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Abstract

Question answering is an important sub task in the field of information retrieval. Ques-

tion answering has typically used reliable sources of information such as the Wikipedia

for information. In this work, we look at answering health questions using the web. The

web offers the means to answer general medical questions on a variety of topics, but comes

with the downside of being rife with misinformation and contradictory information. We

develop our techniques using the TREC health misinformation tracks that use consumer

health question as topics and web crawls as their document collection.

In this work, we implement a document filtering technique based on topic-sensitive

PageRank that uses a web graph of the hosts in common crawl. We develop a new passage

extraction technique that performs query-based contextualized sentence selection. We test

this technique on a multi-span extractive question answering dataset. We also develop an

answer aggregation technique that can combine language features and manual features to

predict answers to these consumer health questions. We test all of these approaches on

the TREC Health Misinformation Track. We show that these techniques in the majority

of cases provide an uplift in performance.
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Chapter 1

Introduction

Search engines are a modern tool used extensively in our day to day lives. Over the years

many advances have been made to the techniques employed by search engines and the

search engine results page of today differs greatly from when these tools were first

introduced. One example is how modern search engines incorporate question answering

techniques into their pipelines, giving short answers in conjunction with a traditional list

of web documents. For simple factoid questions, where one or a few words can give a

precise answer, Google can give accurate answers based on what it finds on the web as

seen in figure 1.1, or for more complicated questions it can extract a summary from a

web page as seen in 1.2. Question Answering is one of the principal areas of research

within information retrieval and natural language processing.

In this work, we look at automated question answering on the web, more specifically

answering consumer health questions using web documents as resources. Question

answering on web documents offers a unique set of challenges compared to using

knowledge bases or trusted sources like Wikipedia. One key challenge stems from the

presence of contradictory answers which would not be present when using a trusted

source such as an encyclopedia or a knowledge base. We focus on health-related questions

which is a genre of questions that tends to exacerbate this issue. For certain health

queries, search engines will return relevant information that is biased towards saying

potential treatments are helpful regardless of the truth. This results in the promotion of
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Figure 1.1: Google.com providing a concise answer to a simple factoid question.

Figure 1.2: Google.com providing an extracted summary of a web page with relevant text

highlighted in response to a more complex question.
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misinformation or information that is not supported by scientific evidence (White, 2014;

White and Hassan, 2014; White and Horvitz, 2015). In such a scenario, where a system is

faced with questions where there is the possibility of returning incorrect information, the

system would have to first determine the correct answer using a question answering

module and promote pages that agree with that answer in its ranking using a reranking

module.

1.1 Problem Definition

In Question Answering (QA), the aim is to provide answers to natural language questions.

Modern search engines such as Google and Bing combine their search engine results pages

with question answering techniques enabling them to answer factoid questions in a

concise manner. Factoid questions can be answered precisely using one or a few words.

Question answering systems can either be extractive or generative. Meaning the

answers can be either extracted directly from text or generated in a free-form manner. In

this work, we focus on questions with yes or no answers which is a simplification the

generative setting.

Open domain question answering (ODQA) is another subset of question answering

wherein a system uses external knowledge sources, such as web pages, to automatically

answer questions. Open domain question answering differs from the machine reading or

machine comprehension task in that no context is provided to derive the answer from.

The system must find the relevant information itself within a collection of documents

whereas, in machine reading and machine comprehension, a passage is provided to the

system for it to extract an answer from. In open domain question answering, the system

often has access to an external knowledge source of some kind (open-book setting)

although this may not always be the case (closed-book setting).

These systems typically use structured knowledge bases (knowledge graphs) such as

DPPedia (Auer et al., 2007) or WikiData (Vrandečić and Krötzsch, 2014). These sources

however can be limited and can be difficult to work with for general purpose, non-factoid

questions (Zhu et al., 2021).
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More advanced ODQA systems use unstructured data sources such as text. For example,

they may use the entirety of Wikipedia (Chen et al., 2017), news articles, or science

books (Mihaylov et al., 2018). These textual question answering systems are more

scalable as such unstructured text sources are more commonly available and cover more

subjects (Zhu et al., 2021).

As mentioned, open domain question answering differs from the machine reading

comprehension task, which is also a subset of the question answering field, in that no

context is provided from which to derive the answer. The ODQA must search for relevant

documents in a document collection. Open domain question answering is a more complex

task than machine reading. Building a general-purpose accurate open question answering

system can be thought of as one of the end goals of the question answering field.

While using unstructured text sources can greatly enhance the capability question

answering systems, not all answers can be found in a single source of knowledge such as

Wikipedia. In this thesis, we use a large web crawl of approximately 1 billion documents

for question answering. Using such a large collection will further increase the variety of

questions that a system can answer, but it does come with a significant downside. While

sources like Wikipedia can be considered reliable with few mistakes and no

disinformation, the same cannot be said for the web as a whole.

So at this point, we reach the main challenge we aim to tackle in this work. How can we

correctly determine answers when we may have contradictory information from multiple

sources? In the health domain, which will be the primary focus of this work, this problem

becomes more severe as incorrect answers can cause actual harm to users. This harm can

range from an inconvenience to potentially life-threatening. For example, a search for

whether toothpaste will get rid of pimples in commercial search engines will return links

to reputable medical websites with experts warning against the practice, but also links to

websites demonstrating how to apply technique. In another example, Hoxsey therapy is a

hoax treatment marketed as a cure for cancer. A search for ”Hoxsey Therapy” in

commercial search engines will return links to reputable websites stating it is an

ineffective treatment, but also link to websites that sell the formula and talk about it’s

”anti-tumour” properties.
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Another challenge when working on the web is the length of documents. Typically web

documents are long and can cover a variety of topics and only a handful of sentences are

directly related to answering the question at hand. Most models extract contiguous spans

of text or passages from documents for this purpose, but relevant spans can be sparsely

distributed across a document. Others have proposed domain specific passage extraction

(Zhang et al., 2022). Researchers have shown that individually classifying sentences in

isolation is inefficient and gives subpar results and that classifying sentences needs to take

the entire context into account (Zhu et al., 2020).

In this work, we implement a fairly simple transformer architecture to classify sentences

in a document as relevant or non-relevant to the question at hand. We use a transformer

that can take longer inputs so that we can classify each sentence using the context of the

entire document. We then use these passages and combine them with document features

such as host names or document metadata to get a final prediction of the answer to a

question. We implement an answer aggregation technique where we combine transformer

outputs of the top k documents. Using this prediction we rerank retrieved documents to

display only those that agree with the prediction.

1.2 Thesis Overview

In summary, the challenges tackled and ideas proposed in this work are as follows:

• Reducing harmful information in web retrieval for health questions. Focusing on

relevance without paying attention to the correctness of documents could potentially

cause harm to users. To tackle the issue of aggregating responses when our knowledge

source contains misinformation, we first implemented a simple solution. In order to

ensure only reliable sources make it into the final ranking step, we filter domains

by their credibility using a web hostname graph and topic-based page rank. For

reducing harmful information, previous research indicates that the better approach

is to rerank documents based on their level of agreement with the correct answer to

the question. In this work, we take previous work done in this regard and expand on
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it. This will result in a significant reduction in the amount of harmful information

delivered to a user. This approach, however, comes with its new set of challenges.

• When a model needs to determine the answer to a question from a document, it usu-

ally does not need all of its text, it only needs certain relevant spans of text. Trans-

former models used for question answering have input length limits and increased

memory requirements for processing long inputs, so shorter passages are preferred

to whole documents. For the task of query-biased passage extraction, we imple-

ment a model for passage extraction that is both efficient and can extract sentences

from throughout the document. The passage extraction is capable of extracting non-

continuous spans of text from a document.

• When a user asks a question, we won’t have the answer on hand that our system

needs for document reranking. Using our passage extraction system we propose a

new answer aggregation and reranking architecture for use in the TREC health misin-

formation tracks. In this approach, we aggregate the outputs of the top 16 retrieved

document’s transformer models for answer prediction. Combining the passage ex-

traction and this answer aggregation technique we can do reranking based on the

agreement between answers derived from document passages and our predicted an-

swer and return those results to the user.

The question answering system in this work will have the following components:

1. A computationally efficient retrieval system that fetches documents relevant to the

question from the entire web collection (e.g. BM25 retrieval).

2. An optional computationally expensive reranker that sorts the documents retrieved

in the initial stage.

3. An answer aggregation component that determines the answer as yes or no.

4. A final reranker that will rank documents based on their level of agreement with the

answer prediction.
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We will be using this system to determine the answers to consumer medical questions.

Although we constrain the problem to questions with only yes/no answers. The QA

system will use documents retrieved from a web crawl. After predicting an answer the

system will rerank the retrieved documents to promote the ones that agree with the

prediction and suppress those that do not. In this work, we improve or generalize the

techniques previously used for each of these modules.

1.3 Contributions

In this section briefly go over the results

• Filtering our collection of web documents to only our seed list of credible domains

and using BM25 retrieval improved our main evaluation metric (compatibility) from

-0.022 to 0.027. By expanding the list of credible domains using topic-based PageR-

ank we further improved the metric to 0.040. Based on this one might conclude that

using more advanced retrieval models on the filtered dataset would improve perfor-

mance. But we see that there is an upper limit to the quality of results using this

technique. Filtering the collection limits the variety of questions we can answer, and

for certain topics, we end up with worse performance than had we not filtered the

collection. While this approach to the problem does not give better results than

answer prediction and reranking strategies, it did yield some insights into the nature

of the problem.

