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Abstract 

Repetitive cyclic and prolonged joint loading in high knee flexion postures has been associated 

with the progression of degenerative knee joint diseases and knee osteoarthritis (OA). Despite 

this association, high flexion postures, where the knee angle exceeds 120°, are commonly 

performed within occupational settings. While work related musculoskeletal disorders have been 

studied across many occupations, the risk of OA development associated with the adoption of 

high knee flexion postures in childcare workers has until recently been unexplored; and 

therefore, occupational childcare has not appeared in any systematic reviews seeking to prove a 

causal relationship between occupational exposures and the risk of knee OA development. 

Therefore, the overarching goal of this thesis was to explore the adoption of high flexion 

postures in childcare settings and to develop a means by which these could be measured using 

non-laboratory-based technologies. The global objectives of this thesis were to (i) identify the 

postural demands of occupational childcare as they relate to high flexion exposures at the knee, 

(ii) apply, extend, and validate sensor to segment alignment algorithms through which lower 

limb flexion-extension kinematics could be measured in multiple high knee flexion postures 

using inertial measurement units (IMUs), and (iii) develop a machine learning based 

classification model capable of identifying each childcare-inspired high knee flexion posture. In-

line with these global objectives, four independent studies were conducted. 
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Study I – Characterization of Postures of High Knee Flexion and Lifting Tasks Associated 

with Occupational Childcare 

Background: High knee flexion postures, despite their association with increased incidences of 

osteoarthritis, are frequently adopted in occupational childcare. High flexion exposure thresholds 

(based on exposure frequency or cumulative daily exposure) that relate to increased incidences 

of OA have previously been proposed; yet our understanding of how the specific postural 

requirements of this childcare compare to these thresholds remains limited.  

Objectives: This study sought to define and quantify high flexion postures typically adopted in 

childcare to evaluate any increased likelihood of knee osteoarthritis development.  

Methods: Video data of eighteen childcare workers caring for infant, toddler, and preschool-

aged children over a period of approximately 3.25 hours were obtained for this investigation 

from a larger cohort study conducted across five daycares in Kingston, Ontario, Canada. Each 

video was segmented to identify the start and end of potential high knee flexion exposures. Each 

identified posture was quantified by duration and frequency. An analysis of postural adoption by 

occupational task was subsequently performed to determine which task(s) might pose the 

greatest risk for cumulative joint trauma.  

Results: A total of ten postures involving varying degrees of knee flexion were identified, of 

which 8 involved high knee flexion. Childcare workers caring for children of all ages were found 

to adopt high knee flexion postures for durations of 1.45±0.15 hours and frequencies of 

128.67±21.45 over the 3.25 hour observation period, exceeding proposed thresholds for 

incidences of knee osteoarthritis development. Structured activities, playing, and feeding tasks 

were found to demand the greatest adoption of high flexion postures. 

Conclusions: Based on the findings of this study, it is likely that childcare workers caring for 

children of all ages exceed cumulative exposure- and frequency-based thresholds associated with 

increased incidences of knee OA development within a typical working day.  

Study II – Evaluating the Robustness of Automatic IMU Calibration for Lower Extremity 

Motion Analysis in High Knee Flexion Postures 

Background: While inertial measurement units promise an out- of-the-box, minimally intrusive 

means of objectively measuring body segment kinematics in any setting, in practice their 
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implementation requires complex calculations in order to align each sensor with the coordinate 

system of the segment to which they are attached.  

Objectives: This study sought to apply and extend previously proposed alignment algorithms to 

align inertial sensors with the segments on which they are attached in order to calculate flexion-

extension angles for the ankle, knee, and hip during multiple childcare-inspired postures.  

Methods: The Seel joint axis algorithm and the Constrained Seel Knee Axis (CSKA) algorithm 

were implemented for the sensor to segment calibration of acceleration and angular velocity data 

from IMUs mounted on the lower limbs and pelvis, based on a series of calibration movements 

about each joint. Further, the Iterative Seel spherical axis (ISSA) extension to this 

implementation was proposed for the calibration of sensors about the ankle and hip. The 

performance of these algorithms was validated across fifty participants during ten childcare-

inspired movements performed by comparing IMU- and gold standard optical-based flexion-

extension angle estimates. 

Results: Strong correlations between the IMU- and optical-based angle estimates were reported 

for all joints during each high flexion motion with the exception of a moderate correlation 

reported for the ankle angle estimate during child chair sitting. Mean RMSE between protocols 

were found to be 6.61° ± 2.96° for the ankle, 7.55° ± 5.82° for the knee, and 14.64° ± 6.73° for 

the hip. 

Conclusions: The estimation of joint kinematics through the IMU-based CSKA and ISSA 

algorithms presents an effective solution for the sensor to segment calibration of inertial sensors, 

allowing for the calculation of lower limb flexion-extension kinematics in multiple childcare-

inspired high knee flexion postures. 

Study III – A Multi-Dimensional Dynamic Time Warping Distance-Based Framework for the 

Recognition of High Knee Flexion Postures in Inertial Sensor Data 

Background: The interpretation of inertial measures as they relate to occupational exposures is 

non-trivial. In order to relate the continuously collected data to the activities or postures 

performed by the sensor wearer, pattern recognition and machine learning based algorithms can 

be applied. One difficulty in applying these techniques to real-world data lies in the temporal and 
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scale variability of human movements, which must be overcome when seeking to classify data in 

the time-domain.  

Objectives: The objective of this study was to develop a sensor-based framework for the 

detection and measurement of isolated childcare-specific postures (identified in Study I). As a 

secondary objective, the classification accuracy movements performed under loaded and 

unloaded conditions were compared in order to assess the sensitivity of the developed model to 

potential postural variabilities accompanying the presence of a load. 

Methods: IMU-based joint angle estimates for the ankle, knee, and hip were time and scale 

normalized prior to being input to a multi-dimensional Dynamic Time Warping (DTW) distance-

based Nearest Neighbour algorithm for the identification of twelve childcare inspired postures. 

Fifty participants performed each posture, when possible, under unloaded and loaded conditions. 

Angle estimates from thirty-five participants were divided into development and testing data, 

such that 80% of the trials were segmented into movement templates and the remaining 20% 

were left as continuous movement sequences. These data were then included in the model 

building and testing phases while the accuracy of the model was validated based on novel data 

from fifteen participants.  

Results: Overall accuracies of 82.3% and 55.6% were reached when classifying postures on 

testing and validation data respectively. When adjusting for the imbalances between 

classification groups, mean balanced accuracies increased to 86% and 74.6% for testing and 

validation data respectively. Sensitivity and specificity values revealed the highest rates of 

misclassifications occurred between flatfoot squatting, heels-up squatting, and stooping. It was 

also found that the model was not capable of identifying sequences of walking data based on a 

single step motion template. No significant differences were found between the classification of 

loaded and unloaded motion trials.  

Conclusions: A combination of DTW distances calculated between motion templates and 

continuous movement sequences of lower limb flexion-extension angles was found to be 

effective in the identification of isolated postures frequently performed in childcare. The 

developed model was successful at classifying data from participants both included and 
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precluded from the algorithm building dataset and insensitive to postural variability which might 

be caused by the presence of a load.  

Study IV – Evaluating the Feasibility of Applying the Developed Multi-Dimensional Dynamic 

Time Warping Distance-Based Framework to the Measurement and Recognition of High 

Knee Flexion Postures in a Simulated Childcare Environment 

Background: While the simulation of high knee flexion postures in isolation (in Study III) 

provided a basis for the development of a multi-dimensional Dynamic Time Warping based 

nearest neighbour algorithm for the identification of childcare-inspired postures, it is unlikely 

that the postures adopted in childcare settings would be performed in isolation.  

Objectives: This study sought to explore the feasibility of extending the developed classification 

algorithm to identify and measure postures frequently adopted when performing childcare 

specific tasks within a simulated childcare environment.  

Methods: Lower limb inertial motion data was recorded from twelve participants as they 

interacted with their child during a series of tasks inspired by those identified in Study I as 

frequently occurring in childcare settings. In order to reduce the error associated with gyroscopic 

drift over time, joint angles for each trial were calculated over 60 second increments and 

concatenated across the duration of each trial. Angle estimates from ten participants were time 

windowed in order to create the inputs for the development and testing of two model designs 

wherein: (A) the model development data included all templates generated from Study III as well 

as continuous motion windows here collected, or (B) only the model development data included 

only windows of continuous motion data. The division of data into the development and testing 

datasets for each 5-fold cross-validated classification model was performed in one of two ways 

wherein the data was divided: (a) through stratified randomized partitioning of windows such 

that 80% were assigned to model development and the remaining 20% were reserved for testing, 

or (b) by partitioning all windows from a single trial of a single participant for testing while all 

remaining windows were assigned to the model development dataset. When the classification of 

continuously collected windows was tested (using division strategy b), a logic-based correction 

module was introduced to eliminate any erroneous predictions. Each model design (A and B) was 

developed and tested using both data division strategies (a and b) and subsequently their 
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performance was evaluated based on the classification of all data windows from the two subjects 

reserved for validation. 

Results: Classification accuracies of 42.2% and 42.5% were achieved when classifying the 

testing data separated through stratified random partitioning (division strategy a) using models 

that included (model A, 159 classes) or excluded (model B, 149 classes) the templates generated 

from Study III, respectively. This classification accuracy was found to decrease when classifying 

a test partition which included all windows of a single trial (division strategy b) to 35.4% when 

using model A (where templates from Study III were included in the model development 

dataset); however, this same trial was classified with an accuracy of 80.8% when using model B 

(whose development dataset included only windows of continuous motion data). This accuracy 

was however found to be highly dependent on the motions performed in a given trial and logic-

based corrections were not found to improve classification accuracies. When validating each 

model by identifying postures performed by novel subjects, classification accuracies of 24.0% 

and 26.6% were obtained using development data which included (model A) and excluded 

(model B) templates from Study III, respectively. Across all novel data, the highest classification 

accuracies were observed when identifying static postures, which is unsurprising given that 

windows of these postures were most prevalent in the model development datasets. 

Conclusions: While classification accuracies above those achievable by chance were achieved, 

the classification models evaluated in this study were incapable of accurately identifying the 

postures adopted during simulated childcare tasks to a level that could be considered satisfactory 

to accurately report on the postures assumed in a childcare environment. The success of the 

classifier was highly dependent on the number of transitions occurring between postures while in 

high flexion; therefore, more classifier development data is needed to create templates for these 

novel transition movements. Given the high variability in postural adoption when caring for and 

interacting with children, additional movement templates based on continuously collected data 

would be required for the successful identification of postures in occupational settings.  

Global Conclusions 

Childcare workers exceed previously reported thresholds for high knee flexion postures based on 

cumulative exposure and frequency of adoption associated with increased incidences of knee OA 
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development within a typical working day. Inertial measurement units provide a unique means of 

objectively measuring postures frequently adopted when caring for children which may 

ultimately permit the quantification of high knee flexion exposures in childcare settings and 

further study of the relationship between these postures and the risk of OA development in 

occupational childcare. While the results of this thesis demonstrate that IMU based measures of 

lower limb kinematics can be used to identify these postures in isolation, further work is required 

to expand the classification model and enable the identification of such postures from 

continuously collected data.  
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Chapter 1  

General Introduction 

1.1 Scope of the Problem 

High knee flexion postures (such as kneeling, squatting, or bending), where the flexion angle 

exceeds 120◦ are commonly adopted in occupational settings where workers are required to 

perform repetitive high flexion motions for a significant portion of their working hours (Coggon 

et al., 2000; Felson, 1994). These repetitive cyclic or prolonged joint loadings are known factors 

in the progressive degradation of knee joint tissue and increased incidences of knee osteoarthritis 

(OA) (Felson, 1988, 2013; Henriksen, Graven-Nielsen, Aaboe, Andriacchi, & Bliddal, 2010). 

Compounding this, when not in high flexion postures, workers are often required to lift and carry 

heavy or awkward loads which may independently contribute to increased risk of OA 

development (C. Cooper, McAlindon, Coggon, Egger, & Dieppe, 1994). Despite the growing 

incidence of knee OA worldwide and the financial burden these place on the healthcare system, 

little has been done to address the increased risk factors within occupational settings.  

The study of occupational exposures of high knee flexion, to date, has focused primarily on 

observational or questionnaire based qualification of movement types and simulating 

occupational exposures within a laboratory-based environment (Grant, Habes, & Tepper, 1995; 

Jensen, Rytter, & Bonde, 2010; Klussmann et al., 2010; Schiphof, Boers, & Bierma-Zeinstra, 
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2008; Seidler et al., 2008). While some focus has been paid to floor layers, tile setters, and 

miners, the exposure to high flexion postures in childcare has only recently begun to be explored 

(Burford et al., 2017; Hendriksen, Korshøj, Skotte, & Holtermann, 2020). Given the primarily 

young, female demographic of childcare workers, the occupational exposures of this industry 

may predispose individuals towards the initiation or progression of musculoskeletal (MSK) 

diseases or knee OA (Erick & Smith, 2011; Grant et al., 1995). There is therefore a need to 

quantify childcare worker exposure to occupational high knee flexion postures. However, several 

challenges exist in studying the occupational demands of childcare. There is first a need to 

protect the privacy of the children under the care of the childcare worker, limiting the types of 

measurement tools which can be used. Consideration must also be given to the active nature of 

this occupation as well as the potential for occlusion of recording instrumentation due to 

children, toys, or furniture within laboratory or childcare settings. Due to these constraints, 

studies conducted on childcare workers have relied on self-reported measures through 

questionnaires or on the observation and measurement of a very small sample of childcare 

workers (Burford et al., 2017; Gratz, Claffey, King, & Scheuer, 2002; Y. Horng, Hsieh, Wu, 

Feng, & Lin, 2007; Labaj et al., 2016; Linnan et al., 2017; Okuno, Uketa, Nakaseko, & 

Tokunaga, 1997; Shimaoka et al., 1997). While the majority of recent studies have focused 

primarily on the association between lifting postures and back and shoulder pain in childcare 

workers, the prevalence of knee pain, with severity equal or greater to that of other body 

segments, has repeatedly been reported (Grant et al., 1995; Y. Horng et al., 2007; Labaj et al., 

2016). This elevated reporting of pain development demonstrates a need for the objective 

measurement of occupational exposures within childcare settings in order to investigate any 

potential links between these exposures and increased risk of knee OA. Recent endeavours in 

Germany and Denmark have sought to quantify the physical work demands of childcare workers 

through wearable sensing (Burford et al., 2017; Holtermann, Hendriksen, Schmidt, Svendsen, & 

Rasmussen, 2020), however neither study employed computational methods specifically 

designed for the unique postural requirements of childcare, and as such may have under-reported 

the daily exposures experienced by childcare workers.  
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1.2 Thesis Overview 

Given that little information is known about the postural requirements of the childcare industry, 

using a combination of observational and laboratory-based studies, the overarching goal of this 

thesis was to explore the adoption of high flexion postures in childcare settings and to develop a 

means by which these could be identified and measured using non-laboratory-based 

technologies. To achieve this, four studies aimed at observing and/or simulating potentially knee 

straining postures and the associated tasks for which they were performed were completed, with 

the aim of developing a wearable sensor-based framework through which the physical demands 

of this occupation could be quantified (Figure 1.1). In the context of this thesis, the term knee 

straining will be used as it has been colloquially within the literature to refer to exposures of high 

knee flexion rather than referring to events which might lead to increased strain within the joint 

(including contact with the environment, lifting tasks, etc.).  

The first study sought to characterize and document the high knee flexion postures frequently 

adopted in occupational childcare through the analysis of  video-recordings obtained from a 

larger multi-center cohort study in Kingston, Ontario, Canada (Labaj et al., 2016). These data 

presented a unique opportunity for the characterization of knee straining exposures in childcare 

given that video-based collections are generally not welcomed within childcare facilities due to 

the privacy considerations of the children being cared for. The childcare specific tasks performed 

to elicit each potentially knee straining posture were additionally identified through this analysis, 

thereby defining the breadth of postural requirements on childcare workers and their potential 

association with increased risk of knee osteoarthritis development in these individuals.  

In the second study, previously proposed algorithms for the alignment of inertial sensors to 

body segments were applied and extended for the measurement of high knee flexion joint 

kinematics for the ankle, knee, and hip using non-laboratory based wearable technologies. 

Postures identified in Study 1 (Chapter 3) as potentially knee straining were simulated in 

isolation while inertial measures of segmental acceleration and angular velocity were captured. 

Once aligned to the body, these signals were combined using a custom complementary filter in 

order to estimate the flexion-extension angles throughout the childcare inspired postures and 

subsequently these estimates were evaluated in comparison to gold-standard optical-based 
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kinematic measures through differences in range of motion, root mean squared error, percent 

mean error, and the Pearson correlation coefficients. This evaluation established levels of 

confidence in the ankle, knee, and hip angle estimates and justified the use of inertial sensors for 

the quantification of high knee flexion postures in non-laboratory settings.  

The third study built upon the postural characterizations established in Study 1 (Chapter 3) 

and the kinematic measures derived in Study 2 (Chapter 4) in order develop a sensor-based 

framework for the detection and measurement of childcare-specific postures performed in a 

controlled environment. Therefore, a multi-dimensional Dynamic Time Warping (mDTW) 

distance-based Nearest Neighbour classification algorithm was created for the identification of 

twelve groupings of childcare inspired postures performed under unloaded and loaded 

conditions. The performance of the classification model was evaluated when applied to the 

prediction of both novel movements performed by participants included in its development as 

well as movements performed by novel participants.  

Finally, in the fourth study, the classification framework was evaluated through four models 

developed for the classification of pseudo-real-world data through the prediction of postures 

adopted when completing childcare inspired activities (derived from the findings of Study 1, 

Chapter 3) while caring for and interacting with a child within a laboratory-based simulated 

childcare environment. While the framework used in the development of these models was found 

to be stable in the classification of controlled movements (Study 3, Chapter 5), their 

performance was markedly lower when identifying the postures adopted during these childcare 

inspired activities. The study therefore demonstrates the limitations in applying laboratory-

derived models to the classification of real-world movements and highlights areas for future 

development.  
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Figure 1.1 Connection and specific objectives of the four studies contained in this thesis and their contributions to the field.  

1.3 Global Thesis Objectives 

The research presented in this thesis has at its heart two global objectives. The first was to 

explore the adoption of high knee flexion postures within occupational childcare environments in 

order to further understand the associations, if any, between childcare related exposures and the 

potential for knee joint degeneration and OA development. The second objective was to establish 

a framework by which these commonly adopted postures could be identified and measured using 

non-laboratory-based wearable sensors. Together, these objectives would establish a foundation 

for the qualitative and quantitative measurement of high knee flexion exposures in childcare 

settings.
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1.4 Specific Thesis Objectives 

In order to accomplish the global thesis objectives, three specific objectives were therefore 

explored throughout this thesis: 

1. To characterize the postural demands of occupational childcare as they related to high 

flexion exposures at the knee and identify the specific tasks which elicit the adoption of 

these postures in childcare settings (Study 1, Chapter 3) 

2. To apply, extend, and validate sensor to segment alignment algorithms through which 

lower limb flexion-extension kinematics could be measured in multiple high knee flexion 

postures using inertial measurement units. (Study 2, Chapter 4) 

3. To develop a machine learning based classification model capable of identifying each 

childcare-inspired high knee flexion posture (Studies 3 & 4, Chapter 5 and Chapter 6) 

1.5 Significance 

It remains unclear whether prolonged exposure to high flexion postures, frequent transitions 

through these postures, or high estimated cumulative exposures over an individual’s career or 

lifetime result in the greatest damage to the knee, yet the currently available literature points to 

increased incidences of OA associated with each of these phenomena (Coggon et al., 2000; C. 

Cooper et al., 1994; D’Souza et al., 2008; Jensen et al., 2010; X. Wang et al., 2020). Similarly, 

despite the frequent adoption of high knee flexion postures in occupational childcare, the 

potential for MSK trauma among these workers has largely been unexplored (Grant et al., 1995; 

Holtermann et al., 2020; Labaj et al., 2016; Linnan et al., 2017). The overall goal of this thesis 

was therefore to bridge the gap between the mechanistic and occupational literature relating to 

childcare using observational and in vivo studies in combination with computational approaches 

to human motion measurement and posture recognition through wearable sensor-based data.   
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Chapter 2  

Review of Literature 

This thesis sought to develop a model capable of identifying high knee flexion postures and 

assessing knee osteoarthritis risk by comparing temporal characteristics of high flexion 

exposures to previously established thresholds from the current literature. This literature review 

will therefore be divided into three Subsections in order to familiarize the reader with the current 

state-of-the-art and motivation for the proposed work. The first Subsection will introduce knee 

OA as a debilitating disease aggravated by exposure to postures of high knee flexion. 

Subsequently, evidence will be provided in order to highlight the link between occupational 

postures of high knee flexion and risk of OA, as well as the literature gaps surrounding 

occupational childcare. Finally, a brief review of wearable inertial technologies as well as 

machine learning classification models will be conducted in order to present the potential for 

data acquisition and analysis outside of traditional laboratory-based settings through 

classification algorithms.  

2.1 Knee Osteoarthritis Development  

In order to address the motivation for creating an occupational exposure measurement tool, the 

link between high flexion postures and the potential for OA development must be explored. In 
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this Subsection, a general overview of disease development will be provided in order to establish 

a foundational understanding of OA as a musculoskeletal disorder that may be initiated as a 

function of occupational high flexion postures. OA affects each individual differently, however it 

typically manifests clinically as pain, limited mobility, and joint deformity, and is clinically 

characterized by the deterioration and loss of articular cartilage within the joint (Arokoski, 

Jurvelin, Väätäinen, & Helminen, 2000; Osteoarthritis Research Society International, 2018). 

There are known discrepancies between radiographic and symptomatic occurrences of knee OA, 

suggesting that structural degeneration and symptomatic progression of the disease are most 

likely associated with different biomechanical factors (Englund & Lohmander, 2004). While 

biomechanical studies have sought to analyze both symptomatic and non-symptomatic 

occurrences of OA, a greater burden is placed on the healthcare system by those individuals 

presenting with symptomatic OA due to the detrimental effects this disease has on quality of life 

and its association with an increased risk of mortality (Y. Wang et al., 2021). Symptomatic knee 

OA was reported to affect 9.6% of men and 18.0% of women aged 60 and greater in 2010 

(Osteoarthritis Research Society International, 2018). The Canadian joint replacement registry 

annual report indicated degenerative arthritis was the most common reason for total knee 

replacement (99.4%), with 75,073 surgeries performed in Canada between 2019 and 2020, 

representing an increase in growth of 0.4% from the previous year (CIHI, 2021). 2020-2021 saw 

a 26.4% decrease in surgeries, with only 55,285 knee replacements performed in Canada. It is 

important to note that the Canadian Institute for Health Information estimates that approximately 

48,000 knee and hip replacements were not performed between 2020-2021 due to the COVID 19 

pandemic, and that the average annual increase in knee joint replacements prior to 2019 was 5% 

(CIHI, 2021, 2022). OA has also been shown to be the most common reason for total knee 

replacement in the United States, with the number of these surgeries doubling from 2000 to 2006 

(DeFrances, Lucas, & Golosinskiy, 2008). The rapid increase in the number of total knee 

replacements stemming from cases of OA therefore suggests that this disease will present a 

growing problem to our health care and public health systems in the years to come (Y. Zhang & 

Jordan, 2010). 

It is likely that the onset of joint degeneration leading to OA requires a host of conditions to 

be in place rather than a single triggering event. Numerous systemic and local risk factors for 
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knee OA development and progression have been identified from large epidemiological studies, 

yet the relationship among these factors remains poorly understood (Felson & Zhang, 1998; Y. 

Zhang & Jordan, 2010). Systematic factors include age, sex, racial characteristics, and genetics 

and are responsible for establishing the foundation for cartilage properties within the body. Local 

biomechanical factors include the magnitude and location of joint loading, history of joint injury, 

obesity resulting in excessive joint loading, and joint deformities and are a driving influence on 

the qualities of articular cartilage which will ultimately lead to its healthy remodelling or its 

breakdown (Felson & Zhang, 1998). Local biomechanical factors will influence the site and 

severity of OA development (Arokoski et al., 2000). Many environmental factors have also been 

shown to influence joint health (Arokoski et al., 2000). Occupational requirements including 

repetitive high flexion postures, potentially coupled with heavy lifting, have been related to 

increased incidences of knee OA (Coggon et al., 2000; Kellgren & Lawrence, 1958). The 

importance of these factors as they relate to OA risk for the purpose of this thesis will be 

explained in the subsequent Subsections to highlight the link between OA development and 

occupational high flexion exposures. 

2.1.1.Anatomical Effects of OA 

The knee is a synovial joint consisting of three articulating surfaces: two tibiofemoral 

articulations between the medial and lateral femoral and tibial condyles, and one patellofemoral 

articulation between the patella and femur. Given the incongruity of these articular surfaces, the 

surrounding muscles, ligaments, and tendons contribute to joint stability as well as flexion and 

extension, internal and external rotation, and abduction and adduction motions (Jackson, Wluka, 

Teichtahl, Morris, & Cicuttini, 2004; Moore, Dalley, & Agur, 2010). Two menisci of 

fibrocartilage lie between the medial and lateral articulating surfaces of the femur and tibia and 

contribute to force transmission, stress distribution, shock absorption, as well as joint 

stabilization within the knee joint (Hoshino & Wallace, 1987; McDermott, Masouros, & Amis, 

2008).The articular surfaces of the femur, tibia, and patella are lined with cartilage, a permeable, 

mechanically viscoelastic structure (Laasanen et al., 2003). The smooth, irregularity free, 

external surfaces of healthy articular cartilage are well adapted to absorb and dissipate loads, 

thus creating a protective barrier and preventing any bone-on-bone contact (Kumar, 2001).  
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Incidences of knee osteoarthritis, which can be a debilitating disorder, are increasing in 

prevalence. Knee OA affects joint cartilage and the underlying subchondral bone of a joint 

(Felson, 1988, 2006). Healthy cartilage matrix is mainly composed of collagen fibers which 

provide tensile support for the tissue while negatively charged proteoglycans attract water 

molecules within the tissue which provide the compressive resistance and shock absorbing 

characteristics to cartilage (Maldonado & Nam, 2013). In the early stages of OA, even prior to 

cartilage surface deterioration, decreases in superficial proteoglycan concentrations are observed, 

along with increased water content, which contribute to a decreasing compressive modulus and 

expose the cartilage to greater strains under mechanical stress (Maldonado & Nam, 2013). 

Collagen synthesis rate, however, is observed to increase in early stages of OA, accompanied by 

a change from collagen type II to type I (Silver, Bradica, & Tria, 2002). While healthy cartilage 

is primarily composed of collagen type II, collagen type I is primarily found in subchondral bone 

tissue, therefore these new fiber types result in a decrease to the collagen’s elastic modulus 

(Hollander et al., 1994; Venn & Maroudas, 1977). As the tissue’s ability to store elastic energy 

decreases, fibrillation and fissure formation is observed (Silver et al., 2002). As OA advances 

and the composition of collagen type II and proteoglycans decrease, a decrease in cartilage 

stiffness leading to collagen network disorganization and softening are observed (Kempson, 

Spivey, Swanson, & Freeman, 1971).  

It is hypothesized that once the superficial zone of the cartilage is lost, the underlying 

cartilage is subjected to abnormally high strains, and degenerative changes thus begin to extend 

into deeper cartilage zones (Arokoski et al., 2000). In healthy articular cartilage, it is the process 

of loading and joint movement which ensures the normal balance between nutrition synthesis 

and waste removal within the articular cartilage extracellular matrix and synovial fluid of the 

joint (Arokoski et al., 1996; Arokoski, Kiviranta, Jurvelin, Tammi, & Helminen, 1993; Oettmeier 

et al., 1992). Normal cartilage structure and properties are optimized for load-bearing function. 

Regular loading and unloading of a joint enhances proteoglycan synthesis (Arokoski et al., 2000) 

which directly affects the permeability of the cartilage. Areas of articular cartilage which are 

regularly subjected to high levels of shear stress, such as the patellar surface of the femur and the 

femoral condyles, show a higher degree of parallel collagen fibers and a thicker superficial zone 

in comparison to areas which are preferentially subjected to weight bearing such as the tibial 
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plateaus which have higher proteoglycan concentrations (Arokoski, Hyttinen, Helminen, & 

Jurvelin, 1999). Under high compressive loads, the cartilage behaves as an incompressible 

material, yet the loading will be influenced by the percentage of interstitial fluid flowing through 

or held within the collagen matrix. In dynamic loading scenarios, due to the relatively low 

permeability of the cartilage, this interstitial fluid remains trapped within the tissue, and 

pressurizes to support the majority of the load (Griffin & Guilak, 2005). While loading 

contributes to the balance and maintenance of healthy cartilage, some studies have shown that 

continuous compression, as observed in prolonged static loading, suppresses metabolic activity 

and diminishes proteoglycan synthesis ultimately leading to tissue damage through necrosis 

(Arokoski et al., 2000; Griffin & Guilak, 2005).  

One frequently used measure of loading at the knee joint is ground reaction force. However, 

internal, site-specific loading of a joint is a function of internal geometry, bone alignment, and 

articular cartilage thickness as well as functional mechanical properties, therefore local loading 

at a joint may be very different between individuals despite identical global measures of external 

reaction forces (Moore et al., 2010). If changes and degeneration in structures within the knee are 

site specific, global measures of loading may not be representative of the loading conditions 

within the joint. It has been reported that roughly 68% of all instances of knee OA occur within 

the medial compartment (Felson et al., 2002). It is believed that these increased incidences are 

the result of increased loading and an imbalance in the proportion of medial to lateral loading, 

given the majority of reaction loads have been shown to pass medially to the knee joint center 

leading to compression of the medial tibial plateau (Andriacchi et al., 2004; Kinney et al., 2013). 

Internal adduction and abduction moments may compound or counteract, respectively, the 

effects of such external loads and moments on the knee. Given this general overview of the 

implication of joint loading in the development of OA, leading to changes at the anatomical level 

within the knee, it is evident that all sources of joint loading must be considered when exploring 

joint degeneration. In the following Subsection, the loading characteristics accompanying high 

knee flexion postures will further be explored. 



12 

 

 

2.1.2.High Knee Flexion Leading to the Loading of 

Unconditioned Tissues 

While many factors have been shown to influence the potential for OA development, one of 

particular importance for this thesis is the adoption of postures involving high knee flexion. It 

has been postulated that high knee flexion postures, where a flexion angle of greater than 120o is 

attained, expose unconditioned cartilage to high joint contact forces (Andriacchi & Favre, 2014; 

Andriacchi et al., 2004). At low flexion angles, the tibia has been shown to rotate anteriorly, 

followed by posterior movement between 60o and 120o. Beyond 120o posterior tibial translation 

is reduced and anterior tibial rotation can again be observed (Li et al., 2004; Qi et al., 2013). 

Between 30o and 120o of flexion, the lateral femoral condyle is observed to translate posteriorly 

while beyond 120o, both the lateral and femoral condyles translate rapidly posteriorly (Qi et al., 

2013). The lateral translation of the medial and lateral femoral condyles in high flexion has also 

been shown to result in a contact area decrease of roughly 25% between the femoral and tibial 

surfaces when compared to those in extension (Yao, Lancianese, Hovinga, Lee, & Lerner, 2008). 

Therefore, the posterior translation of tibiofemoral contacts accompanied by the decrease in 

contact area result in loads being transmitted through cartilage which is not typically loaded on a 

regular basis. To illustrate this change in cartilage loading, a comparison of loading locations 

between gait and high flexion lunging can be seen in Figure 2.1. 
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Figure 2.1 Loading instances for the medial and lateral femoral condyles during various phases of knee flexion.  In the first row 

of both (I) and (II) the red represents articular cartilage of the femoral and tibial contact surfaces. In (I) instances of tibiofemoral 

contact from a typical gait cycle, with schematics of motion in the first row and loading location and deflections on the femoral 

condyles in the second row. Areas with non-zero deflection indicate where load is being applied. In (II) tibiofemoral contact in 

full flexion (greater than 140o) is shown in the first row, while the second row demonstrates the trajectory of contact points on the 

femoral condyles for various stages during an in vivo weight bearing lunge from (A) full extension through (B) maximum 

flexion. Adapted from Rakhsha et al (2018) and Qi et al (2013) 

The human knee has adapted over the centuries for upright locomotion (Lovejoy, 2007). It 

has been suggested that this adaptation has resulted in a reduction of quadriceps force 

requirements for locomotion through an increased patellar moment arm due to anterior 

prolongations of the tibial condyles. These evolutionary changes have adapted the human knee 

through elongation of the femoral condyle, in order to reduce joint loading and stresses during 

extension through enhanced tibiofemoral cartilage congruity (Lovejoy, 2007). However, no such 

adaptation strategies have evolved for the reduction of loads in high flexion. The posterior 

extremities of the femoral condyles therefore may experience increased stresses in high flexion, 

resulting in inflammatory responses and degradation of cartilage over time (Andriacchi & Favre, 

2014). Given the preferential conditioning of human cartilage for upright tasks and locomotion, 

the frequent adoption of high flexion postures in occupational settings may be of particular 

concern in the study of OA development. It is for this reason that the identification of high 

flexion postures will be a primary objective of this proposed work. 
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2.2  Occupation Related Risks for OA Development 

While the previous Subsection outlined the biological effects of high knee flexion, recent 

research has begun to show links between exposures to occupational postures of high knee 

flexion and increased risks of knee pain and OA development, which will here be explored 

(Canetti, Schram, Orr, Knapik, & Pope, 2020; Coggon et al., 2000; C. Cooper et al., 1994; 

Jensen et al., 2010; Osteoarthritis Research Society International, 2018; Rytter, Egund, Jensen, & 

Bonde, 2009). It has been suggested that occupational workers such as miners (Kellgren & 

Lawrence, 1952; Schiphof et al., 2008), floor layers and tile setters (Coggon et al., 2000; C. 

Cooper et al., 1994; Jensen et al., 2010; Sandmark, Hogstedt, & Vingård, 2000), and childcare 

workers (Burford et al., 2017; Grant et al., 1995; Gratz et al., 2002; Holtermann et al., 2020; Y. 

Horng et al., 2007) might be at increased risk for occupational injury or OA development. Work-

related musculoskeletal disorders, defined as a subset of MSK disorders arising from 

occupational exposures, may lead to work restrictions, work-time loss, or even work leave 

(Forde, Punnett, & Wegman, 2002).  

Historically, OA was believed to be a chronic degenerative or “wear and tear” disease, 

wherein repetitive knee use alone might be sufficient to result in the gradual wear of articular 

cartilage as an individual ages (Hurley, 1999; Shrier, 2004). This theory has been shown to be 

espoused by many physicians, leading to a trivialization of the disease and a general lack of 

effective symptom management (Nissen et al., 2022). It is now widely accepted among the 

scientific community, however, that OA is an active dynamic whole joint disease, arising from 

cell stress and extracellular matrix degradation initiated by micro- and macro-injury leading to an 

imbalance between the destruction and repair of joint tissues (Kraus, Blanco, Englund, Karsdal, 

& Lohmander, 2015). Therefore, OA can be seen as a heterogeneous disease, resulting from a 

wide array of mechanistic pathways beginning with molecular derangement, advancing through 

anatomic and physiologic derangements, and ultimately resulting in join disfunction and damage 

(Kraus et al., 2015). Among those pathways, several mechanical factors arising from repetitive 

and prolonged occupational high flexion postures have been suggested as potential contributors 

to disease progression (Whitfield, Costigan, Stevenson, & Smallman, 2014). As previously 

mentioned in Subsection 2.1.1, static loading, as occurs in prolonged high flexion postures, is 
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known to be detrimental to cartilage health (Griffin & Guilak, 2005), potentially resulting from 

an increased loading of unconditioned tibiofemoral cartilage (C. Cooper et al., 1994; Nagura, 

Dyrby, Alexander, & Andriacchi, 2002). Additionally, increased risk of meniscal tears have been 

reported in individuals who kneel frequently (Snoeker, Bakker, Kegel, & Lucas, 2013), placing 

these individuals at higher risk over time to develop OA. Another pathway through which 

disease progression may occur is muscle dysfunction, based on the understanding that muscles 

are the main force absorption mechanism within a joint when properly contracting (Hurley, 

1999; Shrier, 2004). Increased incidences of OA development following knee injuries are posited 

to be the result of instability and abnormal cartilage wear over time (Lindberg, Roos, & Gärdsell, 

1993; Roos, Lohmander, Wingstrand, Lindberg, & Gärdsell, 1994) or of a disruption in normal 

muscle function, resulting in the malabsorption of loads, and eventually a disruption in the rate 

of articular cartilage degradation (Kraus et al., 2015; Shrier, 2004). 

Regardless of the pathway of disease initiation, it remains unclear whether the risk of OA 

development is greater due to prolonged exposure to postures of high flexion, the number of 

transitions through these postures (descending into and ascending from high flexion postures), or 

the estimated cumulative exposures over an individual’s career or lifetime. Current reports are 

quite contradictory in nature when indicating safe operating ranges for high flexion posture 

adoption. For example, OA risk inducing durations and frequencies have been reported to be 

between 30 minutes and 5 hours, with most between 1-2 hours (Coggon et al., 2000; C. Cooper 

et al., 1994; D’Souza et al., 2008; Jensen et al., 2010) and usually a maximum of 30 cycles per 

day (Coggon et al., 2000). These estimates, however, are typically based on retrospective self-

reporting from individuals who have worked in various occupations, often polled long after they 

have left the workforce. Jensen et al. (2010) suggested that direct and repetitive loading of the 

knee joints, when working in extreme positions or when physical workload exceeds critical 

levels, may result in the formation of micro-injuries within the joint tissues, eventually leading to 

structural breakdown of the cartilage and OA development. Repetitive knee loading exposures 

have also been suggested to increase the risk of meniscal and ligamentous injuries, ultimately 

resulting in altered joint dynamics (C. Cooper et al., 1994). Work-related cumulative micro-

traumas of the MSK system caused by any one of the previously mentioned possible injury 

mechanisms of OA have been referred to as cumulative trauma disorders and accounted for 69% 
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of all cases of MSK disorders within the service-providing industries from 2002-2004 according 

to the US bureau of labor statistics. Therefore, it appears as though no one mechanism results in 

the initiation of OA, but rather it seems that a combination of repetitive and prolonged loading 

over time may lead to an accumulation of damage, eventually resulting in OA development.  

It has been reported that individuals in knee straining industries may spend between 41% and 

65% of their working-hours in high flexion postures, moving between supported and 

unsupported kneeling or squatting predominantly (Jensen et al., 2010). Forces passing through 

the knee were found to vary throughout sustained high flexion, decreasing as individuals sat back 

towards their heels, yet increasing as weight was shifted forward into more reaching or forward 

leaning postures. It is known that high intensity or long duration loading in the knee such as 

during occupational high flexion postures may be excessive and result in joint breakdown 

(Richmond et al., 2013) however these incidences are not the only contributors to a worker’s risk 

of OA development throughout a working day. When workers aren’t in high flexion postures, 

they may be required to spend a considerable portion of time carrying heavy loads which also 

contribute to increased loading about the knee and risk of OA development (C. Cooper et al., 

1994). While this increased loading is detrimental to knee health on its own, it is compounded by 

the exposures to high knee flexion, which may contribute to altering the biomechanical and 

neuromuscular balance within the joint. In fact, the combination of risk factor interactions based 

on high flexion postures and heavy loads were presented by Cooper et al. (1994) with an odds 

ratio and 95% confidence interval of 2.5 (1.1 - 5.5) for occupations involving repetitive high 

flexion alone versus 5.4 (1.4 – 21.0) for occupations involving repetitive knee flexion and heavy 

lifting. Recent systematic literature reviews have sought to expand on the data presented by 

Cooper et al. in order to capture risk metrics across multiple occupations. Canetti et al. (2020) 

found that activities such as squatting and kneeling (odds ratio [OR] = 1.69, 95% confidence 

interval [95% CI] 1.15-2.49) and lifting heavy loads (>10 kg/week; OR = 1.52, 95% CI 1.29-

1.79) significantly contributed to the risk of knee OA across 28 studies, while Wang et al. (2020) 

found that kneeling (>30 minutes/day; OR = 1.29, 95% CI 1.05-1.57), squatting (>30 

minutes/day; OR = 1.49, 95% CI 1.21-1.81), and lifting (>10kg/day; OR = 1.39, 95% CI 1.22-

1.59) were all significantly associated with a higher risk of knee OA.  
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It may therefore be concluded that workers in occupations which require the frequent or 

extended adoption of postures of high knee flexion are at greater risk for knee OA development. 

Despite strong evidence to this association, little has been done to assess the risk-mitigating 

factors which could be implemented into such workplaces. Industry specific guidelines and 

recommendations based on individual job requirements are necessary in order to reverse the 

positive trend towards OA development in the ever-aging population. Given the lack of 

consensus in current exposure thresholds, means of obtaining quantitative exposure measures 

such as those proposed in the current thesis are needed in order to guide future studies seeking to 

distinguish which high flexion exposures are most likely to lead to increased OA risk and create 

guidelines on the safe adoption of high flexion postures in the workplace.  

2.2.1.Occupational Risks in Childcare Workers  

Despite findings linking occupational requirements to OA risk in several industries, the potential 

for MSK trauma among childcare workers has largely been unexplored (Grant et al., 1995; 

Holtermann et al., 2020; Labaj et al., 2016; Linnan et al., 2017) and therefore occupational 

childcare has not appeared in systematic reviews seeking to associate occupations with the risk 

of knee osteoarthritis development (Canetti et al., 2020; Perry, Garrett, Gronley, & Mulroy, 

1995; X. Wang et al., 2020). Throughout the course of a standard work-shift, childcare workers 

are required to perform a number of tasks including but not limited to basic care (including 

feeding, changing of clothes and diapers, and comforting), leading play sessions, lifting and 

carrying children, toys, play equipment or furniture, bending to pick up children and toys, 

assuming awkward postures, sitting on the floor or in child-sized chairs, squatting in order to 

interact with children, and lifting children onto and off of cots and playground equipment 

(Burford et al., 2017; Gratz et al., 2002; Labaj, Diesbourg, Dumas, Plamondon, & Mecheri, 

2019; Shimaoka et al., 1997). Due to the dynamic nature of interacting with children, completing 

a working shift will require a combination of standing, walking, bending, stooping, floor level 

interactions, and lifting. However, from a metabolic standpoint, each of these postures/ activities 

are considered to require light effort, and the handling of children is generally not believed to 

present handling difficulties or risks given that they are regarded as lightweight (Grant et al., 

1995). In fact, though the physical demands of working with young children in childcare are an 
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integral part of the childcare day, most research on childcare health and safety issues has focused 

on disease transmission rather than MSK health (Gratz et al., 2002) or has focused on the 

children rather than the caregivers (King, Gratz, Scheuer, & Claffey, 1996). Only within the last 

fifteen years has the focus of childcare research shifted towards the risks of MSK injuries and 

pain in childcare workers, with focus on the spine (Y. Horng et al., 2007; Labaj et al., 2016) and 

recently the knee (Burford et al., 2017; Holtermann et al., 2020).  

