the driving decisions comply with 

traffic regulations. 
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Appendix 

In the appendix, the background for the thesis is presented. This section is structured as follows. 

Firstly, the components of the game theory are introduced, and the classification in terms of the 

information availability is stressed. Later, the type of incomplete information game is presented 

in detail. In the last section, the differences between the pure and mixed strategies are discussed. 

A.1 Game theory introduction 

A.1.1 The components of game theory 

The Theory of Games and Economic Behavior systematically introduced the game theory for 

the first time in 1944 [102]. The noncooperative game theory is well developed with the 

research of “Prisoner’s Dilemma” [103], [104], as well as the definition and existence of 

equilibrium [105] studied in the Nash’s papers. Important results are also found in terms of the 

cooperative game theory in the papers published by Nash [106] and Shapley [107] in the same 

era. 

Three are four important elements in a game, i.e., players, actions, payoffs, and information 

(PAPI). The modeler’s goal is to describe an arbitrary situation in terms of these game rules. 

In order to maximize their payoffs, the players will select the actions based on the information 

available. The equilibrium is the result of each player's mix of actions. The modeler knows 

the results of the game from the combination of all the players’ actions.  

Players make decisions in a game. The purpose of each player is to maximize his payoffs 

through action selection. Nature is a pseudo-player who acts randomly with predetermined 

probabilities at typical points. The decision-makers are supposed to be "rational", which means 

they choose the strategies to optimize their predefined utilities.  

An option made by player 𝑖 indicated 𝑎𝑖, is an action or move. The action set of player 𝑖, 

𝐴𝑖 = {𝑎𝑖}, (𝑖⁡ = ⁡1, . . . , 𝑛) is the set of actions. 

The utility function 𝑢𝑖(𝑠1, … , 𝑠𝑛) of player 𝑖 is a mapping from the measured states to the 
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real numbers. If the player is unsure about the states, his utility then becomes an expected value 

by introducing the probability distribution over the states. 

If all the players know the information about the game, then the information is common 

knowledge. Furthermore, each player must be aware that each player is aware that each player 

is aware, and so on.  

The strategy 𝑠𝑖 of player 𝑖 tells him the action or move to do at each time step during the 

game. 𝑆𝑖 = {𝑠𝑖}  is strategies set which is accessible player 𝑖 . A strategy profile 𝑠 =

(𝑠1, … , 𝑠𝑛) is composed of the strategy of each player in an order. The strategy advises him 

how to react to other players' activities. 

An equilibrium 𝑠∗ = (𝑠1
∗, … , 𝑠𝑛

∗)  is a strategy profile where each player has the optimum 

strategy. The equilibrium strategies denote that each player is required to maximize his own 

payoffs, considering the other players optimizing their payoffs simultaneously. 

Player 𝑖′𝑠 best response to the other players’ strategies 𝑠−𝑖 is the strategy 𝑠𝑖
∗ that generates 

the greatest payoff for him 

 𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖), ∀𝑠𝑖
′ ≠ 𝑠𝑖

∗ (A.1) 

The strategy 𝑠𝑖
𝑑  is dominated if the payoffs brought by it is lower than another strategy 

regardless of the other players' strategies, in the sense that his payout is lower with 𝑠𝑖
𝑑 

regardless of the other players' strategies. If there is a single 𝑠𝑖
′ such that 𝑠𝑖

𝑑 is dominated 

mathematically, 

 𝑢𝑖(𝑠𝑖
𝑑, 𝑠−𝑖) < 𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖), ∀𝑠−𝑖 (A.2) 

The strategy 𝑠𝑖
∗ is a dominant strategy if it is a player’s strictly best response to any strategies 

the others may choose, when his payoff is highest with 𝑠𝑖
∗ regardless of what strategies others 

choose. Mathematically, 

 𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖) > 𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖), ∀𝑠𝑖
′ ≠ 𝑠𝑖

∗ (A.3) 
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A.1.2 Game types 

Game modeling starts with recognizing important components including players, actions, 

payoffs, and information. After that, the game type should be determined. The classification of 

games is necessary as the real game related problems are coupled with factors of time, action 

sequences, information completeness, etc., which makes it complicated to find solutions. A 

specific problem can be resolved to the combinations of multiple simple games that only 

contain one dimension of these factors. Then the equilibriums can be solved by the well-studied 

models and theories.  

Although the methods to solve the game vary greatly, the game classification helps to select 

the optimal algorithm. Considering the importance that influences how the game is modeled, 

it can be categorized according to, for example, whether the game is simultaneous or sequential, 

the binding commitments exist or not, the information is complete or incomplete.  