• Compared to Mono-T5 (Pradeep et al., 2021b) passage extraction, our passage ex-

traction technique has a delta compatibility of 0.073 vs 0.062 in the 2019 track. In

the 2021 track, however, it failed to beat Mono-T5 baseline as its helpfulness com-

patibility was too low (0.217 vs 0.246).

We also compare it to the previous best model in the MASH-QA dataset (Zhu et al.,

2020), which is a dataset for multi span passage extraction. Using this approach on

the MASH-QA dataset we achieve an F1 score of 74.37 vs 57.00 the previous best

approach.
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• For answer prediction, compared to Zhang et al. (2022) answer prediction, our passage

extraction technique gives an AUC score of 0.661 vs 0.606, 0.840 vs 0.822, and 0.691

vs 0.864 in the 2019, 2021, and the 2022 tracks respectively. Compared to Zhang

et al. (2022) answer prediction reranking, our passage extraction technique gives

a compatibility score of 0.162 vs 0.129, and 0.089 vs 0.076 in the 2021 and the

2022 tracks respectively. In 2022 despite having poorer initial helpfulness and lower

answer prediction accuracy, the overall pipeline still managed to beat our previous

best baseline. The result seems to indicate that our reranking that takes in auxiliary

features about hosts works well. However, we hypothesize that the poor answer

prediction results for TREC 2022 are a result of search topics that require looking at

more than the top 16 results.

1.3.1 Thesis Organization

Chapter 2 introduces related work in question answering and previous work for the task

of health misinformation. Chapter 3 describes the tasks and the proposed methods for

them in greater detail. Chapter 4 describes how the experiments were conducted and

discuss the results obtained. Chapter 5 summarizes the work and details future research

directions.
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Chapter 2

Related Work

In this chapter, we provide a review of research related to the techniques we use

throughout this work. We provide an explanation of neural language models, modern

state-of-the-art question-answering architectures, and health misinformation on the web.

2.1 Neural language models

The availability of massive amounts of data from the web and advances in computer

hardware have brought about significant advances in the field of deep learning. By

applying deep learning, researchers in information retrieval and natural language

processing have also attained huge gains in a variety of tasks

Early neural natural language processing models relied on shallow networks such as

CNNs and LSTMs trained from scratch on domain-specific datasets. While these models

used a pre-trained word embedding layer for initial token representations, the rest of the

weights would typically be randomly initialized and trained for a specific task. Peters

et al. (2018) found that by pre-training entire deep or multi-layer versions of these

networks in an unsupervised manner and fine-tuning the models on specific tasks they

could achieve much better results than training from scratch in each specific task. This

technique of transfer learning had previously proven to be effective in the field of
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computer vision. It can help reduce training time and generalization errors in datasets

where there are not enough training labels available.

The advent of transformer layers (Vaswani et al., 2017) and the BERT language model

(Devlin et al., 2019) which uses multiple self-attention layers stacked on top of each other

resulted in another big leap in performance. The significant advantage of stacked

self-attention layers is that each token in the input can be processed in parallel, unlike

LSTMs (which were the standard for text processing at the time) where to process a

token in a sequence the previous token must have finished processing. This means a

reduction in training time, which meant models could be trained on even more data.

In the rest of this section, we briefly describe some of the transformer-based language

models that are used throughout this work.

BERT

BERT or bidirectional encoder representations from transformers was proposed by Devlin

et al. (2019) as a way to use stacked transformer layers for natural language processing

tasks. It achieved state-of-the-art performance on various NLP tasks including question

answering, sentiment analysis, semantic equivalence, natural language inference, etc.

Compared to previous language models which could only process input sequences right to

left or left to right, BERT processes input sequences in a bidirectional manner. This was

achieved by using a new pre-training task called Masked Language Model. In this task

15% of words were masked and the model was trained to predict the correct tokens to fill

in the blanks. This means that BERT can learn the context of a word from both tokens

to its right and tokens to its left in a sequence. BERT is also trained for the task of next

sentence prediction where consecutive sentence pairs act as positive samples in the

training set and random sentences are used as negative samples. The pre-training was

done on all of Wikipedia and the Brown corpus.

BERT inputs are prepended with a special [CLS] token and appended with a special

[SEP ] token. If the input is a pair of sentences a [SEP ] token is added between them as

well. For classification and regression tasks the [CLS] token’s final layer representation

vector is fed into a linear layer for classification or regression.

10



T5

Proposed by Raffel et al. (2020), T5 is another transformer-based language model. Its

significant difference from BERT is that it is a text-to-text architecture meaning that any

task it is used for must be cast to a text-to-text task. For example, to translate a

sentence from German to English, the sentence should be prepended with instructions to

do so. It was pre-trained on a significantly larger corpus, the Colossal Clean Crawl

Corpus (C4 corpus), and fine-tuned on various NLP tasks. When released it achieved

state-of-the-art performance on many NLP tasks.

Big Bird

Proposed by Zaheer et al. (2020), Big Bird is a transformer model that uses sparse

attention. In regular transformer models to calculate attention scores of tokens, each

token in a sequence is compared to every other token at each layer. This means memory

usage is quadratic with respect to sequence length, Using Sparse attention reduces the

memory requirements of these models and allows for even longer input sequences. This

capability makes the model uniquely suited for certain NLP tasks such as question

answering and summarization. If we imagine a self-attention matrix where the axes as

input tokens, BERT computes attention scores for every element in this matrix, whereas

Big Bird only computes attention on the diagonal, sides, and a few random elements.

The diagonal and side attention scores give local and global context respectively when

encoding a token. Big Bird has better metrics than BERT on natural language tasks and

has a limit of 4096 tokens as opposed to 512 tokens. In this work, we will be using Big

Bird for document passage extraction but other alternatives exist.

Longformer

Proposed by Beltagy et al. (2020), the Longformer is similar to Big Bird in the way it

handles sparse attention. Their implementations vary slightly. Comparing the two across

various NLP datasets, Big Bird performs better but requires more computational power.
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2.1.1 Reformer

Proposed by Kitaev et al. (2019), the Reformer uses a different approach to reducing the

quadratic memory usage of BERT by using locally sensitive hashing (LSH) for computing

attention scores. While it is not constrained by an input length limit, it does not scale as

well as the previous approaches (O(L logL) vs O(L)).

2.1.2 ConvBERT

Proposed by Jiang et al. (2020), ConvBERT replaces BERT’s self-attention with

span-based dynamic convolution. Convolution operations can potentially have an

advantage over self-attention for capturing local context. ConvBERT has slightly better

metrics than BERT but is more efficient, so it could potentially be used in tasks that

have longer inputs.

2.2 Question Answering

Question Answering is a fairly old task in the field of information retrieval with the first

studies on the subject matter. It first appeared in the Text Retrieval Conference (TREC)

in 1999 as the QA track where systems were tasked with retrieving the 5 most probable

snippets containing a correct answer from a collection of news articles (Voorhees et al.,

1999). This task is an example of the open domain setting where unstructured

documents are used as the knowledge source. Over the years TREC has continued to

host multiple tracks on question-answering.

Modern question-answering systems architectures can be divided into two components: a

retriever and a reader/generator (Zhu et al., 2021). The retriever is a text retrieval

system whose goal is to find documents relevant to answering the given question. These

retrievers can be either sparse, dense retrievers, or a combination of the two. The

reader/generator’s goal is to get the correct answer to the question from the retrieved

documents. It can either extract a span of text from the documents or generate an

answer in a free-form manner.
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Sparse Retrievers

Traditionally QA systems used sparse retrievers such as TF-IDF or BM25 (Robertson

et al., 1995) in their retrieval stage. These are bag of word ranking functions that

estimate the query-document relevance. They rely on term statistics and the exact

matching of words, although techniques such as pseudo-relevance feedback can help with

vocabulary mismatch. The estimated relevance is proportional to the number of

occurrences of query terms in a document with more weight being given to rare words.

In the rest of this section, we discuss QA models that have used traditional sparse models

for document retrieval.

DrQA (Chen et al., 2017) is a model which combines traditional sparse retrieval with a

neural reader model. This model focuses on factoid questions from Wikipedia.

Documents and queries are modeled as bags-of-words and the score of a query document

pair is calculated with a variation on TF-IDF as follows:

tf-idf(t, d,D) = tf(t, d) × idf(t,D)

tf(t, d) = log(1 + freq(t, d))

idf(t,D) = log
( |D|
|d ∈ D : t ∈ d|

)
where t is a unigram or bigram. Bigrams can be useful as they take word order into

account but they are more sparsely distributed in the collection than unigrams. freq is

the number of term occurrences and D is our document collection from Wikipedia.

Wikipedia is a popular collection with many QA papers having used it as a knowledge

source.

In Bertserini (Yang et al., 2019a) use the open-source Anserini IR toolkit (Yang et al.,

2017) for the retrieval stage. Anserini uses an implementation of BM25 by default and

the top 10 documents are retrieved. The authors found that passage retrieval performed

better than using either sentence or document retrieval.

In Multi-passage BERT QA (Wang et al., 2019), the authors used the elastic search

toolkit 1 for their retrieval. They too found that dividing documents into passages

1https://www.elastic.co/
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(100-word sliding windows) yielded better performance.

As mentioned sparse retrieval makes use of exact term matching leading to potential

problems with vocabulary mismatch. In recent years researchers have looked to neural

retrieval methods as an alternative to tackling this challenge.

