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Abstract

In real-world applications, nominal mathematical models that are used to describe the state
behaviors of dynamical systems are usually less robust to deal with environmental disruptions.
Uncertainties, such as imprecision of signals, Gaussian-type white noise, and observation er-
rors, may be injected into the systems and create substantial impacts on stability and safety etc.
To better understand and hence robustly eliminate the potential negative impact, this thesis
aims to develop novel control methods and bifurcation analysis for general nonlinear systems
that are subjected to such types of perturbations.

The first main aspect of the research addresses the verification and control synthesis of
more complex tasks with ω-regular linear-time properties besides stabilization problems for
more general perturbed finite-dimensional nonlinear systems. Rigorous abstraction-based for-
mal methods compute with guarantees a set of initial states from which the trajectories satisfy
or a controller exists to realize the given specification, however, at the cost of heavy state-space
discretization and potential difficulties of adjusting the speed of the dynamical flows. This the-
sis proposes discretization-free Lyapunov methods to handle verification and control synthesis
for building-block specifications such as safety, stability, reachability, and reach-and-stay spec-
ifications. In the presence of non-stochastic and stochastic perturbations, respectively, rigorous
analysis is conducted upon the fundamental mathematical guarantees of satisfying the above
mentioned specifications using Lyapunov-like functions. A comparison between the proposed
Lyapunov method and formal methods is illustrated via numerical simulations for the case with
non-stochastic perturbations.

In terms of formal verification and control synthesis for stochastic systems, the current
literature focuses on developing sound abstraction techniques for discrete-time stochastic dy-
namics without extra uncertain signals. However, soundness thus far has only been shown for
preserving the satisfaction probability of certain types of temporal-logic specification. We fo-
cus on more general discrete-time nonlinear stochastic systems and present constructive finite-
state abstractions for verifying or control synthesis of probabilistic satisfaction with respect to
general ω-regular linear-time properties. Instead of imposing stability assumptions, we analyze
the probabilistic properties from the topological view of metrizable space of probability mea-
sures. Such abstractions are both sound and approximately complete. That is, given a concrete
discrete-time stochastic system and an arbitrarily small L1-perturbation of this system, there
exists a family of finite-state Markov chains whose set of satisfaction probabilities contains that
of the original system and meanwhile is contained by that of the slightly perturbed system. A
direct consequence is that, given a probabilistic linear-time specification, initializing within the
winning/losing region of the abstraction system can guarantee a satisfaction/dissatisfaction for
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the original system. We make an interesting observation that, unlike the deterministic case,
point-mass (Dirac) perturbations cannot fulfill the purpose of robust completeness.

The second aspect of the research addresses the bifurcation analysis in parabolic stochastic
partial differential equations (SPDEs). We consider cases with small additive and multiplicative
space-time noise, respectively, and conduct a local bifurcation analysis via a multiscale tech-
nique. In the presence of small additive noise, we make assumptions that the noise only acts on
the stable fast-varying modes. We apply homogenization techniques based on recent advances
for systems with one-dimensional critical mode directly to the perturbed Moore-Greitzer full
model for the detection of modern jet engine compressor stall. We rigorously develop low-
dimensional approximations using a multiscale analysis approach near the deterministic Hopf
bifurcation point that occurs within the infinite-dimensional subspace. We also show that the
reduced-dimension approximation model contains a multiplicative noise.

To better understand the long-term behavior of SPDEs near the deterministic Hopf bifur-
cation point and demonstrate the stochastic Hopf bifurcations under the impact of small mul-
tiplicative noise, we focus on the system with only cubic nonlinearities and use a different
approach other than stochastic averaging/homogenization. We propose a simplified equation
that has the same linearization as the original equation and prove the error bounds. It can be
shown that the stable marginals do have a small impact on determining the stochastic bifurca-
tion points. This approximation scheme does not reduce the stochastic effects from the stable
modes to point-mass perturbations, and can be allied with the almost-sure exponential stabil-
ity of the trivial solution to analyze the stochastic bifurcation diagram as the noise becomes
smaller.
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List of Symbols

Notations in Part I (Chapter 2 to 4) and Part II (Chapter 5 to 8) are generally not the same.
We make great effort to keep notations succinct and consistent. Due to the complexity, some
of the notations are inevitably overloaded. To reduce confusion, frequently used notations and
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Ā The closure of set A.

∂A The boundary of set A.

Int(A) The interior of set A.

B The unit open ball centered at 0 w.r.t. | · |.

x+ rB The r-neighborhood of x w.r.t. | · |, i.e., {y ∈ Rn : |y − x| < r}.

Br(x) Alternative notation for x+ rB.

|x|A The distance from x ∈ Rn to a closed set A ⊆ Rn w.r.t. | · |, i.e., infy∈A |x− y|.

A+ rB The r-neighborhood of A, i.e.,
⋃
x∈A x+ rB.

Br(A) Alternative notation for A+ rB.

xviii



Z The set of integer numbers.

Z0 Z \ {0}.

B(E) The Borel σ-algebra of the set E.∨
The smallest σ-algebra generated by the union of collections of sets.

P(E) The space of all probability measures on B(E).

B The unit open ball of random variables X : Ω → Rn such that E|X| < 1.

rB {X : E|X| < r}.

H A Hilbert space in general.

H A separable infinite-dimensional Hilbert space.

K Class K functions (see Page 20).

K∞ Extended class K functions (see Page 20).

C(D) The space of real-valued continuous functions on D.

Ck(D) The space of real-valued continuous functions with kth-order continuous deriva-

tives on D.

C(D;E) The space of E-valued continuous functions on D.

Cb(D) The space of real-valued bounded continuous functions on D.

Ck
b (D) The space of real-valued bounded continuous functions with kth-order continuous

derivatives on D.

Cb(D;E) The space of E-valued bounded continuous functions on D.

Lp The family of functions h : D → R such that
∫
D
|h(x)|pdx <∞.

Lp The family of random variables X : Ω → Rn such that E|X|p <∞.

L2(E,K) The set of all Hilbert-Schmidt operators fromE toK with operator norm ∥·∥L2(E,K).

a ∧ b min(a, b).

xix



id Identity operator.

1A Indicator function w.r.t. set A.∏
The product of ordinary sets, spaces, or function values.

⊗ The product of collections of sets, or sigma algebras, or measures.

xx



Chapter 1

Introduction

1.1 Motivation

The research is motivated to develop theory and methods to detect, control and mitigate dy-
namic instabilities in modern jet engines. Controlling compressor instability (surge and stall) is
essential for increasing compressor efficiency, preventing damage or failure, and lengthening
the life-span of the engine components. This thesis aims to develop novel methods for more
general nonlinear models with uncertainties, and the results can be applied to controlling of
compression system instabilities and enhancing performance.

The abstract evolution equation is of the form of parameter-dependent semi-linear differ-
ential equations with uncertainties

∂tu(t) = Au(t) + f(u(t); γ) + εξ(t), (1.1)

where u(t) takes value in a general (finite or infinite-dimensional) Hilbert space H for each
t; the linear operator A : H → H generates an analytic compact C0 semigroup, and hence
equips point spectrum; the field f(u(t); γ), also written as fγ(u(t)), is a 3+-order Fréchet dif-
ferentiable nonhomogeneity that also depends on the parameter γ ∈ R; ξ represents the effect
of perturbations. In the absence of noise (ε = 0), linearization around each equilibrium point
ue(γ) gives rise to the linear operator A + Dfue(γ). As γ changes monotonically, the point
spectrum of A+Dfue(γ) satisfies (Hopf) bifurcation conditions and creates local instabilites.

The motivating application problem, detection and control of modern jet engine compressor
instabilities, is based on the Moore-Greitzer full model [74] with perturbations. This commonly
used mathematical model consists of a PDE, which describes the behavior of disturbances in
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the inlet region of compression systems, and two ODEs, which describe the coupling of the
disturbances within the mean flow. The perturbed version of the Moore-Greitzer model can be
abstracted by (1.1), where H = H×R×R and H is an infinite-dimensional separable Hilbert
space in this case. The subspace R2 is decoupled from H when the state variable in H reaches
the steady state. This allows us to consider H and R2 separately under certain conditions.

Determined by compressor geometry, as the parameter (throttle coefficient) decreases, Hopf
bifurcation occurs, the jet engine compressors may exhibit potentially three types of instabili-
ties near their Hopf bifurcation points (optimal operating range), namely rotating stall, surge,
and a combination of both. Rotating stall is an instability where the circumferential flow pat-
tern is disturbed, it manifests itself as a region of severely reduced flow that rotates at a fraction
of the rotor speed and causes a drop in performance; surge is a pumping oscillation that can
cause flameout and engine damage. The occurance of such instabilities reduce performance and
cause damage of the compressor blades. To increase compressor efficiency, prevent damage or
failure, and lengthen the life-span of the engine components, controllers regarding stabilization
and performance improvement are needed.

Motivated by the above problem, the first main aspect of the research addresses the de-
velopment of controllers to fulfill more complex tasks and hence improve the performance for
more general perturbed nonlinear systems with finite-dimensional state space, i.e., H = Rn.
We do not confine ourselves to stabilization problems so as to enlarge the potential application
areas. Classical applications are such as robotic motion planning and regulation of trajectories
[57, 61, 63, 58]. We consider complex tasks such as pickup-delivery, parts assembly, surveillance
and persistent monitoring [108], etc., as the potential application areas. Systems with determin-
istic (point-mass) perturbations and stochastic perturbations will be investigated separately.

To specify complexω-regular tasks (see Appendix A for details), LTL is used as an expressive
language. Amongst all the tools of verifying dynamical behaviors and synthesizing controllers
w.r.t. LTL specifications, formal methods are rigorous mathematical techniques specifying and
verifying hardware and software systems [14]. Formal synthesis is to design controllers from
a temporal logic specification using formal analysis or model checking. One of the advantages
of formal methods is that they compute with guarantees a set of initial states from which a
controller exists to realize the given specification [21], however, at the cost of heavy state-space
discretization.

So far, abstraction-based formal verification for deterministic systems has gained its ma-
turity [21]. Whilst bisimilar (equivalent) symbolic models exist for linear and linear control
systems [96, 158], sound and approximately complete finite abstractions can be achieved via sta-
bility assumptions [136, 69] or robustness (in terms of point-mass perturbations) [112, 110, 113].
An illustrative example is provided in Example 2.0.1 to describe how abstraction-based meth-
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ods work. The recent investigation considered building blocks, such as safety, reachability,
and reach-and-stay specifications, of temporal logics for specifying more complex task objec-
tives and developed specified (robustly) complete algorithms by adaptive state-space partitions
[108, 110]. Despite the improvement in terms of the computational complexities, it still remains
a fundamental challenge to overcome the curse of dimensionality for verification and control
synthesis. In addition, for systems with tunable parameters, e.g. the 2-dimensional Moore-
Greitzer model that undergoes a surge-type Hopf bifurcation, the abstraction-based algorithms
manifest difficulties of adjusting the speed of the dynamical flows [122].

In terms of formal verification and control synthesis for stochastic systems, a common
theme is to construct IMC or BMDP, a family of finite-state Markov chains with uncertain tran-
sitions, as finite-state abstractions to approximate the probability of satisfaction in proper ways.
The previous works [102] argued without proof that for every PCTL formula, the probability
of (path) satisfaction of the IMC abstractions forms a compact interval, which contains the real
probability of the original system. The algorithm provides a fundamental view of computing
the bounds of satisfaction probability given IMCs/BMDPs. However, the intuitive reasoning for
soundness seems inaccurate based on our observation. The most recent work in [51, 52] and
[44] claimed the soundness of verifying general ω-regular1 properties using IMC abstractions,
but a proof is not provided. To the best of our knowledge, we currently lack a general frame-
work, as the one presented in the thesis, for guaranteeing soundness of IMC abstractions for
verifying ω-regular properties.

Under this background, in comparison with formal methods, we propose discretization-
free Lyapunov methods to handle verification and control synthesis for safety, stability, reach-
ability, and reach-and-stay specifications. We analyze the fundamental mathematical guaran-
tees of satisfying the above mentioned specifications using Lyapunov-like functions for finite-
dimensional nonlinear systems with non-stochastic and stochastic perturbations, respectively.
In terms of formal methods for nonlinear stochastic systems, we for the first time propose the
concept of completeness for the stochastic abstractions. We also present constructive finite-
state abstractions for verification and control synthesis of probabilistic satisfaction of general
ω-regular LT properties. We analyze the probabilistic properties from the topological view of
metrizable space of probability measures. Such abstractions are both sound and approximately
complete.

The second aspect of the research addresses the bifurcation analysis in SPDE in the form of
(1.1) within the state space of H. We consider (infinite-dimensional) systems driven by additive
and multiplicative noise, respectively, and conduct a local bifurcation analysis via a multiscale
technique.

1See Appendix A for details.
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In contrast to the deterministic setting, the stochastic bifurcation is not that well understood,
in particular for infinite-dimensional systems [11, 17]. Two concepts of bifurcation are defined
within the framework of random dynamical systems [8, Section 9]. The first is a phenomeno-
logical bifurcation (P-bifurcation), where the density of a unique invariant measure changes its
structure. On the other hand, as the stability of the trivial invariant measure changes, the corre-
sponding random dynamical system undergoes a dynamical bifurcation (D-bifurcation) where
the number of invariant measures and the structure of random attractors change. In general,
there is not a strong connection between these two types of bifurcation. In particular, with the
appearance of additive noise, i.e. a random process that uniformly perturbs the dynamics, the
D-bifurcation pattern of Rn systems is destroyed [41]. A complete diagram of stochastic Hopf
bifurcation is obtained in [11] forR2 systems with multiplicative noise under proper conditions.

In the vinicity of the bifurcation points, the study of center manifold for the deterministic
PDE model makes it possible to approximate the local flow behavior by a reduced-dimensional
set of equations [176]. The existance of center manifolds for several classes of PDEs has been
well established, the technical tool of using projection method (e.g. Lyapunov-Schmidt re-
duction) avoids putting the linear part into a normal form and gains its popularity [101][78].
However, under the stochastic purturbations, the dominating dynamics in the critical modes
may appear differently in the linear terms and hence may affect the stability structure.

It is worth mentioning that there are several results regarding the approximation of the
transient dynamics within the finite-dimensional critical manifold on a sufficiently long time-
scale. For example, the work presented in [26, 27, 29], describe the stochastic bifurcations using
amplitude equations and multiscale analysis techniques. More rigorous analysis on the ap-
proximation of the invariant measure was developed in [28]. Furthermore, in contrast to the
cubic nonlinearities [26], bilinearities [29] tend to mix the dynamics of the slow and fast varing
modes more strongly. For the analysis of stochastic Hopf bifurcations, both bilinearities and cu-
bic terms are needed for the local analysis, which make it more complicated than that of simple
bifurcations. We extend the above work and rigorously develop low-dimensional approxima-
tions for Moore-Greitzer PDE model with additive noise using a multiscale analysis approach
near the deterministic stall bifurcation points.

With the appearance of multiplicative noise, stochastic averaging/homogenization tech-
niques have been applied for dimensional reduction and obtaining amplitude equations [125,
150, 27] to analyze dynamical bifurcation. The results verify that as the noise becomes smaller,
a lower dimensional Markov process characterizes the limiting behavior. The low-dimensional
approximation near a deterministic Hopf bifurcation point performs well in terms of simulating
the distribution, density, as well as the top Lyapunov exponent of the full system.

To investigate the long-term behavior of SPDEs near the deterministic Hopf bifurcation
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point and demonstrate the dynamical Hopf bifurcation under the impact of small multiplica-
tive noise, we use a different approach other than stochastic averaging/homogenization. We
propose a simplified equation that has the same linearization as the original equation and show
that the error does not affect the topological stability. Compared to stochastic homogenization
techniques, the proposed method does not eliminate the interactions between the critical and
stable modes, which allows us to associate the approximation scheme with the almost-sure ex-
ponential stability of the trivial invariant measure to analyze the D-bifurcation diagram as the
noise becomes smaller.

As the research is motivated by a solid application field, the thesis starts with reviews on
the unperturbed Moore-Greitzer PDE model. We focus on the introduction of Moore-Greitzer
model and existing control strategies dealing with the stabilization problem.

1.2 Unperturbed Moore-Greitzer Model

The structure of the compression system and the compressor geometry are given in Fig. 1.1 and
Fig. 1.2.

Figure 1.1: Compression system.

The compressor gives pressure rise to the upstream flow and sends it into the plenum
through the downstream duct. The throttle controls the averaged mass flow through the sys-
tem at the rear of the plenum. The sources of instability are twofold: (stall) the upstream non-
uniform disturbance generates a locally higher angle of attack, and propagates along the blade
row without mitigation; (surge) the average mean flow and pressure rise oscillate constantly
and formulate standing waves [74]. The deterministic Moore-Greitzer model captures the dy-
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Figure 1.2: Compressor geometry.

namic evolution of the above states, and is given explicitly as [175]:

∂

∂t

gΦ
Ψ

 =

K−1( v
2
∂2

∂θ2
− 1

2
∂
∂θ
) 0 0

0 0 0
0 0 0

gΦ
Ψ

+

aK−1(ψc(Φ + g)− ψc)
1
lc
(ψc −Ψ)

1
4lcB2 (Φ− γ

√
Ψ)

 , (1.2)

where the states [g(t),Φ(t),Ψ(t)]T ∈ H := H × R × R are as introduced before. The phys-
ical meaning of the states is explained as follow: g(t, θ) represents the velocity of upstream
disturbance along the axial direction at the duct entrance, Φ(t) is the averaged mean flow
rate, Ψ(t) is the averaged pressure. To fulfill the physical meaning of g, we also require that
g(t, 0) = g(t, 2π), gθ(t, 0) = gθ(t, 2π) and

∫ 2π

0
g(t, θ)dθ = 0. Thus, we can write g as a Fourier

expansion as follows
g(t, θ) =

∑
n∈Z0

gn(t)e
inθ.

The operator K is defined as a Fourier multiplier,

K(g) =
∑
n∈Z0

(
1 +

am

|n|

)
gn(t)e

inθ,

where a (that also appears in (1.2)) is the internal compressor lag and m is the duct parameter.
The compressor characteristic ψc is given in a cubic form,

ψc(Φ) = ψc0 + ι

[
1 +

3

2

(
Φ

M
− 1

)
− 1

2

(
Φ

M
− 1

)3
]
, (1.3)
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where ψc0 , ι and M are real-valued parameters that are defined by the compressor configura-
tion. We also define

ψc :=
1

2π

∫ 2π

0

ψc(Φ + g)dθ.

The meaning of the other parameters in (1.2) is as follows: lc > 0 is the compressor length,
B > 0 is the plenum-to-compressor volume ratio, v > 0 is the viscous coefficient. The pa-
rameter γ ∈ R represents the throttle coefficient, the decrease of which will cause the stability
change.

Remark 1.2.1. The solution of g(t) lies in an infinite-dimensional Hilbert space H := {f ∈ L2 :∫ 2π

0
f(θ)dθ = 0} equipped with the inner product

⟨ ·, ·⟩H := ⟨ ·, K ·⟩ (1.4)

as well as the induced norm ∥ · ∥H. Note that the Fourier multiplier K is bounded from above and
from below. In general, due to the spatial periodicity and the zero-average property of g(t), we can
expect the solution to be at least in a Sobolev space H2

per ⊆ H,

H2
per :=

{
g ∈ H2 : g(0) = g(2π), gθ(0) = gθ(2π),

∫ 2π

0

g(τ, θ)dθ = 0

}
,

where H2 ⊆ H is the Sobolev Hilbert space of L2 functions with weak derivatives of order up to
2 in L2, and H2

per ⊆ H2 is the subspace of periodic functions. Note that the condition g(0) =
g(2π), gθ(0) = gθ(2π) in the definition of H2

per makes sense because, by the Sobolev embedding
theorem [56], we have H2 ⊆ C1. The space H = H×R×R is then a product Hilbert space with
inner product defined by

⟨u(1), u(2)⟩H = ⟨(g(1),Φ(1),Ψ(1)), (g(2),Φ(2),Ψ(2))⟩H
:= ⟨g(1), g(2)⟩H + lcΦ

(1)Φ(2) + (4lcB
2)Ψ(1)Ψ(2).

(1.5)

1.2.1 Abstract Form

We can write (1.2) as an abstract form

∂tu = Au+ fγ(u), (1.6)

where u = [g,Φ,Ψ]T ∈ H , A is the operator matrix

A =

K−1( v
2
∂2

∂θ2
− 1

2
∂
∂θ
) 0 0

0 0 0
0 0 0

 ,
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and

fγ(u) =

aK−1(ψc(Φ + g)− ψc)
1
lc
(ψc −Ψ)

1
4lcB2 (Φ− γ

√
Ψ)

 .
We consider a fixed point of the form ue(γ) = [0,Φe(γ),Ψe(γ)]

T at which fγ(ue(γ)) = 0
for each γ. In particular (Φe(γ),Ψe(γ)) is determined by the intersection of the compressor
characteristic Ψ = ψc(Φ) and the throttle characteristic Φ = γ

√
Ψ (see [175, Figure 4] for

details).
Note that by definition, we have the following expansion:

ψc(Φ+g) = ψc(Φ)+ι

[
3

2

( g

M

)
− 1

2

( g

M

)3
− 3

2

(
Φ

M
− 1

)2
g

M
− 3

2

(
Φ

M
− 1

)( g

M

)2]
.

Since g =
∑

n∈Z0
gn e

inθ,

ψ̄c =
1

2π

∫ 2π

0

ψc(Φ + g)dθ =
1

2π

∫ 2π

0

ψc(Φ)dθ

+
1

2π

∫ 2π

0

ι

[
3

2

( g

M

)
− 1

2

( g

M

)3
− 3

2

(
Φ

M
− 1

)2
g

M
− 3

2

(
Φ

M
− 1

)( g

M

)2]
dθ

= ψc(Φ)−
3ι

2M2

(
Φ

M
− 1

) ∑
j,k∈Z0
k+j=0

gj gk−
ι

6M3

∑
j,k,l∈Z0
k+j+l=0

gj gk gl

= ψc(Φ) +
ψ′′
c (Φ)

2
Π(2) g2+

ψ′′′
c (Φ)

6
Π(3) g3,

(1.7)

where we have used notations Π(2)uv =
∑

j,k∈Z0
k+j=0

ujvk and Π(3)uvw =
∑

j,k,l∈Z0
k+j+l=0

ujvkwl for any

arbitrary u, v, w ∈ H2
per. Therefore, the noisy perturbation of g that will be added later in the

thesis enters the flow equations via Π(2) g2 and Π(3) g3. However, the operation points of the
compressor, a family of stable fixed points (Φe(γ),Ψe(γ)), are not influenced by g.

Linearization of (1.6) about ue(γ) for each γ results in the following linear operator

A(γ) := A+Dfue(γ).

The Fréchet derivative at ue(γ) is given as
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Dfue(γ) =

a(ψ
′
c(Φe(γ))− ψc

′
)K−1 0 0

0 1
lc
ψc

′ − 1
lc

0 1
4B2lc

1
4B2lc

γ

2
√

Ψe(γ)

 , (1.8)

where ψ′
c(Φe(γ)) and ψc

′ are the Fréchet derivatives of ψc and ψc at u.

1.2.2 Linear Operator Properties and Hopf Bifurcations

In this subsection, we list the properties of the linear operator A(γ).

1. A(γ) generates an analytic compact C0 semigroup S(t) := eA(γ)t on H [175].

2. For each γ, there exist constants ω ≥ 0 and M ≥ 1 such that

∥S(t)∥H ≤Meωt, ∀t > 0.

For the stable projection, there exists ω > 0 and M > 0 such that

∥PsS(t)∥H ≤Me−ωt, ∀t > 0.

3. A(γ) can be represented as

A(γ) =

[
A|H(γ) 0

0 A|R2(γ)

]
, (1.9)

where A|H : H → H is the restriction of A onto H, whilst A restricted to R2 is a 2 × 2
matrix A|R2 . The decoupling of the eigenspace makes the linearized flow of g and (Φ,Ψ)
invariant respectively under the semigroups eA|H(γ)t and eA|R2 (γ)t.

4. We can expect the solution u to be in the domain of A(γ) (a subspace of H ), which is

dom(A(γ)) = H2
per × R× R.

5. The spectrum of A(γ) [175] is

{ρ±n(γ), r±1(γ)} for n ∈ Z+,
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where ρ±n(γ) = a|n|
|n|+am

(
ψ′
c(Φe(γ))− vn2

2a
± |n|

2a
i
)
∈ C for n ∈ Z+ are the eigenvalues of

A|H corresponding to the eigenvectors υ±n= [e±inθ, 0, 0]T. The eigenvalues of A|R2 are

r±1(γ) =
N(γ)− A(γ)

2
± i

√
1
B2 −

(
ψ′
c(Ψe(γ)) +

γ

8B2
√

Ψe(γ)

)2

2lc

where N(γ) = 1
lc
(ψ′

c(Φe(γ)) and A(γ) = − 1
4B2lc

γ

2
√

Ψe(γ)
. The eigenvectors associated to

r±1(γ) are given by υrj(γ) =
[
0, 1, νψj

(γ)
]T for j ∈ {±1}, where

υψj
(γ) =

lc(N(γ) + A(γ))

2
− ij

√
1
B2 −

(
ψ′
c(Ψe(γ)) +

γ

8B2
√

Ψe(γ)

)2

2
.

6. We verify the type of Hopf bifurcation by the sign of the indicator[175]

∆ :=

ψc0 + ι

[
1 + 3

2

√
1− vM

3aι
− 1

2

(√
1− vM

3aι

)3]
M
(
1 +

√
1− vM

3aι

) − a

4B2v
. (1.10)

More specifically, surge bifurcation happens when ∆ > 0, stall bifurcation happens when
∆ < 0. When ∆ = 0, then the bifurcations occur in both of the H and R2 subspaces.

Remark 1.2.2. The spectral decomposition of A(γ) (as in 3 of the above) results in

H = H1 ⊕ H2,

where H1 is an infinite-dimensional Hilbert space isomorphic to H and H2 is isomorphic to R2.
This decomposition provides local coordinates in terms of which the dynamics near the equilibrium
have a convenient form. Hence, the corresponding eigenvalues ρ±1 and r±1 change independently.
Depending on which pair of eigenvalues crosses the imaginary axis first as the bifurcation parame-
ter γ is varied, there are three possible types of Hopf bifurcations: If ρ±1 crosses the imaginary axis
first, the physical oscillations are dominated by stall effects; if r±1 satisfies the Hopf bifurcation con-
dition, then surge effects dominate; if ρ±1 and r±1 cross the imaginary axis simultaneously, we see a
mixture of both effects. The critical subspaces are given respectively as H c

1 = [span{e±iθ}, 0, 0]T ,
H c

2 = H2, and H c
1 ⊕H c

2 , where the superscript c represents ‘critical’. The indicator (1.10) verifies
that the oscillation type is only determined by the fluid’s viscosity and the geometric structure of
the compressors.
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Example 1.2.3. Figure 1.3 shows an example of the regions of stable/unstable equilibrium points
under the settings of g ≡ 0 and

lc = 8, ι = 0.18, M = 0.25, ψc0 = 1.67ι, a =
1

3.5
, v = 0.1,B = 2, (1.11)

as well as examples of phase portraits given different values of the parameter γ that are away
from the surge bifurcation point γc ≈ 0.6123. The convergent/divergent rates given the values of
γ in Figure 1.3 w.r.t. the equilibrium points are exponentially fast. However, when γ is in a small
neighborhood of the surge bifurcation point, the dynamics as shown in Figure 1.4 appear to be
slowly-varying.

Figure 1.3: Regions of stable (green) / unstable (red) equilibrium points in the R2 subspace
of the Moore-Greitzer model. Given the initial condition of (Φ0,Ψ0) = (0.5343, 0.6553), the
parameter settings in (1.11), and g(0) = 0, the phase portraits in the R2 subspace are generated
with γ = 0.62 (left) and γ = 0.56 (right).

Example 1.2.4. Let the configuration parameters be

lc = 8, ι = 0.18, M = 0.25, ψc0 = 1.67ι, a =
1

3.5
, v = 0.1,B = 0.72061. (1.12)

Set g(0, θ) = 0.005 sin(θ) and (Φ0,Ψ0) = (0.51, 0.66). Then the indicator as in (1.10) is ∆ ≈ 0,
which implies the surge and stall bifurcations happen simultaneously. Now let γ = 0.56, under
which the instabilities occur in both of the subspaces. The phase portrait in the R2 subspace is
shown in Figure 1.5. The state evolution of g(t) at t = 40 and t = 50 in the H subspace is shown
in Figure 1.6.
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Ustable Equilibrium Points
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Figure 1.4: Phase portrait in the R2 subspace of the Moore-Greitzer model given the initial
condition of (Φ0,Ψ0) = (0.5343, 0.6553), the parameter settings in (1.11) and γ = 0.612, and
g(0) = 0.

More details about bifurcation analysis inH can be found in the introduction part of Chapter
5.

1.2.3 Existing Results on Control of Instabilities of Jet Engine Com-
pressors

Surge/stall avoidance control was invented to prevent the compressor from operating in a re-
gion near and beyond the surge line. The recycling of the flow lowers the efficiency of the
system and may limit the transient performance of the compressor. However, active surge/stall
control strategies were introduced to overcome the drawbacks of avoidance control. The ap-
proach is to stabilize some part of the unstable area using feedback controllers.

The methods of controller design were mainly regarding stabilization feedback. Feedback
linearization was considered for surge control in [13], backstepping as well as the robustness
backstepping was used in [98] and [74]. Passivity based surge control was also introduced to
render robust L2-stable [75].

As for the stall (infinite-dimensional) control, Banaszuk et al. in [15] designed a back step-
ping control, Birnir and Hauksson in [25] went one step further to construct a control strategy
using the knowledge of asymptotic dynamics. Wen et al. in [170] studied the local feedback sta-
bilization of Hopf bifurcation for infinite-dimensional nonlinear systems where only one pair of
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Figure 1.5: Phase portrait in the R2 subspace of the Moore-Greitzer model given the initial
condition of (g(0, θ),Φ0,Ψ0) = (0.005 sin(θ), 0.51, 0.66), the parameter settings in (1.12) and
γ = 0.56.

the modes are at the risk of being unstable. Sufficient and necessary conditions were obtained
for the controllability.

However, the above investigations are under the assumption that the parameter γ is time
invariant. Apart from stabilization, reactive control strategies are needed to adapt to more com-
plex time-varying objectives with less restriction on the parameter. To bridge such a practical
gap, real-time controllers with optimal action at each current time should be discovered before
stepping into the stochastic control problem. Other formal methods regarding complicated
specifications with bounded noise as well as uncertainties will be helpful for understanding the
regions of attraction for the system.

1.3 Organization of the Thesis

The goal of the thesis was stated at the end of Section 1.1. As mentioned earlier, the scope of
the thesis is separated into two parts: robust control for finite-dimensional nonlinear systems
with non-stochastic and stochastic uncertainties, and stochastic Hopf bifurcation analysis in
the presence of small additive and multiplicative noise for SPDEs.

Part I:
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Figure 1.6: State snapshots of g(t) in the H subspace of the Moore-Greitzer model at t = 40 and
t = 50 given the initial condition of (g(0, θ),Φ0,Ψ0) = (0.005 sin(θ), 0.51, 0.66), the parameter
settings in (1.12) and γ = 0.56.

Chapter 2 considers Lyapunov-barrier function approaches for general nonlinear systems
with point-mass or deterministic uncertainties. Theories are developed upon verification and
control synthesis for stability and safety related specifications. Comparisons between the pro-
posed method and formal methods are made via numerical examples.

Chapter 3 extends the Lyapunov-barrier function approaches to the stochastic systems with
extra uncertain signals.

Chapter 4 develops mathematical foundations of stochastic abstractions for verification and
control synthesis of probabilistic specifications. The concept of robust completeness for stochas-
tic abstractions is proposed. The philosophy of abstractions is discussed.

Part II can be read independent of Part I.
Chapter 5 develops the Hopf bifurcation analysis for a stochastic version of the Moore and

Greitzer PDE model with additive noise based on recent advances in stochastic PDEs. Rigorous
analysis is conducted to show the homogenized critical dynamics with relatively small error in
proper sense.

Chapter 6 to 8 consider parabolic SPDEs with cubic nonlinearities and multiplicative noise.
An approximation scheme, the almost-sure asymptotic stability, as well as the stochastic bifur-
cation structure based on the approximation scheme and the almost-sure asymptotic stability,
are developed respectively in Chapter 6, 7, and 8.

14



Figure 1.7: Interconnections between chapters.
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Chapter 2

Lyapunov-Barrier Approaches for
Verification and Control of
Deterministic Systems

Stability, reachability and safety are important aspects in safety-critical control of dynamical
systems. Beyond these, reach-avoid-stay specifications is such that the trajectory always avoids
an unsafe set whilst the state reaches a target set within a finite time and stays inside it after-
wards. In recent years, safety and reachability related properties for dynamical systems re-
ceived considerable attention, primarily motivated by safety-critical control applications, such
as in autonomous cyber-physical systems and robotics [2, 38, 86, 127, 4, 180, 63, 58, 129].

In view of temporal logic specifications (see details in Appendix A), safety and reachabil-
ity related dynamical behaviors1 are regarded as building blocks for specifying more complex
task objectives. The advent of various temporal logic languages and the corresponding model
checking algorithms [14] made it possible to verify and synthesize controllers w.r.t. LT proper-
ties for finite-transition systems [129, 96, 158]. Formal methods for nonlinear systems rely on
a finite abstraction (or symbolic model) of the original systems, based on which computational
methods are developed [69, 112]. Apart from the complicated abstraction analysis and the com-
putational complexity caused by state space discretization, formal methods in control synthesis
compute with guarantees a set of initial states from which a controller exists to realize the given
specification [21].

1In view of LTL formula (see Appendix A), given an unsafe set U and a target set Γ, ‘safety’ specification can
be regarded as □(¬U), ‘reachability’ is ♢Γ, and ‘reach-avoid-stay’ is (♢□Γ) ∧ (□(¬U)).
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Figure 2.1: Transition systems T1 (left) and T2 (right).

Example 2.0.1 (Finite abstraction). We insert a simple example here, which is rephrased from
[112, Example 1], to illustrate the idea of finite abstraction. Consider two transition systems (see
Definition A.0.1) Ti = (Qi, Ai, Ri,AP, Li), i = 1, 2, where Q1 = {x0, x1, x2}, Q2 = {q0, q1},
AP = {Initial,Goal }, L1(x0) = L1(x1) = L2(q0) = {Initial } and L1(x2) = L2(q1) = {Goal }.
The actions and transition relations are given in Figure 2.1. We regard T1 as the original system
and treat T2 as the abstraction of T1 in the following (nonrigorous) sense: (1) for all states in Q1,
there exists a state in Q2 with the same label; (2) for all transitions in T1, there exists a transition
in T2 with the same starting and ending labels as in T1, respectively.

It can be seen that the number of states in T2 is less than that of T1, whereas the transition
from q1 (Goal) to q0 (Initial) in T2 does not have a counterpart in T1. The abstraction T2 also
contains non-deterministic transitions given the same actions, e.g., under action number 3 on q1, the
post-transition state could be either q0 or q1. This somewhat heuristically illustrates the principle
of constructing finite abstractions. We abstract states in the original system into finite and less
states at a cost of potentially enlarging the transition relations. We then use the abstracted non-
deterministic transition graph to connect with some automation generated by an LTL formula for
model checking (see Remark A.0.8). Once the abstract model is verified to satisfy or be controllable
w.r.t. some LTL specification, the original system should have the same property.

In practice, T1 is usually given by a dynamical system driven by nonlinear vector fields with
uncountably many states. Rigorous finite abstraction analysis and algorithms should be developed
based on state-space discretization [112, 110, 108].

In [110], a fixed-point algorithm was developed for reach-and-stay specification regard-
ing the computation complexity issue by adaptively partitioning the state space. However, for
systems that also depend on tunable parameters and undergo bifurcations, such as the Moore-
Greitzer model for jet engine compressors studied in this thesis, two challenges are raised for
using formal methods: (1) the sampling time for constructing abstractions is highly related
to the parameters since the system state evolves with different rates for different parameters,
and (2) there are constraints on the change rates of the tunable parameters that can be treated
as control inputs. Formal control synthesis tools such as [145, 109] cannot be used readily to
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design control strategies for such systems because of these challenges. While the multiscale
abstractions [68, 85] can be used to deal with the first challenge, the existing formal control
methods is incapable to deal with constraints on the change rates of the control inputs.

In contrast to formal methods, Lyapunov-like functions are able to provide feedback sta-
bilizing and feedback set-invariance related controllers without state-space discretization and
considering local dynamics [2, 5, 86, 127]. It has been a well established fact in control theory
that stability properties can be characterized by Lyapunov functions. Reachability properties
can also be naturally captured by Lyapunov functions for finite-time stability. On the other
hand, barrier functions [138] are used to certify that solutions of a given dynamical system
can stay within a prescribed safe set, along with their control variants, called control barrier
functions [171, 5], to provide feedback controls that render the system safety. The barrier func-
tion approach can be further combined with Lyapunov method to satisfy stability and safety
requirements simultaneously [159, 5, 174, 144, 87, 130]. Such formulations are amenable to
optimization-based solutions enabled by quadratic programming [5, 179] or model predictive
control [174], provided that the control system is in a control-affine form.

Another important characteristic of a dynamical system is whether or not its solutions can
reach a certain target set from a given initial set with or without control. This is defined as
reachability, which plays a key role in analysis and in particular control of dynamical systems
[23]. Reachability analysis and control can also be viewed as an important special case of ver-
ification and control of dynamical systems with respect to more general formal specifications
[110]. Since asymptotic stability entails asymptotic attraction, reachability can be naturally
captured by asymptotic stability and Lyapunov conditions.

The stability/reachability and safety objectives, however, are sometimes conflicting. For
example, while a system can reach a target set from a given initial set, it may have to traverse
an unsafe region to do so. For this reason, when formulating the problem as an optimization
problem, some authors defined safety as a hard constraint, and reachability/stability as a soft
(performance) requirements [5].

The main objective of this chapter is to provide a theoretical perspective on uniting Lya-
punov and barrier functions. The level sets of Lyapunov functions naturally define invariant
sets that can be used to certify safety. The work in [159] used the notion of “barrier Lyapunov
function” to ensure stability under state constraints is achieved. As pointed out by [5], such con-
ditions sometimes are overly strong and conservative. The more recent work [144] proposed the
notion of (control) Lyapunov-barrier function (the lower-bounded function W in [144, Propo-
sition 1 and Definition 2]), and derived sufficient conditions for stability and stabilization with
guaranteed safety. Despite the potential practical value of the control design framework pre-
sented in [144], the type of Lyapunov-barrier functions considered in [144] (defined on Rn and
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radially unbounded) implicitly imposes strong conditions on the unsafe set (e.g., it has to be
unbounded [31, Theorem 11]). The authors of [31] then proposed sufficient conditions for safe
stabilization using non-smooth control Lyapunov functions (see also [33]). The same authors
also pointed out a technical inconsistency (see [32] for details) of the control Lyapunov-barrier
conditions proposed in [144]. All these indicate that unifying Lyapunov and barrier functions
is a non-trivial task.

Different from the aforementioned work, we aim to formulate sufficient and necessary Lya-
punov conditions for asymptotic stability under state constraints. We show that, if we restrict
the domain of the Lyapunov function to the set of initial conditions from which solutions can si-
multaneously satisfy the conditions of asymptotic stability and safety, then a smooth Lyapunov
function can be found, building upon earlier results on converse Lyapunov functions [99, 160].
In particular, the results from [160] play a key role in inspiring us to formulate a Lyapunov
function that is defined on the entire set of initial conditions from which the stability with
safety specification is satisfied. We further extend the converse theorems to reach-avoid-stay
type specifications. Since reachability (similar to asymptotic attraction) does not impose any
stability conditions (see Vinograd’s example [120, p. 120]), we in general cannot expect to find
a Lyapunov function that is defined in a neighborhood of the target set. We use a robustness
argument [114] to obtain a slightly weaker statement in the sense that if a reach-avoid-stay
specification is satisfied robustly, then there exists a robust Lyapunov-barrier function that is
robust under perturbations arbitrarily close to that of the original system.

The main results of this chapter are summarized as follows.

(1) We formulate the problems of stability with safety and reach-avoid-stay specifications
and establish connections between them.

(2) We prove a smooth converse Lyapunov-barrier function theorem that is defined on the
entire set of initial conditions from which the stability with safety property is satisfied.

(3) We extend the converse Lyapunov-barrier function theorem to reach-avoid-stay type
specifications using a robustness argument. We show by example that such statements
are the strongest one can obtain.

(4) We extend the converse Lyapunov-barrier functions to converse control Lyapunov-barrier
functions w.r.t. reach-avoid-stay specifications, provided that there exists a Lipschitz con-
tinuous feedback law. A comparison between the proposed Lyapunov method and formal
methods based on a fixed-point algorithm is illustrated by an application to enhancing
the performance of jet engine compressors, which is based on a reduced Moore-Greitzer
nonlinear ODE model. We apply a QP framework to reactively synthesize controllers in
the case study.
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(5) We prove the connections between stability with safety and reach-avoid-stay specifica-
tions for more general hybrid systems relying on the concept of solutions. We show
that the Lyapunov-barrier approach can be extended to verification of reach-avoid-stay
specifications for hybrid systems with differential and difference inclusions.

Conventions for Notation:

A continuous and strictly increasing function α : R≥0 → R≥0 is said to belong to class K
if α(0) = 0. It is said to belong to K∞ if it belongs to class K and is unbounded. We denote by
| · | the Euclidean norm, and by B the open unit ball centered at 0 w.r.t. | · |.

2.1 System Description

Consider a control-free continuous-time dynamical system

ẋ = f(x), (2.1)

where x ∈ Rn and f : Rn → Rn is assumed to be locally Lipschitz. For each x0 ∈ Rn, we
denote the unique solution starting from x0 and defined on the maximal interval of existence by
ϕ(t;x0). For simplicity of notation, we may also write the solution asϕ(t) if x0 is not emphasized
or as ϕ if the argument t is not emphasized.

Given a scalar ϑ ≥ 0, a ϑ-perturbation of the dynamical system (2.1) is described by the
differential inclusion

ẋ ∈ Fϑ(x), (2.2)

where Fϑ(x) = f(x)+ϑB. An equivalent description of the ϑ-perturbation of system (2.1) can
be given by

ẋ = f(x) + ϑξ, (2.3)

where ξ : R → B is any measurable signal. We denote system (2.1) by S and its ϑ-perturbation
by Sϑ. Note that Sϑ reduces to S when ϑ = 0. A solution of Sϑ starting from x0 can be denoted
by ϕ(t;x0, ξ), where ξ is a given disturbance signal. We may also write the solution simply as
ϕ(t) or ϕ.

Remark 2.1.1. We avoid using ε, ϵ and δ to denote the intensity of perturbations, since ϵ is fre-
quently used from Chapter 2 to 4 for convergence analysis, ε causes confusion with ϵ, and δ is
commonly used to denote a Dirac measure in the stochastic context. To keep the notations consis-
tent in the first part of the thesis (Chapter 2 to 4), we use ϑ instead.
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We introduce some notation for reachable sets of Sϑ. Denote the set of all solutions for Sϑ
starting from x0 by Sϑ

S(x0). Let Rt
ϑ(x0) denote the set reached by solutions of Sϑ at time t

starting from x0, i.e.,
Rt
ϑ(x0) =

{
ϕ(t) : ϕ ∈ Sϑ

S(x0))
}
.

For T ≥ 0, we define

Rt≥T
ϑ (x0) =

⋃
t≥T

Rt
ϑ(x0), R0≤t≤T

ϑ (x0) =
⋃

0≤t≤T

Rt
ϑ(x0),

and write Rϑ(x0) = Rt≥0
ϑ (x0). For a set X0 ⊆ Rn, we further define

✧ Rt
ϑ(X0) =

⋃
x0∈X0

Rt
ϑ(x0);

✧ Rt≥T
ϑ (X0) =

⋃
x0∈X0

Rt≥T
ϑ (x0);

✧ R0≤t≤T
ϑ (X0) =

⋃
x0∈X0

R0≤t≤T
ϑ (x0);

✧ Rϑ(X0) =
⋃
x0∈X0

Rϑ(x0).

Given a nonempty compact convex set of control inputs U ⊆ Rp, consider a nonlinear
system of the form

ẋ = f(x) + g(x)u+ ϑξ, (2.4)

where the mapping g : Rn → Rn×p is smooth; u : R≥0 → U is a locally bounded measurable
control signal, whilst the other notation remains the same.

Definition 2.1.2 (Control strategy). A control policy is a function

κ : Rn → U . (2.5)

We further denote Sκϑ by the control system driven by (2.4) that is comprised by u = κ(x).

Definition 2.1.3. Let h : Rn → R be a continuously differentiable function. We introduce the
following notations for (2.4):

(1) Lf,dh(x) = ∇h(x) · (f(x) + d); if d = 0, we simply use Lfh(x) = ∇h(x) · f(x).

(2) Lgh(x) = ∇h(x) · g(x).
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2.2 Review of Barrier Conditions for Invariance Specifica-
tions

Before proceeding, we take a review on barrier functions and barrier conditions that ensure set
invariance for nonlinear systems.

Definition 2.2.1 (Forward invariance). A set C ⊂ Rn is said to be forward invariant for Sϑ (or
ϑ-robustly forward invariant for S), if solutions from C are forward complete (i.e., defined for all
positive time) and Rϑ(C) ⊆ C.

Assumption 2.2.2. We assume that C is defined as

C = {x ∈ Rn : h(x) ≥ 0}, (2.6)

where h : Rn → R is a continuously differentiable function. Consequently,

∂C = {x ∈ Rn : h(x) = 0}, (2.7)

Int(C) = {x ∈ Rn : h(x) > 0}. (2.8)

2.2.1 Reciprocal and Zeroing Barrier Functions

We start with two notions of barrier functions that are frequently used to guarantee forward
invariance of a set. To illustrate the methodology of barrier functions, we consider control-free
nonlinear systems S instead of a more general Sϑ.

Definition 2.2.3 (Reciprocal barrier function). For S , given a continuously differentiable func-
tion h as in (2.6), a continuously differentiable function B : Int(C) → R is said to be a RBF for the
set C if there exist functions α1, α2, α3 ∈ K such that, for all x ∈ Int(C),

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
, (2.9)

∇B(x) · f(x) ≤ α3(h(x)). (2.10)

Proposition 2.2.4. [5, Theorem 1] Given a set C ⊂ Rn defined in (2.6) for a continuously differ-
entiable function h, if there exists an RBF B : Int(C) → R, then Int(C) is forward invariant.

One drawback of RBFs is that unbounded function values occur as the argument of RBFs
approaches ∂C, which may be ‘undesirable when real-time/embedded implementations are con-
sidered’ [5]. We relax the conditions and consider the following notion of barrier functions.
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Definition 2.2.5 (Zeroing barrier function). For S , a continuously differentiable function h is
said to be a ZBF for the set C if there exist an α ∈ K and a set D with C ⊆ D ⊂ Rnsuch that, for
all x ∈ D,

∇h(x) · f(x) ≥ −α(h(x)). (2.11)

In [5, Proposition 1], the authors verified that the existence of a ZBF for S implies the
forward invariance of C. However, a counterexample is provided in [166, Remark 4], which we
rephrase as below.

Example 2.2.6. Consider
ẋ = −1, x(0) = x0

and

h(x) =

{
2
√
2

3
√
3
x3/2, x ≥ 0,

−2
√
2

3
√
3
x3/2, x < 0.

Then h is continuously differentiable on R and

C = {x ∈ Rn : h(x) ≥ 0} = [0,∞).

Now let D = C as required in Definition 2.2.5, then for all x ∈ D, we have

∇h(x) · f(x) = −1 ·
√
2√
3
x1/2 = −h1/3(x).

Let α(·) = (·)1/3 on [0,∞), then it is clear that α ∈ K and therefore h satisfies (2.11). However,
the point 0 loses asymptotic behavior (due to the non-Lipschitz property of h) and h(x) will reach
0 within finite time for any x0 > 0.

We fix this problem by adding local Lipshitz condition on α. The modified version is given
in Proposition 2.2.9.

Remark 2.2.7. An alternative modification in Definition 2.2.5 to fix the problem is to impose D
to be an open set strictly containing C. We refer readers to [114, Remark 21] for more details.

Lemma 2.2.8. [70] Let z : [t0, tf ) → R be a continuously differentiable function satisfying the
differential inequality

ż(t) ≥ −α(z(t)), ∀t ∈ [t0, tf ), (2.12)
where α : R → R is a locally Lipschitz extended class K function. Then there exists a class KL
function β : [0,∞)× [0,∞) → [0,∞) (only depending on α) such that

z(t) ≥ β(z(t0), t− t0), ∀t ∈ [t0, tf ).
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Proof. Let
˙̃z(t) = −α(z̃(t)), z̃(t0) = z(t0). (2.13)

Thus, the following estimates [103] are valid for any solution of (2.12):

z(t) ≥ z̃(t), ∀t ∈ [t0, tf ] (2.14)

However, the solution to (2.13) is uniquely defined by z̃(t) = η−1(η(z̃(t0)) + t − t0) when
z̃(t0) > 0 [89], where η(z̃) = −

∫ z̃
b

dx
α(x)

and b > 0. It can be verified that: (i) η is strictly
decreasing on (0,∞); (ii) limz̃→0 η(z̃) = ∞; (iii) z̃(t) → 0 as t→ tf . When z̃(t0) = 0, z̃(t) = 0
for all t ∈ [t0, tf ]. Therefore, z̃(t) ≥ 0 whenever z̃(t0) ≥ 0, and z(t) ≥ z̃(t) ≥ 0 for all
t ∈ [t0, tf ] whenever z(t0) ≥ 0.

Proposition 2.2.9. Given a continuously differentiable function h : Rn → R and dynamics on
Rn

ẋ = f(x) (2.15)

such that f : Rn → R is locally Lipschitz. Let C = {x : h(x) ≥ 0}, and Int(C) := {x : h(x) >
0}. If the Lie derivative of h along the trajectories of x satisfies

∇h(x) · f(x) ≥ −α(h(x)), ∀x ∈ C (2.16)

where α is a locally Lipschitz extended class K function, then the set Int(C) is forward invariant.

Proof. If Int(C) = ∅, then it is invariant. Otherwise, we apply Lemma 2.2.8, it follows that if
x(t0) ∈ Int(C), then we have h(x(t)) > 0 for all t ∈ [t0, tf ), where [t0, tf ) is the maximal
interval of existence for x(t) starting from x(t0).

Remark 2.2.10. Note that the result cannot be extended to the invariance of the entire set C, despite
that it is widely stated so in the literature. A simple counterexample is that we let h(x) = −x2,
and therefore C = {0}. Then, for ẋ = c ̸= 0, even though we have a satisfaction of (2.16) on
C = {0}, it is not invariant under the flow.

2.2.2 Control Barrier Functions

We extend the notion of RBF to CBF for systems with controls. To illustrate the methodology,
we consider system (2.4) with ϑ ≡ 0.

Definition 2.2.11. Let h : Rn → R be a continuously differentiable function and C ⊆ D ⊂ Rn

be as in (2.6). Then h is a CBF if
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(1) Lgh(x) ̸= 0 for all x ∈ D,

(2) and there exists an α ∈ K∞ such that for the control system (2.1),

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)), ∀x ∈ D.

We further define a set of state-dependent control strategy

K(x) := {u ∈ U : LfB(x) + LgB(x)u+ α(h(x)) ≥ 0 ∀x ∈ D}.

By a similar argument as in Proposition 2.2.9, we suppose α is also locally Lipschitz con-
tinuous. Then, if κ(x(t)) ∈ K(x(t)) and Lipschitz continuous for all t ≥ 0, the set Int(C) is
controlled invariant for Sκ.

The notion of CBF can be extended to high relative-degree control systems where Lgh(x) =
0. We can correspondingly define the relative degree of the continuously differentiable func-
tion h on a set with respect to a system as in (2.1), which is the number of times we need to
differentiate h along the dynamics of the system before the control input u explicitly appears.
The set invariance given the existence of HOCBF is guaranteed [166]. We omit the details due
to the less relevance to the main topic of the thesis.

We have seen ZBFs and the associated CBFs with the relaxed barrier conditions. However,
this type of relaxed barrier conditions fail to guarantee a set invariance with high probability
in the stochastic context (see details in Chapter 3). In particular, for control systems with high
relative degree, the relaxed conditions perform even worse. Different concepts of stochastic
control barrier functions are compared in Section 3.2 in purpose of guaranteeing a set invariance
with a high probability.

2.2.3 Robustness and Converse Barrier Functions

Now that the mechanism of barrier functions and conditions are understood via two special
cases, we involve robustness and define robust barrier function aiming to characterize safety.

Definition 2.2.12 (Robustly safe set). [114] Given an unsafe set U ⊆ Rn, a set C ⊆ Rn is said to
be ϑ-robustly safe w.r.t. to U if all solutions of Sϑ starting from C will not enter U.

It has been verified in [114, Proposition 4] that : If there exists a ϑ-robustly invariant set D
such that C ⊆ D and U ∩D = ∅, then C is ϑ-robustly safe w.r.t. to U .

We generalize RBF and ZBF for Sϑ in the following sense [114, Definition 5].