Static Games and Dynamic Games 

In a static game, both players make decisions at the same time and their moves are one-off. On 

the other hand, a dynamic game is either repetitive or sequential. A repeated game is one in 

which players make the same decision in the same situation repeatedly. In a sequential game, 

one player decides on his strategy before the other. The order of play exists, and the player who 

makes the initial decision usually has an advantage. 

The visualization of a game could be a payoff matrix in the normal form or a decision tree in 

the extensive form. A payoff matrix lists the players, their strategies, and the payoffs. The rules 

of the game can be used to create a decision tree, which is a graphical representation of the 

game's order of play. Therefore, payoff matrix and decision tree are often used to describe static 

and dynamic game, separately. As the following prisoner’s dilemma example shows, the game 

can be described using different forms if the action rule is set differently.  

Payoffs  
Prisoner B 

Betray Do not Betray 

Prisoner A Betray (-5, -5) (-2, -9) 
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Do not Confess (-9, -2) (-3, -3) 

(a) Normal game 

Betray

Not Betray

-5, -5

-2, -9

Betray

Not Betray

Prisoner B

Prisoner A
Betray

Not Betray

-5, -5

-2, -9

Prisoner B

 

(b) Extensive game 

Figure A.1 Examples of the normal and extensive games 

Complete and incomplete information games 

In the game of complete information, all players know the structure of the game, the fact that 

the other player knows all of this, the fact that the other knows that he knows, etc. The examples 

include Game of Chicken, Prisoner's Dilemma, Chess, Checkers etc. In these games, the 

players know about utility function/payoffs of each other. Incomplete information games were 

defined as the supplementary set of complete information games.  

This ambiguous definition led game theorists to believe that incomplete information games 

could not be studied until 1967, when John Harsanyi demonstrated that incomplete information 

game could be turned into complete but imperfect information game by introducing the pseudo 

player Nature without changing its essentials. 

Different from other players, Nature does not have its own payoffs or cost function. Nature 

moves first and determines the type of other players. The selected player knows his 

characteristics of which others are not aware. However, the probability distribution of the 

selected player’s characteristics is known to himself and other players, i.e., the probability 

distribution is common knowledge. This process is called Harsanyi transformation. In this way, 

if Nature chooses the players’ types first, the complex concept of incomplete information can 
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be transformed to a game of imperfect but complete. The players do not know the exact choice 

of Nature but the probability distribution of all possible choices. Then each player is assumed 

to know the distribution of his opponents’ types, and the expected utility can be calculated by 

selecting actions from action set. 

Cooperative games and non-cooperative games 

The criterion to determine cooperative and non-cooperative games is clear. A cooperative game 

is a game where the players can make binding commitments, which is externally forced to be 

protected. If the players cannot form such agreements or need to be self-forcing, the game is 

non-cooperative. Cooperative game focuses on outcome properties instead of the strategies to 

achieve the outcome. In a noncooperative game, players are required to maximize their 

personal utility functions. The Prisoner's Dilemma is a game in which each player attempts to 

maximize the utility function. It might, however, be modelled as a cooperative game if the 

players have access to communicating with each other and make binding contracts. 

A.2 Incomplete information game 

For the lane change in the highway modelled by the game theory, the information is important for the 

decision-making because the drivers are not homogeneous. The human-like strategies are largely 

dependent on the interactive objects. Therefore, the incomplete information game is selected to be the 

target model for the highway lane change. 

𝐺 = (𝐼, (𝑆𝑖)𝑖∈𝐼 , (Θ𝑖)𝑖∈𝐼 , (𝑢𝑖(𝑠, 𝜃))𝑖∈𝐼 , 𝑝(𝜃)) is an incomplete information game, which satisfies [108] 

• 𝐼 is the finite set of players; 

• For each 𝑖 ∈ 𝐼, 𝑆𝑖 is a set of actions accessible to player⁡𝑖, and 𝑆⁡ = ⁡Χ𝑖∈𝐼𝑆𝑖 is the set of action 

profiles, with a specific element 𝑠⁡ = ⁡ (𝑠𝑖)𝑖∈𝐼; 

• Θ𝑖 is a set of player 𝑖′s types and Θ = 𝑋𝑖∈𝐼Θ𝑖 is the set of all players’ types, where a specific 

element is 𝜃 = (𝜃𝑖)𝑖∈𝐼; 

• Given 𝑠 and 𝜃, 𝑢𝑖(𝑠, 𝜃) is the payoff of player 𝑖; 

• 𝑝 is a probability mass function (pmf) over set of players’ types Θ.  