2.2.1 Dense Retrieval

Constructing low-dimensional representations of text is not a new idea. Methods used for

this task included matrix decomposition and shallow neural networks. However, deep

learning offers great improvements in representation learning over previous methods.

Dense retrieval can be divided into representation and interaction-based retrieval. These

two techniques are also called bi-encoding and cross-encoding. One thing to note is that,

unlike most sparse retrieval methods, neural dense retrieval can be trained jointly in an

end-to-end fashion along with their readers, which means it can be trained in a

supervised manner for the specific task.

Representation-based retrieval

Also known as bi-encoder, or dual-encoders, these dense retrieval methods typically

follow some variation of the below formula:

hx = Ex(x) hz = Ez(z)

where the query x and document/passage z are fed into language model E and the

calculated representation vectors of the two are compared using a dot product.

Effectively the query and document are encoded separately (often with a BERT-based

transformer) and the similarity score between them is calculated. The most impactful

neural retriever-readers such as ORQA, REALM, and DPR have used such a retrieval

system. While modern iterations of this retrieval method use BERT-based encoders, the
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same architecture has been used with shallow networks for various retrieval tasks as well

(Huang et al., 2013) .

One major advantage of this approach is the possibility of pre-computing document

representation vectors offline and using fast maximum inner product search (MIPS) to

get the top k most similar vectors to a question vector at runtime. There are various

ways to implement MIPS, namely Asymmetric LSH (ALSH) (Shrivastava and Li, 2014),

date dependant hashing (Andoni and Razenshteyn, 2015) and the most popular approach

FAISS (Johnson et al., 2019).

ORQA (Lee et al., 2019) uses two independent BERT-based encoders to encode questions

and documents and calculates a relevance score between the two inputs with a dot

product. They pre-train their encoders on the inverse cloze task. In the inverse cloze

task, the goal of the model is to predict the context of a sentence. In the ICT loss

objective, the score of the correct context c of sentences z must be maximized as follows:

LICT = pearly(z|x) =
exp(Sretr(z, x))∑

z′∈BATCH(Z) exp(Sretr(z′, x))

To speed up training, the authors use other contexts in the current batch BATCH(Z) as

negative samples. These other samples are already being processed by the transformer, so

by using them we are no longer required to process random samples as negatives

As mentioned, in dense retrieval, document representations can be pre-computed offline.

This can also be the case during the fine-tuning phase. In ORQA the authors freeze the

document encoder and only fine-tune the question encoder, speeding up the fine-tuning

process. The intuition behind this pretraining task is to have representations good

enough for evidence retrieval.

Dense Passage Retrieval (DPR) (Karpukhin et al., 2020) uses two independent BERT

encoders for retrieval but does away with the inverse cloze task and suggests that

training the retriever on question-answer pairs is the better approach. The loss objective

here is the negative log-likelihood of the correct passage for the question. It too uses

other passages in the same batch as negative samples. Effectively DPR is using

supervised training with question-passage pairs while ORQA uses the unsupervised ICT

task to train its retriever. The authors also found that including one negative sample
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which has a high BM25 score with the question improves retrieval performance. The

passage is found by taking a top document returned by BM25 search that does not

contain the correct answer.

Instead of document or passage level encoding for later retrieval, researchers have also

proposed encoding at the phrase level with DensePI (Seo et al., 2019). By encoding at

the phrase level they skip the need for a reader and simply return the top phrase as the

answer for the SQuAD-Open dataset (Rajpurkar et al., 2016), achieving better

performance than DrQA while being much more efficient.

Interaction-based retrieval

These retrieval models estimate relevance by utilizing token to token interactions instead

of a single vector to vector interaction. They are more powerful than representation-based

retrievers as they allow for a richer interaction between the tokens of queries and

documents. Usually, this entails concatenating the question and document together and

using the concatenated text as input for a neural network model. In bidirectional

attention flow (BiDAF) (Seo et al., 2017b) a bidirectional LSTM is used for this task.

The more modern implementations would use BERT-based transformer models for this

task (Pradeep et al., 2021b). The downside of this approach is that it is not possible to

do offline document encoding. Thus one forward pass of the model is needed for every

potentially relevant document that we need to test. This makes it unpractical to use

except for small lists as in a search setting users expect results in a fraction of a second.

By leaving the interaction between question and document tokens to the last level, a

model can achieve a higher degree of accuracy while keeping computational costs

relatively low. In ColBERT-QA (Khattab et al., 2021), the authors use ColBERT

(Khattab and Zaharia, 2020) as the retriever. This retriever uses the same dual encoder

architecture with the added step of calculating and summing the cosine similarity of all

question and document token vectors. Researchers used have used a final dot-product

attention layer for this same purpose as well (Vakili Tahami et al., 2020). SPARTA (Zhao

et al., 2021) takes a similar approach where they use a combination of dot products and

max-pooling.
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Another technique to enhance dense retrieval is using query reformulation where the

query is reformulated using an initial set of returned documents. In Generation

Augmented Retrieval (GAR) (Mao et al., 2021) researchers use BART (Lewis et al.,

2020a) for generating contexts for a given query and append these contexts to the query.

For example, they might generate a title for a document and append it to the query.

They claim these appended texts better express search intent than just the query by

itself. Using these new queries and BM25 they achieved comparable performance to

state-of-the-art dense retrieval models. In figure 2.1, we see the general architecture of

dense retrieval models.

2.2.2 Reader/Generator

After a QA system has gathered documents relevant to answering a question, it must

then use these to predict an answer. It can do so by either extracting spans of text from

the documents (reader) or generating text for the answer (generator). Open domain

question answering where we find relevant information for predicting an answer is more

challenging than the machine reading task where a passage is given along with the

question. There is much more information to process and there is the possibility of errors

being made in the retrieval stage.

Readers assume that the exact correct answer can be extracted from the documents.

They can process retrieved documents independently or jointly.

DrQA (Chen et al., 2017) uses a shallow 3-layer LSTM to process document texts. They

use a combination of word embeddings and other features such as: exact matching

(whether a document token is present in the query), port-of-speech tags, named entity

recognition tags, and term frequency. These document tokens are fed into the LSTM to

get their final representations. The representations are combined with the query vector in

a bilinear layer and used to predict the start and end tokens for the answer phrase.

State-of-the-art models, however, usually use BERT-based transformers for their readers.

BERTserini (Yang et al., 2017) fine-tunes a BERT transformer on the SQuAD dataset.

They linearly combine the BM25 and BERT scores of sentences to select the best answer

spans.
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Figure 2.1: Examples of Representation-based, interaction-based architectures as well as

an interaction-based architecture which only does token-token comparisons between its two

inputs at the last level.
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Multi-passage BERT (Wang et al., 2019) feeds token representations into a multi-layer

classifier to predict the span start and end tokens. It further enhances this approach by

normalizing the scores of tokens across all passages.

By using generators instead of readers models are free to generate free text to answer

given questions instead of being limited to selecting start and end tokens in retrieved

passages.

Retrieval augmented generation (RAG) (Lewis et al., 2020b) uses the DPR retriever for

finding documents. It then concatenates the question with retrieved passages to the

question before using BERT to generate an answer.

Fusion in decoder (FiD) (Izacard and Grave, 2021) works similarly to RAG. It uses T5

for encoding passages independently but concatenates the produced vectors together

before passing them onto the decoder.

It is also worth noting that larger pre-trained language models are also capable of

answering questions in a closed book setting (without any retrieved documents). The

175B parameter version of GPT3 achieved very high accuracy on a variety of QA tasks

even in the zero-shot setting (Brown et al., 2020), meaning it could effectively answer

questions in these datasets without having ever seen a sample from it.

2.3 Health Misinformation

In this work, we primarily focus on question-answering in the health domain. Search

engines are one of the primary ways in which people find health-related information

online (Lee et al., 2014). One of the primary challenges in complex question answering on

the web is how to aggregate an answer from retrieved documents when they are

inconsistent. This is especially prevalent in the health domain. Search engines are a

popular tool when it comes to answering health-related questions (Fox and Duggan,

2013). Users searching for medical questions on the web will often face contradictory

statements regarding their questions. This became more apparent during the COVID-19

pandemic when we saw a proliferation of harmful and incorrect content. This kind of

19



misinformation can lead users to make incorrect decisions that can have real-world

negative consequences on their well-being.

Various biases can affect the accuracy of a search engine user’s decision-making. These

biases can come from the content of search results, the search engine, or the user

themselves (White and Hassan, 2014). Search engines tend to be biased toward positive

outcomes regardless of the truth (White and Hassan, 2014; White, 2014; White and

Horvitz, 2015). In these works White and Hassan (2014); White and Horvitz (2015)

looked at medical questions that were yes/no questions as well as queries about the

efficacy of medical treatments. But, by controlling or mitigating its bias search engines

can improve the accuracy of user decision-making. Of particular interest to us are biases

stemming from how a search engine displays its results. By biasing the results towards

correct or incorrect information and ranking yes answers above or below no answers

White (2014) showed that the accuracy of user decision making shifted from 74.9% to

63.1%. In other work, Pogacar et al. (2017) showed that by biasing the rank of the top

most correct document authors could alter the accuracy of user-decision making from

23% to 43%.

Thus previous research shows that users cannot reliably make correct medical decisions if

we only show them highly relevant documents. In order for them to make correct

decisions and avoid potential harm, search engines must accurately determine the correct

answer to their questions and bias their search results appropriately.