25



Definition 2.2.13 (Robust barrier function). Given sets C, U ⊆ Rn, a continuously differentiable
function B : Rn → R is said to be a ϑ-robust barrier function for C and U if the following
conditions are satisfied:

(1) B(x) ≥ 0 for all x ∈ C;

(2) B(x) < 0 for all x ∈ U ;

(3) ∇B(x) · (f(x) + ϑd) > 0 for all x such that B(x) = 0 and d ∈ B.

Robust control barrier functions can be defined in a similar way as in Definition 2.2.11.
Sufficiency of barrier functions in terms of ensuring a set safety is also guaranteed, the proof
of which falls in standard Lyapunov-type arguments.

Remark 2.2.14. Note that a barrier functionB works in a way to separate two disjoint sets C and
U , and meanwhile guarantees the invariance of C. However, the sets C and U are free to choose as
long as they are disjoint, e.g. it is not necessary that C ∩ U ̸= ∅ or C ∪ U = Rn. Furthermore, to
deal with safety control problems, it is natural to arbitrarily look for a set C containing the initial
set of states X0 and conversely find a CBF for (C, U).

The necessity of the existence of B given the satisfaction of a safety specification w.r.t.
(C, U) can be verified based on the compactness of reachable set from the set of initial conditions
X0, which does not intersect with U by the a priori safety assumption [114]. This compactness
in turn makes it easier to construct B via the Lyapunov function V .

The latest converse barrier function theorem by [64], however, does not depend on the
boundedness of Rn \U , and hence does not require the compactness of X0. The construction of
barrier function given the safety of robust systems relies on the ‘time-to-impact’ function BR
w.r.t. the reachable set R of robust systems. This BR turns out to satisfy condition (1) and (2)
of Definition 2.2.13 as well as a weaker certificate2

∇B(x) · f(x) > 0, ∀x ∈ ∂S, f ∈ F (x) + ϑB.

The result in [64] is of great theoretical interest in the sense of constructing barrier functions
with relaxed topological requirement and barrier conditions. Their construction relies on the
seemingly less intuitive time-to-impact functions, whereas our approach aims to unify Lya-
punov and barrier functions. It would be interesting to investigate in future work whether the
Lyapunov approach can be extended to handle unbounded reachable sets.

2Note that we have adapted the notion to be consistent with the notation used in this section.
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2.3 Lyapunov-Barrier Theorems for Asymptotic Stability
with Safety Constraints and Reach-Avoid-Stay Specifi-
cations

In this section, we formally define two common types of properties for solutions of Sϑ and
highlight the connections between them. We then derive converse Lyapunov-barrier function
theorems for Sϑ satisfying such specifications, respectively.

The first one is on reaching a target set in finite time and remaining there after, while avoid-
ing an unsafe set. This is often called a reach-avoid-stay type specification.

Definition 2.3.1 (Reach-avoid-stay specification). We say that Sϑ satisfies a reach-avoid-stay
specification (X0, U,Γ), where X0, U,Γ ⊆ Rn, if the following conditions hold:

(1) (reach and stay w.r.t. Γ) Solutions of Sϑ starting from X0 are defined for all positive time
(i.e., forward complete) and there exists some T ≥ 0 such that Rt≥T

ϑ (X0) ⊆ Γ.

(2) (safe w.r.t. U ) Rϑ(X0) ∩ U = ∅.

If these conditions hold, we also say that S ϑ-robustly satisfies the reach-avoid-stay specification
(X0, U,Γ).

A closely related property for solutions of Sϑ is stability with safety guarantees. We first
define stability for solutions of Sϑ w.r.t. a closed set.

Definition 2.3.2 (Set stability). A closed set A ⊂ Rn is said to be UAS for Sϑ if the following two
conditions are met:

(1) (uniform stability) For every ϵ > 0, there exists an ηϵ > 0 such that |ϕ(0)|A < ηϵ implies
that ϕ(t) is defined for t ≥ 0 and |ϕ(t)|A < ϵ for any solution ϕ of Sϑ for all t ≥ 0; and

(2) (uniform attractivity) There exists some ϱ > 0 such that, for every ϵ > 0, there exists some
T > 0 such that ϕ(t) is defined for t ≥ 0 and |ϕ(t)|A < ϵ for any solution ϕ of Sϑ whenever
|ϕ(0)|A < ϱ and t ≥ T .

If these conditions hold, we also say that A is ϑ-robustly UAS for S .
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Definition 2.3.3 (Domain of attraction). If a closed set A ⊆ Rn is ϑ-robustly UAS for S , we
further define the domain of attraction ofA for Sϑ, denoted by Gϑ(A), as the set of all initial states
x ∈ Rn such that any solution ϕ ∈ Sϑ

S(x) is defined for all positive time and converges to the set
A, i.e.,

Gϑ(A) =
{
x ∈ Rn : ∀ϕ ∈ Sϑ

S(x), lim
t→∞

|ϕ(t)|A = 0
}
.

Definition 2.3.4 (Stability with safety guarantee). We say that Sϑ satisfies a stability with safety
guarantee specification (X0, U, A), where X0, U, A ⊆ Rn and A is closed, if the following condi-
tions hold:

(1) (asymptotic stability w.r.t. A) The set A is UAS for Sϑ and the domain of attraction of A
contains X0, i.e. X0 ⊆ Gϑ(A).

(2) (safe w.r.t. U ) Rϑ(W ) ∩ U = ∅.

If these conditions hold, we also say that S ϑ-robustly satisfies the stability with safety guarantee
specification (X0, U, A).

2.3.1 Lyapunov-Barrier Function for Stability with Safety Guarantees

In this subsection, we derive a converse Lyapunov-barrier function theorem for Sϑ satisfying a
stability with safety guarantee specification (X0, U, A).
Definition 2.3.5. [160] Let A ⊆ Rn be a compact set contained in an open set D ⊆ Rn. A
continuous function w : D → R≥0 is said to be a proper indicator for A on D if the following two
conditions hold: (1) w(x) = 0 if and only if x ∈ A; (2) limm→∞ w(xm) = ∞ for any sequence
{xm} in D such that either xm → p ∈ ∂D or |xm| → ∞ as m→ ∞.

Intuitively, a proper indicator for a compact set A ⊆ D, where D ⊆ Rn is open, is a
continuous function whose value equals zero if and only if on A and approaches infinity at the
boundary of D or at infinity. It generalizes the idea of a radially unbounded function.
Remark 2.3.6. Let A ⊆ Rn be a compact set contained in an open set D ⊆ Rn. There is always
a proper indicator for A on D defined by [160, Remark 2]

w(x) = max

{
|x|A ,

1

|x|Rn\D
− 2

dist(A,Rn \D)

}
,

where dist(A,Rn \ D) = infx∈A |x|Rn\D. Indeed, w is clearly continuous. If x ∈ A, we have
w(x) = |x|A = 0. If x ∈ D \ A, we have w(x) ≥ |x|A > 0. For any {xm} in D such that either
xm → p ∈ ∂D or |xm| → ∞ as n→ ∞, we either have |xm|A → ∞ or 1

|xm|Rn\D
→ ∞.
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Theorem 2.3.7. Suppose that A is compact, U is closed, and A ∩ U = ∅. Then the following two
statements are equivalent:

(1) Sϑ satisfies the stability with safety guarantee specification (X0, U, A).

(2) There exists an open set D such that (A ∪ X0) ⊆ D and D ∩ U = ∅, a smooth function
V : D → R≥0 and class K∞ functions α1 and α2 such that, for all x ∈ D and d ∈ ϑB,

α1(w(x)) ≤ V (x) ≤ α2(w(x)), (2.17)

and
∇V (x) · (f(x) + d) ≤ −V (x), (2.18)

where w be any proper indicator for A on D,

Moreover, the set D can be taken as the following set

Wϑ =
{
x ∈ Rn : ∀ϕ ∈ Sϑ

S(x), lim
t→∞

|ϕ(t)|A = 0 and ϕ(t) ̸∈ U,∀t ≥ 0
}
.

Clearly, the set Wϑ defined above includes all initial states from which solutions of Sϑ will
approach A and avoid the unsafe set U . The following lemma establishes some basic properties
of the set Wϑ. The proof is completed in Section 2.3.3.

Lemma 2.3.8. Suppose that A is compact, U is closed, and A ∩ U = ∅. If Sϑ satisfies a stability
with safety guarantee specification (X0, U, A), then the set Wϑ is open, forward invariant, and
satisfies X0 ⊆ Wϑ ⊆ Gϑ(A).

The proof of Theorem 2.3.7 relies on the following result, which states that, on any forward
invariant open subset D of Gϑ(A), we can find a “global” Lyapunov function relative to D.

Proposition 2.3.9. Let A ⊆ Rn be a compact set that is UAS for Sϑ. Let D ⊆ Rn be an open
set such that A ⊆ D ⊆ Gϑ(A) and D is forward invariant for Sϑ, where Gϑ(A) is the domain
of attraction of A for Sϑ. Let w be any proper indicator for A on D. Then there exists a smooth
function V : D → R≥0 and class K∞ functions α1 and α2 such that conditions (2.17) and (2.18)
hold for all x ∈ D and d ∈ ϑB.

This proposition can be proved by combining the proof for Proposition 3 and the statements
of Theorem 2 and Theorem 1 in [160]. The main difference being that the results in [160] are
stated for more general differential inclusions and Proposition 3 in [160] is proved on the whole
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domain of attraction of A, whereas the above results are for specific ϑ-perturbations of a Lips-
chitz ordinary differential equation and for any open forward invariant set containing the set
A. Due to this subtlety, Proposition 3 of [160] is not directly applicable for our purpose. For
completeness, we provide a more direct proof of this result in Section 2.3.3.
Proof of Theorem 2.3.7 We first prove (2) =⇒ (1). The fact that V is a smooth Lyapunov
function, i.e., satisfying conditions (2.17) and (2.18), on an open neighborhood D containing A
shows that A is UAS for Sϑ. We show that the set D is forward invariant. Let x0 ∈ D. Then for
any ϕ ∈ Sϑ

S(x0), we have

dV (ϕ(t))

dt
= ∇V (ϕ(t)) · (f(ϕ(t)) + d(t)) ≤ 0

holds for almost all t ≥ 0. It follows that V (ϕ(t)) ≤ V (x0) < ∞. Hence ϕ(t) is bounded,
defined, and satisfies ϕ(t) ∈ D for all t ≥ 0. By forward invariance of D and X0 ⊆ D, we have
Rϑ(W ) ⊆ D and Rϑ(W ) ∩ U = ∅. It remains to show that X0 ⊆ Gϑ(A). For any x0 ∈ X0 and
any ϕ ∈ Sϑ

S(x0), we have ϕ(t) ∈ D for all t ≥ 0. Hence

dV (ϕ(t))

dt
= ∇V (ϕ(t)) · (f(ϕ(t)) + d(t)) ≤ −V (ϕ(t)) < 0

as long as ϕ(t) ̸∈ A. A standard Lyapunov argument shows that |ϕ(t)|A → 0 as t→ ∞. Hence
x0 ∈ Gϑ(A) and X0 ⊆ Gϑ(A). We have verified that Sϑ satisfies a stability with safety guarantee
specification (X0, U, A).

We then prove (1) =⇒ (2). By Lemma 2.3.8, we can let D = Wϑ. Then (A ∪ X0) ⊆ D ⊆
Gϑ(A). Furthermore, D is open and forward invariant. The conclusion follows from that of
Proposition 2.3.9. □

Remark 2.3.10. Compared with related results on sufficient Lyapunov conditions for stability
with safety guarantees (e.g., [144, 31, 33]), to the best knowledge of the authors, Theorem 2.3.7
provides the first converse Lyapunov-barrier theorem and we show that the converse Lyapunov
function is defined on whole set of initial conditions from which asymptotic stability with safety
guarantees is satisfied. In other words, we provide a Lyapunov characterization of the problem of
asymptotic stability with safety guarantees. We also note that several converse barrier functions
have been reported in the literature [172, 140, 114]. In particular, the recent work [114] makes a
connection between converse Lyapunov function and converse barrier function via a robustness
argument, which, to some extent, inspired our work in this section to unify converse Lyapunov and
barrier functions. The results of this section significantly differ from that in [114], because converse
results are established for both stability with safety guarantees and reach-avoid-stay specifications,
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whereas the results in [114] only concern safety. We achieved this non-trivial extension by adapting
converse Lyapunov theorems (e.g., [160]), as in Proposition 2.3.9, to work with safety requirements,
enabled by characterizing all initial states from which solutions will satisfy stability with safety
guarantees, as in Lemma 2.3.8.

While Theorem 2.3.7 gives a single smooth Lyapunov function satisfying the strong set
of conditions (2.17) and (2.18), we propose the following set of sufficient conditions for two
reasons. First, they appear to be weaker (although in fact theoretically equivalent in view of
Theorem 2.3.7) and perhaps easier to verify in practice [122]. Second, they agree with the
notions of Lyapunov and barrier functions commonly seen in the literature.

Proposition 2.3.11. Suppose that A is compact, U is closed, and A ∩ U = ∅. If there exists an
open set D such that (A ∪ X0) ⊆ D and smooth functions V : D → R≥0 and B : Rn → R such
that

(1) V is positive definite on D w.r.t. A, i.e., V (x) = 0 if and only if x ∈ A;

(2) ∇V (x) · (f(x) + d) < 0 for all x ∈ D \ A and d ∈ ϑB;

(3) X0 ⊆ C = {x ∈ Rn : B(x) ≥ 0} ⊆ D and B(x) < 0 for all x ∈ U ;

(4) ∇B(x) · (f(x) + d) ≥ 0 for all x ∈ D and d ∈ ϑB,

then Sϑ satisfies the stability with safety guarantee specification (X0, U, A). Furthermore, if X0

is compact, then conditions (1)–(4) are also necessary for Sϑ to satisfy the stability with safety
guarantee specification (X0, U, A).

Proof. We first prove the sufficiency part. Conditions (1)–(2) state that V is a local Lyapunov
function for Sϑ w.r.t. A. Hence A is UAS for Sϑ. Conditions (3)–(4) state that B is a barrier
function for Sϑ w.r.t. (X0, U).

We can easily show that the set C = {x ∈ Rn : B(x) ≥ 0} is forward invariant. Indeed, if
C is not forward invariant, then there exists some x0 ∈ C, a solution ϕ ∈ Sϑ

S(x0), and some
τ > 0 such that B(ϕ(τ)) < 0. Define

t = sup{t ≥ 0 : ϕ(t) ∈ C}.
Then t is well defined and finite. By continuity ofB(ϕ(t)), we haveB(ϕ(t)) = 0. Since ϕ(t) ∈ D
and D is open, for ϵ > 0 sufficiently small, we have ϕ(t) ∈ D for almost all t ∈ [t, t + ϵ]. This
implies that, for all t ∈ [t, t+ ϵ],

dB(ϕ(t))

dt
= ∇B(ϕ(t)) · (f(ϕ(t)) + d(t)) ≥ 0.
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Hence we have B(ϕ(t)) ≥ B(ϕ(t)) = 0 for all t ∈ [t, t+ ϵ]. This contradicts the definition of t.
Hence C must be forward invariant. Since X0 ⊆ C and C ∩ U = ∅, we have Rϑ(X0) ⊆ C and
Rϑ(X0) ∩ U = ∅.

It remains to show that X0 ⊆ Gϑ(A). For any x0 ∈ X0 and any ϕ ∈ Sϑ
S(x0), we have

ϕ(t) ∈ C ⊆ D for all t ≥ 0. Hence
dV (ϕ(t))

dt
= ∇V (ϕ(t)) · (f(ϕ(t)) + d(t)) < 0

as long as ϕ(t) ̸∈ A. A standard Lyapunov argument shows that |ϕ(t)|A → 0 as t→ ∞.
We then prove the necessity part. This follows from Theorem 2.3.7. Let V and D be given

by Theorem 2.3.7(2). Choose any c > 0 such that X0 ⊆ C = {x ∈ D : V (x) ≤ c}. This
is always possible, because X0 is compact and we can simply take c = supx∈X0

V (x). The
idea is to construct the function B in the form of B(x) = c − V (x). To make this precise,
choose c2 > c1 > c and let Di = {x ∈ D : V (x) < ci} (i = 1, 2). Construct an open cover
{O1, O2, O3} of Rn by O1 = D1, O2 = D2 \ C, and O3 = Rn \D1. Define B1(x) = c − V (x)
for x ∈ O1, B2(x) = c − V (x) for x ∈ O2, and B3(x) = c − c1 for x ∈ O3; elsewhere, they
are defined to be zero. Then Bi(x) (i = 1, 2, 3) are locally smooth. The rest of the proof follows
the idea of the extension lemma for smooth functions [106, Lemma 2.26], which justifies the
existence of a globally smooth function that coincides with the locally smooth function when
it is restricted to the subdomain. Now, let {ψ1, ψ2, ψ3} be a smooth partition of unity [106,
p. 43] subordinate to {O1, O2, O3}. Construct B(x) =

∑3
i=1 ψi(x)Bi(x), for x ∈ Rn. It is

easy to verify that B(x) satisfies conditions (3)–(4) with D = D1. First, for x ∈ O1 = D1,
we have ψ3(x) = 0 and B(x) =

∑2
i=1 ψi(x)Bi(x) = c − V (x). Hence, by the construction

of V and (2.18), ∇B(x) · (f(x) + d) = −∇V (x) · (f(x) + d) ≥ V (x) ≥ 0, for all x ∈ D1

and d ∈ ϑB. This verifies condition (4). Furthermore, if x ̸∈ D1, then either x ̸∈ D or x ∈ D
but V (x) ≥ c1. It follows that B(x) ≤ ∑3

i=1 ψi(x)(c − c1) = c − c1 < 0. Hence, we have
C = {x ∈ Rn : B(x) ≥ 0} ⊆ D1 and we already have X0 ⊆ C. SinceD∩U = ∅, for x ∈ U , we
have ψ1(x) = ψ2(x) = 0 and B(x) = B3(x) = c− c1 < 0. This verifies condition (3). Clearly,
by the construction of V , it verifies conditions (1)–(2) with D = D1.
Remark 2.3.12. We can see from the proof of Proposition 2.3.11 that it is without loss of generality
to construct barrier functions from Lyapunov functions [114]. Indeed, the invariant set C, which
separates the safe initial conditions from the unsafe set, is given by a level set of the Lyapunov
function:

C = {x ∈ Rn : B(x) ≥ 0} = {x ∈ D : V (x) ≤ c} .
Remark 2.3.13. We compare the Lyapunov-barrier conditions with that in [144], which provided
a novel control framework for stabilization with guaranteed safety for nonlinear systems. Nonethe-
less, we restrict the formulation to autonomous systems (cf. Proposition 1 in [144]). This is without
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loss of generality, because the control framework in [144] is fundamentally built upon the condi-
tions for autonomous systems, as clearly indicated in [144] (see, e.g., the remark before and proof
of [144, Theorem 3]). We also change the notion slightly to be consistent with the notation used in
this thesis. In [144], a set of sufficient conditions for a smooth function V : Rn → R to be called a
Lyapunov-barrier function for the system (2.1) with respect to the origin and an unsafe set U were
formulated as follows:

(1) V is lower-bounded and radially unbounded;

(2) V (x) > 0 for all x ∈ U ;

(3) ∇V (x) · f(x) < 0 for all x ∈ Rn \ (U ∪ {0}); and

(4) Rn \ (U ∪ C) ∩ U = ∅, where the set C is given by C = {x ∈ Rn : V (x) ≤ 0}.

In [31], it is shown that the above conditions imply the set U is necessarily unbounded. Here we
show another property that indicates the restrictive nature of condition (4); that is,

x ∈ ∂U implies V (x) = 0. (2.19)

In fact, suppose that this is not the case, then V (x) > 0. There exists a sequence {xn} → x ∈ ∂D
such that V (xn) > 0 (and hence {xn} ∩ C = ∅) and {xn} ∩ U = ∅ (this is possibly because
x ∈ ∂U ). Hence {xn} ⊆ Rn \ (U ∪ C). It follows that x ∈ Rn \ (U ∪ C). By condition (4) above,
x ̸∈ U , which contradicts x ∈ ∂U . In view of (2.19), condition (4) above is somewhat restrictive,
because it implies that the boundary of the unsafe set U lies entirely on a level curve of V .

Remark 2.3.14. Figure 2.2 provides an illustration of the sets defined for proving Theorem 2.3.7.

2.3.2 Lyapunov-Barrier Function for Reach-Avoid-Stay Specifications

The converse results proved in the previous section can be extended to reach-avoid-stay speci-
fications under some mild modifications.

Suppose that Sϑ satisfies a reach-avoid-stay specification (X0, U,Γ).

Lemma 2.3.15. Suppose that Γ is compact and X0 is nonempty. If Sϑ satisfies a reach-avoid-stay
specification (X0, U,Γ), then the set

A =
{
x ∈ Ω : ∀ϕ ∈ Sϑ

S(x), ϕ(t) ∈ Ω,∀t ≥ 0
}
. (2.20)

is a nonempty compact invariant set for Sϑ.
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A
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D=Wϑ

G ϑ (A)

X0

Figure 2.2: An illustration of the sets involved in Theorem 2.3.7, Lemma 2.3.8, and Proposition
2.3.9. While the domain of attraction Gϑ(A) can potentially intersect with the unsafe set U ,
the winning set Wϑ defined in (2.19) characterizes the set of initial conditions from which the
stability with safety constraints is satisfied. Clearly, the system Sϑ satisfies a stability with
safety specification (X0, U, A) if and only if X0 ⊂ Wϑ. Theorem 2.3.7 (together with Lemma
2.3.8 and Proposition 2.3.9) states that a smooth Lyapunov function can be found on the set
D = Wϑ to verify the specification (X0, U, A). [121]

Proof. We first show that A is nonempty. By the definition of reach-avoid-stay specification
(X0, U,Γ), solutions of Sϑ starting from X0 are forward complete and there exists some T ≥ 0
such that Rt≥T

ϑ (X0) ⊆ Γ. It is easy to verify that the set Rt≥T
ϑ (X0) is forward invariant for Sϑ.

Clearly, Rt≥T
ϑ (X0) ⊆ A and A is nonempty.

We next show that A is compact. Since A ⊆ Γ and Γ is compact, we only need to show
that A is closed. Note that A is forward invariant by definition. Let {xm} be a sequence in A
that converges to x. Since Γ is compact, we have x ∈ Γ. Suppose that x ̸∈ A. Then there exists
some ϕ ∈ Sϑ

S(x) and some τ > 0 such that ϕ(τ) ̸∈ Γ. By continuous dependence of solutions
of Sϑ on initial conditions, there exists a sequence of solutions ϕm ∈ Sϑ

S(xm) that converges
to ϕ uniformly on [0, τ ]. We have ϕm(τ) → ϕ(τ) ̸∈ Γ as m → ∞. Since Rn \ Γ is open, this
implies that for m sufficiently large, ϕm(τ) ̸∈ Γ. This contradicts the definition of A (recall that
xm ∈ A and ϕm ∈ Sϑ

S(xm)). Hence x ∈ A and A is compact.

The following proposition states that any compact robustly invariant set of Sϑ is UAS for
Sϑ′ , where ϑ′ can be taken to be arbitrarily close to ϑ. This fact was essentially proved in [114]
in a slightly different context. The conclusion does not hold for ϑ′ = ϑ (see Example 2.3.20).

Proposition 2.3.16. Any nonempty compact invariant set A for Sϑ is UAS for Sϑ′ whenever
ϑ′ ∈ [0, ϑ).
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The proof relies on the following technical lemma from [114].

Lemma 2.3.17. [114] Fix any ϑ′ ∈ (0, ϑ) and τ > 0. Let K ⊆ Rn be a compact set. Then there
exists some r = r(K, τ, ϑ′, ϑ) > 0 such that the following holds: if there is a solution ϕ of Sϑ′
such that ϕ(s) ∈ K for all s ∈ [0, T ], where T ≥ τ , then for any y0 ∈ ϕ(0) + rB and any
y1 ∈ ϕ(T ) + rB, we have y1 ∈ RT

ϑ (y0), i.e., y1 is reachable at T from y0 by a solution of Sϑ.

Proof. We verify conditions (1) uniform stability and (2) uniform attractivity as required by
Definition 2.3.2.

(1) For any ϵ > 0, let τ > 0 be the minimal time that is required for solutions of Sϑ′ to
travels from the interior of A + ϵ

2
B to R \ (A + ϵB). The existence of such a τ follows from

that f is locally Lipschitz and an argument using Gronwall’s inequality. Pick ηϵ < min(r, ϵ
2
),

where r is from Lemma 2.3.17, applied to the set A + ϵB and scalars τ , ϑ′, and ϑ. Let ϕ be any
solution of Sϑ′ such that |ϕ(0)|A < ηϵ. We show that |ϕ(t)|A < ϵ for all t ≥ 0. Suppose that
this is not the case. Then |ϕ(t1)|A ≥ ϵ for some t1 ≥ τ > 0. Since ηϵ < r and A is compact, we
can always pick y0 ∈ A such that y0 ∈ ϕ(0) + rB. By Lemma 2.3.17, there exists a solution of
Sϑ from y0 ∈ A to y1 = ϕ(t1) ̸∈ A. This contradicts that A is forward invariant for Sϑ.

(2) Fix any ϵ0 > 0. Following part (1), choose ηϵ0 such that |ϕ(0)|A < ηϵ0 implies |ϕ(t)|A < ϵ0
for any solution ϕ(t) of Sϑ′ . Let r be chosen according to Lemma 2.3.17 with the set A + ϵ0B
and scalars τ = 1, ϑ′, and ϑ. Choose ϱ ∈ (0, r). Let ϕ be any solution of Sϑ′ . We show that
|ϕ(0)|A < ϱ implies that ϕ(t) ∈ A for all t ≥ 1. Suppose that this is not the case. Then there
exists some t1 ≥ 1 such that ϕ(t1) ̸∈ A. Since ϱ < r, we can pick y0 such that y0 ∈ ϕ(0) + rB
and y0 ∈ A. By Lemma 2.3.17, there exists a solution of Sϑ from y0 ∈ A to y1 = ϕ(t1) ̸∈ A.
This contradicts that A is forward invariant for Sϑ. Hence ϕ(t) ∈ A for all t ≥ 1. This clearly
implies (2).

Proposition 2.3.16 establishes a link between robust invariance and asymptotic stability. By
combining Lemma 2.3.15, Proposition 2.3.16, and Theorem 2.3.7, we can obtain the following
converse theorem for a reach-avoid-stay specification.

Theorem 2.3.18. Suppose that Γ is compact, U is closed, and Ω ∩ U = ∅, and Sϑ satisfies the
reach-avoid-stay specification (X0, U,Γ). Then there exists a compact set A ⊆ Γ such that, for
any ϑ′ ∈ [0, ϑ) and any proper indicator Γ for A on D, there exists an open set D such that
(A∪X0) ⊆ D and D ∩U = ∅, a smooth function V : D → R≥0 and class K∞ functions α1 and
α2 such that conditions (2.17) and (2.18) hold for all x ∈ D and d ∈ ϑ′B.

Proof. By Lemma 2.3.15, there exists a compact set A ⊆ Γ that is ϑ′-UAS for any ϑ′ ∈ [0, ϑ) by
Proposition 2.3.16. Furthermore, as shown in the proof of Lemma 2.3.15, Rt≥T

ϑ (X0) ⊆ A. This
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implies that, for any ϑ′ ∈ [0, ϑ), the domain of attraction of A for Sϑ′ includes X0. Hence Sϑ′
satisfy the stability with safety guarantee specification (X0, U, A). The conclusion follows from
that of Theorem 2.3.7.

Remark 2.3.19. Figure 2.3 provides an illustration of the sets defined for proving Theorem 2.3.18.

A

U

D= Wϑ’

Gϑ’ (A)

Γ

X 0

Figure 2.3: An illustration of the sets involved in Theorem 2.3.18. If a reach-avoid-stay specifi-
cation (X0, U,Γ) is satisfied, then for each ϑ′ ∈ [0, ϑ), we can find a setA such that Sϑ′ satisfies
the stability with safety guarantee specification (X0, U, A). Consequently, a set D and a Lya-
punov function V defined on D can be found such that the Lyapunov conditions (2.17) and
(2.18) hold for Sϑ′ . The conclusion of Theorem 2.3.18 follows from that of Theorem 2.3.7. [121]

It would be tempting to draw a stronger conclusion than the one in Theorem 2.3.18 by
allowing ϑ′ = ϑ. The following example shows that the conclusion of Theorem 2.3.18 cannot
be strengthened in this regard: Under the current assumptions of Theorem 2.3.18, there may
not exist a converse Lyapunov-barrier function satisfying conditions (2.17) and (2.18) for Sϑ,
even if Sϑ satisfies a reach-avoid-stay specification (X0, U,Γ).

Example 2.3.20. Consider S defined by ẋ = −x+ x2. Let X0 = [−1,−0.9], U = [0.6,∞), Γ =
[−0.25, 0.5], and ϑ = 0.25. It is easy to verify that Sϑ satisfies the reach-avoid-stay specification
(X0, U,Γ). However, solutions of Sϑ starting from x0 = 0.5 + ϵ, where ϵ > 0, with d(t) = ϑ will
tend to infinity. Furthermore, for any x0 ∈ Γ, there exists a solution of Sϑ that approaches 0.5.
Hence, there does not exist an open set D as in Theorem 2.3.18 and a converse Lyapunov-barrier
function defined on D that satisfies conditions (2.17) and (2.18) for all x ∈ D and d ∈ ϑB. The
reason for this is that the conclusion of Proposition 2.3.16 does not hold for Sϑ, i.e., the setA defined
by (2.20) may not be UAS for Sϑ, even though it is UAS for Sϑ′ whenever ϑ′ ∈ [0, ϑ). Indeed, it is
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not difficult to verify that the set A = [1
2
−

√
2
2
, 0.5] and, by the observation above, the set A is not

UAS for Sϑ.

Similarly, Proposition 2.3.11 can be adapted to give the following version of converse theo-
rem for reach-avoid-stay specifications.

Proposition 2.3.21. Suppose that Γ and X0 are compact, U is closed, and Γ ∩ U = ∅, and Sϑ
satisfies the reach-avoid-stay specification (X0, U,Γ). Then for any ϑ′ ∈ [0, ϑ), there exists a
compact A ⊆ Γ, an open set D such that (A ∪ X0) ⊆ D, and smooth functions V : D → R≥0

and B : Rn → R such that

(1) V is positive definite on D w.r.t. A, i.e., V (x) = 0 if and only if x ∈ A;

(2) ∇V (x) · (f(x) + d) < 0 for all x ∈ D \ A and d ∈ ϑ′B;

(3) X0 ⊆ C = {x ∈ D : B(x) ≥ 0} ⊆ D and B(x) < 0 for all x ∈ U ;

(4) ∇B(x) · (f(x) + d) ≥ 0 for all x ∈ D and d ∈ ϑ′B.

Proof. Similar to that of Proposition 2.3.11.

The above converse results (Theorem 2.3.18 and Proposition 2.3.21) reveal that the verifica-
tion and design for reach-avoid-stay specifications can indeed be centered around the problem
of stability/stabilization with safety guarantees. This is without loss of generality at least from
a robustness point of view. In this regard, Lemma 2.3.15 and Proposition 2.3.16 connect robust
reach-avoid-stay specification with stability with safety guarantees. We can also prove a result
in the converse direction. These statements are summarized in the following proposition.

Proposition 2.3.22. (Connections):

(1) If Sϑ satisfies a stability with safety guarantee specification (X0, U, A) and X0 is compact,
then for every ϵ > 0, Sϑ satisfies the reach-avoid-stay specification (X0, U, A+ ϵB).

(2) If Sϑ satisfies a reach-avoid-stay specification (X0, U,Γ), then there exists a compact set
A ⊆ Γ such that, for any ϑ′ ∈ [0, ϑ), Sϑ′ satisfies the stability with safety guarantee
specification (X0, U, A).

Proof. (1) The conclusion follows from the uniform attractivity property for solutions for Sϑ
under the stability assumption. The proof is provided in Section 2.3.3. (2) It follows from Lemma
2.3.15, Proposition 2.3.16, and the definitions of the specifications.
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2.3.3 Proofs of Results

Proof of Lemma 2.3.8

We first state two lemmas on the properties of the solutions of Sϑ.
The first one is well known from the basic theory of ODEs (see, e.g, [153, Theorem 55,

Appendix C]).

Lemma 2.3.23 (Continuous dependence). Suppose that for some x0 ∈ Rn there exists some
T > 0 such that solutions for Sϑ starting from x0 are defined on [0, T ]. Then there exists some
ϑ > 0 such that solutions starting from x0 + ϑB are also defined on [0, T ] and there exists a
constant C (depending on T and x0) such that

|ϕ(t;x, d)− ϕ(t;x0, d)| ≤ C |x− x0|

for all x ∈ x0 + ϑB and d : [0, T ] → ϑB.

The next result is on topological properties of solutions of differential inclusions satisfying
some basic conditions. It can be found, e.g., in [59, Theorem 3, Section 7]. Note that the differ-
ential inclusion we consider Sϑ : x′ ∈ Fϑ(x) := f(x)+ϑB straightforwardly satisfies the basic
conditions there (i.e., Fϑ is upper semicontinuous and takes nonempty, compact, and convex
values).

Lemma 2.3.24 (Compactness of reachable sets). Let K ⊆ Rn be a compact set. Suppose that
there exists some τ > 0 such that solutions of Sϑ starting from K are always defined on [0, τ).
Then, for any T ∈ [0, τ), R0≤t≤T

ϑ (K) is a compact set. Furthermore, solutions of Sϑ on [0, T ] form
a compact set under the uniform convergence topology.

The following result shows that under the uniform stability assumption (i.e., condition (1)
in Definition 2.3.2), attraction of solutions starting from any compact set within the domain of
attraction is always uniform. The proof of the following result is modeled after the proof for
Proposition 3 in [160, cf. Claim 4].

Proposition 2.3.25 (Uniformity of attraction). Suppose that a closed set A ⊆ Rn is uniformly
stable for Sϑ, i.e., condition (1) of Definition 2.3.2 holds. LetK be a compact set. Then the following
two statements are equivalent:

(1) For any x0 ∈ K and any ϕ ∈ Sϑ
S(x0), ϕ is defined for all t ≥ 0 and

lim
t→∞

|ϕ(t)|A = 0.
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(2) For every ϵ > 0, there exists T = T (ϵ) > 0 such that

|ϕ(t)|A < ϵ

holds for any x0 ∈ K , ϕ ∈ Sϑ
S(x0), and t ≥ T .

Proof. Clearly, (2) implies (1). We prove that (1) also implies (2) under the uniform stability
assumption. Suppose that (2) does not hold. Then there exists some ϵ0 > 0 such that for all
n > 0 there exists xn ∈ K , ϕn ∈ Sϑ

S(xn), and tn ≥ n such that

|ϕn(tn)|A ≥ ϵ0. (2.21)

Let η0 = ηϵ0 be given by condition (1) of Definition 2.3.2. For every n > 0, we must have

|ϕn(t)|A ≥ η0, ∀t ∈ [0, n]. (2.22)

Claim 2.3.26. There exist subsequences {xn} and ϕn ∈ Sϑ
S(xn) such that xn converges to x and

ϕn converges to a solution ϕ ∈ Sϑ
S(x). The latter convergence is uniform on every compact interval

of R≥0.

Proof of Claim 2.3.26 From (1), we know that solutions starting from K are always forward
complete. Since K is compact, we can assume without loss of generality that {xn} converges
to x ∈ K (otherwise we can pick a subsequence). By Lemma 2.3.24, there exists a subsequence
of {ϕn}, denoted by {ϕ1m}, that converges uniformly on [0, 1] to a solution ϕ1 ∈ Sϑ

S(x). By
the same argument, {ϕ1m} has a subsequence, denoted by {ϕ2m}, that converges uniformly
on [0, 2] to a solution ϕ2 ∈ Sϑ

S(x). Repeat this argument and pick the diagonal {ϕmm}. Then
{ϕmm} has the claimed property.

Let ϕ ∈ Sϑ
S(x) be given by the claim. By statement (1), there exists T > 0 such that

|ϕ(t)|A <
η0
2
, ∀t ≥ T. (2.23)

However, since {ϕmm} converges to ϕ uniformly on [0, T ], there exists some n ≥ T such that

|ϕn(t)− ϕ(t)| < η0
2
, ∀t ∈ [0, T ]. (2.24)

The equations (2.23) and (2.24) give |ϕn(T )|A < η0, which contradicts (2.21).
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Proof of Lemma 2.3.8 We can easily verify that Wϑ is forward invariant and W ⊆ Wϑ ⊆
Gϑ(A) by its definition. We show that Wϑ is open.

Let x0 ∈ Wϑ. Let ϱ > 0 be given by condition (2) from Definition 2.3.2 for UAS ofA. Choose
ϵ0 < ϱ such that (A + ϵ0B) ∩ U = ∅. Choose η0 = ηϵ0 according to condition (1) in Definition
2.3.2 for UAS of A. Clearly, η0 ≤ ϵ0 < ϱ.

Then, by Proposition 2.3.25 in the Appendix, there exists some T = T (η0) > 0 such that

|ϕ(t)|A <
η0
2

for any solution ϕ ∈ Sϑ
S(x0) and all t ≥ T . By Lemma 2.3.24 in the Appendix, the set K =

R0≤t≤T
ϑ (x0) is compact. Let ϵ1 < ϵ0

2
be chosen such that (K + ϵ1B) ∩ U = ∅.

By continuous dependence of solutions of Sϑ with respect to initial conditions, there exists
some r > 0 such that, for all x ∈ x0+rB and anyψ ∈ Sϑ

S(x), there exists a solution ϕ ∈ Sϑ
S(x0)

such that
|ϕ(t)− ψ(t)| < ϵ1, ∀t ∈ [0, T ].

It follows that
R≤T
ϑ (x0 + ϑB) ⊆ K + ϵ1B. (2.25)

Furthermore, at t = T , we have |ψ(T )|A ≤ |ϕ(T )|A + ϵ1 <
η0
2
+ η0

2
= η0. It follows from

condition (1) in Definition 2.3.2 that

ψ(t) ∈ A+ ϵ0B ⊆ A+ ϱB (2.26)

for allψ ∈ Sϑ
S(x), x ∈ x0+rB, and t ≥ T . By condition (2) in Definition 2.3.2, limt→∞ |ψ(t)|A =

0. In view of (2.25) and (2.26), ψ(t) ̸∈ U for all t ≥ 0. We have shown that x ∈ Wϑ for all
x ∈ Br(x0). Hence Wϑ is open. □

Proof of Proposition 2.3.9

The existence of a Lyapunov function can be proved based on the KL-stability (i.e. given in
Definition 2.3.27), following the techniques developed in [160] on converse Lyapunov functions
for KL-stability. The KL-stability considered here is in fact a special case of that in [160],
because we do not need to consider stability with respect to two different measures as in [160].
We provide a definition of KL-stability below, adapted for a proper indicator of a compact set.
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Definition 2.3.27. Let A ⊆ Rn be a compact set contained in an open set D ⊆ Rn. Let w be any
proper indicator for A on D. The system Sϑ is said to be KL-stable on D w.r.t. w if any solution
ϕ ∈ Sϑ

S(x) with x ∈ D is defined and remain in D for all t ≥ 0 and there exists a KL-function
β such that

w(ϕ(t;x)) ≤ β(w(x), t), ∀t ≥ 0, (2.27)

for all x ∈ D and ϕ ∈ Sϑ
S(x).

The key step in proving Proposition 2.3.9 is the following lemma.

Lemma 2.3.28. Assume that the assumptions of Proposition 2.3.9 hold. Then the system Sϑ is
KL-stable on D w.r.t. w.

Proof of Lemma 2.3.28 Let Cr := {x ∈ D : w(x) ≤ r}. Then by the assumptions, since w is
a proper indicator w for A on D, Cr is compact subset of D for each r ≥ 0. Fix ϱ > 0 such that
A + ϱB ⊆ D. We can find a K∞-class function satisfying α(s) ≥ supx∈D,∥x∥A≤min(ϱ,s) w(x).
Therefore, for all ∥x∥A ≤ ϱ, we have w(x) ≤ α(∥x∥A).

Claim 2.3.29. There exists a K∞ function φ such that, for each x ∈ D, w(ϕ(t;x)) ≤ φ(w(x))
for all t ≥ 0 and ϕ ∈ Sϑ

S(x).

Proof of Claim 2.3.29 Indeed, for each x ∈ D, we can find an r ≥ 0 such that x ∈ Cr. By
Proposition 2.3.25, for any ϱ > 0 chosen above, we can find a T such that ∥ϕ(t;x)∥A ≤ ϱ for
all x ∈ Cr and ϕ ∈ Sϑ

S(x). By forward invariance of D, it follows that Rϑ(Cr) ⊆ R0≤t≤T
ϑ (Cr)∪

(A + ϱB) ⊆ D. Since Cr is compact, by Lemma 2.3.24, for any finite T , R0≤t≤T
ϑ (Cr) is also

compact. The boundedness ofRϑ(Cr) implies thatRϑ(Cr) is a compact subset ofD. LetM(r) =
maxx∈Rϑ(Cr) w(x). Then w(ϕ(t;x)) ≤ M(w(x)) for all x ∈ D, ϕ ∈ Sϑ

S(x), and t ≥ 0. Clearly,
M(r) is nondecreasing (due to the inclusion relation of reachable sets from Cr with different r)
and limr→0M(r) = 0 (due to the uniform stability property). The φ ∈ K∞ in the claim can be
chosen such that M(r) ≤ φ(r) for all r ≥ 0.

Claim 2.3.30. For each r > 0, there exists a strictly decreasing function ψr : R>0 → R>0

with limt→∞ ψ−1
r (t) = 0 such that w(ϕ(t;x)) ≤ ψ−1

r (t) for all t > 0 whenever w(x) ≤ r and
ϕ ∈ Sϑ

S(x).

Proof of Claim 2.3.30 For each 0 < ϵ ≤ φ(r), by Proposition 2.3.25, we can find a Tr(ϵ) =
T (min(α−1(ϵ), ϱ)) > 0 such that for all x ∈ Cr, ϕ ∈ Sϑ

S(x), and t ≥ Tr(ϵ), we have

∥ϕ(t;x)∥A < min(α−1(ϵ), ϱ) ≤ ϱ. (2.28)
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Equation (2.28) also implies
w(ϕ(t;x)) ≤ α(α−1(ϵ)) = ϵ, (2.29)

for all x ∈ Cr, ϕ ∈ Sϑ
S(x), and t ≥ Tr(ϵ). For ϵ > φ(r), we set Tr(ϵ) = 0 and (2.29) still holds

because w(ϕ(t;x)) ≤ φ(r) < ϵ for all t ≥ 0 by Claim 2.3.29. Note that for each fixed r, the
function Tr(ϵ) can be chosen to be nonincreasing in ϵ and by definition limϵ→+∞ Tr(ϵ) = 0; for
each fixed ϵ > 0, Tr(ϵ) can be chosen to be nondecreasing in r. Based on Tr(ϵ), we can find
ψr : R>0 → R>0 such that ψr(ϵ) ≥ Tr(ϵ) for all ϵ > 0. The function ψr can be constructed
as strictly decreasing to zero (hence its inverse is defined on R>0 and also strictly decreasing)
and satisfying limt→∞ ψ−1

r (t) = 0. For each t > 0, let ϵ = ψ−1
r (t). We have t = ψr(ϵ) ≥ Tr(ϵ).

Hence x ∈ Cr implies that w(ϕ(t;x)) ≤ ϵ = ψ−1
r (t).

Now we force ψ−1
r (0) = ∞ defined in Claim 2.3.30 and let

β(s, t) := min{φ(s), inf
r∈(s,∞)

ψ−1
r (t)}

with φ defined in Claim 2.3.29. Then β ∈ KL3 and (2.27) holds.
Once Lemma 2.3.28 is proved, the proof of Proposition 2.3.9 follows from a standard con-

verse Lyapunov argument (see [160, proof of Theorem 1]). We provide an outline of the proof
as follows.

Lemma 2.3.31 (Sontag [152]). For each β ∈ KL and each λ > 0, there exist functions α1, α2 ∈
K∞ such that α1 is locally Lipschitz and

α1(β(s, t)) ≤ α2(s)e
−λt, ∀(s, t) ∈ R≥0 × R≥0. (2.30)

Proof of Proposition 10 Based on the Lemma 2.3.28 and by Sontag’s lemma (Lemma 2.3.31)
on KL-estimates, we can find α1 and α2 such that

α1(w(ϕ(t;x))) ≤ α1(β(w(x), t)) ≤ α2(w(x))e−2t (2.31)

for any x ∈ D, ϕ ∈ Sϑ
S(x), and t ≥ 0. Now define

V (x) := sup
t≥0,ϕ∈Sϑ

S(x)

α1(w(ϕ(t;x)))et. (2.32)

Then V (x) ≥ supϕ∈Sϑ
S(x)

α1(w(ϕ(t;x))) = α1(w(x)) for all x ∈ D, and it is straightforward
from (2.31) that V (x) ≤ supt≥0 α2(w(x))e−t ≤ α2(w(x)). Therefore condition (2.17) in Theo-
rem 2.3.7 is satisfied.

3This construction of KL function does not impose continuity. Nonetheless, as pointed out in [160, Remark 3],
any (potentially noncontinuous) KL function can be upper bounded by a continuous KL function.
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To show the satisfaction of condition (2.18) in Theorem 2.3.7, we can show that

V (ϕ(t;x)) ≤ V (x)e−t, ∀ϕ ∈ Sϑ
S(x),∀t ≥ 0, (2.33)

with a similar reasoning as the Claim 1 in [160]. The local Lipschitz continuity of V on D \ A
follows from the Claim 3 in [160]. Then we have

∇V (x) · (f(x) + d) ≤ lim inf
t→0+

V (ϕ(t;x, d))− V (x)

t

≤ lim inf
t→0+

V (x)
e−t − 1

t
= −V (x).

(2.34)

A smooth approximation for V exists given its local Lipschitz continuity [111]. The smoothness
can also be extended from the local region D \A to the whole set D (by following the proof of
Theorem 1 (step 3) in [160]).

2.4 Application of Lyapunov-Barrier Approaches for Con-
trol of Reach-Avoid-Stay Specifications

In this section, we first take advantage of the results from Section 2.3.2 and make a straight-
forward derivation on a converse control Lyapunov-barrier function theorem for Sϑ satisfying
a reach-avoid-stay specification (X0, U,Γ) under controls. We then consider the separate form
of control Lyapunov-barrier functions (as in Proposition 2.4.3) to guarantee reach-avoid-stay
specifications for control systems. The effectiveness is numerically verified in a case study of
jet engine compressor control problem. Throughout this section, we consider control systems
(2.4) with the set of control inputs U ⊆ Rp.

Definition 2.4.1 (Reach-avoid-stay controllable). A systemSϑ is called reach-avoid-stay control-
lable w.r.t. (X0, U,Γ), where X0, U,Γ ⊆ Rn, if there exists a Lipschitz continuous control strategy
κ such that the system Sκϑ satisfies the reach-avoid-stay specification (X0, U,Γ).

2.4.1 Control Lyapunov-Barrier Functions for Reach-Avoid-Stay Spec-
ifications

We first show that reach-avoid-stay controllability implies the existence of a control Lyapunov-
barrier function w.r.t. the reach-avoid-stay specification.
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Theorem 2.4.2. Suppose that Γ is compact, U is closed, and Γ∩U = ∅, and Sϑ is reach-avoid-stay
controllable w.r.t. (X0, U,Γ). Then there exists a compact set A ⊆ Γ such that, for any ϑ′ ∈ [0, ϑ)
and any proper indicator Γ for A on D, there exists an open set D such that (A ∪ X0) ⊆ D and
D∩U = ∅, a smooth function V : D → R≥0 and class K∞ functions α1 and α2 such that, for all
x ∈ D and d ∈ ϑ′B, Equation (2.17) is satisfied and

inf
u∈U

sup
x∈D

sup
d∈ϑB

[Lf,dV (x) + LgV (x)u+ V (x)] ≤ 0. (2.35)

Proof. By assumption, there exists a Lipschitz continuous κ that renders the solutions satisfy
reach-avoid-stay specification (X0, U,Γ). Then by Theorem 2.3.18, for any proper indicator w
for A on D, there exists a function V : D → R≥0 satisfying (2.17) and

sup
d∈ϑ′B

[Lf,dV (x) + LgV (x)κ(x) + V (x)] ≤ 0

for all x ∈ D. Taking the supremum over all x ∈ D, we have

sup
x∈D

sup
d∈ϑ′B

[Lf,dV (x) + LgV (x)κ(x) + V (x)] ≤ 0.

Since we have the control κ(x) ∈ U , it follows that

inf
u∈U

sup
x∈D

sup
d∈ϑ′B

[Lf,dV (x) + LgV (x)u+ V (x)] ≤ 0.

With a similar approach, Proposition 2.3.21 can be applied to give the following version of
converse control Lyapunov-barrier functions theorem for reach-avoid-stay specifications.

Proposition 2.4.3. Suppose that Γ and X0 are compact, U is closed, and Γ ∩ U = ∅, and Sϑ is
reach-avoid-stay controllable w.r.t. (X0, U,Γ). Then for any ϑ′ ∈ [0, ϑ), there exists a compact
A ⊆ Γ, an open set D such that (A ∪ X0) ⊆ D, and smooth functions V : D → R≥0 and
B : D → R such that

(1) V is positive definite on D w.r.t. A, i.e., V (x) = 0 if and only if x ∈ A;

(2) inf
u∈U

sup
x∈D

sup
d∈ϑ′B

[Lf,dV (x) + LgV (x)u] < 0;

(3) X0 ⊆ C = {x ∈ D : B(x) ≥ 0} and B(x) < 0 for all x ∈ U ;
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(4) sup
u∈U

[Lf,dB(x) + LgB(x)u] ≥ 0 for all x ∈ D and d ∈ ϑ′B.

In real-world applications, our target is formulated as follows.

Problem 2.4.4 (Reach-avoid-stay control). Given a reach-avoid-stay specification (X0, U,Γ), de-
sign a control policy κ such that the resulting solutions of Sκϑ satisfy (X0, U,Γ).

Note that, if the functions V and B (as in Proposition 2.4.3) exist, one can obtain a con-
trol strategy solving Problem 2.4.4, based on which a set of proper constraints on the state-
dependent control signals can be obtained. The sufficient conditions on the state-dependent
reach-avoid-stay control signals are derived correspondingly from the functions V and B with
their certificates as in (1)-(4) of Proposition 2.4.3. For simplicity, we call the pair (V,B) the
control Lyapunov-barrier functions for the reach-avoid-stay specification (X0, U,Γ). We con-
sider this separate form of control Lyapunov-barrier functions for potentially less efforts in
construction.

The sufficient conditions can be verified based on Proposition 2.3.11 and 2.3.22. We formally
provide the statement as below.

Theorem 2.4.5. Given a closed set A and an unsafe set U such that (A+ ϵB) ∩ U = ∅ for some
ϵ > 0, suppose that there exists an open set D such that (A ∪ X0) ⊆ D, and control Lyapunov-
barrier functions (V,B) satisfying (1) to (4) of Proposition 2.4.3. Let

K(x) = {u ∈ U : Lf,dV (x)+LgV (x)u < 0 and Lf,dB(x)+LgB(x)u ≥ 0, ∀x ∈ D, ∀d ∈ ϑB}

be the associated set of control strategies generated by (V,B). Then, for any control strategy κ such
that κ(x(t)) ∈ K(x(t)) and K(x) ̸= ∅ for all x ∈ D, the system Sκϑ satisfies the reach-avoid-stay
specification (X0, U, A+ ϵB). In other words, if such a κ exists, the system Sϑ is reach-avoid-stay
controllable w.r.t. (X0, U, A+ ϵB).

2.4.2 Case Study of Jet Engine Compressor Control

We have seen in Section 1.2 that the reduced Moore-Greitzer ODE model (restricted to the
R2 subspace) is a commonly used nonlinear model for capturing average flow Φ and average
pressure Ψ of axial-flow jet engine compressors. As the throttle coefficient γ decreases, surge
instability occurs and generates a pumping oscillation (Hopf-bifurcation) that can cause flame-
out and engine damage [13, 73]. In practice, to deal with the requests from downstream, the
operation point needs to be switched during the process. However, without any controls, oper-
ation points are determined by γ and a smaller γ may result in unstable operation points [175].
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To alleviate the oscillation and prevent substantial pressure loss during the switch, it is moti-
vated to design controllers to lead the state (Φ,Ψ) reach-and-stay in a small region around an
unstable operation point, and meanwhile avoid touching the region with low average pressure.

We consider the reduced Moore-Greitzer ODE model with an additive control input [v, 0]T
and no extra perturbations:

d

dt

[
Φ(t)
Ψ(t)

]
=

[
1
lc
(ψc −Ψ(t))

1
16lc

(
Φ(t)− γ

√
Ψ(t)

)]+ [v(t)
0

]
(2.36)

with parameters as

lc = 8, ι = 0.18, M = 0.25, ψc0 = 1.67ι, a =
1

3.5
, v = 0.1.

Problem 2.4.6. We aim to manipulate the throttle coefficient γ and v simultaneously such that
the state (Φ,Ψ) are regulated to satisfy reach-avoid-stay specification (X0, U,Γ). We require that
γ : R≥0 → [0.5, 1] is time-varied with γ(0) ∈ [0.62, 0.66] and |γ(t + τ) − γ(t)| ≤ 0.01τ for
any τ > 0. We define X0 = {(Φe(γ(0)),Ψe(γ(0)))} (i.e. a sub-region of stable equilibrium
points, also see Example 1.2.3); Γ to be the ball that centered at ζ = (0.4519, 0.6513) with radius
r = 0.003, i.e. Γ = ζ + rB; U = {(x, y) : x ∈ (0.497, 0.503), y ∈ (0.650, 0.656)}. We set
v(t) ∈ U = [−0.05, 0.05] ∩ R for all t.