Based on a report by the US Bureau of Labor Statistics, in 2016 there were approximately 1.7 

million childcare and preschool workers in the United States alone, of which 96% were female 

(Bureau of Labor Statistics, 2016). In 2013, a study of 2,695 Taiwanese childcare workers 

reported a 97.5% female population where 38.1% were between the ages of 21-30, and 33.7% 

were between 31-40 years of age (Cheng, Cheng, & Ju, 2013) while an average age of 39.9 ± 13 

was reported for 674 American childcare workers in 2017 (Linnan et al., 2017). It has been 

reported that one out of every 100 childcare workers would report a non-fatal occupational injury 

(Wortman, 1999) and that 72% of injuries to childcare workers are attributed to overexertion 

(Brown & Gerberich, 1993). The incidence rate of MSK injuries in workers may however be 

significantly underreported in North America given that many childcare workers are employed 

by small businesses exempt from reporting to the Canadian Centre for Occupational Health and 

Safety or the Occupational Safety and Health Administration (Bright & Calabro, 1999; King, 

Gratz, & Kleiner, 2006). Given that floor level tasks, often performed in squatting or kneeling 

postures, as well as lifting tasks, have been associated with significantly increased risk of 

bursitis, meniscal abnormalities, and knee OA (Coggon et al., 2000; C. Cooper et al., 1994; 

Kivimaki, Riihimaki, & Hanninen, 1992; Virayavanich et al., 2013), and that females are already 

at increased risk for OA development (Felson, 1988; McKean et al., 2007), there is undoubtedly 

a risk to this occupational population which has yet to be explored. 

Among the few studies that have sought to evaluate occupational risks in childcare workers, 

it was suggested that a lack of appropriate furniture for adults in childcare facilities results in the 

adoption of potentially stressful postures (Burford et al., 2017; Grant et al., 1995). Interestingly, 

an investigation of 54 childcare facilities revealed that despite design and physical setting 

differences between each location, the childcare environments were almost always designed to 

respond to the needs of the children alone, and neglected to consider the consequences for adult 
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working conditions (Markon & Le Beau, 1994). Despite ergonomic recommendations in the 

wake of this publication, it appears that the uptake of proposed interventions remains quite low 

(Burford et al., 2017; King et al., 2006, 1996). It is known that rising from positions of extreme 

knee flexion imposes substantial stresses on the ligaments of the knee, therefore the use of child-

sized furniture in childcare may very likely be a contributing factor to the reported incidences of 

lower extremity injuries and pain (Calder, 1994; Gratz et al., 2002; Labaj, 2014). The absence of 

change in childcare settings therefore highlights a need for detailed analysis of specific childcare 

exposures and tasks in order to identify targeted interventions for reducing the OA related risks 

associated with the adoption of high knee flexion postures.  

In a study by Grant et al. (1995), it was concluded that preschool workers studied were at 

increased risk of back and lower-extremity MSK disorders due to activities which required 

sustained periods of kneeling, stooping, squatting, or bending. Through questionnaires of 18 

workers, it was found that 25% of working hours were spent squatting, kneeling, or sitting on the 

floor, and another 26% spent sitting on child-sized furniture. It was also indicated that as the age 

of the children for which care was being provided decreased, the frequency of adoption of 

awkward postures increased. In fact, employees were reportedly uninformed as to the potential 

risks associated with postures involving high knee flexion. This study suggests that 

improvements are necessary not only to the working environment for childcare workers but also 

to the training and guidelines provided to these employees on MSK injury prevention.  

Recent studies have highlighted disparity in the demographic and health status of childcare 

workers in North American vs European countries. Holtermann et al. (2020) aimed to assess the 

physical work demands of 199 Danish childcare workers across 16 nurseries. These individuals 

were found to work on average 34.9h/ week, had an average body mass index (BMI) of 25.3 ± 

5.4, and self-rated their physical exertion at work to be 5.9 ± 1.8 on a scale of 0-10 (Holtermann 

et al., 2020). In contrast, when assessing the health status and working conditions of 674 

American childcare workers, these workers worked an average of 41.6 ± 11.8 hours/week, had 

an average BMI of 34.5 ± 9.0, and self reported the work environment as demanding (Linnan et 

al., 2017; Neshteruk et al., 2021). Despite these significant differences in demographics, to date 

no work has addressed the exposures and occupational requirements in North American 

childcare settings associated with increased risk of OA development at the knee. Therefore, this 
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proposed thesis will seek to develop a means by which baseline quantitative data from work-

related tasks and postures, potentially associated with increased risk of acute and long-term 

injury, which are currently missing from the literature, can be measured in childcare settings. 

2.3  Wearable Sensors for the Measurement of 

Occupational Exposures 

Several challenges exist when seeking to study the occupational demands of childcare. Firstly, 

there is a need to protect the privacy of the children under the care of the childcare worker, 

limiting the types of measurement tools that can be used. Additionally, consideration to the 

active nature of this occupation as well as the potential for occlusion of recording 

instrumentation due to children, toys, or furniture within actual or simulated childcare settings 

must be made. Therefore, cameraless, wireless methods of recording exposures to high knee 

flexion postures in the childcare industry are required.  

2.3.1.Inertial Measurement Units  

Inertial measurement units (IMUs), also referred to as inertial sensors, are composed of three 

dimensional (3D) accelerometers, gyroscopes, and magnetometers and provide measures of 

acceleration, angular velocity, and the local magnetic field in their own local 3D coordinate 

system. The IMU signals present a means of objectively estimating the kinematic properties, 

within their inertial coordinate system, of any object to which they are rigidly attached. Although 

inertial sensors are now integrated throughout a broad range of applications, the early 

development of these devices dates back to the 19th century and the quest to measure the earth’s 

rotation. In the early 1900s these devices were used for navigation purposes, yet by the end of 

the 20th century techniques for the development of micro electromechanical systems (MEMS) 

began to be applied to the creation of sensor based accelerometers and gyroscopes (Benser, 

2015). 

It is important to be aware that the measurements obtained from MEMS gyroscopes and 

accelerometers both are susceptible to biases which vary over time. The following is a brief 

overview of the error characteristics within these sensors, based on the technical report on 

inertial motion analysis by Woodman (2007), presented in order to frame the correction of drift 



21 

 

 

performed when estimating joint angles as part of Chapter 4. When at rest, or in a situation 

where a sensor is not experiencing any accelerations or rotations, the ideal gyroscope and 

accelerometer readings would be 0 °/s (or rads/s) and 9.8 m/s2 (or 1 G, in the vertical direction) 

respectively. Practically however, MEMS sensors measure an offset from these true values, the 

average of which is referred to as the sensor bias. When sensor signals which contain bias are 

integrated, the resultant signal will contain an error which increases over time, and this error is 

referred to as drift. Sensor bias must therefore be compensated for prior to signal integration to 

avoid measurements polluted by drift, however this compensation is not a simple task, given the 

time varying properties of bias.  

Both the accelerometer and gyroscope sensors are susceptible to a constant bias term, which 

when integrated would create a linear drift characteristic in the data (Woodman, 2007). This drift 

can be eliminated simply by taking a measure of the sensor at rest over a long duration and 

subtracting the bias, however the precise orientation of the sensor must be known during this 

correction given that the accelerometer signal, even at rest, will contain a measure of gravity.  

Temperature changes, resulting from both fluctuations in the environment and also self-

heating of the sensors, has been shown to cause non-linear changes in the bias of the gyroscope 

and accelerometer measurements (Woodman, 2007). Higher cost professional or research grade 

IMUs often contain internal temperature sensors from which temperature induced bias effects 

can be corrected for internally, however in lower cost sensors, these fluctuations must be 

acknowledged.  

The bias of each sensor further changes with time due to flicker noise in the electronics, 

which is typically modeled as random walk noise (Woodman, 2007). Random walk series are 

unpredictable noise series yet differ from white noise in that each value will depend on the 

previous value plus some level of random variation, which in the case of flicker noise will fall 

within a 1/frequency spectrum (Stockwell, 2003). Woodman cautions that the random walk 

model however is only an acceptable approximation of this change in bias over short periods of 

time.  

Finally, calibration errors, or errors in the scale factors, alignments, and output linearities 

affect the bias errors of both accelerometer and gyroscope sensors (Woodman, 2007). These 
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errors tend to only be produced when the sensors are accelerating or turning respectively 

(however they can affect the accelerometer at all times due to the gravitational acceleration) and 

lead to an accumulation of drift in the integrated signals, proportional to the rate and duration of 

the motions measured. Again, in professional or research grade IMUs, these calibration errors 

can be corrected for internally, however not all IMUs will be capable of executing this 

correction.  

Beyond the bias term, the outputs of MEMS gyroscope and accelerometer sensors will be 

affected by thermo-mechanical white noise, fluctuating at a rate much higher than the sampling 

rate of the sensors (Woodman, 2007). When integrated, this noise introduces a zero-mean 

random walk error into the signal whose standard deviation grows proportionally to the square 

root of time for the gyroscope, and proportionally to time3/2 for the accelerometer.  

Given the outlined sources of error unique to data collected with IMUs, it is evident that 

researchers must be diligent in presenting sufficient information regarding the confounding 

variables which might influence study findings. Therefore, length of data collection trials, which 

impacts many of the bias errors, should be reported as should the manufacturer and generation of 

the IMU sensor given the differences in error compensation across sensor grades (Vitali & 

Perkins, 2020).  

2.3.2.Sensor to Segment Alignment for Joint Axis Estimation 

Over the past 40 years, efforts have been made across the scientific community to standardize the 

reporting of joint kinematics, such that these data would be clinically relevant and uniformly 

presented across publications (Grood & Suntay, 1983; Wu & Cavanagh, 1995b; Wu et al., 2002, 

2005). These recommendations have focused solely on the use of optical motion capture, 

considered to be the current gold standard for human motion measurement, and cannot be 

applied to inertial motion capture which measures motion (linear accelerations and angular 

velocities) rather than position. As such, there is currently no convention by which anatomical 

frames should be defined based on inertial data, yet the alignment of the sensor measurement 

frames to those of the body (often referred to as sensor to segment alignment or calibration) is 

crucial in order to accurately calculate joint angles. 
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Numerous algorithms and calibration methods have been presented in the literature for 

deriving anatomical reference frames from inertial data. Through a systematic review of 

literature published in peer reviewed journals between 2000 and 2018, Vitali and Perkins (2020) 

suggest that these methods can be broadly grouped into four categories. 

Assumed Alignment, where an IMU is attached to a body segment such that its sensor 

measurement frame is approximately aligned with the anatomical frame of that segment, 

appeared in 42% of the 112 articles analysed. This method was observed amongst the earliest 

studies published using IMU data given the simplicity in its execution however it remains 

commonly used to this day, especially in studies seeking to estimate rotations in a single degree 

of freedom (DoF) joint (Vitali & Perkins, 2020). It has been noted however that the accuracy of 

the IMU based joint angles derived using this method relies heavily on expert placement (Favre 

et al., 2006), which can make the application of such a method outside of laboratory settings 

quite difficult. Functional Alignment, the most observed method (47% of the reviewed articles), 

involves participants completing prescribed movement(s) or pose(s) from which a specific 

anatomical axis can be estimated in the sensor measurement frame. Most commonly, measured 

acceleration during a static standing posture, which reveals the direction of gravity, can be 

aligned with the superior-inferior axis of a body segment. As an example, this method is used in 

a proprietary full body biomechanical measurement system developed by the company Xsens, in 

which gravity is measured by each sensor during a standing “normal” pose (Laudanski, Brouwer, 

& Li, 2013; Reenalda, Maartens, Homan, & Buurke, 2016; J. Zhang, Novak, Brouwer, & Li, 

2013). As an alternative, Favre et al. (2008) instructed participants to perform a hip abduction-

adduction movement in addition to a static standing posture to determine the posterior-anterior 

axes of the shank and thigh in addition to the superior-inferior axes. The medial-lateral axes 

could then be derived from a cross-product of the two functionally defined axes for each 

segment. Similarly, Luinge et al. (2007) had participants perform a series of isolated movements 

about the elbow and shoulder in order to define the superior-inferior and posterior-anterior axes 

of both the upper arm and forearm, and again a cross product was performed to derive the third 

functional axis of each segment. While this method is computationally simple to employ, it has 

been noted that this means of defining anatomical frames is relatively repeatable within but not 

between participants (Fasel, Spörri, Schütz, Lorenzetti, & Aminian, 2017). Additionally, care 
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must be taken when working with impaired populations who may not be able to achieve the 

required movement(s) or pose(s). 

Model Based methods involve the use of a kinematic or statistical model into which the IMU 

data are input in order to estimate the anatomical frames of a given segment. These models, 

despite their wide applicability given the lack of requirements for precise sensor alignment or the 

execution of functional alignment movements, made up only 7% of the reviewed articles, 

making their first appearance in the work of Seel et al. in 2014 (Seel, Raisch, & Schauer, 2014). 

Seel et al. (2014) proposed a means of estimating knee flexion-extension by modeling the knee 

as a 1 DoF hinge and combining this model with a least squares optimization in order to derive 

the alignment between IMUs mounted on the shank and thigh and their respective anatomical 

axes during arbitrary leg movements (Seel et al., 2014). Müller et al. (2017) applied similar 

principals to a 2 DoF model of the elbow joint with which flexion-extension and pronation-

supination axes could be estimated based on arbitrary motions about the joint and a straight arm 

“zero pose”. Works by Blesser et al. (2017) and Zimmerman et al. (2018) in contrast estimated 

anatomical axes for a 3 DoF knee joint through statistical modeling of the knee using deep 

learning (the combination of convolutional neural networks and long-short-term memory 

recurrent networks). These works suggest that a Model Based approach could prove useful in 

real-world applications, however given their novelty, these joint-specific alignment techniques 

require additional validation and testing prior to broad application. 

Finally, a small subset of reviewed studies used Augmented Data methods, in which a data 

source other than the IMUs (e.g., optical motion capture or force platforms) was used in order to 

provide information needed to align the IMU measurement frame with each segment’s 

anatomical frame. This method has not seen much uptake given the requirement for additional 

instrumentation. One exception is the work by Picerno et al. (2008), who proposed a means of 

defining the segmental anatomical axes for the lower limbs based on a similar calibration process 

to that of optical motion capture, wherein anatomical landmarks are identified using an 

additional IMU sensor from which the anatomical axes can be derived. This work has recently 

been extended to the upper limbs (Picerno et al., 2019) and offers a means of calibrating based 

on the identification of palpable anatomical landmarks without any active involvement from the 

participant.  
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The majority of papers in the systematic review of calibration procedures by Vitali et al. 

(2017) focused on calibration of the lower limbs (41% including the hip, 65% the knee, and 33% 

the ankle) (Vitali et al., 2017). Across all these sensor to segment calibration methods for the 

lower limbs, high accuracy in angle estimates were obtained when compared with optical motion 

capture: Favre et al. reported precisions of 4.4°, 2.7°, and 4.2° for flexion-extension, internal-

external rotation, and abduction-adduction of the knee, respectively using the Assumed 

Alignment method (Favre et al., 2006); Seel et al. reported a root mean square error (RMSE) of 

3.3° in knee flexion-extension using a Model Based method (Seel et al., 2014); and Picerno et al. 

reported RMSE between 2.5% and 4.8% of range of motion for flexion-extension and between 

13.1% and 41.8% of range of motion for internal-external rotation using the Augmented Data 

method (Picerno et al., 2008). It is important to note that all these studies compared measurement 

systems during walking only. Cooper et al. (2009) found that measurement error increased from 

slow walking (1 mph) to running (5 mph), however, non-gait based validations have yet to be 

performed on any of these alignment methods for the lower limbs and therefore the errors 

associated with such motions are currently unknown. When comparing optical and inertial 

systems, another important point to consider is the placement of the optical reference markers 

relative to the inertial sensors (Seel et al., 2014). In studies where these reference markers are 

placed on the IMU the effects of soft tissue artefact are equally measured by both systems, yet 

when the markers and IMUs are not coincident this skin motion must be considered as a possible 

source for alignment discrepancies. Finally, it must be noted that validating the alignment 

models against optical motion capture, while commonly performed, is not a ground truth 

validation, given that optical data itself is prone to errors due to soft tissue movement as well as 

mistakes in palpation of anatomical landmarks leading to misalignment of the anatomical frames.  

Once the sensor to segment alignment has been performed, joint angles can be calculated 

through varying means. For example, Seel et al. (2014) proposes a means of calculating the 

lower limb angles directly from the raw acceleration and angular velocity measures through 

sensor fusion while Cooper et al. (2009) utilize a Kalman filter to first derive the orientation of 

each sensor and subsequently compare these orientations to determine the angle of the knee. 

Both studies have in common the omission of the magnetometer from angle estimations, in order 

to avoid measurement errors due to the heterogeneity of magnetic fields in most indoor locations. 
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Further details on the relevant algorithm for this work will be explained in Chapter 4 and 

Chapter 6. 

2.3.3.Movement Classification  

Beyond accounting for potential sources of error, performing the sensor to segment alignment, 

and successfully estimating joint angles, one major obstacle exists in the application of IMUs for 

the measure of biomechanical data outside of laboratory settings. In order to use this technology 

as a means of monitoring and measuring occupational activities without supervision, machine 

learning algorithms are required to identify specific activities performed within the collected 

data.  

Advances in pattern recognition and machine learning algorithms along with the growing 

availability of wearable sensor technologies have led to increased interest in human activity 

classification (Bao & Intille, 2004; Barth et al., 2015; Kaya & Gündüz-Öğüdücü, 2015; K. S. 

Kim, Choi, Moon, & Mun, 2010; Kluge et al., 2017; Laudanski, Brouwer, & Li, 2015; Miller, 

Beazer, & Hahn, 2013; Preece, Goulermas, Kenney, Howard, et al., 2009; Webb & Copsey, 

2011). Through these types of classification algorithms, human movement can be studied outside 

of laboratory settings to gain objective measures of movement within the home or community. 

Human movement classification originally began with automatic gesture recognition based on 

video recording data or optical motion capture (Samadani & Kulic, 2014). Recently however, 

advances in the application of wireless sensors for motion analysis have led to classification 

applications using data based on wearable technologies alone. IMU data lends itself well to 

classification as it provides a surrogate measure of activity and postures and has been used in 

multiple classification models for measuring activities of daily living (Altun, Barshan, & Tunçel, 

2010; Bussmann et al., 2001; Kluge et al., 2017; Leuenberger, Gonzenbach, Wiedmer, Luft, & 

Gassert, 2014; Usharani & Sakthivel, 2014; N. Wang, Ambikairajah, Lovell, & Celler, 2007). 

These classification models, in combination with kinematic data collected from inertial sensors, 

offer the potential to broaden biomechanical research and address new questions which could not 

previously be answered.  

Typically, identification of human movements based on biological signals will rely on 

pattern recognition-based classification algorithms. IMU data are collected and pre-processed 
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(including signal filtering and normalization as necessary) and subsequently passed through a 

four-module classification model: 

• Data segmentation: This module may be composed of a number of methods to further 

divide data into a series of time segments of finite length prior to feature extraction in 

order to improve accuracy and processing time. 

• Feature selection: This module is responsible for the computation of specific, repeatable 

features which will serve as input to the classifier in order to efficiently identify the 

occurrence of specific activities. The selection of representative and descriptive features 

is of critical importance for the overall success of the classification model. 

• Classification: The classification module is tasked with identifying combinations of 

signal features as belonging to pre-defined categories of motion. Due to variability in the 

speed of movement execution as well as individual movement styles, preferences, and 

flexibility, this classification module must be robust and well trained in order to ensure 

accurate feature labeling.  

• Correction: The final module may be responsible for the application of post-processing 

methods such as majority voting or prior knowledge, in order to smooth classification 

outputs. The inclusion of additional knowledge serves as a feedback element to the 

classification module and may provide a means to eliminate non-biological 

misclassifications. This module may be omitted or even merged into the classification 

module depending on the desired application, it will therefore not be discussed further in 

depth in this literature review. 

The ability of the classification model to accurately identify human movements is of the 

utmost importance. To date no thresholds have been established for the acceptability of 

biological signal classification performance, therefore it is difficult to determine how well a 

model should perform and the aim is thus placed on obtaining the highest possible accuracy 

(Asghari Oskoei & Hu, 2007). The ideal classification model would be robust and intuitively 

trained to accurately classify movement data from novel users. This performance metric requires 

that the model be trained on a wide selection of variable data from previous individuals in order 

to create a system robust to a variety of conditions. However, this may not be possible for all 

classification models, in which case an intra-subject classification scheme must be employed, 
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where training data is collected from each individual in order to classify their novel data using a 

personalized model. There are therefore a number of decisions which must be made in the 

development of a classification model, which will be discussed in detail in the following 

Subsections. 

2.3.3.1. Data Segmentation 

Due to the continuous nature of inertial biomechanical signals, the length (number of frames) of 

data passed to a classification model must be controlled in order to increase the accuracy of 

classifications (Asghari Oskoei & Hu, 2007; Nazmi et al., 2016; Preece, Goulermas, Kenney, & 

Howard, 2009). Typically, classification methods employ windowing techniques to divide the 

sensor signals into small time segments (or windows) from which repeatable features will be 

extracted for movement identification (Preece, Goulermas, Kenney, Howard, et al., 2009). 

Classification is therefore performed separately for each window. In real-time applications, 

windows of data must be processed independently (without knowledge of any prior data) to 

create a continuous movement profile. In contrast, for off-line processing, windows can first be 

defined and subsequently processed concurrently through the classifier (typically using an 

overlap between windows) in order to create the movement profile for the entire signal (Preece, 

Goulermas, Kenney, & Howard, 2009). Therefore, window length and windowing technique 

must both be considered when performing data segmentation. 

When segmenting data, it is important to consider that longer segments will minimize any 

signal bias and variance yet increase the processing duration (Asghari Oskoei & Hu, 2007). It 

has been shown that windows of greater than 300 ms present too great a delay for real-time 

applications (Englehart & Hudgins, 2003). For post-processing classifications, window lengths 

of multiple seconds have been used (Joshi, Nakamura, & Hahn, 2015; Lin, Joukov, & Kulić, 

2018; Phinyomark, Phukpattaranont, & Limsakul, 2012; Yoshikawa, Mikawa, & Tanaka, 2007). 

In steady-state signals, Englehart and Hudgins (2003) demonstrated that a window length as 

short as 32 ms could be used without incurring significant decreases in classification accuracy, 

when a correction mode such as a majority voting structure was incorporated into the 

classification model. However, in transient signals (e.g., those that incorporate the inherent 

variability of human movement), classification accuracy was found to decrease with decreasing 
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window lengths. It therefore seems that there is no optimal window length for all data types and 

that the length of a data window must be optimized for the parameters input to the classification 

model. 

There are two windowing techniques prominently used when segmenting biological data for 

classification: continuous and overlapping. In continuous, or adjacent, windowing, as shown in 

Figure 2.2 (a), a series of consecutive windows of predefined length serve as input for feature 

extraction and classification, and a sliding window technique is employed where continuous data 

is segmented into a series of windows of varying duration. While this method is often used in 

real-time applications, the classifier must account for the system processing delay in which the 

features are calculated, and the classification is performed. This processing delay leads to an 

idling period for the processor during the remaining window length (Ahmad, 2009). In order to 

overcome this calculation lull, the second windowing technique uses the idling time to generate 

new features and classification results. Known as the overlapping or sliding window technique, 

as can be seen in Figure 2.2 (b), new segments are created with a varying degree of overlap into 

the previous segment with a constant time increment, greater than the processing time yet shorter 

than that of the window length, in order to ensure continuous classification. However, the impact 

of overlapping windows on classification model performance is still debated. Englehart and 

Hudgins (2003) suggested that a greater overlap produced semi-redundant classification results 

which may in fact improve response time and accuracy, while Farina and Merletti (2000) showed 

an increase in processing time with no accompanied classification accuracy increase. 

(a) 

 

(b) 

 

Figure 2.2 (a) Continuous and (b) overlapping windowing techniques adapted from Nayak and Das (2020) 
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2.3.3.2. Feature Selection 

In traditional applications of machine learning based classification models, the input of time 

series signals is computationally impractical due to the magnitude and randomness of these 

biological signals. Sensor-based signals are therefore manipulated to generate representative 

values within a smaller dimension, often referred to as signal features. In extracting these 

features, any unwanted or unnecessary signal characteristics, as they relate to classification, can 

be excluded. Pattern recognition in human motion therefore requires that repeatable features be 

extracted from each window of data in order to identify the occurrence of a specific activity 

(Graupe, Salahi, & Kohn, 1982; Phinyomark et al., 2012). In order for a classification algorithm 

to be successful, consideration must be paid to the nature of the input signals and movement 

types to be distinguished. Given that the classification of biological signals is performed on these 

representative features, the success of this classification therefore relies heavily on the selection 

and extraction of appropriate features for the signals in question. Features chosen for 

classification should ensure maximum class separability, through their complexity and 

robustness to variation over time (Phinyomark et al., 2012). Previous studies have utilized a wide 

variety of generated features in order to characterize the posture or activity assumed based on 

body worn sensors. Generally, features can be divided into three categories: time-domain (TD), 

frequency-domain (FD), and time-frequency-domain (TFD).  

Time-Domain Features 

Time-domain features are derived directly from the windowed sensor data, based on the time-

varying signal amplitude. These TD features tend to be computationally simplistic and relatively 

easy to implement as they do not require any additional signal transformations (Preece, 

Goulermas, Kenney, Howard, et al., 2009; Theodoridis & Koutroumbas, 2003). Examples of TD 

features used for the classification of human movements based on inertial sensor signals include 

the maximum, minimum, mean, median, standard deviation (or variance), skewness, kurtosis, 

autocorrelation sequence, and inter-quartile range (Nazmi et al., 2016; Preece, Goulermas, 

Kenney, & Howard, 2009). Other studies have suggested the use of signal characteristics such as 

the number of peaks or zero crossings in both gyroscope and accelerometer data for the 

identification of key gait events such as toe off, heel strike, and stance phase (Casamassima et 
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al., 2014; Rebula, Ojeda, Adamczyk, & Kuo, 2013; Trung, Makihara, Nagahara, Mukaigawa, & 

Yagi, 2012). High and low pass filters have also been applied to time domain accelerometer data 

to separate signals based on a representation of frequency without the need for conversion of the 

signal into the frequency domain (Foerster & Fahrenberg, 2000; Lee, Park, Hong, Lee, & Kim, 

2003). It should be noted, however, that due to the variability of sensor signals, a great number 

of time-domain features may be required to ensure classification accuracy (Huang et al., 2011; 

Miller et al., 2013). 

Veltink et al. (1996) developed an alternative to the traditional TD features through a 

template-based classification scheme based on measures of signal morphology. They developed 

templates based on data from multiple single movement cycles of a dynamic activity (including 

slow, comfortable, and fast paced walking as well as ascending and descending stairs) and 

compared these templates to single cycle signals of each activity. Maximal circular cross-

correlation coefficients between the unidentified signals and the templates were then calculated 

and used to identify the activity performed based on the maximum cross-correlation coefficient 

exceeding a pre-set threshold value (Veltink et al., 1996). This method was later employed by 

Ying et al. (2007) for the segmentation of individual steps in continuous gait data. Both these 

studies found success in identifying motions based on the templating of time domain data, 

however one major disadvantage to this approach lies in the fixed length of the motion template 

and the resultant inflexibility to variations in movement duration. 

Dynamic Time Warping (DTW), as an alternative to cross-correlation, has therefore become 

popular for gait analysis. This technique, commonly used for computing the similarity between 

time series, allows for the identification of patterns of differing lengths through non-linear 

matching, such that subparts of the template are warped (either stretched or shortened) to 

optimally match a second waveform (Myers & Rabiner, 1981). Barth et al. (2013, 2015) present 

a novel application of DTW for the segmentation of single strides from standardized gait trials as 

well as during continuous and free walking movement sequences. This method has since been 

used for gait analyses in Parkinson’s and Stroke survivors (Chang, Hsu, Yang, Lin, & Wu, 2016; 

Qiu, Liu, Zhao, Wang, & Jiang, 2018; Qiu, Wang, Zhao, Liu, & Jiang, 2018) as well as recent 

applications in hand gesture recognition (M. Kim, Cho, Lee, & Jung, 2019; Mekruksavanich, 

Jitpattanakul, Youplao, & Yupapin, 2020). These novel approaches to movement identification 
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based on time-domain template features offer an exciting and untapped means of classifying 

postures based on inertial data collected in real world settings.  

Frequency-Domain Features 

Frequency-domain features may only be derived following the transformation of data from the 

time domain into the frequency domain, typically using a fast Fourier transform (FFT). The 

output of the FFT yields a series of coefficients representing the distribution of signal energy and 

the magnitude of the frequency components of the signal. FD features have often been used for 

the classification of wearable sensor data (Bao & Intille, 2004; Foerster, Smeja, & Fahrenberg, 

1999; Joshi et al., 2015; Laudanski et al., 2015). The spectral distribution may be characterized 

through mean frequency (Phinyomark et al., 2012), median frequency (Foerster & Fahrenberg, 

2000), spectral energy (Huynh & Schiele, 2005), mean power (Phinyomark et al., 2012), 

frequency-domain entropy (Bao & Intille, 2004), or by a subset of FFT components (Preece, 

Goulermas, Kenney, & Howard, 2009). While these features may be more computationally 

intensive to calculate, they may provide means of distinguishing between activities of varying 

intensity despite similarities in movement patterns.  

Time Frequency-Domain Features 

Unlike TD or FD features, time-frequency-domain features generally represent the outcome of a 

dimensionality reduction method such as principle component analysis (PCA) or wavelet 

analysis (Phinyomark et al., 2012; Preece, Goulermas, Kenney, Howard, et al., 2009; Sapsanis, 

Georgoulas, & Tzes, 2013). These methods allow signals to be decomposed into a number of 

individual coefficients, each of which contain features on specific signal characteristics. In PCA, 

data is projected onto a new space, where the dimensions of the data are no longer correlated and 

its variances are maximized (Sapsanis et al., 2013; A. C. Tsai, Hsieh, Luh, & Lin, 2014). In 

wavelet analysis, each coefficient contains a specific frequency band and are thus well suited for 

the analysis and characterization of non-stationary signals (Preece, Goulermas, Kenney, Howard, 

et al., 2009). With each method, the derived coefficients can be used to form the feature vectors 

however when classifying short windows of data with similar variability within each, these TFD 

features alone may not prove optimal in distinguishing between movement types (Preece, 

Goulermas, Kenney, Howard, et al., 2009; Sapsanis et al., 2013) 
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Feature Selection 

Given the variability of individuals in performing a specific movement, considerable variability 

in features derived from body worn sensors is observed (Preece, Goulermas, Kenney, Howard, et 

al., 2009). Therefore, features must be selected so as to be highly discriminative between 

activities yet robust to variations within a given movement despite repetition or participant 

differences. For this reason, a combination of TD, FD, and TFD features may be utilized in order 

to form an initial representative feature vector for a given time window from which a machine 

learning algorithm could accurately distinguish the activity being performed.  

Rather than manually selecting a subset of features to build a descriptive feature vector for 

classification, dimensionality reduction can be performed on a larger selection of features in 

order to determine which possess the greatest discriminative ability for the given classification 

problem. One proposed method of feature reduction is known as neighbourhood component 

analysis and relies on the gradient ascent technique to create relative weightings for each feature 

included in the development of a leave-one-out trained classifier. Each feature is given a 

weighting for its contribution to the successful classification and based on these weightings, a 

subset of the most important features for classification can be selected while eliminating any 

irrelevant or redundant features (W. Yang, Wang, & Zuo, 2012). In this way, the number of 

features used in the classification training and application are reduced and the generalizability of 

the classification model performance can be improved.  

2.3.3.3. Classification 

In order to identify specific postures or movements from wearable sensor data, extracted features 

must serve as input to a classification model. These models are often referred to as machine 

learning techniques as the developed algorithms are tasked with distinguishing patterns within 

the features associated with each activity (Preece, Goulermas, Kenney, Howard, et al., 2009). 

Given the variability of human movement and strategies adopted to complete similar tasks, it can 

be assumed that features extracted from inertial data will also be quite variable. The developed 

classifier must therefore be capable of distinguishing patterns regardless of signal variability 

without being overfit to any specific dataset (Asghari Oskoei & Hu, 2007). For each application 

an appropriate classification model must therefore be selected, ranging in complexity from basic 
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threshold-based models (Preece, Goulermas, Kenney, Howard, et al., 2009) to more complex 

algorithms such as Bayesian Theory (Young, Smith, Rouse, & Hargrove, 2013), Linear 

Discriminate Analysis (LDA) (Joshi et al., 2015; K. S. Kim et al., 2010; Miller et al., 2013), 

Fuzzy Logic (Kiguchi, Imada, & Liyanage, 2007), Support Vector Machine (H. Lau, Tong, & 

Zhu, 2009; Yoshikawa et al., 2007), k-Nearest Neighbour (kNN) (K. S. Kim et al., 2010; Lin, 

Samadani, & Kulić, 2016), and Artificial Neural Networks (Amsuss et al., 2014; C. Choi, 

Micera, Carpaneto, & Kim, 2009).  

The following Subsections provide an introduction to machine learning based classification 

models. This is not meant to be a comprehensive guide on this topic, however, should provide a 

basic understanding of the developed algorithms commonly used in biomechanical applications. 

The following Subsections were written broadly based on: Cervantes, Garcia-Lamont, 

Rodríguez-Mazahua, & Lopez, 2020; Preece, Goulermas, Kenney, Howard, et al., 2009; 

Tharwat, Gaber, Ibrahim, & Hassanien, 2017.  

Threshold-Based Classification 

Threshold-based classification models are quite simple, in that they involve the comparison of 

derived feature sets to predefined thresholds in order to distinguish if an activity is being 

performed or not. Threshold-based classifiers have been used for the identification of and 

distinction between static postures such as standing, sitting, and lying down based on relative 

segment angles calculated from acceleration signals of different body segments (Boyle, 

Karunanithi, Wark, Chan, & Colavitti, 2006; Bussmann et al., 2001; Preece, Goulermas, Kenney, 

Howard, et al., 2009). Najafi et al (2002; 2003) applied this method to the identification of 

transitions between lying, sitting, and standing using accelerometer and gyroscope data. It is 

noted however that the threshold-based algorithms are highly sensitive to the threshold value 

selected, and the determination of this value can be non-trivial when seeking to differentiate 

between multiple similar motions.  

Bayesian Theory Classification 

Bayesian decision theory is based on the evaluation of trade-offs between the classification of 

feature sets into various classes through probability and cost analysis. Therefore a prior 

knowledge of the density of each class as well as an understanding of the nature, or distribution, 
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of each class as they relate to the probability of the future classifications can be used to influence 

the likelihood of a specific activity being identified over another in order to achieve successful 

classifications (Duda, Hart, & Stork, 2000). Penalties can be applied based on previously 

calculated probabilities in order to influence subsequent classifications and minimize the 

probability of error. Unfortunately, class densities are often unknown in inertial data, making it 

difficult to apply Bayesian Theory to human activity classification. 

Linear Discriminate Analysis 

Linear Discriminate Analysis (LDA) was developed to reduce the dimensionality of features by 

producing linear combinations of these features through which the ratio of between class 

variance can be maximized (Tharwat et al., 2017). There are two possible forms of LDA: class-

dependent and class-independent. In class-dependent LDA each class to be identified will have a 

separate lower dimensional space onto which its data will be projected whereas in class-

independent LDA all data will be projected into the same lower dimensional space from which 

classes will be distinguished. Assuming that for each class the data is normally distributed, and 

the variance distribution is the same, the mean and variance of each class are estimated based on 

a set of previously labeled training data. The data is then combined to construct a lower 

dimensional space maximizing the between-class variance (distance between the means) while 

minimizing the within-class variance (the variance of samples from the group mean). The 

probability of a new feature set belonging to each class is then calculated and a class prediction 

is made for the given data sample as the class with the highest probability (Tharwat et al., 2017; 

Webb, 2002). While Linear Discriminate Analyses have been used as classification models, as 

by Crema et al. (2017) for the identification of various gym based exercises based on a single 

wrist worn IMU, this technique suffers from the small sample problem wherein if the dimensions 

of the data itself are much greater than the number of samples collected the within-class matrices 

will be singular. Therefore LDA is often used for dimensionality reduction and the creation of 

time frequency-domain features which can serve as input to other classification models 

(Sarcevic, Kincses, & Pletl, 2019). 
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Fuzzy Logic 

Fuzzy Logic classification stems from the definition of features into fuzzy sets, where a 

particular sample of data may be assigned to one or more class based on approximate rather than 

absolute knowledge. In traditional theory of classification, each data sample attributed to a class 

would be attributed a unique value as a label identifying that class, whereas the class 

membership of each feature set in a Fuzzy Logic classifier ranges between 0 and 1 based on a 

series of membership functions (Preece, Goulermas, Kenney, Howard, et al., 2009). Once each 

data sample has been assigned its membership weightings, a series of if-then statements known 

as rules can be applied in order to determine the appropriate class outputs, known as a fuzzy 

truth. The class with the highest fuzzy truth is generally taken as the classification result. Fuzzy 

Logic is well suited to the classification of human data given the dynamic nature of human 

movement and ambiguities in labelling data windows during movement transitions. These 

algorithms have previously been used in the classification of falls based on accelerometer data 

(Boissy, Choquette, Hamel, & Noury, 2007), the monitoring and recognition of daily activities in 

stroke survivors (Massé et al., 2015), and more recently for the fuzzy labeling of temporal 

windows which served as inputs to more traditional classification models for the identification of 

activities of daily living (Medina, Espinilla, Paggeti, & Quero, 2019). 

Support Vector Machine 

Support Vector Machines (SVMs) function by projecting the feature sets of data onto higher 

dimensional planes through the use of kernel functions in order to find the optimal linear 

separation between classes for a given classification problem, which equate to nonlinear 

functions in the original feature space (Duda et al., 2000; Preece, Goulermas, Kenney, Howard, 

et al., 2009; Webb & Copsey, 2011). The optimal separation between hyperplanes is typically 

solved for through custom optimization solutions making this classification model useful across 

many applications. SVMs have been proven to perform well for the classification of high-

dimensional problems or when processing small sample sets (Cervantes et al., 2020). Given that 

the decision functions by which the hyperplanes are distinguished are determined directly on the 

training data, these models strike a balance between computational complexity and minimizing 

the risk of misclassification, while maintaining high generalizability. It must be noted that with 

large data sets there is a very high computational cost of SVMs given that the training kernel 
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matrix grows quadratically with the size of the dataset, thus making the time to train a SVM on 

large data very slow (Cervantes et al., 2020). Additionally, given that Support Vector Machines 

were originally designed to solve binary classification problems, in order to apply SVM to multi-

class problems, the classification must be framed as multiple binary classifications (Hsu & Lin, 

2002). 

Support Vector Machines have been used in multiple classification applications from image 

recognition to bioinformatics applications in cancer classification due to their generalizability 

and high fidelity. IMU data have been classified using SVMs for the detection of walking modes 

in stroke survivors (H. Lau et al., 2009), the detection of pathological gait patterns in total hip 

arthroplasty recipients (Teufl et al., 2021), and the prediction of falls pre-impact (Aziz, Russell, 

Park, & Robinovitch, 2014). SVMs have also recently been applied for the classification of 

inertial data collected through smartphones in order to identify activities of daily living such as 

sitting, standing, walking, and stair ambulating in healthy adults (Nurhanim, Elamvazuthi, Izhar, 

& Ganesan, 2017; Swarnakar, Agrawal, & Goel, 2021). 

k Nearest Neighbour 

In k-Nearest Neighbour classification, algorithm building data features are used to construct and 

populate a multi-dimensional feature space wherein each dimension corresponds to a unique 

feature (Duda et al., 2000; Preece, Goulermas, Kenney, Howard, et al., 2009). Each feature set is 

therefore represented by a single point in this feature space corresponding to a particular class or 

activity. Unknown samples of data can then be represented in the feature space and the classes of 

its k nearest points (or neighbours) are identified. The unknown sample will be assigned a class 

based on the majority of the k-Nearest Neighbours. The choice of value assigned to k will impact 

the locality of the classification. While values of k typically range from 1 through a small 

percentage of the training data points, and typically will always be an odd number in order to 

avoid ties in classification, a value of 1 will lead to multiple small neighbourhoods spread 

throughout the multidimensional data space while larger values of k will lead to larger 

neighbourhoods which ignore isolated samples located within groupings of other classes 

(Kramer, 2013).  
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The choice of value for k, which yields an optimal classification rate, is often referred to as 

model selection and can be achieved through various methods ranging in complexity from trial 

and error to cross-validation procedures. Cross-validation is often employed in order to avoid 

overfitting of the model to the training data. This can be performed through a k-fold cross-

validation where the training data is divided into k sets, and for each iteration, the model will be 

trained on k – 1 sets and tested on the remaining set such that all observations are ultimately used 

for training the model (Kramer, 2013). During this cross-validation, the value of k can be iterated 

so as to observe the classification losses associated with varying sizes of neighbourhood and 

ultimately select a k value which minimizes classification error.  

To determine the class of an unknown data sample based on a series of labeled training 

samples in multidimensional space, distances between these samples must be calculated. 

Multiple distance functions have been employed in the literature for classification problems (Hu, 

Huang, Ke, & Tsai, 2016). Most commonly in biomechanical applications, Euclidean distances 

are calculated, wherein a straight line distance is measured between each training sample and the 

unknown point (Kramer, 2013). However, the choice of distance function is critical in ensuring 

separation between classes and the complexity of distance metrics can be varied depending on 

the data sample to be classified.  

Due to their computational simplicity and instance based classification scheme, k-Nearest 

Neighbour algorithms have been used in multiple applications including the identification of 

activities performed by construction workers (Akhavian & Behzadan, 2016) and of different 

behaviours while sitting (Sinha, Patro, Plawiak, & Prakash, 2021) both assessed using 

smartphone data, as well as the differentiation between everyday activities and falls (T. Zhang, 

Wang, Xu, & Liu, 2006), and the classification of ambulatory behavior based on accelerometry 

(Bussmann et al., 2001), to name a few. 

Artificial Neural Network 

An Artificial Neural Network (ANN) can be thought of as a mathematical mesh of hidden layers, 

creating connections between its input and outputs through a series of nodes (Duda et al., 2000; 

Preece, Goulermas, Kenney, Howard, et al., 2009). These algorithms are provided feature sets as 

input in conjunction with some form of optimization criteria controlling the weighting of each 
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layer in addition to the potential incorporation of feedforward and feedback loops in order to 

optimize classification accuracy. Once trained, ANNs can be used to estimate outputs for any set 

of inputs. Neural Networks have been used in traditional classification applications such as the 

identification of exercise movements (Um, Babakeshizadeh, & Kulić, 2017), the assessment of 

locomotion modes including walking, running, and stair ambulation based on pressure insole 

data (K. Zhang et al., 2005), or the identification and assessment of gait post stroke (L. Wang, 

Sun, Li, & Liu, 2018) and recently in the estimation of kinematic and kinetic parameters such as 

joint angles and moments (Mundt et al., 2021) and centre of mass and centre of pressure 

inclination angles during walking (A. Choi, Jung, & Mun, 2019) based solely on inertial data. 