In another paper, participants were given a series of health questions regarding medical

conditions and potential treatments and asked to make decisions on their efficacy based

on a search results page. By conducting a think-aloud user study, the authors showed that

users will often base their decision on what the majority of results are saying. They also

saw a decrease in decision-making accuracy when biasing search results towards incorrect

information. During the think-aloud study, users would express their intention of looking

for reliable and credible sources. They, however, did not talk about any bias they had

towards the topmost ranks or towards web pages claiming treatments were helpful. This

indicates that certain biases are at the subconscious level (Ghenai et al., 2020).

Researchers have also looked at click behavior to study this phenomenon (Abualsaud and
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Smucker, 2019). They saw that users spending more time viewing incorrect documents

are more likely to make incorrect decisions. They also saw that whether the last

document was correct/incorrect last document a user viewed had a strong correlation

with the user’s final decision.

To combat misinformation on the web researchers have proposed a variety of approaches.

Epstein et al. (2017) studied the effect of ranking bias in political campaigns. By biasing

search results in favor of a candidate they could increase the candidate’s vote count in

their experiments. However, by alerting the users to this bias using alerts they could

reduce the effect this bias had on the outcome.

The TREC health misinformation track focuses on retrieval methods that promote the

retrieval of correct and reliable information from the web for health-related

decision-making tasks. The track asks participants to retrieve documents relevant to

answering a medical question from the world wide web ( from the common crawl 2) and

display them to the user while ranking correct credible and informative documents at the

top and suppressing incorrect unreliable and uninformative documents towards the

bottom.

Researchers in the track have shown that simple intuitive measures such as better

retrieval methods, classifying document credibility, and filtering the collection for reliable

medical domains can result in modest gains in the helpfulness of retrieved results.

However, Pradeep et al. (2021a) showed that by far the best way to achieve the goal of

the task is to simply rerank retrieved documents based on their level of agreement with

the correct answer. This approach achieves a much greater reduction of harmfulness

compared to other possible solutions (Clarke et al., 2020, 2021a). The TREC health

misinformation track has demonstrated over the past few years that relying on features

such as the credibility of web pages is sub-optimal compared to simply reranking results

based on their agreement with the correct answer. If we know beforehand what the

correct answer to a question is, we can rerank a document list based on their level of

agreement with the known answer. In reality, we would not have the answer available to

us, thus the model must first determine an answer based on the retrieved set of

2https://commoncrawl.org/
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documents and then do the reranking.

Determining the correct answer to medical consumer questions using modern

question-answering techniques and reranking search results so as to boost documents

based on their level of agreement is the main task we aim to tackle in this work.
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Chapter 3

Methods and Materials

In this chapter, we discuss datasets, newly proposed techniques, and baselines. We begin

in section 3.1 by briefly describing the document corpora and datasets used for

pretraining. We then describe our task by talking about the TREC Heath

misinformation track

3.1 Data

In this section, we describe the datasets and document collections used throughout our

experiments.

3.1.1 Clueweb2012

The 2019 TREC health misinformation tack (then called the decision-making track) uses

Clueweb12-b13 which is a 7% sample of Clueweb12. Clueweb12 is an English-only web

crawl. Clueweb12-b13 contains roughly 50 million documents.
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Dataset documents tokens size

C4 365m 156m 305GB

C4 no-clean 1.1B 1.4T 2.3 TB

Table 3.1: Statistics for the C4 dataset. Documents are the text scraped from a URL at a

specific time. Tokens are counted using the Spacy (https://spacy.io/) English tokenizer.

Size is compressed JSON files (Dodge et al., 2021).

3.1.2 C4

The colossal clean crawled corpus (C4) (Dodge et al., 2021) is a cleaned version of the

common crawl. Large language models have in recent years led to impressive gains on

many natural language processing tasks. To train large models researchers need large

text corpora to pre-train these large models in an unsupervised manner. Naturally,

researchers have turned to using web crawls for this task. C4 is such a dataset. It is

created by applying a set of filters to a common crawl snapshot. It has been used to train

the T5 and Switch language models, which were at the time of their introduction two of

the largest neural language models in terms of the number of parameters.

The 2021 and 2022 health misinformation tracks use the C4 collection as their document

corpora. They use the uncleaned version which has fewer filters applied to it. The

statistics for the C4 document collection are available in table 3.1. The no-clean version

contains over 1 billion documents.

3.1.3 MASH-QA

The MASH-QA dataset (Zhu et al., 2020) is a question-answering dataset that was

designed to help models tackle questions where answers come from multiple

non-consecutive parts of a document. The questions are health-related and the

documents are taken from WebMD. The dataset answers are curated by experts as

opposed to automatic methods. This ensures the data has less noise and answers to the

question can actually be found in the selected spans.
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MASH-QA-S MASH-QA-M MASH-QA

# Contexts 5,210 3,999 5,574

# QA pairs 25,289 9,519 34,808

# Train QA 19,989 7,739 27,728

# Dev QA 2,614 879 3,493

# Test QA 2,686 901 3,587

Table 3.2: Statistics for the MASH-QA dataset. MASH-QA-S and MASH-QA-M are the

single-span and multi-span subsets of the dataset.

Each sample in the dataset consists of a (question, context, [answer sentences]) tuple.

The natural language question can be answered using one or more sentences from the

context which is a long text document. The context will typically be a web document

containing multiple paragraphs. The answer sentences are a list of several sentences.

They can be from a single span or multiple places across the document. The statistics for

the dataset are shown in table 3.2. MASH-QA-S and MASH-QA-M are the single-span

and multi-span subsets of the dataset. We use the entire dataset (MASH-QA) in this

work. An example from the dataset is displayed in figure 3.1.

The dataset question-answer pairs are consumer health questions sourced from

WebMD 1. The WebMD website consists of a wide variety of healthcare articles. The

answers to these consumer health questions have been curated by healthcare experts.

Similar to the health misinformation track, finding correct answers to these questions is

of great importance as incorrect answers can result in harm coming to users. The answers

provided by health experts are taken from these articles with minimal editing. To create

this dataset authors match the sentences in the answers to their corresponding sentences

in the articles. They do this by first checking for exact matches and then by calculating

tf-idf scores and manually matching similar sentences.

Having multi-span answers is the major advantage of this dataset over existing extractive

QA datasets. Other multi-span datasets do not use a manual approach to curate their

1www.webmd.com
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Figure 3.1: An example from the MASH-QA dataset. Relevant sentences to the question

are highlighted.
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support documents. As they use automatic techniques such as web search the answers

are not guaranteed to be found in the context which can lead to noisy training data.

3.1.4 Topics

For working with the TREC Health misinformation task we use the topics from the 2019

and 2021 tracks. 2020 focused on Covid-19 topics which would not be present in the C4

corpus which is taken from a 2019 crawl. The 2019 and 2021 topics are general-purpose

consumer health questions. They consist of a query, which contains topic keywords for a

search engine; a description which is a natural language question; a narrative which

contains further details regarding the subject matter. The 2019, 2021 and 2022 topics are

about medical conditions and potential treatments, thus the narrative would explain

these conditions and treatments in greater detail. The narrative can help assessors who

are judging documents. The topic also contains a stance or answer as well as a link to the

evidence supporting this answer. 2019 and 2021 topics have stances that are helpful or

unhelpful, but in this work, we treat the topics as questions and talk about yes/no

answers. All topics except three in the 2019 track have descriptions that are yes/no

questions where yes is equal to a stance of helpful and no is equal to unhelpful. For those

three topics, we reformulate the descriptions as questions. topics from the 2022 track are

already in the question answering format. An example topic is in table 3.3. Here the

stance for the question is unhelpful so in our implementation, we label the answer as a

no.

We also use a set of consumer health topics from White and Hassan (2014). These were

taken from reviews from the Cochrane library 2. Cochrane is a charitable organization

with the aim of organizing medical research. The group conducts systematic reviews of

healthcare interventions and diagnostic tests and publishes them in the library. Some of

the health misinformation track topics are also based on Cochrane reviews. Overlapping

topics were removed to give a balanced topic set with 45 yes answers and 45 no answers.

This topic set has been proven effective as training data for the health misinformation

2cochrange.org

27

cochrange.org


Topic 104

Query duct tape warts

Description Does duct tape work for wart removal?

Narrative Duct tape is a plastic and cloth backed adhesive tape commonly available

and known to be useful for quick repairs. Warts are skin growths caused

by a viral infection. A very useful document will discuss the effectiveness

of applying duct tape to warts for their removal. A useful document

would help a user decide if duct tape is an effective remedy for warts

by providing information on recommended methods to treat warts, and

may or may not mention the use of duct tape for this purpose, but which

do not directly address the effectiveness of duct tape for wart removal.

Stance Unhelpful

Evidence https://pubmed.ncbi.nlm.nih.gov/22972052/

Table 3.3: An example topic from the health misinformation track.

track in Zhang et al. (2022) and is available in the projects GitHub repository 3. We will

refer to this topic set as the White and Hassan topics in future sections.

3.2 Tasks

In this section, we describe and formalize the various tasks used in the health

misinformation pipeline. The question-answering pipeline proposed in this work is

designed for the TREC health misinformation tracks. We use the 2019 and 2021 tracks.

In 2019 and 2021, the topics (questions) are regarding a medical condition and a

potential treatment. These pairs are labeled as unhelpful, helpful, or inconclusive.