Addressing Problem 3.3.32, we apply the proposed Lyapunov method and compare the ef-
fectiveness with formal methods.

Remark 2.4.7. For this special case, the purpose that we treat γ as a time-varied signal with a
Lipschitz continuity restriction is to prevent unnecessary extra pumping. The system (2.36) can be
transformed to fit in the general form of (2.4). Now we provide two ways of transformation.

(a) The system (2.36) is equivalent as

d

dt

Φ(t)Ψ(t)
γ(t)

 =


1
lc
(ψc −Ψ(t))

1
16lc

(
Φ(t)− γ(t)

√
Ψ(t)

)
0

+

 v(t)0
uγ(t)

 , (2.37)

where uγ : R≥0 → [−0.01, 0.01] is an extra input signal on γ such that γ satisfies |γ(t +
τ) − γ(t)| ≤ 0.01τ . The γ becomes time invariant when uγ ≡ 0. Equation (2.37) is in the

46



form of (2.4), in particular, u(t) = [v(t), 0, uγ(t)]
T , and

f(x) =


1
lc
(ψc −Ψ)

1
16lc

(
Φ− γ

√
Ψ
)

0

 , g(x) =
1 0 0
0 0 0
0 0 1

 .
The Problem 3.3.32 is converted to synthesizing v and uγ such that the trajectory satisfies
the reach-avoid-stay specification (X̃0, Ũ , Γ̃), where X̃0 = {(Φe(γ(0)),Ψe(γ(0)), γ(0)) :
γ(0) ∈ [0.62, 0.66]}; Ũ = U × (R \ [0.5, 1]); Γ̃ = Γ× [0.5, 1].

(b) The system (2.36) can be rewritten as

d

dt

[
Φ(t)
Ψ(t)

]
=

[
1
lc
(ψc −Ψ(t))

1
16lc

Φ(t)

]
+

[
v(t)

−γ(t)
√

Ψ(t)

]
. (2.38)

Let u(t) = [v(t), γ(t)]T and

g(x(t)) =

[
1 0

0 −
√
Ψ(t)

]
,

then (2.38) fits in the general form of (2.4), except that we require additional initial restriction
and Lipschitz continuity restriction on γ. We make a little abuse of notation here to define
U = [−0.05, 0.05]× [0.5, 0.1].

Lyapunov-barrier approach

The Lyapunov method can deal with both forms of the conversion (i.e. (2.37) and (2.38)), we
only provide an example based on (2.38). We first derive the sufficient conditions on the state-
dependent control signal u := [v, γ]T and then embed such conditions as constraints into a QP
framework [5]. Meanwhile the cost function is selected in a sense that the control effort

|u(t)|2 + 2u(t)

lc
(ψc −Ψ(t)) +

(
1

4lc
(Φ(t)− γ(t))

√
Ψ(t)

)2

(2.39)

is minimized for every t > 0.
To derive the sufficient conditions, we need to first select a closed set A such that A +

ϵB ⊆ Γ and control Lyapunov-barrier functions (V,B) such that the reach-avoid-stay control
problem can be reduced to the stabilization with safety guarantee control problem (X0, U, A).
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To demonstrate the sufficiency of the conditions, we simply choose A = {ζ}. Now we let
h1(x) = −|x−ζ|∞+r and h2(x) = |x−(0.500, 0.653)|∞−r, then the setsΓ = {x : h1(x) ≥ 0},
U = {x : h2(x) < 0}. Therefore, B(x) = 1/h2(x) is a proper control barrier function as
required. The set D can be considered as an open set {x : h2(x) > 0}, and V (x) can be
chosen as V (x) = |x − ζ|2 for all x ∈ D \ A. The set of control strategies for the reach-
avoid-stay problem based on (V,B) is then obtained as K(x) (i.e. determined straightforwardly
from Theorem 2.4.5). However, for Problem 3.3.32, we have additional restrictions on γ (i.e. the
second entry of u), which is given as

M := {γ ∈ [0.5, 1] : γ(0) ∈ [0.62, 0.66], |γ(t+ τ)− γ(t)| ≤ 0.01τ, ∀τ > 0}. (2.40)

Therefore, the final sufficient conditions on the state-dependent control signals are
u(t) ∈ K(x(t)) ∩M. (2.41)

To embed the conditions of (2.41) into the quadratic programming with the selected cost
function, we choose sampling time as 0.1 and use numerical iteration method to obtain the
discrete dynamics. The results justified that the sufficient conditions are effective for any γ(0)
and (Φ0,Ψ0) ∈ X0, but we only show the case when (Φ0,Ψ0) = (0.5343, 0.6553) and γ(0) =
0.66 as an example.

As a result, the control signal v and γ are shown in Figure 2.4.2. The sufficient conditions
on the signals generated by control Lyapunov-barrier functions are shown to be effectively em-
bedded within the QP with the minimum input energy (2.39). In particular, the extra conditions
on the changing rate of signals are reactively included.

The phase portraits of the resulting trajectory is shown in Figure 2.5. The local Lipschitz
continuity of u can also be guaranteed in this framework ([5, Theorem 3]). The synthesis of v
and γ mainly depends on the sufficient conditions, as long as it is feasible (K(x(t)) ∩M ̸= ∅)
for the current iteration, it will proceed to the next iteration. The chattering effect of v around
time 20 is due to the relatively fast change of γ, which in turn affects the varying speed of the
dynamics. The signal γ decided by the QP tends to converge to the γ under which equilibrium
point is ζ , which is around 0.56.

In particular, when γ is around the Hopf-bifurcation point, the set control strategies K(x)
can force the trajectories to reach the set A with an exponential rate, the transient speed of the
local dynamic will not affect the decision process of v and γ.

Discussions on comparisons with formal methods

To apply standard formal methods to Problem 3.3.32, we fix a sampling time 0.1 and use ROCS
[109] to compute an inner approximation of the winning set w.r.t. the reach-avoid-stay specifi-
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Figure 2.4: Control signal v and γ solved by the quadratic programming with condition (2.41)
as constraints and (2.39) as the cost function.

cation as well as synthesize the control strategy. It turned out that the approximated winning
set, which is shown in Figure 2.6, fails to cover the given initial condition.

The main reason is that, for γ around the bifurcation point, the sampling time 0.1 is too
small to avoid spurious self-transitions in the abstraction. Hence, the reachable set computed
on the abstraction is much smaller than the real one. The system state variable Ψ evolves very
slowly when γ is around the bifurcation point, and this range of γ cannot be avoided due to the
constraint on the change rate of γ.

To further see the effect of such a constraint, we remove the constraint |γ(t+ τ)− γ(t)| ≤
0.01τ and perform control synthesis with sampling time 0.01 by using ROCS for (2.36) directly
with γ as a control variable. In this case, a winning set that can cover the initial condition is
obtained (see Figure 2.6). From the closed-loop simulation result given in Figure 2.7, we notice
that the bifurcation point (≈ 0.613) is skipped, leading to potentially unphysical control signals.

In summary, this case study poses challenges to formal methods for two reasons. First, the
rate of change for the system state is sensitive to changes in the parameter. This would require
the use of a parameter-dependent sampling time in constructing abstractions or computing
reachable sets. Current tools [145, 109] and even multiscale methods [68, 85] cannot be readily
used to handle such situations. Second, the system includes constraints on the change rates
of control inputs. Even though (2.36) can be reformulated to (2.37), considering the throttle
coefficient γ as a state variable, as opposed to a control variable, will lead to a more conservative
control strategy, because of the curse of dimensionality and additional spurious transitions
induced by a coarser abstraction/discretization scheme.
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Figure 2.5: Phase portrait of (Φ,Ψ) generated based on signal v and γ.

2.5 Lyapunov-Barrier Characterization for Reach-Avoid-
Stay Specifications of Hybrid Systems

We have seen in Section 2.3 that it is possible to construct united Lyapunov and barrier func-
tions, or even a single Lyapunov function, that are defined on the entire set of initial conditions
from which stabilization with safety guarantees is satisfied. The connection between stabiliza-
tion with safety guarantees and reach-avoid-stay was also established via robustness.

In this section, we rely on the concept of solutions and show that the Lyapunov-barrier
approach can be extended to verification of reach-avoid-stay specifications for hybrid systems
with differential and difference inclusions. Unlike systems with diffusion (e.g. stochastic sys-
tems with Itô diffusion as will be shown in Chapter 3), reach-avoid-stay properties of solutions
to hybrid systems can be converted to stabilization with safety guarantees under mild condi-
tions. The approximated equivalence of these two types of specifications can be established via
robustness. We show that smooth Lyapunov-barrier functions can be constructed given the
compactness of target set and the set of initial states.

Note that even though the idea follows the previous work in Section 2.3, the underlying
topology of the solutions to hybrid systems are different. Hence, the results from Section 2.3
are not directly applicable. We aim to leverage the rich results on stability theory of hybrid
systems [71] to unify Lyapunov and barrier conditions in the context of converse Lyapunov-
barrier theorems. We first provide the main results to show the similarity as in Section 2.3,
then we would like to highlight the proofs in Section 2.5.5 based on the new topology of hybrid
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Figure 2.6: The approximated winning sets (shaded area) for system (2.37) (left) with sampling
time 0.1 and system (2.38) (right) with sampling time 0.01, respectively. The green ball: the
target set; the black box: the avoid area; the blue dot: the initial condition. [122]

systems.
We mention that the latest converse barrier theorems4 for differential inclusions [64] pro-

vide a possibility to construct less smooth Lyapunov-barrier functions under less restricted
topological requirement, e.g., unbounded reachable set. In this section, we only consider the
case where the uniformly asymptotically stable set is compact, which seems already satisfac-
tory in practice. For this reason, we stick with the compactness assumption on the target set
and the set of initial states.

Before proceeding, we present the preliminaries for the hybrid systems, concepts of solu-
tions, as well as other important definitions.

2.5.1 Preliminaries

Hybrid systems

Consider a hybrid system H = (C,F,D,G) with dynamics

ẋ ∈ F (x), x ∈ C, (2.42a)
x+ ∈ G(x), x ∈ D, (2.42b)

4Recall that barrier functions are intended for merely safety properties.
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Figure 2.7: The closed-loop simulation with the control policy generated without the constraint
on the change rate of γ. [122]
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whereC,D ⊆ Rn represent the flow set and the jump set respectively, and the set-valued maps
F : Rn ⇒ Rn, G : Rn ⇒ Rn represent flow and jump maps respectively.

Given a scalar ϑ ≥ 0, the (additive) ϑ-perturbation of H, denoted by Hϑ, is described as

ẋ ∈ F (x) + ϑB, x ∈ Cϑ, (2.43a)
x+ ∈ G(x) + ϑB, x ∈ Dϑ, (2.43b)

where Cϑ = C + ϑB and Dϑ = D + ϑB. A hybrid time domain is a subset E ⊆ R≥0 × N
of the form ∪Jj=0[tj, tj+1] × {j}, where J ∈ N ∪ {∞} and 0 = t0 ≤ t1 ≤ t2 ≤ . . . . Given
(t, j), (t′, j′) ∈ E, the natural ordering is such that t+ j ≤ t′ + j′ if t ≤ t′ and j ≤ j′. A hybrid
arc is a function ϕ : E → Rn from a hybrid domain E to Rn and, for each fixed j, t 7→ ϕ(t, j)
is locally absolutely continuous on the interval Ij = {t : (t, j) ∈ dom(ϕ)}.

Definition 2.5.1 (Solution concept). A hybrid arc ϕ is a solution to (2.42) if

(1) ϕ(0, 0) ∈ C ∪D;

(2) for all j ∈ N such that Int(Ij) ̸= ∅, we have

ϕ(t, j) ∈ C for all t ∈ Int(Ij),

ϕ̇(t, j) ∈ F (ϕ(t, j)) for almost all t ∈ Ij;

(3) for all (t, j) ∈ dom(ϕ) such that (t, j + 1) ∈ dom(ϕ), we have ϕ(t, j) ∈ D and ϕ(t, j +
1) ∈ G(ϕ(t, j)).

We define the range of a solution arc ϕ as rge(ϕ) = {ϕ(t, j) : (t, j) ∈ dom(ϕ)} for conve-
nience. For ϑ ≥ 0, we denote by Sϑ

H(x) the set of all maximal solutions5 starting from x ∈ Rn

for a hybrid system Hϑ; we denote by Sϑ
H(K) the set of all maximal solutions starting from

the set K ⊆ Rn for Hϑ.
We introduce correspondingly some notations for reachable sets of Hϑ from someK ⊆ Rn.

For T ≥ 0, we define

R≤T
ϑ (K) =

{
ϕ(t, j) : ϕ ∈ Sϑ

H(K), ϕ(0, 0) ∈ K, t+ j ≤ T
}
.

The reachable sets R<T
ϑ (K) and R≥T

ϑ (K) are defined in a similar way (see examples in Section
2.1). The infinite-horizon reachable set from K for Hϑ is

Rϑ(K) =
{
ϕ(t, j) : ϕ ∈ Sϑ

H(K), (t, j) ∈ dom(ϕ)
}
.

5We omit this standard definition from this section. For a formal definition see e.g. [71, Definition 2.7]
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Assumption 2.5.2. We make the standing assumption that H should satisfy the basic conditions:

(C1) C,D ∈ Rn are closed.

(C2) F is outer semicontinuous, locally bounded, and convex for all x ∈ C .

(C3) G is outer semicontinuous and locally bounded for all x ∈ D.

We also introduce the following concept of closeness of hybrid arcs that will be frequently
used in proofs.

Definition 2.5.3. [71, Definition 5.23] Given τ, ϵ > 0, two hybrid arcs ϕ1 and ϕ2 are (τ, ϵ)-close
if

(1) for all (t, j) ∈ dom(ϕ1) with t + j ≤ τ there exists s such that (s, j) ∈ dom(ϕ2),
|t− s| < ϵ and |ϕ1(t, j)− ϕ2(s, j)| < ϵ;

(2) for all (t, j) ∈ dom(ϕ2) with t + j ≤ τ there exists s such that (s, j) ∈ dom(ϕ1),
|t− s| < ϵ and |ϕ2(t, j)− ϕ1(s, j)| < ϵ.

Properties pertaining to stability and safety

We define properties that are related to stability and safety of solutions to (2.43) in a similar
way as in Section 2.3. Particularly, we formally introduce the concepts of stability with safety
guarantees and reach-avoid-stay type specifications.

Definition 2.5.4 (Forward (pre-) invariance). A set I ⊆ Rn is said to be forward pre-invariant
for Hϑ if for every ϕ ∈ Sϑ

H(I), rge(ϕ) ⊆ I. The set I is said to be forward invariant for Hϑ if for
every forward complete ϕ ∈ Sϑ

H(I), rge(ϕ) ⊆ I, i.e., Rϑ(I) ⊆ I.

Remark 2.5.5. The term ‘pre’ is in the sense that non-complete maximal solutions are not ex-
cluded. This concept allows us to describe the completeness and dynamical behaviors separately for
general maximal solutions. For future references, we only define the ‘pre’ properties of solutions in
consideration of the space limitation.

We next consider stability for solutions of Hϑ w.r.t. a closed set.

Definition 2.5.6 (UpAS). A closed set A ⊆ Rn is said to be UpAS for Hϑ if the following two
conditions are met:
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(1) (uniform stability) for every ϵ > 0, there exists a η = η(ϵ) > 0 such that every solution
to Hϑ with |ϕ(0, 0)|A ≤ η satisfies |ϕ(t, j)|A ≤ ϵ for all (t, j) ∈ dom(ϕ);

(2) (uniform pre-attractivity) there exists some r > 0 such that, for every ϵ > 0, there exist
some T > 0 such that, for every solution ϕ to Hϑ, |ϕ(t, j)|A ≤ ϵ whenever |ϕ(0, 0)|A ≤ r,
(t, j) ∈ dom(ϕ), and t+ j ≥ T .

Definition 2.5.7 (Basin of pre-attraction). If a closed set A ⊆ Rn is UpAS for Hϑ, we further
define the basin of pre-attraction of A, denoted by Bϑ(A), as the set of initial states x ∈ Rn such
that every solution ϕ to Hϑ with ϕ(0, 0) = x is bounded and, if it is complete, then also converges
to the set A, i.e., limt+j→∞ |ϕ(t, j)|A = 0.

We define stability with safety guarantee and reach-avoid-stay properties for the system
Hϑ in the following definitions.

Definition 2.5.8 (Stability with safety guarantee). Let X0, U, A ⊆ Rn and A is a closed set. We
say that Hϑ satisfies a stability with safety guarantee specification (X0, U, A) if

(1) (pre-asymptotic stability w.r.t. A) the set A is UpAS for Hϑ and X0 ⊆ Bϑ(A);

(2) (safety w.r.t. U ) rge(ϕ) ∩ U = ∅ for all ϕ ∈ Sϑ
H(X0).

Definition 2.5.9 (Reach-avoid-stay specification). Let X0, U, I ⊆ Rn. We say that Hϑ satisfies
a reach-avoid-stay specification (X0, U, I) if

(1) (reach and stay w.r.t. I) there exists some T ≥ 0 such that R≥T
ϑ (X0) ⊆ I;

(2) (safety w.r.t. U ) rge(ϕ) ∩ U = ∅ for all ϕ ∈ Sϑ
H(X0).

2.5.2 ConnectionBetween Stabilitywith SafetyGuarantees andReach-
Avoid-Stay Specifications

Stability with safety implies reach-avoid-stay

Throughout this section, we suppose that Hϑ satisfies a stability with safety guarantee specifi-
cation (X0, U, A) for any fixed ϑ ≥ 0.

We first show some basic properties of solutions to Hϑ with a fixed ϑ ≥ 0. The following
proposition combines the result from [71, Proposition 7.4, Lemma 7.8].
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Proposition 2.5.10. Given a hybrid system Hϑ, let A ⊆ Rn be a compact set that is uniform
stable for Hϑ (condition (1) of Definition 2.5.6 holds), and every solution ϕ to Hϑ with proper initial
condition be either bounded or complete such that limt+j→∞ |ϕ(t, j)|A = 0. Suppose K ⊆ Bϑ(A)
is compact. Then

(1) Bϑ(A) is open and A ⊆ Bϑ(A).

(2) For every ϵ > 0, there exists some T = T (ϵ) > 0 such that

|ϕ(t, j)|A ≤ ϵ

for all ϕ ∈ Sϑ(K), (t, j) ∈ dom(ϕ) with t+ j ≥ T .

(3) A ∪R(K) is a compact subset of Bϑ(A).

By (2) of Proposition 2.5.10, which indicates the equivalence of uniform attraction and
asymptotica attraction for solutions to Hϑ under the uniform stability condition, it can be
shown straightforwardly the reach-avoid-stay property (see also Proposition 2.3.9 for compar-
ison). The statement is given in the following proposition.

Proposition 2.5.11. Let A,X0 ⊆ Rn be compact sets. Suppose that Hϑ satisfies a stability with
safety guarantee specification (X0, U, A). Then for every ϵ > 0, the system Hϑ also satisfies the
reach-avoid-stay specification (X0, U, A+ ϵB).

The converse side

Throughout this subsection, we suppose that the perturbed system Hϑ satisfies a reach-avoid-
stay specification (X0, U, I). We make an additional assumption on the local Lipschitz property
of F and G to prove the converse connection.

Assumption 2.5.12. We assume in this section that F and G in (2.43) are locally Lipschitz on
some open subset of C and D respectively.

Definition 2.5.13 (Locally Lipschitz set-valued maps). Let O ⊆ Rn be an open set. A set-valued
flow map F is also locally Lipschitz on O, that is, for each x ∈ O, there exists a neighborhood
N ⊂ O of x and an L > 0 such that for any x1, x2 ∈ N ,

F (x1) ⊆ F (x2) + L|x2 − x1|B.

The following fact is a direct consequence of being locally Lipschitz [160, Lemma 9].
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Lemma 2.5.14. If F : O ⇒ Rn is locally Lipschitz, then for any compact subset K ⊆ O there
exists an LK > 0 such that for any x1, x2 ∈ K , we have

F (x1) ⊆ F (x2) + LK |x2 − x1|B.

Lemma 2.5.15 (Perturbed solutions). For any ϑ > 0, fix a ϑ′ ∈ [0, ϑ) and a τ > 0. Let T ≥ τ and
K ⊆ Rn be a compact set such thatK∩(Cϑ∪Dϑ) ̸= ∅. Then there exists an r = r(K, τ, ϑ′, ϑ) > 0
such that for every solution ϕ ∈ Sϑ′

H(K) with ϕ(t′, j′) ∈ K for all (t′, j′) ∈ dom(ϕ) and t′+ j′ ≤
T , and for all x ∈ ϕ(0, 0) + rB, there exists a ψ ∈ Sϑ

H(x) with dom(ψ) = dom(ϕ) and

ψ(t, j) = ϕ(t, j), t+ j = T. (2.44)

Remark 2.5.16. We provide the proof in Section 2.5.5. The above result shows that for any compact
solution ϕ to Hϑ′ (that exists till t+ j = τ ), there exists a solution ψ to a slightly more perturbed
systemHϑ such that the endpoints of ϕ andψ are related within some time period. The construction
and estimation rely on the local Lipschitz continuity of F and G. The proof states that no matter
how conservative the estimation is, we are able to find the small neighborhood with radius r such
that for any initial condition within ϕ(0, 0) + rB, there exists a ψ as a solution to Hϑ converging
to ϕ within finite time. The requirement that ϑ′ should be strictly less than ϑ is necessary. Unlike
the robustness concept given in [71, Lemma 7.37], the perturbed systems Hϑ need inflation of C
and D whose intensities increase as ϑ increases. This subtle difference is in consideration of when
ϕ(0, 0) ∈ ∂(Cϑ′ ∪Dϑ′) whilst the constructed ψ is still well posed.

Applying the proceeding results, we show in the next proposition a hybrid-system version
of Proposition 2.3.16.

Proposition 2.5.17. Any nonempty, compact, forward pre-invariant set A for Hϑ is UpAS for
Hϑ′ with any ϑ′ ∈ [0, ϑ).

Remark 2.5.18. The proof is similar to that of Proposition 2.3.16. That the ϵ in Definition 2.5.6 can
be arbitrarily given (at least in a small range) is guaranteed by the reach-avoid-stay assumption
on Hϑ. The idea is to suppose the opposite, i.e., the solution ϕ of Hϑ′ starting within a sufficiently
small neighborhood A + rB can possibly not reach A or even flow/jump out of the compact set
K := |ϕ(t, j)|A ≤ ϵ for t + j ≥ τ , where r, τ are as in Lemma 2.5.15. However, Lemma 2.5.15
indicates that these are not the cases in that for any of those ϕ, there exists some ψ to Hϑ that will
be identical to ϕ after t + j ≥ τ , which contradicts the pre-invariance assumption. We omit the
details since there is no convergence concepts used in the proof that are special for hybrid systems.

The following result is an analogue of Lemma 2.3.15. We complete the proof in Section 2.5.5.
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Proposition 2.5.19 (Existence of compact invariant set). Suppose that I is compact and X0 is
nonempty. Suppose that Hϑ satisfies a reach-avoid-stay specification (X0, U, I). Then the set

A =
{
x ∈ I : ∀ϕ ∈ Sϑ

H(x), rge(ϕ) ⊆ I
}

(2.45)

is nonempty, compact, and forward pre-invariant for Hϑ.

Combining Proposition 2.5.17 and Proposition 2.5.19, we immediately obtain the following
connection between reach-avoid-stay specifications and stability with safety guarantees.

Proposition 2.5.20. Let Assumption 2.5.12 be satisfied. Let X0 be a nonempty set and I be a
compact set. Suppose that Hϑ satisfies a reach-avoid-stay specification (X0, U, I). Then there
exists a compact set A ⊆ I such that any less perturbed system Hϑ′ with ϑ′ ∈ [0, ϑ) satisfies the
stability with safety guarantee specification (X0, U, A).

2.5.3 Lyapunov-Barrier Functions for Reach-Avoid-Stay Specifications

In this subsection, we provide Lyapunov-barrier characterizations for stability with safety guar-
antee specifications as well as reach-avoid-stay specification. In particular, such characteriza-
tions are (robustly) complete in the sense that Lyapunov-barrier functions exist based on the
specified dynamical behavior of the solutions. The proofs of results from this subsection are
provided in Section 2.5.5.

We focus on the Lyapunov-barrier functions for stability with safety guarantees, the result
for reach-avoid-stay comes after the connection given in Proposition 2.5.20.

Definition 2.5.21 (Basin of pre-attraction with safety). The extracted basin of pre-attraction with
safety is a subset of Bϑ(A) defined by

B̂ϑ(A) := {x ∈ Bϑ(A) : ∀ϕ ∈ Sϑ
H(x), rge(ϕ) ∩ U = ∅}, (2.46)

where A,U are given in the specification (X0, U, A).

The following lemma verifies some basic properties of the set B̂ϑ(A).

Lemma 2.5.22. Suppose thatA is compact, U is closed, andA∩U = ∅. If Hϑ satisfies the stability
with safety guarantee specification (X0, U, A), then

(1) X0 ⊆ B̂ϑ(A) ⊆ Bϑ(A);
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(2) B̂ϑ(A) is open and forward pre-invariant.

The following result shows that based on the reachable region of solutions with stability
and safety guarantees, a single Lypunov like function exists which is also effective as a barrier
function to guarantee the safety.

Theorem 2.5.23. Suppose that A is compact, U is closed, and A∩U = ∅. Then the following two
statements are equivalent:

(1) Hϑ satisfies the stability with safety guarantee specification (X0, U, A)

(2) There exists an open and forward pre-invariant set O such that (A ∪ X0) ⊆ O and
O ∩ U = ∅, a smooth function V : O → R≥0 and class K∞ functions α1, α2 such that,

α1(w(x)) ≤ V (x) ≤ α2(w(x)),

∀x ∈ (Cϑ ∪Dϑ ∪G(Dϑ)) ∩O,
(2.47)

∇V (x) · f ≤ −V (x), ∀x ∈ Cϑ ∩O, f ∈ F (x) + ϑB, (2.48)

and
V (g) ≤ V (x)/e, ∀x ∈ Dϑ ∩O, g ∈ G(x) + ϑB, (2.49)

where w is a proper indicator for A on O.

In particular, we can let O = B̂ϑ(A).

Remark 2.5.24. Note that to use [71, Corollary 7.33], we need to verify that the UpAS holds for
the following system of the following modifications:

ẋ ∈ Fϱ(x), x ∈ (Cϑ)ϱ, (2.50a)
x+ ∈ Gϱ(x), x ∈ (Dϑ)ϱ, (2.50b)

where
(Cϑ)ϱ =

{
x ∈ Rn : (x+ ϱ(x)B ∩ Cϑ ̸= ∅

}
,

Fϱ(x) = conF ((x+ ϱ(x)B) ∩ Cϑ) + (ϱ(x) + ϑ)B,

(Dϑ)ϱ =
{
x ∈ Rn : (x+ ϱ(x)B ∩Dϑ ̸= ∅

}
,

Gϱ(x) =
{
v ∈ Rn : v ∈ g + (ϱ(g) + ϑ)B

}
, for g ∈ G(x + ϱ(x)B) ∩Dϑ. However, this is guar-

anteed by Assumption 2.5.2 for each ϑ ≥ 0.
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The proof for [71, Corollary 7.33] relies on the conversion from UpAS to the KL pre-asymptotic
stability based on changing the basin of attraction. In contrast, for robust systems driven by differ-
ential equations with F being a single-valued function, Proposition 2.3.9 provides a more explicit
way of constructing the KL-function β such that w(ϕ(t)) ≤ β(w(x), t) for all solutions with
initial conditions x ∈ O. The argument is based on the reachable set properties as well as a con-
nection between the solution-to-set distance and the proper indicator. The extension of the explicit
construction from Proposition 2.3.9 to the general hybrid systems should be similar.

By the connection obtained in Section 2.5.2, the following results follow.

Corollary 2.5.25. Suppose that A,X0 are compact sets and (2) of Theorem 2.5.23 holds. Then Hϑ

satisfies the reach-avoid-stay specification (X0, U, A+ ϵB) for any ϵ > 0.

Theorem 2.5.26. Let Assumption 2.5.12 be satisfied. Suppose that I is compact, U is closed and
I ∩ U = ∅. Suppose that Hϑ′ satisfies the reach-avoid-stay specification (X0, U, I). Then there
exists a compact set A ⊆ I such that (2) of Theorem 2.5.23 holds for any Hϑ with ϑ ∈ [0, ϑ′).

The above constructed Lyapunov functions for the stability with safety guarantees and
reach-avoid-stay specifications play an implicit role as a barrier function. We mimic Propo-
sition 2.3.21 and provide an equivalent characterization as in Theorem 2.5.23 with separate
Lyapunov-barrier functions to complete this section. The separate Lyapunov-barrier functions
for reach-avoid-stay specifications are omitted due to the similarity.

Theorem 2.5.27. Suppose that A is compact, U is closed and A ∩ U = ∅. If there exists an open
set O such that A ∪ X0 ⊆ O, a smooth function V : O → R≥0 satisfying

(1) there exist α1, α2 ∈ K and a continuous positive function ϱ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀x ∈ (Cϑ ∪Dϑ ∪G(Dϑ)) ∩O, (2.51)

∇V (x) · f ≤ −ϱ(|x|A), ∀x ∈ Cϑ, f ∈ F (x) + ϑB, (2.52)

V (g)− V (x) ≤ −ϱ(|x|A), ∀x ∈ Dϑ, g ∈ G(x) + ϑB; (2.53)

and B : Rn → R that is smooth in C ∩O such that

(2) the set S := {x ∈ Rn : B(x) ≥ 0} ⊆ O and X0 ⊆ S;

(3) x ∈ U implies B(x) < 0;
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(4)
∇B(x) · f ≥ 0, ∀x ∈ Cϑ ∩O, f ∈ F (x) + ϑB, (2.54)
B(g)−B(x) ≥ 0, ∀x ∈ Dϑ ∩O, g ∈ G(x) + ϑB, (2.55)

then Hϑ satisfies the stability with safety guarantee specification (X0, U, A).

IfX0 is also compact, then the converse side also holds, i.e., the existence of smooth V andB with
conditions (1)-(4) is necessary for Hϑ satisfying the stability with safety guarantee specification
(X0, U, A).

Remark 2.5.28. For the sufficient part, condition (4) intends to regulate the safe direction of solu-
tions on the entire open set O rather than directly on its subset S := {x ∈ Rn : B(x) ≥ 0}. This
condition seems stronger but also necessary. Imposing condition (4) on S can only guarantee the
invariance of the interior of S, for counters examples see e.g. [167, Remark 4].

2.5.4 Examples

We provide two examples in this subsection to validate our results.

Bouncing ball

As a classical mechanical system with impulse-momentum change, the model of bouncing balls
is frequently used to illustrate dynamical behaviors of hybrid systems. We model a tennis ball
as a point-mass, and consider dropping it from a fixed height with a constant horizontal speed.
The vertical direction is forced by the gravity. As the ball hits the horizontal surface, the in-
stantaneous vertical velocity is reversed with a small dissipation of energy.

To describe the hybrid dynamics, the state of the ball is given as

x = (x, y, z)T ∈ R3,

where x is the horizontal position, y represents the height above the surface, and z is the vertical
velocity. The flow set is given

C = {x : y > 0 or y = 0, z ≥ 0}.
We consider the flow6 as

ẋ = f(x) :=

 1
z
−a

 , x ∈ C,

6As in [71], it is natural to set f(0) = 0 regardless of the noncontinuity at 0.
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Figure 2.8: Snapshot of bouncing ball in xy-plane.

where a = 9.8 is the acceleration due to the gravity. The jump set captures the domain when
the vertical velocity flips the sign, which is geiven as

D = {x : y = 0 and z < 0}.

The jump dynamic is such that

x+ = g(x) :=

 x
0

−ςz

 , x ∈ D,

for some dissipation coefficient ς ∈ (0, 1).
Now fix ς = 0.8, let the initial condition to be x(0) = (0, 9, 0.8)T ∈ C , and model a block

(the unsafe set) by
U := {x : y > 10}.

We consider the target set as
I := {x : y ∈ [0, 0.1]}.

It can be shown analytically and numerically (see Figure 2.8) that the system satisfies the
reach-avoid-stay specification ({x(0)}, U, I). We now validate the existence of Lyapunov-barrier
functions (V,B).
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Note that, the function

V (x) =

(
1 +

1− ς2

π(1 + ς2)
arctan(z)

)
·
(
1

2
z2 + ay

)
has been verified in [71, Example 3.19] to be a valid Lyapunov function w.r.t. the set {x : y = 0}.
It suffices to find valid candidate of the barrier function B. Consider a sigmoid function

σ(x) =
1

1 + exp(−5x)

and let
B(x) =

1

2
σ(x)− y − 1

2a
z2 + 9.5.

It can be verified that B(x) < 0 for x ∈ U ,

∇B(x) · f(x) = 1

2
σ(x)(1− σ(x))− z + z ≥ 0, x ∈ C,

and
B(g(x))−B(x) =

1

2a
(z2 − ς2z2) > 0, x ∈ D,

Therefore, the above B(x) is a valid barrier function. Let S := {x : B(x) ≥ 0} be the set as in
Theorem 2.5.27, then it is also clear that x(0) ∈ S. The evolution of the state x ∈ R3 as well as
the barrier function B are provided in Figure 2.9. It can be seen that for all t ≥ 0, x(t) ∈ S and
therefore remain safety w.r.t. U .

Sample-and-hold control

In this example, we revisit the case study in Section 2.4.2 from the perspective of hybrid system.
Due to the issues of less frequent and inaccurate state measurement, the errors inject into the
closed-loop control system and may cause unsatisfactory performance. We are motivated by
the above issues to convert the system (2.38), which is the equivalent form of (2.36), into a
hybrid system. We then apply the conditions of the Lyapunov-barrier functions in Theorem
2.5.27 to synthesize valid sample-and-hold controllers aiming at fulfilling the task in Problem
2.4.6.

For simplicity, we define the state x = (Φ,Ψ)T and the control input u = (v, γ). We write

f̃(x, u) =

[
1
lc
(ψc −Ψ(t))

1
16lc

Φ(t)

]
+

[
v(t)

−γ(t)
√

Ψ(t)

]
,
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Figure 2.9: Solution of bouncing ball (the green dots) and barrier function B (the grey surface)
in xyz-plane.
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which is the r.h.s. of (2.38).
We then introduce τ ∈ [0, 0.5) as a timer variable and set

z =

xu
τ

 ∈ R2 × R2 × R.

The flow set of the sample-and-hold hybrid system is given asC = R2×R2× [0, 0.5), on which
the flow dynamics are such that

ż = f(z) =

f̃(x, u)0
1

 , z ∈ C.

The jumps happen when the timer is up to 0.5 and decisions are made, i.e.,D = R2×R2×{0.5}
and

z+ = g(z) =

 x
κ(x)
0

 , z ∈ D. (2.56)

We choose Lyapunov-barrier functions (V,B) as in Section 2.4.2 and define a set of high-
gain robust control policy as follows:

K(x) = {u ∈ U : LfV (x) + LgV (x)u+ V (x) ≤ −ς and LfB(x) + LgB(x)u ≥ ς, ∀x ∈ D},
(2.57)

where ς > 0 is intended to compensate the error that is generated when the same control
input is imposed on the flow dynamics. Since LfV , LgV , LfB and LgB are locally Lipschitz
continuous, and the quantity |x(τ) − x(0)| for any fixed x(0) ∈ D is locally bounded given
x(τ) = x(0) +

∫ τ
0
f̃(x(s), u)ds and τ ∈ [0, 0.05). It is clear that both

|LfV (x(τ)) + LgV (x(τ))u+ V (x(τ))− LfV (x(0)) + LgV (x(0))u+ V (x(0))|

and
|LfB(x(τ)) + LgB(x(τ))u− LfB(x(0)) + LgB(x(0))u|

are locally bounded. We set the bound for both of the above quantities to be ς , such that for
any u = κ(x) ∈ K(x) and x ∈ D, we have the Lyapunov-barrier conditions satisfied in the flow,
i.e.,

LfV (x) + LgV (x)u+ V (x) ≤ 0 and LfB(x) + LgB(x)u ≥ 0, ∀x ∈ C.

This in turn guarantees the reach-avoid-stay property of the system.
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In the numerical experiments, we empirically set ς = 0.07 and impose an extra set of con-
straints for the control input as in (2.40). The u is selected such that (2.39) is minimized for
each z ∈ D. The results are shown in Figure 2.10 and 2.11. It can be seen that given the robust
correction in the decision making, the high-gain controller can still fulfill the goal apart from
the intensive chattering trajectory along the Φ direction in between t = 20 and t = 80.

2.5.5 Proofs of Results

Proof of Lemma 2.5.15

Proof. Note that, implicitly, every reference hybrid arc ϕ should exist for hybrid time t+j ≥ T .
We suppose the total number of jumps before T is N , thereby N ∈ [0, T ]. Now, set

ψ(t′, j′) = ϕ(t′, j′) +

(
1− t′ + j′

T

)
· (ψ(0, 0)− ϕ(0, 0))

for all t′ + j′ ∈ [0, T ]. Then the constructed ψ satisfies (2.44) and

|ψ(t′, j′)− ϕ(t′, j′)| ≤ |ψ(0, 0)− ϕ(0, 0)| ≤ r.

In particular, for N > 0, the total distance of |ψ(t′, j′)− ϕ(t′, j′)| created by jumps should
be bounded by Nr

T
, and for each jump and at the end point t′ ∈ Ij

′ , we have

|ψ(t′, j′ + 1)− ϕ(t′, j′ + 1)| ≤ r

T
.

Similarly, suppose N < T (i.e., flows exist), then for all t′ ∈ Ij
′ , we have∣∣∣ψ̇(t′, j′)− ϕ̇(t′, j′)

∣∣∣ ≤ T −N

T (T −N)
|ψ(0, 0)− ϕ(0, 0)| = r

T
.

We show that this ψ is a solution to Hϑ. On the flow set Cϑ, let Ĉ := Cϑ ∩ (K + rB). Then
for x ∈ Ĉ , for all t′ ∈ Ij

′ , we have

ψ̇(t′, j′) ⊆ϕ̇(t′, j′) + r

T
B ⊆ F (ϕ(t′, j′)) +

(
ϑ′ +

r

T

)
B

⊆F (ψ(t′, j′)) +
(
ϑ′ +

r

T

)
B+ LĈ |ψ(t′, j′)− ϕ(t′, j′)|B

⊆F (ψ(t′, j′)) +
(
ϑ′ +

r

T
+ rLĈ

)
B

⊆F (ψ(t′, j′)) +
(
ϑ′ +

r

τ
+ rLĈ

)
B,
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Figure 2.10: Control signal v and γ solved by the quadratic programming for the hybrid con-
version of (2.38).
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Figure 2.11: Phase portraits and evolution of Φ and Ψ given the sample-and-hold control signal
v and γ.
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where the constant LĈ in line 4 of the above inclusions is obtained by Lemma 2.5.14.
Similarly, for each end point t′ of some Ij′ , the jump should satisfy

ψ(t′, j′ + 1) ⊆ G(ψ(t′, j′)) +
(
ϑ′ +

r

τ
+ rLD̂

)
B,

where D̂ := Dϑ ∩ (K + rB) and LD̂ is obtained based on Lemma 2.5.14 for G.
Now we are able to bound the above by ϑ such that ψ is a solution to Hϑ. The r can be

selected accordingly such that all of the followings are satisfied: r ≤ ϑ−ϑ′, 2r
τ
+ϑ′+2rLĈ ≤ ϑ

and 2r
τ
+ ϑ′ + 2rLD̂ ≤ ϑ.

Note that the above choice of r should work for every possible case: the extreme cases
when only flows (N = 0) or jumps (N = T ) happen, as well as the mixed flow/jump case
(N ∈ (0, T )).

Proof of Proposition 2.5.19:

To prove Proposition 2.5.19, we need the following lemma.

Lemma 2.5.29. Let the hypothesis in Proposition 2.5.19 be satisfied. Let x0 ∈ A ⊆ I be fixed.
Then for every ϵ > 0 and τ ≥ 0, there exists κ > 0 such that, for every solution ϕ ∈ Sϑ

H(x0+κB)
there exists a solution ψ ∈ Sϑ

H(x0) such that ϕ and ψ are (τ, ϵ)-close.

Proof. Without loss of generality, we can assume that ϵ and τ are arbitrarily small such that
x0 + κB ⊆ I. Note that by the reach-avoid-stay property of Hϑ, the solution starting from I
should be either eventually bounded or complete. Suppose the statement were to fail, then for
some arbitrarily small ϵ and τ , for each n ∈ N and ϕn ∈ Sϑ

H(x0 + 1/nB) with x0 + 1/nB ⊆ I,
there exists no solution ψ ∈ Sϑ

H(x0) is (τ, ϵ)-close to ϕn. However, {ϕn}n is (locally eventually)
bounded. By [71, Theorem 6.1], we can extract a subsequence, still denoted by {ϕn}n, that is
graphically convergent to some ϕ ∈ Sϑ

H(x). This implies that there exists some sufficiently
largen such thatϕn andϕ are (τ, ϵ)-close as a consequence of graphical convergence of bounded
sequences, which leads to a contradiction.

Proof of Proposition 2.5.19: By Definition 2.5.9, there exists some T ≥ 0 such that
R≥T
ϑ (X0) ⊆ I. It is easy to verify that for any x ∈ R≥T

ϑ (X0) ⊆ I, x ∈ I, and for all ϕ ∈ Sϑ
H(x),

we have ϕ(t, j) ∈ R≥T
ϑ (X0) for all (t, j) ∈ dom(ϕ). This shows that A is nonempty. The

forward pre-invariance is verified by setting T = 0 and X0 ⊆ I.
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It suffices to show the closedness ofA, which will imply the compactness due to the bound-
edness assumption on I. Pick any sequence {xn}n ⊆ A such that xn → x. Then for all
ϕn ∈ Sϑ

H(xn), we have rge(ϕn) ⊆ I and hence bounded. Suppose that x /∈ A, then there
exists a ϕ ∈ Sϑ

H(x) such that ϕ(t, j) /∈ I for some (t, j) ∈ dom(ϕ). Select sufficiently small τ
and ϵ as in Lemma 2.5.29, then there exists some κ = κ(τ, ϵ) > 0 and sufficiently large n ∈ N
(with x ∈ xn + κB) such that ϕ ∈ Sϑ

H(xn + κB). However, by Lemma 2.5.29, there exists a
solution ϕn ∈ Sϑ

H(xn) such that ϕ and ϕn are arbitrarily (τ, ϵ)-close. Since Rn \ I is open, we
have ϕn(s, j) ∈ Rn \ I for some s + j ≤ τ with |t − s| < ϵ. This contradicts the forward
pre-invariance property of ϕn. Hence, x ∈ A and A depicts compactness.

Proof of Lemma 2.5.22

Proof. The first claim can be easily verified by Definition 2.5.8 and 2.5.21. The forward pre-
invariance of (2) comes after Definition 2.5.4. It suffices to show that B̂ϑ(A) is also open given
U is closed.

Suppose the opposite, then pick any x ∈ B̂ϑ(A), there exists a sequence of points {xn}n ⊆
Bϑ \ B̂ϑ(A) with xn → x. Note that for each n, there exist ϕn ∈ Sϑ

H(xn) that are either
bounded or complete with convergence to A. Either way, we have ϕn bounded for each n by
Proposition 2.5.10. By [71, Theorem 6.1], we can extract a subsequence, still denoted by {ϕn}n,
that is graphically convergent. By Assumption 2.5.2, the limit satisfies ϕ ∈ Sϑ

H(x), and is again
either bounded or complete with convergence to A.

Suppose the graphical limit ϕ is complete. Let r > 0 be given by condition (2) from Defini-
tion 2.5.6. Pick ϵ < r such that (A+ ϵB) ∩ U = ∅. Choose ηϵ ≤ ϵ according to condition (1) of
Definition 2.5.6 by the uniform stability. Then there exists a T = T (ηϵ) > 0 such that

|ϕ̂(t, j)|A ≤ ηϵ

for all ϕ̂ ∈ Sϑ
H(x) and t + j ≥ dom(ϕ̂) with t + j ≥ T . Note that the reachable set R≤T

ϑ (x)
is compact and we can select some ϵ′ < ϵ/2 such that (R≤T

ϑ (x) + ϵ′B) ∩ U = ∅. Let ϵ′′ =
min{ϵ′, ηϵ}. As the consequence of graphical convergence, there exists a sufficiently largen ∈ N
such that for each τ > 0, the solution ϕn and ϕ are (τ, ϵ′′)-close. No matter τ ≥ T or τ < T ,
we can verify by the choice of ϵ′′ and n that ϕn(t, j) ∈ (Rϑ(x) + ϵ′B) ∪ (A + ϵB) for all
(t, j) ∈ dom(ϕn), which contradicts the property of ϕn ∈ Sϑ

H(xn) with xn ∈ Bϑ(A) \ B̂ϑ(A).
For the case that ϕ is bounded, we can proceed and show the contradiction by a similar way.
Combining the above, we have B̂ϑ(A) is open.
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Proof of Theorem 2.5.23

Proof. (1) =⇒ (2): By [71, Corollary 7.33], the existence of smooth Lyapunov-like function
holds on forward pre-invariant open subsets of Bϑ(A). The result follows immediately by
Lemma 2.5.22 for O = B̂ϑ(A).

(2) =⇒ (1): By a standard Lyapunov argument for hybrid systems, we are able to show
that for any ϕ to Hϑ with ϕ(0, 0) ∈ O,

V (ϕ(t, j)) ≤ V (ϕ(0, 0))e−(t+j)/3,

which implies the forward pre-invariance of O and the UpAS property of any ϕ starting within
O. Now that O ∩ U = ∅, for any ϕ ∈ Sϑ

H(X0) with X0 ⊆ O, we have rge(ϕ) ∩ U = ∅, which
implies the safety.

Proof of Theorem 2.5.27

Proof. We only show the sufficient part, the converse construction can be argued in a similar
way to Proposition 2.3.11. We start with the stability. Note that by a standard Lyapunov ar-
gument for hybrid systems, the existence of V with condition (1) is sufficient to guarantee the
UpAS property ofA for Hϑ. The condition (2)-(4) ofB intends to separate the set S and U , such
that all the solutions starting from S will stay within it.

We show formally the mechanism ofB. Suppose the opposite, then there exists some x ∈ S,
a solution ϕ ∈ Sϑ

H(x), and some hybrid time such that B(ϕ(t, j)) < 0. Then we are able to
define a finite time τ := sup{t+j ≥ 0 : ϕ(t, j) ∈ S}.As a consequence, there exist t′ and j′ with
t′+j′ = τ such thatB(ϕ(t′, j′)) = 0. Note that since the ϕ exists tillB(ϕ(t, j)) < 0. For a small
perturbation ϵ of t′, ϕ is either a flow such that t′+ ϵ ∈ Ij

′ , or triggers a jump such that t′+ ϵ ∈
Ij

′+1. For the first case, since O is open, for arbitrary ϵ > 0, we still have ϕ(t′′, j′) ∈ Cϑ∩O for
almost t′′ ∈ [t′, t′+ ϵ]. Thus, we have Ḃ(ϕ(t′′, j′)) = ∇B(ϕ(t′′, j)) ·f ≥ 0 for all f ∈ F (x)+ϑB
and almost all t′′ ∈ [t′, t′ + ϵ], which means t′′ + j′ ≥ τ but ϕ(t′′, j′) ∈ S. This contradicts the
definition of τ . For the second case, by a similar argument, we haveB(ϕ(t′, j′+1)) ≥ 0, which
also leads to a contradiction. Hence S is forward pre-invariant. This verifies condition (2) of
Definition 2.5.8. A direct consequence of B is that, for any X0 ⊆ O, any solution ϕ ∈ Sϑ

H(X0)
stays within S and hence O. Condition (1) guarantees that ϕ ∈ Bϑ(A). This verifies condition
(1) of Definition 2.5.8.
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2.6 Summary

In this chapter, we started with a quick review of barrier functions and the associated certificates
to guarantee set invariance. A slight modification of barrier conditions were made in Section
2.2.1, based on which the CBF was proposed and verified to sufficiently guarantee the set safety
of the controlled trajectories.

We then proved two converse Lyapunov-barrier function theorems for nonlinear systems
satisfying either asymptotic stability with a safety constraints or a reach-avoid-stay type spec-
ification. In the former case, we show that a smooth Lyapunov-barrier function can be defined
on the entire set of initial conditions from which asymptotic stability with a safety constraint
can be satisfied. For the latter, we establish a converse theorem via a robustness argument. It is
shown by example that the statement cannot be strengthened without additional assumptions.
We further extend the results to establish converse control Lyapunov-barrier functions for sys-
tems with control inputs. The focus of the current chapter is on converse Lyapunov-barrier
functions, applying which we make a quick extension to converse control Lyapunov-barrier
function. However, we only considered an additive measurable disturbance in the right-hand
side of the dynamical systems for the purpose of establishing converse Lyapunov-barrier re-
sults. In addition, similar to other converse Lyapunov theorems, the existence results are not
constructive.

We investigated the effectiveness in a case study of jet engine compressor control problem.
In the control problem, we concern the parameter as a time-varied signal to be decided along
with the control signal v for the state variable Φ. It is shown that the sufficient conditions on v
and γ generated by Lyapunov method can be flexibly embedded into a quadratic programming
framework with a minimum energy cost. In contrast to formal methods, which fail to handle
non-uniform speed of dynamics determined by γ(t) using the existing tool boxes, Lyapunov
methods analytically characterize the topological structure on the solutions w.r.t. the reach-
avoid-stay specifications without considering local dynamics.

We finally showed that under mild conditions, the connection can be made, via a robust-
ness argument, between stability with safety guarantees and reach-avoid-stay specifications
for robust hybrid systems driven by differential and difference inclusions. We further extended
the Lyapunov-barrier function theorems to robust hybrid systems that satisfy stability with
safety guarantees and reach-avoid-stay specifications. Under the concept of solutions to hybrid
systems, as well as natural requirements on the compactness of target set and the set of initial
conditions, we showed that the existence of Lyapunov-barrier functions is necessary to the two
specifications of our interests. It is interesting to compare with the latest converse theorems
on barrier functions for systems driven by differential inclusions [64]. The mentioned refer-
ence provides a construction based on time-to-impact functions w.r.t. the robust reachable sets,
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which in turn to be qualified as barrier functions. In terms of safety, this method allows us to
consider relaxations for the topological set-ups of target sets and the set of initial conditions,
however, at the cost of not relying on the existing converse Lyapunov theorems and possibly
sacrificing the smoothness of barrier functions.
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Chapter 3

Lyapunov-Barrier Approaches for
Verification and Control of Stochastic
Systems

In this chapter, we extend the Lypanov-Barrier approaches to verification and control synthe-
sis of stochastic systems. We focus on probabilistic invariance/safety and reachability related
specifications for continuous-time stochastic systems modelled by SDE driven by Brownian
motions.

Considering the appearance of noises with Itô diffusion, instead of direct requirements on
trajectory behaviors in the state space per se, a proper specification is to specify a probability of
sample paths satisfying certain state-space behaviors, namely probabilistic specifications. This
turns out to fit the culture of stochastic dynamical systems: when it comes to observations in
the state space, we usually concern how probability laws on the canonical space distribute the
corresponding weak solutions.

As for verification and control synthesis of probabilistic stability-safety type problems, it ap-
pears more challenging. Authors in [102, 35, 117, 52, 51] applied abstract models, such as IMC
and BMDP, on discrete-time continuous-state stochastic systems to compute an inclusion of the
real satisfying probability and synthesize controllers for probabilistic specifications (including
probabilistic reachability on an infinite horizon). Works in [143, 164, 88] characterized value
functions for reachability/reach-avoid problems in discrete-time continuous-state stochastic
systems and applied dynamic programming for synthesizing optimal controllers. Authors in
[53] developed a weak dynamic programming principle for the value functions of probabilis-
tic reach-avoid specifications in continuous-time continuous-state stochastic systems, which
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provides compatibility for non-almost-sure probabilistic requirements. It remains a fundamen-
tal challenge to overcome the curse of dimensionality in discretization-based approaches for
verification and control synthesis.

Since small perturbations should necessarily be taken into account due to reasons such as
modelling uncertainties and measurement errors of the state, robust analysis provides guar-
antees in a worst-case scenario. Despite the current theme of regarding ‘inaccuracy’ from the
computation of probability measures as the ‘uncertainty’ [102, 35, 117, 52], to make a closer
analogy of the deterministic case, we consider uncertainties as a result of perturbed stochastic
systems which create an inclusion of solutions. A robust satisfaction of a probabilistic spec-
ification in a perturbed stochastic system is then interpreted as follows: the solution process
measured in the correspondingly worst but accurate probability law still satisfies the probabilis-
tic specification. The work [155] demonstrated the robust Lyapunov-stability for discrete-time
stochastic systems with perturbations. The authors in [137] considered the same type of systems
and developed a robust algorithm to guarantees practical convergence to a Nash equilibrium in
non-cooperative games. Continuous-time stochastic differential inclusions are also well studied
[93, 94, 118].

Considering this complexity issue as well as the possible appearance of extra uncertain-
ties, this chapter formulates stochastic Lyapunov and barrier functions to deal with sufficient
conditions for robust probabilistic invariance and reachability related specifications.