While ANNs are growing in popularity for human motion classification, they present a 

significant limitation in that the creator has no access to the hidden layers, therefore, they are 

often referred to as black boxes. Due to this, the classification process and results can be quite 

difficult to understand, especially for a user or clinician outside of the field of biomechanics.  

Additional Considerations 

Machine learning algorithms may follow either supervised or unsupervised development (Duda 

et al., 2000; Webb, 2002). In supervised learning, the model must be provided with a wide 

variety of feature sets, each identified, or labelled, as belonging to a specific class type. These 

data are used to train the classification algorithm to recognize each class through feature patterns 

unique to each group. Once this training has been completed, unlabeled feature sets can be 

passed through the algorithm and assigned a class or activity label. In unsupervised learning, or 

clustering, feature sets are passed to the machine learning algorithm unlabeled. The algorithm is 

therefore tasked with finding clusters or groupings between feature sets based on a series of 

patterns or cost-functions.  

Cross-validation is often adopted in activity classification applications in order to perform 

between- and or within-participant comparisons (Duda et al., 2000). For between-participant 

evaluations, the chosen classifier is trained with data from a portion of all participants and tested 

on the remaining participants. This train-test cycle is iterated until all participants have been 

included in both the training and testing data sets and the classification accuracies for each 

iteration are calculated for the correctly identified windows of data. The overall accuracy can 
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then be calculated as the average accuracy across all train-test cycles. In contrast, within-

participant evaluations involve the training of a classifier on a portion of feature sets for a given 

participant and testing is performed on the remaining windows of data. This process is repeated 

until all windows have been included in both the training and testing datasets and iterated for 

each participant’s data. Overall accuracy in within-participant validation is calculated as the 

average of all cycles for all participants.  

While overall classification accuracy is most frequently reported when discussing 

classification performance, sensitivity and specificity are often also reported in order to provide 

more detailed information on the classification of individual activity classes (Preece, Goulermas, 

Kenney, Howard, et al., 2009). Sensitivity represents a classifier’s ability to correctly identify 

windows of a given activity class while specificity represents the classifier’s ability to correctly 

reject windows of other activity classes. Both the sensitivity and specificity values can be 

calculated based on the confusion matrix which provides a summary of the predicted and true 

instances of each class passed through the developed classifier.  

2.3.3.4. Applications 

Despite the growing use of wearable technologies and machine learning algorithms for the 

classification of human movement, the majority of studies differ in the type and number of 

activities to be classified, type and number of features employed, classification model selection, 

and in the location, type, and number of body-worn sensors included (Camomilla, Bergamini, 

Fantozzi, & Vannozzi, 2018; Lima, Souto, El-khatib, Jalali, & Gama, 2019; Picerno et al., 2021; 

Rast & Labruyère, 2020). This variability in nearly all aspects of current machine learning 

applications leads to difficulties in comparing classifier performance and accuracies between 

studies. Additionally, the majority of classification studies to date have relatively low sample 

sizes, making generalizability of findings quite difficult (Rast & Labruyère, 2020). The choice of 

derived features or classifiers therefore currently remains specific to a given application or study, 

often driven by accuracy, ease of development, processing speed, and personal preference.  

In a comparative study, Sinha et al. (2021) demonstrated that kNN and SVM classifiers were 

able to identify with 99% accuracy five different postural behaviours while sitting, both 

outperforming a Naïve Bayes classifier (reported accuracy of 92% overall). Bao and Intille 
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(2004) compared the classification of 20 different activities of daily living based on full body 

accelerometer data and found that kNN and Decision tree models outperformed Naïve Bayes 

classification (accuracies of 84%, 83%, and 52% respectively were reported). Pirttikangas et al. 

(2006) also sought to classify 17 activities of daily living based on accelerometers worn on the 

wrists, thigh and around the neck and reported similar classification accuracies between a neural 

network and kNN classifier (93% and 90% respectively). Despite these comparative studies, to 

date no single combination of features and classification algorithm has proved superior for all 

applications, and the applications to which these machine learning algorithms have been applied 

have included only a subset of possible uses. The use of machine learning classification models 

for the study of occupational postures of high knee flexion has not been explored but such a 

system could prove an invaluable tool in the measurement of exposures within occupational 

settings. Therefore, a machine learning model will be developed for the offline classification of 

postures of high knee flexion adopted in occupational childcare to ultimately gain quantitative 

exposure data on childcare postures potentially related to increased risk of knee OA 

development. 
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Chapter 3  

 

Characterization of Postures of High 

Knee Flexion Associated with 

Occupational Childcare 

Components of this chapter have been published; however additional detail have been provided 

in the results. 

Laudanski, A. F., Buchman-Pearle, J. M., & Acker, S. M. (2022). Quantifying high flexion 

postures in occupational childcare as they relate to the potential for increased risk of knee 

osteoarthritis. Ergonomics, 65(2), 253–264. 

3.1 Introduction 

Repetitive joint loading due to occupational high knee flexion postures has been associated with 

the development of degenerative knee joint disease and knee osteoarthritis (Felson, 1988; 

Henriksen, Creaby, Lund, Juhl, & Christensen, 2014). These high flexion postures include any 

pose where the knee flexion angle exceeds 120ᵒ from a neutral standing posture, which would be 

considered 0ᵒ knee flexion. This pose-related increase in risk has been observed in men and 

women of both Eastern and Western cultures despite variance in purpose and frequency of 

exposure to these postures (Coggon et al., 2000). In Eastern populations, including Chinese, 

Japanese, Korean, and Vietnamese nationalities, high knee flexion postures tend to be assumed 

frequently during activities of daily living for socializing, eating, rest, and religious practices 
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(Akagi, 2005). In contrast, the adoption of high knee flexion postures in Western cultures occurs 

primarily in occupational settings, where workers are required to perform repetitive high flexion 

motions for a significant portion of their working hours (Coggon et al., 2000; Felson, 1994; 

Kingston, Tennant, Chong, & Acker, 2016). As such, workers such as miners (Kellgren & 

Lawrence, 1952; Schiphof et al., 2008), floor layers and tile setters (Coggon et al., 2000; C. 

Cooper et al., 1994; Jensen et al., 2010; Sandmark et al., 2000), and childcare workers (Grant et 

al., 1995; Gratz et al., 2002; Y. Horng et al., 2007) have been suggested to be at increased risk 

for occupational knee injury or OA development. Further, childcare workers have a compounded 

risk due to the primarily female demographic (where females represent 96.1% of the childcare 

workforce across Canada, and 96.7% of the workforce in the province of Ontario) and the known 

higher likelihood of OA development in females compared to males (Felson, 1988; McKean et 

al., 2007; Statistics Canada, 2016; The Social Research Centre, 2017). Despite the association 

between postures of high knee flexion and knee pain and OA development, few guidelines exist 

to address the occupational adoption of such movements and their relation to injury and disease 

mechanisms. 

Jensen et al. (2010) suggested that direct and repetitive loading of the knee joints, when 

working in extreme positions or when physical workload exceeds critical levels, may result in 

formation of micro-injuries within the joint tissues, eventually leading to structural breakdown of 

the cartilage and OA development. Work-related musculoskeletal disorders, arising from 

occupational exposures, may lead to work restrictions, work-time loss, or even work leave 

(Forde et al., 2002). Repetitive high flexion knee loading exposures have also been suggested to 

increase the risk of meniscal and ligamentous injuries, ultimately resulting in altered joint 

dynamics (C. Cooper et al., 1994; Gaudreault, Hagemeister, Poitras, & de Guise, 2013; Kajaks & 

Costigan, 2015; Tennant, Chong, & Acker, 2018). Altered joint dynamics have independently 

been associated with loadings observed, in animal experiments, to be a contributing factor to 

joint damage and the initiation or progression of knee osteoarthritis during gait in populations 

exhibiting knee pain yet no radiographic evidence of joint degeneration (Radin, Yang, Riegger, 

Kish, & O’Connor, 1991). Special attention should therefore be paid to decreasing the 

occurrence of high knee flexion postures in occupational settings.  
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While it is accepted that mechanical factors may contribute to disease progression, it remains 

unclear whether the increased risk of OA development stems from prolonged exposure to high 

flexion postures, frequent transitions through these postures (descending into and ascending from 

high flexion postures), or from high estimated cumulative exposures over an individual’s career 

or lifetime. Current reports are quite contradictory when indicating safe operating ranges for high 

flexion posture adoption and levels of exposure associated with increased incidences of OA have 

been reported for both frequency and duration. Based on retrospective self-reported exposures, 

reported durations of exposure associated with increased OA incidences range between 30 

minutes and 5 hours total time spent in high flexion postures in a single workday, with most 

between 1-2 hours (Coggon et al., 2000; C. Cooper et al., 1994; D’Souza et al., 2008; Jensen, 

2008; Tennant et al., 2018). The most commonly reported frequency threshold, beyond which 

incidences of OA are elevated, was 30 cycles per day (Coggon et al., 2000).  

The bulk of published research on childcare related exposures has focused on the risk of 

neck, shoulder, and back injury (Brown & Gerberich, 1993; Grant et al., 1995; Y. Horng et al., 

2007; Labaj et al., 2016, 2019); however, in 2019, the Workplace Safety and Insurance Board 

(WSIB) of Ontario reported that across all occupations, injuries to the legs (excluding ankles and 

feet) represented 9% of all lost time claims, less common only than reports involving the lower 

back or multiple body parts (WSIB Ontario, 2019). In childcare specifically, claims related to the 

lower extremities alone were found to represent 25% of lost time claims received between 2010 

and 2019, with acute injuries to the knee alone representing 8% of all approved claims, 

amounting to $211,609 in benefit cost and 1215.6 lost days (WSIB Ontario, 2020). Despite clear 

evidence of lower limb and knee injuries in the Canadian workforce, to our knowledge only two 

studies have analyzed the physical demands of childcare as they relate to the adoption of high 

knee flexion postures (Burford et al., 2017; Holtermann et al., 2020). 

In a study of 199 Danish childcare workers, Holtermann et al. recorded motions over an 

average of 3.6 days (with 6.5 mean working hours per day) using physical observations and a 

previously proposed method of classifying accelerometer data for static posture detection 

(Hendriksen et al., 2020; Holtermann et al., 2020). Childcare workers, caring for children ages 0-

3, spent on average 4.1% of their working hours in knee straining postures (squatting or 

kneeling), with 7.4% of workers performing these postures for greater than 10% of the work day 
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(Holtermann et al., 2020). Findings related to increased risk of musculoskeletal pain due to the 

physical demands of childcare were inconclusive, yet the authors did recommend cautionary 

minimization of kneeling and squatting exposures. In contrast, Burford et al. analyzed 24 

preschools in Germany and identified 9 locations as having an intermediate or high need for 

intervention to reduce the exposure to biomechanical risk factors (Burford et al., 2017). Using a 

wearable sensor-based postural classification system to monitor 12 childcare workers for 

approximately 4 hours per day over 2 days, knee straining exposures (including squatting, 

supported and unsupported plantarflexed kneeling, sitting on heels (dorsiflexed kneeling), and 

crawling) were identified (Burford et al., 2017; Ditchen, Ellegast, Gawliczek, Hartmann, & 

Rieger, 2015). It was reported that 8.4% ± 9% of working hours pre-intervention were spent in 

high flexion postures when caring for children aged 1-5 years, and that a combination of 

awareness training and new furnishings could significantly reduce these exposures to 3.1% ± 

4.5% (Burford et al., 2017). While previous observations have identified increased yet variable 

adoption of high flexion postures in occupational childcare, the broader classification tools used 

in these studies may have failed to identify unique postures which are adopted when caring for 

children, such as crawling while kneeling or sitting on child sized furniture. Furthermore, caring 

for children of differing ages can require childcare workers to perform highly variable tasks, yet 

no study has analyzed differences in exposures by task or age grouping despite previous 

recommendations for the reporting of data in homogeneous exposure groups (Tak, Paquet, 

Woskie, Buchholz, & Punnett, 2009). Finally, despite the established frequency-based increases 

in incidence levels of OA for high flexion postures, transitions into, out of, and between such 

postures have not to date been quantified in the literature despite the reported incidences of knee 

injuries in childcare.  

To objectively identify the high knee flexion exposures which may contribute to increasing 

the risk of knee injury in childcare workers, a comprehensive analysis is required. Therefore, 

using video observations collected in childcare centres in Kingston, Ontario, Canada, the 

objectives of this study were to identify the postural demands of occupational childcare as they 

relate to high flexion exposures at the knee when caring for children of different ages and 

independence levels, to quantify the frequency and duration of these postures and compare these 

with the current thresholds associated with increased incidences of OA, and finally to associate 
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the identified high knee flexion postures with the childcare related tasks during which they were 

assumed. Given the consistent reports of knee injury and pain in childcare workers (Grant et al., 

1995), these findings will provide foundational knowledge of the high flexion postures assumed 

in occupational childcare to evaluate the potential for increased risk of knee OA development 

within this occupation. 

3.2 Methods 

The video observations presented in this study were collected as part of a larger cohort 

previously reported on by Labaj et al. (Labaj et al., 2016, 2019). Eighteen childcare workers (n = 

17 females, 1 male) were recruited and observed through video recordings as they completed 

approximately half of a working shift in one of five daycares in Kingston, Ontario, Canada. 

Childcare workers were divided based on the age of the children with which they worked: Infant 

(0 to ~1.5 years), Toddler (~1.5 to ~2.5 years), and Preschool (~2.5 to ~4 years). These divisions 

were imposed by the daycare centres, however it is believed that noting differences between the 

occupational tasks related to caring for children of different ages is important given the varying 

levels of independence in each age category as well as the rapid growth and weight increase in 

children from Infant to Preschool ages (WHO Multicentre Growth Reference Study Group, 

2006). Continuous video recordings from a primarily sagittal view were previously collected 

using a handheld video camera (Sony Handycam DCR-SR82) with a capture rate of 30 

frames/second for a duration of approximately 3.25 hours (195 ± 25.0 minutes) for each 

participant. This duration was selected to capture the majority of tasks childcare workers 

completed with the children over the course of a traditional working day (including outdoor play, 

meal assistance, toileting, and naptime assistance). Working shifts were divided based on a 

midday nap and recordings were captured in the morning prior to the nap (Labaj, 2014; Labaj et 

al., 2016). Recruited participants were required to have a minimum of one year of working 

experience within a daycare or to have completed a required education program for an Early 

Childhood Educator diploma including mandatory placements. Informed consent was obtained 

from each participant prior to collections, which were approved by the General Research Ethics 

Board of Queen’s University. This secondary analysis was approved by the University of 

Waterloo Research Ethics Board. 
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While previous sensor based research studies have suggested categorizing knee straining 

postures under the umbrellas of kneeling (both supported and unsupported), squatting, and 

crawling (Burford et al., 2017; Holtermann et al., 2020), all unique exposures which were 

believed to be knee straining were identified in this study. Therefore, to quantify all childcare 

related knee straining exposures, each video was segmented using VLC Media Player (Version 

3.0.0) by the start and end time of each posture, where any posture which appeared to have the 

potential of being knee straining, or in which any segment in addition to the foot was located on 

the ground would be identified. For example, in addition to obvious high knee flexion activities, 

postures such as those involving bending and reaching forward, which at times can include 

increased knee flexion, were also recorded. Additionally, the total number of instances of each 

posture were noted to capture the transitions into and out of high flexion, as these transitions 

present an independent increase in likelihood of OA development (Tennant, Maly, Callaghan, & 

Acker, 2014).  

For instances when the identified posture was performed in a plane approximately 

perpendicular to the camera axis with clear visibility of the hip, knee, and ankle, the peak knee 

flexion angle achieved was calculated. This analysis was performed using Kinovea (Version 

8.27) to report the knee flexion angle attained in each high flexion posture across childcare 

workers. Previous validation work has suggested that knee angles calculated using Kinovea are 

accurate to within ±2.5ᵒ of those measured with a gold standard optical motion capture system, 

and that these estimates are not affected by camera projection angles between 45ᵒ and 90ᵒ 

(Fernández-González et al., 2020; Puig et al., 2019). Nevertheless, frames from which the 

flexion angles were calculated in this study were chosen conservatively in an attempt to ensure 

the best possible views were chosen from which to calculate the angle results (Puig et al., 2019). 

Any posture with a third quartile exceeding 120ᵒ in any of the age ranges was considered to be a 

high knee flexion posture. Adoption frequencies and durations were only reported in the results 

for postures which were identified as high flexion. 

Each adopted posture identified in postural segmentation was associated with one of twelve 

childcare tasks previously identified by Labaj et al. (Labaj et al., 2019). These tasks were 

determined based on questionnaire responses and examination of workers such that they were 
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consistent across child age groups (Table 3.1 Childcare tasks performed by individuals caring for 

children in all age categories previously identified by Labaj et al.). 

For each participant, the frequency and duration of each posture determined to elicit knee 

flexion angles greater than 120ᵒ were calculated using the recorded start and end times, over the 

entire period of video collection (Matlab 9.7 – The Mathworks, Release R2019b, Natick, MA). 

Mean cumulative exposure duration, mean duration per exposure instance, and mean frequency 

of adoption for each high flexion posture were calculated across all workers by child age 

category. The frequencies and durations were then compared to previously reported exposure 

thresholds (Coggon et al., 2000; D’Souza et al., 2008) to determine any potential links between 

childcare related postures and increased incidences of OA development. For exposure duration, 

the most commonly reported adoption thresholds for high flexion postures are between 1 and 2 

hours (Coggon et al., 2000; D’Souza et al., 2008). These thresholds are assumed to have been 

suggested for a standard 8-hour working period and were therefore scaled based on the length of 

the videos collected, to be compared with the results of this study. The length of the videos 

collected was on average 3.25 hours. To be conservative, the thresholds were scaled to a 3.5 hour 

time period. Thus, the scaled exposure duration thresholds became 0.44 to 0.88 hours. The 

proposed frequency threshold of 30 cycles was treated similarly, resulting in a scaled threshold 

of 13 cycles in 3.5 hours (Coggon et al., 2000). 

Table 3.1 Childcare tasks performed by individuals caring for children in all age categories previously identified by Labaj et al. 

(2016). 

Task Name Action 

Activity  Lead or instructed structured activity 

Bathroom Any activity in the bathroom including hand washing, toileting, etc. 

Caring Providing one on one care for a child 

Changing Changing Diapers  

Cleaning Activities including sweeping, tidying, wiping of surfaces 

Feeding Serving or aiding in feeding of snacks or meals to children  

Nap Putting children down to sleep or helping them to fall asleep. 

Other Any tasks which did not fit into another category 

Outdoor Prep Includes dressing our undressing children or themselves in outdoor clothing 

Playing Playing with toys or completing other non-educational activities 

Prep Preparation or setup for a task 

Supervision Observation without direct interaction with other workers or children 
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Mean exposure times were additionally expressed as a percentage of total collection duration 

to determine the time spent in each high flexion posture based on child age category. Finally, an 

analysis of postural adoption by task was performed to identify the childcare related tasks which 

might present the greatest potential risk in each child age category as well as tasks or child age 

categories which might be considered knee sparing. 

3.3 Results 

3.3.1 Postures  

Of the eighteen childcare workers included in this analysis, 6 worked with infants, 3 with 

toddlers, and 9 with preschool aged children. Ten postures involving varying degrees of knee 

flexion were identified as occurring during occupational childcare (Figure 3.1): dorsiflexed 

kneeling (DK), plantarflexed kneeling (PK), single arm supported kneeling (SAK), double arm 

supported kneeling (DAK), flatfoot squatting (FS), heels up squatting (HS), floor sitting (FLRS), 

side sitting or leaning (SS), stool sitting (STLS, either on child sized or adult sized chairs), and 

stooping (STP, also referred to as bending and reaching). Brief descriptions of each of these 

postures have been provided in Table 3.2 Identified childcare postures with the potential to elicit 

high knee flexion angles performed by individuals caring for children of each age category. . 

Eight of the ten identified postures had third quartile knee flexion angle values exceeding 120° in 

at least one of the child age ranges (Figure 3.2).  

Table 3.2 Identified childcare postures with the potential to elicit high knee flexion angles performed by individuals caring for 

children of each age category.  

Posture Description 

Heels-Up Squatting (HS) Forefeet are in contact with the ground, while the heels are 

raised. The knees are anterior to the feet while the buttocks rests 

as close to the heels as possible.  

Flatfoot Squatting (FS) Feet are flat on the ground, at shoulder width or greater distance 

apart. The knees are driving toward the shoulders, located 

superiorly yet in line with the feet, while the tailbone is typically 

pointed to the ground unless squatting to perform a lift from the 

ground. 

Dorsiflexed Kneeling (DK) Symmetrical or asymmetrical (where one knee is in contact with 

the ground while the opposite foot is planted in a posture similar 

to a lunge) kneeling, with flexed forefoot, so that the head of the 

metatarsals and the plantar aspect of the toes are in contact with 

the ground. The buttocks rests as close to the heels as possible. 
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Plantarflexed Kneeling (PK) Symmetrical or asymmetrical kneeling, where the instep of the 

foot is in contact with the ground, and the buttocks rests as close 

to the heels as possible. 

Double Arm Supported Kneeling 

(DAK) 

Knees and hands are in contact with the ground, roughly inferior 

to the hips and shoulders respectively. Body weight is evenly 

distributed between all four contact points. This posture may 

also be observed as non-stationary when an individual is 

crawling on the ground.  

Single Arm Supported Kneeling 

(SAK) 

Similar pose to the double arm supported kneeling, where only a 

single hand is in contact with the ground, so that the body 

weight is evenly distributed between the three contact points.  

Stool Sitting (STLS) Buttocks is seated on a child- or adult-sized chair or on a stool 

wherein the seat pan height is at or below knee level. Both feet 

are typically planted on the ground inferior to the knees. 

Floor Sitting (FLRS) Buttocks is seated on the ground. Legs may be bent so that the 

feet are crossed in front of the body or extended anteriorly or 

laterally from the body.  

Side Sitting or Leaning (SS) Typically transitioned to from a symmetrical kneeling posture, 

knees are bent however buttocks has moved laterally from the 

heels so that one hip rests on the ground. This posture can be 

adopted with or within a single hand in contact with the ground 

for additional support 

Stooping (STP) Movement primarily involving a hinge about the hips, could 

also be referred to as bending and reaching, to lift a child or 

object from an estimated height of 0.5 m or greater above the 

floor. Knee flexion angle typically does not exceed 90o. 

 

Figure 3.1 Simulation of 10 postures identified as frequently adopted in occupational childcare including (clockwise from top 

left): heels up squatting (HS), flatfoot squatting (FS), floor sitting (FLRS), stool sitting (STLS), single arm supported kneeling 

(SAK), stooping (STP), double arm supported kneeling (DAK), side sitting or leaning (SS), plantarflexed kneeling (PK), and 

dorsiflexed kneeling (DK) 
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Figure 3.2 Average range of peak flexion angles achieved for each identified high knee flexion posture. The number of 

participants included per category are indicated next to each posture (n= infant, toddler, preschool). 

3.3.2 Time Spent in High Flexion Exposures  

Cumulative exposure time and exposure cycle time analyses were subsequently calculated for 

each high knee flexion posture (Figure 3.3 and Figure 3.4). 

Task related exposure analysis revealed that childcare workers spent the greatest duration of time 

sitting on the floor, sitting on child sized furniture, or plantarflexed kneeling (Figure 3.3). For 

individual instances of high flexion postures, single exposures to floor sitting were found to be 

longest for childcare workers, across all child age categories (mean duration 37.61 ± 24.34 s, 

Figure 3.4). Childcare workers assumed high knee flexion postures for greater than one third of 

the collection time (Figure 3.5), regardless of the age of child being cared for. For childcare 

workers working with infant, toddler, and preschool aged children, 1.57 hours, 1.55 hours, and 

1.24 hours were spent in high flexion respectively.  
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Figure 3.3 Mean cumulative time (hours) spent in high knee flexion postures for each child age category. Top: Time spent in 

each posture. The number of participants per category are indicated next to each posture (n= infant, toddler, preschool). Bottom: 

Total exposure duration (sum of all high flexion postures) performed by childcare workers caring for children of each age 

category. The previously reported daily exposure thresholds believed to be associated with increased risk of OA development 

have been scaled to the mean collection duration (shaded region). 

 

Figure 3.4 Mean time (s) per exposure instance spent in high knee flexion postures for each child age category. The number of 

participants per category are indicated next to each posture (n= infant, toddler, preschool). 
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Figure 3.5 Postural division as a percent of collection duration averaged for each child age category. 

3.3.3 Frequency of High Flexion Exposures  

Frequency of adoption analysis revealed an average of 159, 113, and 114 instances of high knee 

flexion postures in childcare workers caring for infant, toddler, and preschool aged children 

respectively (Figure 3.6). Instances of kneeling and seated postures were found to occur at the 

highest frequencies when caring for children of all ages.  
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Figure 3.6 Frequency of adoption of high knee flexion postures by child age category. Top: Number of each high flexion posture. 

The number of participants per category are indicated next to each posture (n= infant, toddler, preschool). Bottom: Total number 

of cycles (sum of all high flexion postures) performed by childcare workers caring for children of each age category. The 

previously reported daily number of cycles believed to be associated with increased risk of OA development has been scaled to 

the mean collection duration (dotted vertical line). 

3.3.4 Postural Division by Task  

Postures adopted while completing each childcare related task have been presented in Figure 3.7. 

Childcare workers caring for infants were found to preferentially adopt seated postures for most 

tasks, with less postural variability when compared with those caring for toddler and preschool 

aged children. Additionally, the adoption of high flexion postures by task changed with the age 

of children being cared for, where time spent playing in high flexion was highest with infants, 

time spent napping and feeding in high flexion were highest with toddlers, and feeding, activity, 

and playing in high flexion were highest with preschoolers. This analysis also revealed that 

changing, bathroom, prep, and supervision tasks across all child ages required childcare workers 

to adopt high knee flexion postures the least. 
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Figure 3.7 Average time (minutes) spent in flexed knee postures for each childcare task by child age category. Each bar is 

composed of only postures which were adopted for a specific task, presented in the order in which they appear in the legend. 

Please refer to the online article for color legend.  

Note. Standard deviations for each posture during each task are displayed from top to bottom in decreasing order of time. For 

example, when working with infants, structured activities were performed for an average of 28 minutes. Of this time, 16 ± 3.5 

minutes (mean ± standard deviation) were spent sitting on a child sized stool, 4.5 ± 1.5 minutes in heels up squatting, 4.4 ± 3.9 

minutes sitting on the floor, 2.2 ± 3.2 minutes in plantarflexed kneeling, 0.81 ± 0.72 minutes stooping, and 0.5 ± 0 minutes in 

single arm supported kneeling. 

3.4 Discussion 

This study constitutes the first attempt at quantitatively and objectively evaluating the adoption 

of high knee flexion postures assumed when caring for children of varying age categories during 

a typical working childcare shift in Canada to evaluate the potential for postural related increases 

in the incidence levels of OA development in this occupation. Through video analysis, a series of 

eight high knee flexion postures were identified as occurring in occupational childcare while 

caring for infant, toddler, and preschool aged children. While recent studies have evaluated the 

cumulative exposure times childcare workers spend in knee straining postures, to our knowledge, 

this study is the first to provide these data in combination with an analysis of frequency of 

transitions into and out of such postures. Additionally, this study presents the first 

characterization of childcare related tasks through the high flexion postures adopted during their 

execution when caring for children of different ages.  
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Despite uncertainty in the literature surrounding the occupational determinants of knee OA, it 

is believed that cumulative exposures to high knee flexion postures of 1-2 hours or high flexion 

exposure frequencies of greater than 30 cycles over the course of a typical working shift in an 

occupational context may increase the risk of micro-traumas of the musculoskeletal system 

(Coggon et al., 2000; C. Cooper et al., 1994; D’Souza et al., 2008; Jensen, 2008). Additionally, 

percentages of time as low as 6% of work shifts spent in knee straining postures have been 

suggested to result in elevated risks of musculoskeletal diseases such as knee OA (C. Cooper et 

al., 1994). While the individual instances of each high flexion posture were quite short (mean of 

37.61 ± 24.34 s), the cumulative duration of time spent in high knee flexion postures within the 

3.25 hour period observed in this study was found to exceed one hour, regardless of the age of 

children being cared for. The only comparative results to our cumulative postural exposure are 

those of Holtermann et al. (Holtermann et al., 2020) and Burford et al. (Burford et al., 2017) 

where knee straining exposures (kneeling and squatting) in childcare were studied based on 

wearable data classification. Our cumulative exposures to kneeling and squatting postures (DK, 

PK, SAK, DAK, and HS), when expressed as a percentage of work hours, were found to be 

higher than those previously reported. Assuming a standard 8-hour shift, the duration of daily 

knee straining postures in our study were found to be 11.54 ± 7.96%, 16.04 ± 17.68%, and 12.60 

± 13.72% for infant, toddler, and preschool aged care givers respectively. This discrepancy may 

be due to differences in daycare furnishings, choice of technique employed for postural 

classification, the pedagogical focus of the childcare centre (which may influence the 

independence of the children being cared for), or overestimations in the current results due to the 

extrapolation of partial-day video data to a representative working shift. It is noted that each 

daycare center will allocate childcare responsibilities and workload differently throughout the 

day, therefore it is possible that in some locations, greater adoption of high flexion exposures 

might occur in the mornings compared to the afternoons.  

The frequencies of high knee flexion postures reported in this study were found to be 

between 3 and 5 times the suggested levels associated with increased incidences of OA. The 

frequency of adoption of multiple postures, including dorsiflexed and plantarflexed kneeling, 

heels up squatting, as well as floor and stool sitting, independently exceed the guideline for daily 

high knee flexion posture adoption frequency when scaled to the study duration. When 
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comparing the frequency results here presented to those reported for other occupations, the 

number of transitions assumed by childcare workers caring for infants (159) in the studied 3.25 

hour period are similar to those performed by pavers (155) and tilers (164) over an entire 

working day, while exposures when caring for toddlers and preschool aged children (113 and 

114 respectively) are similar to those in screed layers and painters (125 and 126 respectively) 

(Ditchen, 2012). These findings are of particular importance given the recognized association 

between postural adoption in construction and manual labour based occupations and increased 

risk of knee OA development (Coggon et al., 2000; C. Cooper et al., 1994; Ditchen, 2012; Jensen 

et al., 2010; Sandmark et al., 2000; Schiphof et al., 2008). It is particularly important to study the 

transitions between standing and high flexion postures, given that muscular demands in 

transitional movements have been shown to be significantly higher than in static high flexion 

postures (Tennant et al., 2014). Increased muscular activations about the knee could result in 

increased loading within the joint, ultimately resulting in an elevated risk of cartilage 

degeneration (C. Cooper et al., 1994; Kingston et al., 2016). Findings of this study therefore 

suggest that childcare workers are likely at increased risk of OA development given both the 

frequency and duration of high knee flexion postural adoption throughout their working day.  

While postural analysis is critical in the assessment of OA risk, relating the observed 

postures to specific occupational tasks is necessary for the contextual understanding of childcare 

related exposures. Task specific postural analysis may provide the foundation for workplace 

improvements which could in turn reduce the risk of OA development in childcare workers. 

Childcare workers caring for infants adopted seated postures for greater periods of time than 

those caring for toddlers and preschoolers, yet it’s noted that these infant educators also had the 

highest number of transitions. These findings may be attributable to the independence of the 

children being cared for, wherein infants were observed to require a greater level of interaction 

from their care givers during most activities. Based on our analysis, while it appeared that the 

choice of high knee flexion postures adopted to complete a task varied by child age, the 

variability between individuals was also quite high, and therefore no preferential patterns for 

high knee flexion adoption associated with childcare tasks emerged consistently between 

workers caring for children of a particular age. It was shown however that high knee flexion 

postures were adopted most frequently during structured activities, while playing, and while 
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feeding children. It is interesting to note that when analyzing the lifting and postural demands of 

the spine, Labaj et al (2019) also concluded that structured activities and playing were among the 

most demanding tasks for childcare workers. These tasks may therefore be of particular interest 

when seeking to provide recommendations or guidelines to reduce musculoskeletal exposures in 

occupational childcare.  

The U.S. Bureau of Labor Statistics reported that in 2017-2018 over half of all injuries 

reported in childcare resulted in days away from work or job restrictions (US Bureau of Labor 

Statistics, 2018). This report indicated that incidences of injuries to the knee were second only to 

injuries to the spine and occurred in similar frequencies to those at the shoulder (US Bureau of 

Labor Statistics, 2018), while between 2010 and 2019 the WSIB in Ontario reported that 8% of 

all childcare related approved lost time claims involved acute injuries to the knee (WSIB 

Ontario, 2020). Given the frequency of high knee flexion adoption across all childcare related 

tasks, none could be reported as knee sparing based on the current analysis, leaving workers 

susceptible to injury or cumulative trauma to the joint. Four tasks were identified however as 

requiring the least knee flexion, including changing, bathroom, prep, and supervision, and thus 

could be seen as the least detrimental to the knee should job modification be possible to ease the 

burden on the joint. While not reported in this study, Labaj et al. reported an increased incidence 

of awkward postures while lifting in childcare workers caring for infants and toddlers (where 

lifting of children was often performed from a seated or kneeling posture) (Labaj et al., 2016). 

Awkward postures (with and without the presence of lifting) could be associated with increased 

risk of pain and musculoskeletal impairments for childcare workers(Corlett & Bishop, 2007; 

Gratz et al., 2002) and might also be linked to the increased incidences of injuries due to bodily 

reactions and exertions reported by the WSIB Ontario (WSIB Ontario, 2019). These findings 

echo those previously presented by Grant et al. who further reported that childcare workers were 

uninformed as to the potential risks associated with postures involving high knee flexion (Grant 

et al., 1995). Therefore, improvements to both the working environments and guidelines 

provided to childcare workers are necessary in order to prevent musculoskeletal injuries. 

The work here presented has the following limitations. The dataset presented in this study is 

quite unique given the privacy concerns associated with collecting video data within childcare 

settings. The sample of knee flexion angles measurable from the video data was limited due to 
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lack of visibility of the required landmarks or poor recording quality given that this data was 

collected with the purpose of analyzing spinal loading and lifting in childcare workers. While 

those studies utilizing sensor-based measures alone may provide an opportunity to capture larger 

anonymous data sets, we believe that the data presented in this study offer a comprehensive 

analysis of all childcare related tasks and the high flexion postures which are adopted during 

their execution. Another potential limitation of the current study is that the analyzed childcare 

centers were all from Kingston, Ontario. While we do not believe that there would be large 

differences in childcare related tasks and postural adoption in childcare centres located in other 

regions, we acknowledge that differences in cultural philosophies or physical environments may 

create variations in data from different centres. This local data would be most applicable 

therefore to childcare workers in areas with similar statistics to Ontario where 1 in 132 childcare 

workers reported an injury severe enough to require time away from their position over the past 

10 years, based on the 2016 Canadian census data (Statistics Canada, 2016; WSIB Ontario, 

2020); and where the number of reported lost time claims in childcare and home support workers 

from 2011 to 2019 increased by 119% and accounted for 3.3% of all claims in the province and 

11% of claims in businesses in which the employers do not operate under the collective liability 

insurance principle (WSIB Ontario, 2019). It is additionally noted that exposures in this study 

were scaled based on exposure data collected only in the mornings, which might not be 

representative of childcare tasks and postures performed over an 8-hour working period. 

However, we have no reason to believe that the postures and activities performed in the 

afternoon would be different from those performed in the mornings, and further, our findings 

suggest that both the frequency and duration full day thresholds for increased likelihood of OA 

development are already exceeded within the 3.25-hour period studied. Finally, we acknowledge 

that in order to identify risk factors relating to OA development, a longitudinal- and population-

based analysis would be required. We have therefore chosen instead to use published risk 

thresholds for increased incidences of OA development (conservatively scaled to our data 

collection duration) to determine if childcare workers could be considered an at-risk population. 

Exposures beyond these frequency and duration based thresholds have been identified to elevate 

the risk of knee OA by multiple studies (Coggon et al., 2000; C. Cooper et al., 1994; D’Souza et 

al., 2008; Jensen, 2008; Tennant et al., 2018; X. Wang et al., 2020), however we acknowledge 
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that this approach considers the loading effects of all high flexion postures to be equal even 

though different high flexion postures would have at least some variation in their contribution to 

daily cumulative joint loading (A. Horng et al., 2015).  

3.5 Conclusions 

The results presented in this study for the frequency of adoption and cumulative duration 

analyses conducted on eighteen childcare workers working with infant, toddler, and preschool 

aged children suggest that it is likely that childcare workers exceed thresholds associated with 

increased incidences of knee OA development. It was found that childcare workers adopted 

kneeling and seated postures most regularly for extended durations and at elevated frequencies. 

When comparing tasks which elicited high flexion postures, structured activities, playing, and 

feeding were found to be performed for the longest durations. Results of this study may therefore 

serve as a foundation to guide efforts in reducing the exposure to high flexion postures, which 

have been identified to increase the incidence of knee OA, in occupational childcare settings.  



61 

 

 

Chapter 4  

 

Evaluating the Robustness of 

Automatic IMU Calibration for Lower 

Extremity Motion Analysis in High 

Knee Flexion Postures 

4.1. Introduction 

Inertial measurement units, composed of 3D accelerometers, gyroscopes, and magnetometers, 

present a commercially available low-cost and minimally intrusive means of objectively 

measuring 3D body segment kinematics in settings beyond traditional motion capture 

laboratories. In an idealized scenario, by placing an IMU on each joint segment of interest, 

orientations and angles for each segment and joint could be measured. In reality, these 

calculations involve complex computational sensor fusion processes in order to combine the raw 

inertial measures (Kok, Hol, & Schön, 2017; Laidig, Schauer, & Seel, 2017; Weygers et al., 

2021). Measures of accelerations and angular velocities obtained through MEMS based sensors 

may suffer from distortions due to the accumulation of systematic errors and biases (Woodman, 

2007) which must be corrected or compensated for prior to any further processing of these data. 

Advances in MEMS-based sensor development however have proven effective in minimizing 

accrued errors, with recent studies suggesting that the differences in optical and inertial based 

estimates of joint angles attributable to drift errors might now be on the same magnitude as those 
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caused by the malalignment of anatomical frames (Teufl, Miezal, Taetz, & Fröhlich, 2018; Vitali 

& Perkins, 2020). Therefore, accurate alignment of these anatomical frames based on inertial 

data is critical in order to advance the use of these sensors outside of laboratory and clinical 

settings (Laidig, Lehmann, Begin, & Seel, 2019; Olsson, Kok, Seel, & Halvorsen, 2020; Seel, 

Schauer, & Raisch, 2012). 

A fundamental problem in the application of IMUs to the measure of human kinematics lies 

in the lack of a global system by which the measures of each sensor can be related, either to one 

another, or to the physiological structures onto which they are attached. To this end, several 

methods for aligning sensor-based coordinate systems (CSs) with established anatomical CSs 

(Wu & Cavanagh, 1995b; Wu et al., 2002, 2005) have been proposed (Vitali & Perkins, 2020). 

The first proposed method depends on the precise alignment of the IMU mountings with the 

anatomical axes, thereby omitting the need for computational-based alignments entirely, an 

example of which was presented by Favre et al. (2006). This method however requires expert 

placement of the sensors, and at best will yield a rough approximation of the segmental axes of 

interest. The alternative to perfectly aligned sensors requires that the user calculate the sensor to 

segment mounting orientation which, while computationally more difficult, allows for the 

arbitrary mounting of the IMUs to the body, thereby increasing the likelihood of their use in 

research-based environments. The calibration vectors required for sensor to segment alignment 

have frequently been calculated by means of calibration postures and/or movements (Vitali & 

Perkins, 2020). The simplest form of this calibration requires participants to stand in a static 

“neutral” posture (with their legs straight, feet perpendicular and located directly inferior to the 

hips, looking ahead, with arms relaxed straight by their sides, hands pointing in) from which the 

gravitational acceleration as measured by the accelerometers can be used to define the 

longitudinal axes of each segment (Favre et al., 2008; Reenalda et al., 2016). While the use of 

magnetometer measures has been proposed for the reduction of angular drift in the horizontal 

plane, and therefore the definition of a frontal anatomical axis (Vitali et al., 2017), these sensors 

are prone to magnetic drift, making their use in real world settings problematic (G. Cooper et al., 

2009; Seel et al., 2014). Therefore, in addition to a static posture, functional approaches to 

calibration have been proposed, wherein a series of movements are performed about a joint to 

isolate a single axis of rotation (Favre et al., 2008; Alberto Ferrari et al., 2010; Luinge et al., 
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2007). While these functional methods for sensor to segment calibration are quite simple in 

implementation, their applicability to broad populations is low given that the calibration’s 

success depends on the wearers ability to execute the functional postures or movements, which 

might not be possible in impaired or obese populations (Weygers et al., 2021). Recent studies 

have sought to relate inertial measures with the anatomical axes of the segment on which they 

are mounted through model-based approaches (Muller et al., 2017; Seel et al., 2014; Weygers et 

al., 2021) and their results show high levels of agreement with optical-based joint angle estimates 

without requiring precise sensor alignment techniques or the execution of specific calibration 

motions.  

The method proposed by Seel et al. (2014), which will be referred to as the Seel joint axis 

(SJA) algorithm, utilizes the kinematic constraints of joints of the lower limbs in order to align 

IMUs with the body, thus enabling the calculation of joint center positions and joint axes in any 

setting. Their proposed method allows for these calculations free from assumptions as to sensor 

placement, the use of prescribed postures or movements, and reliance on magnetometers. 

Therefore, they propose that the knee be modeled as a hinge joint while the ankle and hip be 

modeled as spherical joints, and exploit the constraints of these models to locate the position of 

each joint’s center of rotation as well as the direction of each joint’s flexion-extension axis in 

local sensor-based coordinates through least squares optimization using measurements of 

arbitrary motions exciting all degrees of freedom of the joint in question (Seel et al., 2014). 