Unhelpful means that the treatment does not help the condition. Helpful means the

treatment helps the condition and Inconclusive means that there is not enough evidence

to support either claim. Only the 2019 track contains inconclusive topics. In the 2022

3https://github.com/UWaterlooIR/golden-gaze

28

https://github.com/UWaterlooIR/golden-gaze


track, the topics are more general medical questions but their labels are still binary

yes/nos. These topics are labeled by the track organizers based on reviews done by

medical professionals from trusted sources.

For each track, participants are tasked with creating models that rank the documents to

boost correct and suppress incorrect documents. Runs can use the helpfulness labels

provided by the track organizers but these would count as a non-automatic run. These

runs are pooled together and given to assessors for judgments. The assessors judge

documents based on their stance (helpful/unhelpful or yes/no), relevance, and credibility.

Statistics on these judgments are available in 3.5.

In total there are 151 topics across the three years. Topics are comprised of a unique id, a

query that contains keywords to be used for search, a description that takes the form of a

natural language question, a narrative that gives a more detailed account of the medical

terms used in the question, and the search intent of the topic’s creator.

From 2021 onward the track no longer has inconclusive topics. For consistency across

tracks, we disregard the inconclusive topics from the 2019 topics.

In 2021 the track uses graded scores and the compatibility metric (Clarke et al., 2021b)

for evaluation. If a document’s stance matched the correct answer it would have a higher

grade depending on its credibility and informativeness. If it disagreed with the correct

label then its score would be lower if it had higher credibility or informativeness.

The compatibility of a ranking S is measured by calculating the rank biased overlap

between the ranking and an ideal ranking T as such

RBO(S, T, p) = (1 − p)
∞∑
d=1

pd−1Ad

where Ad is the agreement of proportion of S and T that are overlapped at depth d. p is

a searcher persistence. It effectively gives a higher weight to the higher ranks. It can be

thought of intuitively as the probability that a search engine user will continue to the

next item at each item. Ranked biased overlap calculates the similarity of two lists. If the
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Judgments Score

very useful, correct, very credible 12

useful, correct, very credible 11

very useful, correct, credible 10

useful, correct, credible 9

very useful, correct, not credible or not judged 8

useful, correct, not credible, or not judged 7

very useful, neutral or not judged, very credible 6

useful, neutral or not judged, very credible 5

very useful, neutral or not judged, credible 4

useful, neutral or not judged, credible 3

very useful, neutral or not judged, not credible or not judged 2

useful, neutral or not judged, not credible or not judged 1

not useful, not judged, not judged 0

very useful or useful, incorrect, not credible or not judged -1

very useful or useful, incorrect, credible -2

very useful or useful, incorrect, very credible -3

Table 3.4: Grade scores used for calculating compatibility in the 2021 health misinfor-

mation track. An ideal ranking must place all higher scored documents before any lower

scored document.
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2019 qrels 2021 qrels

Number of judgments 22,859 12,778

Number of useful documents 3,137 4,155

Number of very useful documents 1,028 2,314

Number of supportive documents 3,025 3,667

Number of dissuasive documents 161 889

Number of credible documents 2,229 3,339

Number of very credible documents - 652

Maximum number of words 61,511 27,535

Minimum number of words 65 47

Average number of words 1,543.345 2,746.622

Table 3.5: Statistics for the assessor judgments made for the tracks 2019, 2021, and 2022

lists are identical it returns a value of 1 and if they are completely different it returns a

value of zero.

In the 2021 track, two rankings helpful and harmful are created for each topic. A helpful

ranking represents the best-case scenario where documents are ranked by the scores in

table 3.4. In the harmful ranking, the worst documents are placed on top. To evaluate a

ranking, helpful and harmful compatibility are calculated and subtracted from one

another as follows:

Compatibility∆ = Compatibilityhelpfulness − Compatibilityharmfulness

Basically runs must rank documents with a higher score first to achieve a high

compatibility score.

Typically runs in TREC contain 1000 documents, but by using a default p of 0.95, we

effectively limit the evaluation to the top 20 documents.

In the 2022 track in addition to graded relevance, assessors were tasked with applying

preference ordering to the judgements. They used an interface in which they were shown

two of the top retrieved documents and were tasked with specifying which was the more
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useful and correct document. Using these preference judgments the top scoring

documents would be reranked in the ”ideal” ordering used when calculating compatibility.

3.3 Methods

In this section, we describe our proposed QA pipeline designed to tackle the health

misinformation track. But before that, we first propose a simple domain filtering

approach that, while not very effective, can yield some insight into the problem at hand.

3.3.1 Domain Filtering

One seemingly obvious solution to the task is to simply filter the document collection to

contain only hosts/domains that are credible. One possible solution to determining

credibility is to use already available credibility certifications. Here we used the

HONCode certification. These certifications are provided by the Health on the Net

Foundation which was a non-profit organization 4. The organization’s website provided

health information and issued the certificate to compliant websites that requested it.

Compliance is based on a code of conduct that aimed to promote useful and reliable

medical information on the web. The code of conduct mentions factors such as

transparency of authorship and sponsorship, authority (advice given by medical

professionals), and attribution (references to sources and their dates). The code of

conduct taken from the website is provided below 5:

• Authority – Any medical or health advice provided and hosted on this site will only

be given by medically trained and qualified professionals unless a clear statement is

made that a piece of advice offered is from a non-medically qualified individual or

organization.

4https://myhon.ch/en
5http://web.archive.org/web/20190808172632/http://www.hon.ch/HONcode/Conduct.html

32



• Complementarity – The information provided on this site is designed to support,

not replace, the relationship that exists between a patient/site visitor and his/her

existing physician.

• Privacy – Confidentiality of data relating to individual patients and visitors to a med-

ical/health Web site, including their identity, is respected by this Web site. The Web

site owners undertake to honor or exceed the legal requirements of medical/health

information privacy that apply in the country and state where the Web site and

mirror sites are located.

• Attribution – Where appropriate, the information contained on this site will be sup-

ported by clear references to source data and, where possible, have specific HTML

links to that data. The date when a clinical page was last modified will be clearly

displayed (e.g. at the bottom of the page).

• Justifiability – Any claims relating to the benefits/performance of a specific treat-

ment, commercial product, or service will be supported by appropriate, balanced

evidence in the manner outlined above in the attribution principle.

• Transparency of authorship – The designers of this Web site will seek to provide

information in the clearest possible manner and provide contact addresses for visitors

that seek further information or support. The Webmaster will display his/her E-mail

address clearly throughout the Web site.

• Financial disclosure – Support for this Web site will be clearly identified, including

the identities of commercial and non-commercial organizations that have contributed

funding, services, or material for the site.

• Advertising policy - If advertising is a source of funding it will be clearly stated. A

brief description of the advertising policy adopted by the Web site owners will be

displayed on the site. Advertising and other promotional material will be presented

to viewers in a manner and context that facilitates differentiation between it and the

original material created by the institution operating the site.
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There are approximately 8000 hosts in the collection that have HONCode certifications.

Previous research has shown that certification is a reliable indicator of quality health

information and most uncertified websites do not adhere to the HONCode principles

(Laversin et al., 2011). Such a few numbers of hosts are most likely not able to answer

general-purpose medical questions across a wide set of domains. To this end, we proposed

expanding the collection by exploiting the hostname link graph6.

Common crawl provides this link graph which details how hosts or domains are

connected to each other via links. In this graph, nodes are hostnames and edges are the

presence of a link between the contents of the two nodes. We hypothesized that websites

with the HONcode certification are more likely to link to other reliable websites even if

they do not have the certification.

There are approximately 4 million nodes and 4 billion edges in the host link graph. Our

goal is to find reliable hosts such as medical journals and organizations that do not have

the HONCode certification. Most likely because they have never applied for receiving it.

We use a variation of topic-sensitive PageRank (Haveliwala, 2002) in an attempt to find

these hosts. We create a subset of the link graph as follows: For nodes, we take all the

8000 domains and all the domains they link to. For edges, we take all edges where the

source is one of our 8000 reliable domains. We calculate PageRank scores for all nodes

but only randomly jump to reliable domains. We then take only the top 10000

highest-scoring nodes. We end up with 10000 domains and roughly 30 million documents.

However many of these documents are non-medical and irrelevant to the task at hand.

These domains are typically hub pages that end up with high PageRank scores due to the

sheer number of incoming links. In the next step, we will filter these out.

To this end, we train a medical text classifier which we then use to tell us what

proportion of pages for each given host is actual medical content. To train this classifier

we use the 2019 TREC health misinformation topics on the ClueWeb12 collection. We

find the top 100 pseudo-relevant documents for each topic by taking documents with the

top 100 BM25 scores. We use these as positive samples. For negative samples, we

randomly select websites from common-crawl minus documents with hosts in the 8000

6https://commoncrawl.org/2019/02/host-and-domain-level-web-graphs-nov-dec-2018-jan-2019/
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reliable domain list. Given the size of the crawl, it is unlikely that our random samples

will contain medical documents. We train a model using a linear support vector machine

model and validate with 5-fold cross-validation where we train on 40 topics and test with

10 in each fold. We use a simple tokenization scheme where we remove all special

characters, punctuation and single characters and split on white space and transform

documents int TF-IDF vectors. The TF-IDF implementation is also very simple using

linear term counts:

TF-IDF(w, d) = freqw,d ·
N

freqw,C

where w is the word feature, d is the document and C is the entire collection. As the task

is very simple (distinguishing medical from non-medical text) the model achieves a very

high accuracy and F1 score of 0.99 and 0.98 with a threshold of 0.5 for the binary

classification task.