Conventions for Notation:
For any stochastic processes {Xt}t≥0 we use the shorthand notation X := {Xt}t≥0. For

any stopped process {Xt∧τ}t≥0, where τ is a stopping time, we use the shorthand notation Xτ .
We denote the Borel σ-algebra of a set by B(·) and the space of all probability measures on
B(·) by P(·). Given a probability space (Ω,F ,P), we denote by ∥ ·∥1 := E| · | the L1-norm for
Rn-valued random variables, and let B := {X : Rn-valued random variable with ∥X∥1 < 1}.

3.1 Preliminaries

Before proceeding, we briefly introduce perturbed SDEs and the solution concept. We focus on
the introduction of control-free cases, and the systems with controls should be similar.

Control-free system dynamics

Consider the following form of perturbed SDEs:

dXt = f(Xt)dt+ b(Xt)dWt + ϑξ(t)dt, (3.1)
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where W is an m-dimensional standard Wiener process; the process ξ : R≥0 → B is a measur-
able signal independent with W , whose marginals ξ(t) ∈ B are independent random variables
with unknown distributions; f : Rn → Rn is a nonlinear vector field; b : Rn → Rn×m is
a smooth mapping. For future references, we denote systems driven by SDE (3.1) by Sϑ, of
which the ϑ represents the intensity of perturbations. Similar to Chapter 2, we denote by S
the control-free stochastic system without extra perturbations.

Remark 3.1.1. We can treat ξ : R≥0 → B1 as a special case, where the marginals are independent
point-mass perturbations that possess Dirac measures δx for unknown x ∈ B1.

Assumption 3.1.2. We make the standing assumptions on the regularity of the system Sϑ for the
rest of this chapter:

(1) The mappings f, b satisfy local Lipschitz continuity.

(2) The eigenvalues λi[(bbT )(x)] of the matrix bbT (x) for i = 1, 2, · · · , n satisfy

sup
x∈Rn

min
i=1,2,··· ,n

λi[(bb
T )(x)] > 0.

Definition 3.1.3 (Solution concepts). The system Sϑ admits

(1) a strong solution on a given filtered probability space (Ω†,F †, {F †
t },P†), where the given

Wiener process W is defined, if there exists an adapted process X satisfying the SDE (3.1)
for any ξ : R≥0 → B;

(2) a weak solution if there exists a filtered probability space (Ω†,F †, {F †
t },P†) with a pair

(X,W ) of adapted stochastic processes, such that W is a Wiener process and X solves the
SDE (3.1) for any ξ : R≥0 → B.

Note that from a modelling point of view, we usually do not specify in a priori a Wiener
process [131]. In addition, for the purpose of verifying dynamical behaviors in probability
laws, i.e. the probabilistic properties in the state space, it is not necessary to restrict ourselves
to a specified probability space. For a system Sϑ, we consider the weak sense of solutions
and denote by Sϑ(x,W ) the set of all weak solutions with X0 = x a.s. for a given x ∈ Rn.
Likewise, for a given set K ⊆ Rn, let Sϑ(K,W ) denote the set of all weak solutions with any
initial distribution on (K,B(K)).

Remark 3.1.4. For ϑ ≡ 0, the solution set Sϑ(x,W ) (resp. Sϑ(K,W )) becomes a singleton.
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Canonical space

We have a Wiener process W defined on some probability space (Ω†,F †,P†) for each weak
solution. We transfer information to the canonical space, which gives us the convenience to
study the law of the solution processes as well as the probabilistic behavior in the state space.
Definition 3.1.5 (Canonical space). DefineΩ := C([0,∞);Rn)with coordinate processXt(ϖ) :=
ϖ(t) for all t ≥ 0 and all ϖ ∈ Ω. Define Ft := σ{Xs, 0 ≤ s ≤ t} for each t ≥ 0, then the
smallest σ-algebra containing the sets in every Ft, i.e. F :=

∨
t≥0Ft, turns out to be same as

B(Ω). For each X ∈ Sϑ(Rn,W ), the induced measure (probability law) PX ∈ P(Ω) on F is
such that PX [A] = P† ◦ X−1(A) for every A ∈ B(Ω). We also denote EX by the associated
expectation operator w.r.t. PX . The canonical space for X is given as (Ω,F ,PX).

For the special case when ϑ ≡ 0, we specifically denote Px by the probability law of the
weak solution X given X0 = x a.s. for some x ∈ Rn. We also denote Ex by the associated
expectation operator w.r.t. Px. Likewise, for any arbitrary initial distribution µ ∈ P(Ω), the
unique probability law is given as

Pµ[ · ] :=
∫
Rn

Px[ · ]µ(dx).

Since we are unclear about the base probability space (Ω†,F †,P†)where the Wiener process
W is defined, we prefer to transfer information to the canonical space, which gives us the
convenience to study the probability law of the weak solutions and the probabilistic behavior
in the state space.
Definition 3.1.6 (Weak convergence of measures and processes)). Given any separable metric
space (E, ρ), a sequence of {Pn} of P(E) is said to weakly converge to P ∈ P(E), denoted by
Pn ⇀ P, if for all f ∈ Cb(E) we have

lim
n→∞

∫
E

f dPn =

∫
E

f dP.

A sequence {Xn} of continuous processesXn with lawPn is said to weakly converge (on [0, T ])
to a continuous process X with law PX , denoted by Xn ⇀ X , if for all f ∈ Cb(C([0, T ];Rn)) we
have limn→∞En[f(Xn)] = EX [f(X)].

Remark 3.1.7. We work on this weak topology to study a family of processes. More details on
the weak topology as well as metric spaces of probability measures can be found in Appendix E.
Note that the first part of Definition 3.1.6 is also provided in Appendix E. The weak convergence
of a sequence of processes is dual to the weak convergence of their probability laws. Both concepts
can be used interchangeably.
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Generator and characteristic operator

It is fundamental for many applications that we can associate a second order partial differential
operator to a stochastic process [131]. We introduce the following concepts for system S .

Definition 3.1.8 (Infinitesimal generator). The infinitesimal generator A of S 1 is defined by

A h(x) = lim
t↓0

Ex[h(Xt)]− h(x)

t
, x ∈ Rn.

We further denote dom(A ) by the set of functions for which the limit exists for all x ∈ Rn.

Proposition 3.1.9. [131] Let X be driven by S . Then, if h ∈ C2
b (Rn), we have h ∈ dom(A )

and
A h(x) = ∇h(x) · f(x) + 1

2
tr
[
(bbT )(x) · hxx(x)

]
, (3.2)

where hxx = (hxixj)n×n and tr[ · ] denotes the trace.

Definition 3.1.10 (Characteristic operator). The characteristic operator L of S is defined by

Lh(x) = lim
N↓0

Ex[h(XτN )]− h(x)

Ex[τN ]
, x ∈ Rn,

where the N ’s are sequence of open sets Nk decreasing to the the point x, i.e., Nk+1 ⊂ Nk and
∩kNk = {x}, and τN = inf{t > 0, Xt /∈ N}. We further denote dom(L) by the set of functions
for which the limit exists for all x ∈ Rn.

Proposition 3.1.11. [131] Let X be driven by Sϑ with ϑ = 0. Then, if h ∈ C2(Rn), we have
h ∈ dom(L) and

Lh(x) = ∇h(x) · f(x) + 1

2
tr
[
(bbT )(x) · hxx(x)

]
, (3.3)

where hxx = (hxixj)n×n and tr[ · ] denotes the trace.

Theorem 3.1.12 (Dynkin’s formula). Let h ∈ C2
b (Rn). Suppose τ is a stopping time such that

Ex[τ ] <∞. Then,

Ex[h(Xτ )] = h(x) + Ex

[∫ τ

0

A h(Xs)

]
. (3.4)

1Formally, A is the infinitesimal generator of the transition semigroup (see Appendix B for details) for system
S .
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Remark 3.1.13. Note that there is a subtle but crucial difference between A and L in terms of
the valid test functions, albeit the two operators possess the exact same form. However, if τ is the
first exit time of a bounded set, then the Dynkin’s formula can be used as

Ex[h(Xτ )] = h(x) + Ex

[∫ τ

0

Lh(Xs)

]
, h ∈ C2(Rn). (3.5)

We do not usually distinguish the concept of A and L when our goal is to use Dynkin’s formula
on a bounded domain with its associated first exit time.

We extend the above notions to systems Sϑ with ϑ ̸= 0. For each d ∈ B, we denote by Ad

the generator of Sϑ and by Ld the characteristic operator of Sϑ. Furthermore, we have

Adh(x) = ∇h(x) · (f(x) + ϑd) +
1

2
tr
[
(bbT )(x) · hxx(x)

]
, h ∈ C2

b (Rn)

and
Ldh(x) = ∇h(x) · (f(x) + ϑd) +

1

2
tr
[
(bbT )(x) · hxx(x)

]
, h ∈ C2(Rn).

Definition 3.1.14 (Clarification of Notations). Since A and L (resp. Ad and Ld) have the same
form apart from the domain of test functions, to keep notation succinct, we do not use A (resp. Ad)
to this end unless specially emphasized. Readers are able to justify the meaning of the operators
based on the contexts.

Regularities of solutions

Since for each measurable signal ξ, the corresponding martingale problem is well posed un-
der Assumption 3.1.2, by Markovian selection theorems [54, Theorem 5.19, Chap 4], the unique
solutionPX to the martingale problem also makes the associated weak solution (X,W )Marko-
vian.

We also do not exclude explosive solutions2 in general. As a matter of fact, under the as-
sumptions on f and g, for any X ∈ Sϑ(Rn,W ), there exists a stopping time τex such that
PX [τex > 0] = 1. Each weak solution X exists locally for all t ∈ (0, τex) such that τex = ∞
(exists globally) or limt↗τex ∥Xt∥ = ∞ (explodes within finite time).

2See [16, Section 5.5] for details.
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Systems with controls

Let the set of control U be given. Suppose that U is complete and separable metric spaces.
Consider a nonlinear system of the form

dXt = f(Xt)dt+ g(Xt)utdt+ b(Xt)dWt + ϑξ(t)dt, (3.6)

where the mapping g : Rn → Rn×p is smooth; u : R≥0 → U is a locally bounded non-
randomized control signal, whilst the other notation remains the same.

In practice, step controls (see Definition C.2.1) are frequently used. It can be verified that
the probability law of the process (X, u) can be constructed using a sequential definition as in
the discrete-time case (see details in Appendix C.1 and C.2) given step controls.

For a given control process u with step controls at sufficiently dense sampling time, and an
arbitrary initial distribution µ ∈ P(X ), we denote by Xu the controlled process and by Pµ,u

the law of Xu. Note that, for each t > 0, the random variable Xu
t is determined by us and Xu

s

for s ∈ [0, t).
In terms of control synthesis, we focus on deterministic Markov policies κ (see Definition

C.3) that generate step controls based on the sampling points. We further denote S κ
ϑ by the

control system driven by (3.6) that is comprised by u = κ(x). We denote by Xκ the controlled
process given the synthesized control and by Pµ,κ the law of Xκ for any initial distribution
µ ∈ P(X ).

The corresponding generator/characteristic operator is given as

Ludh(x) := Ldh(x) + Lgh(x)u, h ∈ dom(Ld)

for each d ∈ B and u ∈ U , where Lgh(x) = ∇h(x) · g(x). Similarly, when ϑ = 0, we have

Luh(x) := Lh(x) + Lgh(x)u, h ∈ dom(L).

3.2 Stochastic Barrier Functions for Probabilistic Invari-
ance Specifications

We have seen in Section 2.2 that two special types of barrier functions are frequently used
to guarantee set invariance in the deterministic context. In particular, the barrier conditions
associated to ZBFs are less strict than those of RBFs. For this reason, we extend the notion
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of ZBFs to CBFs for control synthesis of safety specifications aiming at generating bounded
control inputs when trajectories approach the safe boundaries.

However, for diffusion processes, such a zeroing-type relaxation of barrier conditions for
stochastic barrier functions will have a significant negative impact on the satisfaction prob-
abilities. On the other hand, the non-relaxed reciprocal type conditions provide more severe
control constraints than their deterministic counterpart. For these reasons, we propose a mid-
dle ground to characterize safety properties for (3.6). To better convey the idea, we directly
work on the stochastic control barrier functions and only consider the special case when ϑ = 0
throughout this section.

3.2.1 Problem Definition

For simplicity, we consider X0 = x a.s. for some x ∈ Rn as the initial condition. We first
introduce the stochastic analogue of set invariance, i.e. probabilistic set invariance, defined as
follows.

Definition 3.2.1 (Probabilistic set invariance). Let X be a stochastic process. A set C ⊆ Rn is
said to be invariant w.r.t. a tuple (x, T, p) for X , where x ∈ C, T ≥ 0, and p ∈ [0, 1], if the initial
condition X0 = x a.s. implies

Px[Xt ∈ C, 0 ≤ t ≤ T ] ≥ p. (3.7)

Moreover, if C ⊆ Rn is invariant w.r.t. (x, T, 1) for all x ∈ C and T ≥ 0, then C is strongly
invariant for X .

Definition 3.2.2 (Controlled probabilistic invariance). Given system (3.6) and a control signal
u, a set C ⊆ Rn is said to be controlled invariant under u w.r.t. a tuple (x, T, p) for system (3.6), if
C is invariant w.r.t. (x, T, p) for the controlled process Xu.

Similarly, C ⊆ Rn is strongly controlled invariant under u if C ⊆ Rn is controlled invariant
under u w.r.t. (x, T, 1) for all x ∈ C and T ≥ 0.

For the rest of this section, we consider a safe set of the form

C := {x ∈ Rn : h(x) ≥ 0}, h ∈ C2(Rn). (3.8)

We also define the boundary and interior of C explicitly as below

∂C := {x ∈ Rn : h(x) = 0}, (3.9)

Int(C) := {x ∈ Rn : h(x) > 0}. (3.10)
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Problem3.2.3 (Probabilistic set invariance control). Given a compact set C ⊆ Rn defined in (3.8),
a point x ∈ Int(C), and a tuple (x, T, p), design a control strategy κ such that under u = κ(x),
the interior Int(C) is controlled invariant w.r.t. (x, T, p) for the resulting strong solutions to (3.6).

3.2.2 Safe-Critical Control Design via Barrier Functions

In this subsection, we propose stochastic barrier certificates that can be used to design a control
strategy κ for Problem 3.2.3. Before proceeding, it is necessary to review stochastic control
barrier functions to interpret probabilistic set invariance. Note that we consider the safe set as
constructed in (3.8), where the function h is given a priori.

Stochastic Reciprocal and Zeroing Barrier Functions

Similar to the terminology for deterministic cases [5], we introduce the construction of stochas-
tic control barrier functions as follows.

Definition 3.2.4 (Reciprocal stochastic control barrier function). A function B : Int(C) → R
is called a R-SCBF for system (3.6) if B ∈ C2(Rn) and satisfies the following properties:

(1) there exist class-K functions α1, α2 such that for all x ∈ Rn we have

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
; (3.11)

(2) there exists a class-K function α3 such that

inf
u∈U

[LuB(x)− α3(h(x))] ≤ 0. (3.12)

We refer to the set of control policies generated by (3.12) as

KR(x) := {u ∈ U : LuB(x)− α3(h(x)) ≤ 0}. (3.13)

Proposition 3.2.5 ([40]). Suppose that there exists an R-SCBF for system (3.6). If u(t) = κ(Xu
t ) ∈

KR(X
u
t ) for all t ≥ 0, then for all t ≥ 0 and X0 = x ∈ Int(C), we have Px,u[Xu

t ∈ Int(C)] = 1
for all t ≥ 0.
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Remark 3.2.6. The result admits a Px,u-a.s. controlled invariant set for the marginals of Xu, and
is easily extended to a pathwise Px,u-a.s. controlled set invariance. Note that the solution is right
continuous. Let {tn, n = 1, 2, ...} be the set of all rational numbers in [0,∞), and put

Ω∗ :=
⋂

1≤n<∞

{ω : Xu
tn ∈ Int(C)},

then Ω∗ ∈ F (a σ-algebra is closed w.r.t. countable intersections). Since Q (the set of rational
numbers) is dense in R, Xu is right continuous, and h is continuous, we have

Ω∗ := {ϖ : Xu
t ∈ Int(C), ∀t ∈ [0,∞)}.

Consequently, we have Px,u[Ω∗] ≡ 1 from the marginal result.

Definition 3.2.7. (Zeroing stochastic control barrier function) A function B : C → R is called a
Z-SCBF for system (3.6) if B ∈ C2(Rn) and

(1) B(x) ≥ 0 for all x ∈ C;

(2) B(x) < 0 for all x /∈ C;

(3) there exists an extended K∞ function α such that

sup
u∈U

[LuB(x) + α(B(x))] ≥ 0. (3.14)

We refer the set of control policies generated by (3.14) as

KZ(x) := {u ∈ U : LuB(x) + α(B(x)) ≥ 0}. (3.15)

Proposition 3.2.8 (Worst-case probabilistic quantification). Suppose the mapping h as in (3.8)
is a Z-SCBF with α(x) = kx and k > 0. Let c = supx∈C h(x) and X0 = x ∈ Int(C). Then, if
ut = κ(Xu

t ) ∈ KZ(X
u
t ) for all t ∈ [0, T ], where KZ(y) = {u ∈ U : Ah(y) + kh(y) ≥ 0}, we

have the following worst-case probability estimation:

Px,u [Xu
t ∈ Int(C), 0 ≤ t ≤ T ] ≥

(
h(x)

c

)
e−cT . (3.16)

Proof. Let s = c − h(x) and V (x) = c − h(x), then V (x) ∈ [0, c] for all x ∈ C. It is clear that
LuV (x) = −Luh(x) for any u ∈ U . For u(t) ∈ KZ(X

u
t ) for all t ∈ [0, T ], we have

LuV (Xu
t ) ≤ −kV (Xu

t ) + kc.
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By [100, Theorem 3.1],

Px,u

[
sup
t∈[0,T ]

V (Xu
t ) ≥ c

]
≤ 1−

(
1− s

c

)
e−cT . (3.17)

The result follows directly after this.

Stochastic control barrier functions and high-order stochastic control barrier func-
tions

In proposing stochastic control barrier functions for high-order control systems, the above R-
SCBF and Z-SCBF are building blocks. The authors in [148] constructed high-order R-SCBFs
and have found the sufficient conditions to guarantee pathwise set invariance with probability
one. While the results seem strong, they come with significant costs. At the safety boundary,
the control inputs need to be unbounded (as shown in Example 3.2.9 and in the numerical ex-
periments in [167]). On the other hand, the synthesis of controller for a high-order system via
a Z-SCBF has mild constraints. The trade-off is that the probability estimation of set invariance
is of low quality (note that the worst-case probability estimation using first-order barrier func-
tion is already discounted over a relatively long time period). For these reasons, we propose a
different type of stochastic control barrier functions other than the above mentioned two types.

Example 3.2.9. Consider a stochastic system

dXt = (Xt + ut)dt+ bdWt, b ∈ R.

Suppose that C = {x ∈ R : x ≤ 1} with h(x) = 1− x. Accordingly, an R-SCBF for the system is
B(x) = 1

h(x)
and we have ∂2B

∂x2
= 2

h3
. Let α = 1. Then the R-SCBF condition is

LuB(x) =
1

h2(x)
(x+ u) +

b2

h3(x)
≤ h(x)

and the control inputs should satisfy

u ≤ h3(x)− x− b2

h(x)
.

As x approaches 1, the control approaches −∞. This implies that in order to guarantee safety, we
requires an unbounded control around the boundary of the safe set for stochastic systems, which
can be difficult to satisfy for some practical applications.
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To obtain non-vanishing worst-case probability estimation (compared to Z-SCBFs) in in-
finite horizon, we propose a safety certificate via a stochastic Lyapunov-like control barrier
function [100], which we still name it as a SCBF.

Definition 3.2.10 (Stochastic control barrier function). A function B ∈ C2(Rn) is said to be a
SCBF if LgB(x) ̸= 0 (recall notation in Definition 2.1.3) and the following conditions are satisfied:

(1) B(x) ≥ 0 for all x ∈ C;

(2) B(x) < 0 for all x /∈ C;

(3) sup
u∈U

LuB(x) ≥ 0.

We refer the set of control policies generated by (3) as

K(x) := {u ∈ U : LuB(x) ≥ 0}. (3.18)

Proposition 3.2.11. Suppose the mapping h is an SCBF with the corresponding set of control
policies K(x). Let c = supx∈C h(x) and X0 = x ∈ Int(C). Then, if ut = κ(Xu

t ) ∈ K(Xu
t ) for all

t ≥ 0, we have the following worst-case probability estimation:

Px,u [Xu
t ∈ Int(C), 0 ≤ t <∞] ≥ h(x)

c
.

Proof. Let V = c− h, then V (x) ≥ 0 for all x ∈ C and LuV (x) ≤ 0. The result is followed by
[100, Lemma 2.1] using a supermartingale argument. Indeed, for every t ≥ 0,

Ex,u[V (Xu
τ∧t)] ≥ Ex,u[1{τ≤t}V (Xu

τ∧t)]

≥ Px,u[τ ≤ t] · Ex,u[V (Xu(τ)]

> c ·Px,u[τ ≤ t].

(3.19)

However, Ex,u[V (Xu
τ∧t)] ≤ V (x) for all t ≥ 0. Therefore,

Px,u[τ ≤ t] <
V (x)

c
, ∀t ≥ 0. (3.20)

Sending t→ ∞ we get Px,u[τ <∞] ≤ V (x)
c

for all x ∈ Int(C). The result follows immediately.

Definition 3.2.12. A function B : C2r(Rn) → R is called a stochastic control barrier function
with relative degree r for system (3.6) if
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(1) B satisfies (1) and (2) of Definition 3.2.10, and

(2) LgLr−1B(x) ̸= 0 and LgLj−1B(x) = 0 for j = 1, 2, . . . , r − 1 and x ∈ C.

(3) sup
u∈U

(Lu)rB(x) ≥ 0.

We refer the set of control policies generated by (3) as

Kr(x) := {u ∈ U : (Lu)rB(x) ≥ 0}. (3.21)

If the system (3.6) is an rth-order stochastic control system, to steer the processXu to satisfy
probabilistic set invariance w.r.t. Int(C), we recast the mapping h as an SCBF with relative
degree r. For h ∈ C2r(Rn), we define a series of functions b0, bj : Rn → R such that for each
j = 1, 2, . . . , r, we have b0, bj ∈ dom(L) and

b0(x) = h(x),

bj(x) = Lu ◦ (Lu)j−1b0(x).
(3.22)

We further define the corresponding superlevel sets Cj for j = 1, 2, . . . , r as

Cj = {x ∈ Rn : bj(x) ≥ 0}. (3.23)

Theorem 3.2.13. If the mapping h is an SCBF with relative degree r, and the control process u
is such that ut ∈ Kr(Xu

t ) for all t ≥ 0. Let cj =: supx∈Cj bj(x) for each j = 0, 1, ..., r and
X0 = x ∈ ⋂r

j=0 C◦
j . Then we have the following worst-case probability estimation:

Px,u[Xu
t ∈ Int(C), 0 ≤ t <∞] ≥

r−1∏
j=0

bj(x)

cj
.

Remark 3.2.14. We omit the proof due to its less relevance to the main topic. The details can be
found in [167, Theorem III.10]. The above result estimates the lower bound of the safety probability
given the constrained control signals u. Under some extreme conditions, the worst case may happen.
Indeed, a conservative assumption is made in the proof such that within finite timeXu will cross the
boundary of each Cj . Another implicit condition that may cause the worst-case lower bound is when
the event

⋃r−1
j=0{Lubj = 0, 0 ≤ t < ∞} is a Px,u-null set. This, however, is practically possible

since the controller indirectly influences the value of Lubj for all j < r, the strong invariance of
the level set {Lubj = 0} is not guaranteed using QP scheme.

On the other hand, a non-zero probability of {Lubj = 0} for any j < r makes a compensate
for the lower bound estimation. On {Lubj = 0}, the process {bj(Xt∧τj)}t≥0 is a lower bounded
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martingale and therefore converges with probability 1. We can estimate (using standard exit-
time problem arguments) that {bj(Xt∧τj)}t≥0 reaching 0 within a finite time has a probability

1− bj(Xτj+1 )

cj
.

A nice selection of controller is to implicitly reduce the total time a sample path spends in
{Lubj ≤ 0} for each j. However, this is a challenging task by only steering the bottom-level flow,
which in turn gives us a future research direction.

Two examples are provided in [167] to validate our results. It can be shown numerically that
the proposed SCBFs have smaller control efforts compared to R-SCBFs and higher safe prob-
ability compared to Z-SCBFs. In particular, given a bounded constraint on control inputs, the
safe (conditional) probability using SCBF is much higher than using R-SCBF. Such an empirical
difference is enlarged for control systems with high-relative degrees. On the other hand, the re-
sult demonstrates an overall better performance of SCBF compared to Z-SCBF given randomly
selected initial points, which indicates a potentially larger winning set.

3.3 Stochastic Lyapunov-Barrier Functions forRobust Prob-
abilistic Reach-Avoid-Stay Specifications

In this section, we aim to provide a stochastic version for the probabilistic reach-avoid-stay
problems in consideration of robustness.

Motivated by the deterministic robust abstractions [112, 110] and the comparisons with
robust Lyapunov-type characterizations of reach-avoid-stay specifications in Section 2.4.2, to
better understand how these two perform in the stochastic context, this section formulates
stochastic Lyapunov-barrier functions to deal with sufficient conditions for robust probabilistic
reach-avoid-stay specifications. The studies on robust stochastic abstractions will be carried
out in the following section.

To this end, we first establish a connection between stochastic stability with safety con-
straints and reach-avoid-stay specifications based on (3.1). We then prove that stochastic Lya-
punov and Lyapunov-barrier functions provide sufficient conditions for the target objectives.
We apply Lyapunov-barrier conditions in control synthesis for reach-avoid-stay specifications
based on (3.6), and show its effectiveness in a case study.
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3.3.1 Stability and Safety Concepts

We first consider the control-free dynamics driven by (3.1) and introduce the problem defini-
tions. The systems with controls should be similar.

Apart from Assumption 3.1.2, we also impose the following requirements on f and g.

Assumption 3.3.1. There exists a trivial solution xe for system S (i.e. Sϑ when ϑ = 0) such
that f(xe) = g(xe) = 0.

We provide definitions for probabilistic set stability given a closed set A ⊆ Rn.

Definition 3.3.2 (Uniform stability in probability law). The set A is said to be Pr-US for Sϑ if
for each ϵ ∈ (0, 1) there exists φϵ ∈ K such that

inf
X∈Sϑ(x,W )

PX [|Xt|A ≤ φϵ(|x|A) ∀t ≥ 0] ≥ 1− ϵ, (3.24)

where x is the initial condition.

Remark 3.3.3. Equation (3.24) is equivalent to the following: for any ϵ ∈ (0, 1) and r > 0, there
exists an η = η(ϵ, r) ∈ (0, r) such that

inf
X∈Sϑ(x,W )

PX [|Xt|A ≤ r ∀t ≥ s(ϖ)] ≥ 1− ϵ, (3.25)

whenever |Xs(ϖ)|A ≤ η for some random time s(ϖ). We can simply pick η = φ−1
ϵ .

Definition 3.3.4 (Uniform attractivity in probability law). The set A is said to be Pr-UA for Sϑ

if there exists some η > 0 such that, for each ϵ ∈ (0, 1), r > 0, there exists some T > 0 such that
whenever |x|A < η,

inf
X∈Sϑ(x,W )

PX [|Xt|A < r, ∀t ≥ T ] ≥ 1− ϵ. (3.26)

Definition 3.3.5 (Uniformly asymptotic stability in probability law). The set A is said to be
Pr-UAS for Sϑ if it is Pr-US and Pr-UA for Sϑ.

Next we introduce several definitions pertinent to probabilistic stability with safety guar-
antees. To this end, we consider a closed unsafe set U ⊆ Rn.

Definition 3.3.6 (Work place). Since the solutions are not generally non-explosive without sta-
bility assumptions, a bounded workplace N := BR̃(xe) with sufficiently large R̃ > 0 is added as
an extra constraint. We name D = D(N , U) := N ∩ U c.
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We define the following first-exit times for the regions of our interest.

Definition 3.3.7 (Explosion and safety). For any solution X ∈ Sϑ(Rn,W ), we define the explo-
sion time τ ∗ = τ ∗(N ) := inf{t ≥ 0 : Xt ∈ N c} and safety time

τD := inf{t ≥ 0 : Xt ∈ Dc}.

It is clear that for each X , for PX-a.s. we have τ ∗ ≤ τD.

Remark 3.3.8. Safety is usually the priority in practice. Given safety requirement w.r.t. D (resp.
N ), to study conditional probabilistic properties before reaching the unsafe boundary of some
process X , it is equivalent to just working with the law of XτD (resp. Xτ∗). Note that for systems
with trivial Pr-US sets, the indicator 1{τ∗=∞} → 1 as R̃ → ∞ and does not render ‘too much
harm’ to replace the law of Xτ∗ by PX .

Suppose we ‘kill’ the weak solutions whenever they become unsafe and consider the modi-
fied probability law with supports in the safe region, the following proposition verifies a notion
of weak compactness (rather than the conventional compactness) of stopped weak solutions of
Sϑ.

Proposition 3.3.9. Under the Assumption 3.1.2, given any compact set K , the set of all stopped
processes Xτ∗ is nonempty and sequentially weakly compact (w.r.t. the weak convergence) on
every filtered probability space (Ω,F , {Ft}t∈[0,T ]), where X ∈ ⋃

x∈K Sϑ(x,W ) (resp. X ∈
Sϑ(K,W )). That is, given any sequence of weak solutions {Xn}∞n=1 in the above sense, there
is a subsequence {Xnk}, a process X ∈ ⋃

x∈K Sϑ(x,W ) (resp. X ∈ Sϑ(K,W )) such that
(Xnk)τ

∗
⇀ Xτ∗ .

Remark 3.3.10. Note that the above results also hold for stopped processes XτD , where X ∈⋃
x∈K Sϑ(x,W ) (resp. X ∈ Sϑ(K,W )).

The conclusions follow immediately by [93, Theorem 1] and [94, Corollary 1.1, Chap 3]. The
proof falls in standard procedures. We can first show that the truncated laws {Pn,τ∗} of the stopped
processes {(Xn)τ

∗} form a tight family of measures3 on (Ω,F , {Ft}t∈[0,T ]). Then the relatively
weak compactness follows since (Xnk)τ

∗
⇀ Xτ∗ if and only if Pnk,τ

∗
⇀ Pτ∗ . The weak closedness

comes from compactness of the reachable sets of the stopped processes.

Now we introduce two closely-related specifications pertaining to stability and safety issues.
3See Appendix E for details.
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Definition 3.3.11 (Probabilistic stability with safety guarantees). Given a closed set U ⊆ Rn,
let D and τD be defined as in Definitions 3.3.6 and 3.3.7, respectively. Given X0, A ⊆ D and
p ∈ [0, 1], Sϑ is said to satisfy a probabilistic stability under safety specification w.r.t. (X0, A, U)
with probability at least p, denoted by (X0, A, U, p), if

(1) A is closed and Pr-UAS for Sϑ;

(2) For all X ∈ ⋃x∈X0
Sϑ(x,W ),

PX
[
τD = ∞ and lim

t→∞
|Xt|A = 0

]
≥ p.

The above definition is the probabilistic analogue of the stability with safety guarantee spec-
ification in the deterministic settings. The condition (1) of Definition 3.3.11 is to qualify the be-
havior of solutions nearA, whereas condition (2) is to require that the solution can be attracted
asymptotically to some neighborhood of A and meanwhile maintain safe with probability at
least p.

The following events (sets of sample paths in view of canonical space) are defined in favor
of defining the second specification.

Definition 3.3.12. Given X0,Γ ⊆ D. On (Ω,F), for each X ∈ ⋃x∈X0
Sϑ(x,W ), we define the

following events.

(1) The reach-and-stay event

RS(X0,Γ,D) := {ϖ ∈ Ω : τγ <∞ and Xt∧τD ∈ Γ, ∀t ≥ τγ},

where τγ := inf{t ≥ 0 : Xt ∈ Γ} is the first hitting time of Γ for the given X ;

(2) The reach-avoid-stay event RAS(X0,Γ,D) := RS(X0,Γ,D) ∩ {τD = ∞}.

Definition 3.3.13. (Probabilistic reach-avoid-stay specification): Given a closed set U ⊆ Rn,
let D and τD be defined as in Definitions 3.3.6 and 3.3.7, respectively. Given X0,Γ ⊆ D and
p ∈ [0, 1], Sϑ is said to satisfy a probabilistic reach-avoid-stay specification w.r.t. (X0,Γ, U) with
probability at least p, denoted by (X0,Γ, U, p), if for every weak solution X ∈ ⋃x∈X0

Sϑ(x,W ),
we have PX [RAS(X0,Γ,D)] ≥ p.

The probabilistic reach-avoid-stay specification is the linear temporal property that we
mainly focus on. In the stochastic context, we explore the connection between the target spec-
ification and the probabilistic specification of stability with safety guarantees in the next sub-
section.
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3.3.2 A Connection to Probabilistic Stability with Safety Guarantees

Probabilistic stability with safety implies probabilistic reach-avoid-stay

We first show that if a closed set A is Pr-US for Sϑ, then the attraction to A in probability law
possesses the uniformity.

Proposition 3.3.14. Suppose that a closed set A ⊂ D is Pr-US for Sϑ. Let K be a compact set
and p ∈ (0, 1). Then the following two statements are equivalent:

(1) For any solution X ∈ ⋃x∈K Sϑ(x,W ),

PX
[
lim
t→∞

|Xt∧τD |A = 0
]
≥ p.

(2) For every r > 0, there exists T = T (r, ε) such that for any X ∈ ⋃x∈K Sϑ(x,W ),

PX [|Xt∧τD |A < r, ∀t ≥ T ] ≥ p.

Proof. Clearly (2) implies (1). We only show the converse. Suppose that (2) is not true. Then
there exists some r > 0 such that for all n > 0 there exists xn ∈ K , and Xn ∈ Sϑ(xn,W ) with
law Pn such that

Pn[|Xn
t∧τD |A ≤ r, ∀t ≥ n] < p. (3.27)

Now let τn = inf{t ≥ 0 : Xn
t∧τD ∈ Bη(A)}, where η is to be chosen later. Rearranging (3.27)

we have (for each n),

p >Pn[|Xn
t∧τD |A ≤ r, ∀t ≥ n]

≥Pn[τn < n and |Xn
t∧τD |A ≤ r, ∀t ≥ n]

=Pn[τn < n]P[|Xn
t∧τD |A ≤ r, ∀t ≥ n | τn < n]

≥Pn[τn < n]P[|Xn
t∧τD |A ≤ r, ∀t ≥ τn],

(3.28)

By the definition of Pr-US in view of Remark 3.3.3, there exists an η = η(r, ϵ) < r such that
Pn[|Xn

t∧τD |A ≤ r, ∀t ≥ s(ϖ)] ≥ ϵ whenever |Xs(ϖ)∧τD |A ≤ η for some random time s(ϖ) and
arbitrary ϵ. Clearly, τn satisfies the requirement of s(ϖ). We choose ϵ sufficiently close to 1 so
that

P[|Xn
t∧τD |A ≤ r, ∀t ≥ τn] ≥ ϵ

and hence, by (3.28),
Pn[τn < n] = p− p̂ < p, (3.29)
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where p̂ = p̂(ϵ) ≪ 1. Note that we have implicitly defined η and τn based on the choice of ϵ
such that (3.29) holds.

However, by Remark 3.3.8 and Proposition 3.3.9, there exists a subsequence, still denoted
by Xn ∈ Sϑ(xn,W ), such that xn → x and (Xn)τD ⇀ XτD with X ∈ Sϑ(x,W ) on any
compact interval of R≥0. By Skorohod [43, Theorem 2.4], there exists a probability space
(Ω̃†, F̃ †, {F̃ †

t }, P̃†), a process X̃τD and a sequence of processes {(X̃n)τD} with laws P and
{Pn}, respectively, such that

lim
n→∞

(X̃n)τD = X̃τD , P̃† − a.s.. (3.30)

Let τ = inf{t ≥ 0 : |X̃t∧τD |A ≤ η/2}, due to the asymptotic behavior from (1), we have

P̃†[τ <∞] ≥ p. (3.31)

By (3.30) and (3.31), there exists some sufficiently large N1(η, q1) and N2(η, q2) such that for
any arbitrary q1, q2 ∈ (0, 1),

P̃†

[
sup

t∈[0,N1]

|X̃n
t∧τD − X̃t∧τD | ≤ η/2

]
≥ q1, (3.32)

and
P̃† [τ < N2] ≥ pq2. (3.33)

Note that the events in (3.32) and (3.33) are independent, combining these and choosing n ≥
max(N1, N2), we have

P̃†
[
∃t < n s.t. X̃n

t∧τD ∈ Bη(A)
]
≥ P̃† [Q] ≥ pq1q2,

where

Q :=

{
sup

t∈[0,N1]

|X̃n
t∧τD − X̃t∧τD | ≤ η/2

}
∩ {|X̃τ∧τD |A ≤ η/2 for τ < N2}.

We let q1q2 > p−p̂
p

, then there exists an n such that

Pn[τn < n] > p− p̂. (3.34)

Equation (3.34) contradicts (3.29), which completes the proof.
Corollary 3.3.15. If Sϑ satisfies a stability with safety guarantee specification (X0, A, U, p) and
X0 is compact, then for every ϵ > 0, Sϑ satisfies the reach-avoid-stay specification (X0,Bϵ(A), U, p).

Proof. We add the condition {τD = ∞}, then (1) and (2) are still equivalent in Proposition
3.3.14. The conclusion follows directly by the definitions of the two specifications.
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The converse side

The converse side is intended to show probabilistic stability with safety is necessary to proba-
bilistic reach-avoid-stay specifications. Unfortunately, due to the diffusion effects and the con-
cept of weak solutions, probabilistic reach-avoid-stay specifications, other than reach-avoid-
stay with probability one, may fail to be related to probabilistic stability with safety guarantees
w.r.t. some subset of the target set. For this reason, we only convey the main idea in this
subsection and complete the proofs in Section 3.3.5.

Throughout this subsection, we suppose that X0,Γ ⊆ D and Sϑ satisfies a reach-avoid-stay
specification (X0,Γ, U, p). We first make a quick judgement that there exists a probability-p
invariant compact subset of Γ.

Lemma 3.3.16. Suppose that Γ is compact and X0 is nonempty. If Sϑ satisfies a reach-avoid-stay
specification (X0,Γ, U, p) with p ∈ (0, 1], then the set

A = {x ∈ Γ : ∀X ∈ Sϑ(x,W ),PX [Xt ∈ Γ, ∀t ≥ 0] ≥ p}

is a nonempty and compact set with

PX [Xt ∈ A, ∀t ≥ 0] ≥ p (3.35)

for all X ∈ Sϑ(A,W ).

The next lemma shows that given an arbitrary solution X of Sϑ′ , we can construct a weak
solution Z for Sϑ that solves the martingale problem and is relatively close to X .

Lemma 3.3.17. Let ϑ′ ∈ (0, ϑ) and τ be such that τ < τD a.s.. Then there exists some r =
r(τ, ϑ, ϑ′) such that for every X ∈ Sϑ′(x,W ) with x ∈ D, and for all z ∈ Br(x), there exists a
weak solution Z ∈ Sϑ(z,W ) such that ZT∧τD ∈ Br(XT∧τD) a.s. for T ∈ [τ,∞).

It can be shown that under the construction of Lemma 3.3.16 and 3.3.17, the setA (generated
by solutions of Sϑ) is Pr-UA for any weak solution of Sϑ′ with ϑ′ ∈ (0, ϑ).

Proposition 3.3.18. Suppose that Sϑ satisfies reach-avoid-stay specification (X0,Γ, U, p). LetA
be the set given in Lemma 3.3.16. Then A is uniformly attractive for Sϑ′ with probability at least
p, i.e., for every ϵ > 0, there exists T = T (ϵ, p) such that for any X ∈ ⋃x∈X0

Sϑ′(x,W ),

P [|Xt∧τD |A < ϵ, ∀t ≥ T ] ≥ p.
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On the other hand, for non-strictly invariant sets (p < 1), we are not able to show the Pr-US
property due to a geometric gap where we cannot arbitrarily set ϵ and r as in Definition 3.3.2.

However, if there exists an invariant subset ofΓwith probability one, nice properties appear.
This is not a surprise given Proposition 2.3.16. The possibility of such an existence occurs when
the system admits a family of a.s. stable Dirac invariant measures for each signal ξ, which
are strictly contained in Γ. We convert the statement into the stochastic context in the next
proposition. The proofs for the following two statements are omitted.

Proposition 3.3.19. For system Sϑ, any nonempty compact set A ⊂ D with PX [Xt ∈ A, ∀t ≥
0] = 1 is Pr-UAS for Sϑ′ whenever ϑ′ ∈ [0, ϑ).

Corollary 3.3.20. If Sϑ satisfies a reach-avoid-stay specification (X0,Γ, U, 1) with compact X0,
then there exists a nonempty compact set A ⊆ Γ with PX [Xt ∈ A, ∀t ≥ 0] = 1 such that for any
ϑ′ ∈ [0, ϑ), Sϑ′ satisfies a stability with safety specification (X0, A, U, 1).

3.3.3 Lyapunov-BarrierConditions for Probabilistic StabilityWith Safety

We aim to show how Lyapunov-Barrier functions can sufficiently guarantee the probabilistic
stability with safety in this subsection. We first introduce stochastic Lyapunov functions and
then extend the deterministic analogue in Chapter 2 to the stochastic counterpart.

Recall region D and N in Definition 3.3.6.

Definition 3.3.21 (Stochastic Lyapunov functions). Let A ⊆ D be a closed set. A function
V ∈ (C2(BR(A));R≥0) is said to be a SLF w.r.t. A if there exist α1, α2, α3 ∈ K such that, for all
x ∈ BR(A),

α1(|x|A) ≤ V (x) ≤ α2(|x|A) (3.36)
and

sup
d∈ϑB

LdV (x) ≤ −α3(|x|A). (3.37)

We first make a quick extension of the existing Lyapunov theorems to systems with extra
L1-bounded perturbations.

Lemma 3.3.22 (Uniform recurrence). Given an SLF V , there exists some η > 0 such that, for
every ϵ ∈ (0, 1) and r ∈ (0, R/2), there exists some T = T (ϵ, η, r) > 0 such that for any
x ∈ Bη(A),

inf
X∈Sϑ(x,W )

PX [τ < T ] ≥ 1− ϵ,

where τ = inf{t ≥ 0 : Xt ∈ Br(A)} is the first hitting time of Br(A) for each X ∈ Sϑ(x,W ).
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Proof. We just show the sketch. The proof falls in a similar procedure as in the proof of [119,
Theorem 2.7]. We define the first hitting times τ1, τ2 of Br1(A) and Bcr2(A), where 0 < r1 <
r2 ≤ R/2. By Dynkin’s formula, for each X ∈ Sϑ(x,W ) with x ∈ Bη(A) (η is to be selected),
we have

0 ≤ V (x) +EX
∫ τ1∧τ2∧t

0
LdV (X(s))ds

≤ α2(η)− α3(r1)E
X [τ1 ∧ τ2 ∧ t]

On the other hand,

EX [τ1 ∧ τ2 ∧ t]

≥
∫
Ω

1{τ1∧τ2≥t} · (τ1(ϖ) ∧ τ2(ϖ) ∧ t) dPX(ϖ)

=tPX [τ1 ∧ τ2 ≥ t].

Combining the above, we have PX [τ1 ∧ τ2 ≥ t] ≤ α2(η)/tα3(r1) for each t, which holds for all
X ∈ Sϑ(x,W ). By this relation, we construct T := T (ϵ, η, r1) = 2α2(η)/ϵα3(r1) and see

inf
X∈Sϑ(x,W )

PX [τ1 ∧ τ2 < T ] ≥ 1− ϵ

2
.

Now, let η = η(ϵ, r2) be selected according to Remark 3.3.3 based on the Pr-US property, such
that PX [τ2 = ∞] ≥ 1 − ϵ/2 whenever |x|A ≤ η. Therefore, for |x|A ≤ η, we have for all
X ∈ Sϑ(x,W ),

1− ϵ

2
≤ PX [τ1 ∧ τ2 < T ] ≤ PX [τ1 < T ] +PX [τ2 < T ] ≤ PX [τ1 < T ] +

ϵ

2
,

which complete the proof by letting r = r1.

Proposition 3.3.23. Suppose A ⊂ D is compact. If there exists an SLF V w.r.t. A, then A is
Pr-UAS for Sϑ.

Proof. By a standard supermartingale argument [100, Lemma 1, Chap II], we can show that the
existence of SLF implies Pr-US. To show Pr-UA, let r ∈ (0, R/2), then by Pr-US and Remark
3.3.3, there exists a k ∈ (0, r) such that sup

X∈Sϑ(x,W )

PX [|Xt|A ≤ r ∀t ≥ s(ϖ)] ≥ 1− ϵ
2

whenever
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|Xs|A ≤ k. Now let τ = inf{t ≥ 0 : Xt ∈ Bk(A)}. By Lemma 3.3.22, there exists some η > 0
such that we can find a T = T (ϵ/2, η, k) to make

inf
X∈Sϑ(x,W )

PX [τ < T ] ≥ 1− ϵ

2
.

Therefore, for all |x|A < η and for all X ∈ Sϑ(x,W ),

PX [|Xt|A ≤ r, ∀t ≥ T ]

≥PX [τ < T and |Xt|A ≤ r, ∀t ≥ T ]

≥PX [τ < T ]PX [|Xt|A ≤ r, ∀t ≥ τ | τ < T ]

≥PX [τ < T ](1− ϵ/2) ≥ (1− ϵ/2)2 ≥ 1− ϵ.

(3.38)

The following result demonstrates that the existence of an SLF is sufficient to guarantee
probabilistic stability with safety specifications with probabilities depending on initial condi-
tions.

Theorem 3.3.24. Suppose that A ⊂ D is compact and BR(A) ⊂ N . If there exists an SLF
V ∈ (C2(BR(A));R≥0) and some G := Br(A) such that

(1) r ∈ (0, R] and G ⊂ D,

(2) X0 ⊂ G,

then Sϑ satisfies the probabilistic stability with safety specification
(
X0, A, U, 1−

supx∈X0
V (x)

α1(r)

)
.

We need the following lemma to accomplish the proof.

Lemma 3.3.25. For each X ∈ ⋃x∈X0
Sϑ(x,W ), set τ := inf{t ≥ 0 : Xt ∈ Gc}. Then for all

X ∈ ⋃x∈X0
Sϑ(x,W ),

PX
[
lim
t→∞

|Xt|A = 0 | τ = ∞
]
= 1.

Proof. By a similar approach to Lemma 3.3.22, we set an arbitrary r∗ ∈ (0, r). By the Pr-US
property, for all X ∈ Sϑ(x,W ) there should exist η ∈ (0, r∗) such that for any ϵ ∈ (0, 1),
Xτη ∈ Bη(A) implies PX [Xt ∈ Br∗(A), ∀t ≥ τη] ≥ 1− ϵ, where

τη = inf{t ≥ 0 : Xt ∈ Bη(A)}.
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By Dynkin’s formula, for each weak solution we have

0 ≤ V (x) + EX

∫ τη∧τ∧t

0

LdV (X(s))ds

≤ V (x)− α3(η)E
X [τη ∧ τ ∧ t]

(3.39)

Since that on {τη ∧ τ ≥ t} we have τη ∧ τ ∧ t = t, thus

EX [τη ∧ τ ∧ t] ≥
∫
Ω

1{τη∧τ≥t} · t dPX(ω) = tPX [τη ∧ τ ≥ t],

combining with (3.39) we have

PX [τη ∧ τ ≥ t] ≤ V (x)/tα3(η), for each t, (3.40)

which implies PX [τη ∧ τ < ∞] = 1 for all X ∈ ⋃x∈X0
Sϑ(x,W ). On {τ = ∞}, for all weak

solution, we have PX [τη <∞] = 1 and

PX [lim sup
t→∞

|Xt|A ≤ r∗]

≥PX [|Xt|A ≤ r∗, ∀t ≥ τη | τη <∞] ≥ 1− ϵ.

Since ϵ and r∗ are arbitrary, the conclusion follows.

Remark 3.3.26. Lemma 3.3.25 shows that SLF eliminate the possibility of safe sample paths
up/down-crossing any neighborhood of A infinitely often. [100, Theorem 2, Chap II] demonstrates
the same result by constructing the total time spent in G \ Bϵ(A) after time t and showing that it
converges a.s. to 0 as t→ ∞.

Proof of Theorem 3.3.24. The existence of SLF shows that A is Pr-UAS for Sϑ. Now, for
all X ∈ Sϑ(x,W ) with x ∈ X0, define τ := inf{t ≥ 0 : Xt ∈ Gc}. Then, for all t ≥ 0 and for
all X ∈ Sϑ(x,W ),

EX [V (Xτ∧t)] = V (X0) + EX

[∫ τ∧t

0

LdV (Xs)ds

]
≤ V (x), (3.41)

and, for all t ≥ 0,

EX [V (Xτ∧t)] ≥ EX [1{τ≤t}V (Xτ )] > α1(r)P
X [τ ≤ t], (3.42)

which imply
PX [τ ≤ t] < V (x)/α1(r), ∀t ≥ 0. (3.43)
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Sending t→ ∞ we get for all X ∈ ⋃x∈X0
Sϑ(x,W ), PX [τ <∞] < V (x)/α1(r), i.e.,

inf
X∈Sϑ(x,W )

PX [τ = ∞] ≥ 1− supx∈X0
V (x)

α1(r)
. (3.44)

Since {τ = ∞} ⊆ {τD = ∞} and by Lemma 3.3.25, the conclusion follows. □

We have seen in the proof that conditions α1(x) ≤ V (x) and supd∈ϑB LdV ≤ 0 play the
role of guaranteeing the probabilistic set invariance. We refer these conditions as the stochas-
tic barrier certificates. An application in control synthesis, termed as stochastic control barrier
functions, has been shown in Section 3.2 with better safety probability compared to the zeroing-
type barrier certificates [139], however, less effectiveness than the reciprocal-type barrier cer-
tificates. To provide stability with safety with probability one, one can combine SLF with the
reciprocal-type barrier functions.

Theorem 3.3.27. Let the same assumption in Theorem 3.3.24 be satisfied. Suppose there exists
an SLF V ∈ (C2(BR(A));R≥0), some G := Br(A) such that G ∈ D and X0 ⊂ G, as well as a
function B ∈ (C2(G);R≥0) satisfying

(1) ∃α1, α2 ∈ K s.t.
1

α1(|x|A)
≤ B(x) ≤ 1

α2(|x|A)
, ∀x ∈ G; (3.45)

(2) ∃α3 ∈ K s.t.
sup
d∈ϑB

[LdB(x)− α3(|x|A)] ≤ 0, ∀x ∈ G. (3.46)

Then Sϑ satisfies the probabilistic stability with safety specification (X0, A, U, 1).

Proof. The proof is similar to Theorem 3.3.24. We rely on the SLF to provide the property shown
in Lemma 3.3.25. Then the reciprocal type barrier function B guarantees that P[τ = ∞] = 1
[40, Theorem 1] for each weak solution.

Remark 3.3.28. Suppose U c = {x ∈ Rn : h(x) ≥ 0} where h is smooth, one can possibly enlarge
G such that G∩U ̸= ∅ with ∂(G∩U) being piecewise smooth. To see the satisfaction of stability
with safety specifications, along with the old conditions, one can introduce an extra reciprocal-type
barrier function, denoted by B̃, and verify extra conditions that are similar to (3.45) and (3.46) by
replacing |x|A with h(x).
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3.3.4 Applications in Control Problems

In this section, based on the results from Section 3.3.2 and 3.3.3, we make a straightforward
extension to a stochastic control Lyapunov-barrier characterization for Sϑ satisfying a proba-
bilistic reach-avoid-stay specification (X0,Γ, U, p) under controls. As a continuation of [122],
we conduct a case study on enhancing the performance of jet engine compressors, under both
noisy disturbances and bounded point mass perturbations, based on a reduced Moore-Greitzer
nonlinear SDE model.

Probabilistic reach-avoid-stay control via stochastic control Lyapunov-barrier func-
tions

We consider systems with controls as in Section 3.1. Recall (3.6) a nonlinear system of the form

dXt = f(Xt)dt+ g(Xt)utdt+ b(Xt)dWt + ϑξ(t)dt.

Definition 3.3.29. (Probabilistic reach-avoid-stay controllable): Given X0,Γ ⊆ D and p ∈ [0, 1],
Sϑ is said to be probabilistic reach-avoid-stay controllable w.r.t. (X0,Γ, U, p), if there exists a Lips-
chitz continuous control strategy κ such that the system S κ

ϑ satisfies the specification (X0,Γ, U, p).

The following result is a straightforward extension of Theorem 3.3.24.

Proposition 3.3.30. Given X0,Γ ⊆ D, if there exists a smooth function V ∈ (C2(BR(A));R≥0)
and some G := Br(A), such that

(1) r ∈ (0, R], G ⊂ D and X0 ⊂ G;

(2) α1(|x|A) ≤ V (x) ≤ α2(|x|A) and

inf
u∈U

sup
x∈S

sup
d∈ϑB

[LudV (x) + α3(|x|A)] ≤ 0,

for some α1, α2, α3 ∈ K, where LudV (x) := LdV (x) +∇V (x) · g(x)u (see Page 80).