Subsequently, the angular accelerations from each IMU can be rotated into the joint coordinate 

system and integrated about the joint axis, which yields a highly accurate yet slowly drifting 

estimate of flexion-extension. This drift however can be compensated for through sensor fusion 

in order to take advantage of the drift-free characteristics of acceleration-based angle estimates 

while discarding the significant noise inherent to these measures. Küderle et al. (2018) proposed 

an extension to this implementation in order to mitigate the risk of achieving erroneous 

calibrations during optimization for the knee when non-ideal calibration data is available. This 

extension is referred to as the constrained Seel knee axis (CSKA) algorithm and has been found 

to improve the accuracy of sensor to segment calibrations about the knee without requiring 

specific calibration motions. Both the SJA and CSKA will be presented in greater detail to 

follow in Subsection 4.2. 
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Given the frequent adoption of high knee flexion postures in occupational settings (Coggon 

et al., 2000; Jensen, 2008; Laudanski, Buchman-Pearle, & Acker, 2022); as well as the relation 

between the adoption of high knee flexion postures and the risk of OA development (Anderson 

& Felson, 1988; Felson, 2013; Wallace et al., 2017), the ability to measure these postures as they 

occur naturally in non-laboratory settings is critical for the development of effective guidelines 

for postural adoption in occupational settings. The proposed SJA and CSKA algorithms offer 

promise towards the goal of human motion measurement outside of laboratory settings however 

experimental validation in previous studies has almost exclusively involved robotically 

constrained motions or gait activities (Küderle et al., 2018; Nguyen et al., 2019; Nowka, Kok, & 

Seel, 2019; Olsson, Seel, Lehmann, & Halvorsen, 2019; Seel et al., 2014). High knee flexion 

postures tend to illicit increased soft tissue artefact and a much wider range of joint angles than 

experienced during walking (Buchman-Pearle & Acker, 2021; T. Tsai, Lu, Kuo, & Lin, 2011), it 

is important therefore to investigate the accuracy of flexion-extension angle estimates in the 

lower limbs during these postures using the SJA and CSKA algorithms prior to their 

implementation in real world settings. 

Therefore, the purpose of this study was to evaluate the performance of the SJA and CSKA 

algorithms, following simple calibration motions, in multiple high knee flexion postures inspired 

by childcare workers. The results of this first attempt, which are further described in Subsection 

4.8, suggested that the proposed sensor fusion equations were insufficient to correct for drift 

pollution in the estimated angles during the high flexion postures of interest. Therefore, a 

possible modification is proposed in Subsection 4.5 to improve the stability of the final angle 

estimates, and results of this modification were validated through comparison with flexion angles 

calculated based on simultaneously collected optical-motion capture data during multiple high 

knee flexion postures.  

4.2.  Description of the CSKA Algorithm for Sensor to 

Segment Alignment 

The proposed algorithms by Seel et al. and Küderle et al. require that one IMU be affixed to the 

proximal and distal segments of each joint from which angles can be calculated (Küderle et al., 

2018; Seel et al., 2014, 2012). For generalizability, the location and orientation of each sensor 
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relative to the joint in question need not be known. This mounting strategy however requires that 

a definition of the joint axis and center of rotation be obtained in both of the local sensor frames 

prior to the calculation of joint angles.  

Seel et al. (2012) proposed modeling the knee joint as a 1 DoF hinge type model in order to 

simplify the biomechanical model of this joint. This approximation is reasonable for two reasons; 

First, the greatest degree of motion occurring at this joint is measured in in the sagittal plane. 

Second, there is a tendency for deviations in estimated axes relating to secondary kinematics 

leading to inaccuracies in the calculations of abduction-adduction and internal-external rotation 

angles based on inertial sensors (Weygers et al., 2021). This 1 DoF hinge type model 

additionally simplifies the calculations of joint angles given that the center of rotation of the joint 

need not be defined in order to solve for the joint axis in each sensor frame. When solving for the 

joint axis (about which the flexion-extension occurs), the measured gyroscope rotations for each 

sensor alone can be used in the case of a hinge-type joint, given that the constraints of this model 

ensure that the angular velocities measured by the proximal and distal sensors be equal, save the 

contribution of the joint angle velocity and a time-variant rotation matrix within each signal (Seel 

et al., 2012). Taking into account the arbitrary mounting of the sensors, the measures will differ 

by some rotation matrix 𝑹𝑆1

𝑆2  describing the rotation from the local frame of the second sensor 

into the local frame of the first. 

 𝜔𝑙𝑒𝑔.
𝑆1 (𝑡) = 𝑹 𝑆1

𝑆2 ∗ 𝜔𝑙𝑒𝑔.
𝑆2 (𝑡), (4.1) 

where 𝜔𝑙𝑒𝑔.
𝑆𝑖  represents the measured angular velocity expressed about the coordinate system 

axes of sensor i, attributable to the movement of the leg as a whole. The equality imposed by the 

model can therefore be formulated as follows: 

 ‖ 𝜔𝑙𝑒𝑔.
𝑆1 ‖

2
− ‖ 𝜔𝑙𝑒𝑔.

𝑆2 ‖
2

= 0,    ∀𝑡 (4.2) 

where ǁ • ǁ2 represents the Euclidean norm and ∀𝑡 indicating ‘for all instances of time t’. This 

equation can be further broken down by expressing the movement of the leg as a projection of 

the angular velocity into the joint plane: 

 𝜔𝑙𝑒𝑔.
𝑆𝑖 = 𝜔(𝑡).

𝑆𝑖  × 𝑗̂.
𝑆𝑖 , (4.3) 
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where 𝑗̂.
𝑆𝑖  is a representation of the joint axis expressed about the coordinate system axes of 

sensor i. To simplify the notation from here on, the following variables will be used: 𝜔
𝑠𝑖 = 𝜔𝑖 

and 𝑗̂.
𝑆𝑖 = 𝑗𝑖̂. Thus, combining eq. (4.2) into eq. (4.3): 

 Φ(𝑡;  𝑗̂
1
, 𝑗̂

2
) ∶= ‖𝜔1(𝑡) × 𝑗̂

1
‖

2
− ‖𝜔2(𝑡) × 𝑗̂

2
‖

2
= 0,    ∀𝑡 (4.4) 

where 𝜔1 and 𝜔2 represent the angular velocity expressed about the coordinate system axes of 

each sensor and 𝑗̂
1
 and 𝑗̂

2
 represent the joint axis in each sensor coordinate frame. This constraint 

holds for all time instants regardless of the relative orientation of each sensor. The orientation of 

a joint axis unit vector within each sensor’s local coordinate system can thus be obtained through 

a least-squares optimization to minimize eq. (4.4) given any gyroscopic signals measured during 

arbitrary motions of each sensor. The orientation of the joint axis unit vector in each sensor’s 

coordinate system is therefore the solution of the following: 

 min
𝑗̂1,𝑗̂2

𝑓(𝑗̂
1
, 𝑗̂

2
) (4.5) 

with 

 𝑓(𝑗1̂, 𝑗2̂) =  ∑ Φ(𝑡𝑖;  𝑗1̂, 𝑗2̂)
2𝑁

𝑖=1 , (4.6) 

where t1,...,N are the time points of the randomized motions used in the calculation for calibration.  

The unit vectors 𝑗̂
1
and 𝑗̂

2
 can then be expressed in spherical coordinates so as to decrease the 

number of optimization parameters from 6 to 4.  

 𝑗𝑖̂ =  [cos(𝜑𝑖) sin(𝜃𝑖) , sin(𝜑𝑖) sin(𝜃𝑖), cos(𝜃𝑖) ]
𝑇 (4.7) 

where 𝜑1, 𝜑2 𝜖 [−
𝜋

2
,
𝜋

2
] represent the inclinations and 𝜃1, 𝜃2 𝜖 [0, 2𝜋] represent the azimuths in 

sensor frame i (i = 1,2).  

It is here that the CSKA algorithm extension proposed by Küderle et al. is implemented 

(Küderle et al., 2018). By determining the direction of the gravitational axes through the 

accelerometer readings during a brief static period, a global vector can be defined in both of the 

local sensor frames (Küderle et al., 2018). Through this vector, a geometric constraint can be 

imposed during calibration by aligning both sensor CSs’ z-axes with the direction of gravity, 

thus creating an equality in the angles measured between the joint axes and the z-axis in each 

sensor frame and reducing the parameters of the optimization problem. In order to achieve this 
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alignment, the local CSs must be converted into the global reference system, and given that the 

two local representations of the knee joint axes 𝑗̂
1
 and 𝑗̂

2
 must be aligned in the global CS, this 

equality can be expressed as follows:  

 𝑞̂(𝑡)𝐺
𝑆1 × 𝑗̂

.

𝑆1
× 𝑞̂∗(𝑡)𝐺

𝑆1 = 𝑞̂(𝑡)𝐺
𝑆2 × 𝑗̂

.

𝑆2
× 𝑞̂∗(𝑡)𝐺

𝑆2    ∀𝑡 (4.8) 

where 𝑞̂(𝑡)𝐺
𝑆𝑖  represents the orientation of sensor i within the global CS in a quaternion form and 

𝑞̂∗(𝑡)𝐺
𝑆𝑖  represents the transpose of this orientation quaternion. This same equation can be re-

written to represent the gravitational vector as measured by each accelerometer: 

 𝑞̂(𝑡)𝐺
𝑆1 × 𝑎̂𝑔(𝑡).

𝑆1 × 𝑞̂∗(𝑡)𝐺
𝑆1 = 𝑞̂(𝑡)𝐺

𝑆2 × 𝑎̂𝑔(𝑡).
𝑆2 × 𝑞̂∗(𝑡)𝐺

𝑆2    ∀𝑡  (4.9) 

where 𝑎̂𝑔.
𝑆𝑖 (𝑡) represents the direction of the gravitational vector in sensor frame i. Knowing that 

these gravitational vectors must also be aligned in each sensor CS, a quaternion transforming the 

gravitational vector into the joint axes in both local CSs can be expressed as: 

 𝑞̂𝑔(𝑡)𝑗
𝑎 × 𝑎̂𝑔.

𝑆𝑖 × 𝑞̂𝑔
∗ (𝑡)𝑗

𝑎 = 𝑗̂.
𝑆𝑖 ,   ∀𝑖.  (4.10) 

Note here that the quaternions are responsible for rotations between unit vectors (representing 

the accelerometer-based estimate of gravity and the knee joint axis) rather than rotations between 

coordinate systems. These quaternions, for non-parallel vectors, are defined as follows:  

 𝑞̂𝑏
𝑎 = [cos (

𝛼

2
) , −𝑟𝑥 sin (

𝛼

2
) , − 𝑟𝑦 sin (

𝛼

2
) , −𝑟𝑧 sin (

𝛼

2
)] , (4.11) 

with 

 𝑟̂ =  𝑎̂ × 𝑏̂, (4.12) 

 𝛼 = ∡3𝐷(𝑎,̂ 𝑏̂), (4.13) 

where 𝑞̂𝑏
𝑎  represents the quaternion which rotates the unit vector 𝑎̂ into the unit vector 𝑏̂. 

Therefore from eq. (4.10) and eq. (4.11), it becomes evident that the angle αi(t) between the 

gravitational vectors and the respective joint axis must be identical when expressed in each 

sensor frame i: 

 α(𝑡) =  α1(𝑡) =  α2(𝑡) =  ∡3𝐷 ( 𝑎̂𝑔(𝑡).
𝑆1 , 𝑗̂.

𝑆1 ) =  ∡3𝐷 ( 𝑎̂𝑔(𝑡).
𝑆2 , 𝑗̂.

𝑆2 ). (4.14) 

As long as the calibration data collected includes a short period of static (𝑡0) from which the 

direction of the gravitational vector can be determined, the orientations of the joint axes in each 

sensor frame can be aligned using eq. (4.14). In order to use this alignment to simplify the 
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optimization problem posed in eq. (4.4) the sensor CSs are rotated such that α(𝑡
0
) aligns with 

one of the angles of the defined spherical coordinate systems. Küderle et al. (2018) therefore 

recommend rotating both CSs such that 𝑎̂𝑔(𝑡0).
𝑆𝑖  aligns with the local z-axes and, in spherical 

coordinates, the angle between each representation of gravity and the local z-axis would be equal 

(α(𝑡
0
) = θ = θ1 = θ2). This equality enables the optimization parameters to be further reduced to 

a set of three: 

 [𝜑1   𝜑2   𝜃], (4.15) 

where θ now represents the angle between the gravitational vector and the joint flexion-extension 

axis.  

Küderle et al. (2018) proposed the use of the Levenberg-Marquardt (LM) algorithm to solve 

the least squares optimization of eq.(4.5). The LM algorithm is a trust region method based on a 

quadratic approximation of the objective function which replaces the second order derivative of 

the objective function (the Hessian) with an approximation based on the Jacobian matrices. This 

algorithm yields a faster convergence to a minimum value than the simple Gradient Descent 

method however can be similarly vulnerable to local minima as the Gaus-Neuton algorithm 

originally proposed by Seel et al. (Kuderle, 2017; Nocedal & Wright, 2000; Seel et al., 2012). 

Therefore, an explicit solution of the Jacobian should be derived prior to optimization to aid in 

the computation. Based on the derivation of eq. (4.4) provided by Seel et al. (2016) and 

constrained by Küderle et al. (2018), the Jacobian matrix in the newly rotated coordinate systems 

is given by:  

 𝐽 =  [
𝑑𝜔1,𝑙𝑒𝑔(𝑡)

𝑑𝑗̂1

𝑑𝑗̂1

𝑑𝜑1
    −

𝑑𝜔2,𝑙𝑒𝑔(𝑡)

𝑑𝑗̂2

𝑑𝑗̂2

𝑑𝜑2
     (

𝑑𝜔1,𝑙𝑒𝑔(𝑡)

𝑑𝑗̂1

𝑑𝑗̂1

𝑑𝜃
− 

𝑑𝜔2,𝑙𝑒𝑔(𝑡)

𝑑𝑗̂2

𝑑𝑗̂2

𝑑𝜃
) ], (4.16) 

where:  

 𝑑𝑗̂
𝑖

𝑑𝜃
= [cos(𝜑𝑖) cos(𝜃𝑖)     sin(𝜑𝑖) cos(𝜃𝑖)    − sin(𝜃𝑖)]

𝑇
 (4.17) 

 𝑑𝑗̂
𝑖

𝑑𝜑
= [−sin(𝜑𝑖) sin(𝜃𝑖)     cos(𝜑𝑖) sin(𝜃𝑖)    0]

𝑇
. (4.18) 

Using these new equations (eqs. (4.16), (4.17), and (4.19)), the minimization problem presented 

in eq. (4.5) can be solved, and finally the derived joint axis vectors must be rotated back into 

their respective sensor frames. 
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It should be noted that the CSKA algorithm’s calibration may fail in cases where θ is close to 

90ᵒ, which might occur should the segment movements not be sufficiently different so as to 

facilitate distinguishing between them, in which case the optimization may yield a local 

minimum in the parameter space representing misaligned joint axes. In these cases, the 

minimization should be rerun, with the axis vector of one of the sensors having been rotated 

180ᵒ, however, should the optimization also yield no aligned vector pair, calibration is deemed 

unsuccessful. It is noted that, in all performed validation experiments for this thesis work, 

successful calibration of the joint axes in the local sensor CSs were achieved either through the 

initial or the rerun (one axis rotated 180°) optimization. 

4.3.  IMU-Based Knee Flexion Angle Measurement 

Following the sensor to segment calibration of all IMUs in order to define the anatomical axes of 

each joint relative to the local sensor frames, the identified values for j1, and j2 can be used to 

calculate the flexion-extension angles of the knee joint. By utilizing these vectors, the gyroscope 

signals can be integrated only around the joint axis, yielding a slowly drifting yet otherwise 

highly accurate measure of joint flexion-extension (Seel et al., 2012). This angle can then be 

combined through sensor fusion with a noisy yet driftless angle estimate calculated from the 

measured accelerations projected into the joint plane, so as to generate a stable, drift free angle 

estimate for any motion. 

The gyroscope-based flexion-extension angle can be calculated by integrating the measured 

angular velocities from each sensor around the previously calculated joint axis, as follows (Seel 

et al., 2012): 

 
𝛼𝑔𝑦𝑟𝑜 = ∫ (𝜔𝑢(𝑡) ∙  𝑗̂

𝑢
− 𝜔𝑙(𝑡) ∙  𝑗̂

𝑙)𝑑𝑡 + 𝛼0

𝑇

0
, (4.19) 

where the subscript u denotes the sensor attached to the limb superior to the joint and the 

subscript l denotes the sensor attached to the inferior limb. Additionally, the integration is only 

capable of providing a relative angle between these upper and lower segments, therefore some 

initial angle, 𝛼0, previously determined by alternate means, must be added to the estimation. 

Most commonly, if participants begin a trial in a standing position, these initial angles can all be 

assigned a value of 0°. 
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For the accelerometer-based flexion-extension angle estimate, we must first shift the 

measured accelerations into the joint plane and discard the gravitational component along the 

known z-axis. To do this, we must first define an arbitrary vector which is located in the joint 

plane: 

 𝑒̂𝑧.
𝑆𝑖 = 𝑎̂𝑔(𝑡𝑜),.

𝑆𝑖  (4.20) 

 𝑒̂𝑥.
𝑆𝑖 = 𝑎̂𝑔(𝑡𝑜).

𝑆𝑖 × 𝑗̂
.

𝑆𝑖 , (4.21) 

 𝑒̂𝑦.

𝑆𝑖 = 𝑎̂𝑔(𝑡𝑜).

𝑆𝑖 × 𝑒̂𝑥.
𝑆𝑖 , (4.22) 

where 𝑒̂𝑥,𝑦,𝑧.

𝑆𝑖  are representations of unit vectors of the global coordinate system in the respective 

sensor frame i, and 𝑎̂𝑔(𝑡𝑜).

𝑆𝑖  represents the direction of the gravitational vector at time 0. These 

unit vectors can be combined to create a rotation quaternion 𝒒̂𝑒𝑧

𝑗
 from which the acceleration can 

be projected into the joint plane as follows: 

 𝑎̂𝑝𝑟𝑜𝑗
′ = 𝑞̂𝑒𝑧

𝑗 × 𝑎̂ × 𝑞̂𝑒𝑧

𝑗 ∗
∙ (𝑒̂𝑥

′ + 𝑒̂𝑦
′
), (4.23) 

where ′ denotes values already rotated into the joint coordinate system and 𝑎̂ denotes the 

normalized acceleration vector. Subsequently, the inclination of each segment can be calculated 

as the angle between the projected acceleration and an arbitrary vector in the joint plane (either 

𝑒̂𝑥
′
 or 𝑒̂𝑦

′
 can be used), and these inclinations can be combined to determine a relative joint angle 

as follows: 

 𝛼𝑎𝑐𝑐 =  𝛼𝑎𝑐𝑐,𝑢 − 𝛼𝑎𝑐𝑐,𝑙 + (𝛼0 − 𝛼𝑎𝑐𝑐,0), (4.24) 

with 

 𝛼𝑎𝑐𝑐,𝑖 = ∡3𝐷 (𝑎̂𝑝𝑟𝑜𝑗,𝑖
′ , 𝑒̂𝑗

′
), (4.25) 

where 𝛼𝑎𝑐𝑐,0 denotes the initial angle estimate based on the accelerometer measures, which will 

be removed from the final accelerometer angle, i represents the sensor frame (i = l, u), and j 

represents the reference vector (either x or y). 

These angle estimates can then be combined using a simple complementary filter, as 

suggested by Seel et al. (2014): 
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 𝛼(𝑡)
𝑐𝑜𝑚𝑝,𝑖

= 𝜆𝛼𝑎𝑐𝑐,𝑖(𝑡) + (1 − 𝜆)(𝛼𝑐𝑜𝑚𝑝,𝑖(𝑡 − ∆𝑡) + 𝛼𝑔𝑦𝑟,𝑖(𝑡) − 𝛼𝑔𝑦𝑟,𝑖(𝑡 − ∆𝑡)), (4.26) 

where 𝜆 is a weighting factor, assigned a value of 0.01, and ∆𝑡 is the sampling step size. Finally, 

the angles estimated using the IMUs superior and inferior to the joint were combined such that: 

 𝛼𝑘𝑛𝑒𝑒(𝑡) = 𝛼𝑐𝑜𝑚𝑝,𝑙(𝑡) − 𝛼𝑐𝑜𝑚𝑝,𝑢(𝑡). (4.27) 

4.4.  Sensor to Segment Alignment for Spherical Joint 

Axis Estimation by Seel et al. 

For the ankle and hip joints, the application of a hinge-type model would be inappropriate; as 

such Seel et al. (2012) proposed a 3 DoF spherical joint model as an alternative. The angular 

velocities of segments connected by a 3 DoF joint are not generally relatable as they are in a 1 

DoF joint, therefore while the calculation of joint axes based on gyroscope signals alone is 

sufficient in a hinge-type model, the resultant vectors j1 and j2 in a spherical joint will not be 

aligned. The position of the joint center of rotation estimated in each sensor frame must be 

obtained in order to exploit the kinematic constraints of the model. Thus, two joint position 

vectors, 𝑜1 and 𝑜2, must be defined as vectors pointing from the origin of each local sensor frame 

to the joint center. To solve for these joint position vectors, a combination of the accelerometer 

and gyroscope readings are required, and as such we denote the accelerations of each sensor as 

𝑎1(𝑡) and 𝑎2(𝑡). The accelerations of each measured segment must be attributable to the rotation 

and movement of the leg about the joint centre, also known as the radial and tangential 

accelerations about the joint, represented by the term 𝛤(𝜔𝑖(𝑡), 𝑜𝑖), as well as to the acceleration 

of the joint centre itself, denoted by the term (𝑎𝑖(𝑡) −  𝛤(𝜔𝑖(𝑡), 𝑜𝑖)). The acceleration of the 

joint centre must be measured equally by both the proximal and distal sensors to the given joint, 

and as such the following constraint was proposed (Seel et al., 2012): 

 Ψ(𝑡; 𝑜1, 𝑜2) ∶= ‖𝑎1(𝑡) −  𝛤(𝜔1(𝑡), 𝑜1)‖2 − ‖𝑎2(𝑡) −  𝛤(𝜔2(𝑡), 𝑜2)‖2 = 0   ∀𝑡,. (4.28) 

 
𝛤(𝜔𝑖(𝑡), 𝑜𝑖) ∶= 𝜔𝑖(𝑡) × 𝑜𝑖  ×  𝜔𝑖(𝑡) + 𝑜𝑖 × 

𝑑𝜔𝑖(𝑡)

𝑑𝑡
, (4.29) 

 𝑑𝜔𝑖(𝑡)

𝑑𝑡
≈  

𝜔(𝑡−2∆𝑡)−8𝜔(𝑡−∆𝑡)+8𝜔(𝑡+∆𝑡)+ 𝜔(𝑡+2∆𝑡)

12∆𝑡
, 

(4.30) 
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where eq. (4.30) represents a symmetric third-order approximation for the time derivative of the 

angular velocity, ∆𝑡 represents the sampling step size of the sensor, and i represents the sensor 

frame (i = 1,2). 

Estimates of each joint offset vector (𝑜̂1and 𝑜̂2) can then be determined by minimizing eq. 

(4.28) in a least squares optimization as follows 

 min
𝑜1,𝑜2

ℎ(𝑜1, 𝑜2). (4.31) 

with 

 
ℎ(𝑜1, 𝑜2) =  ∑Ψ(𝑡; 𝑜1, 𝑜2)

2

𝑁

𝑖=1

. (4.32) 

For this optimization, the Jacobian implemented is again based on the derivation by Seel et al. 

(Seel, 2016), the kth row of which follows: 

 

𝐽𝑝𝑜𝑠,𝑘 = 

[
 
 
 
 −

𝛤(−𝜔1(𝑡), 𝑎1(𝑡) −  𝛤(𝜔1(𝑡), 𝑜1)) 

‖𝑎1(𝑡) −  𝛤(𝜔1(𝑡), 𝑜1)‖2
  

𝛤(−𝜔2(𝑡), 𝑎2(𝑡) −  𝛤(𝜔2(𝑡), 𝑜2)) 

‖𝑎2(𝑡) −  𝛤(𝜔2(𝑡), 𝑜2)‖2
 

]
 
 
 
 
𝑇

. (4.33) 

It is important to note that the optimized offset vectors, 𝑜̂1and 𝑜̂2, do not necessarily point 

directly from the origin of the sensor frame to the joint center of rotation but rather from any 

point along the joint axis vector which originates at the origin of the sensor frame. Therefore, the 

joint axis vectors (j1 and j2) and the joint offset vector estimates can be combined in order to 

solve for the vectors which minimize the distance between each sensor and the joint center of 

rotation in each sensor frame (o1 and o2) 

 
𝑜1 = 𝑜̂1 − 𝑗

1

𝑜̂1 ∙ 𝑗
1
+ 𝑜̂2 ∙ 𝑗

2
 

2
,      𝑜2 = 𝑜̂2 − 𝑗

2

𝑜̂1 ∙ 𝑗
1
+ 𝑜̂2 ∙ 𝑗

2
 

2
 (4.34) 

   

4.5.  Iterative Sensor to Segment Alignment for Spherical 

Joint Axis Estimation by Seel et al. 

When seeking to apply the proposed SJA algorithm (presented in Subsections 4.2 and 4.4) for 

the definition of the joint axis and center of rotation in each sensor frame about a spherical joint, 
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preliminary validations using the data collected for this thesis (Subsection 4.8) could not confirm 

the reported accuracies by Seel et al. (2014, 2012). These discrepancies may have resulted from 

the type of sensor used, the calibration postures performed, the duration of trials analyzed, or the 

ranges of motion elicited during the postures performed in this study. Regardless of their sources, 

the iterative Seel spherical axis (ISSA) algorithm was developed as part of this work to provide 

more stable and repeatable estimates of the joint axis and center of rotation based on the data 

herein collected. 

Given the vulnerability of the Levenberg-Marquardt algorithm to local minima during least 

squares optimizations, 1000 iterations of the optimization were performed, each from a 

randomized initialization point. The initialization value which yielded the smallest square root of 

the sum of squares of the gradient values was then selected and input into a Trust Region 

Reflective (TRF) algorithm to solve the least squares optimization of eq. (4.15). The TRF, as its 

name suggests, is a trust region method wherein the algorithm iteratively performs minimization 

on trust region subproblems, such that these subspaces are shaped by the distance to the bounds 

and the direction of the gradient to avoid making steps directly into the constraining bounds 

while also exploring the whole variable space (Branch, Coleman, & Li, 1999). This algorithm 

allows users to define the cost-function by which the variable space will be searched. To 

accelerate convergence, this method reflects the search directions from the bounds, and in each 

iteration, the cost function is used to modify the residual vector and the Jacobian for a robust 

convergence with the true gradient (Triggs, Mclauchlan, Hartley, & Fitzgibbon, 2000). A smooth 

approximation of the absolute value loss was selected as the cost function, with a scaling factor 

of 0.1 and the Jacobian given by eq. (4.16) to solve for jl, and ju. Solving for the joint positions in 

each sensor frame, ol, and ou, was performed as proposed by Seel et al. (2012) and explained in 

Subsection 4.4, and subsequently, a verification phase was implemented to ensure that an 

opposite signed solution or failure to converge upon the joint centre during optimization had not 

occurred.  

4.5.1.Sensor to Segment Alignment Iteration for the Ankle 

For the ankle, verification was performed during a posture in which a large range of motion 

would be observed (a plantarflexed kneeling trial was utilized in this study). The sign of the first 
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and second components of jl, the joint axis expressed in the lower sensor’s CS, were flipped, and 

an estimate of the gyroscope-based flexion angle during the motion trial was calculated using eq. 

(4.19). If the minimum and maximum values of this angle estimate were found to be between 

100° and -100° respectively (these values were chosen such that any estimated angle within their 

range might be physiologically possible following drift compensation (Brockett & Chapman, 

2016)), the rotation of jl was kept, otherwise the rotation was rejected. Subsequently, the ankle 

angle was estimated using a complementary fusion equation including both the accelerometer 

and gyroscope measures (explained in detail below in Subsection 4.6). The minimum and 

maximum values of this new angle were then calculated, if they were not found to be within -80° 

to 80°, respectively, the signs of the x and y accelerations and angular velocity signals within the 

calibration trials were flipped as were the x and y components of the gravitational vector for the 

foot.  

It was assumed that if the angles calculated using the joint axis and center of rotation vectors 

were non-physiological, an opposite signed solution may have been reached given the orientation 

of the sensor during collection. Provided the sensors were always mounted with the local z-axis 

pointing away from the body, only the x and y components of each measurement should be 

rotated. These newly rotated calibration data were then input to the optimization problem posed 

in eq. (4.4) to solve again for jl, and ju. These new values were again input to eq. (4.19), and 

flipped if the estimated angle had minimums or maximums beyond the range of -100° to 100°. 

Finally, new values for ol, and ou were found by optimizing eq. (4.31) using the un-rotated 

calibration data and combining these results with the newly solved for jl, and ju using eq. (4.34). 

4.5.2.Sensor to Segment Alignment Iteration for the Hip 

For the hip, verification was again performed during a posture which would elicit a large range 

of motion (a supported kneeling trial was utilized in this study). The hip angle for this motion 

trial was estimated using a complementary fusion equation including both the accelerometer and 

gyroscope measures (explained in detail below in Subsection 4.6) and mean values were 

calculated across the entire trial as well as during the central 2 s of the trial (when the participant 

was known to be static and in maximum hip flexion). If either of the mean values were found to 

be less than 0° the signs of the x and y accelerations and angular velocity signals within the 
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calibration trials were flipped as were the x and y components of the gravitational vector for the 

thigh. Subsequently these data were input to the optimization problem posed in eq. (4.4) to solve 

for new values of jl, and ju. These joint axis vectors along with the un-rotated calibration 

gyroscope data were then used to estimate the flexion angle using eq. (4.19) and the overall mean 

and static mean values for this angle were calculated. Should either of these mean values be 

found to be less than 0°, the sign of the x and y components of jl were changed. For the hip, the 

original ol, and ou vectors are not recalculated.  

4.6.  IMU-Based Flexion Angle Measurements for the 

Ankle and Hip 

Similarly to the angle calculations at the knee, the gyroscope-based flexion-extension angle for 

the ankle and hip can be calculated using eq. (4.19). In the case of the spherical joints, the 

acceleration vectors can be divided by their components using eq. (4.29) where the radial and 

tangential acceleration can be calculated using the gyroscope signal and respective oi, and 

subsequently subtracted from the acceleration signals to yield only the acceleration of the joint 

center, 𝑎𝑗𝑐, as follows: 

 
𝑎𝑗𝑐,𝑖 = 𝑎𝑖 − (𝜔𝑖(𝑡) × 𝑜𝑖  ×  𝜔𝑖(𝑡) + 𝑜𝑖 × 

𝑑𝜔𝑖(𝑡)

𝑑𝑡
), (4.35) 

for each joint frame i (i =1,2). This joint center acceleration can then be shifted from the local CS 

into the joint plane using two vectors located within this plane defined as follows: 

 𝑥𝑖 = 𝑗̂
𝑖
× 𝐶, (4.36) 

 𝑦
𝑖
= 𝑗̂

𝑖
× 𝑥𝑖, (4.37) 

where C represents a reference vector in the joint plane (the vector [-1,0,0]T was used in this 

study). Therefore, the shifted accelerations for each sensor, u and l can be calculated as follows: 

 
𝑎𝑝𝑟𝑜𝑗,𝑖 = [[𝑎𝑗𝑐,𝑖 ∙ 𝑥𝑖]

𝑇
, [𝑎𝑗𝑐,𝑖 ∙ 𝑦𝑖]

𝑇
, 1]

𝑇
. (4.38) 

The angle between these two projected acceleration vectors is then calculated as follows: 

 𝛼𝑎𝑐𝑐 = ∡3𝐷(𝑎𝑝𝑟𝑜𝑗,𝑙, 𝑎𝑝𝑟𝑜𝑗,𝑢) − 𝛼𝑎𝑐𝑐,0. (4.39) 
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Given the noisy signal characteristics of the acceleration-based flexion-extension angle, a 

Savitsky-Golay filter is subsequently applied with a 15-sample window size in order to smooth 

the data and eliminate any large, non-physiological spikes. A representative example of this 

accelerometer-based joint angle estimation calculated with accelerations in both the sensor and 

joint coordinate systems can be found in Figure B.1 and Figure B.4 for the Ankle and Hip 

respectively. Representative examples of gyroscope-based angle estimates calculated with 

angular velocities in each sensor axis as well as about the joint flexion-extension axis can 

additionally be found in Figure B.2 and Figure B.5 for the Ankle and Hip respectively. 

Seel et al. (2012) propose using the same complementary filter proposed for the knee as 

presented in eq. (4.26) and eq. (4.27) when calculating ankle  flexion-extension. Validation of 

these equations for the current data however could not confirm the reported accuracies, 

potentially indicating the need for application-specific filters. Therefore flexion-extension angles 

were additionally calculated using the following proposed alternative complementary filters.  

In order to combine the accelerometer- and gyroscope-based angle estimates to calculate the 

ankle flexion-extension angle, a weighted constraint was applied, similar to that introduced by 

Olsson et al. (2019) for fast and slow motions, wherein the accelerometer-based angle would be 

given a higher weighting and therefore have a greater influence on the overall angle estimate 

during static periods than during periods of detected motion when the gyroscope-based estimates 

would be more heavily weighted. The ankle angle would therefore be calculated as: 

 𝛼𝑎𝑛𝑘𝑙𝑒(𝑡) = 𝛼𝑎𝑛𝑘𝑙𝑒(𝑡 − 1) + (𝛼𝑎𝑐𝑐(𝑡) − 𝛼𝑎𝑐𝑐(𝑡 − 1)) + 0.2

∗ (𝛼𝑔𝑦𝑟𝑜(𝑡) − 𝛼𝑔𝑦𝑟𝑜(𝑡 − 1)) 

for |𝛼𝑎𝑐𝑐(𝑡) − 𝛼𝑎𝑐𝑐(𝑡 − 1)| < 0.15 and |𝛼𝑔𝑦𝑟𝑜(𝑡) − 𝛼𝑔𝑦𝑟𝑜(𝑡 − 1)| < 0.3   

(4.40) 

and for all other instances: 

 𝛼𝑎𝑛𝑘𝑙𝑒(𝑡) = 𝛼𝑎𝑛𝑘𝑙𝑒(𝑡 − 1) + 0.2 ∗ (𝛼𝑎𝑐𝑐(𝑡) − 𝛼𝑎𝑐𝑐(𝑡 − 1)) + 0.8

∗ (𝛼𝑔𝑦𝑟𝑜(𝑡) − 𝛼𝑔𝑦𝑟𝑜(𝑡 − 1)) 
(4.41) 

The flexion-extension angle for the hip was calculated using the following complementary 

fusion equation: 

 𝛼ℎ𝑖𝑝(𝑡) = 0.65 ∗ (𝛼𝑎𝑐𝑐(𝑡) − 𝛼𝑔𝑦𝑟𝑜(𝑡 − 1)) + 𝛼𝑔𝑦𝑟𝑜(𝑡). (4.42) 
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Representative examples of ankle and hip joint angles calculated using these ISSA 

complementary filters alongside the 𝛼𝑎𝑐𝑐 and 𝛼𝑔𝑦𝑟𝑜 can be found in Figure B.3 and Figure B.6 

respectively.  

4.7.  Experimental Validation 

In order to validate the algorithm performance and therefore the feasibility of estimating lower 

limb joint angles of the ankle, knee, and hip based on IMU signals during high flexion 

movements, a sample of 52 participants were recruited. Fifty participants from which complete 

datasets were collected were included in this analysis (Table 4.1). Individuals were asked to self 

report any history of knee joint disease, current knee pain or leg injury. These prior injuries did 

not preclude them from participating in the study unless the participant indicated that they were 

incapable of kneeling or squatting without difficulty or pain. Participants were not required to 

have any prior history of interacting with or caring for children in order to participate. This study 

was approved by the University of Waterloo Research Ethics Board and informed consent was 

obtained prior to each collection.  

Table 4.1 Mean (SD) descriptive and anthropometric participant information. Daily squatting regularity was rated on a 3-point 

scale where scores from 1 to 3 equated to rarely, occasionally, and regularly squatting. While all participants were currently 

living in Canada, heritage was self reported as relating to their ancestry as ethnicity has been suggested as a potential influencing 

factor in the development of knee OA (Chong, 2016; Leszko, Hovinga, Lerner, Komistek, & Mahfouz, 2011).  

Parameter Female (n = 32) Male (n =18) Total (n = 50) 

Age (years) 20.84 (3.36) 21.75 (4.51) 21.15 (3.76) 

Height (m) 1.67 (0.06) 1.80 (0.07) 1.71 (0.09) 

Mass (kg) 68.57 (16.88) 83.08 (15.81) 73.71 (17.78) 

Squat Regularity 1.97 (0.69) 1.94 (0.64) 1.96 (0.67) 

Dominant Leg (R/L) 27/5 16/2 43/7 

Heritage (Western/ non-Western) 27/5 10/8 37/13 

Seven wireless IMUs (Xsens MTw Awinda, Xsens Technology B.V., Netherlands, Gyro.: 

2000 deg/s, Acc.: 16 G, sampling frequency: 60 Hz) were attached bilaterally to the superior 

aspect of participant’s feet, the lateral aspects of the participant’s shanks and thighs, and over the 

base of the participant’s sacrum. The foot sensors were attached to the participant’s footwear, 

roughly above the superior aspect of the mid-foot, mid-distance between the medial malleolus 

and the head of the first metatarsal. The shank and thigh sensors were attached roughly one third 

the distance from the lateral malleoli to the lateral epicondyle of the tibia and roughly midway 

between the greater trochanter and the lateral epicondyle of the femur respectively. All sensors, 
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save for those on the feet, were attached using foam backed, anti-slip fabric wraps (fabrifoam®, 

Fabrifoam Products, United States of America). With the exception of placing sensors in the 

general regions described above, no specific orientations or positions were enforced.  

Clusters of four non-collinear infrared emitting diodes were attached to the lateral surface of 

each IMU with the exception of the foot, where the cluster was mounted to the lateral aspect of 

the participant’s footwear (as can be seen in Figure 4.1). These clusters were tracked using an 

18-camera optoelectronic motion capture system (NDI Certus/3020, Northern Digital Inc., 

Waterloo, ON, Canada, sampling frequency: 50Hz).  

 

Figure 4.1 Participant instrumentation , where the shank, thigh, and pelvis marker clusters have been affixed to the lateral aspect 

of the IMUs while the foot cluster can be seen mounted to the posterior aspect of the shoe while the IMUs are located on the 

superior aspect of the shoe.  

Prior to beginning the high flexion trials, participants completed a 5s standing trial in 

addition to functional hip (isolated upper leg motion through a star-arc hip circumduction 

(Camomilla, Cereatti, Vannozzi, & Cappozzo, 2006)) and functional knee (isolated cyclic 

flexion/extension motion of the lower leg while the upper leg was held parallel to the ground) 

motion trials. Following these calibration trials, participants completed three 10 m walking trials 

at a self-selected pace. Subsequently, participants were asked to complete three repetitions in 
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randomized order of the following movements commonly adopted in occupational childcare and 

previously described in Table 3.2: heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed 

kneeling (DK), plantarflexed kneeling (PK), single arm supported kneeling (SAK), double arm 

supported kneeling (DAK), sitting on an adult sized chair (ACS), sitting on a child sized chair 

(CCS), and stooping (STP) (Figure 4.2). Based on the analysis performed in Chapter 3, stool 

sitting (STLS) had been identified as a frequently adopted posture by the childcare workers 

studied, however none of the centers included appeared to have adult-sized furniture available 

for these individuals. Therefore, this identified posture was divided into two movements, ACS 

and CCS to capture the differences in joint angles occurring when sitting on adult- and child-

sized chairs. Each trial consisted of participants stepping forward with their non-dominant leg 

prior to transitioning from standing into each pose, holding the fully flexed pose for 5 seconds, 

and transitioning back to standing based on verbal cues. Kneeling transitions were performed 

asymmetrically through a lunging posture, where the dominant knee made contact with the 

ground prior to the non-dominant knee. For supported kneeling trials, the supporting hand was 

placed on the ground below the shoulder only once individuals had achieved a kneeling posture. 

Participants were free to take any length of rest period between trials as they deemed necessary. 

Data were collected simultaneously for both systems during all motion trials 
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Figure 4.2 Childcare-inspired postures performed in this study (clockwise from top left): heels up squatting (HS), flatfoot 

squatting (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), stooping (STP), sitting on a child sized chair (CCS), 

sitting on an adult sized chair (ACS), double arm supported kneeling (DAK), and single arm supported kneeling (SAK). 

4.7.1.Data Analysis 

All optical motion capture data were filtered using a dual pass, second order Butterworth filter 

with a cutoff frequency of 6Hz (Longpré, Acker, & Maly, 2015; Winter, 2009). Missing data 

resulting from marker occlusion (where no more than 0.5 seconds of data were missing) were 

interpolated using cubic spline interpolation (Visual3D, v.6, C-Motion, Inc., Germantown, MD, 

USA) and any trial with periods of marker occlusion >25 frames were excluded from further 

analysis. Subsequently, segmental coordinate systems were constructed with axial definitions as 

outlined in Table A.1 and ankle, knee, and hip joint angles were calculated following Cardan Z-

X-Y sequences corresponding to flexion-extension, ab/adduction, and internal/external rotation 

anatomical axes about each joint (Winter, 2009; Wu & Cavanagh, 1995b; Wu et al., 2002). All 

angles were calculated with the coordinates of the distal segment and resolved into the proximal 

segments’ coordinate systems. The virtual pelvis and foot segments were selected when 

calculating the hip and ankle angles respectively (Table A.1). Flexion/extension angles 

calculated for all joints across all trials were exported to be compared offline to those estimated 

based on the inertial sensor data (Matlab 9.9, The Mathworks, Release R2020b, Natick, MA, 

USA). 
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The CSKA and ISSA algorithms were implemented in Python (Python 3.6, Python Software 

Foundation, https://www.python.org/). Gravitational vectors were defined based on the 5s static 

standing trial while the joint position and joint center of rotation vectors for each sensor and each 

joint were calculated based on a combination of the functional knee and hip movements as well 

as data from a single 10m gait trial. For the ankle and hip, sensor data from a stooping trial was 

added to the calibration data. These movements ensured motion about all degrees of freedom of 

the joint, however could not be considered completely random as those included by Seel et al. 

(Seel et al., 2012). For the ankle, a plantarflexed kneeling trial was selected for verification 

during the iterative process of solving for the joint axis and center of rotation, while for the hip a 

double arm supported kneeling trial was selected. Once the j and o vectors, representing the joint 

axis and center of rotation, had been calculated, they were then used to rotate each sensor’s 

gyroscope and accelerometer data into the joint CSs in order to solve for joint flexion-extension 

at the ankle, knee, and hip for each motion trial. For the knee, angle estimates were calculated 

based on the methods detailed in Subsection 4.3. For the ankle and hip, flexion-extension angles 

obtained using the complementary filter proposed by Seel et al. (2012) as presented in eq. (4.26) 

and eq. (4.27) were calculated for initial validation, and subsequently these angles were 

calculated based on the methods detailed in Subsection 4.6, using the complementary filters here 

proposed through eq. (4.40) and eq. (4.41) for the ankle, and eq. (4.42) for the hip. Ankle, knee, 

and hip flexion-extension angles were subsequently exported for comparison with the optical-

based joint angle estimates.  