With this classifier, we filter out documents whose text is classified as non-medical and

are left with 1,829,111 documents. Figure 3.2 shows an example of how this process

works. A reputable website will have many incoming links from HONCode certified

medical domains such as webmd.com. So non-credible websites such as

junk-medicine.com will have low PageRank scores meaning all of its web documents will

be removed from the collection. Reputable non-medical websites such as google.com will

still have high PageRank scores. After running the document classifier non-medical

documents will be removed. Thus leaving non-certified but credible medical documents

like those from bmj.com for example.

In table 3.6 we see the top 5 domains along with their PageRank scores after filtering out

irrelevant domains. The top domains are generally well-established and reliable sources of

medical information.

3.4 Question Answering pipeline

In this section, we provide a detailed overview of the question-answering pipeline used for

the TREC health misinformation track. The pipeline’s overall architecture can be seen in
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Figure 3.2: A subset from the host link graph. In our domain filtering approach, non-

credible websites and their documents are removed, such as those from junk-medicine.com.

Nonmedical documents from the remaining websites are removed using a text classifier.

Hostname PageRank Score

gov.fda 74.077

gov.clinicaltrials 55.691

gov.nih 40.851

gov.medlineplus 35.907

org.cancer 33.679

com.webmd 25.860

Table 3.6: Pagerank scores for the top 5 hosts.
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figure 3.3. Given a query, the system retrieves a set of initial documents using a sparse

retrieval method. We use Anserini BM25 with default parameters. This initial retrieval is

being done on the entire collection. In settings with a large initial collection, most

retrieval pipelines will retrieve using a fast simple technique before reranking using more

complicated approaches. This makes sense from a practical standpoint but it also means

that the final retrieval quality is heavily dependent on the quality of this initial retrieval.

The next step in the pipeline is to employ a dense retrieval algorithm to rerank this

initial set of documents. This is to move more relevant documents to the top of the list.

Later on in the pipeline, we will be using top documents to predict an answer to the

given question. However as web documents are fairly long, the system needs to employ a

passage extraction mechanism. This will shorten document lengths to be more

manageable, as most neural language models do not work with long input sequences.

Transformer models run into memory limitations as they process tokens in parallel. In

general any neural network will run into issues with long input. LSTMs for instance

suffer from vanishing gradients. CNNs will have trouble modeling the global context.

We now have a small set of potentially relevant documents we can work with. At this

stage, the QA system must rerank the list of documents to push documents that agree

with the correct answer to the top and suppress those that disagree towards the bottom.

But to do this it must first determine what the correct answer is. Therefore the system

must aggregate the stances of its ranked list. The system must determine what each web

document’s answer to the given question is, and then it must apply a weighted

aggregation to determine what the final answer is. The exact mechanism of the weighted

aggregation can vary but it can take into account the textual content of web pages and

also auxiliary features such as the hostname, PageRank scores, credibility labels, etc.

Once the system has an answer to the given question it can then perform a soft reranking

of the document list based on its prediction of each document’s answer, boosting those in

agreement and suppressing those without. The reranking is more aggressive the more

confident the answer is in its prediction final answer and the more confident it is about

the stance of the document being reranked.

In the following section, we will discuss pipeline components in greater detail.
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Figure 3.3: Our proposed pipeline. The stages consist of 1. Initial retrieval with BM25, 2.

Passage extraction with the Big Bird transformer, 3. Neural reranking with Mono-T5, 4.

Answer aggregation, and 4. Soft reranking.

3.5 Passage Extraction

One of the key components of this pipeline is the method of passage extraction. For more

accurate question answering, systems tend to use BERT-based transformers. However,

web documents are typically much larger than the typical 512 token limit of most

transformer models.

Pradeep et al. (2021a) use a fairly common approach to passage extraction. A web

document is divided into sliding windows of 6 sentences and steps of 4 sentences.

Previous research (Liu and Croft, 2002) has shown that passages can be effective

representations of a document for use in retrieval. Each passage is independently fed into

the Mono-T5 (Pradeep et al., 2021b) transformer model. After getting the relevance

scores for each of these passages from Mono-T5, the top-scoring passage is selected as the

extracted passage for the document. Mono-T5 is a version of the T5 transformer that has

been pre-trained on the MS-MARCO (Nguyen et al., 2016) dataset for relevance ranking.
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In practice, there are two issues faced by this method. Firstly it is computationally

expensive. The mean number of sentences for the C4 collection of Web documents is

roughly 32. For a document of this length, using the method in Pradeep et al. (2021a), we

would have to run a transformer model 29 times to get an extracted passage. Secondly,

relevant information to a query may be spread out across a web page in nonconsecutive

spans. Especially when it comes to medical questions as shown in the MASH-QA dataset

(Zhu et al., 2020), where answers curated by experts from medical articles for consumer

health questions use non-continuous spans of text from those articles. In general, to reach

a decision, humans or models will sometimes need to piece together information from

multiple parts of a document. Relying on single-span extraction techniques could mean

our passages may not contain all relevant information from a document.

Another method is to use domain-specific heuristics to extract sentences from a

document. Zhang et al. (2022) in the TREC 2021 health misinformation track used

specific keywords to determine whether a sentence should appear in the extraction. The

queries in that year’s track are regarding medical treatments and illnesses, thus certain

specific words can be good indicators of relevance. They score each sentence based on the

presence of words such as “dangerous”, “effective”, etc. as well as the query terms.

Our proposed method is a generalization of this approach. As mentioned, web documents

tend to be long consisting of multiple sentences. Typically too long to fit within the 512

token limit common in transformer models. Answers to questions can also tend multiple

non-consecutive sentences. To train a model for this purpose we use the MASH-QA

dataset (Zhu et al., 2020). The MASH-QA dataset is specifically designed to tackle this

problem. It is a question-answering dataset built from the medical domain where answers

to questions need to be extracted from multiple non-consecutive parts spanning across a

document. Its documents consist of multiple paragraphs, with relevant spans of texts

spanning the entire document.

Our proposed passage extraction model works as follows: Using Spacy 7 we split the

document into sentences and place a special [SEN] at the end of every sentence. We

prepend the question to the document, pacing the [CLS] token at the beginning and

7https://spacy.io/
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Figure 3.4: Query-biased passage extraction using the Big Bird transformer and special

[SEN] tokens.

placing [SEP] before and after the document. We feed the concatenated text into a Big

Bird transformer model. We take the final layer representation vectors for the [SEP]

tokens and classify them as relevant or non-relevant with a linear classifier. This method

is superior to classifying sentences individually as it takes the entire document context

into account and performs better while having a simpler architecture compared to existing

multi-span passage extractors. The process is displayed in figure 3.4. The threshold for

including and not including sentences can also be adjusted, giving either higher precision

or higher recall depending on what is more important for the task at hand.
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Figure 3.5: Query-biased passage extraction using the Big Bird transformer and special

[SEN] tokens.

3.6 Aggregation

In the aggregation stage, the model must predict a correct answer for the given question.

Previous work (Zhang et al., 2022) has shown that it is possible to predict an answer

using stance detection and hostnames. In this work, we proposed a generalization of this

approach. To do this, we proposed aggregating the top-ranked document passage answers

to the given question. Once we have extracted a query-dependant passage from the

documents, we rank using a neural retrieval method (Mono-T5) to ensure the top

documents are relevant. At this stage, we use a BERT-based question-answering model

to predict each document’s answer to each individual question. Previous research has

shown that weighting features need to be taken into account. The advantage of this

approach is that it takes language features into account, meaning the aggregation model

can learn to weight documents that use credible and non-credible language differently.

This approach can take advantage of auxiliary features as well. The overall procedure is

displayed in figure 3.5.

The exact process is as follows. For the top k passages, we extract auxiliary features. We

concatenate the question and the passage for each of these. We use hostname and

HONcode certifications as features. We prepend the hostname as plain text to the

question-passage pair. We use a special token ([HON]) for HONCode certifications and

prepend the token to the question-document pairs that have a hostname with a
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HONCode certification. We feed the resulting text to a BERT transformer sequence

classifier. The transformer outputs three scores for yes/no/neutral. We average the scores

of the top documents as follows:

Pred =

∑k
i S+ − S−

k
+ b

where the bias b is a learned parameter. This prediction can be used to rerank all of the

documents based on their level of agreement.

3.7 Reranking

At the final stage, we need to rerank all of the documents to make sure documents

agreeing with the predicted answer float to the top of the tanked list and those that are

in disagreement are suppressed.

We concatenate the question with passages of all documents in our retrieved set. We do

not add any features this time. We feed the text into a BERT transformer to get a

yes/no/neutral prediction. We calculate the prediction score as Pqd = S+ − S−. Once we

have a prediction for each document we adjust their Mono-T5 scores as follows:

S ′
qd =

2Sqd

(1 + eα·Pq ·Pqd)

where Sqd ∈ (0, inf) is the Mono-T5 score for document d’s passage and a question q, Pq

is the aggregated question answer prediction, Pqd is the answer prediction for a

documents answer and α is a hyper-parameter. For a document that has a very high level

of agreement with the topic prediction, the formula will double its Mono-T5 score. For

documents with a low level of agreement, the score will be zero. The intuition behind the

formula comes from the notion that documents in disagreement with the correct answer

should not appear at the top at all no matter how credible. However, a non-credible

document that agrees with the correct answer should not be placed higher than a credible
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document that also agrees with the correct answer simply due to having a higher degree

of agreement.