Then Sϑ is probabilistically reach-avoid-stay controllable w.r.t.
(
X0,Γ, U, 1−

supx∈X0
V (x)

α1(r)

)
.

Similarly, one can extend the above proposition to find sufficient conditions for a ‘proba-
bility 1’ reach-avoid-stay based on Theorem 3.3.27. Apart from the conditions in Proposition
3.3.30, one need to additionally verify if there exists a B ∈ (C2(G);R≥0) satisfying
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(1) 1
α̃1(|x|A)

≤ B(x) ≤ 1
α̃2(|x|A)

, ∀x ∈ G for some class-K functions α̃1, α̃2;

(2) inf
u∈U

sup
x∈S

sup
d∈ϑB

[LudB(x)− α̃3(|x|A)] ≤ 0, for some class-K function α̃3.

Remark 3.3.31. In view of Remark 3.3.28, the region G can be further relaxed if ∂U is smooth
enough. Correspondingly, some extra conditions given by another reciprocal control barrier func-
tion are needed to guarantee the sufficiency of (X0,Γ, U, 1) controllability.

Case study

We use the reduced Moore-Greitzer SDE model with an additive control input [v, 0]T and a
multiplicative noise to illustrate the effectiveness. The model is given as:

d

dt

[
Φ(t)
Ψ(t)

]
=

[
1
lc
(ψc −Ψ(t))

1
16lc

(
Φ(t)− γ

√
Ψ(t)

)]+ ϑ

[
ξ(1)(t)
ξ(2)(t)

]
+ ε

[
(Φ(t)− Φe(γ))β

(1)(t)
(Ψ(t)−Ψe(γ))β

(2)(t)

]
+

[
v(t)
0

]
,

(3.47)

where β(1), β(2) are i.i.d. Brownian motions, (Φe(γ),Ψe(γ)) =: Xe(γ) are equilibrium points
for ξ(1), ξ(2), v ≡ 0. The engine parameters (as in Section 1.2) are the same as the settings in
Section 2.4.2. The intensity of noises are such that

ε = 0.08, ϑ = 0.001.

For ξ(1), ξ(2), v ≡ 0, the system admits a family of equilibrium points Xe(γ) depending on
the tunable parameter γ. As γ drops in the neighborhood of the deterministic Hopf bifurca-
tion point, the system undergoes a D-bifurcation (the stability of the invariant measure δ{Xe}
changes and a new invariant measure in Rn \ {Xe} is built up) and a P-bifurcation (the shape
of density of the new measure changes). The full stochastic Hopf bifurcation diagram in [8, Fig
9.13] conveys the brief idea.

The pictures in Figure 3.1 and 3.2 depict sample paths given initial condition

(Φ0,Ψ0) = (0.5343, 0.6553)

with ξ(1), ξ(2), v ≡ 0 under different values of γ.
Within the a.s. exponentially stable region, any bounded perturbation ξ causes a bounded

long-term perturbation of Xe(γ), and ultimately formulate a compact set containing Xe(γ).
For unstable δ{Xe}, especially for those after P-bifurcation, we are interested in stabilizing the
robust system to a compact set.
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Problem 3.3.32. We aim to manipulate γ and v simultaneously such that the state (Φ,Ψ) are
regulated to satisfy reach-avoid-stay specification (X0,Γ, U, 1). We require thatµ : R≥0 → [0.5, 1]
is time-varied with γ(0) ∈ [0.62, 0.66] and |γ(t + t) − γ(t)| ≤ 0.01t for any t > 0. We define
X0 = {(Φe(γ(0)),Ψe(γ(0)))}; Γ to be the ball that centered at r = (0.4519, 0.6513) with radius
r = 0.013, i.e. Γ = r + rB; the unsafe set U = {(x, y) : h1 ≤ 0} ∩ {(x, y) : h2 ≤ 0}, where
h1(x, y) = −|(x, y) − (0.49, 0.64)| + 0.055, h2(x, y) = |(x, y) − (0.50, 0.65)| − 0.003. We set
v ∈ U = [−0.05, 0.05] ∩ R.

For each SDE, the signals ξ(1), ξ(2) of each sampling time is generated randomly from {−1, 1}.
We choose SLF V (x, y) = lc

2
(x− r1)

2 + 8lc(y − r2)
2 and α3(x) = 0.1x; set Bi = − log

(
hi

1+hi

)
for i = 1, 2. The settings for the quadratic programming keep the same as Section 2.4.2. We
mix sample paths under different ξ(1), ξ(2) and show the simulation results in Figure 3.3.

Remark 3.3.33. Note that we have adopted reciprocal type barrier functions, which potentially
generates impulse-like control signals (to cancel the diffusion effects) and terminates the program-
ming. However, once the synthesis succeeds, the feasible controlled sample paths satisfy the speci-
fication.

3.3.5 Proofs of Results from Section 3.3.2

Proof of Lemma 3.3.16. The proof for non-emptiness and probability-p invariance property
(3.35) ofA is similar to Lemma 2.3.15, we can show that the reachable set within (ramdom) time
interval [τ1, τ2] is a valid choice by a strong Markov property argument, where τ1 := inf{t ≥
0 : Xt ∈ Γ} and τ2 := inf{t > τ1 : Xt ∈ Γc}.

Indeed, one can easily show that the reachable set
⋃
X∈

⋃
x∈X0

Sϑ(x,W ) R
τ1≤t≤τ2
ϑ (X) ⊂ Γ,

and by the strong Markov property, for every X ∈ ⋃x∈X0
Sϑ(x,W ), any restarted solution,

denoted by X̃ ∈ Sϑ(Xτ3 ,W )) where τ3 ∈ [τ1, τ2), has the same law as Xτ3+s for all s ≥ 0.
Continuing the above, for all X ∈ ⋃x∈X0

Sϑ(x,W ),

P[X̃t∧τD ∈ Γ, ∀t ≥ 0]

≥ inf
X∈

⋃
x∈X0

Sϑ(x,W )
P[τ1 <∞ and τ2 = ∞] ≥ p. (3.48)

By (3.48),
⋃
X∈Sϑ(X0,W ) R

τ1≤t≤τ2
δ (X) ⊂ A. The probability-p invariance is again by a standard

strong Markov property argument and the definition of A.
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To show thatA is closed, let xn be a sequence inA such that xn → x ∈ Γ. We need to show
that x is also in A. Suppose the opposite, then there exists some X ∈ Sϑ(x,W ) such that

P[Xt∧τD ∈ Γ, ∀t ≥ 0] < p⇔ P[τ <∞] ≥ 1− p,

where τ := inf{t ≥ 0 : Xt ∈ Γc}. Due to the weak compactness of the solution, by Skorohod,
there exists a probability space (Ω̃†, F̃ †, {F̃ †

t }, P̃†), a process X̃τD and a sequence of processes
{(X̃n)τD} with laws P and {Pn}, respectively, such that

lim
n→∞

(X̃n)τD = X̃τD , P̃† − a.s.

on every [0, T ]. On each {τ ≤ T}, X̃n
τ → X̃τ /∈ Γ, and since Γc is open, for n sufficiently large,

we have X̃n
τ /∈ Γ. The above shows that τ ≤ T =⇒ ∃t ∈ [0, T ] s.t.Xn /∈ Γ for all T . There-

fore, for sufficiently large n, sending T to infinity, we have Pn[∃t ≥ 0 s.t. Xn
t /∈ Γ] ≥ 1 − p,

which violates the probabilistic invariance of A. Hence, x ∈ A. The boundedness of A is from
the compactness of Γ. □

Proof of Lemma 3.3.17. The proof is similar to [114, Lemma 15] and (hybrid case) except in
the context of weak solutions. We construct Zs∧τD = Xs∧τD +

s
T
[ZT∧τD −XT∧τD +(X0−Z0)]+

Z0 −X0 for all s ∈ [0, T ]. Then

|Zs∧σ −Xs∧σ| ≤ |ZT∧σ −XT∧σ|
s

T
+ |X0 −X0|(1−

s

T
) ≤ r (3.49)

For any text function ϕ ∈ C∞(Rn), we define processes

Mϕ(t) = ϕ(Zt∧τD)− ϕ(Z0)−
∫ t∧τD

0

∇ϕ(Zs) · f(Zs) +
1

2
tr
[
(bbT )(Zs) · ϕxx(Zs)

]
ds (3.50)

Nϕ(t) = ϕ(Xt∧τD)− ϕ(X0)−
∫ t∧τD

0

∇ϕ(Xs) · f(Xs) +
1

2
tr
[
(bbT )(Xs) · ϕxx(Xs)

]
ds (3.51)

as well as a martingale

M̂ϕ(t) = ϕ(Xt∧τD)− ϕ(X0)−
∫ t∧τD

0

Ldϕ(Xs)ds (3.52)

One can show that |Mϕ(t)−M̂ϕ(t)| has a boundB(T, r, ϕ, ϑ′) based on the properties of f, g, ϕ
and ZτD , i.e.,

|Mϕ(t)− M̂ϕ(t)| ≤ |Mϕ(t)−Nϕ(t)|+ |Nϕ(t)− M̂ϕ(t)|
≤ (2C1r + TC2r) + T sup

x∈D
∇ϕ(x) · ϑ′, (3.53)
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where C1 is generated due to the choice of ϕ, C2 is due to the properties of f, g and ϕ.
To makeMϕ a family of martingales under the family of laws of the stopped process of Sϑ,

one also needs to guarantee that |Mϕ(t)−M̂ϕ(t)| ≤ T supx∈D ∇ϕ(x) ·ϑ for all t ∈ [0, T ], since
any two martingales of the martingale problem (under the laws of the corresponding stopped
processes of Sϑ) should not be differed larger than the above bound. Feasible ranges of r can
be obtained based on the requirement

(2C1r + TC2r) + T sup
x∈D

∇ϕ(x) · ϑ′ ≤ T sup
x∈D

∇ϕ(x) · ϑ.

The process Z then satisfies the requirement given the feasible r. □

Proof of Proposition 3.3.18 We just show the sketch. Without loss of generality, we consider
Bϵ(A) ⊆ Γ. Suppose the claim is not true, then there exists some ϵ > 0 such that for all n > 0
there exists xn ∈ X0, Xn ∈ Sϑ′(xn,W ) such that

Pn[|Xn
t |A > ϵ, ∃t ≥ n] > 1− p.

We now show this leads to a contradiction. By the assumption, Sϑ′ also satisfies the reach-
avoid-stay specification (X0,Γ, U, p). By a similar argument of weak compactness as in the
proof of Lemma 3.3.16, there exists a sufficiently large N such that for all n ≥ N , defining the
Γ-entering time h := inf{t ≥ 0 : Xn

t ∈ Γ}, we are able to show that
Pn[∃t ≥ n : Xn

t+t /∈ Bϵ(A)] ≥ 1− p (3.54)

Let τ := N in Lemma 3.3.17. Note that, by the construction in Lemma 3.3.17, infx∈A |x|Γ = 0
and we are able to find a process Z with Z0 ∈ A and Z0 ∈ Br(Xn

h∧τD) a.s.. By Lemma 3.3.17,
there exists a process Z ∈ Sϑ(Z0,W ) such that Zt∧τD and Xn

(t+h)∧τD share the same law for all
t ≥ n. However, Zt∧τD ∈ A for all t ≥ 0 by the definition of A. Therefore,

P[∃t ≥ n : Zt∧τD /∈ A] ≤ P[∃t ≥ 0 : Zt∧τD /∈ A] < 1− p,

which contradicts (3.54). □

3.4 ADiscussion onLyapunov-BarrierApproaches forUn-
known Dynamics

We have seen the existence of control stochastic Lyapunov-barrier (resp. stochastic barrier)
functions is sufficient to guarantee probabilistic reach-avoid-stay (resp. safety) specifications

103



given full knowledge of (3.6). However, in practice, we do not usually have precise information
about the system dynamics, whence the generator Lu (see definition in Page 80) as well as the
set of valid control strategies are not determined.

In [126], the authors propose a framework of estimating the value of Lh(x) for some test
function h at one specific point xwithin the domain. In this section, we extend this idea and dis-
cuss in what sense a data-driven method can approximate the function Lh (or Luh) for some h
in the whole domain, such that the approximation can be embedded in the stochastic Lyapunov-
barrier framework.

To better convey the methodology, we simply set ϑ = 0 and consider h as a potential
SCBF (aiming at probabilistic safety controlling) for system S . As a consequence, under some
reasonable assumptions, the scheme introduce an extra robustness to the Itô derivative of an
SCBF condition as in Section 3.2.

3.4.1 Worst-Case ProbabilisticQuantification

Note that we only assume that the diffusion term is unknown in (3.6) with out loss of generality.
Since our goal in this section is to use the approximated SCBF to regulate the safety direction, we
consider a compact safe set C, a bounded open set G ⊇ C, and a function h ∈ C2(G)∩C2

b (Rn)
playing the role in (3.8). Due to the partial knowledge of the system dynamics, we are unable
to capture the correction term in the Itô derivative of the nominal barrier function h along
sample paths. In other words, the second term in Lh(x) (or Luh(x)) is unknown. We use a
data-driven method to approximate the function Lh, and impose similar barrier conditions on
the approximated L̂h for safety-critical control.

Based on the partial observation of data, we show that a degree of robustness (in L1 sense)
in the barrier condition is necessary to balance the inaccuracy of data. A similar approach can
be applied to derive the robustness for the other types of stochastic control Lyapunov-barrier
functions.

We suppose that data is sampled without control inputs. Then for each x, the law Px of
the process X is independent of u. However, the approximated L̂h, and hence L̂uh, is used to
generate barrier conditions for the control problem. We further define the stopping time

τ := inf{t ≥ 0 : Xt ∈ ∂C}

for each sampled process. Let C denote a finite subset of C.
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Probability estimation based on partially observed data

We make the following assumptions for the rest of the derivation. We will show later that the
assumptions are feasible for compact C.

Assumption 3.4.1. Let L̂h be the approximation of Lh based on the training set C. We assume
that

(1) For any y ∈ C and any ϵ > 0, there exists an x ∈ C such that4

Ey sup
t∈[0,τ ]

|L̂h(Xt)− Lh(Xt)| ≤ Ex sup
t∈[0,τ ]

|L̂h(Xt)− Lh(Xt)|+ ϵ. (3.55)

(2) For any ς ∈ (0, 1], there exists a probability measure P with marginals Px for all x ∈ C
such that

E sup
x∈C

|Lh(x)− L̂h(x)| ≤ ς. (3.56)

Furthermore, we assume that both L̂h and Lh are Lipschitz continuous on the compact set C.

We apply the approximated function L̂h and show the worst-case safety probability of the
controlled process under policy generated by the following robust scheme.

Proposition 3.4.2. Suppose we are given arbitrary ς > 0, ε > 0 and training set C. Let L̂h
be generated as in Assumption 3.4.1. Suppose that supu∈U L̂uh(x) ≥ ς + ϵ for all x ∈ C. Let
K(x) = {u ∈ U : L̂uh(x) ≥ ς + ϵ}. Then for any x ∈ Int(C) and a control signal u such that
ut = κ(Xt) ∈ K(Xt), we have

Px,u[Xu
t ∈ Int(C), 0 ≤ t <∞] ≥ h(x)

supy∈C h(y)
.

Proof. Let c = supy∈C h(y) and set V = c − h. Then for all x ∈ C◦, we have V (x) > 0 and
L̂uV (x) ≤ −(ς + ϵ). Note that

Ex,u[V (Xu
τ∧t)] = V (x) + Ex,u

[∫ τ∧t

0

LuV (Xu
s )ds

]
(3.57)

4Note that τ < τex with probability 1.
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and by assumption,

Ex,u

[∫ τ∧t

0

LuV (Xu
s )ds

]
=Ex,u

[∫ τ∧t

0

LuV (Xu
s )− L̂uV (Xu

s ) ds

]
+ Ex,u

[∫ τ∧t

0

L̂uV (Xu
s ) ds

]
≤
∫ τ∧t

0

Ex,u|LuV (Xu
s )− L̂uV (Xu

s )| ds− (ς + ϵ) · (τ ∧ t)

≤
∫ τ∧t

0

E sup
s∈[0,τ ]

|LuV (Xu
s )− L̂uV (Xu

s )| ds− ς · (τ ∧ t)

≤
∫ τ∧t

0

E sup
x∈C

|LuV (x)− L̂uV (x)| ds− ς · (τ ∧ t) ≤ 0,

(3.58)

where the fourth line of the above is to transfer information from arbitrary x ∈ C to the data
used in C. The ϵ is cancelled based on (1) of Assumption 3.4.1, where the notation L is also
replaced by Lu in that b(x) in (3.6) is known and does not render any error of measurement.
Hence, by (3.57), we have

Ex,u[V (Xu
τ∧t)] ≤ V (x), ∀t ≥ 0. (3.59)

On the other hand, for all t ≥ 0,

Ex,u[V (Xu
τ∧t)] ≥ Ex,u[1{τ≤t}V (Xu

τ∧t)]

≥ Px,u[τ ≤ t] · Ex,u[V (Xu(τ)]

> c ·Px,u[τ ≤ t].

(3.60)

Therefore, by (3.59) and (3.60), we have

Px,u[τ ≤ t] <
V (x)

c
, ∀t ≥ 0. (3.61)

Sending t→ ∞ we get Px,u[τ <∞] ≤ V (x)
c

for all x ∈ C◦. Rearranging this we can obtain the
conclusion.

Remark 3.4.3. Note that (2) in Assumption 3.4.1 indicates that the error of estimation should
converge in L1, and cannot be replaced by ‘in probability’ in the sense that, for every ς , there exists
a δ = δ(ς) such that P

[
supx∈C |Luh(x)− L̂uh(x)| > δ

]
< ς. The latter is not sufficient to show

the last line of (3.57) in general.
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3.4.2 Feasibility of Assumptions

Note that, for the compact set C and for sufficiently dense training data, the conditions in As-
sumption 3.4.1 can be satisfied theoretically. We will show that both (1) and (2) of Assumption
3.4.1 require the selection of the training data but separately.
1) Justification of Assumption 3.4.1(1): We observe that for each x in a compact set C, for
any fixed T > 0, the quantity supt∈[0,τ∧T ] |Lh(·)−L̂h(·)| is a bounded function on the canonical
space generated by C with measure Px. In view of Definition 3.1.6 and Proposition 3.3.9, the
quantity {

Ex sup
t∈[0,τ∧T ]

|Lh(Xt)− L̂h(Xt)|
}
x∈C

forms a compact set (in the conventional sense). By the boundedness assumption on C, we have
τ <∞ Px-a.s. for every x ∈ C. Therefore, sending T to infinity, we still have the compactness
for {

Ex sup
t∈[0,τ ]

|Lh(Xt)− L̂h(Xt)|
}
x∈C

.

By choosing C sufficiently dense in C, for each given ϵ > 0, we are able to build the ϵ-net with
centers in C such that for any arbitrary y ∈ C, there exists an x ∈ C such that Lh − L̂h are
weakly ϵ-close to each other in the sense of (3.55).

We then verify the feasibility of (2) of Assumption 3.4.1.
2) Approximating Lh over a finite set: Note that, following a similar procedure as in [126],
we are able to approximateLh by some L̃h at one single point x ∈ Rn at a time, whose precision
is measured in the corresponding probability5 Px := ⊗∞

i=1P
x. However, to fit the assumption,

we need the precision to be measured in L1 sense.
By [126, Theorem 6], for each x ∈ Rn, we can utilize Dynkin’s formula, the Lipschitz con-

tinuity of f, g, b, and the relation

L̃1h(x) =
Ex[h(Xτs)]− h(x)

τs

at some deterministic sampling time τs to obtain the first-step approximation

|L̃1h(x)− Lh(x)| ≤ δ, (3.62)
5In [126], the authors used P, but in our context it is recast to be Px. The uniqueness of Px is by Kolmogrov’s

extension theorem.
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where δ = C1τs+C2
√
τs, and C1, C2 > 0 are constants generated by Lipschitz continuity. The

precision δ can be arbitrarily small.
The authors in [126] then applied the LLN to approximate Ex[h(Xτs)] (in the definition of

L̃1) by 1
n

∑n
i=1 h(X

(i)
τs ) with i.i.d. h(X(i)

τs ) draw from Px at the marginal time τs. The approxi-
mation

L̃h =
1
n

∑n
i=1 h(X

(i)
τs )− h(x)

τs

creates errors in probability w.r.t. Px as in [126, Theorem 12], i.e., for each β ∈ (0, 1], there
exists a δ̃ such that Px[|Lh(x)− L̃h(x)| ≤ δ̃] > 1− β.

Note that, the only place that we introduce Px is when we use LLN. We need to leverage
the convergence in the L1 sense, i.e., as n→ ∞,

Ex
∣∣∣∣∣ 1n

n∑
i=1

h(X(i)
τs )− Ex[h(Xτs)]

∣∣∣∣∣→ 0. (3.63)

This is indeed the case as an existing result (see Appendix B for details), even though it is seldom
mentioned.

Combining (3.63) and (3.62), we can easily obtain that for each x ∈ Rn, for any δ > 0 (we
abuse the notation that is different from the one used in (3.62)), there exists a sufficiently large
n such that

Ex
∣∣∣L̃h(x)− Lh(x))

∣∣∣ ≤ δ. (3.64)

Repeating the same process for x over a finite set C gives

sup
x∈C

E
[
|Lh(x)− L̃h(x)|

]
≤ δ, (3.65)

where E is the associated expectation w.r.t. P := ⊗x∈CPx.

Remark 3.4.4. The above L̃1 converges to the infinitesimal generator as τs → 0. To use Dynkin’s
formula together with L̃1 to get the δ bound in the first-step approximation, the above scheme only
fits for test functions h ∈ C2

b (Rn). We noticed that the authors in [126] misused the condition and
provided a case study based on h(x) = x2. This partially explains the unintuitive phenomenon in
[126, Fig. 2] that the error increases as the sampling time is refined. We can fix this problem by
smoothing the h to be C2

b (Rn \ G) such that the approximation of Lh(x) has guarantees inside
G ⊇ C, which is all we need. Alternatively, since our purpose is not to compare the influence of the
sampling time τs, we can set G ⊇ C sufficiently large and make τs arbitrarily small in practice,
such that the ‘out-of-domain’ samples generated by C2 functions do not account for much of the
mass.

108



3) Optimization error: For any η > 0, we assume there exists an optimizer that can learn an
approximation L̂h based on data

{
L̃h(x) : x ∈ C

}
such that

sup
x∈C

|L̂h(x)− L̃h(x)| < η. (3.66)

4) Generalization error: By continuity of L̂h(x) and Lh(x), there exists some x∗ ∈ C such
that

sup
x∈C

|L̂h(x)− Lh(x)| = |L̂h(x∗)− Lh(x∗)|.

For any θ > 0, by choosing C to be sufficiently dense in C and the Lipschitz continuity of L̂h(x)
and Lh(x) on C, there exists some y ∈ C such that

|L̂h(x∗)− L̂h(y)| ≤ θ, |Lh(x∗)− Lh(y)| ≤ θ.

It follows that

E sup
x∈C

|L̂h(x)− Lh(x)| = E|L̂h(x∗)− Lh(x∗)|

=E|L̂h(y)− Lh(y) + L̂h(x∗)− L̂h(y) + Lh(y)− Lh(x∗)|
≤E|L̂h(y)− Lh(y)|+ 2θ

=E|L̂h(y)− L̃h(y) + L̃h(y)− Lh(y)|+ 2θ

≤E sup
y∈C

|L̂h(y)− L̃h(y)|+ E|L̃h(y)− Lh(y)|+ 2θ

≤η + sup
y∈C

E|L̃h(y)− Lh(y)|+ 2θ

≤η + δ + 2θ ≤ ς,

where ς is from Assumption 3.4.1(2), provided that we choose η, δ, and θ sufficiently small.

Remark 3.4.5. The final C should be chosen based on all of the above criteria such that (1) and (2)
of Assumption 3.4.1 can both be satisfied. An algorithm for neural network approximation of L̂h
is developed in [168]. Case studies are also provided to validate the result in Proposition 3.4.2. The
controlled sample paths using the training result L̂h embedded in the SCBF framework demonstrate
effectiveness of the proposed method in fulfilling the probabilistic safety specification.
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3.5 Summary

In this chapter, we first compare the pros and cons of the existing frequently used R-SCBFs
and Z-SCBFs. We propose SCBFs for probabilistic safety control and extend the worst-case
safety probability estimation to high-order SCBFs. We show that the proposed SCBFs provide
compromised trade-offs between the imposed control constraints and the conservatism in the
estimation of safety probability, which are demonstrated both theoretically and empirically. To
accurately obtain the probabilistic winning sets, it is necessary to capture how the probability
measure is distorted by the input processes. However, this may be computationally challenging
for stochastic control systems.

We then formulated stochastic Lyapunov-barrier functions to develop sufficient conditions
on probabilistic reach-avoid-stay specifications. Given uncertainties of the model, robustness
was taken into account such that a worst-case scenario is guaranteed. We characterized a gen-
eral topological structure of the initial sets, target sets and unsafe sets under the stochastic
settings, and discussed relaxations given the smoothness of the unsafe boundary. We inves-
tigated the effectiveness in a case study of jet engine compressor control problem. Despite of
the potentially unbounded control inputs, the control version of SLF along with reciprocal-type
barrier functions guarantee a (conditionally) probability-one satisfaction.

However, just like deterministic Lyapunov-like functions only providing a stability charac-
terization of the solutions, the stochastic Lyapunov-type argument can only estimate a lower
bound of ‘satisfaction in probability/law’ without solving the evolving states and distributions.
It renders more difficulties of selecting Lyapunov/barrier functions under the restrictive geo-
metric requirements of the initial conditions and unsafe sets. Another drawback of the current
results is the lack of converse stochastic Lyapunov-barrier function theorems. We cannot con-
struct the converse connection between the two specifications defined in Section 3.3.1 as well
due to the diffusion effects.

We finally investigated how a data-driven approach can be embedded in the Lyapunov-
barrier scheme dealing with safety-critical control of unknown stochastic systems. We demon-
strated the possibility of combining approximations of the Itô derivative of potential SCBFs and
the barrier scheme conditions, and showed that an L1-robustness should be considered to guar-
antee the probabilistic safety. A similar procedure can be applied to derive the robustness for
the other types of stochastic control Lyapunov-barrier functions. One drawback of the current
analysis is the lack of convergence rate w.r.t. the size of the training data and the sampling time.
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Figure 3.1: Sample paths of (3.47) given γ = 0.63 and γ = 0.59 respectively.
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Figure 3.2: Convergent and divergent sample paths of (3.47) given γ = 0.609.
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Chapter 4

Robustly Complete Finite-State
Abstractions for Verification and
Control Synthesis of Stochastic Systems

We have seen in Chapter 2 the merits and drawbacks of abstraction-based formal methods
and Lyapunov-barrier approaches, respectively, for verification and control synthesis of cer-
tain fundamental specifications in perturbed deterministic nonlinear systems. We also extended
Lyapunov-barrier approaches for the stochastic counterpart and justified its sufficiency. Several
concerns are raised due to the Itô diffusion: (1) it remains difficult to construct converse stochas-
tic Lyapunov-barrier functions; (2) it becomes less accurate than its deterministic counterpart
to estimate the set of initial conditions from which the solution processes or controlled pro-
cesses satisfy the specifications of our interests. It is necessary to carry out abstraction-based
formal methods to address those problems.

As motivated in Page 3, Section 1.1, the mathematical regularities of stochastic abstractions
are not yet well understood. We investigate soundness and propose the concept of robust com-
pleteness for stochastic abstractions based on the topology of metrizable space of (uncertain)
probability measures. We show that the technique proves more powerful than purely discussing
the value of probabilities. We also would like to clarify that the main purpose of this chapter
is not on providing more efficient algorithms for computing abstractions. We aim to provide a
theoretical foundation of stochastic abstractions for continuous-state stochastic systems with
additional uncertainties and hope to shed some light on designing more powerful algorithms.
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4.1 Background

In Example 2.0.1, the philosophy of constructing finite-state abstraction1 for deterministic sys-
tems was illustrated. The idea is to discretize the continuous state-space into finite grids as the
state of the abstracted transition system (e.g. the r.h.s. picture in Figure 2.1) via some relation.
The relation should guarantee that the transition between labels in the original systems should
be included in the abstraction. The abstraction, which contains finite states and most-likely
non-deterministic transitions, is then used to product with an automation generated by an LTL
specification for graph search utilizing the existing model checking algorithms (recall Remark
A.0.8). The soundness is guaranteed in the sense that, if a specification φ is realizable for the
abstraction, so is for the original system.

On the other hand, the efficiency of the algorithm depends on the size of the product graph
of the abstraction and the automation of an LTL specification. Apart from the complexity of
the specified LTL formula, the size of the abstraction is a dominating factor. Whilst bisimilar
or equivalent symbolic abstraction models exist for linear deterministic systems [96, 158], only
approximately complete (that is incompleteness with a bright side) finite abstractions can be
achieved via stability assumptions [136, 69] or robustness (in terms of Dirac perturbations)
[112, 110, 113] for deterministic nonlinear systems. That is, over-approximation for nonlinear
systems is inevitable when constructing the abstraction systems, i.e., unnecessary transitions
between labels are included in the abstraction. However, [112] provided a perspective that such
an inclusion can be arbitrarily asymptotically precise if we keep refining the grids. The analysis,
however, depends on the introduction of robustness. To be more precise, given two transition
systems S1 and S2 driven by point-mass perturbed discrete-time nonlinear difference equations

x(t+ 1) = f(x(t), u(t)) + ϑiξ(t), i = 1, 2,

where ξ : R≥0 → B is a measurable signal with intensity ϑi for Si, respectively. Briefly, [112,
Theorem 2] indicates that, as long as 0 ≤ ϑ1 < ϑ2 and f is locally Lipschitz continuous in both
arguments, we can find a relation and hence a finite-state transition system T such that

S1 ⪯ T ⪯ S2,

where ⪯ reads as ‘abstracted by’. As (ϑ2 − ϑ1) → 0, the T should intuitively contain more
states and more precise transitions. A direct consequence of this result is that, if a given LT
specification realizable, we can algorithmically realize the same specification for a (potentially

1In deterministic settings, we simply use ‘finite abstraction’ in terms of the finite number of states/nodes/grids
in the abstracted transition systems. However, in the stochastic context, there are two levels of finiteness, i.e., the
state/grid level and measure level. Detailed explanation is provided throughout this chapter.
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less) robust system. Since the proof of above theorem is constructive, we can algorithmically
verify or synthesize a control strategy forS1 by computing T first and then solving a verification
or control synthesis problem for T with the specification [112].

To this end, we aim to deliver the complete analysis for stochastic system in determining
the mathematical size of the stochastic abstractions. We focus on the control-free systems, then
we extend the methodology to control systems.

Conventions for Notation: We denote by
∏

the product of ordinary sets, spaces, or func-
tion values. Denote by ⊗ the product of collections of sets, or sigma algebras, or measures.
The n-times repeated product of any kind is denoted by (·)n for simplification. Denote by
πj :

∏∞
i=0(·)i → (·)j the projection to the jth component.

Let | · | denote the inifinity norm in Rn. Given a matrix M , we denote by Mi its ith row
and by Mij its entry at ith row and jth column. The other commonly used notations follow the
previous sections.

4.2 Robustly Complete Finite-State Abstractions for Veri-
fication of Stochastic Systems

4.2.1 Preliminaries

We consider N = {0, 1, · · · } as the discrete time index set, and a general Polish (complete
and separable metric) space X as the state space. For any discrete-time X∞-valued stochastic
process X , we introduce some standard concepts as follows.

Canonical spaces for discrete-time control-free stochastic systems

We have seen the canonical spaces for continuous-time control-free stochastic systems in Chap-
ter 3. This notion can be defined in an even easier way for the discrete-time settings. Given
a stochastic process X defined on some (most likely unknown) probability space (Ω†,F †,P†).
Forϖ ∈ X∞ =: Ω and t ∈ N, we defineϖt := πt(ϖ) and the coordinate processXt : X∞ → X
as Xt(ϖ) := ϖt associated with F := σ{X0,X1, · · · }. Then Ω† −→ X∞ (ω† 7−→∏∞

t=0Xt(ω
†))

is a measurable map from (Ω†,F †) to (Ω,F). In particular, F = σ{Xt ∈ Γ, Γ ∈ B(X ), t ∈
N} = B(X∞) = B∞(X ) = σ{C}, where C is the collection of all finite-dimensional cylinder
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set of the following form:
n∏
i=1

Γi = {ϖ : Xt1(ϖ) ∈ Γ1, · · · ,Xtn(ϖ) ∈ Γn, Γi ∈ B(X ), ti ∈ N, i = 1, · · · , n}.

The measure P := P† ◦X−1 of the defined coordinate process X is then uniquely determined
and admits the probability law of the process X on the product state space, i.e.,

P[Xt1 ∈ Γ1, · · · ,Xtn ∈ Γn] = P

(
n∏
i=1

Γi

)
= P†[Xt1 ∈ Γ1, · · · , Xtn ∈ Γn]. (4.1)

for any finite-dimensional cylinder set
∏n

i=1 Γi ∈ F . We call (Ω,F ,P) the canonical space of
X and denote by E the associated expectation operator.

Definition 4.2.1 (Clarification of Notations). In the specific context of discrete state space X ,
we use the notation (Ω,F ,P) for the discrete canonical spaces of some discrete-state process. We
would like to still use the notation (Ω,F ,P) if the topology of X is not clear or not emphasized.

Remark 4.2.2. We usually denote by νi the marginal distribution of P at some i ∈ N. We
can informally write the n-dimensional distribution (on n-dimensional cylinder set) as P(·) =
⊗n
i=1νi(·) regardless of the dependence.

Markov transition systems

Markov processes are defined in Appendix B. We recall the notation that, for discrete-time
Markov processes, the one-step transition function at every t ∈ T is defined as

Θt(x,Γ) := P[Xt+1 ∈ Γ | Xt = x], Γ ∈ B(X ). (4.2)

We denote correspondingly Θt := {Θt(x,Γ) : x ∈ X , Γ ∈ B(X )} as the family of one-step
transition probabilities at time t. Homogeneous (autonomous) Markov processes are such that
Θt = Θs for all t ̸= s, and the n-step transition can be recursively defined by Θn+1(x, ·) =∫
X Θ(y, ·)Θn(x, dy)ν0(dx).

We are interested in Markov processes with discrete observations of states, which is done by
assigning abstract labels over a finite set of atomic propositions. We define an abstract family
of labelled Markov processes as follows.

Definition 4.2.3 (Markov system). A Markov system is a tuple X = (X , [[Θ]],AP, L), where
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✧ X = W ∪ ∆, where W is a bounded working space, ∆ := Wc represents all the out-of-
domain states;

✧ [[Θ]] is a collection of transition probabilities from which Θt is chosen for every t;

✧ AP is the finite set of atomic propositions;

✧ L : X → 2AP is the (Borel-measurable) labelling function.

ForX ∈ X withX0 = x0 a.s., we denote by Px0
X the law, and {Px0

X }X∈X by its collection. Similarly,
for any initial distribution ν0 ∈ P(X ), we define the law byPν0

X (·) =
∫
X Px

X(·)ν0(dx), and denote
{Pν0

X }X∈X by its collection. We denote by {Pq0
n }∞n=0 (resp. {Pν0

n }∞n=0) a sequence of {Px0
X }X∈X

(resp. {Pν0
X }X∈X). We simply usePX (resp. {PX}X∈X) if we do not emphasize the initial condition.

For a path ϖ := ϖ0ϖ1ϖ2 · · · ∈ Ω, define by Lϖ := L(ϖ0)L(ϖ1)L(ϖ2) · · · its trace (also
see Appendix A). The space of infinite words is denoted by

(2Π)ω = {A0A1A2 · · · : Ai ∈ 2Π, i = 0, 1, 2 · · · }.
A LT property is a subset of (2Π)ω. We are only interested in LT properties Ψ such that Ψ ∈
B((2Π)ω), i.e., those are Borel-measurable.
Remark 4.2.4. Note that, by [161] and [162, Proposition 2.3], any ω-regular language of labelled
Markov processes is measurable. The proof relies on the properties of the canonical space with the
fact that F = σ{C}, as well as the connection with Büchi automation. It follows that, for any
Markov process X of the given X, the traces Lϖ generated by measurable labelling functions are
also measurable. For each Ψ ∈ B((2Π)ω), we have the event L−1

ϖ (Ψ) ∈ F .

A particular subclass of LT properties can be specified by LTL2 (see Appendix A for details).
To connect with LTL specifications, we introduce the semantics of path satisfaction as well as
probabilistic satisfaction as follows.
Definition 4.2.5. Suppose Ψ is an LTL formulae. For a given labelled Markov process X from X
with initial distribution ν0, we formulate the canonical space (Ω,F ,Pν0

X ). For a path ϖ ∈ Ω, we
define the path satisfaction as

ϖ ⊨ Ψ ⇐⇒ Lϖ ⊨ Ψ.

We denote by {X ⊨ Ψ} := {ϖ : ϖ ⊨ Ψ} ∈ F the events of path satisfaction. Given a specified
probability ρ ∈ [0, 1], we define the probabilistic satisfaction of Ψ as

X ⊨ Pν0
▷◁ρ[Ψ] ⇐⇒ Pν0

X {X ⊨ Ψ} ▷◁ ρ,
where ▷◁∈ {≤, <,≥, >}.

2While we consider LTL due to our interest, it can be easily seen that all results of this chapter in fact hold for
any measurable LT property, including ω-regular specifications.
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Discrete-time continuous-state stochastic systems

We define Markov processes determined by the difference equation
Xt+1 = f(Xt) + b(Xt)wt + ϑξt (4.3)

where the stateXt(ϖ) ∈ X ⊆ Rn for all t ∈ N, the stochastic inputs {wt}t∈N are i.i.d. Gaussian
random variables with covariance idk×k without loss of generality. Mappings f : Rn → Rn

and b : Rn → Rn×k are locally Lipschitz continuous. The memoryless perturbation ξt ∈ B are
independent random variables with intensity ϑ ≥ 0 and unknown distributions.

For ϑ ̸= 0, (4.3) defines a family X of Markov processes X . A special case of (4.3) is such
that ξ has Dirac (point-mass) distributions {δx : x ∈ B} centered at some uncertain points
within a unit ball.
Remark 4.2.6. The discrete-time stochastic dynamic is usually obtained from numerical schemes
of stochastic differential equations driven by Brownian motions to simulate the probability laws
at the observation times. Gaussian random variables are naturally selected to simulate Brownian
motions at discrete times. Note that in [51], random variables are used with known unimodal sym-
metric density with an interval as support. Their choice is in favor of the mixed-monotone models
to provide a more accurate approximation of transition probabilities. Other than the precision is-
sue, such a choice does not bring us more of the other L1 properties. Since we focus on formal
analysis based on L1 properties rather than providing accurate approximation, using Gaussian
randomnesses as a realization does not lose any generality.

We only care about the behaviors in the bounded working space W . By defining stopping
time τ := inf{t ∈ N : X /∈ W} for each X , we are able to study the probability law of
the corresponding stopped (killed) process Xτ for any initial condition x0 (resp. ν0), which
coincides with Px0

X (resp. Pν0
X ) on W . To avoid any complexity, we use the same notation X

and Px0
X (resp. Pν0

X ) to denote the stopped processes and the associated laws. Such processes
driven by (4.3) can be written as a Markov system

X = (X , [[T ]],AP, LX), (4.4)
where for all x ∈ X \W , the transition probability should satisfy T (x,Γ) = 0 for all Γ∩W ̸= ∅;
[[T ]] is the collection of transition probabilities. For ξ having Dirac distributions, the transition
T is of the following form:

T (x, ·) ∈
{

{µ ∼ N (f(x) + ϑξ, b(x)bT (x)), ξ ∈ B}, ∀x ∈ W ,
{µ : µ(Γ) = 0, ∀Γ ∩W ̸= ∅}, ∀x ∈ X \W .

(4.5)

Assumption 4.2.7. We assume that in ∈ L(x) for any x /∈ ∆ and in /∈ L(∆). We can also
include ‘always (in)’ in the specifications to observe sample paths for ‘inside-domain’ behaviors,
which is equivalent to verifying {τ = ∞}.
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Robust abstractions

We define a notion of abstraction between continuous-state and finite-state Markov systems
via state-level relations and measure-level relations.

Definition 4.2.8. A (binary) relation Σ from A to B is a subset of A×B satisfying

(1) for each a ∈ A, Σ(a) := {b ∈ B : (a, b) ∈ Σ};

(2) for each b ∈ B, Σ−1(b) := {a ∈ A : (a, b) ∈ Σ};

(3) for A′ ⊆ A, Σ(A′) = ∪a∈A′Σ(a);

(4) and for B′ ⊆ B, Σ−1(B′) = ∪b∈B′Σ−1(b).

Definition 4.2.9. Given a continuous-state Markov system

X = (X , [[T ]],AP, LX)

and a finite-state Markov system

I = (Q, [[Θ]],AP, LI),

where Q = (q1, · · · , qn)T and [[Θ]] stands for a collection of n× n stochastic matrices.

We say that I abstracts X, and write X ⪯Σα I, if there exist

(1) a state-level relation α ⊆ X ×Q from X to I such that, for all x ∈ X , there exists q ∈ Q
such that (x, q) ∈ α (α(x) ̸= ∅) and LI(q) = LX(x);

(2) a measure-level relationΣα ⊆ P(X )×P(Q) fromX to I such that, for all i ∈ {1, 2, · · · , n},
all T ∈ [[T ]] and all x ∈ α−1(qi), there exists Θ ∈ [[Θ]] such that (T (x, ·),Θi) ∈ Σα and
that T (x, α−1(qj)) = Θij for all j ∈ {1, 2, · · · , n}.

Similarly, we say that X abstracts I, and write I ⪯Σα X, if there exist

(1) a state-level relation α ⊆ Q × X from I to X such that, for all q ∈ Q, there exists an
x ∈ X such that (q, x) ∈ α (α(q) ̸= ∅) and LI(q) = LX(x);

(2) a measure-level relationΣα ⊆ P(Q)×P(X ) from I toX such that, for all i ∈ {1, 2, · · · , n},
all Θ ∈ [[Θ]] and all x ∈ α−1(qi), there exists T ∈ [[T ]] such that (Θi, T (x, ·)) ∈ Σα and
that T (x, α−1(qj)) = Θij for all j ∈ {1, 2, · · · , n}.
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Assumption 4.2.10. Without loss of generality, we assume that the labelling function is amenable
to a rectangular partition3. In other words, a state-level abstraction can be obtained from a rectan-
gular partition.

Remark 4.2.11. Heuristically, we stand from the side of the original system and require an ab-
straction to

✧ contain states with the same labels as states of the original system;

✧ include transitional measures with the same measuring results on all the discrete states
given any starting point of the original system that can be mapped to an abstract state.

Given a rectangular partition, one immediate consequence of the existence of an abstraction is
that the transition matrices are able to recover all possible transition probabilities (of the original
system) from a grid to another.

4.2.2 Soundness of Robust IMC Abstractions

Definition 4.2.12. An IMC is a tuple I = (Q, Θ̌, Θ̂,AP, LI), where

✧ Q is an N -dimensional state-space;

✧ AP and L are the same as in Definition 4.2.3;

✧ Θ̌ is an N ×N matrix such that Θ̌ij is the lower bound of transition probability from the
state number i to j for each i, j ∈ {1, 2, · · · , N};

✧ Θ̂ is an N ×N matrix such that Θ̂ij is the upper bound of transition probability from the
state number i to j for each i, j ∈ {1, 2, · · · , N}.

IMCs are ‘quasi’ Markov systems on a discrete state space with upper/under approximations
(Θ̂/Θ̌) of the real transition matrices. To abstract the transition probabilities of continuous-state
Markov systems (4.4), Θ̂ and Θ̌ are obtained from over/under approximations of T based on
the state space partition. In this case, the state-level abstraction α is such that ν(α−1(qj)) =

vol(qj) for ν ∈ P(X ) and each j. Throughout this section, we assume that Θ̂ and Θ̌ have been
correspondingly constructed.

3See e.g. [51, Definition 1].
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Remark 4.2.13. Suppose Q = (q1, · · · , qN)T , then the over/under approximations are such that
Θ̌ij ≤

∫
α−1(qj)

T (x, dy) ≤ Θ̂ij for all x ∈ qi and i, j ∈ {1, · · · , N}.

Given an IMC I , we recast it to a finite-state Markov system (recall Definition 4.2.3)

I = (Q, [[Θ]],AP, LI), (4.6)

where

✧ Q is the finite state-space partition with dimension N + 1 containing {∆}, i.e., Q =
(q1, q2, · · · , qN ,∆)T ;

✧ [[Θ]]4 is a set of stochastic matrices satisfying

[[Θ]] = {Θ : stochastic matrices with Θ̌ ≤ Θ ≤ Θ̂ componentwisely}; (4.7)

✧ AP is as before, and LI = LI .

To make I an abstraction forX as in (4.4) in the sense of Definition 4.2.9, we need the approx-
imation to be such that Θ̌ij ≤

∫
α−1(qj)

T (x, dy) ≤ Θ̂ij for all x ∈ qi and i, j = 1, · · · , N , as well
as ΘN+1 = (0, 0, · · · , 1). We further require that the partition should respect the boundaries
induced by the labeling function, i.e., for any q ∈ Q,

LI(q) = LX(x), ∀x ∈ q.

Clearly, the above connections on the state and transition probabilities satisfy Definition 4.2.9.

Example 4.2.14. Consider a continuous state space X ∈ R2 and a discretization into 3-grids state
space Q = (q1, q2, q3)

T , where qi’s are the symbolic nodes representing the whole area of x ∈ X in
the grids. The space P(Q), which is the hyperplane q1 + q2 + q3 = 1, is illustrated in Figure 4.1.

Let X = (X , [[T ]],AP, LX) be a Markov system and I = (Q, [[Θ]],AP, LI) be the IMC ab-
straction, where [[Θ]] is to be determined, and, for any i ∈ {1, 2, 3} and for all x ∈ α−1(qi),
LX(x) = LI(qi). Now we graphically illustrate how each row of [[Θ]] is determined. We take the
third row Θ3 as an example.

Let t1 and t2 be any two consecutive time, then the transition probability from any x ∈ α−1(q3)
to any α−1(qi) for i ∈ {1, 2, 3} is given as T (x, α−1(qi)). Figure 4.2 shows an example of one-
step transition probability T (x, α−1(q1)) for any x ∈ α−1(q3). The under/over approximation

4This is a necessary step to guarantee proper probability measures in (4.8). Algorithms can be found in [83] or
[102, Section V-A].
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Figure 4.1: The space of probability measure P(Q): the shaded area.

Θ̌3/Θ̂3 can be generated accordingly using Θ̌3j ≤
∫
α−1(qj)

T (x, dy) ≤ Θ̂3j for j = 1, 2, 3 and

x ∈ α−1(q3). The third row of [[Θ]] is such that [[Θ3]] = [Θ̌3, Θ̂3]∩P(Q), which is shown in Figure
4.3. The other rows of [[Θ]] are obtained in a similar way. The tighter estimation of the upper/lower
bounds of the transition probabilities, the smaller shaded area we can obtain for each row of [[Θ]].

The Markov system I is understood as a family of ‘perturbed’ Markov chain generated by
the uncertain choice of Θ for each t. The n-step transition matrices are derived based on [[Θ]] as

[[Θ(2)]] = {Θ0Θ1 : Θ0,Θ1 ∈ [[Θ]]},
...

[[Θ(n)]] = {Θ0Θ1 · · ·Θn : Θi ∈ [[Θ]], i = 0, 1, · · · , n}.

We aim to show the soundness of robust IMC as abstractions in this subsection. The proofs
of results in this section are completed in Section .

Weak compactness of the set of marginal probabilities

We first investigate the topological property of the set of marginal measures of some I. Suppose
I is given as an abstraction of X as in (4.4).
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Figure 4.2: One-step transition probability T (x, α−1(q1)) of X from any x ∈ α−1(q3) to the area
represented by q1.

Figure 4.3: The intersection (shaded) of the box [Θ̌3, Θ̂3] and the space of measure P(Q).
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Definition 4.2.15. Given an initial distribution µ0 ∈ P(Q), the marginal probability measure
at each t forms a set

P(Q) ⊇ M µ0
t := {µt = (Θ(t))Tµ0 : Θ(t) ∈ [[Θ(t)]]}. (4.8)

If we do not emphasize the initial distribution µ0, we also use Mt to denote the marginals for short.

The following lemma is rephrased from [163, Theorem 2] and shows the structure of the
M µ0

t for each t ∈ N and any initial distribution µ0.

Lemma 4.2.16. Let I be a Markov system of the form (3.6) that is derived from an IMC. Then the set
Mt of all possible probability measures at each time t ∈ N is a convex polytope, and immediately
is compact. The vertices5 of Mt are of the form

(Vit)
T · · · (Vi2)T (Vi1)Tµ0 (4.9)

for some vertices Vij of [[Θ]] and j ∈ {1, · · · , t}.

Example 4.2.17. Let Q = (q1, q2, q3)
T and µ0 = (1, 0, 0)T . The under/over estimations of tran-

sition matrices are given as

Θ̌ =

1
4

0 1
4

0 0 1
0 1 0

 , Θ̂ =

3
4

0 3
4

0 0 1
0 1 0

 .
Then [[Θ]] forms a convex set of stochastic matrices with vertices

V1 =

1
4

0 3
4

0 0 1
0 1 0

 , V2 =

3
4

0 1
4

0 0 1
0 1 0

 .
Therefore, the vertices of M µ0

1 are

ν
(1)
1 = (V1)

Tµ0 = (
1

4
, 0,

3

4
)T , ν

(2)
1 = (V2)

Tµ0 = (
3

4
, 0,

1

4
)T .

Hence, M µ0
1 = {µ : µ = aν

(1)
1 + (1− a)ν

(2)
1 , a ∈ [0, 1]}. Similarly, the vertices of M µ0

2 are

ν
(1)
2 = (V1)

T (V1)
Tµ0 = (

1

16
,
12

16
,
3

16
)T , ν

(2)
2 = (V2)

T (V1)
Tµ0 = (

3

16
,
12

16
,
1

16
)T ,

ν
(3)
2 = (V1)

T (V2)
Tµ0 = (

3

16
,
4

16
,
9

16
)T , ν

(4)
2 = (V2)

T (V2)
Tµ0 = (

9

16
,
4

16
,
3

16
)T ,

5This is a rather standard concept in geometry. More analytical details can be found in [83, Chapter 2].
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and

M µ0
2 = {µ : µ = abν

(1)
2 + a(1− b)ν

(2)
2 + b(1− a)ν

(3)
2 + (1− a)(1− b)ν

(4)
2 , a, b ∈ [0, 1]}.

The calculation of the rest of M µ0
t follows the same procedure.

Now we introduce the total variation distance ∥ · ∥TV and see how (Mt, ∥ · ∥TV) (at each t)
implies the weak topology. We kindly refer readers to Appendix E for more details. In words,
the weak convergence concept in the stochastic settings is an analogue of the pointwise con-
vergence in the deterministic cases (see Example E.0.2 and Remark E.0.4). To describe the con-
vergence (in probability law) of {Xn} in X , it is equivalent to investigate the weak convergence
of their associated measures {µn}. We emphasize the definition of total variation distance as
follows.

Definition 4.2.18 (Total variation distance). Given two probability measures µ and ν on X , the
total variation distance is defined as

∥µ− ν∥TV = 2 sup
Γ∈B(X )

|µ(Γ)− ν(Γ)|. (4.10)

In particular, if X is a discrete space,

∥µ− ν∥dTV = ∥µ− ν∥1 =
∑
q∈X

|µ(q)− ν(q)|. (4.11)

Corollary 4.2.19. Let I be a Markov system of the form (3.6) that is derived from an IMC. Then
at each time t ∈ N, for for each {µn} ⊆ Mt, there exists a µ ∈ Mt and a subsequence {µnk

} such
that µnk

⇀ µ. In addition, for each h ∈ Cb(X ) and t ∈ N, the setH = {∑X h(x)µ(x), µ ∈ Mt}
forms a convex and compact subset in R.

Remark 4.2.20. The above shows that ∥ · ∥TV implies the weak topology of measures on Q. Note
that since Q is bounded and finite, any metrizable family of measures on Q is compact. For ex-
ample, let Q = {q1, q2}, and {(0, 1)T , (1, 0)T} be a set of singular measures on Q. Then every
sequence of the above set has a weakly convergent subsequence. However, these measures do not
have a convex structure as Mt. Hence, the corresponding H that is generated by {(0, 1)T , (1, 0)T}
only provides vertices in Z.

Weak compactness of probability laws of I on infinite horizon

To verify the probability of ω-regular properties, we need to consider the weak compactness of
probability laws instead of only marginal properties. Taking the advantages of the compactness
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and convexity of [[Θ]], it turns out the weak topology of the probability laws also possesses the
same property as the marginal ones. The results are demonstrated as follows, and the proofs
are completed in Section 4.2.6.

Without loss of generality, we focus on the case where I0 = q0 a.s. for any q0 ∈ Q\{∆}. The
cases for arbitrary initial distribution should be similar. We formally denote M q0 := {Pq0

I }I∈I
by the set of probability laws of every discrete-state Markov processes I ∈ I with initial state
q0 ∈ Q.

Proposition 4.2.21. For any q0 ∈ Q, every sequence {Pq0
n }∞n=0 of M q0 has a weakly convergent

subsequence.