The above definition of incomplete information game shows that nature chooses a type assignment 

using pmf 𝑝 at the start of the game, and the player 𝑖 knows its own type, 𝜃𝑖. The categories of the 
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other players are not revealed to the players; 𝜃𝑖  is regarded personal information of player 𝑖 . The 

conditional probability distribution of the possible types of other players, 𝑝(𝜃−𝑖|𝜃𝑖), is known by each 

player 𝑖, because all players are supposed to know 𝑝, the pmf over Θ. The players are required to 

choose a move that is dependent on their own types, after their types are learned by themselves; The 

pure strategy 𝑠𝑖 for a player 𝑖 can then be defined as a mapping from the player type to the actions 

set 𝑠𝑖 ∶ ⁡Θ𝑖 → 𝑆𝑖. 

If for each player 𝑖 ∈ 𝐼 and each player type 𝜃𝑖 ∈ Θ𝑖 in a game 

 𝑠𝑖(𝜃𝑖) ∈ argmax
𝑠𝑖
′∈𝑆𝑖

∑ 𝑝(𝜃−𝑖 ∣∣ 𝜃𝑖 )𝑢𝑖(𝑠𝑖
′, 𝑠−𝑖(𝜃−𝑖), 𝜃𝑖, 𝜃−𝑖)𝜃−𝑖  (A.4) 

then (𝑠𝑖(∙))𝑖∈𝐼 is a Bayesian (or Bayes-Nash) equilibrium. Given the player 𝑖 taking strategy 𝑠𝑖
′, and 

his type 𝜃𝑖 , the expected payoffs can be calculated by summing up the utilities over all possible 

strategies in 𝑆𝑖. A randomized pure strategy is a mixed strategy for the player 𝑖. The profile of the 

mixed strategies is a Bayesian equilibrium, if the expected payoff of any specific player 𝑖 is maximized 

with the mixed strategy, while the other players also utilize the mixed strategies. The Bayesian 

equilibrium exists in any finite Bayesian game with the mixed strategies.  

A.3 The pure and mixed strategies 

In some games, the Nash equilibrium may not exist if there are only pure strategies considered, 

which is defined as 

A pure strategy maps the available information sets of each player to one action: 𝑠𝑖 ∶ ⁡Θ𝑖 → 𝑆𝑖. 

Expanding the strategy space to include random strategies is frequently useful and realistic, 

and in this situation, a Nash equilibrium almost always exists. These random strategies are 

called “mixed strategies.”  

If the action space of player 𝑖 is 𝑆𝑖, then the probability distributions space is denoted by Σ𝑖 

over 𝑆𝑖 . For player 𝑖  a mixed strategy is a probability distribution 𝜎𝑖  over 𝑆𝑖 : To put it 

another way, 𝜎𝑖 ∈ Σ𝑖 . Let 𝑓(𝑠𝑖)  denote the mapping from the strategy 𝑠𝑖 ∈ 𝑆𝑖  to a real 

number: 𝑓: 𝑆𝑖 → ℝ. We typically employ the notational convention⁡ 𝑓(𝜎𝑖) = 𝐸𝜎𝑖[𝑓] when 𝜎𝑖 

represents a mixed strategy for player 𝑖 . The probability vector 𝜎𝑖  satisfies 𝑓(𝜎𝑖) =

∑𝑠𝑖∈𝑆𝑖  𝑓(𝑠𝑖)𝜎𝑖(𝑠𝑖). If the mixed strategies are utilized by the player in a normal form game, we 

suppose that each player 𝑖′s random choice of pure strategy is determined using distribution 
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𝜎𝑖, which is independent to the strategies of other players. The expected payoff for player 𝑖 

abbreviated 𝑢𝑖(𝜎), or, equivalently, 𝑢𝑖(𝜎𝑖 , 𝜎−𝑖) represents expectation of 𝑢𝑖(𝜎) with regard 

to the product probability distribution 𝜎1⊗⋯⊗𝜎𝑛  for a mixed strategy profile 𝜎 =

(𝜎1, … , 𝜎𝑛). 

An important proposition regarding to the mixed strategies is that every finite strategic game 

has a mixed strategy Nash equilibrium [109]. This proposition guarantees that the probabilities 

of the decisions can be generated in any lane change scenarios at any time. 

A.4 Summary 

In the appendix, the background knowledges of this study are presented. As a well-developed 

method to deal with the human-like agent interactions, some basic concepts of game theory are 

introduced. Compared with other methods, one of the advantages of game theory is that it can 

list all the possibilities by considering the mutual active interactions in the utility functions. 

Meanwhile, game theory avoids the heavy calculations that happen in the DBN where the 

casual relations are represented by the probability graph. 