Joint angle data from both the IMU- and optical-based systems were zeroed to the first frame 

of data for each trial, during which the participant stood upright prior to commencing the motion, 

and subsequently normalized to 101 points prior to comparison. For each motion and each joint, 

the IMU-based flexion-extension angles were evaluated through the following parameters: the 

mean (mean of the absolute value of optical signal – IMU signal), standard deviation (SD), and 

the standard error of the mean (SEM; SD/√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑀𝑈 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) for (i) the difference in 

range of motion (RoM; maximal – minimal joint angle) and (ii) the error between protocols (the 

grand mean error), both expressed in degrees, over all participants. Root mean squared error 

(RMSE) as well as percent mean error (PME, grand mean error/ Optical RoM) were also 

calculated for all motion trials in order to compare results with those previously reported. 
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Participant means across the 3 trials per motion were calculated for all analysis values prior to 

calculating group means for each posture and joint.  

Additionally, Pearson correlation coefficients (R) were computed between the time 

normalized joint angles estimated through the CSKA and ISSA algorithms and the optical 

motion capture protocols by joint and by trial and averaged across trials per participant for each 

of the nine movements and three joints separately prior to calculating group means for each 

posture and joint. Correlation coefficient strengths were interpreted using the following criteria: 

0.00-0.09 (none), 0.10-0.29 (weak), 0.30-0.59 (moderate), and 0.60-1.00 (strong) (Cohen, 

Cohen, West, & Aiken, 2003). 

4.7.2.Statistical Analyses 

In order to assess the presence of any potential differences in joint angle accuracies between the 

right and left ankle, knee, and hip joints as well as between postures, statistical analyses were 

performed using two-way mixed model analyses of variance (ANOVAs) (pose (9) × side (2)) on 

the participant mean Pearson’s correlation coefficients and RMSE values (a total of 6 ANOVAs 

were therefore run: 3 joints x 2 measures). An alpha level of 0.016 (0.05/3) was used to 

determine statistical significance for main effects and interactions following a Bonferroni p-

value significance correction adjusting for the tests conducted on the three joints of each leg. In 

cases where a significant main effect was detected, a post-hoc Tukey test was performed in order 

to determine significant differences. All statistical analyses were completed using Matlab 9.9 

(The Mathworks, Release R2020b, Natick, MA, USA). 

4.8.  Results 

All results here presented represent a comparison of flexion-extension kinematics estimated for 

the right leg only, while results for the left leg can be found in Appendix C. Statistical analyses 

between legs revealed no significant differences between the left and right side for the hip and 

knee, however significant differences were found in the Pearson’s correlation coefficient and 

RMSE values at the ankle, signifying stronger correlations between the IMU and optical methods 

for the right side than the left, and higher RMSE values on the left side than the right. While 

these results were found to be significantly different, the mean differences between left and right 
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RMSEs were found to be 4.49°, a difference which when interpreted within the accuracy of the 

methods presented is not believed to be clinically meaningful in the analysis of high flexion 

postures. 

Representative kinematic results estimated using the SJA and ISSA algorithms with IMU data as 

well as traditional optical-based measures for each of the nine childcare-inspired postures for one 

participant are shown for the ankle in Figure 4.3 and Figure 4.4 respectively and for the hip in 

Figure 4.6 and Figure 4.7 respectively. Representative kinematic results for the knee estimated 

using the CSKA algorithm as well as optical-based motion capture measures for each of the nine 

childcare-inspired postures can be seen in Figure 4.5. Additionally, given that the CSKA 

algorithm has previously been validated in gait by Küderle et al. (2018), the performance of the 

current implementation is also demonstrated in gait across these figures as well as in the tabular 

results presented later in this Subsection. 

 

Figure 4.3 Estimated right ankle joint angle data for a representative participant based on IMU and optical motion capture data. 

IMU estimates were obtained using the SJA algorithm. Each of the nine childcare-inspired postures are represented as a 

percentage of the motion trial, while the gait trial is displayed over time, given that the optical system could only capture a 

portion of the strides completed.  
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Figure 4.4 Estimated right ankle joint angle data for a representative participant based on IMU and optical motion capture data. 

IMU estimates were obtained using the ISSA algorithm. Each of the nine childcare-inspired postures are represented as a 

percentage of the motion trial, while the gait trial is displayed over time, given the optical system could only capture a portion of 

the strides completed. 

 

Figure 4.5 Estimated right knee joint angle data for a representative participant based on IMU and optical motion capture data. 

IMU estimates were obtained using the CSKA algorithm. Each of the nine childcare-inspired postures are represented as a 

percentage of the motion trial, while the gait trial is displayed over time, given the optical system could only capture a portion of 

the strides completed.  
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Figure 4.6 Estimated right hip joint angle data for a representative participant based on IMU and optical motion capture data. 

IMU estimates were obtained using the SJA algorithm. Each of the nine childcare-inspired postures are represented as a 

percentage of the motion trial, while the gait trial is displayed over time, given the optical system could only capture a portion of 

the strides completed. 

 

Figure 4.7 Estimated right hip joint angle data for a representative participant based on IMU and optical motion capture data. 

IMU estimates were obtained using the ISSA algorithm. Each of the nine childcare-inspired postures are represented as a 

percentage of the motion trial, while the gait trial is displayed over time, given the optical system could only capture a portion of 

the strides completed. 
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Pearson’s correlation coefficients describing the strength of the linear relationship between 

the flexion-extension kinematics calculated through conventional laboratory-based optical 

motion capture and CSKA (knee) and ISSA (hip and ankle) algorithms based on IMU data for all 

participants can be seen in a box-and-whisker plot (Figure 4.8) for all childcare-inspired 

postures. Any trial in which occlusion of the optical motion capture markers occurred for greater 

than 25 frames was excluded from comparisons, resulting in a varying number of participants 

being included in the comparisons for each motion and each joint. For the ankle, 27, 28, 39, 38, 

40, 36, 42, 39, 31, and 42 participants were compared; for the knee, 38, 39, 47, 47, 45, 46, 47, 

46, 39, and 43 participants were compared; and for the hip, 36, 19, 48, 47, 45, 45, 47, 45, 40, and 

46 participants were compared, all for ACS, CCS, DK, PK, FS, HS, DAK, SAK, STP and Gait 

respectively. The particularly low number of participants included in the analysis of the CCS 

posture resulted from significant occlusion of the pelvis marker cluster due to the back of the 

child sized chair. It is additionally believed that the limited capture volume of the optical motion 

capture system may have caused many of the occlusions which resulted in participants being 

excluded from comparisons.  

For the childcare-inspired postures analyzed, all median R values represented strong 

correlations across all joints, save the median value for the ankle angle during CCS which 

represented moderate correlations. All values falling within 3 times the interquartile range of the 

25th percentile (captured within the whiskers of the plot, Figure 4.8) represented moderate (ankle 

CCS, DK, DAK, and SAK ≥ 0.36 and hip CCS and HS ≥ 0.55) or strong correlations. The mean, 

SD, and SEM of these Pearson correlation coefficients across all participants can be seen in 

Table 4.2. 

Table 4.2 Relationship between IMU- and optical motion capture-based right lower limb joint angles through Pearson’s 

correlation coefficients. IMU-based joint angles were estimated using the CSKA and ISSA algorithm. Correlation coefficients 

have been presented for the 9 childcare-inspired postures (ACS, CCS, DK, PK, FS, HS, DAK, SAK, and STP) as well as in gait. 

  ACS CCS DK PK FS HS DAK SAK STP Gait 

Ankle 

Mean 0.935 0.545 0.756 0.976 0.885 0.896 0.801 0.751 0.881 0.523 

SD 0.135 0.296 0.163 0.040 0.266 0.111 0.333 0.227 0.099 0.468 

SEM 0.026 0.056 0.026 0.006 0.042 0.019 0.051 0.036 0.018 0.072 

Knee 

Mean 0.998 0.867 0.986 0.995 0.985 0.915 0.987 0.991 0.810 0.807 

SD 0.004 0.084 0.033 0.012 0.040 0.179 0.018 0.030 0.386 0.306 

SEM 0.001 0.013 0.005 0.002 0.006 0.026 0.003 0.004 0.062 0.047 

Hip 

Mean 0.931 0.753 0.872 0.925 0.960 0.893 0.703 0.797 0.834 0.522 

SD 0.163 0.203 0.200 0.089 0.099 0.196 0.534 0.435 0.361 0.254 

SEM 0.027 0.047 0.029 0.013 0.015 0.029 0.078 0.065 0.057 0.037 
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Figure 4.8 Box-and-whiskers plots for the Pearson’s correlation coefficients (R) for the right ankle, knee, and hip flexion-

extension angles representing the linear correlation between the IMU- and optical motion capture-based protocols.  

Differences in RoM and grand mean error between the joint flexion-extension angles 

calculated through both protocols expressed through the mean, SD, and SEM, as well as RMSE 

and PME can be seen in Table 4.3 for all childcare-inspired postures as well as in gait. 

Comparing results across the nine childcare-inspired postures and gait, the mean differences in 

RoM values between protocols were found to be 2.90° ± 8.74° for the ankle, 2.36° ± 5.56° for 

the knee, and 5.59° ± 15.60° for the hip. Mean RMSE between protocols were found to be 6.61° 

± 2.96° for the ankle, 7.55° ± 5.82° for the knee, and 14.64° ± 6.73° for the hip. The greatest 

errors were observed in gait, followed by child chair sitting and both supported and unsupported 

kneeling. Given the magnitudes of the flexion-extension angles observed in the studied postures, 

these errors represent 18.48 ± 13.99%, 5.55 ± 4.45%, and 15.03 ± 5.87% differences between 

protocols across all postures for the ankle, knee, and hip respectively.  

Statistical analyses revealed main effects for pose at all joints. Child chair sitting was found 

to have the lowest R values at the ankle and knee and the highest RMSE values for the knee and 

hip. For the hip, both the single and double arm supported kneeling postures had the lowest R 

values. For the ankle, the highest RMSE values were observed in plantarflexed kneeling and in 

child chair sitting. 
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Table 4.3 Differences between IMU- and optical motion capture-based right lower limb joint angles. IMU-based joint angles were estimated using the CSKA and ISSA algorithms. 

Differences between IMU- and optical-based angles were quantified through the difference in the range of motion, the grand mean error, the Root Mean Squared error, and the 

percent mean error. The differences are presented for 9 childcare-inspired postures (ACS, CCS, DK, PK, FS, HS, DAK, SAK, and STP). All values are expressed in degrees unless 

otherwise stated.  

   ACS CCS DK PK FS HS DAK SAK STP Gait 

Ankle 

Difference in RoM 

Error Mean 2.202 2.847 0.385 4.811 0.308 0.528 2.882 1.442 0.283 13.310 

Error SD 3.032 6.180 4.280 9.391 4.667 2.878 10.416 4.699 4.120 37.754 

Error SEM 0.584 1.168 0.685 1.523 0.738 0.480 1.607 0.752 0.740 5.826 

Grand Mean Error 

Error Mean 2.186 6.709 5.395 6.853 4.035 3.664 4.978 6.224 3.302 10.685 

Error SD 1.417 4.493 3.503 4.280 2.854 2.617 3.313 3.791 2.196 8.455 

Error SEM 0.141 0.447 0.349 0.426 0.284 0.260 0.330 0.377 0.219 0.841 

Root Mean Squared Error  2.628 8.140 6.479 8.140 4.976 4.530 6.009 7.338 3.987 13.860 

Percent Mean Error   9% 22% 15% 8% 10% 9% 57% 18% 11% 25% 

Knee 

Difference in RoM 

Error Mean 1.447 3.683 0.751 0.518 0.779 8.086 0.221 0.331 2.295 5.448 

Error SD 3.201 5.533 2.901 4.416 2.292 16.967 3.794 2.851 7.935 5.692 

Error SEM 0.519 0.886 0.423 0.644 0.342 2.502 0.553 0.420 1.271 0.868 

Grand Mean Error 

Error Mean 1.975 14.046 4.453 3.348 3.431 6.973 2.701 2.892 4.024 11.290 

Error SD 1.202 17.297 4.292 2.900 3.020 6.232 2.216 2.416 3.317 6.546 

Error SEM 0.120 1.721 0.427 0.289 0.301 0.620 0.220 0.240 0.330 0.651 

Root Mean Squared Error  2.339 22.394 6.343 4.476 4.636 9.377 3.552 3.799 5.231 13.332 

Percent Mean Error   2% 13% 3% 2% 3% 6% 2% 2% 7% 15% 

Hip 

Difference in RoM 

Error Mean 1.774 0.334 9.497 6.414 4.996 6.170 2.319 1.837 10.444 12.115 

Error SD 13.178 31.543 15.912 22.743 9.760 12.678 9.199 9.074 24.008 7.932 

Error SEM 2.196 7.236 2.297 3.317 1.455 1.890 1.342 1.353 3.796 1.169 

Grand Mean Error 

Error Mean 6.997 24.891 8.428 9.040 7.671 8.035 17.071 12.958 11.212 10.020 

Error SD 5.687 19.283 6.025 7.128 5.735 6.390 12.449 9.429 9.084 6.255 

Error SEM 0.566 1.919 0.599 0.709 0.571 0.636 1.239 0.938 0.904 0.622 

Root Mean Squared Error  9.098 31.862 10.408 11.548 9.626 10.287 21.260 16.056 14.455 11.821 

Percent Mean Error   7% 24% 15% 12% 8% 9% 20% 16% 16% 24% 
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4.9.  Discussion 

In this study, joint angles for the ankle, knee, and hip were estimated based on IMU data using 

the CSKA and ISSA algorithms. For each joint, the joint axis and center of rotation were found 

based on calibration motions involving individual isolated movements of the hip and knee as 

well as a brief static pose and a walking bout. When compared to the gold-standard laboratory-

based methods of measuring joint angles, the results here presented demonstrate strong 

similarities when estimating joint angles during postures of high knee flexion which are 

frequently adopted in occupational childcare.  

The strongest agreement in our results were seen consistently in the angles calculated for the 

knee joint. This is no surprise given that the motion of the knee occurs primarily about the 

flexion-extension and thus the biomechanical model applied best matched the ground-truth for 

this joint. For the ankle and hip, previous results have demonstrated strong agreement between 

the algorithm proposed by Seel et al.(2014) and optical motion capture when using a series of 

functional calibration motions. Seel et al (2014) reported RMSE values < 2.61° at the ankle 

during gait while Lebleu et al (2020) reported RMSE values between 2.0°± 1.3° and 2.9°± 1.4° 

for the ankle and between 2.1°± 1.3° and 2.5°± 1.7° for the hip and differences in RoM between 

0.9°± 0.8° and 1.6°± 1.1° at the ankle and 1.0°± 1.0° and 1.1°± 0.7° at the hip during overground 

and stair gait. However it is noted that few validations of the proposed algorithm in spherical 

joints exist, and these often compare angles during gait alone (Lebleu et al., 2020; Olsson et al., 

2019; Seel et al., 2014). When walking, healthy human ankle and hip joints move primarily in 

flexion-extension, and therefore perform most similarly to a hinge joint. It is possible that in 

testing the performance of this algorithm in high flexion movements, the accuracy of estimates 

decreased given that a greater portion of the motion measured by the sensors now occurred about 

either the abduction-adduction or internal-external rotation axes. Furthermore, it is possible that 

in developing the proposed ISSA complementary filters for the high knee flexion postures, the 

accuracy of angle estimates during gait, when the majority of motion does occur about the 

flexion-extension axis, might suffer. It is additionally observed that for the ankle and hip, greater 

errors occurred in postures which elicited the highest ranges of motion (notably plantarflexed 

kneeling for the ankle and the supported kneeling postures for the hip). Future work should seek 
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to better understand why postures with increased ranges of motion result in greater inaccuracies 

between inertial- and optical-based methods.  

While successful sensor to segment calibrations and definitions of the joint axis and joint 

center of rotation in the local sensor CS was achieved for all joints across all participants, it must 

be noted that opposite signed solutions were at times observed in the subsequent calculations of 

joint angles for the ankle and hip. Particularly, these opposite signed solutions were observed to 

occur during the supported kneeling trials. These trials were not omitted from the presented 

means and therefore are likely to be partially responsible for the increased errors observed in 

these spherical joints. Future work should therefore focus on determining why successfully 

defined j and o vectors might yield opposite signed joint angles and how this might be mitigated 

moving forward. 

Using the introduced iterative processes and complementary filters, it could be shown that 

the proposed modification to the algorithm by Seel et al. (2014) for spherical joints reduced the 

likelihood of failed optimizations, resulting in the incorrect calculation of the joint axis and 

center of rotation. As explained above, this method does continue to show issues with 

computational stability for certain movements, however these issues appeared to occur less 

frequently when compared to the implementation of the SJA algorithm for the childcare-inspired 

postures performed in this study. It must be noted that the ISSA method does introduce 

significant computational overhead when compared to the SJA given the iterative optimization 

process. However, provided the calculation of joint angles using either the SJA or ISSA 

algorithms occurs offline rather than in real time, it is believed that the additional time for 

computation is justified due to the improved accuracy and consistency in defining the joint axis 

and center of rotations. Future work could include a mathematical analysis of the algorithm 

seeking to quantify the speed of convergence and the numerical stability between methods. 

Given the strong correlation between the joint flexion-extension angles calculated using the 

CSKA and ISSA for the knee, ankle, and hip joints respectively, these algorithms appear the 

most suited for the analysis of high flexion postures.  

The calibration motions performed in this study must also here be discussed. Seel et al. 

initially proposed the use of arbitrary motions about each joint, and recently have proposed 
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methods for the autocalibration of the SJA algorithm (Graurock, Schauer, & Seel, 2016; Molnar 

et al., 2018; Seel et al., 2012). In order for any inertial-based motion capture system to be 

successful in real-world settings, the calibration method must be simple and easy to perform, 

even for individuals with movement impairments. The calibration movements employed in this 

study included isolated flexion-extension about the knee and rotations in all directions about the 

hip. These motions, while not hard to perform, do require an individual performing them to 

balance on one leg, and therefor may prove impractical for all populations. However, the 

calibration based on simpler movements, such as walking for example, may not prove sufficient 

when seeking to calibrate a system for measurements in high flexion postures. It may be possible 

to perform similar motions to those employed in this study in seated or reclined postures, and to 

subsequently replace the postures used during the iterative optimization with postures that mimic 

the same ranges of motion yet do not require participants to descend onto the ground, perhaps 

including a toe touch and raising onto one’s toes as alternatives. Future investigations could 

therefore investigate the use of alternative calibration movements and their effects on the 

accuracy of sensor to segment calibrations. It is noted that the total duration of the calibration 

postures required by the ISSA algorithm in its current implementation was no more than two to 

three minutes, and these calibration motions could be performed in any environment by an able-

bodied individual. Therefore, it is believed that the proposed calibration motions would not pose 

a roadblock for implementation given the intended application for this system lies in the 

measurement of high flexion postures within occupational settings, and that the intended 

population therefore are capable and familiar with the required motions.  

Based on previously published findings, raw IMU data were filtered in an effort to reduce 

high frequency noise and isolated motions of the upper and lower legs were collected as 

calibration trials prior to input to the CSKA and ISSA algorithms (Küderle et al., 2018). 

Compared to the literature, the RMSE values reported for gait in this study are higher than those 

previously reported (between 3.3ᵒ and 8ᵒ) (Küderle et al., 2018; Seel et al., 2012) however the 

mean RMSE values for the ankle and knee for the nine childcare-inspired postures fall within 

this previously reported range. It is believed that multiple factors, which will here be discussed, 

may have influenced the quality of the optical and inertial motion data, and resulted in reduced 

accuracies. The limited capture volume of the optical motion capture system, which given the 18 
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cameras utilized in this study was in fact quite large compared to some motion-capture spaces, 

resulted in only a brief portion of gait trials being recorded by the optical system. The capture 

volume additionally led to difficulty in participants performing the seated motions while 

maintaining full visibility of the marker clusters, particularly those on the feet and the pelvis. A 

balance must be struck when working with optical motion capture systems between ensuring a 

sufficiently large capture volume and increasing the visibility of a marker cluster by multiple 

cameras (Aristidou & Lasenby, 2013). However, even with a large number of cameras, instances 

of marker occlusion leading to missing data are inevitable when introducing other objects such as 

chairs into the collection volume, and therefore it is believed that the number of trials lost to 

occlusion may have affected the accuracy of results by decreasing the ultimate sample size 

analyzed, especially in the case of the child chair sitting trials. Secondly, while mounting the 

optical motion capture clusters to the lateral aspects of the IMUs creates an equality in the soft-

tissue artefact experienced by both systems, it may also have introduced noise into the optical 

measurements. However, in order to mitigate this potential noise, optical clusters were attached 

to the IMUs with double sided tape and also secured to the segment using elasticated Velcro® 

straps. Additionally, all data were filtered to eliminate any high frequency noise contamination. 

High knee flexion postures are known to result in unique soft tissue deformation in comparison 

to postures of low-to-moderate flexion given the contact which occurs between the thigh and calf 

in this range (Kingston & Acker, 2018). While the quantification of this soft tissue artefact is not 

within the scope of this study, it is noted that the differences in RoMs between methods were 

consistently < 10° with mean values < 5° for all joints, leading to the conclusion that the IMU 

based joint angle calculations are no more affected by soft tissue artefact than the optical-based 

motion capture system. 

Finally, the comparison of flexion-extension angle estimates based on inertial motion capture 

to those measured by optical motion capture as a ground truth must be addressed. While optical-

based motion capture methods have been the gold-standard for the kinematic measurement of 

human motion for over 40 years, caution must be exercised in such comparisons given the 

fundamental differences in the definition of anatomical frames based on positions vs. motion (in 

the cases of optical vs. inertial measures). While standard practices have been established for the 

definition of anatomical coordinate systems based on identifiable bony prominences on the body 
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(Wu & Cavanagh, 1995b; Wu et al., 2002, 2005), differences in the definitions of anatomical 

frames have been shown to occur based on the method used for the localization of anatomical 

landmarks as well as the use of landmarks alone or approaches which include functional 

calibration movements (Robinson & Vanrenterghem, 2012). Given these differences which can 

occur within optical motion capture for which detailed collection methods have been established, 

it is no surprise that the manner in which these anatomical frames are defined between optical 

and inertial systems may lead to misalignment in the anatomical frames, resulting in perceived 

errors within estimated joint angles. It is additionally noted that despite best practices, optical 

motion capture in no way can be believed to yield ground truth data such as that which might be 

obtained through stereoradiography or dual-plane fluoroscopy (Fiorentino et al., 2017). 

4.10.  Conclusions 

In summary, the estimation of joint kinematics through the IMU-based CSKA and ISSA 

algorithms present a viable means of measuring ankle, knee, and hip flexion-extension angles 

and may be applied to their measurement within occupational and home settings. The proposed 

ISSA modifications to the SJA algorithm appear to improve the stability of the sensor to segment 

calibration for spherical joints. This study demonstrates algorithm performance to be similar in 

estimating lower-limb joint flexion-extension angles when compared with optical-motion 

capture-based methods to those previous reported during gait when estimating these angles in 

high knee flexion trials. The calibration movements used in this study are believed to be 

movements which could easily be performed by individuals accustomed to performing high 

flexion movements.  

The methods here presented will support the measurement of high flexion postural adoption 

within occupational settings. Given the association between postures of high knee flexion and the 

initiation and progression of knee OA, the ability to measure these postures as they occur 

naturally will enable the development of guidelines driven by objective exposure data. As 

described, the computational requirements of the proposed system may be a limitation to its 

implementation in remote settings, however, so long as the data can be processed off-line 

following collections, this should not present a barrier to its implementation. Further testing 

under real-world conditions should be performed prior to collections within home and 
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occupational settings, along with the development of alternative calibration procedures should 

the system be used to analyze individuals with limited or altered mobility.  
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Chapter 5  

 

A Multi-Dimensional Dynamic Time 

Warping Distance-Based Framework 

for the Recognition of High Knee 

Flexion Postures in Inertial Sensor 

Data 

5.1.  Introduction 

Osteoarthritis of the knee is a debilitating disorder of increasing prevalence, with repetitive 

cyclic or prolonged joint loading having been associated with the initiation and progression of 

knee joint tissue degradation leading to OA (Anderson & Felson, 1988; Felson, 2013; Parry, 

Ogollah, & Peat, 2019; Yucesoy, Charles, Baker, & Burchfiel, 2015). These loading patterns are 

often observed during high knee flexion activities (such as kneeling and squatting), where the 

knee flexion angle exceeds 120ᵒ. Despite their association with increased risk of musculoskeletal 

injuries, workers across many occupations are often required to perform repetitive and sustained 

high knee flexion motions for a significant portion of their working hours. These occupations 

further require their employees to lift and carry heavy or awkward loads which, when combined 

with high knee flexion postures, have been associated with a five-fold increase in risk of OA 

development (C. Cooper et al., 1994). While much attention has been paid to the direct costs of 
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healthcare associated with OA, work-related musculoskeletal disorders are commonly reported 

in connection with work-restrictions, time loss, and leaves which result in substantial indirect 

costs, often ignored when considering the burden of OA on society and on those living with the 

disease (Forde et al., 2002; Gupta, Hawker, Laporte, Croxford, & Coyte, 2005; W. Zhang, 

Gignac, Beaton, Tang, & Anis, 2010; X. Zhang, Xia, Dai, Sun, & Fu, 2018). 

Despite the growing incidence of knee OA worldwide and the financial burdens associated 

with this disease, methods employed for the evaluation of acute and chronic injuries resulting 

from high knee flexion exposures in occupational settings have until recently involved either 

observational or questionnaire based qualification of movement types or the use of full body 

motion capture systems within research laboratories in lieu of objective real world measures 

(Grant et al., 1995; Jensen et al., 2010; Klussmann et al., 2010; Schiphof et al., 2008; Seidler et 

al., 2008). While questionnaires present the most unobtrusive means of obtaining exposure 

related data from occupational workers, their results generally suffer from bias and show no 

criterion validity when compared to objective measures (Kwak, Proper, Hagströmer, & Sjöström, 

2011). Motion analysis laboratories in contrast offer accurate and reliable means of measuring 

kinematic variables associated with the development and progression of knee OA; however, their 

application in the study of occupation-based exposures has been limited due to their high costs, 

the time associated with setup and post-processing, and the visibility requirements of these 

optical-based systems. The increasing popularity of wearable sensors, however, provides a 

potential means of objective human mobility measurement as individuals interact with their 

surroundings in both occupational and home settings (Bauer et al., 2016; Crema et al., 2017; 

Kluge et al., 2017; Schall, Fethke, Chen, & Gerr, 2015). These wearable sensors, often composed 

of accelerometers and gyroscopes, offer a minimally intrusive means of measuring occupational 

kinematics over multiple workdays, however, the interpretation of their data as they relate to 

occupational exposures is non-trivial. Therefore, recent studies have sought to apply pattern 

recognition and machine learning algorithms in order to interpret the raw sensor data for activity 

identification and monitoring (Ditchen et al., 2015; Holtermann et al., 2020; Song et al., 2016; D. 

Yang et al., 2019; Zubair, Song, & Yoon, 2017).  

Activity classification generally involves a two-stage process wherein representative features 

are extracted from a series of sequential or overlapping time windows of sensor data and 
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subsequently input to a classification algorithm to associate each window with a specific 

movement or activity (Preece, Goulermas, Kenney, Howard, et al., 2009). The goal in deriving 

classification features from sensor-based signals is to reduce the dimensionality of the signal 

while ensuring maximum class separability, through feature complexity and robustness to 

variations over time (Phinyomark et al., 2012). Within the last fifteen years however, researchers 

have begun to investigated the potential for direct classification of time-series data (Barth et al., 

2015; Chang et al., 2016; Kaya & Gündüz-Öğüdücü, 2015; M. Kim et al., 2019; Kluge et al., 

2017). The classification of these time-series data can be performed similarly to any traditional 

classification problem, wherein the distance between two samples (now time-series curves) are 

computed and input into classification algorithm for identification.  

One challenge which must be overcome in the classification of time series data lies in the 

variability of these signals. The scale of time-domain waveforms obtained from wearable sensors 

can differ greatly depending on the signal being processed as well as on the segment to which the 

sensor is affixed. Traditionally, when classification features are calculated, these differences in 

scale are exploited as a means of group separation, such that larger scale differences would 

provide greater separability; therefore, when classifying time-domain data, amplitude 

normalization is often performed to avoid attributing a greater importance to any one signal 

while determining the distance between samples (Kaya & Gündüz-Öğüdücü, 2015; Matsuda, 

Morikuni, Imakura, Ye, & Sakurai, 2020). Additionally, recognition accuracy may be affected by 

temporal variations in movements within and between individuals, therefore, non-linear 

corrections can be applied to one or both of the signals in order to compensate for these 

variations. This process, often referred to as alignment, can be performed prior to calculating the 

distance between samples or can serve as an alternative distance metric by which the 

classification can be performed (Barth et al., 2013; Kaya & Gündüz-Öğüdücü, 2015).  

Alignment-based distance metrics for classification are typically calculated between some 

unknown signal and a previously identified signal template (Veltink et al., 1996). Examples of 

template-based Dynamic Time Warping (DTW) for classification have utilized either raw 

accelerometer or gyroscope data in applications of stride segmentation within free walking bouts 

in both healthy and clinical populations as well as in the recognition of hand gestures during 

activities of daily living. (Chang et al., 2016; Mekruksavanich et al., 2020; Qiu, Liu, et al., 2018). 
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As an expansion to this application, distance metrics can be combined across sensor axes or 

sensor types in a process known as multi-dimensional Dynamic Time Warping in order to 

increase the separability of samples thereby increasing the accuracy of calibration (Barth et al., 

2013, 2015). While these approaches have been used for the identification of activities of daily 

living such as sitting, standing, lying down, and walking (both on level ground and on stairs) 

(Mekruksavanich et al., 2020; Muscillo, Conforto, Schmid, Caselli, & D’Alessio, 2007; 

Paiyarom, Tungamchit, Keinprasit, & Kayasith, 2009), to date, no studies have sought to apply 

these template-based DTW techniques to the identification of high knee flexion postures.  

The childcare industry in particular has been shown to require its employees to adopt a wide 

variety of high knee flexion postures for significant portions of their working hours in addition to 

the frequent lifting and carrying of children, yet to our knowledge, only two studies have sought 

to apply sensor-based approaches to the analysis of knee straining postures in these individuals 

(Burford et al., 2017; Holtermann et al., 2020). Further, both Holtermann et al. (2020) and 

Burford et al. (2017) applied tools developed for the study of high knee flexion postures across 

multiple occupations and therefore neither considered high flexion postures beyond kneeling, 

squatting, and sitting, despite the variety of poses adopted when caring for children (Laudanski et 

al., 2022). Therefore, the objective of this study was to develop a sensor-based framework for the 

detection and measurement of childcare-specific postures. In order to accomplish this, we 

propose the use of a multi-dimensional Dynamic Time Warping distance-based machine learning 

algorithm, insensitive to any postural variability which might accompany the presence of load, 

such that it might ultimately be used for the continuous identification of high flexion exposures 

in childcare settings.  

5.2.  Participants and Experimental Protocol 

Details surrounding participant recruitment, instrumentation, and a portion of the experimental 

protocol have previously been described at length in Chapter 4 however will briefly be reviewed 

here. Fifty participants (18 males/32 females, height: 1.11 ± 0.83 m, mass: 73.70 ± 17.78 kg, age: 

21.14 ± 3.76 years) were recruited and instrumented with 7 wireless IMUs (Xsens MTw Awinda, 

Xsens Technology B.V., Netherlands, Gyro.: 2000 deg/s, Acc.: 16 G, sampling frequency: 60 

Hz) attached bilaterally to the superior aspect of the feet, the lateral aspect of the shanks and 
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thighs, as well as over the base of the sacrum. Following instrumentation, each participant was 

asked to completed a 5 s standing trial in addition to functional hip (isolated upper leg motion 

through a star-arc hip circumduction (Camomilla et al., 2006)) and functional knee (isolated 

cyclic flexion/extension motion of the lower leg while the upper leg was held parallel to the 

ground) motion trials. Following these calibration trials, participants completed three 10 m 

walking trials at a self-selected pace and subsequently completed three repetitions of the 

following movements commonly adopted in occupational childcare in randomized order: heels-

up squatting (HS), flatfoot squat (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), 

single arm supported kneeling (SAK), double arm supported kneeling (DAK), sitting on an adult 

sized chair (ACS), sitting on a child sized chair (CCS), stooping (STP), and standing (STD). 

Following the completion of these motions, participants performed a series of floor level motions 

including crossed leg sitting (CLS), and side sitting (SS) and side leaning (SL) to both the left 

and right. Examples of all childcare-inspired motions performed in this study can be seen in 

Figure 5.1. 

All motions save stooping and supported kneeling (SAK and DAK) were performed under 

unloaded and loaded conditions such that any altered movement mechanics associated with 

holding a load would be captured and therefore incorporated into the classification algorithm. 

Loaded conditions were designed so as to simulate the effects of carrying or interacting with a 

50th percentile child of 24 months (WHO Multicentre Growth Reference Study Group, 2006). It 

must additionally be noted that this weight exceeds previously reported lifting thresholds 

associated with the potential for increased likelihood of OA development and progression if 

lifted regularly or over extended periods of time (E. C. Lau et al., 2000). For these loaded trials, 

participants were outfitted with a sling wrap baby carrier (worn across the shoulder of the 

participant’s choosing) into which the 12 kg load was placed. A representative participant 

wearing the sling wrap baby carrier can be seen in Figure 5.2. The baby carrier was used in order 

to ensure the weight was held close to the body as one would hold a child rather than being held 

away from the body as one might hold an object to be lifted. Participants were instructed to hold 

the weight in the sling as though they were holding a child rather than allowing the weight to be 

supported by the sling.  
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Figure 5.1 Childcare-inspired motions performed in this study (by row): heels-up squatting (HS), flatfoot squatting (FS), 

dorsiflexed kneeling (DK), plantarflexed kneeling (PK), standing (STD), single arm supported kneeling (SAK), double arm 

supported kneeling (DAK), sitting on an adult sized chair (ACS), sitting on a child sized chair (CCS), stooping (STP),crossed leg 

sitting (CLS), side sitting (SS, displayed to the left), and side leaning (SL, displayed to the left). SS and SL were additionally 

performed to the participant’s right. 

Unloaded and loaded trials were block randomized in order to minimize the number of 

transitions into and out of the sling wrap baby carrier. A minimum of three blocks of each 

condition were performed, and participants were free to take any length of rest period between 

trials as they deemed necessary or at any time to request an end to the current loaded lifting 

block. The unloaded and loaded blocks were repeated until a minimum of 3 successful trials per 

motion and condition had been completed. For all experimental protocol here described, 

approval from the University of Waterloo Research Ethics Board and participants’ informed 

consent were obtained.  
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Figure 5.2 Participant instrumented with the sling wrap baby carrier and the 12 kg load. Participants were given the choice across 

which shoulder the baby carrier would be worn and instructed to hold the weight as if they were holding a child rather than 

allowing it to be supported by the carrier.  

5.3.  Sensor Signal Processing and Data Labelling 

Raw IMU data were processed using the CSKA and ISSA algorithms presented in Chapter 4 in 

order to calculate flexion-extension angles for the ankle, knee, and hip for all motions and load 

conditions. Representative angles for one participant during a heels-up squat prior to any data 

segmentation can be seen in Figure 5.3. It is noted that the angle estimates from the right and left 

joints are oppositely signed given that each sensor was mounted in the same orientation, 

regardless of the leg to which it was attached. Therefore, if the local y axis was most closely 

aligned with gravity and pointed superiorly when positive, the local +x and +z axes would be 

oppositely signed between the left and right legs. The start and end point of each motion were 

identified manually based on the right knee flexion-extension angles and applied to all joints. 

Given that each trial started and ended with a static standing period, the start of each motion was 

identified as closely as possible to the last frame of standing prior to any motion commencing. 

Similarly, the end of each motion was identified as closely as possible to the first frame of 

standing following the completion of any motion associated with the trial. For the squatting 

trials, participants were instructed to take a step forward before beginning their squat and 



102 

 

 

similarly to take a step backward following the completion of ascent from the squat. These steps 

were excluded when segmenting the trials. 

 

Figure 5.3 Typical joint angle signals for one heels-up squatting motion for the left and right hips, knees, and ankles. Flexion/ 

dorsiflexion is positive for the right ankle, the left knee, and the right hip, and negative for the opposite limb.  

For each walking trial, three separate step-cycles were manually identified, again based on 

the angles for the right knee. The start of each step-cycle was identified as closely as possible to 

the moment of maximum knee extension while the end of the step-cycle was identified as the 

next instance of maximum knee extension given the cyclic nature of walking.  

Each trial was labeled according to the motion performed. Loaded and unloaded trials were 

not labeled differently in order to create a classifier which would correctly identify postures 

regardless of if they were performed with or without a load. DAK and SAK trials were combined 

for classification and simply labeled as supported kneeling (SK) while all SS and SL motions 

were labeled as side sitting (SS) given the similarity in lower limb joint kinematics observed 

between movements. 
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5.4.  Multi-Dimensional Dynamic Time Warping 

Distance-Based k-Nearest Neighbour Classifier 

The following section will describe how different aspects of Dynamic Time Warping can be 

combined and serve as the basis for a k-Nearest Neighbour classification model for the robust 

identification of several childcare-inspired motions.  

5.4.1.Multi-Dimensional Dynamic Time Warping as a Distance 

Metric for Movement Classification 

kNN classification algorithms have been used in many previous activity classification studies 

based on wearable sensor signals (Altun & Barshan, 2010; Bao & Intille, 2004; Lin et al., 2016; 

Preece, Goulermas, Kenney, Howard, et al., 2009; Sinha et al., 2021) due to their computational 

simplicity. They utilize specific distance metrics by which the distances between samples can be 

calculated in order to determine the closest motion to an unknown sample within the 

multidimensional feature space. This feature space must therefore be populated with a series of 

labeled datapoints (often referred to as model building or training datapoints) each corresponding 

to a specific motion. Most commonly, Euclidian distances are used for human motion 

classification due to the similarity of scales of all input feature sets (Von Tscharner & Goepfert, 

2003); however, this metric is best suited for a feature based classification rather than time-series 

approaches. Unlike Euclidean distances, Dynamic Time Warping is well suited to the 

comparison and distinction between time-series data as it considers the entire trajectory of 

signals while compensating for temporal variations (Barth et al., 2013; Kaya & Gündüz-

Öğüdücü, 2015). Multi-dimensional Dynamic Time Warping (mDTW), an extension of the 

traditional DTW approach, allows for the combination of DTW based distances across multiple 

inputs. We therefore propose the use of mDTW distances as inputs to a k-Nearest Neighbour 

classifier in order to identify childcare-inspired motions using a combination of lower limb 

flexion-extension angles calculated based on inertial sensor data. The workflow for this proposed 

mDTW kNN algorithm can be found in Figure 5.4.  
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Figure 5.4 Signal processing workflow for the mDTW kNN algorithm, related to Subsections 5.4.3 – 5.4.5. The DTW distances 

for each joint were calculated between a single normalized trial (referred to as a movement sequence) and the normalized 

templates included in the developed model. A smaller distance between the sequence and template would represent greater 

similarity between waveforms. Once each movement sequence had been compared to all templates for the corresponding joint, 

the DTW distances were combined across joints using custom weighting factors such that the movement class would ultimately 

be determined based on the mDTW distance. 

5.4.2.Division of Data for Model Development, Testing, and 

Validation 

Movement trials from a subset of 35 randomly selected participants were combined to create the 

algorithm building dataset (for development and testing) while the remaining 15 participants’ 

data were withheld for model validation.  

5.4.3.Movement Sequences and Template Generation 

A series of movement sequences 𝑆𝑡𝑟𝑖𝑎𝑙 were created such that each contained data from a single 

trial from which the childcare-inspired motion would be segmented. Given that each motion was 

collected in isolation, each 𝑆𝑡𝑟𝑖𝑎𝑙 represents only one motion type, and consists of left and right 

ankle, knee, and hip flexion-extension angle data, each of length N.  

 

𝑆𝑡𝑟𝑖𝑎𝑙 = (𝑠0 … 𝑠𝑁−1) =  

(

 
 

𝑠𝑅𝐾𝑛𝑒𝑒,0 𝑠𝑅𝐾𝑛𝑒𝑒,1 ⋯
𝑠𝐿𝐾𝑛𝑒𝑒,0 𝑠𝐿𝐾𝑛𝑒𝑒,1 ⋯
𝑠𝑅𝐴𝑛𝑘𝑙𝑒,0

⋮
𝑠𝐿𝐻𝑖𝑝,0

𝑠𝑅𝐴𝑛𝑘𝑙𝑒,1

⋮
𝑠𝐿𝐻𝑖𝑝,1

⋯
⋱
⋯

   

𝑠𝑅𝐾𝑛𝑒𝑒,𝑁−1

𝑠𝐿𝐾𝑛𝑒𝑒,𝑁−1
𝑠𝑅𝐴𝑛𝑘𝑙𝑒,𝑁−1

⋮
𝑠𝐿𝐻𝑖𝑝,𝑁−1 )

 
 

 (5.1) 
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A series of templates T could then be generated from the 35 participants’ motion data 

through the manual segmentation explained in Subsection 5.3 in order to populate the kNN 

labeled feature space. The dataset here analyzed provided 1911 templates across the 11 

childcare-inspired movements (reduced from the 13 movements presented in Subsection 5.2 

following grouping of the supported kneeling movements together and side-sitting and side-

leaning movements together) and gait trials, with each template consisting of the left and right 

ankle, knee, and hip flexion-extension angle data. All segmented trials were subsequently 

linearly interpolated to a length of 101 samples for each joint angle separately. All movement 

sequences which were not used for templating were additionally normalized through linear 

interpolation to a length of 101 samples, however no segmentation was performed on these data. 

All segmented and unsegmented data were scale normalized to a range of [-1, 1]. A 

representative movement sequence and template based on the right knee angle during HS can be 

seen in Figure 5.5. The variability between templates for a representative movement class can be 

seen in Figure 5.6. The movement sequences and templates for all joints for a heels-up squatting 

trial can be found in Figure D.1 - Figure D.6 as well as those for a walking bout which can be 

found in Figure E.1 - Figure E.6. 

 

Figure 5.5 A representative unnormalized movement sequence SRKnee for the flexion angle of the right knee during a heels-up 

squatting motion trial (A) along with the corresponding heels-up squat template TRKnee generated from this sequence for the right 

knee (B). 
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Figure 5.6 Templates generated for heels-up squatting based on the right knee across all trials and participants. Mean and 

standard deviation curves have been overlayed in red, demonstrating the variability within templates representing the speed of 

ascent and descent as well as the depth of posture achieved by participants within a single movement for this study’s population. 