Theorem 4.2.22. Let I be a Markov system of the form (3.6) that is derived from an IMC. Then
for any LTL formula Ψ, the set Sq0 = {Pq0

I (I ⊨ Ψ)}I∈I is a convex and compact subset in R, i.e.,
a compact interval.

Soundness of IMC abstractions

We are now ready to show the soundness of IMC abstractions.

Proposition 4.2.23. Let X be a Markov system driven by (4.4). Then every sequence {Px0
n }∞n=0

of {Px0
X }X∈X has a weakly convergent subsequence. Consequently, for any LTL formula Ψ, the set

{Px0
X (X ⊨ Ψ)}X∈X is a compact subset in R.

Lemma 4.2.24. Let X ∈ X be any Markov process driven by (4.4) and I be the finite-state IMC
abstraction of X. Suppose the initial distribution ν0 ofX is such that ν0(q0) = 1. Then, there exists
a unique law Pq0

I of some I ∈ I such that, for any LTL formula Ψ,

Pν0
X (X ⊨ Ψ) = Pq0

I (I ⊨ Ψ).

Combining Lemma 4.2.24 and Theorem 4.2.22, we obtain the main result of this subsection.

Theorem 4.2.25. Assume the settings in Lemma 4.2.24. For any LTL formula Ψ, we have

Pν0
X (X ⊨ Ψ) ∈ {Pq0

I (I ⊨ Ψ)}I∈I.

Corollary 4.2.26. Let X, its IMC abstraction I, an LTL formula Ψ, and a constant ρ ∈ [0, 1] be
given. Suppose I ⊨ Pq0

▷◁ρ[Ψ] for all I ∈ I, we have X ⊨ Pν0
▷◁ρ[Ψ] for all X ∈ X with ν0(q0) = 1.
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Remark 4.2.27. Note that we do not have Pν0
X ∈ {Pq0

I }I∈I since each Pq0
I is a discrete measure

whereas Pν0
X is not. They only coincide when measuring Borel subset of F . It would be more

accurate to state that Pν0
X (X ⊨ Ψ) is a member of {Pq0

I (I ⊨ Ψ)}I∈I rather than say “the true
distribution (the law as what we usually call) of the original system is a member of the distribution
set represented by the abstraction model” [102].

Remark 4.2.28. We have seen that, in view of Lemma 4.2.24, the ‘post-transitional’ measures are
automatically related only based on the relations between transition probabilities. We will see in the
next subsection that such relations can be constructed to guarantee an approximate completeness
of I.

Proposition 4.2.29. Let ϵ := maxi ∥Θ̂i − Θ̌i∥TV. Then for each LTL formula Ψ, as ϵ → 0, the
length λ(Sq0) → 0.

Remark 4.2.30. By Lemma 4.2.24, for each X ∈ X, there exists exactly one PI of some I ∈ I
by which satisfaction probability equals to that of X . The precision of Θ̂ and Θ̌ determines the
size of Sq0 . Once we are able to calculate the exact law of X , the Sq0 becomes a singleton by
Proposition 4.2.29. For example, let each wt become δ0, we have each Mt reduced to a singleton
{δf(xt)} automatically. The verification problem becomes checking whether L(f(xt)) ⊨ Ψ given
the partition Q. The probability of satisfaction is either 0 or 1. Another example would be Xt+1 =
AXt + Bwt, where A,B are linear matrices. We are certain about the exact law of this system,
and there is no need to introduce IMC for approximations at the beginning. IMC abstractions prove
more useful when coping with systems whose distributions are uncertain or not readily computable.

4.2.3 Robust Completeness of IMC Abstractions

In this section, we are given a Markov system X1 driven by

Xt+1 = f(Xt) + b(Xt)wt + ϑ1ξ
(1)
t , ξ

(1)
t ∈ B, (4.12)

with point-mass perturbations of strength ϑ1 ≥ 0. Based on X1, we first construct an IMC
abstraction I. We then show that I can be abstracted by a system X2 with more general L1-
bounded noise of any arbitrary strength ϑ2 > ϑ1, i.e.,

Xt+1 = f(Xt) + b(Xt)wt + ϑ2ξ
(2)
t , ξ

(2)
t ∈ B, (4.13)

Recalling the soundness analysis of IMC abstractions in Section 4.2.2, the relation of satis-
faction probability is induced by a relation between the continuous and discrete transitions. To
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capture the probabilistic properties of stochastic processes, reachable set of probability mea-
sures is the analogue of the reachable set in deterministic cases. We rely on a similar technique
in this section to discuss how transition probabilities of different uncertain Markov systems are
related. To metricize sets of Gaussian measures and to connect them with discrete measures,
we prefer to use Wasserstein metric ∥ · ∥W (see Definition E.0.10). The details of probability
metrics can be found in Appendix E.

Before proceeding, we define the set of transition probabilities of Xi from any box6 [x] ⊆ Rn

as
Ti([x]) = {T (x, ·) : T ∈ [[T ]]i, x ∈ [x]}, i = 1, 2,

and use the following lemma to approximate T1([x]).

Lemma 4.2.31. Fix any ϑ1 > 0, any box [x] ⊆ Rn. For all k > 0, there exists a finitely terminated
algorithm to compute an over-approximation of the set of (Gaussian) transition probabilities from
[x], such that

T1([x]) ⊆ T̂1([x]) ⊆ T1([x]) + kBW ,
where T̂1([x]) is the computed over-approximation set of Gaussian measures, and BW defined in
Definition E.0.10.

Remark 4.2.32. The proof is completed in Section 4.2.6. The lemma renders the inclusions with
larger Wasserstein distance to ensure no missing information about the covariances.

We introduce the following concept only for analysis.

Definition 4.2.33. For i = 1, 2, we introduce the modified transition probabilities for Xi =
(X , [[T ]]i, x0,Π, L) based on (4.5). For all Ti ∈ [[T ]]i, let

T̃i(x,Γ) =


Ti(x,Γ), ∀Γ ⊆ W , ∀x ∈ W ,
Ti(x,Wc), Γ = ∂W , ∀x ∈ W ,
1, Γ = ∂W , x ∈ ∂W .

(4.14)

Correspondingly, let [̃[T ]] denote the collection. Likewise, we also use (̃ · ) to denote the induced
quantities of any other types w.r.t. such a modification.

Remark 4.2.34. The above modification does not affect the law of the stopped processes since we
do not care about the ‘out-of-domain’ transitions. We use a weighted point mass to represent the
measures at the boundary, and the mean should remain the same. It can be easily shown that
the Wasserstein distance between any two measures in [̃[T ]](x, ·) is upper bounded by that of the
non-modified ones.

6This is also called an interval or a hyperrectangle.
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Theorem 4.2.35. For any 0 ≤ ϑ1 < ϑ2, we set Xi = (X , [̃[T ]]i,AP, LX), i = 1, 2, where X1

and X2 is are driven by (4.12) and (4.13), respectively. Then, under Assumption 4.2.10, there exists
a rectangular partition Q (state-level relation α ⊆ X × Q),a measure-level relation Σα and a
collection of transition matrices [[Θ]], such that the system I = (Q, [[Θ]],AP, LI) abstracts X1 and
is abstracted by X2 by the following relation:

X1 ⪯Σα I, I ⪯Σ−1
α

X2. (4.15)

Proof. We construct a finite-state IMC with partition Q and an inclusion of transition matrices
[[Θ]] as follows. By Assumption 4.2.10, we use uniform rectangular partition on W and set
α = {(x, q) : q = η⌊x

η
⌋} ∪ {(∆,∆)}, where ⌊·⌋ is the floor function and η is to be chosen later.

Denote the number of discrete nodes by N + 1.

Note that any family of (modified) Gaussian measures [̃[T ]]1 is induced from [[T ]]1 and should
contain its information. For any T̃ ∈ [̃[T ]]1 and q ∈ Q,

1) for all ν̃ ∼ Ñ (m, s2) ∈ T̃1(α
−1(q), ·), store {(ml, sl) = (η⌊m

η
⌋, η2⌊ s2

η2
⌋)}l;

2) for each l, define ν̃refl ∼ Ñ (ml, sl) (implicitly, we need to compute νrefl (α−1(∆))); com-
pute ν̃refl (α−1(qj)) for each qj ∈ Q \∆;

3) for each l, define µref
l = [ν̃refl (α−1(q1)), · · · , ν̃refl (α−1(qN)), ν̃

ref
l (α−1(∆)];

4) compute ws := (
√
2N + 2)η and tv := Nη ·ws;

5) construct [[µ]] =
⋃
l{µ :

∥∥µ− µref
l

∥∥
TV

≤ tv(η), µ(∆) +
∑N

j µ(qj) = 1};

6) let Σα := {(ν̃, µ), µ ∈ [[µ]]} be a relation between ν̃ ∈ T̃(α−1(q)) and the generated
[[µ]].

Repeat the above step for all q, the relation Σα is obtained. The rest of the proof falls in the
following steps. For i ≤ N , we simply denote Gi := T̃1(α

−1(qi), ·) and Ĝi :=
̂T̃1(α−1(qi), ·).

Claim 1: For i ≤ N , let [[Θi]] = Σα(Ĝi). Then the finite-state IMC I with the transition
collection [[Θ]] abstracts X1.

Indeed, for each i = 1, · · · , N and each T̃ , we have Σα(Gi) ⊆ Σα(Ĝi). We pick any
modified Gaussian ν̃ ∈ Ĝi, there exists a ν̃ref such that (by Proposition E.0.12)

∥∥ν̃ − ν̃ref
∥∥
W

≤∥∥ν − νref
∥∥
W

≤
√
2Nη. We aim to find all discrete measures µ induced from ν̃ (such that their
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probabilities match on discrete nodes as requirement by Definition 4.2.9). All such µ should
satisfy7, ∥∥µ− µref

∥∥d
W

=
∥∥µ− µref

∥∥
W

≤ ∥µ− ν̃∥W +
∥∥ν̃ − ν̃ref

∥∥
W

+
∥∥ν̃ref − µref

∥∥
W

≤ (2 +
√
2N)η,

(4.16)

where the first term of line 2 is bounded by,

∥µ− ν̃∥W = sup
h∈C(X ),Lip(h)≤1

∣∣∣∣∫
X
h(x)dµ(x)−

∫
X
h(x)dν̃(x)

∣∣∣∣
≤ sup

h∈C(X ),Lip(h)≤1

n∑
j=1

∫
α−1(qj)

|h(x)− h(qj)|dν̃(x)

≤ η
n∑
j=1

∫
α−1(qj)

dν̃(x) ≤ η,

(4.17)

and the third term of line 2 is bounded in a similar way. By step 5), 6) and Proposition E.0.13,
all possible discrete measures µ induced from ν̃ should be included in Σα(Ĝi). Combining
the above, for any ν̃ ∈ Gi and hence in Ĝi, there exists a discrete measures in Θi ∈ Σα(Ĝi)
such that for all qj we have ν̃(α−1(qj)) = Θij . This satisfies the requirements in Definition 4.2.9.

Claim 2: Σ−1
α (Σα(Gi)) ⊆ Gi + (2η + Nη · tv(η)) · BW . This is to recover all possible (mod-

ified) measures ν̃ from the constructed Σα(Gi), such that their probabilities on discrete nodes
coincide. Note that, the ‘ref’ information is recorded when computing Σα(Gi) in the inner
parentheses. Therefore, for any µ ∈ Σα(Gi) there exists a µref within a total variation radius
tv(η). We aim to find corresponding measure ν̃ that matches µ by their probabilities on discrete
nodes. All such ν̃ should satisfy,∥∥ν̃ − ν̃ref

∥∥
W

≤ ∥ν̃ − µ∥W +
∥∥µ− µref

∥∥d
W

+
∥∥µref − ν̃ref

∥∥
W

≤ 2η +Nη · tv(η),
(4.18)

where the bounds for the first and third terms are obtained in the same way as (4.17). The second
term is again by a rough comparison in Proposition E.0.13. Note that ν̃ref is already recorded

7Note that we also have
∥∥µ− µref

∥∥d
W

≤ ∥µ− ν̃∥dW +
∥∥ν̃ − ν̃ref

∥∥d
W

+
∥∥ν̃ref − µref

∥∥d
W

=
∥∥ν̃ − ν̃ref

∥∥d
W

, but it
is hard to connect directly from

∥∥ν̃ − ν̃ref
∥∥d
W

to
∥∥ν̃ − ν̃ref

∥∥
W

for general measures. This connection can be done
if we only compare Dirac or discrete measures.
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in Gi. The inequality in (4.18) provides an upper bound of Wasserstein deviation between any
possible satisfactory measure and some ν̃ref ∈ Gi.

Claim 3: If we can choose η and k sufficiently small such that

2η +Nη · tv(η) + k ≤ ϑ2 − ϑ1, (4.19)

then I ⪯Σ−1
α

X2.

Indeed, the [[Θ]] is obtained by Σα(Ĝi) for each i. By Claim 2 and Lemma 4.2.31, we have

Σ−1
α (Σα(Ĝi)) ⊆ Ĝi + (2η +Nη · tv(η)) · BW ⊆ Gi + (2η +Nη · tv(η) + k) · BW

for each i. By the construction, we can verify that T̃2(α
−1(qi)) = Gi + (ϑ2 − ϑ1) · BW . The

selection of η makes Σ−1
α (Σα(Ĝi)) ⊆ T̃2(α

−1(qi)), which completes the proof.

Remark 4.2.36. The relationΣα (resp. Σ−1
α ) provides a procedure to include all proper (continuous,

discrete) measures that connect with the discrete probabilities. The key point is to record ν̃ref , µref ,
and the corresponding radius. These are nothing but finite coverings of the space of measures. This
also explains the reason why we use ‘finite-state’ rather than ‘finite’ abstraction. The latter has a
meaning of using finite numbers of representative measures to be the abstraction.

To guarantee a sufficient inclusion, conservative estimations, e.g. the bound
√
2Nη in Claim 1

and the bound in Proposition E.0.13, are made. This estimation can be done more accurately given
more assumptions. For example, the deterministic systems (where w becomes δ) provide Dirac
transition measures, the

∥∥µ− µref
∥∥d
W

= 0 and hence the second term in (4.18) is 0.

Remark 4.2.37. Note that, to guarantee the second abstraction based on Σ−1
α , we search all pos-

sible measures that has the same discrete probabilities as µ ∈ Σα(Ĝi), not only those Gaussians
with the same covariances as Gi (or Ĝi). Such a set of measures provide a convex ball w.r.t. Wasser-
stein distance. This actually makes sense because in the forward step of creating I, we have used
both Wasserstein and total variation distance to find a convex inclusion of all Gaussian or Gaus-
sian related measures (see Figure 4.4). There ought to be some measures that are ‘non-recoverable’
to Gaussians, unless we extract some ‘Gaussian recoverable’ discrete measures in [[Θi]], but this
loses the point of over-approximation. In this view, IMC abstractions provide unnecessarily larger
inclusions than needed.

For the deterministic case, the above mentioned ‘extraction’ is possible, since the transition
measures do not have diffusion, the convex inclusion becomes a collection of vertices themselves
(also see Remark 4.2.20). Based on these vertices, we are able to use Σα to find the δ measures
within a convex ball w.r.t. Wasserstein distance.
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X1 I X2

⇓

Figure 4.4: The size comparison of systems X1, I and X2 in probability metrics. The dotted line
for I indicates discreteness. The three systems connect via their measurable labelling functions.
The system X1 reduces to a singleton if no extra uncertain perturbations.
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In contrast to the above special case [112], where the uncertainties are bounded w.r.t. the infinity
norm, we can only guarantee the approximated completeness via a robustL1-bounded perturbation
with strictly larger intensity than the original point-mass perturbation. However, this indeed de-
scribes a general type of uncertainties for the stochastic systems to guarantee L1-related properties,
including probabilistic properties. Unless higher-moment specifications are of interests, uncertain
L1-random variables are what we need to be the analogue of perturbations in [112].

Corollary 4.2.38. Given an LTL formula Ψ, let Sν0i = {Pν0
X (X ⊨ Ψ)}X∈Xi

(i = 1, 2) and
Sq0I = {Pq0

I (I ⊨ Ψ)}I∈I, where the initial conditions are such that ν0(α−1(q0)) = 1. Then all the
above sets are compact and Sν01 ⊆ Sq0I ⊆ Sν02 .

The proof in shown in Section 4.2.6.

4.2.4 A Comparison with Numerical Approximations

The purpose of abstraction-based formal methods is in general different from constructing nu-
merical solutions for SDEs. Numerical SDE schemes use the time discretization and simulate
sample paths at discrete time steps, which is also known as time discrete approximations. The
numerical analysis for SDEs is to determine how good the approximation is and in what sense
it is close to the exact solution [95].

Aside from the analysis based on the time discretization, the stochastic driving forces in
discrete-time numerical simulations are given with discrete distributions in a priori. For exam-
ple, a spatial step size should be provided to generate a pseudo random number from a Gaussian
distribution. Consequently, there is a unique solution in the discrete canonical space driven by
this discrete noise. In view of (4.17), the discretized measure of any random variable already
provides a deviation from the real measure to begin with. The numerical simulation provides
a much smaller set of measurable sample paths, i.e. a natural filtration Fw,d w.r.t. the discrete
version of noise w rather than F (recall Definition 4.2.1). The missing transitions or measurable
sample paths from F cannot be recovered given a fixed discretized noise at a time.

In addition, we cannot see any information of the (discrete) probability law of sample paths
unless we enumerate all the realizations (a full observation), which is impossible.

On the other hand, from the dual problem point of view, a finite difference approximation
for the associated Fokker-Plank equation (parabolic equation)

∂ρt
∂t

= L∗ρt,
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where L∗ is the adjoint operator of the generator L as in (3.3), provides approximated discrete
marginal densities of the probability laws of the solution processes. However, in view of finite-
dimensional distribution as in (B.8), this is not sufficient for the evaluation of the probability
of sample paths satisfying some LT properties over the time horizon. We need to consider the
approximation of the associated transition semigroups etL∗ to fulfill such a type of evaluation.

In comparison with the numerical solutions and the dual approximation of the probability
distributions, the stochastic abstractions in this chapter start with discrete-time systems but
do not use the spatially discretized noise as the driving force. Instead, we directly work on
generating a relation based on the state-space discretization such that the transition kernel of
the original system is ‘included’ in the discrete family of transition matrices in the sense of
Corollary 4.2.38 or Corollary 4.3.14 which we will see in the next section. The formal guarantee
of these inclusions avoids the approximation error given by the finite difference numerical
scheme and is robust to extra L1-bounded uncertainties.

Even though a refinement of grid size can lead to a convergence for both numerical simu-
lations and stochastic abstractions, they converge from different ‘directions’. In other words,
the family of the discrete probability laws from an abstraction reduces to a singleton whilst the
missing transitions in a numerical simulation become empty as the size of the grids converges
to 0.

Furthermore, unlike specification guided algorithm design, the stochastic abstraction con-
sidered in this chapter can be utilized to verification and control synthesis of any probabilistic
ω-regular specifications regardless of the computational efforts.

4.2.5 Discussion

In this section, we constructed an IMC abstraction for continuous-state stochastic systems with
possibly bounded point-mass (Dirac) perturbations. We showed that such abstractions are not
only sound, in the sense that the set of satisfaction probability of LT properties contains that
of the original system, but also approximately complete in the sense that the constructed IMC
can be abstracted by another system with stronger but more general L1-bounded perturba-
tions. Consequently, the winning set of the probabilistic specifications for a more perturbed
continuous-state stochastic system contains that of the less Dirac perturbed system. Similar
to most of the existing converse theorems, e.g. converse Lyapunov functions, the purpose is
not to provide an efficient approach for finding them, but rather to characterize the theoretical
possibilities of having such existence.

It is interesting to compare with robust deterministic systems, where no random variables
are involved. In [112], both perturbed systems are w.r.t. bounded point masses. More heav-
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ily perturbed systems abstract less perturbed ones and hence preserve robust satisfaction of
linear-time properties. However, when we try to obtain the approximated completeness via
uncertainties in stochastic system, the uncertainties should be modelled by more general L1

random variables. Note that the probabilistic properties of random variables is dual to the weak
topology of measures, we study the measures and hence probability laws of processes instead
of the state space per se. The state-space topology is not sufficient to quantify the regularity of
IMC abstractions. In contrast, the L1 uncertain random variables is a perfect analogue of the
uncertain point masses (in | · |) for deterministic systems. If we insist on using point masses
as the only type of uncertainties for stochastic systems, the IMC type abstractions would pos-
sibly fail to guarantee the completeness. For example, suppose the point-mass perturbations
represents the lack of precision caused by deterministic control inputs [117, Definition 2.3], the
winning set decided by the ϑ2-precision deterministic policies is not enough to cover that of
the IMC abstraction, which fails to ensure an approximated bi-similarity of IMCs compared to
[112].

4.2.6 Proofs of Results

Proof of Corollary 4.2.19.

Proof. It is clear that Q under discrete metric is complete and separable. In addition, for each
t, the space (Mt, ∥ · ∥TV) is complete and separable. By Lemma 4.2.16, each (Mt, ∥ · ∥TV) is
also compact. For any sequence {µn} ⊆ Mt, a quick application of Theorem E.0.6 leads to
the existence of a weakly convergent subsequence {µnk

} and a weak limit point µ in Mt. By
the definition of weak convergence and the discrete structure of Q, it is clear that for each
h ∈ Cb(X ) and t ∈ N, we have ∑

X

h(x)µnk
(x) →

∑
X

h(x)µ

in a strong sense, which concludes the compactness of H . Now we choose µ1, µ2 ∈ Mt, then
aµ1 + (1− a)µ2 ∈ Mt for all a ∈ [0, 1]. Therefore,

a
∑
X

h(x)µ1(x) + (1− a)
∑
X

h(x)µ2(x) =
∑
X

h(x)[aµ1 + (1− a)µ2](x) ∈ H

for all a ∈ [0, 1]. This shows the convex structure of H .

Proof of Proposition 4.2.21.
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Proof. We make a bit abuse of notation and define πT : Q∞ → ∏T
0 Q as the projection onto

the finite product space of Q up to time T . Since we do no emphasize the initial conditions, we
also use P , M and Mt for short. By Tychonoff theorem, any product ofQ is also compact w.r.t.
the product topology. Therefore, any family of measures on QT is tight and hence compact. By
Remark 4.2.2, for every P ∈ M , we have P ◦π−1

T = ⊗T
t=0µt (recall Remark 4.2.2) for some µt ∈

Mt, and {P ◦π−1
T }I∈I forms a compact set. Hence, every sequence {Pn ◦π−1

T }n ⊆ {P ◦π−1
T }I∈I

with any finite T contains a weakly convergent subsequence. We construct the convergent
subsequence of {Pn}n in the following way.

We initialize the procedure by setting T = 0. Then M0 is compact, and there exists a weakly
convergent subsequence {P0,n ◦ π−1

0 }. Based on {P0,n}, we are able to see that it contains a
weakly convergent subsequence, denoted by {P1,n}, such that {P1,n ◦ π−1

1 } weakly converges.
By induction, we have {Pk+1,n} ⊆ {Pk,n} for each k ∈ N. Repeating this argument and
picking the diagonal subsequence {Pn,n}, then {Pn,n} has the property that {Pn,n ◦ π−1

T } is
weakly convergent for each T . We denote the weak limit point of each {Pn,n ◦π−1

T } by ⊗T
t=0µt.

By the way of construction, we have

⊗T
t=0µt(·) = ⊗T+1

t=0 µt(· ×Q), ∀T ∈ N.

By Kolmogorov’s extension theorem, there exists a unique P on Q∞ such that ⊗T
t=0µt(·) =

P ◦ π−1
T (·) for each T .

We have seen that for each {Pn}, the constructed subsequence satisfies Pn,n ⇀ P , which
concludes the claim.

Proof of Theorem 4.2.22

Proof. Since we do not emphasize the initial conditions, we simply drop the superscripts q0 for
short. Given I ∈ I with any initial condition, the corresponding canonical space is (Ω,F ,PI).
By Proposition 4.2.21, every sequence {Pn} ⊆ M has a weakly convergent subsequence, de-
noted by {Pnk

}, to a P ∈ M of some I . Note that for any I , the measurable set {I ⊨ Ψ} =
{ϖ : ϖ ⊨ Ψ} ∈ F is the same due to the identical labelling function. It is important to notice
that due to the discrete topology of Ω, every Borel measurable set A ∈ F is such that ∂A = ∅.
By Definition E.0.3 we have Pnk

(Ink
⊨ Ψ) → P(I ⊨ Ψ) for all Ψ. The compactness of Sq0

follows immediately. To show the convexity of Sq0 , we notice that, for any q0, · · · qnt ∈ Q and
I ∈ I,

PI
(
I0 = q0, · · · , It = qnt , It+1 = qnt+1

)
∈ {Θnt+1,ntΘnt,nt−1 · · ·Θn1,0δq0 : Θ ∈ [[Θ]]}

and hence forms a convex set. Immediately, the convexity holds for
{PI(

∏n
i=1 Γi)}I∈I for any cylinder set

∏n
i=1 Γi. By a standard monotone class argument, {PI(A)}I∈I
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is also convex for any Borel measurable set A ∈ F , which implies the convexity of Sq0 in the
statement.

Proof of Proposition 4.2.23

Proof. Note that the laws are associated with X with X0 = x0, which actually means the
stopped process Xτ (Recall notations in Section 4.2.1). Now that Xt∧τ ∈ W for each t, the
state space of X is compact, so is the countably infinite product. By a similar argument as
Proposition 4.2.21, we can conclude the first part of the statement. Note that by assumption,
the partition respects the boundary of the labelling function. Hence, for all formula Ψ, the
boundary of {X ⊨ Ψ} ∈ F has measure 0. The second part can be concluded directly by
Definition E.0.3.

Proof of Lemma 4.2.24

Proof. Note that X is on (Ω,F ,Pν0
X ) and I is on (Ω,F ,Pq0

I ). We first show the case when
ν0 = δx0 for any x0 ∈ α−1(q0). That is, if for X0 = x0 a.s. with any x0 ∈ α−1(q0), there exists a
unique law of some I ∈ I such that Px0

X (X ⊨ Ψ) = Pq0
I (I ⊨ Ψ) for any Ψ.

Let νt denote the marginal distribution of Px0
X at each t. Let Mt = {µt}I∈I denote the set

of marginal distributions of {Pq0
I }I∈I. Now, at t = 1, ν1(α−1(qj)) = T (x0, α

−1(qj))δx0 for all
j ∈ {1, 2, · · · , N +1}. Suppose q0 is the ith element of Q, by the construction of IMC, we have

Θ̌ij ≤ ν1(α
−1(qj)) =

∫
α−1(qj)

δx0T (x0, dy) ≤ Θ̂ij, ∀x0 ∈ α−1(q0) and ∀j ∈ {1, 2, · · · , N+1}.

Since
∑

q∈Q ν1(α
−1(q)) = 1, by letting µ1 = (ν1(α

−1(q1)), ν1(α
−1(q2)), · · · , ν1(α−1(qN+1))

T ,
we have automatically µ1 ∈ M1 by definition. Note that µ1 is unique w.r.t. ∥ · ∥TV, and has the
property that µ(q) = ν(α−1(q)) for each q ∈ Q.

Similarly, at t = 2, we have

Θ̌ijµ1(qi) ≤
∫
α−1(qj)

∫
α−1(qi)

ν1(dx)T (x, dy) ≤ Θ̂ijµ1(qi), ∀i, j ∈ {1, 2, · · · , N + 1},

where T may not be the same as that of t = 1. Therefore, for any j ∈ {1, 2, · · · , N + 1},

ν2(α
−1(qj)) =

N+1∑
i=1

∫
α−1(qj)

∫
α−1(qi)

ν1(dx)T (x, dy)
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and there exists a µ2 such that
∑

i Θ̌ijµ1(qi) ≤ µ2(qj) = ν2(α
−1(qj)) ≤

∑
i Θ̂ijµ1(qi), which

means (by (4.8)) µ2 ∈ M2. In addition, there also exists a Pq0 such that its one-dimensional
marginals up to t = 2 admit µ1 and µ2, and satisfies

Pq0 [I0 = q0, I1 = qi, I2 = qj] = Px0
X [X0 = x0, X1 ∈ α−1(qi), X2 ∈ α−1(qj)].

Repeating this procedure, there exists a unique µt ∈ Mt w.r.t. ∥ · ∥TV for each t, such that
µt(q) = νt(α

−1(q)) for each q ∈ Q. It is also clear that for each given x0 ∈ q0 and each t, the
selected Pq0 satisfies

Px0
X

(
t−1∏
0

Ai

)
= Pq0

(
t−1∏
0

Ai

)
= Pq0

(
t−1∏
0

Ai ×Q
)
, Ai ∈ B(Q).

By Kolmogrov extension theorem, there exists a unique law Pq0
I of some I ∈ I such that each

T -dimensional distribution coincides with ⊗T
0 µi, and, for each given x0 ∈ α−1(q0), Px0

X (Γ) =
Pq0
I (Γ) for all Γ ∈ B(Q∞) = F . Due to the assumption that LX(x) = LI(q) for all x ∈ α−1(q)

and q ∈ Q, we have
{L−1

X (Ψ)} = {L−1
I (Ψ)} ∈ F

for all LTL formula Ψ, which implies {X ⊨ Ψ} = {I ⊨ Ψ} by definition. Thus, given x0 ∈
α−1(q0), the above Pq0

I should satisfy Px0
X (X ⊨ Ψ) = Pq0

I (I ⊨ Ψ).
Based on the above conclusion, as well as the definition of Pν0

X and the convexity of Sq0
(recall Theorem 4.2.22), the result for more general initial distribution ν0 with ν0(α−1(q0)) = 1
can be obtained.

Proof of Proposition 4.2.29.

Proof. Let µ, ν ∈ Mt for each t, and V,K ∈ [[Θ]] be any stochastic matrices generated by I.
Then, for each t, we have∥∥V Tµ−KTν

∥∥
TV

≤
∥∥V Tµ− V Tν

∥∥
TV

+max
i

∥Vi −Ki∥TV ∥ν∥TV

≤ 1

2
max
i,j

∥Vi −Kj∥TV ∥µ− ν∥TV + ϵ ∥ν∥TV

≤ ∥µ− ν∥TV + ϵ.

(4.20)

This implies that the total deviation of any µ̃, ν̃ ∈ Mt+1 is bounded by

max
Mt

∥µ− ν∥TV + ϵ.
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Note that at t = 0, maxM0 ∥µ− ν∥TV = 0. Hence, at each t > 0, as ϵ→ 0,

max
Mt

∥µ− ν∥TV → 0.

By the product topology and Kolmogrov extension theorem, the set {PI}I∈I is reduced to a
singleton. The conclusion follows after this.

Proof of Lemma 4.2.31.

Proof. It can be proved, for example, using inclusion functions. Let IRn denote the set of all
boxes in Rn. Let [f ] : IRn → IRn be a convergent inclusion function of f satisfying (i) f([x]) ⊆
[f ]([x]) for all [x] ∈ IRn; (ii) limλ([y])→0 λ([f ]([x]) = 0, where λ denote the width. Similarly, let
[B] : IRn → IRn×k be a convergent inclusion matrix of b(x) and satisfy (i) b([x]) ⊆ [B]([x])
for all [x] ∈ IRn; (ii) limλ([B])→0 λ([B]([x]) = 0, where λ([B]([x]) := maxi,j λ([Bij]).

Without loss of generality, we assume that k < 1. Due to the Lipschitz continuity of f and b,
we can find inclusions such that λ([f ]([y]) ≤ Lfλ([y]) for any subintervals of [x], and similarly
λ([B]([y]) ≤ Lbλ([y]), whereLf andLb are the Lipschitz constants for f and b, respectively. For
each such interval [y], we can obtain the interval [m] = [f ]([y]) and [s2] = [B]([y])[B]∗([y]). Let
T denote the collection of Gaussian measures with mean and covariance of all such intervals
([m] and [s2]), and T̂1([x]) be its union. Then T̂1([x]) satisfies the requirement. Indeed, we
have T1([x]) ⊆ T̂1([x]). For the second part of inclusion, we have for any µ ∈ T̂1([x]) and
ν ∈ T1([x]),

∥µ− ν∥2W ≤ [m]2 + [s2] ≤ (Lfλ([y]))2 + (Lbλ([y]))2, (4.21)

where we are able to choose [y] arbitrarily small such that (Lfλ([y]))2 + (Lbλ([y]))2 < k2. The
second part of inclusion can be completed by such a choice of [y].

Proof of Corollary 4.2.38

Proof. The first part of the proof is provided in Section 4.2.2. The second inclusion is done in a
similar way as Lemma 4.2.24 and Theorem 4.2.25. Indeed, by the definition of abstraction, for
any µ ∈ Mt, there exists a marginal measure ν of some X ∈ X2 such that their probabilities
match on discrete nodes. By the same induction as Lemma 4.2.24, we have that for any law Pq0

I

of some I ∈ I, there exists a Pν0
X of someX ∈ X2 such that the probabilities of any Γ ∈ B(Q∞)

match. The second inclusion follows after this. The compactness also follows a similar way as
Proposition 4.2.23. Note that, S1 may not be convex, butSI andS2 are (also see details in Remark
4.2.37).
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4.3 Robustly Complete Finite-State Abstractions for Con-
trol Synthesis of Stochastic Systemswith Full Observa-
tion

We have seen in control-free discrete-time stochastic systems that IMCs can be constructed as
abstractions to the original system with soundness and robust completeness. The philosophy
is to discretize the state space X into Q obeying the labelling boundaries, such that any ω-
regular property measured in the probability laws generated by the family of discrete transition
functions/matrices contain the satisfaction probability of the original system. In this section,
we extend the methodology to the construction of robustly complete abstractions for stochastic
control systems. The finite-state abstraction model can be used for solving the control synthesis
problem. It will be shown that there is a decision procedure to answer whether the original
system is controllable w.r.t. some LTL specification.

4.3.1 Preliminaries

Let U ⊆ Rp be a compact space of control inputs. The canonical setup for discrete-time con-
trolled processes is provided in Appendix C.1. Given any measurable process u, the probability
law of the joint process (X, u) := {(Xt, ut)}t≥0 can be determined. We also denote Xu by the
controlled process if we emphasize on the state-space marginal of (X, u). Furthermore, if u is
generated based on a control policy κ, we replace the notation Xu by Xκ.

We usually consider (X, u) to be obtained from Markov models, whose transition prob-
abilities, unlike control-free systems, have an extra dependence of the current control input,
i.e.,

Θu
t (x,Γ) = P[Xt+1 ∈ Γ | Xt = x, ut = u].

Assumption 4.3.1. We assume that u is deterministic in a priori or generated by deterministic
control policies (see Appendix C.3 for details), i.e., for each t, ut ∈ U rather than ut ∈ P(U).

Now we consider an abstract family of labelled controlled Markov processes as follows.

Definition 4.3.2 (Controlled Markov system). A Markov decision system is a tuple XU =
(X ,U , {Θ},AP, L), where

✧ X , AP, and L are as previously mentioned.

✧ U is the set of actions;
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✧ {Θ} := {[[Θu]]}u∈U contains all collections of control-dependent transition probabilities;
for every t, given an action u ∈ U , the transition Θu

t is chosen from [[Θu]] accordingly.

Note that for every given u and initial condition X0 = x0 (resp. initial distribution ν0), we
can generate a process Xu ∈ XUu, whose probability law is denoted by Px0,u

X (resp. Pν0,u
X ),

and XUu denotes all the processes that are generated given u. The collection of all the proba-
bility laws of such controlled processes is denoted by {Px0,u

X }Xu∈XUu (resp. {Pν0,u
X }Xu∈XUu). If

u is known to be generated according to some deterministic control policy κ, the previously
mentioned notations are changed correspondingly by replacing the superscripts u by κ.

We consider controlled Markov processes determined by the following fully-observed Markov
system

Xt+1 = f(Xt, ut) + b(Xt)wt + ϑξt, (4.22)
where f : Rn × Rp → Rn is locally Lipschitz continuous in both arguments. The rest of nota-
tions are the same as previously mentioned. We can translate (4.22) into a controlled Markov
system

XU = (X ,U , {T },AP, LXU), (4.23)
where {T } := {[[T u]]}u∈U . Given each control process u, we deal with the out-of-domain
behaviors of Xu in the same way as in the control-free cases.

Definition 4.3.3. Given a continuous-state controlled Markov system

XU = (X ,U , {T },AP, LXU)

with a compact U ∈ Rp, and a finite-state Markov system

IA = (Q,Act, {Θ},AP, LIA),

where Q = (q1, · · · , qN)T , Act = {a1, · · · , aM}, and {Θ} := {[[Θa]]}a∈Act contains all collections
of n× n stochastic matrices that are also dependent on a.

We say that IA abstracts XU, and write XU ⪯Σα IA, if there exist

(1) a state-level relation α ⊆ X × Q from XU to IA such that, for all x ∈ X , there exists
q ∈ Q such that (x, q) ∈ α (α(x) ̸= ∅) and LIA(q) = LXU(x);

(2) a measure-level relation Σα ⊆ P(X ) × P(Q) from XU to IA such that, for all i ∈
{1, 2, · · · , N} and a ∈ Act, there exists u ∈ U such that for any T u ∈ [[T u]] and all x ∈
α−1(qi), there exists Θa ∈ [[Θa]] satisfying (T u(x, ·),Θa

i ) ∈ Σα and T u(x, α−1(qj)) = Θa
ij

for all j ∈ {1, 2, · · · , n}.

The converse abstraction is defined in a similar way.
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4.3.2 Soundness of Robust BMDP Abstractions

Definition 4.3.4. A BMDP is a tuple IA = (Q,Act, {Θ̌}, {Θ̂},AP, LIA), where

✧ Q is an N -dimensional state-space;

✧ Act is a finite-dimensional actions;

✧ AP and LBA are the same as in Definition 4.2.3;

✧ {Θ̌} := {Θ̌a}a∈Act is a family of N × N matrix such that Θ̌a
ij is the lower bound of

transition probability from the state number i to j for each i, j ∈ {1, 2, · · · , N} and action
a ∈ Act ;

✧ {Θ̂} := {Θ̂a}a∈Act is a family of N × N matrix such that Θ̂a
ij is the upper bound of

transition probability from the state number i to j for each i, j ∈ {1, 2, · · · , N} and action
a ∈ Act.

Similar to I defined in Definition 4.2.12, we are able to transfer a IA into a controlled
Markov system IA as in Definition 4.3.3, whose [[Θa]]’s are well defined sets of stochastic ma-
trices for each a ∈ Act.

Remark 4.3.5. To make IA an abstraction for (4.23), we can discretize both X and U , such that
each node a ∈ Act represents a grid of u ∈ U . We then need the approximation to be such that
Θ̌a
ij ≤

∫
α−1(qj)

T u(x, dy) ≤ Θ̂a
ij for a u ∈ a, for all x ∈ α−1(qi) and i, j = 1, · · · , N , as well as

ΘN+1 = (0, 0, · · · , 1). We further require that the partition should respect the boundaries induced
by the labeling function as previously mentioned.

Definition 4.3.6. Given a state-level abstraction α and a measure-level abstraction Σα from XU
to IA. Let ϕ and κ be some control policies of XU and IA, respectively. Recall notations in (C.1).
We call ϕ a Σα-implementation of κ if, for each t ∈ N,

ut = ϕt(X[0,t], u[0,t−1]), X ∈ XUπ

is chosen according to
at = κt(I[0,t], a[0,t−1]), I ∈ IAκ

in a way that, for any realization u and a of ut and at, for any T u ∈ [[T u]] and all x ∈ α−1(qi),
there exists Θa ∈ [[Θa]] satisfying (T u(x, ·),Θa

i ) ∈ Σα and T u(x, α−1(qj)) = Θa
ij for all j ∈

{1, 2, · · · , n}.
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We can define the converse implementation from IA to XU based on a converse measure-
level relation (from IA to XU) in a similar way.

Remark 4.3.7. Heuristically, a control policy κ is generated in the finite-state finite-action ab-
straction model within IA to ensure a probabilistic satisfaction of some LTL specification. The
selection of the control policy π is subjected to κ and hence IAκ according to the abstraction rela-
tion, such that (2) of Definition 4.3.3 is guaranteed.

Theorem 4.3.8. Let IA be a controlled Markov system that is derived from a BMDP with any
initial distribution µ0. Then for any LTL formula Ψ, given any admissible deterministic control
policy κ8, the set Sµ0,κ = {Pµ0,κ

I (Iκ ⊨ Ψ)}Iκ∈IAκ is a compact interval.

Proof. The proof is similar to Theorem 4.2.22. We only show the sketch. Let a be the control
input process generated by κ such that at = κt(I[0,t], a[0,t−1]) for each t. Note that a ∈ B(Act∞)
and at ∈ B(Act), where the set of actions Act admits a discrete topology. The weak compactness
of the probability law {Pµ0,κ

I }Iκ∈IAκ follows exactly the same reasoning as in Proposition 4.2.21.
The convexity of every finite-dimensional distribution of Ia can be obtained in similar way as
in Theorem 4.2.22 based on the transition procedure (C.6), i.e., for any q0, qn1 , · · · , qnt ∈ Q,

Pq0,κ
I

[
I0 = q0, · · · , It = qnt , It+1 = qnt+1

]
∈{Θat

nt+1,nt
Θat−1
nt,nt−1

· · ·Θa0
n1,0

δq0 : Θ
ai ∈ [[Θai ]], i ∈ {0, · · · , t}, and at = κ(I[0,t] = q[0,t], a[0,t−1])}.

By a standard monotone class argument, the convexity for any Borel measurable set A ∈ F
measured in the set of laws Pq0,κ

I are guaranteed, which implies the convexity of Sq0,κ, and
hence that of Sµ0,κ.

Theorem 4.3.9. Let XU as in (4.23) be a controlled Markov system driven by (4.22). Suppose that
there exist a state-level abstraction α, a measure-level abstraction Σα, and a BMDP abstraction
IA such that XU ⪯Σα IA. Let Ψ be an LTL formula. Suppose the initial distribution ν0 of XU is
such that ν0(α−1(q0)) = 1. Then, given an admissible deterministic control policy κ, there exists a
Σα-implementation policy ϕ of κ such that

Pν0,ϕ
X (Xϕ ⊨ Ψ) ∈ {Pq0,κ

I (Iκ ⊨ Ψ)}Iκ∈IAκ , Xϕ ∈ XUϕ.

Proof. The proof should be similar to Lemma 4.2.24 and Theorem 4.2.25. We only show the
sketch. We consider ν0 = δx0 a.s. for simplicity. Note that, at t = 1, by the definition of BMDP
and Remark 4.3.5, there exists a u ∈ a such that,

Θ̌a
ij ≤ νu1 (α

−1(qj)) =

∫
α−1(qj)

δx0T u(x0, dy) ≤ Θ̂a
ij, ∀x0 ∈ q0 and ∀j ∈ {1, 2, · · · , N + 1},

8See Appendix C.3 for details
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where a = κ(q0), and u is selected accordingly such that the above relation is satisfied. We can
easily check that µa1 = (νu1 (α

−1(q1), · · · , νu1 (α−1(qN+1))
T is a proper marginal distribution of

IA. We then propagate the process inductively according to (C.6) by

1) selecting u at each time according to the realization a = κt;

2) selecting T u and Θa ∈ [[Θa]] at each time via the connection as the above.

We can verify that, by the above selection procedure, there exists a Pq0,κ such that
Pq0,κ[I0 = q0, a0 = a0, I1 = qi, a1 = a1, · · · ]

=Px0,u
X [X0 = x0, u0 = u0, X1 ∈ α−1(qi), u2 = u2, · · · ]

holds for any finite-dimensional distribution, where ut ∈ at for all t. By Kolmogrov exten-
sion theorem, there exists a unique law Pq0,κ

I for (I, a) or Iκ ∈ IAκ such that it has the same
measuring results on any F -measurable sets as the law Px0,u

X of the generated process (X, u)
or Xu. The Σα-implementation π exists and is given as ϕt(· | X[0,t], u[0,t−1]) = Px0,u

X [ut =
(·) | X[0,t], u[0,t−1]] in view of (C.8).
Corollary 4.3.10. Let XU, its BMDP abstraction IA, an LTL formula Ψ, and a constant ρ ∈ [0, 1]
be given. Suppose there exists a control policy κ such that Iκ ⊨ Pq0

▷◁ρ[Ψ] for all Iκ ∈ IAκ, then
there exists a policy ϕ such that Xϕ ⊨ Pν0,ϕ

▷◁ρ [Ψ] for all Xϕ ∈ XUϕ with ν0(α−1(q0)) = 1.

4.3.3 Construction of Robustly Complete BMDP Abstractions

In this subsection, we consider two continuous-state systems with 0 ≤ ϑ1 ≤ ϑ2: XU1, which
is driven by

Xt+1 = f(Xt, ut) + b(Xt)wt + ϑ1ξ
(1)
t , ξ

(1)
t ∈ B, (4.24)

and XU2, which is driven by

Xt+1 = f(Xt, ut) + b(Xt)wt + ϑ2ξ
(2)
t , ξ

(2)
t ∈ B, (4.25)

We construct a sound and robustly complete BMDP abstraction IA for XU1 in a similar way as
in Section 4.2.3, i.e., we build a state-level relation α and a measure-level Σα, such that

XU1 ⪯Σα IA, IA ⪯Σ−1
α

XU2.

We introduce a similar notion for each fixed u ∈ U as in Section 4.2.3 and define the set of
transition probabilities of XUi from any box [x] ⊆ Rn as

Tui ([x]) = {T u(x, ·) : T u ∈ [[T u]]i, x ∈ [x]}, i = 1, 2.

The following lemma is straightforward based on Lemma 4.2.31.
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Lemma 4.3.11. Fix any ϑ1 > 0, any box [x] ⊆ Rn, and u ∈ U . For all k > 0, there exists a
finitely terminated algorithm to compute an over-approximation of the set of (Gaussian) transition
probabilities from [x], such that

Tu1([x]) ⊆ T̂u1([x]) ⊆ Tu1([x]) + kBW ,

where T̂u1([x]) is the computed over-approximation set of Gaussian measures.

Remark 4.3.12. We consider modification of the transitions in the same way as Definition 4.2.33
for each fixed u ∈ U . Similarly, as an extension of notations, we use (̃ · )u to denote the induced
quantities of any other types w.r.t. such a modification.

Theorem 4.3.13. For any 0 ≤ ϑ1 < ϑ2, we consider XUi = (X ,U , {T̃ }i,AP, LXU), i = 1, 2,
that are driven by (4.24) and (4.25), respectively. Then, under Assumption 4.2.10, there exists a
rectangular partition Q (state-level relation α ⊆ X × Q), a measure-level relation Σα and a
finite-state abstraction system I = (Q,Act, {Θ},AP, LIA) such that

XU1 ⪯Σα IA, IA ⪯Σ−1
α

XU2. (4.26)

Proof. We construct a finite-state BMDP in a similar way as in Theorem 4.2.35. By Assumption
4.2.10, we use uniform rectangular partition Q on W . We then let the state-level relation be
α = {(x, q) : q = η⌊x

η
⌋}∪{(∆,∆)}, and Act = {a : ϱ⌊u

ϱ
⌋}, where ⌊·⌋ is the floor function. The

parameters η, ϱ are to be chosen later. Denote the number of discrete nodes by N + 1.
We construct the measure-level abstraction by the same procedure as in Theorem 4.2.35. We

repeat the procedure with updated notations for the control systems. For any fixed u = a ∈ Act,
for any T̃ u ∈ [̃[T u]]1 and q ∈ Q,

1) for all ν̃u ∼ Ñ (m, s2) ∈ T̃u1(α−1(q), ·), store {(ml, sl) = (η⌊m
η
⌋, η2⌊ s2

η2
⌋)}l;

2) for each l, define ν̃u,refl ∼ Ñ (ml, sl) (implicitly, we need to compute νu,refl (α−1(∆)));
compute ν̃u,refl (α−1(qj)) for each qj ∈ Q \∆;

3) for each l, define µu,refl = [ν̃u,refl (α−1(q1)), · · · , ν̃u,refl (α−1(qN)), ν̃
u,ref
l (α−1(∆)];

4) compute ws := (
√
2N + 2)η and tv := Nη ·ws;

5) construct [[µu]] =
⋃
l{µ :

∥∥∥µ− µu,ref
l

∥∥∥
TV

≤ tv(η), µ(∆) +
∑N

j µ(qj) = 1};

146



6) let Σα := {(ν̃u, µu), µu ∈ [[µu]]} be a relation between ν̃u ∈ T̃u(α−1(q)) and the
generated [[µu]].

Repeat the above step for all q and then for all u = a ∈ Act, the relation Σα is obtained. We
denote Gu

i := T̃u1(α−1(qi), ·) and Ĝu
i :=

̂T̃u1(α−1(qi), ·).
For each u = a ∈ Act, for i ≤ N , let [[Θu

i ]] = Σα(Ĝ
u
i ) and the transition collection be [[Θu]].

It is clear that the finite-state BMDP IA abstracts XU1 based on Definition 4.3.3: for each a,
there exists u ∈ U (where we set it to be a), such that for any ν̃u ∈ Gu

i and hence in Ĝu
i , there

exists a discrete measures in Θu
i ∈ Σα(Ĝ

u
i ) such that for all qj we have ν̃u(α−1(qj)) = Θu

ij .
The proof is done by the exact same way as the proof of Claim 1, Theorem 4.2.35 for each fixed
control input.

Now we consider the size of η and ϱ such that the constructed BMDP can be abstracted by
XU2 via the converse relation Σ−1

α . Note that a ∈ u+ ϱB for any u ∈ U . We need to choose η,
ϱ and k sufficiently small such that

2η +Nη · tv(η) + Lρ+ k ≤ ϑ2 − ϑ1, (4.27)

where L is the Lipschitz constant of f , then we have

Σ−1
α (Σα(Ĝ

u
i )) ⊆ Ĝu

i + (2η +Nη · tv(η)) · BW + LϱB
⊆ Gu

i + (2η +Nη · tv(η) + Lϱ+ k) · BW
(4.28)

for each i. The only difference from Claim 2 and 3 of Theorem 4.2.35 is in terms of the control.
By the construction, we can verify that for each u ∈ U , there exists an a ∈ Act (which is
guaranteed by the finite covering relation a ∈ u + ϱB) such that the choice in (4.28) makes
Σ−1
α (Σα(Ĝ

u
i )) ⊆ T̃u2(α−1(qi)), which completes the proof.

Since the proof of the robust completeness of the BMDP IA is constructive, we can algo-
rithmically synthesize a control strategy for XU1 by generating IA and then solving a discrete
synthesis problem for IA with some probabilistic LTL specification. In view of Corollary 4.3.10,
if a control strategy κ exists to fulfill the probabilistic specification for IAκ, then there exists a
policy ϕ to guarantee the satisfaction of XUϕ

1 . On the other hand, if there is no policies to realize
a specification for IA, then the system XU2 is also not controllable w.r.t. the same specification.
The latter is implied by the following corollary.

Corollary 4.3.14. Given an LTL formula Ψ, let Sν0,ϕ2 = {Pν0,ϕ
X (X ⊨ Ψ)}Xϕ∈XU2

be the set
of the satisfaction probability of Ψ under a control policy ϕ for the system XU2. Then, for each
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control policy ϕ of XU2, there exists a policy κ for IA such that Sq0,κIA ⊆ Sν0,ϕ2 for any initial
conditions satisfying ν0(α−1(q0)) = 1, where Sq0,κIA = {Pq0,κ

I (I ⊨ Ψ)}Iκ∈IA. Both Sq0,κIA and Sν0,ϕ2

are compact.

Proof. The inclusion is done in a similar way as Theorem 4.3.9 by the inductive construction
of probability laws. The compactness also follows a similar way as Proposition 4.2.23 for each
policy.

4.4 ADiscussion on Stochastic Control SystemswithNoisy
Observation

In this section, we discuss the case when the observations of the sample paths are corrupted
by noise. Since there is no direct access to the exact sample path information, we aim to obtain
optimal estimates of the sample path signal based on noisy observations, which is known as
the optimal filter. Apart from the nonlinear filtering, the philosophy of constructing sound and
robustly complete abstractions for such systems maintain the same. We hence do not reiterate
the procedure in this section but rather deliver a discussion on the mathematical complexity
of the potential abstractions. Before we proceed, we briefly introduce the theory of nonlinear
filtering.

4.4.1 Nonlinear Filtering for Discrete-Time Systems

Consider the discrete-time signal and observation of the following form

Xt+1 = f(Xt, ut) + b(Xt)wt, (4.29a)
Yt = h(Xt) + βt, (4.29b)

where Y is a Y-valued observation via a continuous Borel measurable function h and i.i.d.
Gaussian process β with proper dimensions. We also set w and β to be mutually independent.

Similar to (C.1), for any fixed T > 0, we define the short hand notation for the history of
observation

Y[0,T ] := {Yt}t∈[0,T ] (4.30)

Unlike the system without corrupted observations, it is natural to suppose that the selection of
a control at time T is based on Y[0,T ] and u[0,T−1]. An admissible control policy κ = {κt} in this
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case is such that, for each fixed t > 0, we have

κt(C | Y[0,t]; u[0,t−1]) = P[ut ∈ C | Y[0,t]; u[0,t−1]], C ∈ B(U). (4.31)

A deterministic admissible policy κ is such that ut = κt(Y[0,t]; u[0,t−1]).
Let H(Yt ∈ A | Xt = xt), A ∈ B(Y), be the observation channel, which is the transition

kernel generated by (4.29b). Given any initial distribution µ0 of X , the probability law Pµ0,κ

of (X, Y, u) := {Xt, Yt, ut}t∈N can be uniquely determined, whose finite-dimensional distribu-
tions are given in the form of

Pµ0,κ[X0 ∈ Γ0, Y0 ∈ A0, u0 ∈ C0, · · · , Xt ∈ Γt, Yt ∈ At, ut ∈ Ct]

=

∫
Γ0

µ0(dx0)

∫
A0

H(dy0 | X0 = x0)

∫
C0

κ0(du0 | X0 = x0) · · ·

×
∫
Γt

Θ
ut−1

t−1 (dxt |Xt−1 = xt−1; ut−1 = ut−1)×
∫
At

H(dyt | Xt = xt)

×
∫
Ct

κT (dut |Y0 = y0, · · ·Yt = yt; u0 = u0, · · · , ut−1 = ut−1).