In the next chapter, we will show evaluations for each of the proposed methods.
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Chapter 4

Results

In this chapter, we discuss obtained results from the methods proposed in the previous

chapters. We will first discuss the effectiveness of domain filtering on the TREC 2021

Health misinformation track. Then in section 4.2, we will look at the performance of our

passage extraction method on the original train-test dataset (MASH-QA). In section 4.3,

we will look at how well the proposed aggregation method works when predicting answers

for health questions. Finally, in section 4.4, we look at how well our reranking pipeline

works when reranking an initial set of retrieved documents for displaying on a search

engine results page.

4.1 Domain Filtering

In this section, we look at the effectiveness of filtering domains to include only credible

websites before running a simple BM25 retrieval function.

Looking at a subset of the automatic runs from the 2021 Health Misinformation Track in

table 4.1, we see that the document collection to only contain credible documents results

in a fairly significant boost to helpfulness. We see a reduction in harmfulness from 0.144

to 0.119 as well as a boost to helpfulness from 0.122 to 0.147. These results are from when

we filter out the collection to contain only hosts in the HONCode certification. When we
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apply our proposed expansion to the filtering collection we see a slightly bigger boost to

helpfulness up to 0.164. In section 3.3.1, we discussed how in this approach we expand

our filtered collection by running a topic-sensitive PageRank on a subset of the common

crawl link graph that only includes HONCode domains and domains they link to.

We see that by simply filtering the collection and running a basic BM25 algorithm, we get

a similar compatibility score to state-of-the-art retrieval models that use deep learning on

the whole collection. Meaning there is some value in detecting and filtering out

non-credible websites. However, we also see that filtered collections can limit the number

of helpful documents found even if they reduce the number of harmful documents.

By running a deep learning retrieval model Mono-T5 on our filtered-expanded collection

subset we see a boost in performance compared to BM25. However, we fail to reach the

compatibility of the same method on the unfiltered collection. This is a strong indicator

that filtering the collection does not work for all topics and is not a useful approach for

general medical question answering. Mono-T5 finds much more helpful content in the

entire collection at the cost of finding more harmful documents.

We can also take a look at per topic performance in table 4.2 where we see that collection

filtering has a negative performance on certain topics. While there is no single

explanation as to why certain topics do better or worse. An analysis of results tells us

that for topics where reputable sources are unlikely to mention them such as “copper

bracelets reduce pain”, it can be hard to find helpful documents.

The conclusion to our analysis of filtering the collection is that it is too impractical to

filter based on the quality of hosts. Since our goal is to build a system that can answer a

wide variety of medical questions from the web, we need to look at a more effective

solution.

4.2 Passage Extraction

In this section, we look at the performance of our proposed passage extraction method on

the original training set before moving on to the downstream task in the next sections.
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Collection Retrieval Method Helpfulness Harmfulness Delta

Unfiltered
BM25 0.122 0.144 -0.022

Mono-T5 0.170 0.119 0.051

Filtered BM25 0.147 0.119 0.027

Filtered + Expansion
BM25 0.164 0.123 0.040

Mono-T5 0.151 0.112 0.039

Table 4.1: Compatibility metrics for the 2021 topics in the C4 collection. Unfiltered is on

all of C4. Filtered is for only hosts with a HONCode certification. filtered + expanded is

for HONcode hosts and reliable health-related hosts that they link to.

We train and evaluate on the MASH-QA dataset. As explained in 3.1.3, the MASH-QA

dataset is specifically designed to train models for extracting non-continuous spans.

Much of the work on extractive question answering is focused on extracting continuous

spans containing the answer to a question. For certain domains or tasks, this may not be

ideal as answers are not short and require more context to be answered properly. And

this required context could be spread across multiple points in a document

A naive approach to this kind of passage extraction is to simply classify each sentence in

a document as being relevant or not to a query. The authors show that this approach

performs poorly. We redo the same experiment as those authors and report the numbers

in table 4.3.

We use a BERT sequence classifier where the question and sentence are concatenated

together. Each question and sentence pair are then classified as being relevant or not.

This naive approach tends to perform poorly. Zhu et al. (2020) claim this is due to the

model lacking the greater context when it comes to deciding the relevance of a sentence.

For MASH-QA, the authors propose a new passage extraction model called Multi-Co.

The model aims to tackle the shortcomings of the sentence classifier approach. The

model concatenates the question and document before feeding the concatenated text into

an XLNet (Yang et al., 2019b) transformer model. XLNet is based on Transformer-XL

(Dai et al., 2019) which is designed to work with longer documents. They do this so they
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Topic Query Unfiltered Filtered+expanded Delta

101 ankle brace achilles tendonitis -0.200 -0.112 0.089

102 tepid sponge bath reduce fever children 0.016 -0.109 -0.124

103 folic acid dementia 0.098 0.063 -0.035

104 duct tape warts 0.006 0.030 0.024

105 put ice on a burn 0.068 0.085 0.017

106 vitamin b12 sun exposure vitiligo 0.134 0.334 0.200

107 yoga asthma 0.097 0.145 0.048

108 starve a fever, feed a cold 0.128 0.035 -0.093

109 selenium cancer 0.257 -0.027 -0.284

110 birth control pill ovarian cysts treatment -0.137 -0.001 0.137

111 zinc supplements pregnancy -0.180 -0.204 -0.023

112 evening primrose oil eczema -0.075 -0.247 -0.172

114 vitamin e cream for skin scars 0.104 0.132 0.029

115 magnesium migraine prevention 0.096 0.048 -0.049

117 fermented milk blood pressure 0.097 -0.004 -0.101

118 dupixent eczema 0.186 0.136 -0.050

120 imitrex migraine 0.178 0.039 -0.139

121 light therapy lamp depression 0.091 0.122 0.031

122 aleve migraine -0.034 -0.157 -0.123

128 steam shower croup -0.217 -0.112 0.105

129 minoxidil balding hair growth -0.017 0.063 0.080

131 l-theanine supplements anxiety 0.004 0.083 0.080

132 inhaling steam common cold -0.292 -0.351 -0.059

134 remove tick with vaseline 0.099 -0.061 -0.160

136 dates iron deficiency anemia 0.112 0.609 0.496

137 vinegar fish bone stuck -0.104 -0.453 -0.348

139 copper bracelets reduce pain -0.044 -0.238 -0.194

140 fungal cream athlete’s foot 0.026 0.305 0.280

143 tylenol osteoarthritis -0.050 0.112 0.161

144 music therapy depression 0.207 0.549 0.343

146 vitamin d asthma attacks 0.542 0.604 0.061

149 hip osteoarthritis at-home exercises 0.050 0.223 0.172

Table 4.2: Comparision of compatibility metrics for Mono-T5 runs on 2021 topics for the

c4 collection with and without filtering.
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can encode larger contexts as typical transformer models like BERT have a 512 token

limit. After obtaining XLNet token representations, the model then applies self-attention

within each sentence to get a fixed dimensional vector for each sentence. It appends

[CLS] to these new sentence representation vectors. The model then applies

inter-sentence self-attention between the sentence vectors before feeding the resulting

vectors into a linear classifier. The general idea behind this model is to modify the

sentence vectors being fed into the relevance classifiers so that they include information

from elsewhere in the context.

As discussed in detail in section 3.5, the model we propose for this task is much simpler

while achieving better results. Instead of XLNet, we use the Big Bird transformer model.

We append a special token to the end of every sentence and feed this special tokens

representation vector into a linear classifier. The main difference between our model and

Multi-Co is that we show that there is no need for a hierarchical self-attention layer for

getting sentence representations and that we can rely on the already very powerful

transformer models to create these sentence representations for us.

We compare the performance of passage extraction for the MASH-QA dataset in table

4.3. We include data from the original paper as well as our own experiments. We use

sentence-level precision, recall, and F1 macro metrics for evaluation. These metrics will

reward partially correct answers and take class imbalance into account as the majority of

sentences in a document will not be relevant for answering a given question. Using the

newer and larger Big Bird model and swapping the task-specific architecture for special

sentence tokens gives a sizeable increase in F1 to 74.37 compared to Multi-co’s 57.00. We

see that recall is higher than the precision meaning we can find more sentences but

precision is lower meaning some sentences are being mistakenly classified as relevant. In

the next section, we will see what effect the classification threshold has on our

downstream task.

4.2.1 Implementation Details

We use the base version of Big Bird, while MASH-QA authors use large versions of

transformers. We train our Big Bird model for 3 epochs with a learning rate of 2 × 10−5
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Model Precision Recall F1

BERT 56.8 16.42 25.44

RoBERTa 56.18 16.25 25.21

XLNet 57.70 19.06 28.65

Multico 58.16 55.90 57.00

BioBERT 18.67 76.67 30.03

Big Bird 70.57 81.21 74.37

Table 4.3: Comparison of sentence level metrics for multi-span passage extraction on the

MASH-QA dataset. Individually classifying sentences as relevant to queries has very poor

performance. Models that take the entire document context into account are much better

for this task.

and a weight decay of 0.01. We use a max input size of 2048. We use a batch size of 2.

While Big Bird’s sparse attention is less memory intensive than typical BERT models the

size of the model and input mean we are limited to a batch size of 2 on a 40GB GPU.