5.4.4.Calculation of the Multi-Dimensional Dynamic Time 

Warping Distance  

For each comparison between a given movement sequence S and a template T based on data 

from a single joint, a measure of distance, D, was calculated based on similarities between the 

waveforms (Paliwal, Agarwal, & Sinha, 1982; Sakoe & Chiba, 1978; Theodoridis & 

Koutroumbas, 2003). D is therefore calculated as a M × N matrix, where M is the length of the 

template T (representing the rows), and N is the length of the movement sequence S (representing 

the columns). Given that both the templates and the sequences were normalized to 101 points, 

each D is therefore calculated as a 101 × 101 matrix. Each element of D is calculated as the 

distance between each combination of elements from T and S using the Euclidean norm such 

that: 

 𝐷(𝑚, 𝑛) = √(𝑡𝑚 − 𝑠𝑛)2 ∀ 𝑚 ∈  {0, … ,𝑀 − 1}, 𝑛 ∈  {0,… ,𝑁 − 1}, (5.2) 
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𝐷 = 

[
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.

𝑑𝑀𝑁]
 
 
 
 

.  

When tm and sn are similar, the local value of d would be small, representing a strong similarity 

between measures, while large values of d represent less similarity between measures. The top 

row of D represents the distance between the beginning of the template T and the complete 

sequence S while the bottom row represents the distance between the end of the template and S. 

The ultimate DTW distance can then be calculated based on a path through the matrix D which is 

parameterized by two isometric sequences, ix and iy, representing the warped paths of S and T 

which minimize the following: 

 𝐷 = ∑ 𝑑𝑚𝑛(𝑀𝑁)𝑚∈𝑖𝑥
𝑛∈𝑖𝑦

. (5.3) 

The warped paths, ix and iy, are calculated from d11 to dMN and advance through the matrix in 

a series of moves described by the following constraints: 

 (𝑚, 𝑛)  →  (𝑚 + 1, 𝑛) 𝑖𝑓 𝑑𝑚+1,𝑛 < (𝑑𝑚,𝑛+1 𝑎𝑛𝑑 𝑑𝑚+1,𝑛+1), (5.4) 

 (𝑚, 𝑛)  →  (𝑚, 𝑛 + 1) 𝑖𝑓 𝑑𝑚,𝑛+1 < (𝑑𝑚+1,𝑛 𝑎𝑛𝑑 𝑑𝑚+1,𝑛+1), (5.5) 

 (𝑚, 𝑛)  →  (𝑚 + 1, 𝑛 + 1) 𝑖𝑓 𝑑𝑚+1,𝑛+1 < (𝑑𝑚+1,𝑛 𝑎𝑛𝑑 𝑑𝑚,𝑛+1), (5.6) 

such that the final distance, dMN, represents the DTW distance between the waveforms S and T. 

For this study, warping paths were constrained to be within 50 samples of a straight line fit 

between waveforms, which for templates and sequences of 101 points, represents a maximum 

warping of 49.5%. This warping path constraint was selected as it was found to maximize 

classification accuracy when iterating in intervals of 10 from 0 to 100. An example of the 

warping path calculated between a given movement sequence and template for the right knee is 

shown in Figure 5.7. 

A DTW distance was calculated for each of the six joints and subsequently a weighted sum 

of these distances was calculated in order to generate a new multi-dimensional distance metric. 

Weightings for each distance element were initially selected through manual iteration, when 

iterating in intervals of 0.05 from 0.25 to 0.75 and prescribing a value of 1.00 to 𝐷𝑅𝐾𝑛𝑒𝑒, as 

follows:  



108 

 

 

 𝐷𝑚𝐷𝑇𝑊 = 0.25 ∙ 𝐷𝐿𝐴𝑛𝑘𝑙𝑒 + 0.25 ∙ 𝐷𝑅𝐴𝑛𝑘𝑙𝑒 + 0.75 ∙ 𝐷𝐿𝐾𝑛𝑒𝑒 + 𝐷𝑅𝐾𝑛𝑒𝑒 + 0.75
∙ 𝐷𝐿𝐴𝐻𝑖𝑝 + 0.75 ∙ 𝐷𝑅𝐻𝑖𝑝. 

(5.7) 

This distance metric could be treated the same as any distance measure input to a k-Nearest 

Neighbour algorithm for the classification of derived features (rather than continuous time 

domain data used here) would be, and thus would allow for the identification of childcare-

inspired motions based on inertial estimates of lower limb flexion-extension angles. 

 

Figure 5.7 Representative warping paths ix and iy derived during the calculation of DRKnee (C) based on only the right knee 

between the movement sequence SRKnee (A) and the template TRKnee (B) for a heels-up squatting motion trial. Each signal is 

warped such that the highest level of similarity between waveforms can be achieved. Note that in warping the signals, the length 

of the final sample may be longer than either original waveform. The dotted line and solid line represent the warped recreations 

of the movement sequence and template respectively.  

5.4.5. k-Nearest Neighbour Classification Algorithm 

Development and Testing  

Templates built from the randomly selected 35 participants’ data were combined with their 

appropriate motion labels to create the algorithm building dataset for the development and 

testing of a kNN cross-validated classifier. This dataset was relied upon for iterative parameter 

tuning and ultimately populated the labeled feature space from which classifications would be 

made. The following motion groupings were therefore included: HS (heels-up squatting), FS 

(flatfoot squatting), DK (dorsiflexed kneeling), PK (plantarflexed kneeling), ACS (sitting on an 
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adult sized chair), CCS (sitting on a child sized chair), SK (single arm supported kneeling and 

double arm supported kneeling), CLS (crossed leg sitting), SS (side sitting and side leaning to 

the left or the right), STP (stooping), STD (standing), and WLK (walking). Therefore, for our 

twelve-activity classification problem, each motion would be identified as a different class, α, 

such that αi = 0, 1, 2, ..., 11. It is advised that each movement class should be equally represented 

within the algorithm building dataset so as to ensure the final parameters that the iterative 

algorithm building process selected were non-biased towards any class or condition (Madhu-Das 

& Srichand, 2006). Due to the grouping of similar movements, the number of templates included 

in this dataset for SS was significantly greater than those included for the other motions (471 

individual templates were included for the SS motion while 150 ± 13 templates were included 

for the other childcare-inspired motions). Given that neither supported kneeling trial was 

performed under loaded conditions, the combination of these trials into one class, SK, resulted in 

a similar yet slightly higher number of trials of this class being included in this dataset when 

compared to those of the other classes (166 individual templates were included for SK). Finally, 

it is noted that STP and WLK were also only performed without load and therefore were the least 

represented movement classes with only 83 and 84 templates included respectively.  

A holdout validation method was employed to develop and test the classifier, such that 80% 

of the templates from each motion were randomly allocated as development data (often referred 

to as training data) while the remaining 20% were withheld for testing (Webb & Copsey, 2011). 

The development data were then partitioned into five equal parts, or folds, in order to use five-

fold cross-validation to develop the kNN classifier and obtain an initial estimate of classification 

accuracy. Permutations of four folds were therefore used to populate the feature space of labeled 

datapoints, while the fifth fold was reserved for testing. In this way, the accuracy of the initial 

classifications through the kNN classifier were obtained from the average of the five 

permutations when using a value of k = 1 and distances between samples calculated based on eq. 

(5.7).  

Following the initial classifier development, the model performance was evaluated across 

multiple values of k, logarithmically spaced between 1 and the length of the building dataset, 

1911, in order to determine the optimal number of nearest neighbours for this classification 

problem. The five-fold classification errors associated with each k value were then plotted and 
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the value of k which minimized the cross-validated losses was selected as optimal. The model 

was found to classify most accurately when a value of 1 was attributed to k. 

Subsequently, the weighting parameters used in the mDTW distance metric calculation were 

also optimized using this cross-validated model. Each weighting coefficient was varied within 

±0.045 of the initial values presented in eq. (5.7) with a step size of 0.015 for the left ankle, knee, 

and hip, and the right ankle and hip, while for the right knee the weighting coefficient was varied 

between 0.7 and 1. These permutations were tested simultaneously such that the combination of 

coefficients which best minimized the five-fold classification losses was selected, thereby 

increasing the predictivity of the model. The final mDTW distance was calculated as follows:  

 𝐷𝑚𝐷𝑇𝑊 = 0.26 ∙ 𝐷𝐿𝐴𝑛𝑘𝑙𝑒 + 0.20 ∙ 𝐷𝑅𝐴𝑛𝑘𝑙𝑒 + 0.72 ∙ 𝐷𝐿𝐾𝑛𝑒𝑒 + 𝐷𝑅𝐾𝑛𝑒𝑒 + 0.67 ∙
𝐷𝐿𝐴𝐻𝑖𝑝 + 0.76 ∙ 𝐷𝑅𝐻𝑖𝑝. (5.8) 

Once these parameters had been tuned, a final kNN model was developed using all 

development data and subsequently evaluated using the test samples (the 20% of templates held-

back from the algorithm building dataset, which will be referred to as segmented trials) as well 

as using the corresponding movement sequences which had not undergone segmentation, in 

order to determine the model’s performance when identifying unknown waveforms from 

individuals on which the classifier was trained.  

Finally, movement sequences for all motions and loading conditions from each of the 15 

participants withheld for validation were classified in order to evaluate the classification 

accuracy when the model was provided with novel data.  

5.4.6.Classification Error Measurement 

The classification performance of all models was quantified as the ratio of correct classifications 

to the total number of classifications. While the rate of successfully identifying each motion 

based on chance would be 7.7% (100% / the number of motions to be classified), the goal of the 

developed classification framework was to identify each motion as accurately as possible. To this 

end, sensitivity and specificity were calculated for each motion in order to determine whether 

any motions suffered from greater risk of classification errors within the development, testing, 

and validation models (Webb & Copsey, 2011).  
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Sensitivity, a measure of the true positive classifications which can also be referred to as 

recall, was calculated as the proportion of waveforms of a certain motion correctly identified, as 

in eq. (5.9): 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , (5.9) 

where TP, or true positive, are the number of sequences within a given motion correctly 

identified as such, and FN, or false negative, are the number of sequences within a given motion 

incorrectly identified as other motions. Therefore the term (TP + FN) represents the total number 

of sequences for the given motion (Webb & Copsey, 2011). A high sensitivity value would 

represent the ability to classify a motion with few false negatives but does not consider the 

number of false positives.  

Specificity, a measure of true negative classifications, was calculated as the proportion of 

feature sets not belonging to a specific motion correctly identified as other motions, as in eq. 

(5.10): 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, (5.10) 

where TN, or true negative, are the number of sequences not belonging to a given motion 

correctly classified as belonging to the other motions, and FP, or false positive, are the number of 

sequences not belonging to a given motion which are incorrectly classified as the motion in 

question. Therefore the term (TN + FP) represents the total number of sequences belonging to all 

other motions (Webb & Copsey, 2011). A high specificity value would represent the ability to 

classify a motion with few false positives, however, does not consider the number of false 

negatives. 

Given the presence of imbalanced templates across motions, balanced accuracy, AccBal, was 

also calculated, as in eq. (5.11): 

 
𝐴𝑐𝑐𝐵𝑎𝑙 =

1

2
∙

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 + 

1

2
∙

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, (5.11) 

This metric combines both the sensitivity and specificity of a given model and limits inflated 

accuracy scores by combining the number of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) into a single representative value (Lin et al., 2018). All 
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classifications and analyses of error were completed using Matlab 9.13 (The Mathworks, Release 

R2022b, Natick, MA, USA). 

5.4.7.Statistical Analyses 

In order to assess the presence of any potential differences in classification accuracies of the 

novel participant movement sequences under unloaded and loaded conditions, a statistical 

analysis was performed using a one-way ANOVA on the classification accuracy values for each 

of the 9 motions performed under both load conditions (noting that SK, STP, and WLK were not 

performed while holding the load). An alpha level of 0.05 was used to determine significance.  

5.5.  Results 

Through five-fold cross-validation, the initial mDTW kNN algorithm was developed based on 

movement templates of lower limb flexion-extension angles calculated from inertial sensor data 

across twelve motions from 35 participants. Initial classification accuracy following cross-

validation of the templates included in the algorithm building dataset was found to be 82.2%. 

Sensitivity, specificity, and balanced accuracy values for all classifiers have been presented in 

Table 5.1, Table 5.2, and Table 5.3 respectively. Despite imbalances in the number of templates 

included for each motion, consistent specificity values were reported across classes based on this 

model (mean specificity was found to be 98.1% ± 1.3%); however, when balancing for the 

sample sizes using eq. (5.11), the balanced accuracy of the model was found to be 89.5%. In this 

initial model, the highest levels of misclassification were observed between flatfoot and heels-up 

squatting. 

The parameters selected for k and for the weightings used in the mDTW distance metric 

calculation were subsequently tuned in order to reduce the cross-validated classification errors of 

this initial model. Subsequently, a new kNN model was developed using the entirety of the 

development data templates to populate the feature space of labeled datapoints, and this model 

was evaluated using the segmented trials withheld for testing. The classification accuracy of this 

new model increased to 84.1% overall, with a balanced accuracy of 88%, suggesting that 

untuned parameters contributed in part to confusion within the classifier. 
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The tuned classifier’s performance was next evaluated using movement sequences 

corresponding to the 20% of data withheld for testing from the algorithm building dataset. The 

classification accuracy achieved for these data was 82.3%, with a mean balanced accuracy of 

86% across all motions, suggesting that the classifier was capable of identifying novel movement 

sequences performed by individuals for which it was trained, with only minor decreases in 

overall accuracy achieved when classifying these movement sequences when compared to the 

classification of segmented motion trials (motion templates). Sensitivity and specificity values 

for each motion revealed that the greatest classification accuracies were achieved when 

identifying kneeling motions and crossed leg sitting, while the most common misclassifications 

occurred between flatfoot squatting, heels up squatting, and stooping, where the squatting 

motions were frequently identified as stooping, yet stooping was not misclassified as squatting. It 

is noted however that the classification specificities were consistent across all motions (98.1% ± 

2.0%), representing the classifiers strong ability the reject false positives. This classification 

model also revealed that while walking was identified with 100% accuracy when classifying 

segmented data for individual steps, the templates were not sufficient for the identification of 

walking sequences which may include multiple steps.   
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Table 5.1 Sensitivity based confusion matrices for the classification of twelve childcare-inspired motions based on (A) the cross-

validation of the algorithm building templates, (B) the testing of segmented data using a model based on tuned k and the mDTW 

weighting parameters, (C) the testing of movement sequences using the tuned parameter model, and (D) the validation of the 

tuned parameter model on novel participant movement sequences. All values are expressed as percentages relative to the total 

number of classifications for each childcare-inspired motion. Bolded cells denote correct classifications. The twelve motions 

analyzed were: heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), sitting 

on an adult sized chair (ACS), sitting on a child sized chair (CCS), single arm supported kneeling and double arm supported 

kneeling (SS), crossed leg sitting (CLS), side sitting and side leaning to the left or the right (SS), stooping (STP), standing (STD), 

and walking (WLK). *Target Class represents the correct class of each template or sequence. **Output Class represents the class 

predicted by the classifier. 

A               

Cross-Validated kNN   

T
ar

g
et

 C
la

ss
*

 

DK 71.8 10.3 5.1 5.1 2.6 0.0 5.1 0.0 0.0 0.0 0.0 0.0  

PK 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

FS 0.0 0.0 81.6 10.5 5.3 2.6 0.0 0.0 0.0 0.0 0.0 0.0  

HS 0.0 0.0 27.0 64.9 5.4 2.7 0.0 0.0 0.0 0.0 0.0 0.0  

CCS 2.6 0.0 0.0 0.0 68.4 26.3 0.0 0.0 0.0 0.0 2.6 0.0  

ACS 0.0 0.0 0.0 2.6 5.3 92.1 0.0 0.0 0.0 0.0 0.0 0.0  

SK 7.3 2.4 2.4 0.0 2.4 0.0 82.9 0.0 0.0 0.0 2.4 0.0  

STP 4.8 0.0 4.8 19.0 0.0 0.0 0.0 71.4 0.0 0.0 0.0 0.0  

STD 0.0 0.0 0.0 5.6 0.0 5.6 0.0 11.1 77.8 0.0 0.0 0.0  

CLS 3.4 3.4 0.0 3.4 0.0 0.0 3.4 0.0 0.0 72.4 13.8 0.0  

SS 1.7 0.8 0.0 0.0 1.7 0.8 1.7 0.0 0.0 5.0 88.2 0.0  

WLK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100  

 DK PK FS HS CCS ACS SK STP STD CLS SS WLK  

Output Class**   

B 
              

Tuned Parameter kNN on Segmented Testing Data 

T
ar

g
et

 C
la

ss
 

DK 76.9 5.1 5.1 2.6 5.1 0.0 5.1 0.0 0.0 0.0 0.0 0.0  

PK 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

FS 0.0 0.0 81.6 13.2 2.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0  

HS 0.0 0.0 24.3 73.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

CCS 2.6 0.0 0.0 0.0 68.4 26.3 0.0 0.0 0.0 0.0 2.6 0.0  

ACS 0.0 2.6 0.0 2.6 2.6 92.1 0.0 0.0 0.0 0.0 0.0 0.0  

SK 7.3 0.0 2.4 0.0 2.4 0.0 85.4 0.0 0.0 0.0 2.4 0.0  

STP 4.8 0.0 9.5 9.5 0.0 0.0 0.0 76.2 0.0 0.0 0.0 0.0  

STD 0.0 0.0 0.0 0.0 5.6 0.0 0.0 5.6 61.1 5.6 22.2 0.0  

CLS 0.0 3.4 0.0 3.4 0.0 0.0 3.4 0.0 0.0 75.9 13.8 0.0  

SS 1.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.9 91.6 0.0  

WLK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100  

 DK PK FS HS CCS ACS SK STP STD CLS SS WLK  

Output Class   



115 

 

 

C 
              

Tuned Parameter kNN on Testing Movement Sequences   
T

ar
g

et
 C

la
ss

 

DK 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

PK 0.0 87.2 0.0 2.6 2.6 0.0 0.0 2.6 2.6 0.0 2.6 0.0  

FS 2.6 0.0 57.9 7.9 0.0 0.0 2.6 28.9 0.0 0.0 0.0 0.0  

HS 2.6 0.0 18.4 52.6 0.0 0.0 0.0 26.3 0.0 0.0 0.0 0.0  

CCS 2.7 0.0 0.0 2.7 89.2 5.4 0.0 0.0 0.0 0.0 0.0 0.0  

ACS 0.0 0.0 0.0 2.6 10.5 84.2 0.0 2.6 0.0 0.0 0.0 0.0  

SK 2.4 2.4 0.0 0.0 0.0 0.0 95.1 0.0 0.0 0.0 0.0 0.0  

STP 4.8 0.0 0.0 4.8 0.0 0.0 0.0 90.5 0.0 0.0 0.0 0.0  

STD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 89.5 0.0 10.5 0.0  

CLS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.6 3.4 0.0  

SS 0.8 0.8 0.0 0.0 0.8 2.5 0.0 0.0 0.0 2.5 92.4 0.0  

WLK 14.3 0.0 0.0 0.0 0.0 4.8 4.8 47.6 14.3 0.0 14.3 0.0  

 DK PK FS HS CCS ACS SK STP STD CLS SS WLK  

Output Class   

 

D 
              

Tuned Parameter kNN on Novel Participant Movement Sequences 

T
ar

g
et

 C
la

ss
 

DK 63.2 6.9 0.0 1.1 9.2 9.2 4.6 0.0 0.0 0.0 5.7 0.0  

PK 1.1 79.3 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 11.5 0.0  

FS 6.9 1.1 35.6 25.3 2.3 1.1 0.0 27.6 0.0 0.0 0.0 0.0  

HS 3.4 2.3 32.2 39.1 4.6 0.0 0.0 18.4 0.0 0.0 0.0 0.0  

CCS 0.0 0.0 1.2 6.0 67.9 22.6 1.2 1.2 0.0 0.0 0.0 0.0  

ACS 0.0 0.0 1.2 1.2 30.5 65.9 0.0 0.0 0.0 0.0 1.2 0.0  

SK 20.0 9.4 0.0 1.2 4.7 3.5 48.2 0.0 0.0 0.0 12.9 0.0  

STP 0.0 0.0 9.3 4.7 0.0 4.7 4.7 76.7 0.0 0.0 0.0 0.0  

STD 0.0 0.0 1.2 3.5 2.4 2.4 1.2 4.7 76.5 0.0 4.7 3.5  

CLS 1.3 4.3 3.9 0.0 3.9 1.3 0.0 0.0 0.0 61.8 26.3 0.0  

SS 5.6 7.3 3.1 3.5 5.9 4.2 3.8 0.3 0.0 12.6 53.5 0.0  

WLK 0.0 0.0 0.0 0.0 6.7 4.4 2.2 75.6 2.2 0.0 8.9 0.0  

 DK PK FS HS CCS ACS SK STP STD CLS SS WLK  

Output Class   
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Table 5.2 Specificity values achieved in the classification of twelve childcare-inspired motions. All values are expressed as 

percentages relative to the total number of classified waveforms belonging to other motions. The twelve motions analyzed were: 

heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), sitting on an adult sized 

chair(ACS), sitting on a child sized chair (CCS), single arm supported kneeling and double arm supported kneeling (SS), crossed 

leg sitting (CLS), side sitting and side leaning to the left or the right (SS), stooping (STP), standing (STD), and walking (WLK). 

Motion DK PK FS HS CCS ACS SK STP STD CLS SS WLK 

Classifier Type 

Cross-Validated kNN 97.8 98.1 96.3 96.6 97.3 96.2 98.6 99.5 100 98.4 98 100 

Tuned Parameter kNN 

on Segmented Data 
98.1 98.6 96.4 97.4 98.2 97.1 99.2 99.7 100 97.9 97.0 99.7 

Tuned Parameter kNN 

on Movement Sequences 
97.6 99.5 98.2 98.2 98.4 98.4 99.5 92.2 98.9 99.2 97.1 100 

Novel Participant 

Movement Sequences 
93.0 93.6 92.8 93.1 89.5 92.1 95.7 88.3 99.8 94.3 89.8 99.5 

Table 5.3 Balanced accuracy values achieved in the classification of twelve childcare-inspired motions. All values are expressed 

as percentages. The twelve motions analyzed were: heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), 

plantarflexed kneeling (PK), sitting on an adult sized chair(ACS), sitting on a child sized chair (CCS), single arm supported 

kneeling and double arm supported kneeling (SS), crossed leg sitting (CLS), side sitting and side leaning to the left or the right 

(SS), stooping (STP), standing (STD), and walking (WLK). 

Motion DK PK FS HS CCS ACS SK STP STD CLS SS WLK 

Classifier Type             

Cross-Validated kNN 84.7 99.0 88.9 80.7 82.9 94.2 90.8 85.5 88.9 85.4 93.1 100 

Tuned Parameter kNN 

on Segmented Data 
87.5 99.3 89.0 85.2 83.3 94.6 92.3 88.0 80.6 86.9 94.3 99.9 

Tuned Parameter kNN 

on Movement Sequences 
98.8 93.3 78.1 75.4 93.8 91.3 97.3 91.3 94.2 97.9 94.8 50.0 

Novel Participant 

Movement Sequences 
78.1 86.5 64.2 66.1 78.7 79.0 92.0 82.5 88.1 78.1 71.7 49.8 

Finally, the tuned and tested classification model was used to predict the childcare-inspired 

motions for movement sequences from fifteen novel participants (withheld from the algorithm 

building dataset). The classifier was found to be 55.6% accurate when identifying childcare-

inspired motions from novel participants, however when considering the balanced accuracy, this 

value increased to 74.6%. Specificity values were slightly diminished when classifying novel 

participant waveforms (93.5% ± 3.6%), however the greatest changes were observed in 

sensitivity with a mean value of 55.6% ± 23% found when including gait, or if gait trials were 

excluded, mean sensitivity was found to be 60.7 % ± 15%. In this model, elevated levels of 

misclassifications were observed between motions of similar types (i.e., between dorsiflexed, 

plantarflexed, and supported kneeling; flatfoot and heels-up squatting; sitting on adult or child 

sized chairs; and crossed leg or side sitting). By grouping these motions by similarities, 
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classification accuracy was increased to 75.7%, with sensitivity, specificity, and balanced 

accuracy values for these groupings shown in Table 5.4. 

Statistical differences between loading conditions were evaluated based on the performance 

of the tuned and tested classification model’s predictions of all movement sequences from the 

fifteen novel participants, revealing no significant differences between the classification of 

unloaded and loaded trials. The sensitivity-based confusion matrices for the classifications based 

on each of these loading conditions can be found in Table F.1. It was therefore concluded that 

the developed model is insensitive to any potential movement variability resulting from the 

presence of a load while performing these motions. 

Table 5.4 Sensitivity, specificity, and balanced accuracy values achieved in the classification of childcare-inspired motions when 

grouped based on similarity of motions such that kneeling encompasses dorsiflexed, plantarflexed, and supported kneeling, 

squatting encompasses flatfoot and heels-up squatting, chair sitting encompasses sitting on adult- and child-sized chairs, and floor 

sitting encompasses crossed leg and side sitting. All values are expressed as percentages. 

Motion Kneeling Squatting Chair 

Sitting 

Stooping Standing Floor 

Sitting 

WLK 

Classifier Type 

Sensitivity 80.3 66.1 93.4 76.7 76.5 70.7 0.0 

Specificity 81.3 86.2 81.7 88.3 99.8 82.8 99.5 

Balanced Accuracy 81.0 76.0 88.0 83.0 88.0 77.0 49.8 

5.6.  Discussion 

In this study, a multi-dimensional Dynamic Time Warping distance-based kNN algorithm for the 

recognition of motions frequently adopted in occupational childcare based on inertial sensor data 

was developed. Joint angles of the left and right ankles, knees, and hips were segmented into 

motion templates to populate the classification feature space and subsequently these templates 

were compared, using DTW, to continuous movement sequences representing heels-up and 

flatfoot squatting, dorsiflexed and plantarflexed kneeling, single and double arm supported 

kneeling, sitting on adult- and child-sized chairs, crossed leg sitting, side sitting and side leaning 

to the left or the right, stooping, standing, and walking. The weighted sum of these DTW-based 

distances between waveforms was then calculated and a nearest neighbour to the unknown 

movement sequence would be determined based on the minimum mDTW distance, calculated 

between all templates. Experimental results demonstrate that the model was capable of 

classifying eleven of the twelve childcare-inspired motions with 55.6% accuracy when classified 
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independently, or, when grouping motions based on their similarities, with an accuracy of 75.7%. 

The developed model was not capable of classifying sequences of walking data based on a single 

step template.  

The mDTW distance-based classification approach developed in this study has previously 

been adopted for the segmentation of strides and the identification of activities of daily living 

such as sitting, standing, lying down, and walking (both on level ground and on stairs) (Barth et 

al., 2015; Kluge et al., 2017; Muscillo et al., 2007; Paiyarom et al., 2009), to our knowledge this 

paper constitutes the first study to apply this technique to the identification of high knee flexion 

postures typically adopted by childcare workers. The ability to measure and interpret motions 

which elicit high knee flexion and are specific to an occupation without the presence of a 

researcher is essential for the assessment of high knee flexion postures within occupational 

settings. Based on classified wearable sensor data, quantitative measures of the frequency and 

duration of high knee flexion postural adoption can be obtained, by which the demands of a 

given workplace or occupation can be determined. Ultimately this data may lead to the 

development of workplace specific guidelines for minimizing the continued or prolonged 

adoption of postures associated with an increased risk of knee OA development. While two 

studies have previously sought to classify high flexion postures within childcare settings, each 

used models developed for the identification of high flexion postures across many occupations, 

resulting in broadly defined posture classes such as squatting and kneeling. As such, these 

models were incapable of quantifying the many high flexion postures observed to be uniquely 

adopted when caring for children, which were included in the current study (Burford et al., 2017; 

Holtermann et al., 2020; Laudanski et al., 2022).  

The accuracy of the developed model to classify movement sequences based on predefined 

templates was evaluated both on data from participants who were and were not included in the 

labeled classification feature space. The highest accuracies were achieved when a portion of a 

given participant’s data had been included in this feature space, thus, if possible, a brief 

collection of supervised movement trials from novel participants could be added to the algorithm 

building dataset prior to the measurement of unsupervised exposure data in workplace settings. 

Alternatively, the movements of novel participants could be classified using the developed tuned 

and tested model, and the classification accuracies could then be interpreted within the reported 
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sensitivity and specificity levels here provided, as well as within the sensitivity and specificity 

levels presented when grouping motions based on similarities.  

The classification framework presented in this study utilizes previously estimated joint 

angles rather than raw IMU data in order to ensure an interpretable association between the 

classification inputs and the output motion classes. While many machine learning-based 

approaches can be applied to the classification of human motion, several of these utilize deep 

learning to map connections between inputs and outputs through what is colloquially referred to 

as a “black box” (Roscher, Bohn, Duarte, & Garcke, 2020). Despite the demonstrated success of 

these approaches across a broad array of applications (Cho & Kim, 2012; A. Choi et al., 2019; 

Hsu & Lin, 2002; F.-C. Wang et al., 2021; Zimmermann et al., 2018), recent efforts in the 

development of explainable or interpretable machine learning have sought to create “white box” 

algorithms from which the link between inputs and results are transparent, interpretable, and 

explainable (Doshi-Velez & Kim, 2017; Roscher et al., 2020; Vilone & Longo, 2021). Given the 

evaluation of high knee flexion postures adopted in occupational settings goes beyond simply 

identifying their occurrence, it was important to develop a classification framework based on 

kinematic values which could be easily understood, interpreted, and further analyzed by users 

within both academic and occupational communities. We therefore believe that the use of a 

computationally simple kNN classification model based on mDTW distances satisfies these 

objectives and will serve to advance the research and knowledge surrounding exposures of high 

knee flexion beyond laboratory-based settings.  

Classification accuracies of all childcare-inspired motions, with the exception of walking, 

using the tuned and tested classification model were found to be well above the rate of chance 

(7.7%) based on movement sequences performed by participants both included and novel to the 

labeled classification feature space. The decrease in classification accuracy between these 

individuals is likely attributable to inter-subject variability in joint ranges of motion and 

movement patterns leading to confusion in the classification of kinematically similar motion. 

The highest rates of misclassifications in novel participant data were observed in flatfoot and 

heels-up squatting, where movement sequences were frequently identified as belonging to one of 

these two squatting motions or as a stoop rather than a squat. These misclassifications may be 

attributable to the variability of movement strategies adopted during the stoop motion, given that 
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the instructions provided to participants for this motion were to bend over as if they were picking 

up a child. The individuals recruited for this study were primarily young adults currently enrolled 

in a kinesiology undergraduate or graduate program. Given these participant demographics, it is 

unlikely that the majority of these individuals interact with young children on a regular basis, 

however unlike a generic sampling of students from across a university population, it is likely 

that these participants would have received advanced training in injury preventative lifting 

strategies. Therefore, there is an increased probability that the stooping motions adopted by 

many would not be described as an isolated flexion about the hips but rather be akin to a 

squatting motion with increased hip flexion. If we continue with this hypothesized description of 

a stooping motion, it is highly likely that a squatting motion performed by an individual who was 

unable to achieve high knee flexion during squatting yet exhibited a greater degree of hip flexion 

to move their torso forward and increase their balance might have been most similar to a 

stooping motion rather than the labeled squatting motion templates in which a greater range of 

knee flexion angles are achieved while the trunk is held relatively perpendicular to the ground 

resulting in decreased hip flexion. Similarly, for the supported kneeling motions, participants 

were not directed as to how to place their feet, and as such may have adopted either dorsiflexion 

or plantarflexion at their ankles. Therefore, it is likely that the greatest difference between these 

supported kneeling motions for individuals incapable of achieving high knee flexion in either the 

dorsiflexed or plantarflexed kneeling motions would occur in the hip flexion angles. Given the 

mDTW distance metric weighting similarities between knee joint angles more heavily than those 

measured at the hip, these differences in hip angle may not have been sufficiently large so as to 

differentiate between the supported and unsupported kneeling motions.  

While the proposed algorithm was demonstrated to be capable of classifying motions 

frequently adopted by childcare workers in the dataset here presented, there are several 

limitations to this classifier which must be considered. The current classification model was 

developed using simulated occupational data which was collected in a laboratory-based setting. 

Despite encouraging participants to perform each movement as naturally as possible, motion 

timings were controlled in order to ensure that participant remained in maximum flexion for 5 

seconds, which likely affected the manner in which participants moved. Therefore, moving 

forward the classifier should be provided with a series of templates based on unconstrained 
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movements in order to minimize the risk of miscalculations based on the prescribed motions 

adopted in this study.  

Similarly, it must be noted that the dataset used in this study was composed of movement 

sequences which were recorded in isolation, such that no sequence contained transitions from 

one motion class to another. While the data included in the model sufficiently captured both the 

descent and ascent phases of each motion, in occupational settings it is likely that individuals 

might transition between motions (i.e., transition from kneeling to sitting, or descend into a 

flatfoot squat but ascend through a heels-up squat). The developed algorithm would likely be 

unable to classify such postural transitions. Therefore, future work should explore the possibility 

of extending the classification ability of the model in order to distinguish between different 

phases of motion including descent, static holding, and ascent of each movement, ultimately 

enabling the classifier to successfully detect consecutive phases as different motion types based 

on the existing dataset here provided. Additional data would be required however in order for the 

classifier to be capable of identifying the transitional movements themselves. One must 

additionally be aware that the proposed linear weightings of DTW distances in the mDTW 

approach might not be the most robust when seeking to applying the developed classifier to the 

identification of transitions in continuous datasets. Given the subtle differences between many of 

the high knee flexion movements simulated in the current study, it might be appropriate to 

explore a non-linear approach when combining the DTW distances to best distinguish between 

postures.  

Finally, in this study a supervised learning algorithm was utilized which requires each sample 

within the classification feature space to be labeled. Given that data here presented were 

collected in a laboratory setting, manual labels were applied to each motion at the time of 

collection. Should additional data be collected and added to the classification feature space in the 

future, this data would additionally require labeling, and therefore the collection of movement 

trials to be added would require the presence of a researcher or the use of filming equipment in 

order to manually identify each motion performed prior to adding their templates to the 

classification building dataset.  
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5.7.  Conclusion 

Successful classification of eleven movements (heels-up and flatfoot squatting, dorsiflexed and 

plantarflexed kneeling, supported kneeling, sitting on adult- and child-sized chairs, crossed leg 

sitting, side sitting and leaning, stooping, and standing) was achieved using a multi-dimensional 

Dynamic Time Warping distance-based Nearest Neighbour classification algorithm. A 

combination of weighted DTW distances calculated between motion templates and continuous 

movement sequences representing joint angles for the ankles, knees, and hips was found to be 

effective for the classification of these movements frequently performed in occupational 

childcare. The generally high classification rates achieved when classifying data from 

participants both included and precluded from the algorithm building dataset indicate strong 

potential for the proposed model’s application to the quantitative measurement of postural 

requirements in childcare settings. Future work should therefore seek to expand this classifier in 

order to identify separate phases for each motion rather than motions in their entirety in order to 

be successfully applied to the measurement and identification of high knee flexion postures in 

real world settings. While the movements analyzed in this study replicated those observed in 

childcare settings, the proposed model could be applied across numerous occupations to inform 

future musculoskeletal injury prevention initiatives. 
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Chapter 6  

 

Evaluating the Feasibility of Applying 

the Developed Multi-Dimensional 

Dynamic Time Warping Distance-

Based Framework to the Measurement 

and Recognition of High Knee Flexion 

Postures in a Simulated Childcare 

Environment 

6.1.  Introduction 

The ability to automatically and robustly detect specific postures from continuously collected 

inertial data is essential for the monitoring and measurement of occupational exposures. The 

analysis of movements as they are naturally occurring in occupational settings is particularly 

important in cases where the frequent and repetitive adoption of high knee flexion postures is 

required, as these postures have been associated with increased incidences of knee OA. 

Childcare workers specifically have been shown to exceed the published duration and frequency 

thresholds associated with the OA development (Burford et al., 2017; Holtermann et al., 2020; 
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Laudanski et al., 2022) yet to date no study has quantified these exposures in North American 

childcare settings in order to inform guidelines for risk mitigation.  

Previous applications of activity classification based on inertial sensor data vary greatly in: i) 

the type and number of sensors used in a given study, ii) the signal characteristics selected from 

which to build classification models tasked with activity recognition, and iii) the type of machine 

learning techniques selected (Allahbakhshi, Hinrichs, Huang, & Weibel, 2019; Altun et al., 2010; 

Anna Ferrari, Micucci, Mobilio, & Napoletano, 2020).  

Selecting the optimal number of sensors to use for a given classification problem is a non-

trivial decision. It has been suggested that an increased number of sensors may result in an 

increased number of activities which can be classified, yet a higher number of sensors will also 

result in greater complexity in terms of setup, calibration, and computation (Allahbakhshi et al., 

2019; Maurer, Smailagic, Siewiorek, & Deisher, 2006). Studies seeking to analyze gait 

characteristics have typically shown that a single inertial sensor mounted on either the foot or 

shank is sufficient for step or stride segmentation (Barth et al., 2015; Bejarano et al., 2015; 

Chang et al., 2016; Kluge et al., 2017). When seeking to expand the classification beyond a 

single activity however, it has been suggested that a single sensor may not be sufficient in 

differentiating between motions (Bao & Intille, 2004; De Vries, Garre, Engbers, Hildebrandt, & 

Van Buuren, 2011; Gyllensten & Bonomi, 2011). De Vries et al. (2011) demonstrated that a 

combination of sensors mounted on the ankle and hip outperformed a single hip-worn sensor 

when distinguishing between activities such as sitting, standing, walking, cycling, and stair 

ambulating. Similarly, Altun et al. (2010) and Barshan et al. (2013) proposed the use of five 

sensors, attached to participants thighs, wrists, and pelvis, for the classification of 19 activities 

including a mixture of daily and sports activities. Therefore, there is currently no standard 

approach to selecting the optimal number or configuration of sensors when seeking to classify 

human movement, however it is evident that the complexity of the classification problem must 

be considered when determining the number of sensors to use and where these should be placed.  

Much like the variation observed across studies in the configuration of sensors to be included 

in a classification problem, there are significant differences in the types of signals, the 

segmentation (or windowing) of these signals, and the selection of representative data or features 
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from which to classify each activity of interest. The use of different sensors or signals can 

provide a variety of information about the movement being performed (Fu, Damer, 

Kirchbuchner, & Kuijper, 2020; Muscillo et al., 2007), therefore features from accelerometers 

(Muscillo et al., 2007; Paiyarom et al., 2009), gyroscopes (Barth et al., 2013), processed joint 

kinematic data (Bejarano et al., 2015), and combinations of these signals (Altun et al., 2010; 

Barshan & Yüksek, 2013; Barth et al., 2015; Chang et al., 2016; Kluge et al., 2017; 

Mekruksavanich et al., 2020) have been employed for activity classification problems. Similarly, 

segmentation of sensor data into smaller time increments, commonly referred to as windowing, 

is often undertaken prior to activity classification (Preece, Goulermas, Kenney, Howard, et al., 

2009). Data windowing can be derived based on a fixed time duration (Altun et al., 2010; 

Barshan & Yüksek, 2013; Mekruksavanich et al., 2020) or on the calculated activity duration 

(Bejarano et al., 2015; Chang et al., 2016; Muscillo et al., 2007) however, no standards exist to 

dictate the appropriate length of window for activity classification and as such significant 

discrepancies exist between studies. Finally, the choice of data from which to build an activity 

classifier differs greatly across the currently available literature. Successful classification 

depends heavily on this choice in order to ensure maximum separability between postures or 

activities. Feature-based classification algorithms have traditionally relied on the extraction of 

representative features from both the time and frequency domain including but not limited to the 

mean, variance, number of zero crossings, or dominant frequencies of a signal (Altun et al., 

2010; Barshan & Yüksek, 2013; Laudanski et al., 2015). More recently, the application of 

template-based classification schemes has been proposed in order to classify activities directly 

from inertial time series waveforms (Barth et al., 2015; Kluge et al., 2017; Muscillo et al., 2007; 

Paiyarom et al., 2009). This approach has been shown to be effective when seeking to classify 

postures or activities commonly performed in daily living, however no standards exist to guide 

the selection of data from which a classification model should be built for any given application.   

Finally, based on the choices made during data collection and pre-processing, an appropriate 

machine learning based classification model must be selected. The developed classifier must be 

capable of detecting differences between the features it is provided, regardless of signal 

variability without being overfit to any specific dataset (Asghari Oskoei & Hu, 2007). For each 

application therefore, the appropriate classification model must be selected.  
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The measurement of activities and postures adopted in real-world environments requires 

significantly different approaches than would be adopted in laboratory settings. Instrumentation 

and calibration procedures must be minimal and easily performed when seeking to measure 

exposures in domestic and occupational settings and care must be taken in order to avoid any 

disruptions or restrictions to the participants in order to capture movements as they would 

naturally occur. Beyond concerns surrounding instrumentation and data collections, care must be 

paid when seeking to apply a classification model developed solely on laboratory data to the 

identification of free-living motions. Gyllensten and Bonomi (2011) sought to evaluate the 

accuracy of four laboratory-trained classification algorithms at identifying six activities (lying 

down, sitting/standing, dynamic/transitions, walking, cycling, and running) based on data 

collected from free-living participants and found a significant decrease in their performance 

when classifying real-world data. Similarly, Bastian et al. (2015) evaluated the performance of a 

laboratory-calibrated classification algorithm when identifying a series of activities such as 

walking, running, cycling, and taking the bus, based on what they coined semi-free-living data. 

They found significant decreases in classification accuracy compared to cross-validation results 

using laboratory-based data, but noted the accuracy was improved when free-living data were 

added to the algorithm training dataset (Bastian et al., 2015). While most classification models 

for human activity recognition are developed based on predefined postures and activities 

performed in controlled laboratory-based environments (van Hees, Golubic, Ekelund, & Brage, 

2013), movements performed in non-controlled environments tend to exhibit a high degree of 

variability and overlap between features which are not captured by these laboratory trained 

models (Bastian et al., 2015; Gyllensten & Bonomi, 2011). Therefore, despite every attempt to 

increase variability in laboratory-based data by encouraging participants to move as they 

naturally would, the extent to which classification algorithms developed in laboratory settings 

can be applied to real-world data remains unclear.  

In the present study, we sought to explore the feasibility of extending the developed multi-

dimensional Dynamic Time Warping distance-based Nearest Neighbour classification algorithm 

to identify and measure postures frequently adopted when performing childcare specific 

activities within a simulated childcare environment. Thus, two versions of the algorithm were 

developed and tested: the first version was developed using a combination of motion templates 



127 

 

 

generated from controlled laboratory-based collections (Chapter 5) and continuous motion 

windows from activities performed in the pseudo-childcare-environment, whereas the second 

version was developed using only the continuous motion windows from the pseudo-childcare 

dataset. The outcome of each classification model was compared to the ground truth reference 

for movement classes obtained by manual labeling of each motion in order to identify successes 

and potential barriers to applying the proposed approach to the classification of postures in 

childcare settings.  