(4.32)

Given a policy κ (we set it to be deterministic without loss of generality), the estimation of
Xt given Y[0,t] that minimizes the mean square error loss is given as

Πt(Γ) := Pµ0,κ[Xt ∈ Γ | Y[0,t], u[0,t−1]], Γ ∈ B(X ).

We call this random measure Πt ∈ P(X ) for each t the optimal filter. Using Bayes rule, we
have

Πt(Γ) = Pµ0,κ[Xt ∈ Γ | Y[0,t], u[0,t−1]]

=

∫
X H(Yt|Xt = xt)Θ

ut−1

t−1 (xt−1,Γ) · Πt−1(dxt−1)∫
X

∫
X H(Yt|Xt = xt)Θ

ut−1

t−1 (xt−1, dxt) · Πt−1(dxt−1)

=: F (Πt−1, Yt−1, ut−1)(Γ).

(4.33)

where ut−1 is determined by κt−1(Y[0,t−1], u[0,t−2]). We can simply regard the denominator of
F (Πt−1, Yt−1, ut−1) as a normalizer

n(Yt) :=

∫
X

∫
X
H(Yt|Xt = xt)Θ

ut−1

t−1 (xt−1, dxt) · Πt−1(dxt−1)

since the dependence on X is averaged out. It can also be shown that the process (Π, u) :=
{Πt, ut}t∈N is a controlled Markov process [146] with transition probability

P[Πt+1 ∈ D | Πt = πt, ut = ut] =

∫
Y
1{F (πt,yt,ut)∈D} · n(dyt), D ∈ B(P(X )).
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We also use Πu to emphasize the marginal behavior of the process (Π, u). Given the obser-
vations and the adaptively generated control signal, the optimal estimation of the conditional
probability of satisfying any LTL formula Ψ is given by

Pµ0,u
Π [X ⊨ Ψ] := Pµ0,u[X ⊨ Ψ | Y ] =

∫
X∞

1{X⊨Ψ} Π
u(dx). (4.34)

Note that it is difficult to obtain the full knowledge of Y , our goal is to generate control poli-
cies such that the optimal estimation Pµ0,u[X ⊨ Ψ | Y ] ∈ R possesses certain confidence of
satisfying the probabilistic requirement given any realization of observation. The above deriva-
tion converts the problem into a fully observed controlled Markov process (Π, u) via an en-
largement of the state space, where control policies and even optimal control policies can be
synthesized accordingly for the (hypothetically) fully observed Π [146]. The policy fulfilling
the goal mentioned above is thereby decidable.

The construction of the optimal filter process (or the functionF in (4.33)) can be decomposed
into a two-step recursion based on the transition relation in (4.33).
Prediction (Prior): At time t, Πt−1(dx) is feed into the r.h.s. of the prior knowledge of the
dynamics for X , i.e., (4.29a). The prediction of Xt based on Y[0,t−1] as well as the u determined
at t is such that

Π̂t(dx) =

∫
X
Θu
t (x̃, dx)Πt−1(dx̃). (4.35)

Filtering (Posterior): This step is to assimilate the observation at the instant t, which is given
as

Πt(dx) = n(Yt)H(Yt|Xt = x)Π̂t(dx), (4.36)

where n(Yt) =
∫
X H(Yt|Xt = x)Π̂t(dx) is the normalizer.

For numerical approximation, we simulate and propagate the optimal filter process using
matrix approximations of each step’s transition kernel, whereas for formal abstractions, we
need to find the ‘inclusion’ of the transitions for each step as usual.

4.4.2 A Brief Discussion on Stochastic Abstractions for Control Sys-
tems with Noisy Observations

Motivated by generating optimal control policies using the knowledge filter process (Π, u), the
stochastic abstractions for partially observed processes can be reduced to obtain a sound and
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robustly complete abstraction for the process (Π, u). To convey the idea, we simply consider
the following two systems with noisy observations

Xt+1 = f(Xt, ut) + b(Xt)wt + ϑ1ξ
(1)
t , (4.37a)

Yt = Xt + βt + ς1ζ
(1)
t , (4.37b)

and

Xt+1 = f(Xt, ut) + b(Xt)wt + ϑ2ξ
(2)
t , (4.38a)

Yt = Xt + βt + ς2ζ
(2)
t , (4.38b)

where ζ(i)t ∈ B are i.i.d. for each t and each i ∈ {1, 2}, the intensities satisfy 0 ≤ ς1 < ς2. The
rest of the notations are as previously mentioned.

We convert the filter processes that are generated by (4.37) and (4.38) into the expression of
controlled Markov systems

FUi = (X ,Y ,U , {T}i, [[H]]i,AP, LFU), i = 1, 2, (4.39)

where the additional Y and its collection of observation channel [[H]]i are needed in the filtering
step for generating the controlled filter processΠu. The other notions are the same as previously
mentioned.

To find an abstraction for FU1, we need a state-level relation or discretization α as usual.
Then, we need both {T}1 and [[H]]1 to be abstracted via some measure-level relation, so that
the transition probability of Π is abstracted by a set of discrete transition probabilities given
the same set of discrete observations in the sense of (2) of Definition 4.3.3.

Now we denote the BMDP abstraction for FU1 as

IA = (Q,YQ,Act, {Θ}, [[HQ]],AP, LIA), (4.40)

where YQ is the discretized observation states that are obtained by the state-level relation α,
and [[HQ]] is the collection of the discrete observation channels that are obtained based on some
measure-level relation Σα. The intuition of IA is that we need ‘more’ transitions in the ab-
straction for the prior knowledge of the dynamics that are related via the measurablility of
labelled nodes, as well as ‘more’ transitions for the filtering step to obtain enough observations
for decision making.
Remark 4.4.1. Note that the collection {Θ} for each u can be obtained in the same way as the
case without noisy observation. To obtain [[HQ]], we notice that

H(dy | x) = 1√
2π

exp

[
(y − x)2

2

]
dy.
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The over/under-approximation for any x ∈ α−1(qi) to the observation α−1(qj) can be evaluated
accordingly.

The soundness of IA for the controlled filter process system FU1 is in the following sense:
given any initial distribution, for each κ (based on the discrete observation YQ) for IA, there
exists a control policy ϕ such that for each Πϕ ∈ FUϕ

1 ,

✧ there exists a Πd,κ ∈ IAκ whose observation process YQ has the same probability with Y
of Πϕ on each discrete node q ∈ Q, and Πd,κ has the same evaluation on all the discrete
measurable sets A ∈ F with Πϕ;

✧ the discrete probability law Pd,κ for Πd,κ ∈ IAκ forms a convex and weakly compact set;

✧ the optimal estimation satisfies, for a given p ∈ [0, 1],∫
Πϕ∈B(P(X ))

1{
p▷◁

∫
X∞ 1{Xϕ⊨Ψ}Π

ϕ(dx)
}Pϕ(dΠϕ)

∈
{∫

Πd,κ∈B(P(Q))

1{p▷◁∫Q∞ 1{Iκ⊨Ψ}Πd,κ(dx)}P
d,κ(dΠd,κ)

}
Πd,κ∈IAκ

,

which is equivalent as∫
Πϕ∈B(P(X ))

1{
P

ν0,ϕ
Π [Xϕ⊨Ψ]▷◁p

}Pϕ(dΠϕ)

∈
{∫

Πd,κ∈B(P(Q))

1{Pµ0,κ
Π [Xϕ⊨Ψ]▷◁p}P

d,κ(dΠd,κ)

}
Πd,κ∈IAκ

(4.41)

A proper task is to find an control policy such that the optimal estimation of the probabilistic
specification of X ⊨ Ψ has a confidence at least q ∈ [0, 1], i.e., Pϕ

(
Pµ0,ϕ[X ⊨ Ψ | Y ] ▷◁ p

)
≥ q.

Then we can search control policies κ in IA for all the filter process Πd, such that strategy can
make the lower bound of{∫

Πd,κ∈B(P(Q))

1{Pµ0,κ
Π [Xϕ⊨Ψ]▷◁p}P

d,κ(dΠd,κ)

}
Πd,κ∈IAκ

greater than or equal to q.
The robust completeness can be verified in a similar way as Section 4.3.3, except now we

need to decompose the procedure to guarantee the robust completeness for both prediction and
filtering steps. The discretization need to rely on the value of ϑ2 − ϑ1 and ς2 − ς1.
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Remark 4.4.2. Recall Section 4.2.4, where we have compared the abstraction with the numerical
simulation of the probability measure using finite-difference schemes for Fokker-Planck equations.
The counterpart of Fokker-Planck equations for evaluating the probability law of the optimal fil-
ter in systems with noisy observations is the famous Zakai’s equation9, which is an SPDE. The
approximation of such a solution already suffers from the curse of dimensionality. Using formal
abstractions to enlarge the partially observed processes to the filter processes with full observa-
tions, based on which control policies can be determined and be utilized onto the partially observed
cases, seems tedious and impractical. Besides the theoretical formal guarantee of a confidence of a
satisfaction probability (i.e., a probabilistic requirement of the probabilistic specification), the ab-
straction essentially solves the continuous probability law of a continuous conditional expectation
(or a random measure) upon some process with discrete labels using discrete inclusions. We hence
do not recommend readers to complicate the problem.

4.5 Summary

In this chapter, we investigated the mathematical properties of formal abstractions for discrete-
time control-free and controlled stochastic systems. We discussed the motivation of construct-
ing formal stochastic abstractions in Section 4.1 and the philosophy in comparison to numerical
approximations in Section 4.2.4. The difference from the formal abstractions and the associated
mathematical properties for deterministic systems are discussed in Section 4.2.5. A brief dis-
cussion on the extension of stochastic abstractions for controlled stochastic systems with noisy
observation was provided in Section 4.4. The construction of such abstractions can be anal-
ogous to solving a discretized version of Zakai’s SPDE equation via formal inclusions, which
suffers from a curse of excessive dimensionality.

In words, through the proofs, we implicitly showed the pros and cons of IMC or BMDP ab-
stractions. Using IMC or BMDP as abstractions can indeed guarantee the soundness, provided
that conservative estimates for the probability measures are taken. However, they slightly over-
approximate the original measure space by subtly changing its non-convexity. This makes the
completeness achievable only via more perturbed L1 uncertainties. Hence the IMC abstrac-
tions in [52, 50] are sound but not necessarily complete in this sense. We view the most im-
portant contribution of our work to be providing an appropriate mathematical language to
discuss soundness and completeness of abstractions of stochastic systems. Our work showed
that abstractions for stochastic systems with extra uncertainties are generally not straightfor-
ward extensions from their non-stochastic counterparts.

9We omit the content here and kindly refer readers to [34] for details.
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Chapter 5

Hopf Bifurcations of Moore-Greitzer
PDE Model with Additive Noise

We have seen the Moore-Greitzer model in Section 1.2 describing flow and pressure changes
in axial-flow jet engine compressors, whose state u(t) takes values in a product Hilbert space
H = H × R2. The abstract form of evolution equation is given in (1.6), which we iterate as
below:

∂tu = A(γ)u+ f(γ, u).

Three types of Hopf bifurcations may occur as the parameter γ varies due to the complicated
spectrum properties ofA(γ) subjected to the fluid’s viscosity and the geometric configuration of
the compressors (see Remark 1.2.2). However, in contrast to the PDEs, ODEs, and 2-dimension
SDEs, the Hopf bifurcation in SPDEs is not well understood. The goal of this chapter is to extend
the work of [29] and rigorously develop low-dimensional approximations using a multiscale
analysis approach near the deterministic stall bifurcation1 point γc in the presence of additive
noise acting on the fast modes. We also show that the reduced-dimension approximation model
(SDEs) contains multiplicative noise.

To make the analysis less cumbersome, we work on the localized model with topological
equivalence

∂tû = A(γ)û+B(û, û) + F (û, û, û), (5.1)

where û = u − ue(γ) =: [ĝ(t), Φ̂δ(t), Ψ̂δ(t)]
T is the perturbation around ue(γ), the operators

B(·, ·) and F (·, ·, ·) represent respectively bilinear and trilinear mappings. As for the system
1Recall that the stall bifurcation occurs in the subspace H. We choose the configuration parameter of the

compressor and the fluid’s viscosity such that the indicator ∆ > 0 as in (1.10).
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(5.1), the new equilibrium point satisfies ûe(γ) = 0 (i.e. the R.H.S. of (5.1) is always 0) for all
γ = γc + ε2q with ε ∈ (0, 1) and q ∈ R.

Note that the existence of the center manifold for the deterministic Moore-Greitzer model
is well understood [176]. The evolution of states on the center manifold is studied by naturally
separating the dynamics into critical slowly-varying modes and fast modes. If we denote the
orthogonal projection byPc : H → H c

1 as well asPs := I−Pc, the solution can be represented
as H ∋ û = x̂ + ŷ with x̂ ∈ PcH and ŷ ∈ PsH . Therefore, (5.1) can be converted into an
equivalent form:

∂tx̂ = A(γ)x̂+ Pc[B(û, û) + F (û, û, û)],

∂tŷ = A(γ)ŷ + Ps[B(û, û) + F (û, û, û)].
(5.2)

In the neighborhood of γc, the state ŷ evolves much faster than x̂. The analytical center manifold
can be locally represented as a graph of a smooth function h, which is asymptotically attractive
in the sense that lim

t→∞
ŷ(t) = h(x̂(t)) [78]. Therefore, the dominating dynamics in the center

manifold depends only on x̂:

∂tx̂ = A(γ)x̂+ Pc[B(x̂+ h(x̂), x̂+ h(x̂)) + F (x̂+ h(x̂), x̂+ h(x̂), x̂+ h(x̂))]. (5.3)

The real part and imaginary part of the quantity ẑ = c⟨e−iθ, x̂⟩ ∈ C solve a 2-dimensional
amplitude equation (ODE) that is equivalent to (5.3), where c denotes a normalizer.

Since h(x̂) is generally not easy to obtain with precise information, the driving dynamics in
(5.3) are usually approximated in proper ways. Multiscale method [133] has shown its maturity
in application to local bifurcation analysis and deriving the approximated dynamics of (5.3). To
do this, we approximate A(γ) around γc by Ac+ ε2Aq, where Ac := A(γc) and Aq := qA′(γc).
We make the impact of Aq significant by ‘zooming’ into a small neighborhood of û = 0 and
using the ‘fast play mode’. That is, we consider x(t) = ε−1x̂(ε−2t) and y(t) = ε−1ŷ(ε−2t), and
look at

∂tx = Aqx+ Pc[ε
−1B(x+ y, x+ y) + F (x+ y, x+ y, x+ y)],

∂ty = ε−2Acy +Aqy + Ps[ε
−1B(x+ y, x+ y) + F (x+ y, x+ y, x+ y)],

(5.4)

where Acx = 0 when it is restricted to the critical modes. The fast varying modes y are ho-
mogenized (or averaged) into the slowly-varying modes x. The homogenization (or averaging)
result restricted to PcH , which is also only dependent on x, can be obtained based on [133,
Chapter 13]. This approximate result should be asymptotically convergent to (5.3) as ε → 0
with the same topological stability.
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Now we introduce small randomness on some probability space (Ω,F ,P). The evolution
of the axial flow in an engine compressor with unsteady turbulence is modelled by the abstract
Moore-Greitzer stochastic PDE, written locally as

dû = A(γ)ûdt+B(û, û)dt+ F (û, û, û)dt+ εdW̃t, û(0) = û0, (5.5)

where W̃ represents the effect of turbulence [92, 73], modeled by an additive Gaussian noise
(white in time, either white or colored in space; see details in Definition D.2.1 and D.2.2) with a
small strength ε (same as the ε in γ = γc + ε2q). The random perturbations are small, but over
a long time their effect can be significant on the slow dynamics of the amplitudes of the critical
modes (center manifold).

In this chapter, a complex-valued SDE or a two-dimensional real-valued SDE, regarded as
the stochastic amplitude equations of the dominant dynamics, is derived for the stall bifurcation.
We achieve this by investigating v(t) := ε−1û(ε−2t) that solves

dv = ε−2Acvdt+Aqvdt+ ε−1B(v, v)dt+ F (v, v, v)dt+ ε−1dWt, v(0) = v0, (5.6)

where Wt := εW̃ε−2t is a new Wiener process. To this end, we Denote the solution of (5.6) by
v(t) = [g(t),Φδ(t),Ψδ(t)]

T , where g(t) = ε−1 g(ε−2t), Φδ(t) = ε−1(Φ(ε−2t) − Φe(ε
−2t)), and

Ψδ(t) = ε−1(Ψ(ε−2t)−Ψe(ε
−2t)).

Due to the natural separation of the temporal scales close to the deterministic bifurcation
points γc, we restrict our attention to the small region of the parameter γ = γc + ε2q in the
vicinity of stall bifurcation point γc, and show how the heavily damped stable modes enter
the critical modes through the nonlinearities. The work, as an extension of [29], is based on a
multiscale analysis of the coupling between the slow and fast modes.

Before proceeding, we provide the locally critical and stable dynamics for the stall case. A
similar procedure can be used to study the surge as well as the stall-surge cases.

5.1 Preliminaries

5.1.1 Projection and Simplifications

We first provide the explicit form of Ac, Aq, B and F in (5.4) or (5.6) for γ = γc + ε2q and
q ∈ R. Recall that A(γ) = A + Dfue(γ), where Dfue(γ) is the Fréchet derivative about ue.
We then have Ac := A(γc) = A +Dfue(γc), Aq := qA′(γc) = A + qDf ′

ue(γc); the associated
eigenvalues (see 5 of Section 1.2.2) of Ac and Aq are respectively denoted by (·)c and (·)q.
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Thus,

Dfue(γc) =

aψ′
c,γc K

−1 0 0
0 1

lc
ψ′
c,γc − 1

lc

0 1
4B2lc

1
4B2lc

S ′
µc

 , (5.7)

qDf ′
ue(γc) =

a(ψ′′
c,γcΦ

′
e,cq)K

−1 0 0
0 1

lc
(ψ′′

c,γcΦ
′
e,cq) 0

0 0 1
4B2lc

(S ′′
γcΨ

′
e,cq)

 , (5.8)

where Φ′
e,c := Φ′

e(γc), Ψ′
e,c := Ψ′

e(γc); ψ′
c,γ := ψ′

c(Φe(γ)) = 3ι
2M

[
1−

(
Φe(γ)
M

− 1
)2]

, S ′
γ =

− γ

2
√

Ψe(γ)
; ψ′′

c,γ := ψ′′
c (Φe(γ)) = − 3ι

M2 (
Φe(γ)
M

− 1), S ′′
γ = γ

4
√

Ψe(γ)
3 .

The bilinear operator is given as

B(ζ, η) =
1

2

a(ψ′′
c,γc)

[
K−1(ζ1η1 − Π(2)ζ1η1 + ζ1η2) + ζ2K

−1 η1
]

1
lc
(ψ′′

c,γc)(ζ2η2 +Π(2)ζ1η1)
1

4B2lc
(S ′′

γc)ζ3η3

 , (5.9)

where ζ, η ∈ H and are written as ζ = [ζ1, ζ2, ζ3] and η = [η1, η2, η3], the operator Π(2) is from
(1.7), the other notations are same as the above Fréchet derivative case.

The trilinear operator is given as

F (v, v, v) =
1

6

a(ψ′′′
c )[K

−1(v31 − Π(3)v3) + 3K−1(v21v2 − Π(2)v21v2 + v1v
2
2)]

1
lc
(ψ′′′

c )(v
3
2 +Π(3)v31 + 3Π(2)v21v2)

1
4B2lc

(S ′′′
γc)v

3
3

 , (5.10)

where v := [v1, v2, v3] ∈ H , ψ′′′
c := ψ′′′

c (Φe(γ)) = − 3ι
M3 , S ′′′

γ = − 3γ

8
√

Ψe(γ)
5 . The operator Π(3)

is from (1.7).
Remark 5.1.1. For short, we also denote B(v, v) and F (v, v, v) by B(v) and F (v), respectively.

Now that the explicit form of eigenfunctions of Ac are known, we revisit the projection in
(5.2) and derive the simplified decomposed dynamics.
Definition 5.1.2 (Projections). Let h := eiθ and h̄ := e−iθ denote the critical eigenvectors. Then
the corresponding adjoint eigenfunctions are h∗ := [K

−1

2π
e−iθ, 0, 0]T and h

∗
:= [K

−1

2π
eiθ, 0, 0]T , and

the corresponding eigenvalues are ρc±1 + ε2ρq±1. Note that by the definition of inner product in
Remark 1.2.1, we have ⟨h, h∗⟩H = 1, ⟨h, h∗⟩H = 0; ⟨h, h∗⟩H = 0, ⟨h, h∗⟩H = 1. The critical
projection operator is explicitly defined by Pc := ⟨h∗, ·⟩H h+ ⟨h∗, ·⟩H h, and the stable projection
Ps = I − Pc.
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Definition 5.1.3 (Projection related notations). For simplicity,

(1) We introduce shorthand notation Bc := PcB. We define Fc, Fs, Ac
c, Aq

c, Ac
s, Aq

s, Hc and
Hs in a similar way.

(2) The associated eigenvalues of Ac
c and Aq

c are respectively denoted by

ρcc = ibcc := ib1(γc), ρ̄cc = −ibcc := −ib1(γc),
ρqc = aqc + ibqc := q(a′1(γc) + ib′1(γc)),

and
ρ̄qc = aqc − ibqc := q(a′1(γc)− ib′1(γc)).

(3) We use simple notations for the amplitudes of the critical projection, Bc,1 := ⟨h∗, B⟩H as
well as Fc,1 := ⟨h∗, F ⟩H .

(4) We also introduce the operator As := Ac
s + ε2Aq

s, and the index set Zs := Z0 \ {±1}.

(5) The associated eigenvalues of Ac
s and Aq

s (restricted to Hs) are denoted by ρck := ack + ibck
and ρqk := aqk + ibqk for k ∈ Zs.

We represent the solution û ∈ H as û = x̂ + ŷ for x̂ ∈ PcH and ŷ ∈ PsH . Let
ẑ = ⟨h∗, x̂⟩H and ẑ = ⟨h, x̂⟩H be the complex-valued amplitudes. By the above separation
of spectrum, we obtain the local critical and stable dynamics as:

dẑ = [(ρc1 + ερq1)ẑ +Bc,1(x̂+ ŷ, x̂+ ŷ) + Fc,1(x̂+ ŷ)] dt; (5.11a)
dŷ = [Asŷ +Bs(x̂+ ŷ, x̂+ ŷ) + Fs(x̂+ ŷ)] dt. (5.11b)

Since ẑ and ¯̂z are complex conjugates, showing the dynamics of either one of them is sufficient
to represent the critical amplitude dynamics.
Remark 5.1.4. Note that Pc can be interpreted as a two-fold projection: (a) projection from H
onto H; (b) projection from H onto H c

1 .

Furthermore, the bilinear operator B possesses the following properties.

1. Bc,1(x̂, x̂) = ⟨h∗, B(x̂, x̂)⟩H = ⟨h∗, B(ẑh, ẑh) + 2B(ẑh, ẑh) + B(ẑh, ẑh)⟩H , but we can
justify that ⟨h∗, B(ẑh, ẑh)⟩H = ⟨h∗, B(ẑh, ẑh)⟩H = ⟨h∗, B(ẑh, ẑh)⟩H = 0.

2. Bc,1(ŷ, ŷ) = ⟨h∗, B(ŷ, ŷ)⟩H =
a(ψ′′

c,γc
)

1+am

∑k+l=1
k∈{−2,−3,...} ĝkĝl.

3. Bc,1(x̂+ ŷ, x̂+ ŷ) = 2Bc,1(x̂, ŷ) +Bc,1(ŷ, ŷ),
Bc(x̂+ ŷ, x̂+ ŷ) = 2Bc(x̂, ŷ) +Bc(ŷ, ŷ).

4. Bs(x̂+ ŷ, x̂+ ŷ) = Bs(x̂, x̂) + 2Bs(x̂, ŷ) +Bs(ŷ, ŷ).
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5.1.2 Notations and Assumptions for the Stochastic Model

The main purpose of this chapter is to investigate the dominating dynamics in the critical sub-
space of stall in the neighbourhood of γc and v = 0with the presence of additive noise. To better
understand the long-term effect of the noise to the process within the small region around the
deterministic equilibrium point ue, we examine the behavior of v(t) := ε−1û(ε−2t) and consider
the following truncated Cauchy problem

dv = ε−2Acvdt+Aqvdt+ ε−1B(v, v)dt+ F(v, v, v)dt+ ε−1dWt, v(0) = v0. (5.12)

The associated semigroup is given as S(t) = eε
−2tAc (recall notations from Section 5.1.1).

We have seen that the deterministic solutions belong to H2
per × R × R (see Remark 1.2.1),

which coincides with dom(Ac). Now we define the fractional spaces w.r.t. dom(Ac) and H2
per

for the stochastic settings in order to have a more flexible scale of regularity.

Definition 5.1.5 (Fractional Power Space). For α ∈ R, define the interpolation fractional power
(Hilbert) space [134] Hα := dom((Ac)α) endowed with inner product ⟨u, v⟩α = ⟨(Ac)αu, (Ac)αv⟩H
and the induced norm ∥ · ∥α := ∥Ac · ∥. Similarly, denote Hα := dom(Ac|αH). We also denote the
dual space of Hα (resp. Hα) by H−α (resp. H−α) w.r.t. the inner product in H (resp. H).

More properties about Ac and S(t) can be found in Appendix D.3. We particularly mention
Remark D.3.2 as well as Proposition D.3.3. We also define the fractional Sobolev spaces for
H2

per[0, 2π], which can be found in Definition D.3.5. The equivalence between dom((Ac)α) and
the fractional Sobolev Hilbert space H2α

per[0, 2π] (see Definition D.3.5) is given in Lemma D.3.6.

Definition 5.1.6 (Model of disturbances). For the Moore-Greitzer model, we restrict attention to
H and construct Hilbert-space valued Wiener processes (see details in Appendix D.1 and D.2),

W |H(t) =
∑

k∈Z+\{1}

√
qk(βk(t) + iβ−k(t))e

ikθ +
∑

k∈Z−\{−1}

√
qk(β−k(t)− iβk(t))e

ikθ, (5.13)

where qk = |k|−(4ζ+1)−υ for any fixed υ > 0, βk are i.i.d. Brownian motions. Then the process
W |H(t) belongs to Hζ a.s..

The following examples are special cases of the engine disturbances:

(1) (White in time, colored in space) when ζ ≥ 0, qk decays as k increases, then Q is a trace
class operator (i.e. tr(Q) =

∑
k∈Zs

qk <∞ [43]) in Hζ ⊂ H, andW |H(t) is automatically
an H-valued Q-Wiener process (Definition D.2.1);
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(2) (Space-time white noise) when ζ = −1/4− υ/4, Q = id, tr(Q) = ∞ and (5.13) does not
converge in H. However, when H is extended to Hζ ⊃ H by a Hilbert-Schmidt inclusion
operator, the W |H(t) is well defined as an Hζ-valued Gaussian process, also known as a
generalized H-valued cylindrical Wiener process (Definition D.2.2).

Assumption 5.1.7. For α ∈ (0, 1], letW = [W |H, βΦ, βΨ] whereW |H is a generalized Q-Wiener
process to be constructed by (5.13), βΦ and βΨ are i.i.d. Brownian motions in R. We assume that
for a fixed sufficiently small υ > 0, the choice of Q (in terms of the ζ in (5.13)) is such that

∥Q1/2Ac|α−
1
2
+υ

H v∥ <∞, ∀v ∈ H. (5.14)

Remark 5.1.8. (5.14) is to require that the choice of the Q-Wiener process should at worst be in
H− 1

4
−υ, which justifies a cylindrical Wiener process in H.

The construction (5.13) implies ⟨Qh, h∗⟩ = qk = 0 for k ∈ {1,−1}, which means that the
additive noise does not act on PcH. This is in that the additive stochastic components in the
stable, heavily damped modes also contribute to the critical modes. These contributions enter
the critical modes as multiplicative noise. If additional additive noise is acting directly on the
critical modes, it will be more intense than the multiplicative effects generated by the interaction
between critical and stable modes. However, the stochastic stability is only affected by the
presence of multiplicative noise in the critical modes. The proposed model of disturbances
eliminate this strong additive effect to better understand and quantify the bifurcation behavior.
Lemma 5.1.9. Given α ∈ (0, 1], we assume v0 ∈ Hα and there exists β ∈ (α − 1, α] such that
the bounded operators B : Hα × Hα → Hβ and F : Hα × Hα × Hα → Hβ .

Proof. We only need to look at the regularities restricted to H. By the product rule in Sobolev
spaces, if α > 1/4, then the continuous multiplication operators B,F map from Hα to Hα. For
α ≤ 1/4, we show the case for B and the proof for F is similar. For u, v ∈ Hα, there exists
a β ≤ α together with β < 2α − 1

4
, such that uv ∈ Hβ . In addition, for the same u, v, there

exists a κ ∈ (0, α] such that uv ∈ W2κ,1
per [19]. Since 2κ − 1 ≥ 2α − 1 − 1

2
, by the Sobolev

embedding theorem, we have W2κ,1
per embedded in W2α−2,2

per = Hα−1, which verifies the worst
case. Combining all of the above cases, we have uv ∈ Hβ for some β ∈ (α − 1, α]. By the
definition of B, the components are of the form uv; the regularity of B follows.
Proposition 5.1.10. Suppose that Assumption 5.1.7 holds, then for each q and v(0) ∈ Hα, (5.12)
has a unique local2 mild solution

v(t) = S(t)v0 +

∫ t

0

S(t− s)[Aq + ε−1B + F ](v(s))ds+ ε−1

∫ t

0

S(t− s)dWs (5.15)

2The notion of local solution is the same as the finite-dimensional case.
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such that v(t) ∈ Hα a.s..

Proof. We show a sketch of the proof. By isometry and Assumption 5.1.7, we have the following
bound

E

[∥∥∥∥∫ t

0

S(t− s)dWs

∥∥∥∥2
α

]
≤
∫ t

0

∥Q1/2Ac|αHS(t− s)∥2ds+
∫ t

0

∥Ac|αR2S(t− s)∥2ds

≤ ∥Q1/2Ac|α−
1
2
+υ

H ∥2
∫ t

0

∥Ac|1/2−υH S(t− s)∥2ds

+

∫ t

0

∥Ac|αR2S(t− s)∥2ds <∞.

(5.16)

By Lemma 5.1.9 and Proposition D.3.3, it can be easily shown that ∥S(t − s)B∥α and ∥S(t −
s)F∥α exist. However, B and F do not have the global Lipschitz or Dissipative properties.
We use a cut-off argument as in [27] to define the existence time τex. The mild solution exists
uniquely and only up to τex.

We also need to specify a stopping time, such that the approximation processes will stop
before the solution v blows up.

Definition 5.1.11 (Stopping time). Given the terminal time T for (D.10) and a fixed arbitrarily
small κ ∈ (0, 1), consider the stopping time3

τ ∗ := T ∧ inf{t > 0 : ∥v(t)∥α ≥ ε−κ}.

Definition 5.1.12. We also define the order of error. A process R = O(εk−) for some k >
0 if for some arbitrarily small υ > 0 and any p ≥ 1, there exists a C > 0 and such that
E sup0≤σ≤τ∗ |R(σ)|p ≤ Cεpk−υ.

Definition 5.1.13 (Other notations). Recall notations from Definition 5.1.2 and 5.1.3. We intro-
duce the following notations for future references.

(1) For n ∈ Zs, let ỹ = [
∑

n g̃k∈Zse
ikθ, Φ̃δ, Ψ̃δ]

T denotes the solution to

dỹ(t) = ε−2Ac
sỹdt+ ε−1PsdWt, ỹ(0) = y(0),

and y⋆ =
[∑

k∈Zs
g⋆eikθ, Φ⋆

δ ,Ψ
⋆
δ

]T denotes the associated stationary solution.

3It is clear that τ∗ < τex a.s. for all κ > 0.
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(2) For convenience, we introduce

Kn =
aψ′′

c,γc |n|
|n|+ am

for n ∈ Z0 (5.17)

and

Gn =
aψ′′

c,γc |n|
2(|n|+ am)

(
2(Φδ)gn +

j=n−h∑
h∈Zs

ghgj

)
for n ∈ Zs. (5.18)

(3) When A|R2 provides a stable spectrum, we symbolically represent the inverse operator as

Ac
s|−1
R2 :=

[
l11 l12
l21 l22

]
. (5.19)

Moreover, we denote the eigenvalue r±1 (recall 5 of Section 1.2.2) at γc as r±1 = ar ± ibr.

5.2 DimensionReduction of StochasticMoore-Greitzer PDE
Model

We set x(t) = ε−1(x̂(ε−2t), y(t) = ε−1(ŷ(ε−2t), as well as the complex valued rescaled am-
plitude z(t) = ε−1(ẑ(ε−2t)) and z̄(t) = ε−1(¯̂z(ε−2t)) as in (5.4) to investigate the decomposed
dynamics. Then, it is clear that v(t) = x(t) + y(t) = z(t)h+ z̄(t)h̄+ y(t). When (5.12) is close
to the critical point, the local critical and fast-varying stable dynamics are as follows:

dz =
[
ρqcz + 2ε−1Bc,1(x, y) + ε−1Bc,1(y, y) + Fc,1(x+ y)

]
dt, z(0) = z0, (5.20a)

dy =
[
ε−2Asy + ε−1Bs(x+ y) + Fs(x+ y)

]
dt+ ε−1dWt, y(0) = y0, (5.20b)

where W = [W |H, βΦ, βΨ] is a Q-Wiener process such that PsW = W as introduced in Defi-
nition 5.1.6 and Assumption 5.1.7.

5.2.1 Coupling of Stable Modes Though Bilinear Terms

To obtain a finite-dimensional approximation for v based on (5.20a), we first investigate how
the stochastically perturbed fast-varying y enters the terms of intermediate order ε−1. The
approach follows the idea provided in [29, Proposition 3.9].
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Lemma 5.2.1. Let L := (Ac
s)

−1. Then, for every stopping time σ ≤ τ ∗, we have∫ σ

0

Bc,1(x, y)dt = −ε
∫ σ

0

Bc,1(x, LBs(x+ y))dt− 2ε

∫ σ

0

Bc,1(Bc(x, y), Ly)dt

− ε

∫ σ

0

Bc,1(Bc(y, y), Ly)dt− ε

∫ σ

0

Bc,1(x, LdWt) +R1(σ),

(5.21)

where the remainder term R1 is of order O(ε2−).

Proof. Expand the Q-Wiener process as

W =

2 ∑
k∈Z+\{1}

√
qk(βk cos(kθ)− β−k sin(kθ)), βΦ, βΨ

T .
Note that L is a bounded linear operator by the hypothesis on the spectrum. Now apply the
infinite-dimensional Itô’s formula,

dB(x, Ly) = B(dx, Ly) +B(x, Ldy) +
1

2

∑
i,j

∂2B(x, Ly)

∂ui∂uj
d ⟨⟨Ui, Uj⟩⟩t,

where i, j ∈ {1, 2}, U1 = x, U2 = y, and d ⟨⟨βk, βl⟩⟩t = δkldt, ⟨⟨βk, t⟩⟩t = ⟨⟨t, βk⟩⟩t = 0 for all
k, l in the index set Z+ \ {1} ∪ {Φ,Ψ} and for all t. However, since ∂2B(x,Ly)

∂x2
= ∂2B(x,Ly)

∂y2
= 0,

we have

1

2

∑
i,j

∂2B

∂ui∂uj
d ⟨⟨Ui, Uj⟩⟩t =

1

2
(B(dx, dLy) +B(dx, dLy)) = B(dx, dLy).

By plugging in dx, dLy and eliminating all the ⟨⟨βi, t⟩⟩, ⟨⟨t, βi⟩⟩, ⟨⟨t, t⟩⟩ terms,

1

2

∑
i,j

∂2B(x, Ly)

∂ui∂uj
d ⟨⟨Ui, Uj⟩⟩t = B(dPcdWt, dPsdWt) = 0

Hence,

ε2dB(x, Ly) =ε2B(dx, Ly) + ε2B(x, Ldy)

=ε2B(ρcczh+ ρ̄cczh̄, Ly)dt+ 2εB(Bc(x, y), Ly)dt+ εB(Bc(y, y), Ly)dt

+ ε2B(Fc(x+ y), Ly))dt+B(x, y)dt+ εB(x, LBs(x+ y))dt

+ ε2B(x, PsLF (x+ y))dt+ ε2B(x, LAq
sy)dt+ εB(x, LdWt),

(5.22)
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Notice that the above terms take values in Hβ . By the property of B given in Lemma 5.1.9 and
the definition of stopping time τ ∗, it is straightforward to verify that the term

R̃(σ) :=ε2
[∫ σ

0

dB(x, Ly)−
∫ σ

0

[B(x, Ly)−B(Fc(x+ y), Ly)]dt

]
− ε2

[∫ σ

0

[B(x, PsLF (x+ y))−B(x, LAq
sy)]dt

]
,

(5.23)

which is the sum of all the term with scaling ε2, satisfies ∥R̃(σ)∥β = O(ε2−). Rearranging (5.22)
and taking projection using ⟨h∗, ·⟩H , the result can be concluded.

Similarly, we have the following result. The proof is completed in Section 5.5.

Lemma 5.2.2. For every stopping time σ ≤ τ ∗, we have∫ σ

0

Bc,1(y, y)dt

=− ε

∫ σ

0

K1

k+l=1∑
k∈{−2,−3...}

(
z(Kkgkg−k +Klglg−l)

ρck + ρcl
dt+

gkGl + glGk
ρck + ρcl

dt

)

=− ε

∫ σ

0

K1K2g3z̄
2

2(ρc−2 + ρc3)
dt− ε

∫ σ

0

K1

k+l=1∑
k∈{−2,−3...}

z̄(Kl+1gkgl+1 +Kk+1glgk+1)

ρck + ρcl
dt

− ε

∫ σ

0

K1

k+l=1∑
k∈{−2,−3...}

gk
√
ql(dβl(t) + idβ−l(t)) + gl

√
qk(dβ−k(t)− idβk(t))

ρck + ρcl

+R2(σ),

(5.24)

where Kj ,Gj and ρcj are defined in Definition 5.1.13, and the remainder term R2 is such that
R2(σ) = O(ε2−).

Combining Lemma 5.2.1 and 5.2.2, we observe that the ε−1Bc,1 terms in (5.20a) have the
form of O(1) terms adding up with an error R of order O(ε1−). Hence, the amplitude equation
(5.20a) is scaled such that the nonlinearities and the linear term are of the same order, which
makes the analysis more amenable.

Remark 5.2.3. In the case of a surge bifurcation, we would have Bc,1(x, x) ̸= 0 with the same
rescaling scheme. Since there is no contribution of homogenization from the stable modes, this
term would dominate the rescaled critical mode with strength ε−1. Hence, to yield a similar form
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as (5.20a), we should rescale the variables differently. One possibility would be to set z(t) :=
ε−2ẑ(ε−2t) and y(t) := ε−2ŷ(ε−2t). As for the stall-surge case, multiple rescaling schemes are
needed to capture the bifurcation of g and (Φδ,Ψδ).

To keep the content succinct, we only demonstrate the methodology via the stochastic analysis
for the stall instability. The cases for surge and stall-surge can be treated using similar methods.

5.2.2 Approximation of the Stable Modes

The purpose of this subsection is to find an approximation of the stable dynamics.

Lemma 5.2.4. Let ỹ(t) solve the Ornstein-Uhlenbeck equation

dỹ(t) = ε−2Acỹdt+ ε−1dWt, ỹ(0) = y(0). (5.25)

Then ∥y(t)− ỹ(t)∥α = O(ε1−).

Proof. Let S̃(t) := eε
−2Ac

st. By the definition of mild solutions, y(t)−ỹ(t) =
∫ t
0
S̃(t−s)[ε−1Bs+

Fs](x + y)ds +
∫ t
0
S̃(t − s)Aq

syds. We show the bound for the error term J(t) :=
∫ t
0
S̃(t −

s)ε−1Bs(x+ y)ds, and the rest should be similar.

E sup
0≤σ≤τ∗

∥J(σ)∥pα ≤ ε−pE sup
0≤σ≤τ∗

[∫ σ

0

∥S̃(σ − s)Bs(x+ y)∥α
]p

= ε−pE sup
0≤σ≤τ∗

[∫ σ

0

∥(ε−2Ac
s)
αS̃(σ − s)Bs(x+ y)∥

]p
≤ Cε2α−2β−pE sup

0≤σ≤τ∗

[∫ σ

0

∥e−ε2ω(σ−s)(σ − s)−α+βBs(x+ y)∥βds
]p

≤ Cε2α−2β−p−2κpE sup
0≤σ≤τ∗

[∫ σ

0

e−ε
2ω(σ−s)(σ − s)−α+βds

]p
≤ Cε2p−p−2κpE sup

0≤σ≤τ∗

[∫ −ε−2ωσ

0

e−r(r)−α+βdr

]p
.

Note that there exists a constant C ′ > 0 such that e−tt−α+β ≤ C ′t−α+β for t ≤ 1, and
e−tt−α+β ≤ C ′e−t for t ≥ 1. We split the last integral by considering {τ ∗ ≤ 1} and {τ ∗ > 1},
then it can be verified that the term E sup0≤σ≤τ∗

[∫ −ε−2ωσ

0
e−r(r)−α+βdr

]p
is bounded by some

C ′. Therefore, J = O(ε1−) as expected.
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Corollary 5.2.5. For all t ∈ (0, τ ∗], we have

∥B(y(t), y(t))−B(ỹ(t), ỹ(t))∥α = O(ε2−)

and
∥F (x(t) + y(t))− F (x(t) + ỹ(t))∥α = O(ε2−).

Proof.

∥B(y, y)−B(ỹ, ỹ)∥α = ∥B(y, y)−B(y, ỹ) +B(y, ỹ)−B(ỹ, ỹ)∥α
≤ ∥B(y, y − ỹ)∥α + ∥B(y − ỹ, ỹ)∥α.

By Lemma 5.2.4 and the continuity of B, the result follows. The proof for F is similar.

Note that, by [29, Lemma 3.5] and [43], there is a version of ỹ with Hα-valued continuous
sample paths. Further more, for every κ0 > 0, p > 0, and T > 0, there exists a constant C
such that E supt∈[0,T ] ∥ỹ(t)∥pα ≤ Ce−κ0 . Consequently, the original process y can be verified
to be of order O(ε−). We further average out the fast modes y over an invariant measure by
considering the stationary behavior of ỹ, i.e., we use the stationary solution ỹ⋆ to submit into
(5.21) and (5.24). The following result shows the homogenization error using ỹ⋆.

Corollary 5.2.6. By replacing y with ỹ⋆ in (5.20), for each t ∈ [0, τ ∗], we have

z̃(t) = z̃(0) +

∫ t

0

[
ρqcz + 2ε−1Bc,1(x̃, ỹ

⋆) + ε−1Bc,1(ỹ
⋆, ỹ⋆) + Fc,1(x̃)

]
ds+O(ε1−). (5.26)

Proof. LetR denote the error process, which contains I(t) := ε−1
∫ t
0
[Bc,1(ỹ

⋆, ỹ⋆)−Bc,1(y, y)]ds,
J(t) := ε−1

∫ t
0
2[Bc,1(x̃, ỹ

⋆) − Bc,1(x̃, y)]ds, and K(t) :=
∫ t
0
[Fc,1(x̃ + ỹ⋆) − Fc,1(x̃)]ds. Recall

that ε−1Bc,1 terms are already of order O(1). The bound for I follows Corollary 5.2.5. For the
error process J , we have

E sup
t∈[0,τ∗]

∥J(t)∥pα ≤ CE sup
t∈[0,τ∗]

∥J(t)∥pβ

≤ CE sup
t∈[0,τ∗]

[∫ t

0

∥x(t)∥α∥y(t)− ỹ(t) + ỹ(t)− ỹ⋆(t)∥αds
]p

≤ Cε−κpεp− ≤ Cεp−.

Note that the term ∥ỹ− ỹ⋆∥α is of order O(ε1) in integrated form [29, Proposition 4.6]. We can
expand K and evaluate the bound for each term of the expansion by a similar approach as the
above. The conclusion follows by combining the above error bounds.
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5.3 Approximation Results

In this section, an explicit expression of ỹ⋆ will be determined. Then, the dynamical behavior
that is dominated by the critical mode is studied.

5.3.1 Calculation of the Stationary Stable Solutions

Equation (5.25) can be decomposed into

dg̃k(t) = ε−2ρckg̃kdt+ ε−1√qk(dβk(t) + idβ−k(t)), ∀k ∈ {2, 3, ...}, (5.27a)
dg̃k(t) = ε−2ρckg̃kdt+ ε−1√qk(dβ−k(t)− idβk(t)), ∀k ∈ {−2,−3, ...}, (5.27b)

d

[
Φ̃δ(t)

Ψ̃δ(t)

]
= ε−2Ac

s|−1
R2

[
Φ̃δ(t)

Ψ̃δ(t)

]
dt+ ε−1

[
dβΦ
dβΨ

]
. (5.27c)

Note that the modes are pairwisely independent. We recall the notation in Definition 5.1.3-(5)
that ρck = ack+ ib

c
k. If we express g̃k(t) = g̃Rk (t)+ ig̃

I
k(t), ∀k ∈ Zs, then we can find the solution

for each pair of g̃Rk and g̃Ik explicitly.

1. For every k ∈ {2, 3, ...}, the pair [g̃Rk (t), g̃Ik(t)]T are solved by[
g̃Rk
g̃Ik

]
(t) = e

ack(t−t0)

ε2

[
cos(

bck(t−t0)
ε2

) − sin(
bck(t−t0)

ε2
)

sin(
bck(t−t0)

ε2
) cos(

bck(t−t0)
ε2

)

][
g̃Rk (0)
g̃Ik(0)

]

+

√
qke

ackt

ε2

ε

∫ tt0 e−acks

ε2 cos(
bcks

ε2
)dβk(s)−

∫ t
t0
e−

acks

ε2 sin(
bcks

ε2
)dβ−k(s)∫ t

t0
e−

acks

ε2 sin(
bcks

ε2
)dβk(s) +

∫ t
t0
e−

acks

ε2 cos(
bcks

ε2
)dβ−k(s)

 . (5.28)

The stationary solution (as t0 → −∞) to (5.27a) and (5.27b) is given as g̃⋆k = (g̃Rk )
⋆+i(g̃Ik)

⋆,
where (g̃Rk )

⋆ and (g̃Ik)
⋆ are independent Gaussian processes with

E[(g̃Rk )
⋆(t)] = E[(g̃Ik)

⋆(t)] = 0

and covariance matrix

Cov(t, s) =

[
E[(g̃Rk )

⋆(t)(g̃Rk )
⋆(s)] E[(g̃Rk )

⋆(t)(g̃Ik)
⋆(s)]

E[(g̃Ik)
⋆(t)(g̃Rk )

⋆(s)] E[(g̃Ik)
⋆(t)(g̃Ik)

⋆(s)]

]
= − qk

2ack
e

ack|t−s|
ε2 id2×2 . (5.29)
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2. The solution to (5.27c) is given explicitly as,[
Φ̃δ(t)

Ψ̃δ(t)

]
(t) = e

ar(t−t0)

ε2 P

[
cos( br(t−t0)

ε2
) − sin( br(t−t0)

ε2
)

sin( br(t−t0)
ε2

) cos( br(t−t0)
ε2

)

]
P−1

[
Φ̃δ(0)

Ψ̃δ(0)

]
+ ε−1

∫ t

t0

e
ar(t−s)

ε2 PRt,sP
−1

[
dβΦ(s)
dβΨ(s)

]
,

(5.30)

where

P =

[
0 1

Im(νψ1) Re(νψ1)

]
, Rt,s =

[
cos( br(t−s)

ε2
) − sin( br(t−s)

ε2
)

sin( br(t−s)
ε2

) cos( br(t−s)
ε2

)

]
and νψ1 is defined in Sect. Secion 1.2.2-5. Therefore, the stationary solution (as t0 → −∞)
to (5.30) is given as

E[Φ⋆
δ(t)] = E[Ψ⋆

δ(t)] = 0

and the covariance matrix

Cov(t, s) = ε−2

∫ t∧s

0

e
ar(t−r)

ε2 (PRt,rP
−1)(PRt,rP

−1)Tdr. (5.31)

Remark 5.3.1. Note that the integral in (5.31) can be explicitly calculated. However, we use the
implicit expression for the rest of the derivation.

5.3.2 Evaluation of the Approximated Critical Amplitudes

Since every operator in (5.26), including B, K−1, A−1
s and ⟨h∗, ·⟩H , is given explicitly, after

some cumbersome calculation applying the coupling results from Lemma 5.2.1 and 5.2.2, we
obtain

−Bc,1(x̃,A−1
s Bs(x̃, x̃)) = −K1K2

4ρc2
z̃2z̃ = − K1K2ρ

c
−2z̃

2z̃

4((ac2)
2 + (bc2)

2)
=: hρc−2z̃

2 ¯̃z, (5.32)

where we have used notations defined in Def. 5.1.13-(2). Similarly,

−Bc,1(x̃,A−1
s Bs(y

∗, y∗)) = N1(ϖ)¯̃z +N2(ϖ)z̃ − K1

4lc
z̃2 ¯̃z, (5.33)

−Bc,1(x̃,A−1
s Bs(x̃, ỹ

⋆)) = N3(ϖ)z̄2, (5.34)

−Bc,1(Bc(x̃, ỹ
⋆), A−1

s ỹ⋆) = N4(ϖ)z̃ +N5(ϖ)¯̃z, (5.35)
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−Bc,1(Bc(ỹ
⋆, ỹ⋆), A−1

s ỹ⋆) = N6(ϖ). (5.36)

From Lemma 5.2.2,

ε−1Bc,1(ỹ
⋆, ỹ⋆) =: N7(ϖ)z̃ +N8(ϖ)¯̃z +N9(ϖ) +N10(ϖ)¯̃z2. (5.37)

We also have

Fc,1(x̃) = N11(ϖ)¯̃z2 +N12(ϖ)z̃ +N13(ϖ)¯̃z +N14(ϖ)− K1ψ
′′′
c

2ψ′′
c,γc

z̃2 ¯̃z (5.38)

For the stochastic term,

−Bc,1(x̃,A−1
s dWt) = −K1

2

[
z̃(l11dβΦ + l12dβΨ) +

¯̃z
√
q2(dβ2 + idβ−2)

ρc2

]
. (5.39)

The detailed information of the above shorthand notationsNi(ω) for i ∈ {1, 2, ..., 14} are given
in Section 5.5, where ϖ represents the randomness generated from the stable modes that are
excited by stochastic terms. Making use of the results above (from Equation (5.32) to (5.39)),
the approximated solution of z̃ can be determined by

z̃(t) = z̃(0) +

∫ t

0

(ρcc + 2N2(ϖ) + 4N4(ϖ) +N7(ϖ) +N12(ϖ))z̃dt+

∫ t

0

(2hρc−2 − j)z̃2 ¯̃zdt

+

∫ t

0

(2N1(ϖ) + 4N5(ϖ) +N8(ϖ) +N13(ϖ))¯̃zdt

+

∫ t

0

(4N3(ϖ) +N10(ϖ) +N11(ϖ))¯̃z2dt

+

∫ t

0

(2N6(ϖ)z̃ +N9(ϖ) +N14(ϖ))dt− 2

∫ t

0

Bc,1(z̃,A−1
s dWt) +O(ε1−),

(5.40)

where j := K1ψ′′′
c

2ψ′′
c,γc

+ K1

2lc
.

5.3.3 Final Approximation of the Critical Amplitudes

It is still not easy to evaluate (5.40). However, we observe that

E[Ni(t)] = E[Ni(0)] = 0, i ∈ {1, 3, 5, 6, 8, 9, 10, 11, 13, 14}, (5.41)
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R ∋ E[N2(t)] ̸= 0 and R ∋ E[N12(t)] ̸= 0, (5.42)

C ∋ E[N4(t)] ̸= 0 and C ∋ E[N7(t)] ̸= 0. (5.43)

Intuitively, we would like to replace Ni with N i := E[Ni(0)] for i ∈ {1, ..., 14}. The solution
(5.40) can still be approximated in some sense with small error (the estimation relies on [29,
Corollary 4.5]). We rephrase the statement of [29, Corollary 4.5] and provide it in the following
theorem.

Theorem 5.3.2. Let f be an α̃-Hölder continuous function on [0, τ ∗]. Assume that for every ε > 0
and fixed κ > 0, there exist a constant C1 such that

E
[∥∥∥∥∫ t

s

(N(r)−N(r)dr

∥∥∥∥p
α

]
≤ C1(t− s)p/2εp.