The epoch with the best F1 on the validation set is saved and used to evaluate the test

set. The 2048 limit is sufficiently long for the MASH-QA dataset but for inference on

downstream tasks, we would need to split a document to classify all the sentences.

4.2.2 Efficiency

Our proposed passage extraction method requires less computation than Mono-T5

passage extraction. An NVidia A100 can run roughly 60 samples a second through a Big

Bird transformer and 460 samples a second through a T5 transformer (Both using their

base size setting). Mono-T5 has an input limit of 512 and Big Bird has an input limit of

4096. Our collection documents have a mean length of 32 sentences. Mono-T5 operates

on sliding windows of size 6 with a step of 3. This means that in practice the Mono-T5

will be slower in the majority of cases. As an alternative to Big Bird, we could

experiment with Longformer (Beltagy et al., 2020) which can still long documents but

has a compute cost closer to T5. However, we leave this for future work.
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4.3 Question Answering

In this section, we analyze the effectiveness of our proposed question answering approach.

As discussed in greater detail in section 3.6, after reranking extracted passages with a

dense neural retrieval model (Mono-T5), we take the top 16 passages, prepend them with

the question and manual features before aggregating their outputs to get a final answer.

We chose 16 passages as we are limited by GPU memory.

We train on the White and Hassan topics and use the 2019 and 2021 topics as

development and test sets. We train for 12 epochs and save the model with the highest

accuracy score on the development set and use that model to evaluate the test set. We

use the Adam optimizer with a learning rate 0f 1 × 10−5 for the transformer model and a

learning rate of 1 × 10−3 for the added bias in the final classification layer. The bias is

initialized as 1 × 10−5. To initialize transformer parameters we use the weights from

BioBert (Lee et al., 2020) that we further fine-tuned on the PubMedQA dataset.

The hyper-parameter sweep on the development sets is displayed in table 4.4. The

threshold is the minimum score required for a sentence to be included in the extracted

passage. Features are defined as HH meaning both HONCode and Hostnames were used

as features, H meaning only hostnames were used and N meaning no auxiliary features

were used. The addition of features appears to have little impact on the accuracy of the

2021 topics. But both features appear to help increase the accuracy of the 2019 topics.

The threshold hyper-parameter has no consistent effect on the accuracy of the topics. A

threshold of 0.5 with both auxiliary features gives the best accuracy for both

development sets, therefore for testing, we use these two hyper-parameters.

The test results are displayed in table 4.5. The baseline (Zhang et al., 2022) we compare

to uses a logistic regression model where hostnames are features and their values are their

degree of stance alignment with the question. The authors use a task specific passage

extraction algorithm made specifically for the treatment/condition style topics of the

health misinformation track. They retrieve the top 3000 documents with BM25 before

extracting their query-dependant passages. They then use a T5 model to calculate the

degree to which each document’s passage is aligned with the stance of its topic. For each

hostname, its top scoring BM25 passage’s alignment score will be the respective feature’s
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Track year 2019 2021

Features

Big Bird Aggregation

Threshold HH H N HH H N

0.500 66.6 54.9 64.7 82.0 74.0 74.0

0.625 62.7 60.8 64.7 78.0 76.0 74.0

0.750 62.7 66.6 62.7 78.0 78.0 80.0

0.875 56.9 50.8 62.7 74.0 72.0 80.0

Table 4.4: Accuracy of answer predictions for the questions in the health misinformation

track given various hyperparameters. The threshold is the minimum score (passed through

a sigmoid function) required for a sentence to be included in the extracted passage. Features

are HH meaning both HONCode and Hostnames were used as features, H meaning only

hostnames were used and N meaning no auxiliary features were used (So the model only

looks at language features). For each track, the other was used as the development set,

meaning the model that gave the best performance was saved and used for testing the

other track.
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Track Year 2019 2021 2022

Accuracy AUC Accuracy AUC Accuracy AUC

Baseline (Zhang et al., 2022) 58.8 60.6 76.0 82.2 70.0 86.4

Our Approach 66.7 66.1 82.0 84.0 66.0 69.1

Table 4.5: Metrics for our answer prediction pipeline compared to the baseline.

value.

In contrast to the baseline, our proposed approach uses a generalized neural passage

extraction approach while also taking language features into account when making an

answer prediction. Our proposed approach has better accuracy and AUC metrics than

the baseline in the 2019 and 2021 tracks but failed to beat the baseline in the 2022

tracks. It should also be noted that our proposed approach is more computationally

expensive than the baseline. Depending on various factors, it would require roughly 3-4

times more computation per query.

4.4 Reranking

In this section, we look at how reranking the documents based on our proposed strategy

works in the 2021 and 2022 health misinformation tracks.

In the 2021 track, compared to Pradeep et al. (2021a) our proposed passage extraction

mechanism has a better compatibility score (0.073 compared to 0.062). Our helpfulness

however ends up being lower.

In the 2021 track, compared to Zhang et al. (2022), the proposed QA pipeline gives a

higher compatibility score (0.162 vs 0.129). THis improvement is statistically significant

using a two tail paired t-test (p¡0..05). The slightly better answer prediction quality

coupled with the addition of a neural reranking stage contributed to this uplift in

compatibility.

Our α hyperparameter has a fairly big impact on compatibility. For the 2021 track, a
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Track Year 2021 2022

Help Harm Delta Help Harm Delta

Baseline BM25 0.122 0.144 0.022 0.171 0.140 0.031

Mono-T5 (Pradeep et al., 2021a) 0.185 0.122 0.062 0.246 0.194 0.052

Big Bird Passage Extration + MT5 Reranking 0.155 0.082 0.073 0.217 0.209 0.007

Trust Reranking (Zhang et al., 2022) 0.198 0.069 0.129 0.253 0.177 0.076

BPE+MT5 + QA Reranking, alpha=0.1 0.194 0.061 0.133 0.242 0.153 0.089

BPE+MT5 + QA Reranking, alpha=0.2 0.215 0.053 0.162 0.244 0.171 0.073

Table 4.6: compatibility scores for the 2021 and 2022 health misinformation tracks.

larger α boosts documents in agreement with the predicted answer and suppresses those

in disagreement. An α of 0.1 boosted helpfulness from 0.155 to 0.194 and reduced

harmfulness from 0.082 to 0.61. Increasing α to 0.2 further increase helpfulness to 0.215

and reduced harmfulness to 0.053. In the 2022 track, however, a smaller α was better,

giving a delta of 0.089 vs 0.073. This improvement is not statistically significant using a

two tail paired t-test (p¿0.05). Looking at the 2022 track, we observe that our Big Bird

passage extraction plus Mono-T5 ranking gets very poor helpfulness compared to

Mono-T5 passage extraction (0.217 vs 0.246), however with our predicted answer

reranking, we boost helpfulness by 0.025 and drop harmfulness by 0.056 which boosts

delta compatibility from 0.007 to 0.089, which is a relatively large increase. Given these

results, it seems apparent that the QA and reranking modules, as we have implemented

them currently, can potentially greatly reduce harmfulness. However, the answer

aggregation module in our pipeline still has room for improvement. We leave further

improvements for future work.
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Chapter 5

Conclusion and Future Work

In this work, we presented a question answering and document retrieval pipeline that

uses web documents to answer questions. The two main challenges faced are

misinformation and contradicting statements from web documents and the length of web

documents. We first proposed a domain filtering approach that helped with reducing

misinformation in returned results but did not apply to all varieties of questions.

For our pipeline, we proposed a new query biased passage extraction method that takes

advantage of modern more memory efficient transformers that can handle long

documents. This approach classifies individual sentences as relevant to the question or

not using the context of the entire document. Our architecture has better metrics than

the previous best multi-span query-dependant passage extraction neural architecture.

We also propose a new answer prediction and document re-ranking component that while

more computationally complex than the previous best approach does yield better metrics.

One of the main directions for improvement is exploring alternatives to BigBird. While

effective other sparse attention transformers are less computationally expensive, which

can help in making a more practical system.

Another avenue for improvement would be an exploration of auxiliary features. Our

approach of pre-pending text to text spans is likely not the best approach for combining

manual features and transformer models. Other features such as PageRank, credibility
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metrics, etc. should also be investigated to see if they too yield better accuracy.

Improving the probability of credible documents appearing in the top results will ensure

any reranking strategies will work much better. Given the importance of the answer

prediction module, improvements such as using larger transformer models should also be

looked into.
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J. Dodge, M. Sap, A. Marasović, W. Agnew, G. Ilharco, D. Groeneveld, M. Mitchell, and

M. Gardner. Documenting large webtext corpora: A case study on the colossal clean

crawled corpus. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, pages 1286–1305, 2021.

R. Epstein, R. E. Robertson, D. Lazer, and C. Wilson. Suppressing the search engine

manipulation effect (seme). Proceedings of the ACM on Human-Computer Interaction,

1(CSCW):1–22, 2017.

S. Fox and M. Duggan. Health online 2013. Health, 2013:1–55, 2013.

A. Ghenai, M. D. Smucker, and C. L. A. Clarke. A think-aloud study to understand

factors affecting online health search. In Proceedings of the 2020 conference on human

information interaction and retrieval, pages 273–282, 2020.

T. H. Haveliwala. Topic-sensitive pagerank. In Proceedings of the 11th international con-

ference on World Wide Web, pages 517–526, 2002.

P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep structured

semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM

57

https://doi.org/10.18653/v1/p19-1285


international conference on Information & Knowledge Management, pages 2333–2338,

2013.
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