6.2.  Participants and Experimental Protocol 

Twelve parent and child pairs were recruited from the University of Waterloo faculty and staff as 

well as from the community through online advertisements, flyers, and word of mouth. Any 

current injury which prevented an individual from independently caring for their child would 

result in study exclusion. People of all genders were invited to participate. Additionally, children 

were required to be capable of sitting independently and to have not yet started kindergarten. 

While both the parent and their child were present for all data trials, the term participant will be 

used only to refer to the adult, from which measurements were obtained. The all-female 

participant pool were 33.09 ± 5.34 years of age; 1.65 ± 0.04 m in height; and had a child of age 

1.38 ± 0.61 years and height 0.81 ± 0.07 m. Nine participants were right leg dominant while 

three were left leg dominant. This study was approved by the University of Waterloo Research 

Ethics Board and informed consent was obtained prior to each collection. 

The laboratory in which all collections were conducted was transformed in order to mimic a 

childcare environment. Therefore, a collection space was established by surrounding the center 

of the laboratory with child gates, and soft floor coverings were laid down in the center of the 

collection space. The space was filled with child toys, a small table and two child-sized chairs, a 

highchair, and a changing table on which were stored books and additional toys. Child cots were 

stacked above the child gates just outside the collection space. The changing table was anchored 

to the floor to prevent tipping. This laboratory layout can be seen in Figure 6.1.  
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Figure 6.1 Laboratory space configuration mimicking a childcare environment wherein A. the child gates, soft floor coverings, 

and child furnishings can be seen, and in B. the changing table with additional toys and books is depicted.  

Seven wireless IMUs (Cometa WaveTrack Inertial System, Cometa Systems srl., Italy, 

Gyro.: 1000 deg/s, Acc.: 8 G, sampling frequency: 284 Hz) were attached bilaterally to the 

superior aspect of participant’s feet, the lateral aspects of the participant’s shanks and thighs, and 

over the base of the participant’s sacrum. The foot sensors were attached to the participant’s 

footwear, roughly above the superior aspect of the mid-foot, mid-distance between the medial 

malleolus and the head of the first metatarsal. The shank and thigh sensors were attached roughly 

one third the distance from the lateral malleoli to the lateral epicondyle of the tibia and roughly 

midway between the greater trochanter and the lateral epicondyle of the femur respectively. All 

sensors, save for those on the feet, were affixed, via Velcro®, within foam backed, anti-slip 

fabric wraps (fabrifoam®, Fabrifoam Products, United States of America) in order to minimize 

relative movement between the sensors and the segments to which they were attached while 

eliminating the risk that a sensor could be removed by the child during collections. No specific 

orientations or positions were enforced when placing the sensors beyond what has been 

described above.  

Following instrumentation, participants were asked to complete a series of calibration 

postures including 5s of quiet standing, functional hip (isolated upper leg motion through a star-

arc hip circumduction (Camomilla et al., 2006)) and functional knee (isolated cyclic 

flexion/extension motion of the lower leg while the upper leg was held parallel to the ground) 
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motion trials, a toe touch trial (primarily accomplished through hip flexion while keeping the 

knees as extended as possible), a heel raise trial (accomplished through ankle plantarflexion, 

where the raised heel posture was held for one count prior to returning to standing), and a 10 m 

walking trial at a self-selected pace. Subsequently, participants were asked to engage in different 

activities (each recorded as a separate movement trial) with their child in randomized order, e.g., 

building a block castle or reading a book. (A full list of activities can be found in Table 6.1). The 

children were free to help in the setup of any activity and engage as much or as little with the 

activity as they wanted. Should the child not want to participate in the activity, the participant 

was given the choice to either end the activity or to engage with their child in a similar activity in 

which they would be more interested. Upon the completion of any activity, if their child wanted 

to continue engaging with the items being used, the participant was instructed to mimic returning 

them to their place of origin rather than taking them away from their child. Participants were at 

liberty to indicate when they felt their child was no longer interested in continuing collections, 

each completing between 5 and 9 activities. A mean of 6.67 ± 0.94 activities were performed 

across all twelve participants with trial durations ranging between 30 seconds and 11 minutes. 

Table 6.1 List of activities performed within the simulated childcare environment. 

Activities Details 

Block Castle Building The participant was instructed to retrieve a box of blocks located on the changing 

table’s higher shelf, and to bring them to the center of the collection space. 

Participants were then free to engage in playing with the blocks and their child for 

roughly 5 minutes, then were encouraged to return the blocks to the box and return 

the box to the changing table shelf where it was originally stored.   

Floor Level Playing The participant was instructed to retrieve a box of toy cars from the changing table’s 

higher shelf and to bring this box to the center of the collection space where a series 

of foam tiles printed with houses and roads had been placed. They were then 

encouraged to engage in playing with their child and the toy cars for roughly 5 

minutes. In this time, if their child preferred to play with wooden puzzles or other 

floor level toys, they were free to do so. Following the completion of this activity, 

the participant was asked to return the cars to the box and replace the box on the 

changing table shelf where it was originally stored.  

Lego® Block Building and 

Sorting 

The participant was instructed to select a minimum of two baskets from the 

changing table’s lower shelf containing large Lego® blocks of different colours, and 

to carry these blocks to the center of the collection space. They were then asked to 

dump out the blocks and play with them and their child for roughly 5 minutes. 

Subsequently, the participant was asked to engage their child in returning the blocks 

to the appropriately coloured basket and finally to return the baskets to the changing 

table shelf. 

Book Reading  The participant was instructed to select one or two books from the changing table 

and to carry the book(s) to the center of the collection space. They were given the 
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choice whether to sit on the ground or at the child-sized table in order to read to their 

child. In this time their child was free to sit anywhere they liked (either on the floor, 

on a child-sized chair, or on their parent’s lap). Once they had finished reading or 

roughly 5 minutes had passed, the participant was asked to return the book(s) to the 

changing table shelf from which it (they) came.  

Child Changing The participant was asked to lift their child onto the changing table and mimic the 

motions they would perform if they were to change a diaper on their child. Once 

complete, the participant was asked to return their child to the ground. While not 

directed, it must be noted that no child was left unattended while on the changing 

table, and the participant was free to use the changing table safety belt if they so 

chose.  

Child Feeding The participant was asked to retrieve a box from the higher changing table shelf 

which contained plastic cups, bowls, plates, and cutlery and bring it to the child-

sized table in the center of the collection space. Depending on the age of the child, 

they were then asked to either play with these dishes with their child while seated at 

the child-sized table, or to lift their child into the highchair provided and play with 

their child and the dishes on the highchair table. Participants were free to provide a 

snack for their child at this time if they wished, or simply to pretend to eat using the 

dishes provided. Following their snack or a period of roughly 5 minutes, the 

participant was asked to return the dishes to the box, and to wipe down their child 

and the eating surface with a cloth before taking their child out of the highchair if 

appropriate and returning the box to the changing table shelf.  

Child Napping The participant was asked to pick up a series of four sleeping cots which were 

stacked on a table just outside the child gates and to arrange them in the center of the 

collection space. They were then asked to pick up their child and to lay them onto a 

cot and to interact with them as they lay down. The children were not required to 

stay laying down, and therefore the participant was free to interact with their child 

on and around the cots. After a period of approximately 5 minutes, the participant 

was asked to return the cots to the table from which they were taken.  

Cleaning Tasks Participants were asked to take a cloth from the higher shelf of the changing table 

and wipe down the surface of the changing table and the child-sized table. They 

were then asked to take a broom and dustpan located behind the changing table and 

sweep the collection space, then to dispose of the contents of the dustpan into a 

garbage pail also located behind the changing table before returning both the broom 

and dustpan to where they were found. (Note that the laboratory floors and soft floor 

coverings were cleaned prior to every collection and this task was merely performed 

as a simulation rather than truly cleaning the space.)  

Video recordings were synchronously captured using a Logitech C270 HD webcam for all 

activities. Recordings were used for data labeling, against which the performance of the 

classification algorithms would be evaluated.  

6.3. Sensor Signal Processing and Manual Data Labeling 

To match the units of measure of the Xsens MTw Awinda inertial sensors used previously in the 

development of the measurement and classification algorithms in Chapter 4 and Chapter 5, the 

raw acceleration signals from the Cometa WaveTrack inertial sensors used in this study were 
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converted from G (the gravitational force equivalent) to m/s2, and the raw Cometa gyroscopic 

signals were converted from deg/s to rad/s. These data were subsequently processed using the 

CSKA and ISSA algorithms presented in Chapter 4 in order to define the joint position and joint 

center of rotation vectors by which each sensor could be aligned to the segment on which it was 

attached. The calibration data for the knee consisted of a combination of sensor signals from the 

10 m walking trial and the functional knee and hip movements. For the ankle and hip, these same 

data were additionally combined with sensor signals from the toe-touching movement. For the 

ankle, the heel raise trial was selected for verification during the iterative process of solving for 

the joint axis and center of rotation, while for the hip, the toe-touching trial was selected. Once 

the j and o vectors, representing the joint axis and center of rotation, had been calculated, they 

were then used to rotate each sensor’s gyroscope and accelerometer signals into the joint CSs in 

order to solve for joint flexion-extension at the ankle, knee, and hip for each motion trial. For the 

knee, angle estimates were calculated based on the equations presented in Subsection 4.3 while 

the ankle and hip angles were calculated based on the equations presented in Subsection 4.6. 

Given the extended duration of each motion trial collected in this study, efforts to mitigate the 

errors associated with gyroscopic drift over time were implemented, such that each joint angle 

was calculated over 60 second increments, zeroed to the final value of the previous time 

increment, and concatenated across the duration of each trial. Finally, joint angle estimates for 

each trial were linearly detrended in order to mitigate any remaining effects of drift on these 

data.  

Using the video recordings, each performed movement was labeled with one of eleven 

movement labels presented in Chapter 5: HS (heels-up squatting), FS (flatfoot squatting), DK 

(dorsiflexed kneeling), PK (plantarflexed kneeling), CCS (sitting on a child sized chair), SK 

(single arm supported kneeling and double arm supported kneeling), CLS (crossed leg sitting), 

SS (side sitting and side leaning to the left or the right), STP (stooping), STD (standing), and 

WLK (walking). The adult chair sitting label was not assigned in this dataset as no adult sized 

chairs were provided during collections. Due to the limited framerate resolution of the video data 

recorded, only one label per second could be attributed to the sensor data.  

A sliding window technique was applied to segment the pseudo-childcare data into 

continuous movement windows; wherein 2 second windows (568 samples) with a consecutive 
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overlap of 1 second between each were derived. The decision to use this window length was 

motivated by the resolution of the labels and the frequency in which postural changes were 

observed within the dataset.  

Based on the dynamic nature of caring for children and the variability in postures observed 

throughout this study, it became apparent that postures adopted in an occupational setting would 

likely not be performed in isolation (e.g., consistently descending and ascending using the same 

posture). Given that individuals were often observed to descend into a high flexion posture, 

change postures while in high flexion, and subsequently ascend from the posture employing a 

separate movement modality, phase of motion labels were added to the movement labels to 

distinguish each posture adopted during descent, static high flexion, and ascent motions. When 

two different knee straining movements occurred within a two second window, the movements 

were labeled in the order they occurred. When one knee straining movement was preceded or 

followed by walking or standing, the knee straining movement would be listed first in the label. 

All movement labels identified for this dataset can be found in Appendix H. 

Similarly, the templates previously created for each of the movements in Chapter 5 save 

standing and walking, were further divided in order to create templates for each posture and 

phase of motion (e.g., the HS template was divided into three new templates: HS_Descent, 

HS_Static, and HS_Ascent). The start and end point of each template were segmented as 

described in Subsection 5.3. The end of descent and the start of ascent were both manually 

identified based on the right knee flexion-extension angle and served to distinguish the start and 

end of the static phase. Therefore, the start of the static phase was identified as the first frame 

indicating no perceivable change in joint angle following descent and end of the static phase was 

identified as the last frame of no perceivable change in joint angle preceding ascent. Combined 

movement templates were additionally created to represent every possible movement transition 

captured by these laboratory-based movements (e.g., standing followed by HS descent or HS 

descent followed by HS ascent). The combination of all movement labels created based on 

templates along with those created from the dataset herein collected can be found in Appendix G. 
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6.4.  Multi-Dimensional Dynamic Time Warping 

Distance-Based k-Nearest Neighbour Classifier 

The following section will describe the development and testing of four mDTW kNN models for 

the classification of postures adopted during the childcare specific activities within a simulated 

childcare environment. The signal processing framework for the testing and validation of these 

models can be seen in Figure 6.4. 

6.4.1.Division of Data for Model Development, Testing, and 

Validation 

Continuous movement windows from a subset of 10 randomly selected participants were 

allocated to the algorithm building datasets (comprised of a larger dataset for development and a 

smaller dataset for testing) while the remaining 2 participants’ data were withheld for model 

validation.  
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6.4.1.1. Model A – Developed with a Combination of Laboratory-

Based Templates and Continuous Windows of Pseudo-

Childcare Movements 

The first classification model developed used the template data previously generated for each 

childcare-inspired motion, now divided by phase, in addition to the continuous movement 

windows generated from the pseudo-childcare activity trials. Neither the templates nor the 

movement windows were scale normalized, however all data was time normalized to 101 points. 

The workflow for this mDTW kNN model can be found in Figure 6.2.  

 

Figure 6.2 Signal processing workflow for the mDTW kNN classification model A. The development dataset for this model 

included both normalized templates for each posture and phase of motion generated from postures performed in isolation in a 

laboratory setting as well as continuous movement windows generated during childcare specific activities within a simulated 

childcare environment. The DTW distances for each joint were calculated between a single time normalized movement window 

and each template and window within the model development dataset. Once each movement window had been compared to all 

development data for the corresponding joint, the DTW distances were combined across joints using custom weighting factors to 

ultimately determine the movement class based on the mDTW distance.   
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6.4.1.2. Model B – Developed with only Continuous Windows of 

Pseudo-Childcare Movements 

The second classification model developed utilized only the continuous movement windows 

generated from the pseudo-childcare activity trials collected in this study to populate the model 

development dataset. Again, no scale normalization was performed on these data windows 

however each window was normalized to 101 datapoints. The workflow for this mDTW kNN 

model can be found in Figure 6.3. 

 

Figure 6.3 Signal processing workflow for the mDTW kNN classification model B. The development dataset for this model 

included only the continuous movement windows generated during childcare specific activities within a simulated childcare 

environment collected as part of this study. The DTW distances for each joint were calculated between a single time normalized 

movement window and each movement window within the model development dataset. Once each movement window had been 

compared to all development data for the corresponding joint, the DTW distances were combined across joints using custom 

weighting factors to ultimately determine the movement class based on the mDTW distance.  
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6.4.1.3. Data Division Strategy a – Stratified Random Partitioning 

A holdout validation method was employed to develop and test the classification models, such 

that stratified random partitioning was employed to divide the continuous movement windows 

from each trial. 80% of the data windows were randomly allocated as development data while 

the remaining 20% were withheld for testing. In the case of model A, all movement templates 

were combined with the 80% in order to form the development dataset.  

6.4.1.4. Data Division Strategy b – Partitioning of Continuous 

Windows from a Single Trial 

In order to test the models on data which more closely resembled the datasets to be classified 

during model validation and ultimately the datasets which would be collected from true childcare 

environments, this second data division model involved the partitioning of all continuous 

movement windows from a single randomly selected childcare activity trial of a single 

participant for testing. The remaining movement windows, combined with all motion templates 

in the case of model A, were allocated for model development.  

6.4.1.5. Validation Dataset 

All continuous movement windows from the two participants excluded from model development 

and testing were assigned to the model validation dataset. Validation of each model was 

performed on the first movement trial from this dataset, containing data from the Block Castle 

Building activity performed by one of the two participants, as well as on the dataset as a whole.  



137 

 

 

 

Figure 6.4 Signal processing workflow for the division of data collected during all pseudo-childcare activities into the algorithm development, testing, and validation datasets. The 

testing datasets for each model were determined based on the division strategy employed, such that in division strategy a) 20% of the windows, as selected through random data 

stratification, were assigned to the testing dataset, while in division strategy b) all windows from a single randomly selected childcare activity trial were assigned to the testing 

dataset. Each model was validated using both a single trial from the algorithm validation dataset as well as the complete validation dataset.  
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6.4.2.mDTW k-Nearest Neighbour Algorithm Development and 

Parameter Tuning 

All appropriate templates and movement windows were combined with their respective motion 

labels in order to create the algorithm building datasets for the development of four kNN 5-fold 

cross-validated classification models (based on the combination of models A and B with data 

division strategies a and b). The labeled feature spaces from which classifications were made 

therefore included a total of 159 possible movement classes in model A and 149 possible classes 

in model B (due to the lack of adult chair sitting within the pseudo-childcare motion trials). All 

movement class labels for models A and B can be found in Appendix G and Appendix H. 

The development and testing datasets were relied upon for iterative parameter tuning based 

on each data division strategy, acknowledging that this tuning might result in overfitting of the 

models to the testing data provided. Following the initial classifier development, values of k were 

varied between 1 and 21 with a step size of 2 to determine a value of k which would minimize 

the cross-validated losses. These permutations yielded a value of k = 1 for data division strategy 

a and a value of k = 17 for data division strategy b.  

Subsequently, the weighting parameters used in the mDTW distance metric calculation were 

optimized using each cross-validated model. Each weighting coefficient was simultaneously 

varied in increments of 0.05 between 0.2 and 1. The final mDTW distance for data division 

strategy a was calculated using eq. (6.1), as follows:  

 𝐷𝑚𝐷𝑇𝑊_𝑎 = 0.4 ∙ 𝐷𝐿𝐴𝑛𝑘𝑙𝑒 + 0.35 ∙ 𝐷𝑅𝐴𝑛𝑘𝑙𝑒 + 0.5 ∙ 𝐷𝐿𝐾𝑛𝑒𝑒 + 0.95 ∙ 𝐷𝑅𝐾𝑛𝑒𝑒 + 

0.2 ∙ 𝐷𝐿𝐴𝐻𝑖𝑝 + 0.45 ∙ 𝐷𝑅𝐻𝑖𝑝. 
(6.1) 

while the mDTW distance for data division strategy b was calculated using eq. (6.2), as follows:  

 𝐷𝑚𝐷𝑇𝑊_𝑏 = 0.4 ∙ 𝐷𝐿𝐴𝑛𝑘𝑙𝑒 + 0.35 ∙ 𝐷𝑅𝐴𝑛𝑘𝑙𝑒 + 0.4 ∙ 𝐷𝐿𝐾𝑛𝑒𝑒 + 0.95 ∙ 𝐷𝑅𝐾𝑛𝑒𝑒 + 

0.6 ∙ 𝐷𝐿𝐴𝐻𝑖𝑝 + 0.8 ∙ 𝐷𝑅𝐻𝑖𝑝. 
(6.2) 

Finally, the size of the warping window was iterated by 5 between 5 and 100 frames of data 

in order to find the value which minimized classification losses. For all models, a value of 50 

was found to be optimal based on these iterative tests.  
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Once all parameters had been tuned, the final classification models were developed and 

subsequently evaluated using the data reserved for testing and validation in order to determine 

each model’s performance when identifying movements from individuals included in the model 

development (testing dataset) as well as from novel participants (validation dataset).  

6.4.3.Classification Error Measurement 

The performance of each classification model using each data division strategy was quantified as 

the ratio of correct classifications to the total number of classifications. Measures of sensitivity 

and specificity were additionally calculated for each movement class through eq. (5.9) and eq. 

(5.10). 

It is noted that each movement class was not equally represented in the algorithm datasets 

given the disparity in movement adoption within the pseudo-childcare collections, therefore the 

balanced accuracy for each movement class was additionally calculated, using eq. (5.11). All 

classifications and analyses of error were completed using Matlab 9.13 (The Mathworks, Release 

R2022b, Natick, MA, USA). 

6.5.  Results 

Classification accuracies achieved when identifying postures adopted during childcare specific 

activities performed within a simulated childcare environment on data from participants on 

which the four mDTW kNN models had (testing) and had not (validation) been developed are 

presented in Table 6.2. When evaluating the performance of each model using the movement 

windows withheld for testing, model Bb (which included only data windows herein collected and 

was tested on continuous movement windows corresponding to one trial from a participant 

included in the model development) was found to outperform all other models, with an overall 

classification accuracy of 80.79%. When analysing the predictions of this model (as can be seen 

in the confusion matrix provided in Appendix I), the high classification accuracy can primarily 

be attributed to the successful identification of static crossed leg sitting. All other movements, 

save one instance of descent to static crossed leg sitting were incorrectly identified. Therefore, it 

is believed that the classification accuracy of this model is highly volatile and would be highly 

dependent on the motions performed in the trial being similar to other data included in the kNN 
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feature space. This belief was further reinforced through the classification of a single trial 

performed by a novel participant (Table 6.2 Validation Data – Single Trial), where the accuracies 

of models Ab and Bb were nearly identical.  

Table 6.2 Model specific accuracies achieved in the classification of motions adopted when caring for and interacting with a child 

within a simulated childcare environment. All values are expressed as percentages. All models relied upon a multi-dimensional 

Dynamic Time Warping distance-based k-Nearest Neighbour algorithm (mDTW kNN) algorithm for movement classification. 

Models Aa and Ab were developed using a combination of laboratory-based templates and continuous windows of pseudo-

childcare movements. Models Ba and Bb were developed using only the continuous windows of pseudo-childcare movements. 

Models Aa and Ba were developed based on 80% of the continuous movement windows from 10 participants’ data and tested on 

the remaining 20%, separated using stratified random partitioning. For models Ab and Bb, all continuous movement windows 

from a single trial of a single participant were partitioned for testing, while the remaining data windows were all employed in 

model development and therefore populated the NN feature space. Validation for all models was performed on a single trial of a 

single participant as well as on all windows of all trials performed by the novel two participants excluded from model 

development.  

Model & Data 

Division Strategy 

Test Data - 

Single Trial 

Validation Data - 

Single Trial 

Validation 

Dataset 

Model Aa 42.22 16.53 26.63 

Model Ba 42.50 16.25 26.66 

Model Ab 35.37 4.20 23.89 

Model Bb 80.79 4.48 23.99 

Given the vast number of potential movement classes within both Models A and B, the 

summed sensitivity-based confusion matrices for each model obtained based on predictions 

made when classifying the appropriate testing data are shown in Table 6.3, wherein the target 

and output classes have been reduced to the movements alone by combining all phases of a 

particular movement (for example dorsiflexed kneeling (DK) represents DK Ascent, DK Ascent 

to Standing, DK Ascent to Walking, DK Descent, DK Descent to Ascent, DK Descent to Side 

Sitting Static, DK Descent to Static, DK Static to Plantarflexed Kneeling Static, DK Static to 

Side Sitting Static, DK Static, DK Static to Ascent, DK Static to Supported Kneeling Ascent, DK 

Static to Supported Kneeling Static, Standing to DK Descent, Stoop to DK Descent, and 

Walking to DK Descent). The classification performance of these same models when identifying 

movement classes from the validation dataset (novel subject data) are shown in the sensitivity-

based confusion matrices presented in Table 6.4. The specificity and balanced accuracy values 

for all models during testing and validation have been presented in Table 6.5 and Table 6.6 

respectively.   
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Table 6.3 Sensitivity-based confusion matrices for the classification of continuous movement windows of testing data containing 

motions performed while completing pseudo-childcare activities in a simulated childcare environment. All values are expressed 

as percentages. All models relied upon a multi-dimensional Dynamic Time Warping distance-based k-Nearest Neighbour 

algorithm (mDTW kNN) algorithm for movement classification. Models Aa (Table A) and Ab (Table C) were developed using a 

combination of laboratory-based templates and continuous windows of pseudo-childcare movements. Models Ba (Table B) and 

Bb (Table D) were developed using only the continuous windows of pseudo-childcare movements. Models Aa and Ba were 

developed based on 80% of the continuous movement windows from 10 participants’ data and tested on the remaining 20%, 

separated using stratified random partitioning. For models Ab and Bb, all continuous movement windows from a single trial of a 

single participant were partitioned for testing, while the remaining data windows were all employed in model development and 

therefore populated the NN feature space. Bolded cells denote correct classifications. All movement classes have been summed 

and expressed as only the motion performed in the first second of each window, as follow: heels-up squatting (HS), flatfoot 

squatting (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), sitting on an adult sized chair(ACS), sitting on a child 

sized chair (CCS), single arm supported kneeling and double arm supported kneeling (SS), crossed leg sitting (CLS), side sitting 

and side leaning to the left or the right (SS), stooping (STP), standing (STD), and walking (WLK). *Target Class represents the 

correct class of each template or sequence. **Output Class represents the class predicted by the classifier. 

A              
Model Aa 

Templates: Laboratory based motion phase templates and pseudo-childcare data 

Test data: 20% of pseudo-childcare data selected through random stratification  

T
ar

g
et

 C
la

ss
*

 

CLS 48.2 2.3 0.0 1.0 2.3 4.0 25.4 1.9 6.8 7.8 0.5  

STD 2.8 35.0 0.7 8.3 0.0 11.1 11.8 19.4 5.6 4.2 1.4  

HS 26.7 1.7 30.0 10.0 1.7 8.3 18.3 1.7 0.0 1.7 0.0  

WLK 9.0 11.4 1.2 28.6 2.0 4.5 6.9 26.5 5.7 1.6 2.4  

SK 15.5 1.5 0.6 5.9 32.5 7.7 14.2 8.7 6.5 5.9 0.9  

PK 12.8 0.3 0.0 0.6 7.1 42.4 11.6 2.7 7.7 13.4 1.5  

SS 11.7 0.8 0.1 0.9 3.0 3.8 72.2 1.5 2.3 3.0 0.6  

STP 4.5 5.3 3.3 16.0 1.6 9.4 7.0 41.0 5.7 2.9 3.3  

DK 4.6 0.0 0.0 1.2 4.6 7.0 6.7 12.5 56.3 4.9 2.1  

CCS 27.8 1.2 0.0 0.6 3.0 0.6 5.9 11.8 3.0 46.2 0.0  

FS 1.8 1.8 7.0 1.8 0.0 7.0 10.5 10.5 14.0 1.8 43.9  

 CLS STD HS WLK SK PK SS STP DK CCS FS  

Output Class** 
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B 
             

Model Ba 

Templates: Pseudo-childcare data 

Test data: 20% of pseudo-childcare data selected through random stratification 

T
ar

g
et

 C
la

ss
 

CLS 48.4 2.3 0.0 1.0 2.3 4.0 25.3 1.8 6.8 7.8 0.5  

STD 2.8 35.0 0.7 8.3 0.0 11.1 11.8 19.4 5.6 4.2 1.4  

HS 26.7 1.7 31.7 10.0 1.7 8.3 18.3 1.7 0.0 0.0 0.0  

WLK 9.0 11.4 1.2 28.6 2.0 4.5 6.9 26.5 5.7 1.6 2.4  

SK 16.1 1.5 1.2 5.9 33.1 8.0 15.2 5.3 6.8 5.9 0.9  

PK 13.1 0.3 0.0 0.6 7.1 43.3 11.6 1.8 7.7 13.4 1.2  

SS 11.8 0.8 0.3 1.0 3.2 4.1 71.9 1.1 2.2 3.3 0.5  

STP 4.5 5.3 3.3 16.0 1.6 9.4 7.0 41.0 5.7 2.9 3.3  

DK 4.6 0.0 0.0 1.2 4.6 7.0 7.0 6.4 56.9 10.1 2.1  

CCS 27.8 1.2 0.0 0.6 3.0 0.6 10.1 3.6 7.1 46.2 0.0  

FS 1.8 1.8 7.0 1.8 0.0 7.0 10.5 10.5 14.0 1.8 43.9  

 CLS STD HS WLK SK PK SS STP DK CCS FS  

Output Class 

 

C 
             

Model Ab 

Templates: Laboratory based motion phase templates and pseudo-childcare data 

Test data: Randomly selected single continuous trial from pseudo-childcare data 

T
ar

g
et

 C
la

ss
 

FS 0.0 57.1 28.6 0.0 14.3 0.0 0.0 0.0 0.0 0.0 0.0  

CLS 0.0 38.7 0.0 49.8 0.0 5.1 0.9 0.5 0.5 4.1 0.5  

WLK 0.0 0.0 0.0 25.0 50.0 25.0 0.0 0.0 0.0 0.0 0.0  

STD 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

DK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

SS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

ACS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

HS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

SK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

CCS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

STP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

 FS CLS WLK STD DK SS ACS HS SK CCS STP  

Output Class 
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D 
             

Model Bb 

Templates: Pseudo-childcare data 

Test data: Randomly selected single continuous trial from pseudo-childcare data 

   

T
ar

g
et

 C
la

ss
 

FS 0.0 57.1 14.3 0.0 14.3 14.3 0.0 0.0     

CLS 0.0 87.0 0.0 0.0 0.0 6.0 1.8 5.5     

WLK 0.0 0.0 0.0 0.0 50.0 50.0 0.0 0.0     

STD 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0     

DK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0     

SS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0     

SK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0     

CCS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0     

 FS CLS WLK STD DK SS SK CCS     

Output Class     

Table 6.4 Sensitivity-based confusion matrices for the classification of continuous movement windows of validation data 

containing motions performed while completing pseudo-childcare activities in a simulated childcare environment. All values are 

expressed as percentages. All four models relied upon a multi-dimensional Dynamic Time Warping distance-based k-Nearest 

Neighbour algorithm (mDTW kNN) algorithm for movement classification. Bolded cells denote correct classifications. All 

movement classes have been summed and expressed as only the motion performed in the first second of each window, as follow: 

heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), sitting on an adult sized 

chair(ACS), sitting on a child sized chair (CCS), single arm supported kneeling and double arm supported kneeling (SS), crossed 

leg sitting (CLS), side sitting and side leaning to the left or the right (SS), stooping (STP), standing (STD), and walking (WLK). 

*Target Class represents the correct class of each template or sequence. **Output Class represents the class predicted by the 

classifier. 

A              
Model Aa  

Validation on all movement windows from two participants withheld from the algorithm building dataset 

T
ar

g
et

 C
la

ss
*

 

STD 3.9 25.5 1.0 25.5 21.6 19.6 0.0 0.0 0.0 2.9 0.0  

WLK 6.3 21.0 2.5 9.4 19.4 19.4 5.6 3.1 3.1 3.8 6.9  

HS 1.0 2.9 25.4 6.3 9.3 0.5 6.8 7.8 14.6 21.0 4.4  

CLS 5.9 2.4 0.4 33.2 32.9 6.5 0.3 0.4 0.4 2.1 15.4  

SS 12.9 9.4 1.3 18.5 34.3 14.6 0.4 3.0 2.1 0.4 3.0  

STP 11.6 14.7 1.9 8.4 15.9 25.9 3.4 0.9 7.2 4.1 5.9  

FS 0.0 6.6 14.8 4.9 14.8 0.0 24.6 0.0 4.9 29.5 0.0  

DK 0.8 0.0 7.2 0.8 9.6 0.8 0.0 42.4 5.6 24.0 8.8  

PK 1.4 1.4 0.0 27.8 16.7 4.2 4.2 6.9 15.3 4.2 18.1  

SK 0.0 0.0 0.3 17.6 10.1 7.8 7.8 2.0 14.3 26.1 14.0  

CCS 0.9 0.9 0.0 21.5 15.2 0.9 0.0 0.0 9.7 5.7 45.3  

 STD WLK HS CLS SS STP FS DK PK SK CCS  

Output Class** 
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B 
             

Model Ba 

Validation on all movement windows from two participants withheld from the algorithm building dataset 

T
ar

g
et

 C
la

ss
 

STD 3.9 25.5 1.0 25.5 21.6 19.6 0.0 0.0 0.0 2.9 0.0  

WLK 6.3 21.0 1.9 10.0 19.4 19.4 5.6 3.1 3.1 4.4 6.3  

HS 1.0 2.9 23.9 4.4 9.3 0.5 7.8 10.2 15.6 18.0 6.3  

CLS 5.7 2.5 0.4 33.4 32.8 6.2 0.3 0.5 0.6 1.8 15.8  

SS 12.9 9.4 1.3 18.5 34.3 14.6 0.4 3.0 2.1 0.4 3.0  

STP 11.9 14.7 1.3 8.4 16.3 25.6 3.8 0.9 7.2 4.1 5.9  

FS 0.0 6.6 26.2 4.9 14.8 0.0 31.1 0.0 4.9 11.5 0.0  

DK 0.8 0.0 12.8 1.6 0.8 0.8 4.0 42.4 9.6 18.4 8.8  

PK 1.4 1.4 6.9 18.1 16.7 4.2 0.0 6.9 15.3 11.1 18.1  

SK 0.0 0.0 5.0 15.7 12.3 0.3 4.2 2.0 14.8 28.0 17.6  

CCS 0.9 0.9 0.0 21.5 15.2 0.9 0.0 0.0 9.7 5.7 45.3  

 STD WLK HS CLS SS STP FS DK PK SK CCS  

Output Class 

 

C 
              

Model Ab 

Validation on all movement windows from two participants withheld from the algorithm building dataset 

T
ar

g
et

 C
la

ss
 

STD 6.9 28.4 0.0 25.5 21.6 9.8 0.0 2.0 0.0 2.9 2.9 0.0  

WLK 7.5 29.0 1.3 16.9 18.8 8.1 0.6 1.3 3.8 1.9 10.6 0.6  

HS 1.5 4.9 16.6 2.4 13.2 1.0 0.5 1.5 39.5 13.2 3.4 2.4  

CLS 3.5 2.5 0.3 24.5 35.7 2.4 0.4 1.0 1.0 0.3 28.1 0.1  

SS 13.3 3.9 0.0 17.2 48.5 3.0 0.0 0.0 1.3 5.6 7.3 0.0  

STP 6.9 17.8 0.9 12.8 18.8 13.1 0.3 8.1 9.7 1.9 9.1 0.6  

FS 1.6 4.9 4.9 1.6 18.0 0.0 0.0 8.2 19.7 27.9 3.3 9.8  

DK 0.0 1.6 3.2 1.6 0.8 0.0 0.0 19.2 39.2 7.2 14.4 12.8  

PK 2.8 0.0 8.3 22.2 20.8 1.4 0.0 5.6 9.7 1.4 23.6 4.2  

SK 0.3 0.0 2.0 19.9 6.7 0.6 3.9 0.3 17.9 1.1 47.3 0.0  

CCS 0.0 2.9 0.0 10.6 9.5 0.0 0.0 0.0 5.4 3.4 68.2 0.0  

ACS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

 STD WLK HS CLS SS STP FS DK PK SK CCS ACS  

Output Class   
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D 
             

Model Bb 

Validation on all movement windows from two participants withheld from the algorithm building dataset 

T
ar

g
et

 C
la

ss
 

STD 8.8 27.5 0.0 24.5 21.6 9.8 0.0 2.0 0.0 2.9 2.9  

WLK 8.8 27.0 0.0 16.9 21.3 8.1 0.0 1.3 4.4 1.9 10.6  

HS 1.5 4.4 15.1 2.4 13.2 1.5 1.5 0.5 42.4 13.7 3.9  

CLS 2.5 2.3 0.5 25.2 35.8 2.1 0.4 0.9 0.9 0.5 28.7  

SS 13.7 3.4 0.0 18.5 47.6 2.6 0.0 0.0 1.3 5.6 7.3  

STP 6.6 17.2 0.9 13.1 19.4 12.2 0.3 8.4 10.6 1.6 9.7  

FS 0.0 6.6 18.0 1.6 18.0 0.0 0.0 3.3 19.7 29.5 3.3  

DK 0.0 1.6 16.8 1.6 0.8 0.0 0.0 19.2 40.0 5.6 14.4  

PK 2.8 0.0 6.9 20.8 26.4 0.0 0.0 5.6 9.7 2.8 25.0  

SK 0.3 0.0 2.8 20.2 6.7 0.3 3.1 0.3 17.4 1.1 47.9  

CCS 0.0 2.9 0.0 10.6 9.5 0.0 0.0 0.0 5.4 3.4 68.2  

 STD WLK HS CLS SS STP FS DK PK SK CCS  

Output Class 

Table 6.5 Specificity values achieved in the classification of continuous movement windows of testing and validation data 

containing motions performed while completing pseudo-childcare activities in a simulated childcare environment. All values are 

expressed as percentages relative to the total number of classified windows belonging to other motions. All movement classes 

have been summed and expressed as only the motion performed in the first second of each window, as follow: heels-up squatting 

(HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), sitting on an adult sized chair(ACS), sitting 

on a child sized chair (CCS), single arm supported kneeling and double arm supported kneeling (SS), crossed leg sitting (CLS), 

side sitting and side leaning to the left or the right (SS), stooping (STP), standing (STD), and walking (WLK). (When a class was 

not present within the target or output classes, that class is marked as NA).  

 Data 

Type 

Posture DK PK FS HS CCS ACS SK STP STD CLS SS WLK 

Classifier Type  

T
es

ti
n

g
 Model Aa 90.2 90.3 97.7 98.9 89.9 NA 94.4 87.9 95.7 81.7 74.9 94.4 

Model Ba 89.8 90.2 97.8 98.7 89.1 NA 94.4 90.4 95.7 81.5 74.6 94.3 

Model Ab 96.6 NA 100.0 98.8 90.3 97.7 98.8 98.8 43.5 0.0 87.5 97.7 

Model Bb 98.4 NA 100.0 NA 94.0 NA 97.9 NA 100.0 0.0 92.2 99.5 

V
al

id
at

io
n

 Model Aa 95.0 85.4 93.2 96.0 73.0 NA 84.4 81.9 86.4 67.1 58.6 87.2 

Model Ba 94.5 84.7 94.0 92.9 71.9 NA 86.2 84.3 86.6 68.6 59.0 87.2 

Model Ab 93.4 74.1 97.3 96.3 48.1 95.9 89.3 92.3 87.6 65.9 51.9 83.5 

Model Bb 93.9 73.5 97.6 93.2 47.5 NA 89.1 93.0 88.6 65.3 51.5 84.1 
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Table 6.6 Balanced accuracy values achieved in the classification of continuous movement windows of testing and validation 

data containing motions performed while completing pseudo-childcare activities in a simulated childcare environment. All values 

are expressed as percentages. All movement classes have been summed and expressed as only the motion performed in the first 

second of each window, as follow: heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), plantarflexed 

kneeling (PK), sitting on an adult sized chair(ACS), sitting on a child sized chair (CCS), single arm supported kneeling and 

double arm supported kneeling (SS), crossed leg sitting (CLS), side sitting and side leaning to the left or the right (SS), stooping 

(STP), standing (STD), and walking (WLK). (When a class was not present within the target or output classes, that class is 

marked as NA). 

 Data 

Type 

Posture DK PK FS HS CCS ACS SK STP STD CLS SS WLK 

Classifier Type  

T
es

ti
n

g
 Model Aa 73.0 66.0 71.0 64.0 68.0 NA 63.0 64.0 65.0 65.0 74.0 61.0 

Model Ba 73.0 67.0 71.0 65.0 68.0 NA 64.0 66.0 65.0 65.0 73.0 61.0 

Model Ab 48.0 NA 50.0 49.0 45.0 49.0 49.0 49.0 22.0 19.0 44.0 49.0 

Model Bb 49.0 NA 50.0 NA 47.0 NA 49.0 NA 50.0 43.0 46.0 50.0 

V
al

id
at

io
n

 Model Aa 69.0 50.0 59.0 61.0 59.0 NA 55.0 54.0 45.0 50.0 46.0 54.0 

Model Ba 68.0 50.0 63.0 58.0 59.0 NA 57.0 55.0 45.0 51.0 47.0 54.0 

Model Ab 56.0 42.0 49.0 56.0 58.0 48.0 45.0 53.0 47.0 45.0 50.0 56.0 

Model Bb 57.0 42.0 49.0 54.0 58.0 NA 45.0 53.0 49.0 45.0 50.0 55.0 

While the overall performance of all models was quite similar when identifying movement 

classes from continuous pseudo-childcare activities completed within a simulated childcare 

environment, the sensitivity values reveal subtle differences between the data division strategies. 

Models developed using strategy b, where all movement windows save those from a single trial 

were used in development, were most accurate at identifying child chair sitting and side sitting 

(models Ab and Bb both achieving 68.2% accuracy for CCS and 48.5% and 47.6% accuracy for 

SS respectively). Models developed using strategy a, where 20% of the continuous movement 

windows were withheld for testing, had a higher number of postures which were identified 

correctly at accuracies greater than 30% (model Aa succeeding in identifying CLS, SS, DK, and 

CCS with > 30% accuracy, model Ba identifying these postures as well as FS with >30% 

accuracy). It appears this distribution of minor classification success may have led to the models 

developed using data division strategy a slightly outperforming those developed using a greater 

proportion of the continuous motion windows. However, there appears to be no marked benefit 

to including the movement templates generated in Chapter 5 when classifying the windows of 

continuous data collected during pseudo childcare activities.  
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6.6.  Discussion 

In this study, four multi-dimensional Dynamic Time Warping distance-based kNN algorithms for 

movement classification were applied to data acquired during pseudo-childcare activities in a 

simulated childcare environment. The proposed modifications to the developed quantification 

framework proved effective in calculating flexion-extension angles for the ankles, knees, and 

hips in continuous childcare tasks however the performance of the classification models, 

developed using a framework previously validated using laboratory-based simulations of 

childcare-inspired postures, was markedly decreased when identifying these same postures from 

continuous motion trials. Classification results of the present work support the previously 

presented theory that classification models developed within controlled environments, such as in 

laboratory settings, with or without the addition of real-world data within the model 

development, may underperform when applied to real-world data (Bastian et al., 2015; 

Gyllensten & Bonomi, 2011; van Hees et al., 2013). The dataset here presented for classification 

was collected within a laboratory environment, however it is believed that the study design and 

simulated childcare environment, in combination with the presence of a child, who was likely 

immune to the Hawthorne effect (McCambridge, Witton, & Elbourne, 2014), elicited movements 

akin to those which would be adopted in the real-world.  

The accuracy of the models developed using data division strategy a, wherein a stratified 

random partitioning holdout validation method was employed to create the development and 

testing datasets, consistently outperformed those developed using data division strategy b, where 

all continuous data windows, with the exception of those belonging to a single activity trial for 

one participant, were included in the development dataset. With stratified random partitioning, 

the initial dataset is divided into subgroups known as strata. These strata typically reflect the 

same movement classes found within the initial dataset with the caveat that representation of all 

classes should be present within each stratum. Given that the number of windows in the dataset 

here collected representing static postures far exceeded those of all transitions, the percentage of 

transitions included in the development strata far exceeded that found in the initial dataset. It is 

likely due to this new distribution in data that a higher classification accuracy was achieved 

when classifying the stratified data in comparison to the classification of continuous movement 
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windows (as observed in the distribution of classification sensitivities presented in Table 6.3 A 

and B when compared to those in Table 6.3 C and D). This assumption was further supported 

when considering the balanced accuracies achieved during classification of the validation 

dataset, where overall classification accuracies of 54.7%, 55.2%, 50.6% and 50.6% for models 

Aa, Ba, Ab, and Bb respectively were attained. The differences in the achieved accuracies 

compared to the balanced accuracies (26.63%, 26.66%, 23.89%, and 23.99% for models Aa, Ba, 

Ab, and Bb respectively) suggest that the disparities in class sizes within the model development 

data played a marked role in misclassifications of each model. The identification of transitions 

from real-world data was also shown to be problematic in work by Gyllensten and Bonomi 

(2011). Therefore, future efforts to apply these models to the classification of movements 

adopted in childcare settings should pay particular attention to the equality of representation of 

each movement class within the model development data in order to increase the accuracy of 

successfully identifying movement transitions.  

When classifying windows of continuous motion, each movement class predicted should be a 

possible logical progression from the class predicted in the prior window. A first attempt at 

correcting the predictions made when classifying the validation data was implemented through a 

prior knowledge correction module, wherein illogical transitions (e.g., from HS descent to 

walking), were replaced based on the prediction of the previous and subsequent window. This 

approach was not found to improve the classification accuracies of any of the developed models 

given that the correction was dependent on the motion estimate of the first window being correct. 

Therefore, future efforts should investigate the application of probabilistic weightings during 

movement classification in order to successfully identify the postures performed however, this 

development was beyond the scope of the current study.  

The losses of performance observed in the four classification models presented are likely 

attributable to variations in movements not present within the initial laboratory trials. In 

particular, the floor sitting movements performed for template generation involved the adoption 

of very specific postures (either sitting with legs crossed in front of the body or sitting with both 

knees bent and feet tucked posteriorly towards either hip) while in the pseudo-childcare trials, 

floor sitting took on a wide variety of postures (often characterized by one or both legs being 

extended further than had been prescribed in the controlled trials). It is noted also that at times, 
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postures identified as side leaning during labeling of the pseudo-childcare trials were more akin 

to lying on one’s side rather than simply using an arm to support the seated posture. Given the 

limited number of movement labels assigned to all motions observed in these trials it is likely 

that the variations in angular kinematics within each movement class resulted in confusion 

within the models. It is possible that additional templates generated during variations of these 

postures or an increased number of movement classes which better described the seated postures 

observed may have improved the classification accuracies related to floor sitting movements.  

Similarly, when caring for and interacting with their child, participants were often observed 

to adopt a stooped posture when standing or walking. This increase in hip flexion observed 

across postures but absent from the laboratory-based movement templates may have contributed 

to increased misclassifications; given an increase in similarities between joint angles during 

standing, stooping, the stance phase of walking, and even during seated postures in cases where 

the participant’s legs were outstretched before them. Gyllensten and Bonomi (2011) similarly 

reported a tendency for participants to assume a posture characterized by increased forward 

leaning in daily life when compared to laboratory settings, therefore this postural 

characterization must be considered when adapting models for movement classifications in the 

real-world. The addition of a metric, such as the sensor-based accelerations or the expression of 

the gravitational vector in local sensor coordinates, might allow for better representation of the 

differences between dynamic and static postures as well as between standing and seated postures 

within the distance calculation and therefore better distinction between postures overall. 

Perhaps the main limitations of applying the developed classification framework to the 

identification of movements during pseudo-childcare activities however lies in the high 

variability observed in postural adoption in real-world settings, leading to a lack of symmetry 

between the lower-limbs and therefore an increase in kinematic overlap between movements. 

Given the combination of angular kinematics from both legs in the calculation of distance 

metrics by which the classification was performed, any instance where the posture adopted by 

one leg was different than that of the opposite leg, as would be observed in the case of a lunging 

posture, where one leg might be said to be squatting while the other would be kneeling, would 

lead to confusion within the classifier. Instances such as this should be considered in future 

model development wherein a greater number of trials representing these motions could be 



150 

 

 

collected and added to the templates of existing motions or labeled as new motions for 

classification. Further, the methods used in template generation for model A must here be 

discussed. It was previously explained in Subsections 5.3 that each motion template was 

generated through manual segmentation of the movement sequence of the right knee. This 

segmentation proved effective in the classification of laboratory-based data in Chapter 5 

regardless of participants’ leg dominance (therefore regardless of the leg with which they 

commenced each trial). When further dividing these templates into phases of motion (as 

explained in Subsection 6.3) however, this segmentation method may have led to confusion 

within the model given that seven participants included in the dataset from Chapter 5 were left 

leg dominant. Templates for these participants may not have represented the full range of motion 

experienced by the left leg during each movement which may have resulted in increased 

misclassifications when postures were initiated with the left leg in the current analysis. Thus, in 

future development, the templates for the left and right legs could be mirrored in order to 

increase the sample for each joint and reduce the risk of misclassification due to right knee-based 

segmentation. By focusing future development on these identified potential sources of error, a 

more thorough report on postural adoption and high flexion exposures at the knee can be 

obtained from data collected in occupational settings.  

It is clear based on the data collected in this study that postures adopted in real-world settings 

are not as easily distinguishable as they might be when performed under controlled conditions. 

More refined movement templates or shorter windows of continuous movement might be created 

based on data similar to those measured in this study which would encompass the variability of 

real-world movement while providing further refinement to the class labels, however, this was 

impossible to address in the present study. The length of the movement windows generated 

herein was dictated by the time-based resolution and the visual quality of the videos from which 

each movement label was extracted. Therefore, to address the issue of precision in real-time 

annotations, future validation studies should seek to utilize high resolution video recordings from 

which additional precision during the a posteriori annotation of labels can be obtained. The issue 

of lack of representativeness of real-world data in laboratory-derived classifiers has previously 

been discussed by van Hees et al. (2013). In their study, they simulated an underrepresentation of 

movement classes through eight models seeking to quantify daily walking time to analyze the 
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effects of study design on model performance. Ultimately, van Hees et al. (2013) highlighted the 

limitations associated with classifying real-world data using models which are not effectively 

developed for the complex data they seek to classify. Bastian et al. (2015) presented a possible 

means of overcoming some of the limitations of a laboratory-derived classifier by recalibrating 

the model to include a portion of the real-world data in its training dataset. While this 

recalibration method led to improvements in the classification of certain movement classes, it 

was also found to decrease the accuracy of others (Bastian et al., 2015). The present work is 

complementary to these two studies in that the laboratory-based templates generated for model 

development were directly inspired by the postures to be classified within childcare 

environments, and that the developed models included windows of continuous pseudo-childcare 

movements in an attempt to improve the accuracy of postural identification. However, the results 

here presented also similarly suggest that the complexity of real-world data may preclude these 

movements from being classified using any model developed for laboratory-based movement 

classification.  

6.7.  Conclusion 

In this study, the feasibility of extending the developed multi-dimensional Dynamic Time 

Warping distance-based Nearest Neighbour classification algorithm to identify and measure 

postures frequently adopted when performing childcare specific activities within a simulated 

childcare environment was explored. The sensor to segment calibration and proposed 

modifications to the complementary filters proved provided an effective means by which lower-

limb flexion-extension joint kinematics could be measured in continuous data. Subsequently, 

four multi-dimensional Dynamic Time Warping distance-based k-Nearest Neighbour 

classification algorithms were developed using a combination of controlled laboratory-based 

movements and windows of continuous movements performed in a simulated childcare 

environment. Their performances were compared when classifying continuous windows of 

pseudo-childcare activities. While the framework used in the development of these models was 

found to be stable in the classification of controlled movements, their performance was markedly 

lower when identifying postures performed in real-world mimicking trials. It is believed that this 

decrease in classification accuracy may be due to the variability in postural adoption which 
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cannot be replicated during laboratory-based movement simulations and as such it is likely that 

laboratory-derived classification algorithms are not well suited to the classification of motions in 

occupational settings. This study further demonstrated that combining laboratory and real-world 

data in the development of the mDTW kNN model was not sufficient to mitigate these issues. 

Future work should therefore seek to expand upon the algorithm development dataset by 

increasing the number of templates representing dynamic transitions into and out of high knee 

flexion postures and well as those representing a greater range of postural variability based on 

data collected in non-controlled motion trials. 
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Chapter 7  

Conclusions 

7.1.  Problem Restatement 

Knee osteoarthritis (OA) has been characterized as a heterogeneous disease which may arise 

from a molecular, anatomic, and physiologic mechanistic pathways, all leading to joint 

disfunction and damage. Several studies have sought to understand the mechanical factors 

arising from the repetitive and prolonged adoption of high flexion postures in occupational 

settings as potential contributors to disease progression across a plethora of occupations, yet to 

date only a handful of studies have explored the potential for OA initiation and progression due 

to childcare related exposures at the knee. Therefore, this thesis aimed to characterize the 

adoption of high knee flexion postures in childcare and to develop a means by which these 

postures could be identified and measured in occupational settings using non-laboratory-based 

wearable sensing technologies.  

7.2.  Specific Thesis Objectives: Revisited 

This thesis explored three specific objectives in order to accomplish its overarching global 

objectives. The first of these specific objectives involved the characterization of the postural 

requirements of childcare as they relate to high knee flexion and was accomplished through the 
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observational analysis of video recordings performed in Study 1 (Chapter 3). Findings of this 

study constitute the first attempt to quantitatively and objectively evaluate exposures of high 

knee flexion in childcare workers in North America. It was revealed that both the exposure- and 

frequency-based thresholds associated with increased incidences of knee OA development were 

exceeded within a typical working day when caring for children of all ages. Further, this 

investigation led to a characterization of the childcare specific tasks which commonly elicited the 

adoption of high knee flexion postures.   

The second specific objective involved the application, extension, and validation of sensor to 

segment alignment algorithms through which inertial sensor data collected from the lower limbs 

could be calibrated and used to measure ankle, knee, and hip flexion-extension kinematics in 

multiple high flexion postures. This objective relates specifically to the measurement component 

of the second global objective and was accomplished through Study 2 (Chapter 4). Through 

modifications to the Seel joint axis algorithm for spherical joints, inertial based estimates of 

flexion-extension angles for all joints were found to be strongly correlated with those obtained 

through a “gold-standard” optical-based motion capture system. The results of this study 

therefore suggest that the constrained Seel knee axis and the iterative Seel spherical axis 

algorithms present an effective solution for the sensor to segment alignment necessary for the 

measurement of joint kinematics across multiple high knee flexion postures frequently adopted 

in childcare settings.  

The third and final specific objective of this thesis involved the development of a machine 

learning based classification model capable of identifying the high knee flexion postures 

frequently adopted by childcare workers. In order to address this objective, a multi-dimensional 

Dynamic Time Warping distance-based framework for the classification of these postures was 

developed based on in vivo simulations of these postures in a controlled laboratory-based 

environment (Study 3, Chapter 5). Results of this study suggested that isolated high knee flexion 

postures performed within a controlled environment could be effectively identified based on a 

combination of Dynamic Time Warping distances between single trials of high flexion motions 

and previously identified movement sequences. The performance of this framework was then 

evaluated through four classification models tasked with identifying high flexion postures 

adopted during the completion of pseudo-childcare activities within a simulated childcare 
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environment, conditions which were believed to mimic real-world measures (Study 4, Chapter 

6). The models evaluated in this study were found to be incapable of accurately identifying the 

motions performed to a level which would be considered satisfactory to accurately report on 

postural adoption within a childcare setting. This investigation led to the conclusion that real-

world data is characterized by increased postural variability which cannot be replicated during 

controlled movement simulations in laboratory settings and as such further development of the 

movement templates representing a greater range of postural variability is required. 

Nevertheless, these models provide a foundation for the identification of high knee flexion 

postures frequently adopted in childcare settings based solely on wearable sensor data.  

7.3.  Global Thesis Objectives: Revisited 

The research presented in this thesis was driven by two global objectives. The first was to 

explore the adoption of high knee flexion postures within occupational childcare environments in 

order to further our understanding of the associations, if any, between childcare related 

exposures and the potential for knee joint degeneration and the initiation and progression of knee 

OA. Findings presented in Study 1 (Chapter 3) affirm the belief that childcare workers adopt 

high knee flexion postures in excess of both the frequency- and duration-based thresholds for 

increased risk of knee OA development. The secondary overarching objective lay in the 

development of a framework through which these knee straining postures could be identified and 

measured using solely the measures obtained from inertial-based wearable sensors. The results 

from Study 2 (Chapter 4) demonstrate the possibility of measuring occupational joint kinematics 

using only arbitrarily mounted inertial sensors calibrated based on a series of brief calibration 

movements which can be performed in any environment. Based on these angle estimates, a 

classification framework was developed in Study 3 (Chapter 5) by which each knee straining 

posture simulated in a controlled laboratory-based environment could be identified. This 

framework was ultimately applied to the classification of pseudo-real-world data, wherein results 

suggest that the laboratory-derived model was insufficient in identifying postures performed in 

non-controlled environments (Study 4, Chapter 6). Ultimately, the second global objective was 

satisfied within controlled environments however future development is required prior to 

applying the developed models to the measurement of exposures in childcare settings.  



156 

 

 

7.4.  Conclusions 

The observational analysis of eighteen childcare workers caring for infant, toddler, and 

preschool-aged children revealed ten frequently adopted postures with varying degrees of knee 

flexion. Of those postures, eight were found to elicit knee flexion angles surpassing 120°: 

dorsiflexed kneeling, plantarflexed kneeling, single and double arm supported kneeling, heels-up 

squatting, sitting on the floor, side sitting or side leaning, and sitting on child-sized furniture. The 

mean frequency of postural adoption and mean cumulative times spent in high flexion postures 

were each found to exceed the previously reported thresholds for OA development. These knee 

straining postures were observed to be adopted for the longest durations within periods of 

structured activities, playing, and feeding. These results therefore confirm the likelihood that risk 

of knee OA development is higher in childcare workers given the exposure related demands of 

this occupation.  

A selection of ten postures, inspired by those observed the video-based analysis, were 

subsequently simulated within a controlled laboratory environment, and from these simulations, 

joint flexion-extension angles for the ankle, knee, and hip were estimated using inertial data. 

These kinematic estimates were obtained following sensor to segment calibration using both the 

constrained Seel knee axis algorithm as well as the iterative Seel spherical axis algorithm, 

developed herein, using custom complementary filters and subsequently compared to gold-

standard optical motion capture-based kinematic measures. This study represents the first attempt 

at applying the sensor to segment calibration methods towards the measurement of high knee 

flexion postures. Findings revealed the accuracies of the estimated lower-limb joint flexion-

extension angles in high knee flexion postures, when compared to optical motion capture-based 

methods, to be similar to those previously reported during gait. These algorithms developed for 

sensor calibration and kinematic analyses will ultimately support the objective measurement of 

high flexion postural adoption within occupational settings.  

The flexion-extension angle estimates obtained from each childcare-inspired motion then 

served as the basis for the development of a multi-dimensional Dynamic Time Warping distance-

based k-Nearest Neighbour classification algorithm. A series of movement templates were 

generated from all high flexion trials and subsequently compared against the complete movement 
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sequences in order to obtain measures of waveform similarities for each joint through Dynamic 

Time Warping. These measures were subsequently combined in order to calculate the multi-

dimensional Dynamic Time Warping distance with which postural classifications were 

determined. This is the first known attempt to classify specific variations of high knee flexion 

postures and generally high classification rates were achieved when identifying childcare-

inspired postures in data from participants both included and precluded from the algorithm 

development.  

Finally, the feasibility of applying the developed classification framework to the recognition 

of high knee flexion postures adopted during continuous pseudo-childcare activities within a 

simulated childcare environment was evaluated. While acceptable classification rates were 

achieved when identifying childcare-inspired postures performed in a controlled laboratory 

environment with the developed framework, the performance of four developed models in 

identifying movements from continuous real-world data was markedly lower. While these 

laboratory-derived classification models are therefore not well suited for the classification of 

motions in occupational settings, the results of this feasibility study revealed key differences 

between laboratory and real-world data which will be essential in the future refinement of these 

models towards being applied to the qualification and quantification of high knee flexion 

exposures in childcare environments.  

In summary, the work presented within this thesis points to the possibility of an association 

between the frequency and duration of adopted high knee flexion postures in occupational 

childcare and a potential for increased risk of knee OA initiation and progression given the 

similarity of exposure levels in childcare to those observed in other industries in which this 

association exists. Based on these findings, a wearable and computational solution towards 

measuring these postures and closing the gap between the mechanistic and occupational 

literature relating to high knee flexion postural adoption in childcare was offered. The validated 

approach to automatic IMU calibration and lower extremity motion analysis presented herein 

provides a means by which quantitative exposure data can be captured in occupational settings; 

while the proposed classification framework provides a necessary foundation for the 

identification of occupational postures based on inertial data. Additionally, potential shortfalls of 

building such a classification model primarily on laboratory-based data were provided in order to 
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support future development towards successful movement classification in real-world settings. 

This work therefore satisfies the original objectives of this thesis while providing guidance for 

further work, which has the potential to provide valid exposure assessments in fields beyond the 

scope of this project.  
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Appendix A 

Body Segment Coordinate System for the Lower Limbs 

The following section will outline the segmental coordinate system definitions which were 

utilized for kinematic calculations in Chapter 4 based on optical motion capture data following 

ISB guidelines (Wu & Cavanagh, 1995a; Wu et al., 2002) with the addition of functional joint 

center calculations for the hip. These coordinate systems were implemented in Visual 3D (Visual 

3D, C-Motion Inc., Germantown, MD). The standard pelvis system used in Visual 3D is the 

Coda pelvis, this segment was constructed prior to constructing a virtual pelvis which was used 

in hip joint angle calculations. Similarly, a standard foot segment was created in Visual 3D in 

addition to a virtual foot segment which was used in the ankle joint angle calculations. 

Table A.1 Segmental coordinate system definitions utilized for the calculation of ankle, knee, and hip flexion-extension 

kinematics based on optical motion capture data. 

Segment Description 

Pelvis (Coda) 

Origin Midpoint between the left and right anterior superior iliac spines 

Z-axis Vector passing from the origin towards the right anterior superior iliac 

spines 

Y-axis Cross product of the temporary vector from the Origin towards the 

midpoint of the left and right posterior superior iliac spines and the z-axis 

X-axis Cross product of the y- and z-axes 

Pelvis segment  

Origin Midpoint between the left and right iliac crests  

YZ-plane Plane created by the left to right iliac crests and the hip joint centers 

(established based on functional calibration trials). 

Y-axis Vector passing from the midpoint of the left and right hip joint centers 

towards the origin. 

X-axis Vector perpendicular to the YZ plane, oriented anteriorly 

Z-axis Vector perpendicular to the YZ plane, oriented anteriorly 
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Thigh segment  

Origin Functional hip joint centre (Camomilla et al., 2006; Schwartz & 

Rozumalski, 2005) 

Y-axis Vector from the mid-point of the medial and lateral femoral epicondyles 

to the Origin 

X-axis Cross-product of the y-axis and a temporary vector from the Origin to the 

greater trochanter 

Z-axis Cross product of the x- and y-axes 

Shank segment 

Origin Midpoint between the medial and lateral tibial epicondyles 

Y-axis Vector from the midpoint of the medial and lateral malleoli to the Origin 

X-axis Cross-product of the y-axis and a temporary vector from the medial to the 

lateral tibial epicondyles 

Z-axis Cross product of the x- and y-axes 

Foot segment  

Origin Midpoint between the medial and lateral malleoli 

Y-axis Vector from the midpoint of the first and fifth metatarsal heads to the 

Origin 

X-axis Cross-product of the y-axis and a temporary vector from the first to the 

fifth metatarsal heads. 

Z-axis Cross product of the x- and y-axes 

Foot segment (Virtual) – defined based on the coordinate system of the shank, tracked using 

the foot cluster 
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Appendix B 

Sample Accelerometer- and Gyroscope-Based Estimates 

of Joint Angles  

The following section contains representative curves for joint flexion-extension angles estimates 

based on accelerometer signals in the sensor-based coordinate system, accelerometer signals 

rotated into the joint coordinate system, gyroscope signals in the sensor-based coordinate system, 

gyroscope signals in the joint coordinate system, and finally a combination of the accelerometer- 

and gyroscope-based angles in the joint coordinate system compared to the final measured joint 

angle.  

 

Figure B.1 Representative accelerometer-based ankle flexion-extension angles for a dorsiflexed kneeling trial calculated based on 

acceleration data in the sensor frame as well as on the portion of the acceleration data responsible for accelerating the joint centre 

as calculated through Eq. (4.35).  
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Figure B.2 Representative gyroscope-based ankle angles for a dorsiflexed kneeling trial calculated based on angular velocity data 

in the sensor frame (presented across all three axes of the gyroscope sensors) as well as angular velocity data which occurs about 

the ankle flexion-extension axis as calculated through eq. (4.19). 

 

Figure B.3 Representative ankle angles for a dorsiflexed kneeling trial calculated using accelerometer and gyroscope data, rotated 

into the joint coordinate system, as well as the combination of these angles representing an estimate of the ankle angle as 

calculated using the ISSA complementary filter presented in eq. (4.40) and eq.(4.41). 
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Figure B.4 Representative accelerometer-based hip flexion-extension angles for a dorsiflexed kneeling trial calculated based on 

acceleration data in the sensor frame as well as on the portion of the acceleration data responsible for accelerating the joint centre 

as calculated through Eq. (4.35). 

 

Figure B.5 Representative gyroscope-based hip angles for a dorsiflexed kneeling trial calculated based on angular velocity data in 

the sensor frame (presented across all three axes of the gyroscope sensors) as well as angular velocity data which occurs about 

the ankle flexion-extension axis as calculated through eq. (4.19). 
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Figure B.6 Representative hip angles for a dorsiflexed kneeling trial calculated using accelerometer and gyroscope data, rotated 

into the joint coordinate system, as well as the combination of these angles representing an estimate of the hip angle as calculated 

using the ISSA complementary filter presented in eq. (4.42). 
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Appendix C 

Comparison of Left Ankle, Knee, and Hip Flexion-

Extension Kinematics Between Protocols  

The comparison of ankle, knee, and hip flexion-extension kinematics estimated using the CSKA 

and ISSA algorithms with IMU data to traditional optical-based measures for each of the nine 

childcare-inspired postures for the left leg are here presented. Comparative values are also 

presented for Gait in Table C.1and Table C.2. Any trial in which occlusion of the optical motion 

capture markers occurred for greater than 25 frames were excluded from comparisons, resulting 

in 38, 32, 39, 37, 36, 39, 41, 36, 34, and 42 participants being compared for the ankle; 30, 32, 37, 

37, 32, 42, 35, 33, 44, and 43 for the knee; and 31, 12, 40, 46, 31, 42, 42, 41, 44, and 46 for the 

hip, all for ACS, CCS, DK, PK, FS, HS, DAK, SAK, STP, and Gait respectively. 

 

Figure C.1 Box-and-whiskers plots for the Pearson’s correlation coefficients (R) for the left ankle, knee, and hip flexion-

extension angles representing the linear correlation between the IMU and optical motion capture-based protocols. 
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Table C.1 Relationship between IMU- and optical motion capture-based left lower limb joint angles through Pearson’s 

correlation coefficients. IMU-based joint angles were estimated using the CSKA and ISSA algorithm. Correlation coefficients 

have been presented for the 9 childcare-inspired postures (ACS, CCS, DK, PK, FS, HS, DAK, SAK, and STP) as well as in gait. 

  ACS CCS DK PK FS HS DAK SAK STP Gait 

Ankle 

Mean 0.684 0.454 0.678 0.824 0.845 0.735 0.759 0.696 0.654 0.854 

SD 0.460 0.485 0.417 0.375 0.440 0.469 0.287 0.367 0.534 0.381 

SEM 0.075 0.086 0.067 0.062 0.073 0.075 0.045 0.061 0.091 0.059 

Knee 

Mean 0.926 0.824 0.934 0.993 0.979 0.918 0.993 0.944 0.918 0.862 

SD 0.364 0.341 0.320 0.018 0.047 0.195 0.018 0.137 0.263 0.324 

SEM 0.067 0.060 0.053 0.003 0.008 0.030 0.003 0.024 0.040 0.049 

Hip 

Mean 0.954 0.840 0.782 0.821 0.950 0.866 0.858 0.788 0.878 0.557 

SD 0.079 0.117 0.436 0.441 0.066 0.196 0.302 0.400 0.367 0.366 

SEM 0.014 0.034 0.069 0.065 0.012 0.030 0.047 0.062 0.055 0.054 
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Table C.2 Differences between IMU- and optical motion capture-based left lower limb joint angles. IMU-based joint angles were estimated using the CSKA and ISSA algorithms. 

Differences between IMU- and optical-based angles were quantified through the difference in the range of motion, the grand mean error, the Root Mean Squared error, and the 

percent mean error. The differences are presented for 9 childcare-inspired postures (ACS, CCS, DK, PK, FS, HS, DAK, SAK, and STP). All values are expressed in degrees unless 

otherwise stated. 

   ACS CCS DK PK FS HS DAK SAK STP Gait 

Ankle 

Difference in RoM 

Error Mean 6.915 1.375 3.193 6.402 1.409 7.178 7.427 3.488 4.441 6.682 

Error SD 13.041 14.548 9.267 17.531 5.537 29.821 7.791 10.256 8.774 15.601 

Error SEM 2.116 2.572 1.484 2.882 0.923 4.775 1.217 1.709 1.505 2.407 

Grand Mean Error 

Error Mean 7.052 11.080 8.017 13.253 6.044 7.503 7.389 9.563 6.021 9.780 

Error SD 4.322 7.347 5.412 9.502 3.655 5.344 5.621 6.424 4.413 6.165 

Error SEM 0.430 0.731 0.538 0.946 0.364 0.532 0.559 0.639 0.439 0.614 

Root Mean Squared Error  8.345 13.459 9.718 16.374 7.088 9.220 9.339 11.611 7.525 11.619 

Percent Mean Error   28% 35% 20% 15% 15% 22% 16% 19% 21% 30% 

Knee 

Difference in RoM 

Error Mean 0.712 0.897 0.012 0.045 1.441 5.952 1.127 1.753 2.574 4.195 

Error SD 3.216 6.866 1.435 4.657 6.134 17.298 5.264 4.563 10.202 6.042 

Error SEM 0.587 1.214 0.236 0.766 1.084 2.669 0.890 0.794 1.538 0.921 

Grand Mean Error 

Error Mean 6.360 17.267 9.044 3.766 5.502 6.470 3.065 4.316 3.317 9.654 

Error SD 4.797 17.587 6.302 3.278 4.394 5.919 2.912 3.643 2.534 5.075 

Error SEM 0.477 1.750 0.627 0.326 0.437 0.589 0.290 0.362 0.252 0.505 

Root Mean Squared Error  8.132 24.937 11.151 5.024 7.166 8.833 4.252 5.657 4.218 11.22 

Percent Mean Error   7% 16% 6% 3% 5% 5% 2% 3% 6% 13% 

Hip 

Difference in RoM 

Error Mean 6.951 0.846 9.083 3.017 12.503 8.906 1.201 11.711 12.053 3.749 

Error SD 7.143 15.050 18.595 22.711 18.649 23.626 20.814 32.428 22.994 41.895 

Error SEM 1.283 4.345 2.940 3.349 3.350 3.646 3.212 5.064 3.466 6.177 

Grand Mean Error 

Error Mean 5.821 16.085 15.209 13.474 10.431 14.095 11.904 15.387 8.396 13.011 

Error SD 3.965 11.434 10.397 10.066 9.299 10.398 10.158 12.502 6.840 10.184 

Error SEM 0.395 1.138 1.035 1.002 0.925 1.035 1.011 1.244 0.681 1.013 

Root Mean Squared Error  7.062 19.710 18.566 16.884 14.194 17.820 15.813 19.984 10.875 16.558 

Percent Mean Error   7% 16% 19% 16% 10% 16% 12% 17% 11% 30% 
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Appendix D 

Sample Movement Sequences and Templates for Heels-

Up Squatting 

The following section contains representative movement sequence and template waveforms 

based on the joint angle estimates obtained from the right and left ankles, knees, and hips for a 

single trial of a heels-up squat. 

 

Figure D.1 A representative unnormalized movement sequence SRAnkle for the flexion angle of the right ankle during a heels-up 

squatting motion trial (A) along with the corresponding heels-up squat template TRAnkle generated from this sequence for the right 

ankle (B). 

 

Figure D.2 A representative unnormalized movement sequence SLAnkle for the flexion angle of the left ankle during a heels-up 

squatting motion trial (A) along with the corresponding heels-up squat template TLAnkle generated from this sequence for the left 

ankle (B). 
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Figure D.3 A representative unnormalized movement sequence SRKnee for the flexion angle of the right knee during a heels-up 

squatting motion trial (A) along with the corresponding heels-up squat template TRKnee generated from this sequence for the right 

knee (B). 

 

Figure D.4 A representative unnormalized movement sequence SLKnee for the flexion angle of the left knee during a heels-up 

squatting motion trial (A) along with the corresponding heels-up squat template TLKnee generated from this sequence for the left 

knee (B). 
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Figure D.5 A representative unnormalized movement sequence SRHip for the flexion angle of the right hip during a heels-up 

squatting motion trial (A) along with the corresponding heels-up squat template TRHip generated from this sequence for the right 

hip (B). 

 

Figure D.6 A representative unnormalized movement sequence SLHip for the flexion angle of the left hip during a heels-up 

squatting motion trial (A) along with the corresponding heels-up squat template TLHip generated from this sequence for the left 

hip (B). 
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Appendix E 

Sample Movement Sequences and Templates for a 

Walking Trial 

The following section contains representative movement sequence and template waveforms 

based on the joint angle estimates obtained from the right and left ankles, knees, and hips for a 

single walking bout. 

 

Figure E.1 A representative unnormalized movement sequence SRAnkle for the flexion angle of the right ankle during a walking 

bout (A) along with the corresponding step template TRAnkle generated from this sequence for the right ankle (B). 

 

Figure E.2 A representative unnormalized movement sequence SLAnkle for the flexion angle of the left ankle during a walking 

bout (A) along with the corresponding step template TLAnkle generated from this sequence for the left ankle (B). 
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Figure E.3 A representative unnormalized movement sequence SRKnee for the flexion angle of the right knee during a walking 

bout (A) along with the corresponding step template TRKnee generated from this sequence for the right knee (B). 

 

Figure E.4 A representative unnormalized movement sequence SLKnee for the flexion angle of the left knee during a walking bout 

(A) along with the corresponding step template TLKnee generated from this sequence for the left knee (B). 



196 

 

 

 

Figure E.5 A representative unnormalized movement sequence SRHip for the flexion angle of the right hip during a walking bout 

(A) along with the corresponding step template TRHip generated from this sequence for the right hip (B). 

 

Figure E.6 A representative unnormalized movement sequence SLHip for the flexion angle of the left hip during a walking bout 

(A) along with the corresponding step template TLHip generated from this sequence for the left hip (B). 
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Appendix F 

Sensitivity-Based Confusion Matrices Resulting from the Classification of 

Loaded and Unloaded Movement Sequences 

Table F.1 Sensitivity-based confusion matrices for the classification of twelve childcare-inspired motions based on (A) unloaded and (B) loaded movement sequences from novel 

participants using the tested and tuned mDTW kNN model. All values are expressed as percentages relative to the total number of classifications for each childcare-inspired 

motion. Bolded cells denote correct classifications. The twelve motions analyzed were: heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), plantarflexed 

kneeling (PK), sitting on an adult sized chair (ACS), sitting on a child sized chair (CCS), single arm supported kneeling and double arm supported kneeling (SS), crossed leg sitting 

(CLS), side sitting and side leaning to the left or the right (SS), stooping (STP), standing (STD), and walking (WLK). *Target Class represents the correct class of each template or 

sequence. **Output Class represents the class predicted by the classifier. 

 

 

DK 59.1 9.1 0.0 2.3 13.6 4.5 4.5 0.0 0.0 0.0 6.8 0.0 DK 67.4 4.7 0.0 0.0 4.7 14.0 4.7 0.0 0.0 0.0 4.7 0.0

PK 2.2 84 0.0 0.0 0.0 0.0 4.4 0.0 0.0 0.0 8.9 0.0 PK 0.0 74 0.0 0.0 0.0 0.0 11.9 0.0 0.0 0.0 14.3 0.0

FS 9.3 0.0 32.6 23.3 0.0 0.0 0.0 34.9 0.0 0.0 0.0 0.0 FS 4.5 2.3 38.6 27.3 4.5 2.3 0.0 20.5 0.0 0.0 0.0 0.0

HS 7.0 0.0 32.6 41.9 2.3 0.0 0.0 16.3 0.0 0.0 0.0 0.0 HS 0.0 4.5 31.8 36.4 6.8 0.0 0.0 20.5 0.0 0.0 0.0 0.0

CCS 0.0 0.0 2.3 9.1 70.5 18.2 0.0 0.0 0.0 0.0 0.0 0.0 CCS 0.0 0.0 0.0 2.5 65.0 27.5 2.5 2.5 0.0 0.0 0.0 0.0

ACS 0.0 0.0 0.0 2.4 26.2 71.4 0.0 0.0 0.0 0.0 0.0 0.0 ACS 0.0 0.0 2.5 0.0 35.0 60.0 0.0 0.0 0.0 0.0 2.5 0.0

SK 20.0 9.4 0.0 1.2 4.7 3.5 48.2 0.0 0.0 0.0 12.9 0.0 SK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

STP 0.0 0.0 9.3 4.7 0.0 4.7 4.7 76.7 0.0 0.0 0.0 0.0 STP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

STD 0.0 0.0 0.0 2.4 2.4 4.8 0.0 4.8 76.2 0.0 7.1 2.4 STD 0.0 0.0 2.3 4.7 2.3 0.0 2.3 4.7 76.7 0.0 2.3 4.7

CLS 0.0 2.4 0.0 0.0 4.8 2.4 0.0 0.0 0.0 64.3 26.2 0.0 CLS 2.9 0.0 8.8 0.0 2.9 0.0 0.0 0.0 0.0 58.8 26.5 0.0

SS 5.5 8.6 1.8 2.5 6.1 5.5 1.2 0.6 0.0 10.4 57.7 0.0 SS 5.7 5.7 4.9 4.9 5.7 2.4 7.3 0.0 0.0 15.4 48.0 0.0

WLK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 WLK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

DK PK FS HS CCS ACS SK STP STD CLS SS WLK DK PK FS HS CCS ACS SK STP STD CLS SS WLK

B
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Appendix G 

Labels Assigned to each Movement Class for Classification Model A –

Developed with a Combination of Laboratory-Based Templates and Continuous 

Windows of Pseudo-Childcare Activities 

Table G.1 All permutations of movement classes assigned to movement templates and continuous motion windows labeled and included within the algorithm development, testing, 

and validation datasets for Model A. The twelve motions analyzed were: heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), 

sitting on an adult sized chair (ACS), sitting on a child sized chair (CCS), single arm supported kneeling and double arm supported kneeling (SS), crossed leg sitting (CLS), side 

sitting and side leaning to the left or the right (SS), stooping (STP), standing (STD), and walking (WLK). The phase of motion labels correspond to: ascent (_A), ascent descent 

(_AD), ascent walk (_AW), descent (_D), descent ascent (_DA), descent static (_DS), static (_S), static ascent (_SA), walking (_W), and walking descent (_WD). 

ACS_A CCS_A CLS_A DK_A FS_A HS_S PK_A STP_A SS_A SK_A 

ACS_A_STD CCS_AD CLS_A_STD DK_A_STD FS_A_STD HS_A_FS_D PK_A_STD STP_A_CCS_D SS_A_STD SK_A_STD 

ACS_AW CCS_A_STD CLS_A_STP_D DK_A_STP_D FS_A_STP_D HS_A_STD PK_A_STP_D STP_AD SS_AW SK_A_STP_D 

ACS_D CCS_AW CLS_AW DK_AW FS_AW HS_A_STP_D PK_AD STP_A_HD_D SS_CLS_S SK_AW 

ACS_DA CCS_D CLS_DK_S DK_D FS_D HS_AW PK_CLS_S STP_A_PK_D SS_DK_S SK_CLS_S 

ACS_DS CCS_DA CLS_DK_S DK_DA FS_DA HS_DK_S PK_DK_S STP_A_STD SS_DK_S SK_DK_S 

ACS_STD_D CCS_DS CLS_DA DK_D_SS_S FS_DS HS_D PK_DK_S STP_AW SS_DA SK_DK_S 

ACS_S CCS_STD_D CLS_D_SS_S DK_DS FS_HS_S HS_DA PK_DA STP_CCS_D SS_D_CLS_S SK_DA 

ACS_SA CCS_STP_A CLS_DS DK_PK_S FS_STD_D HS_DS PK_DS STP_DK_D SS_DS SK_D_SS_S 

ACS_WD CCS_S CLS_PK_S DK_STD_D FS_SS_S HS_D_SS_S PK_STD_D STP_D SS_FS_S SK_DS 

 CCS_SA CLS_STD_D DK_SS_S FS_S HS_FS_S PK_STP_A STP_DA SS_HS_S SK_PK_S 

WALK_STD CCS_WD CLS_STP_A DK_S FS_SA HS_STD_D PK_SS_S STP_DS SS_PK_S SK_S_D 

WALK_W  CLS_SS_S DK_SA FS_WD HS_STD_D PK_S STP_SK_D SS_STD_D SK_SS_S 

  CLS_S DK_S_SK_A  HS_SA PK_SA STP_SS_D SS_STD_D SK_S 

STD_STD  CLS_SA DK_SK_S  HS_WD PK_SK_S STP_STD_D SS_SA SK_SA 

STD_W  CLS_SK_S DK_WD   PK_WD STP_S SS_SK_D SK_S_DK_A 

  CLS_WD     STP_SA SS_WD SK_WD 

       STP_WD   
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Appendix H 

Labels Assigned to each Movement Class for Classification Model B – Which 

was Developed Using Continuous Windows of Pseudo-Childcare Activities 

Table H.1 All permutations of movement classes assigned to movement templates and continuous motion windows labeled and included within the algorithm development, testing, 

and validation datasets for Model B. The twelve motions analyzed were: heels-up squatting (HS), flatfoot squatting (FS), dorsiflexed kneeling (DK), plantarflexed kneeling (PK), 

sitting on a child sized chair (CCS), single arm supported kneeling and double arm supported kneeling (SS), crossed leg sitting (CLS), side sitting and side leaning to the left or the 

right (SS), stooping (STP), standing (STD), and walking (WLK). The phase of motion labels correspond to: ascent (_A), ascent descent (_AD), ascent walk (_AW), descent (_D), 

descent ascent (_DA), descent static (_DS), static (_S), static ascent (_SA), walking (_W), and walking descent (_WD). 

CCS_A CLS_A DK_A FS_A HS_S PK_A STP_A SS_A SK_A 

CCS_AD CLS_A_STD DK_A_STD FS_A_STD HS_A_FS_D PK_A_STD STP_A_CCS_D SS_A_STD SK_A_STD 

CCS_A_STD CLS_A_STP_D DK_A_STP_D FS_A_STP_D HS_A_STD PK_A_STP_D STP_AD SS_AW SK_A_STP_D 

CCS_AW CLS_AW DK_AW FS_AW HS_A_STP_D PK_AD STP_A_HD_D SS_CLS_S SK_AW 

CCS_D CLS_DK_S DK_D FS_D HS_AW PK_CLS_S STP_A_PK_D SS_DK_S SK_CLS_S 

CCS_DA CLS_DK_S DK_DA FS_DA HS_DK_S PK_DK_S STP_A_STD SS_DK_S SK_DK_S 

CCS_DS CLS_DA DK_D_SS_S FS_D_SS_S HS_D PK_DK_S STP_AW SS_DA SK_DK_S 

CCS_STD_D CLS_D_SS_S DK_DS FS_DA HS_DA PK_DA STP_CCS_D SS_D_CLS_S SK_DA 

CCS_STP_A CLS_DS DK_PK_S FS_DS HS_D_SS_S PK_DS STP_DK_D SS_DS SK_D_SS_S 

CCS_S CLS_PK_S DK_STD_D FS_HS_S HS_DS PK_STD_D STP_D SS_FS_S SK_DS 

CCS_SA CLS_STD_D DK_SS_S FS_STD_D HS_D_SK_S PK_STP_A STP_DA SS_HS_S SK_PK_S 

CCS_WD CLS_STP_A DK_S FS_SS_S HS_FS_S PK_SS_S STP_DS SS_PK_S SK_S_D 

 CLS_SS_S DK_SA FS_S HS_STD_D PK_S STP_SK_D SS_STD_D SK_SS_S 

WALK_STD CLS_S DK_S_SK_A FS_SA HS_S PK_SA STP_SS_D SS_STD_D SK_S 

WALK_W CLS_SA DK_SK_S FS_WD HS_SA PK_SK_S STP_STD_D SS_SA SK_SA 

 CLS_SK_S DK_WD  HS_SK_S PK_WD STP_S SS_SK_D SK_S_DK_A 

STD_STD CLS_WD   HS_WD  STP_SA SS_WD SK_WD 

STD_W      STP_WD   
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Appendix I 

Confusion Matrix Resulting from the Classification of Continuous Movement 

Windows in the Testing of Model Bb 

Table I.1 Confusion matrix obtained from the classification of continuous movement windows from a single trial of a pseudo-childcare activity in a simulated childcare 

environment using a mDTW kNN model (model Bb).  This model was developed using only the continuous windows of pseudo-childcare movements collected for Chapter 6. All 

values represent the number of windows classified within each Output Class. Bolded cells denote correct classifications. The motions classes present in these data were: flatfoot 

squatting ascent to walking (FS_AW), flatfoot squatting walking to descent (FS_WD), flatfoot squatting descent to ascent (FS_DA), crossed leg sitting descent (CLS_D), crossed 

leg sitting descent to static (CLS_DS), crossed leg sitting static (CLS_S), crosse leg sitting static to ascent (CLS_SA), crossed leg sitting ascent to walking (CLS_AW), walking 

(WLK_W), walking to standing (WLK_STD), and standing to walking (STD_W), The motions predicted in these data additionally included dorsiflexed kneeling static (DK_W), 

side sitting static (SS_S), supported kneeling static (SK_S), and child chair sitting static (CCS_S) *Target Class represents the correct class of each template or sequence. **Output 

Class represents the class predicted by the classifier. 

Model Bb Classification of Testing Movement Windows 

*
T

ar
g

et
 C

la
ss

 

FS_AW 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 

FS_WD 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 

FS_DA 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

CLS_WD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

CLS_D 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 

CLS_DS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CLS_S 0 0 0 0 0 0 184 0 0 0 0 0 0 0 11 1 12 

CLS_SA 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

CLS_A 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 

CLS_AW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

WLK_W 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 

WLK_STD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

STD_W 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

DK_S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SS_S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SK_S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CCS_S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 FS_AW FS_WD FS_DA CLS_WD CLS_D CLS_DS CLS_S CLS_SA CLS_A CLS_AW Walk_W Walk_STD STD_W DK_S SS_S SK_S CCS_S 

**Output Class 
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