Then, for every y < 2α̃/(1 + 2α̃), there exists a constant C depending only on p and y such that

E

[
sup

t∈[0,τ∗]

∣∣∣∣∫ t

0

f(s)(N(s)−N(s))ds

∣∣∣∣p
]
≤ Cεyp

(
E [∥f∥Cα̃ ]2p

)1/2
,

where ∥ · ∥Cα̃ denotes the α̃-Hölder norm.

Remark 5.3.3. The above theorem can be used to approximate z̃(t) by replacing Ni with N i for
each i ∈ {1, 2, ..., 14}, and the error is within O(εy). In (5.40), f1 = f5 = f8 = f13 = ¯̃z,
f2 = f4 = f7 = f12 = z̃, f3 = f10 = f11 = ¯̃z2, f6 = f9 = f14 = 1. Note that for α̃ < 1/2,
we have fi’s satisfy the condition in Theorem 5.3.2. Consequently, we can choose y < 1/2. To use

Theorem 5.3.2, it suffices to show the condition E
[∥∥∥∫ ts (Ni −N i)dr

∥∥∥p
α

]
≤ C1(t − s)p/2εp holds

[29]. We only show the cases when k ∈ Z0 (the case for [Φ̃⋆
δ , Ψ̃

⋆
δ ]
T is similar).

Lemma 5.3.4. For every k ∈ Z \ {0}, we have

E

[(∫ t

s

g̃⋆k(r)dr

)2p
]
≤ qpkε

2p

(ack)
2p
ε2p(t− s)p.

Proof. We also make a little abuse of notation and let g̃⋆k represent either (g̃Rk )⋆ or (g̃Ik)⋆ (from
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(5.28)). Now let p = 1, then

E

[(∫ t

s

g̃⋆k(r)dr

)2
]
= E

[(∫ t

s

g̃⋆k(r)dr

)(∫ t

s

g̃⋆k(u)du

)]
=

∫ t

s

∫ t

s

E[g̃⋆k(r)g̃
⋆
k(u)]drdu

= −2

∫ t

s

∫ t

u

qk
2ack

e
ack(r−u)

ε2 drdu

=
qkε

2

(ack)
2

(
t− s− ε2

(ack)
2
(1− e

ack(t−s)

ε2 )

)
≤ qkε

2

(ack)
2
(t− s),

where the 2nd equality is by Fubini. Let Ik :=
∫ t
s
g̃⋆k(r)dr, then Ik is Gaussian with E[Ik] = 0

and E[I2k ] ≤ − qkε
2

(ack)
2 (t− s). Therefore,

E[|Ik|2p] = E[I2k ]
p ≤

(
qkε

2

(ack)
2
(t− s)

)p
for every p > 0.

Lemma 5.3.5. For every k ∈ Zs, k ̸= l and k + l ̸= 0, there exists a constant C > 0 such that

E

[(∫ t

s

g̃⋆k(r)g̃
⋆
l (r)dr

)2p
]
≤ C

(
qkql
acka

c
l

)p
(t− s)pε2p.

Lemma 5.3.6. For every k ∈ Zs , k = l or k + l = 0, there exists a constant C > 0 such that

E

[(∫ t

s

g̃⋆k(s)g̃
⋆
l (s)− E[g̃⋆k(s)g̃

⋆
l (s)]ds

)2p
]
≤ C

(
qkql
acka

c
l

)p
(t− s)pε2p.

Lemma 5.3.7. For every k ∈ Zs, there exists a constant C > 0 such that

E

[(∫ t

s

g̃⋆k(s)g̃
⋆
l (s)g̃

⋆
j(s)ds

)2p
]
≤ C

(
qkqlqj
acka

c
la

c
j

)p
(t− s)pε2p.

The proof for Lemma 5.3.5 to 5.3.7 is based on expanding the product of integrals that have
Gaussian properties. The idea follows the proof of [29, Lemma 4.1]. We do not provide the proof
in this section as we can simply treat the complex-valued g̃⋆k as we did in Lemma 5.3.4, and the
rest follows exactly as [29, Lemma 4.1].

171



Corollary 5.3.8. For every i ∈ {1, 2, ..., 14}, there exists a constant C > 0 such that

E

[∥∥∥∥∫ t

s

(Ni −N i)dr

∥∥∥∥p
α

]
≤ C(t− s)p/2εp.

Proof. By Definition 5.1.5 and Assumption 5.1.7, combining the definition of Ni and N i, it can
be shown that the bounds generated from Lemma 5.3.5 to 5.3.7 converge.

Renaming some constant quantities, we put (5.40) in a concise form. To this end, let

c1 + ic2 := E[2N2 + 4N4 +N7 +N12].

and

σ1 := −K1

2
l11, σ2 := −K1

2
l12,

σ3 := − K1a
c
2

√
q2

2((ac2)
2 + (bc2)

2)
, σ4 := − K1b

c
2

√
q2

2((ac2)
2 + (bc2)

2)
,

as well as
M(va) =

[
σ1v

a
1 σ2v

a
1 σ3v

a
1 − σ4v

a
2 σ4v

a
1 + σ3v

a
2

σ1v
a
2 σ2v

a
2 −σ3va2 − σ4v

a
1 −σ4va2 + σ3v

a
1

]
2×4

,

where va := [z̃1, z̃2]
T represent the converted amplitudes. Moreover, we set

A(q) :=

[
aqc + c1 −bqc − c2
bqc + c2 aqc + c1

]
2×2

, (5.44)

B :=

[
2haq2 − j 2hbq2
−2hbq2 2haq2 − j

]
2×2

, (5.45)

Wt = [βΦ(t), βΨ(t), β2(t), β−2(t)]
T. (5.46)

Recall that the h and j in (5.45) was aforementioned in (5.40). Then (5.40) is equivalent to

va(t) = va(0) +

∫ t

0

A(q)vadt+

∫ t

0

|va|2Bvadt+
∫ t

0

M(va)dWs +Rε(t),

va(0) = [Re(z̃(0)), Im(z̃(0)]T , Rε = O(ε1/2−).

(5.47)

The 1/2 reduction of the accuracy of the error term is due to the choice of y in view of Remark
5.3.3. Note that the effects of additive noise that acts on the stable modes finally appear in the
terms c1, c2, haq2, and the multiplicative matrix M. Not only the stability of the trivial solution
z̃ = 0 may be changed for any fixed q, but the dissipativity of the cubic nonlinearity may be
different as well. The supercritical bifurcation structure could be destroyed by the noise.
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5.3.4 Asymptotically Weak Convergence of the Approximation

We investigate how the solution to (5.47) (or the associated probability law) converges as ε→ 0.
Given the canonical probability space (Ω,F ,Pε)4 of the stopped process {v(t∧ τ ∗)}t≥0 driven
by noises with intensity ε, the process {va(t∧τ ∗)}t≥0 ∈ R2 of (5.47) lies in the induced canonical
space with probability law νεc = PcP

ε (recall Definition 5.1.11). Here we show that the unique
limit νc of νεc solves the Martingale problem related to the 2-dimensional SDE:

ṽa(t) = ṽa(0) +

∫ t

0

A(q)ṽadt+

∫ t

0

|ṽa|2Bṽadt+
∫ t

0

Σ(ṽa)dβt, (5.48)

where ṽa = [ṽa1 , ṽ
a
2 ]
T , β stands for a two-dimensional Wiener process, and

Σ(ṽa) :=


(

4∑
i=1

σi

)
ṽa1 + (σ3 − σ4) ṽ

a
2(

2∑
i=1

σi −
4∑
i=3

σi

)
ṽa2 + (σ3 − σ4) ṽ

a
1 .

 (5.49)

Theorem 5.3.9. Suppose 2hαs2 − f < 0 in (5.45). For each fixed T > 0, the sequence of measures
νεc converges weakly to νc, which is the law of the solution ṽa ∈ C([0, T ];R2) to (5.48).

To prove the above theorem, we need to demonstrate that: (1) the family of probability
measure {Pε} or {νεc} is tight, such that there exists a weakly convergent subsequence within
that family, and (2) every accumulation point of νεc is the unique solution to the Martingale
problem associated with (5.48).

Tightness of {νεc}

The proof falls in standard procedures, we only provide the sketch. Let f(·) = ∥ · ∥p, and
h = va −Rε. Then, by [27, Lemma 4.9], we have

tr[f ′′(h(σ))M(h(σ) +Rε(σ))M(h(σ) +Rε(σ))∗] ≤ Cp(p− 1)∥h(σ)∥p−2∥h(σ) +Rε(σ)∥2.
(5.50)

4We emphasize the dependence of ε for the associated measure of solutions exited by noises with different
intensities.
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Applying Itô formula to ∥h∥p for p ≥ 2 and use the above inequality, for all t ∈ [0, T ], we have

∥h(t ∧ τ ∗)∥p − ∥h(0)∥p ≤p
∫ t∧τ∗

0

∥h(s)∥p−2⟨A(q)(h(s) +R(s)), h(s) +R(s)⟩ds

+

∫ t∧τ∗

0

∥h(s)∥p−2⟨|h(s) +R(s)|2B|h(s) +R(s)|, h(s) +R(s)⟩ds

+ Cp(p− 1)

∫ t∧τ∗

0

∥h(s)∥p−2∥h(s) +R(s)∥2ds

+

∫ t∧τ∗

0

∥h(s)∥p−2⟨h(s),M(h(s) +R(s))dWs⟩.
(5.51)

By the assumption, we have ⟨x, |x|2Bx⟩ ≥ b|x|4 for all x ∈ R2, and hence the first two terms
can be bounded by C̃ · (t∧ τ ∗) for some C̃ > 0. Applying Burkholder–Davis–Gundy inequality
for the last term and then Young’s inequality for the last two terms, combining the above, we
can obtain

Eνεc sup
0≤t≤τ∗

∥h(t)∥p ≤ C1

∫ T∧τ∗

0

Eνεc sup
0≤t≤τ∗

∥h(s)∥pds+ C2.

By Gronwall’s inequality, we can verify that Eνεc sup0≤t≤τ∗ ∥h(t)∥p ≤ C and hence the quantity
Eνεc sup0≤t≤τ∗ ∥va(t)∥p is uniformly bounded, which implies the uniform tightness of {νεc}.
Remark 5.3.10. Note that by introducing the compact operatorGα : Lp([0, T ];U)) → C([0, T ];U)
for 0 < 1/p < α ≤ 1 and t ∈ [0, T ]:

Gαf(t) =

∫ t

0

(t− s)α−1S(t− s)f(s)ds, f ∈ Lp([0, T ], H),

as well as Y ε
α (t) = ε

∫ t
0
(t− r)−αS(t− r)dW (r), the mild solution can be expressed as

v(t) = S(t)v0 +G1(ε
−1B + F )(t) +

sinαπ

π
Gα(Y

ε
α )(t). (5.52)

The compactness of Gα has been shown in [43, Proposition 8.4]. However, by a similar argument
as in the Proof of Proposition 5.1.10, for a fixed p ≥ 2 we can only find C1(ε), C2(ε) > 0 for each
ε > 0 such that

Eε

[∫ t∧τ∗

0

|Y ε
α (s)|pds

]
≤ C1(ε), ∀t ∈ [0, T ], (5.53)

and

Eε

[∫ t∧τ∗

0

|ε−1B + F (s)|pds
]
≤ C2(ε) ∀t ∈ [0, T ]. (5.54)

The nonuniform bounds fail to guarantee the uniform tightness of {Pε}.
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Martingale problem

Given a test function φ ∈ C∞
0 (PcH ), the generator L of (5.48) is given by

Lφ(x) = ⟨A(q)x+ |x|2Bx, ∇φ⟩+ 1

2

2∑
i,j

(
ΣΣT

)
ij

∂2φ

∂xi∂xj
. (5.55)

Then, by defining

M ε
t := φ(va −Rε)(t ∧ τ ∗)− φ(va)(0)−

∫ t∧τ∗

0

Lφ(va −Rε)(s)ds, t ∈ [0, T ], (5.56)

it is clear that {M ε} is a family of (stopped) martingales. Due to the boundedness of Rε(t) in
moments and the smoothness of the test function φ, there exists a process R̃(t) such that

M ε
t = φ(va)(t ∧ τ ∗)− φ(va)(0)−

∫ t∧τ∗

0

Lφ(va)(s)ds+ R̃(t ∧ τ ∗), t ∈ [0, T ], (5.57)

and limε→0E
νεc [supt∈[0,τ∗] R̃(t)] = 0, where Eνεc is the expectation operator w.r.t. the measure

νεc . Therefore, for any 0 ≤ r1 < r2 < ... < rn ≤ s < t ≤ T and {φj; j = 1, 2, ..., n} ⊂
C(PcH ), we alternatively have

Eνεc

[
{M ε

t −M ε
s}

n∏
j=1

φj(v
a
rj
)

]
= 0 (5.58)

We also define the Martingale process w.r.t. (5.48) as

Mt = φ(vat )− φ(va0)−
∫ t

0

Lφ(vas )ds, t ∈ [0, T ]. (5.59)

Since the smooth test function has a compact support, we can also justify that {Mt∧τ∗}t∈[0,T ] is
uniform integrable. It has been shown in [29, Corollary 3.7] that ‘the event τ ∗ < T is caused
by x (or z) getting too large’. More precisely, P[τ ∗ < T ] ≤ P[K∥xτ∗∥ ≥ ε−κ] + Cεp for every
p > 0 and K > 1. By the uniform boundedness of Eνεc sup0≤t≤τ∗ ∥va(t)∥p for each p, as ε→ 0,
we have P[τ ∗ < T ] → 0. Consequently, the indicator function 1{T<τ∗} → 1 as ε→ 0.

Since {νεc} is a tight family of measures on PcH , we can find a convergent subsequence
νεnc ⇀ νc as n→ ∞ (where εn → 0). Therefore,

Eνc

[
{Mt −Ms}

n∏
j=1

φj(v
a
rj
)

]
= lim

n→∞
Eνεnc

[
{Mt∧τ∗ −Ms∧τ∗}

n∏
j=1

φj(v
a
rj
)

]

= lim
n→∞

Eνεnc

[
{M εn

t −M εn
s }

n∏
j=1

φj(v
a
rj
)

]
= 0

(5.60)
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which means every limit of νεnc solves the martingale problem w.r.t. (5.59). Note that given
the local Lipschitz continuity of the vector fields, by Yamada-Watanabe, the solution to the
Martingale problem is unique, which means every limit point νc is unique, and therefore the
claim in Theorem 5.3.9 holds. Theorem 5.3.9 also implies that {va(t ∧ τ ∗)}t≥0 converges to
{ṽa(t)}t∈[0,T ] in probability law for any fixed T > 0.

5.4 Summary

Based on recent advances in stochastic PDEs given in [29], this section further develops the
bifurcation analysis of the stochastic version of the Moore and Greitzer PDE model (5.5) for an
axial flow compressor, in the presence of a Hopf bifurcation. Close to bifurcation, the null-space
being finite-dimensional simplifies the analysis of such PDEs. We provided approximations for
the state g ∈ H for the stall case in the neighborhood of the deterministic bifurcation point. The
evolution equation for slow-varying coordinates ṽa, which can be treated as the normal form,
is derived by a careful analysis of the coupling of slow-fast modes arising from the spectral gap.

As explained previously, in addition to the possible direct influence that the additive noise
has on the critical modes (which we assumed to be identically zero in this study), the addi-
tive stochastic components in the stable, heavily damped modes also contribute to the criti-
cal modes. These contributions enter the critical modes as multiplicative noise through the
terms N ′

i = E[Ni(t)] for i ∈ {1, ..., 14} in (5.40) and are eventually incorporated into the 2-
dimensional SDE (5.47). Hence, the stochastic bifurcation points for stall are shifted due to
the evolution (stochastic) of heavily damped modes. The dissipativity of the cubic symmetric
nonlinearties may appear differently as well based on the choice of parameter. As the inten-
sity ε → 0, we justified a weak convergence of the probability measure of the slow-varying
processes. The approximated slow processes also converge in probability law to the solution to
(5.48).
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5.5 Supplementary Results

Homogenization results

We provide the explicit form of random variables that appear in the homogenization results
(Equation 5.40) in this section.

N1(ϖ) = −K1K2

4ρc2

(
2Φ̃⋆

δ g̃
⋆
2 +

k+l=2∑
k∈Zs

g̃⋆kg̃
⋆
l

)
(5.61)

N2(ϖ) = −K1

4lc

(l11ψ′′
c,γc)

(Φ̃⋆
δ)

2 + 2
∑

k∈{−2,−3,...}

g̃⋆kg̃
⋆
−k

− (l12S ′′′
γc)(Ψ̃

⋆
δ)

2

 (5.62)

N3(ϖ) = −K1K2

4ρc2
g̃⋆3 (5.63)

N4(ϖ) = −K2
1

4
g̃⋆−2

(
g̃⋆2
ρc2

)
− K2

1

4
(Φ̃⋆

δ)(l11Φ̃
⋆
δ + l12Ψ̃

⋆
δ) (5.64)

N5(ϖ) = −K2
1

4
(Φ̃⋆

δ)

(
g̃⋆2
ρc2

)
− K2

1

4
g̃⋆2(l11Φ̃

⋆
δ + l12Ψ̃

⋆
δ) (5.65)

N6(ϖ) = −K2
1

4

(
k+l=1∑
k∈Zs

g̃⋆kg̃
⋆
l

)
(l11Φ̃

⋆
δ + l12Ψ̃

⋆
δ)−

K2
1

4

(
k+l=−1∑
k∈Zs

g̃⋆kg̃
⋆
l

)(
g̃⋆2
ρc2

)
(5.66)

N7(ϖ) = −K1

k+l=1∑
k∈{−2,−3...}

(Kkg̃
⋆
kg̃

⋆
−k +Klg̃

⋆
l g̃
⋆
−l

ρck + ρcl

)
(5.67)

N8(ϖ) = −K1

k+l=1∑
k∈{−2,−3...}

Kl+1g̃
⋆
kg̃

⋆
l+1 +Kk+1g̃

⋆
l g̃
⋆
k+1

ρck + ρcl
(5.68)

N9(ϖ) = −K1

k+l=1∑
k∈{−2,−3...}

(
g̃⋆kGl + g̃⋆l Gk
ρck + ρcl

)
(5.69)

N10(ϖ) = − K1K2g̃
⋆
3

2(ρc−2 + ρc3)
(5.70)

N11(ϖ) = −K1ψ
′′′
c

2ψ′′
c,γc

g̃⋆3 (5.71)
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N12(ϖ) = −K1ψ
′′′
c

2ψ′′
c,γc

(Φ̃⋆
δ)

2 + 2
∑

k∈{−2,−3...}

g̃⋆kg̃
⋆
−k

 (5.72)

N13(ϖ) = −K1ψ
′′′
c

2ψ′′
c,γc

[
2Φ̃⋆

δ g̃
⋆
2 +

k+l=2∑
k∈Zs

g̃⋆kg̃
⋆
l

]
(5.73)

N14(ϖ) = −K1ψ
′′′
c

6ψ′′
c,γc

3Φ̃⋆
δ

 k+l=1∑
k∈Z\{0,±1}

g̃⋆kg̃
⋆
l

+
k+l+m=1∑

k,l∈Z\{0,±1}

g̃⋆kg̃
⋆
l g̃
⋆
m

 (5.74)

Proof of Lemma 5.2.2

Proof. Bc,1(y, y) = a(ψ′′
c )

1+am

∑k+l=1
k∈{−2,−3,...} gkgl. From (7.2b) we keep the terms up to O(ε−1) and

regard the rest as higher order terms (h.o.t.), then

dgl = ε−2ρclgldt+ ε−1⟨e∗l , PsB(x+ y, x+ y)⟩H dt

+ ε−1√ql(dβl(t) + idβ−l(t)) + h.o.t., ∀l ∈ {3, 4...},

and

dgk = ε−2ρckgkdt+ ε−1⟨e∗k, PsB(x+ y, x+ y)⟩H dt

+ ε−1√qk(dβ−k(t)− idβk(t)) + h.o.t.,∀k ∈ {−2,−3...}.

For l ∈ {3, 4, ...} we have,

⟨e∗l , PsB(x+ y, x+ y)⟩H = ⟨e∗l , B(x, x)⟩H + 2⟨e∗l , PsB(x, y)⟩H + ⟨e∗, PsB(y, y)⟩H
= 0 + (zKl−1gl−1 + z̄Kl+1gl+1) + Gl,

for k = −2,

⟨e∗k, PsB(x+ y, x+ y)⟩H = ⟨e∗k, B(x, x)⟩H + 2⟨e∗k, PsB(x, y)⟩H + ⟨ν∗k , PsB(y, y)⟩H

=
aψ′′

c z̄
2

2 + 2am
+ (zKk−1gk−1 + z̄Kk+1gk+1) + Gk

and for k ∈ {−3,−4, ...}, ⟨e∗k, PsB(x+ y, x+ y)⟩H = (zKk−1gk−1 + z̄Kk+1gk+1) + Gk.
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Applying Itô’s formula on d(gkgl) for k ∈ {−3,−4...} and k + l = 1 we have:

d(gkgl) = gkdgl + gldgk

= ε−2ρclgkgldt+ ε−1 (zKkgkg−k + z̄Kl+1gkgl+1) dt+ ε−1gkGldt
+ ε−2ρckgkgldt+ ε−1 (zKlglg−l + z̄Kk+1glgk+1) dt+ ε−1glGkdt
+ ε−1gk

√
ql(dβl(t) + idβ−l(t)) + ε−1gl

√
qk(dβ−k(t)− idβk(t));

for k = −2 and l = 3 we have:

d(gkgl) = gkdgl + gldgk

= ε−2ρclgkgldt+ ε−1 (zKkgkg−k + z̄Kl+1gkgl+1) dt+ ε−1gkGldt+ ε−1glGkdt

+ ε−2ρckgkgldt+ ε−1 (zKlglg−l + z̄Kk+1glgk+1) dt+ ε−1

(
aψ′′

c z̄
2g3

2 + 2am

)
dt

+ ε−1gk
√
ql(dβl(t) + idβ−l(t)) + ε−1gl

√
qk(dβ−k(t)− idβk(t)).

Therefore, for k ∈ {−3,−4...} and k + l = 1,

gkgldt = −ε
(

1

ρck + ρcl

)
(zKkgkg−k + z̄Kl+1gkgl+1 + gkGl) dt

− ε

(
1

ρck + ρcl

)
(zKlglg−l + z̄Kk+1glgk+1 + glGk) dt

− ε

[
gl
√
qk(dβ−k(t)− idβk(t)) + gk

√
ql(dβl(t) + idβ−l(t))

ρck + ρcl

]
;

for k = −2 and l = 3,

gkgldt = −ε
(

1

ρck + ρcl

)
(zKkgkg−k + z̄Kl+1gkgl+1 + gkGl) dt

− ε

(
1

ρck + ρcl

)
(zKlglg−l + z̄Kk+1glgk+1 + glGk) dt

− ε

(
1

ρck + ρcl

)(
aψ′′

c z̄
2g3

2 + 2am

)
dt

− ε

[
gl
√
qk(dβ−k(t)− idβk(t)) + gk

√
ql(dβl(t) + idβ−l(t))

ρck + ρcl

]
,

and the result follows easily from a combination of the above.
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Chapter 6

Multiscale Analysis for SPDEs with
Multiplicative Noise Close to Hopf
Bifurcation

The dynamical stochastic Hopf bifurcation was investigated in [17] for finite dimensional SDEs,
driven by multiplicative noise, with coefficients dependent on some parameter γ. It has been
shown that when γ varies in a way that the top Lyapunov exponent λ(γ) changes sign from
negative to positive, the trivial solution loses its almost-sure asymptotic stability and a non-
trivial invariant measure is formed. In contrast to the finite dimensional cases, it is difficult to
quantitatively describe the random invariant manifolds and stochastic bifurcations for SPDEs
driven by multiplicative noise [79, 156, 107, 37].

On the other hand, when the separation of time-scales is naturally present in a neighbour-
hood of a deterministic bifurcation point, multiscale approximations of the dynamics using am-
plitude equations can describe the dynamics of the slowly-varying critical (dominating) modes
of the SPDE. This dimension reduction technique has been used to study the transient dynamics
of SPDEs driven by additive noise near the deterministic bifurcation [28][29]. More rigorous
analysis on the approximation of the invariant measure was developed in [28].

In terms of dynamics driven by multiplicative noise, multiscale analysis and stochastic av-
eraging/homogenization techniques have been applied to dimensional reduction problems of
noisy nonlinear systems with rapidly oscillating and decaying components. For finite dimen-
sional SDEs with small multiplicative noise, when many of the modes are ‘heavily damped’,
reduced-order models were obtained using a martingale problem approach in [125]. The result
verifies that as the noise becomes smaller, a lower dimensional Markov process characterizes
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the limiting behavior in the weak topology. In application, [150] derives a low-dimensional ap-
proximation of an 11-dimensional nonlinear stochastic aeroelastic problem near a deterministic
Hopf bifurcation, with one critical mode and several stable modes. The reduced model performs
well in terms of simulating the distribution, density, as well as the top Lyapunov exponent of
the full system near the deterministic Hopf bifurcation.

The recent work [27] studies the impact of multiplicative noise in SPDEs near the bifurcation
using amplitude equations. However, the hypothesis only guarantees a local existence of mild
solution to the SPDEs up to a random explosion time. Under a stronger dissipative assumption
in the critical modes, the derived amplitude equation can be used to approximate the solution
to the original SPDE up to a fixed deterministic time with error converging in probability.

To investigate the long-term behavior of SPDEs near the deterministic Hopf bifurcation
point and demonstrate the dynamical Hopf bifurcation under the impact of multiplicative noise,
we impose proper conditions that guarantee the existence of invariant measures and study
SPDEs of the following type

du(t) = A(γ)u(t)dt+ F (u(t))dt+ εG(u(t))dW (t), (6.1)

where u(t) takes value in an infinite-dimensional separable Hilbert space H = L2(E) for some
boundedE ⊆ Rn. The self-adjoint unbounded linearA(γ) that also depends on a parameter γ ∈
R generates an analytic compact C0 semigroup on H. The nonlinearity F is a cubic mapping,
and G(u) is Hilbert-Schmidt operator with G(0) = 0. The noise W is a cylindrical Wiener
process (see Definition D.2.2 for details).

We denote by γc the deterministic Hopf bifurcation point of (6.1) with the absence of noise
(ε = 0), and aim to approximate the solution as well as the invariant measures around γc, i.e. for
γ = γc + ε2q with some q ∈ R, using multiscale technique. The purpose of this chapter, unlike
[125, 150, 27], is not dimension reduction using the averaging/homogenization technique. We
also do not intend to use averaging/homogenization results to study the structural change of
the invariant measures. The approximation scheme only simplifies the dynamics with errors
up to an acceptable scale for local analysis, which will be utilized later in Chapter 8 to connect
with the almost-sure stability of the trivial solution and show the dynamical Hopf bifurcation
of SPDEs of the form (6.1).

Note that the deterministic part that we consider is usually obtained by a local expansion and
coordinate transformation of more general nonlinearilties, which captures the local dynamical
behavior with topological equivalence. We do not involve any quadratic terms to avoid com-
plicated interactions between the perturbed critical and stable modes. To better understand the
impact of multiplicative noise, we focus on the given type (6.1).

Before proceeding, we introduce the notations and formulate necessary assumptions.
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6.1 Notations and Main Assumptions

Given the separable Hilbert space H, we denote by ⟨·, ·⟩ the inner product in H and by ∥ · ∥ the
norm. Due to the compactness of the associated semigroup, A(γ) has a pure point spectrum.
We make the following assumptions on A(γ) about the point spectrum.

Assumption 6.1.1. We assume that, for all γ,

(1) the point spectrum {ρk(γ)}k∈Z0 of A(γ) is complex, where ρk(γ) := ak(γ)+ ibk(γ) ∈ C
and ρ−k(γ) = ρk(γ) for all k ∈ Z0;

(2) ρk(γ) is analytic in γ for all γ ∈ R and all k ∈ Z0, and a1(γ) > a2(γ) ≥ · · · ≥ ak(γ) ≥
. . . ;

(3) the corresponding eigenvectors {ek}k∈Z0 form a complete orthonormal basis of H such
that A(γ)ek = ρk(γ)ek, ⟨e−k, ek⟩ = 1 for all k ∈ Z0, and ⟨ei, ej⟩ = 0 for all i+ j ̸= 0.

Remark 6.1.2. Note that by Assumption 6.1.1, Au =
∑

k∈Z0
ρk⟨e−k, u⟩ek for all u ∈ H, and for

all u, v ∈ H we have

⟨Au, v⟩ =
∑
k∈Z0

ρk⟨e−k, u⟩⟨ek, v⟩ =
∑
k∈Z0

ρ−k⟨ek, u⟩⟨e−k, v⟩ =
∑
k∈Z0

ρk⟨ek, u⟩⟨e−k, v⟩ = ⟨u,Av⟩,

which indicates the self-adjoint property of A. The second to the last identity is in that, for each
k ̸= 0,

ρ−k⟨ek, u⟩⟨e−k, v⟩+ ρk⟨e−k, u⟩⟨ek, v⟩ = ρk⟨ek, u⟩⟨e−k, v⟩+ ρ−k⟨e−k, u⟩⟨ek, v⟩ ∈ R.

Since γc is the deterministic Hopf bifurcation point, we have a±1(γc) = 0 as well as a′±1(γc) ̸=
0, b±1(γc) ̸= 0, whilst the rest of the spectrum stays in the left half-plane. We introduce the
shorthand notation h := e1 and h̄ := e−1 to denote the critical eigenvectors. We denote by h∗

and h̄∗ the associated adjoint eigenvectors , which satisfy

⟨h∗, h⟩ = 1, ⟨h∗, h̄⟩ = 0, ⟨h̄∗, h̄⟩ = 1, ⟨h̄∗, h⟩ = 0.

Due to the existence of spectral gap, we also introduce the projections and basic properties of
A(γ).

Definition 6.1.3. The critical projection operator is defined as

Pc(·) := ⟨h∗, · ⟩h+ ⟨h̄∗, · ⟩h̄, (6.2)

The stable projection operator is Ps = I − Pc. For simplicity, we introduce shorthand notation
Fc := PcF . We define Fs, Ac(γ), As(γ), Gc, Gs, Hc and Hs in a similar way.
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Definition 6.1.4 (Other notations for A(γ)). To this end, we use

(1) Zc := {±1}, Zs := Z0 \ {±1}.

(2) Ac
c := Ac(γc), Aq

c := qA′
c(γc); the associated eigenvalues of Ac

c and Aq
c are respectively

denoted by
ρcc = ibcc := ib1(γc), ρ̄cc = −ibcc := −ib1(γc),

ρqc = aqc + ibqc := q(a′1(γc) + ib′1(γc))

and
ρ̄qc = aqc − ibqc := q(a′1(γc)− ib′1(γc)).

(3) Aer
c := ε−2[Ac(γc + ε2q)−Ac

c − ε2Aq
c], the associated eigenvalues of Aer

c are denoted as
ρerc and ρ̄erc .

(4) As := As(γ) for all γ and Ac := As +Ac
c.

Remark 6.1.5. We introduce the second-order expansion Aer
c of Ac(γ) around γc to better under-

stand the effect in the multiscale expansion when the parameter of the linear operator is close to
the deterministic Hopf bifurcation point.

Assumption 6.1.6. We assume that, for each γ ∈ R, A(γ) generates an analytic compact C0

semigroup {etA(γ)}t≥0 on H, which also commute with the critical projection operator Pc. We
further assume that

(1) There exists some Ms > 0 and cs > 0 such that for all u ∈ Hs,

∥etA(γ)u∥ ≤Me−cst∥u∥, ∀t ≥ 0.

(2) There exists M > 0 and c ≥ 0 such that for all u ∈ H and each γ,

∥etA(γ)u∥ ≤Mect∥u∥, ∀t ≥ 0.

Proposition 6.1.7. For each u ∈ H and for all ε ∈ (0, 1), there exist some Cq > 0 and Cer > 0
such that

⟨Aq
cu, u⟩ ≤ Cq∥Pcu∥2

and
⟨Aer

c u, u⟩ ≤ ε2Cer∥Pcu∥2.
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Proof. It is clear from the definition of projection that

⟨Aq
cu, u⟩ = ⟨Aq

c(Pcu+ Psu), Pcu+ Psu⟩ = ⟨Aq
c(Pcu), Pcu⟩

= ρqc⟨ῡ, Pcu⟩⟨υ, Pcu⟩+ ρ̄qc⟨υ, Pcu⟩⟨ῡ, Pcu⟩
≤ 2|aqc|2 · ∥Pcu∥2.

(6.3)

The bound for ⟨Aer
c u, u⟩ can be obtained in a similar way with by the Cauchy-Taylor expansion

based on the additional analyticity of ρ±1(γ) as in (2) of Assumption 6.1.1.

For the same reason as in Chapter 5, we define the fractional power spaces w.r.t. dom(A(γ)).
More details can be found in Appendix D.3.

Definition 6.1.8 (Fractional Power Space). For α ∈ R, given the linear operator A(γ), define
the interpolation fractional power (Hilbert) space [134] Hα := dom(Aα(γ)) endowed with inner
product ⟨u, v⟩α = ⟨Aαu,Aαv⟩ and corresponding induced norm ∥ · ∥α := ∥Aα · ∥. Further more,
we denote the dual space of Hα by H−α w.r.t. the inner product in H.

Assumption 6.1.9. We assume that given α ∈ (0, 1], there exists β ∈ (α − 1, α] such that the
mapping F : (Hα)

3 → Hβ is trilinear, symmetric, continuous. We use shorthand nations for
F (u) = F (u, u, u).

We also assume that for all u, v, w ∈ Hc \ {0}, we have

⟨Fc(u), u⟩ < 0, (6.4)

⟨Fc(u, u, v), v⟩ < 0, (6.5)

⟨Fc(u, v, w)− Fc(v), u⟩ ≤ −C0∥u∥4 + C1∥w∥4 + C2∥w∥2∥v∥2, (6.6)

and that for all ς > 0, there exists a K > 0 and k ∈ [0, 1) such that for all ς > 0,

⟨F (u+ v), u⟩α ≤ −ς∥u∥2α − k⟨A(γ)u, u⟩α +Kς2 +K∥v∥4α, ∀u, v ∈ dom(A(γ)). (6.7)

Note that Assumption 6.1.9 implies that the nonlinear mapping behaves strongly dissipative
in the critical subspace Hc, where as the assumption on F in H is slightly weak, but still strong
enough to guarantee nice properties of solutions to (6.1).

Now we move on to the assumptions on the last term in (6.1). Let L2(E,K) denote the set of
all Hilbert-Schmidt operators fromE toK for any separable Hilbert spacesE andK . We write
L2(E) instead of L2(E,E) for short. We denote by ∥ · ∥L2(E,K) the norm for Hilbert-Schmidt
operators. If the spacesE andK are not emphasized, we also use the shorthand notation ∥·∥L2 .
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Assumption 6.1.10. Let V be a separable Hilbert space with orthonormal basis {zk}k∈Z0 . We
assume W is a V-valued cylindrical Wiener process (see details in Definition D.2.2).

Remark 6.1.11. Given an orthonormal basis {zk}k∈Z0 of V and a set of i.i.d. Brownian motions
{βk}, in view of RKHS as in Appendix D, we can write

W (t) =
∑
k∈Z+

(βk(t) + iβ−k(t))zk +
∑
k∈Z−

(β−k(t)− iβk(t))zk. (6.8)

Assumption 6.1.12. Assume that, for each α ∈ (0, 1] and for all u ∈ Hα, G(u) is a Hilbert-
Schmidt operator from V to Hα, i.e., G : Hα → L2(V ,Hα). We further require that G(u) is
Fréchet-differentiable satisfying

(1) there exists an ℓ1 > 0 s.t. ∥G(u)∥L2(V,Hα) ≤ ℓ1∥u∥α for all u ∈ Hα;

(2) there exists an ℓ2 > 0 s.t. ∥G′(u) · v∥L2(V,Hα) ≤ ℓ2∥v∥α for all v ∈ Hα;

(3) G′′(u) = 0 for all u ∈ H.

Note that G(u) is Hilbert-Schmidt operators from V to Hα, and we generally assume the
commutative property between of G(u) and id. Assuming W is a V-valued cylindrical Wiener
process is without loss of generality, we can view W as a G(u)G∗(u)-Wiener process in Hα,
where G(u)G∗(u) play the role of the covariance operator. If W is already a Q-Wiener process
in V , the correlation G(u)QG(U)∗ would make the process spatially smoother.

Remark 6.1.13. Given an orthonormal basis {zk}k∈Z0 of V , we can write

G(u) =
∑
j∈Z0

∑
k∈Z0

gjk(u)ej ⊗ zk,

where gik(u) ∈ R is the eigenvalue of the operator G(u) for all u ∈ Hα and for all j, k ∈ Z0.

Definition 6.1.14. For any solution u(t) ∈ H to (6.1), we set x(t) = ε−1Pcu(ε
−2t) and y(t) =

ε−1Psu(ε
−2t). We further name z(t) = ε−1⟨h∗, u(ε−2t)⟩, z̄ = ε−1⟨h̄∗, u(ε−2t)⟩ and z1 = Re(z)

as well as z2 = Im(z).

By the above notation, immediately we have u(t) = εx(ε2t) + εy(ε2t) = εz(ε2t)υ +
εz̄(ε2)ῡ+εy(ε2t). Due to the existence of the spectral gap, we decompose (6.1) in to the rescaled
critical and fast-varying modes as follows:

dx = Aq
cxdt+Aer

c xdt+ Fc(x+ y)dt+Gc(x+ y)dWt, (6.9a)
dy = ε−2Asydt+ Fs(x+ y)dt+Gs(x+ y)dWt, (6.9b)
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or equivalently,

dz = ρqczdt+ ρerc zdt+ ⟨υ∗, F (x+ y)⟩dt+ ⟨υ∗, G(x+ y)dWt⟩, (6.10a)
dy = ε−2Asydt+ Fs(x+ y)dt+Gs(x+ y)dWt, (6.10b)

where the Wiener process W is obtained after being rescaled in both space and time, such that
εWε−2t has the same law with the old one. For simplicity, we keep the same notation.

6.2 Existence of Invariant Measures

Before proceeding to the approximation of solutions and invariant measures, we first show that
the problem is well-posed under the assumptions.

Lemma 6.2.1. Let Assumption 6.1.1, 6.1.6, 6.1.9 and 6.1.12 be satisfied. Let u(0) = u0 ∈ H be the
initial condition for (6.1) and ε ∈ (0, 1). Then there exists some C0 > 0 such that

sup
t≥0

E∥u(t)∥α ≤ C0.

Moreover, if E∥u0∥α is of order O(ε), then for any fixed p > 0 there exists some C > 0 such that

sup
t≥0

E∥u(t)∥pα ≤ Cεp.

Proof. Let An(γ) := nA(γ)(nI −A(γ))−1 be the Yosida approximation of A(γ) for each γ. By
the property of F and G, the approximation equation

dun = An(γ)undt+ F (un)dt+ εG(un)dWt, un(0) = u0.

Apply Itô’s lemma to ∥un(t)∥2α for sufficiently large n, we have

d∥un∥2α =2⟨As,nun, un⟩αdt+ 2⟨Ac
c,nun, un⟩αdt+ 2⟨F (un), un⟩αdt+ ε2∥G(un)∥2L2(V,Hα)dt

+ 2ε2⟨Aq
c,nun, un⟩αdt+ 2ε2⟨Aer

c,nun, un⟩αdt+ 2ε⟨un, G(un)dWt⟩α,

which implies

d

dt
E∥un∥2α =E[2⟨Ac

nun, un⟩α + 2ε2⟨Aq
c,nun, un⟩α + 2ε2⟨Aer

c,nun, un⟩α]
+ 2E⟨F (un), un⟩α + ε2E∥G(un)∥2L2(V,Hα).

(6.11)
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Note that by Assumption 6.1.6 on the self-adjoint property of A, using Definition 6.1.8 we are
able to obtain the following bounds in a similar way as Proposition 6.1.7,

⟨Aq
c,nun, un⟩α ≤ Cq∥un∥2α, ⟨Aer

c,nun, un⟩α ≤ ε2Cer∥un∥2α (6.12)

for some Cq, Cer > 0. By Assumption 6.1.1, we have

⟨Ac
nun, un⟩α ≤ 0. (6.13)

Combining (6.11), (6.12), (6.13), Assumption 6.1.9 and 6.1.12, we have

d

dt
E∥un∥2α ≤E[−ς∥un∥2α + 2(1− k)ε2⟨Aq

c,nun, un⟩α +Kς2 + ε2ℓ1∥un∥2α]
+ ε2E[2(1− k)⟨Aer

c,nun, un⟩α]
≤− ςE∥un∥2α + ε2[2(1− k)Cq + ℓ1] · E∥un∥2α +Kς2

+ 2ε4(1− k)Cer · E∥un∥2α

(6.14)

Now let ς̃ := 2(1− k)Cq + ℓ1 + ε2(1− k)Cer, ς := 2ε2ς̃ , and C̃ := Kς2, then ς > 0 and C̃ > 0.
Therefore, (6.14) becomes

d

dt
E∥un∥2α ≤ −ε2ς̃∥un∥2α + ε4C̃.

Send n to infinity and rearrange, we have

E∥u(t)∥2α ≤ e−ε
2 ς̃tE∥u0∥2α + ε2

C̃

ς̃
, (6.15)

which completes the proof.

Lemma 6.2.2. Let all assumptions in Lemma 6.2.1 be satisfied. Fix any a time T and a p ≥ 2, for
any initial condition u0 ∈ Hα, there exists some C > 0 such that

E sup
0≤t≤T

∥u(t)∥pα ≤ C.

Proof. For any t ∈ [0, T ], the mild solution is given as

u(t) = etA
c

u0 +

∫ t

0

e(t−s)A
c

[ε2Aq
cu(s) + ε2Aer

c u(s) + F (u(s))]ds+ ε

∫ t

0

e(t−s)A
c

G(u(s))dWs.

(6.16)
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Let WG
Ac(t) := ε

∫ t
0
e(t−s)A

c
G(u(s))dWs denote the stochastic convolution. The bound for the

stochastic convolution follows [43, Proposition 6.10, Proposition 7.3]. Indeed, by Lemma 6.2.1,
there exists some C > 0 and C ′ > 0, such that∫ T

0

E∥G(u(s))∥pL2(V,Hα)
ds ≤ C

∫ T

0

E∥u(s)∥pαds < C ′ <∞.

Therefore G(u(s)) is L2-predictable and there exists constants CT > 0 and C ′
T > 0 such that

E sup
0≤t≤T

∥∥WG
Ac(t)

∥∥p
α
≤ ε2pCTE

(∫ t

0

∥G(u(s))∥pL2(V,Hα)
ds

)
≤ ε2pC ′

T . (6.17)

Let v(t) := u(t)−WG
Ac(t) ∈ Hα, then

∂tv = [Acv + ε2Aq
cv + ε2Aer

c v + F (v +WG
Ac(t))]dt

and E sup0≤t≤T ∥u(t)∥pα ≤ E sup0≤t≤T ∥v(t)∥pα + E sup0≤t≤T ∥WG
Ac(t)∥pα. Apply Itô’ formula

on ∥v∥2α and use a similar trick as (6.11), we can show that there exist some ς̃ > 0 and C̃ > 0

such that ∥v∥2α ≤ e−2ε2 ς̃t∥u0∥2α + C̃(
∥∥WG

Ac(t)
∥∥4
α
+ ε4). This together with the supreme bound

for WG
Ac(t) implies that E sup0≤t≤T ∥u(t)∥pα is bounded.

Corollary 6.2.3. Let all assumptions in Lemma 6.2.1 be satisfied. For any u0 ∈ Hα, the solution
u(t) to (6.1) is non-explosive.

Proof. The conclusion follows by Chebychev inequality and Lemma 6.2.2.

Proposition 6.2.4. Let all assumptions in Lemma 6.2.1 be satisfied. The for any u0 ∈ Hα, there
exists at least one invariant measure to (6.1).

Proof. Let Θt(u0,Γ) be the transition function of (6.1), then by Lemma 6.2.2, there exists some
sequence Tn → ∞ such that the family of measures

{
1
Tn

∫ Tn
0

Θ∗
t δu0dt

}
n

is tight. The existence
of invariant measure follows by Krylov–Bogoliubov’s Theorem.

Remark 6.2.5. Note that due to the possible non-contraction of the linear operator Ac, the system
may not have a unique invariant measure, even though the nonlinearity has nice stability property.
On the other hand, for aqc ≪ 0, the system is strongly dissipative, which implies that the Dirac
measure δ0 is the unique invariant measure. The research focuses on the part where aqc is in some
neighborhood of 0 and the uniqueness of the invariant measure is uncertain.
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We next show some properties of the stable mode Pcu(t) and the non-trivial (i.e., u0 ̸= 0)
solution u⋆(t) that is distributed by the invariant measure.

Lemma 6.2.6. Let Assumption 6.1.1, 6.1.6, 6.1.9 and 6.1.12 be satisfied. Let u(0) = u0 ∈ Hα be
the initial condition for (6.1) and ε ∈ (0, 1). Suppose additionally ∥Psu0∥α is of order O(ε2), then
for any fixed p > 0 there exists some C > 0 such that

sup
t≥0

E∥Psu(t)∥pα ≤ Cε2p.

Proof. Let uc(t) := Pcu(t) and us(t) := Psu(t) for all t ≥ 0. Note that by the stability of As,
there exists some c > 0 such that ⟨Asus, us⟩α ≤ −c∥us∥α. We use a similar trick in Lemma
6.2.1 and obtain

d

dt
E∥us∥2α =E[2⟨Asus, us⟩α + 2⟨Fs(u), us⟩α] + ε2E∥Gs(u)∥2L2(V,Hα), (6.18)

By Assumption 6.1.9,

⟨Fs(us + uc), us⟩α ≤ −ς∥us∥2α − k⟨Asus, us⟩α +Kς2 +K∥uc∥4α
≤ −ς∥us∥2α − k⟨Asus, us⟩α +Kς2 + C1ε

4 (6.19)

for some C1 > 0. By Assumption 6.1.12,

εE∥Gs(u)∥L2(V,Hα) ≤ εℓ1(∥us∥α + ∥uc∥α) ≤ εℓ1∥us∥α + C2ε
2 (6.20)

for some C2 > 0. Combine the above bounds and (6.18) and choose ς small enough to cancel
the O(ε2) terms, one can obtain some c̃ sufficiently close to c and some C̃ > 0, such that

d

dt
E∥us∥2α ≤ −2c̃∥un∥2α + ε4C̃.

and thus,

E∥us(t)∥2α ≤ e−2c̃tE∥Psu0∥2α + ε4
C̃

2c̃
. (6.21)

The conclusion follows after this.

Corollary 6.2.7. Let all assumptions in Lemma 6.2.1 be satisfied. Then the solution u⋆(t) that is
distributed by the invariant measure has the following properties,

(1) there exists some C > 0 such that E∥u⋆∥pα ≤ Cεp;
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(2) there exists some Cs > 0 such that E∥Psu⋆∥pα ≤ Csε
2p.

Proof. The proof follows the second part of Lemma 6.2.1 as well as Lemma 6.2.6. One can use
(6.15) and (6.21) and set u0 = u⋆. The conclusion follows by sending t to infinity.

Note that the above result is equivalent as E∥x⋆∥pα ≤ C and E∥y⋆∥pα ≤ Csε
p, where x⋆ and

y⋆ are stationary solutions for x and y in (6.9). Due to the effect of the multiplicative noise and
the strong stability of As, the stable mode Psu⋆ (or y⋆) converges fast to a smaller neighborhood
of 0 (recall that u⋆ = εx⋆ + εy⋆).

6.3 Primary Approximation of Solution

The ultimate goal is to build the connection between (6.9) and the top Lyapunov exponent
λq,ε := λ(γ) for the linearized SPDE, where γ = γc+ ε2q. The purpose of this primary approx-
imation in this section is to show that by dropping unnecessary terms, the errors would only
contribute to the high order terms of the asymptotic expansion of λq,ε. We intend to eventually
show that as γ varies in the neighborhood of γc such that the corresponding λq,ε varies contin-
uously from negative to positive, a new measure νq,ε for (6.9) other than δ0 will be generated,
which is known as a dynamical bifurcation of (6.9). Since λq,ε will be approximated using the
asymptotic expansion in Chapter 7, in this level of estimation, we do not drop too many terms
in order to capture more nonlinear effects.

Remark 6.3.1. Note that for numerical simulations of the density of νq,ε, we can conduct a simpler
approximation of solutions to (6.9) by ignoring the nonlinear couplings through the cubic terms.
However, this can only be used when the phenomenological bifurcation point of νq,ε is determined
such that the Fokker-Planck equation for this lower-dimensional approximation is well-posed.

We aim to approximate the solution to (6.9) using the following truncated equation

dx̃ = Aq
cx̃dt+ Fc(x̃+ ỹ)dt+Gc(x̃+ ỹ)dWt, (6.22a)

dỹ = ε−2Asỹdt+Gs(x̃+ ỹ)dWt (6.22b)

with the same initial conditions. We denote by

ũ(t) := εx̃(ε2t) + εỹ(ε2t) (6.23)

the approximation of u(t). Note that the stable and critical modes of (6.22a) and (6.22b) are
coupled in the noise terms as well as the critical projection of the nonlinearity. The approxi-
mated stable marginals are captured by a linear equation (6.22b) with a contraction semigroup,

190



whereas the equation (6.22a) keep the same form as (6.9a) apart from the small error term
Aer
c x̃dt. By a similar argument as in Section 6.2, the system (6.22) also has at least one invariant

measure.
We claim that

E sup
0≤t≤T

∥ỹ(t)− y(t)∥pα = O(ε2p), E sup
0≤t≤T

∥x̃(t)− x(t)∥p = O(ε2p), (6.24)

(which are of the same order as Aer
c x, since E sup0≤t≤T ∥Aer

c x∥p ≤ ε2pCp
er sup0≤t≤T E∥x∥p ≤

Cε2p) and consequently
E sup

0≤t≤ε−2T

∥ũ(t)− u(t)∥pα = O(ε3p). (6.25)

The following proposition provides the property for the approximated solution ũ, the proof
of which follows the same procedure as in Lemma 6.2.1 and 6.2.2.

Proposition 6.3.2. Let Assumption 6.1.1, 6.1.6, 6.1.9 and 6.1.12 be satisfied. Suppose ∥ũ0∥α (or
equivalently ∥u0∥α) is of order O(ε), then for any fixed p > 0 there exists some C1 > 0 such that

sup
t≥0

E∥ũ(t)∥pα ≤ C1ε
p.

In addition, for any fixed time T and p ≥ 2, under the same initial condition as before, there exists
some C2 > 0 such that

E sup
0≤t≤T

∥ũ(t)∥pα ≤ C2ε
p.

6.3.1 The Error Terms of the Approximation for the Stable Modes

To proceed, we first compare (6.9b) and (6.22b). Note that the solution to (6.9b) is given as

y(t) =eε
−2tAsy(0) +

∫ t

0

eε
−2(t−σ)AsFs(x(σ) + y(σ))dσ

+

∫ t

0

eε
−2(t−σ)AsGs(x(σ) + y(σ))dWσ

(6.26)

We denote
IF (t) :=

∫ t

0

eε
−2(t−σ)Ac

sFs(x(σ) + y(σ))dσ

and
WG
s (t) :=

∫ t

0

eε
−2(t−σ)Ac

sGs(x(σ) + y(σ))dWσ.
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Furthermore, the solution to (6.22b) is given as

ỹ(t) =eε
−2tAs ỹ(0) +

∫ t

0

eε
−2(t−σ)AsGs(x̃(σ) + ỹ(σ))dWσ. (6.27)

Likewise, we denote W̃G
s (t) :=

∫ t
0
eε

−2(t−σ)Ac
sGs(x̃(σ) + ỹ(σ))dWσ. Clearly, for y(0) = ỹ(0),

we have
y(t)− ỹ(t) = IF (t) +WG

s (t)− W̃G
s (t).

In particular, IF has nothing to do with x̃ and ỹ, whereas the comparison between WG
s (t) and

W̃G
s (t) is more subtle. Since the stochastic convolution terms involve mixed information of x̃

and ỹ, which are slightly different from x(t) and y(t), we need an extra estimation of x̃ to obtain
more precise error bounds for ỹ.

The following lemma shows the property of IF .

Lemma 6.3.3. Given any u(0) ∈ Hα with is of order O(ε), and some fixed time T > 0 and each
p > 0, there exists a constant CF > 0, such that

E sup
0≤t≤T

∥IF (t)∥pα ≤ CF ε
2p. (6.28)

Proof. Note that u(0) = ε(x(0) + y(0)), by Lemma 6.2.1 and 6.2.6, we have E supt ∥x(t) +
y(t)∥pα ≤ C for some C > 0. Therefore,

E sup
0≤t≤T

∥IF (t)∥pα ≤ E sup
0≤t≤T

[∫ t

0

∥eε−2(t−σ)AsFs(x(σ) + y(σ))∥αdσ
]p

≤ Cp
α,βε

2p(β−α)E sup
0≤t≤T

[∫ t

0

e−cε
−2(t−σ)(t− σ)β−α∥Fs(x(σ) + y(σ))∥βdσ

]p
≤ Cp

α,βε
2p(β−α)E sup

0≤t≤T

[∫ t

0

e−cε
−2(t−σ)(t− σ)β−α∥(x(σ) + y(σ)∥3αdσ

]p
≤ C3p · Cp

α,βε
2p(β−α) sup

0≤t≤T

[∫ t

0

e−cε
−2(t−σ)(t− σ)β−αdσ

]p
≤ C3p · Cp

α,βε
2p(β−α) sup

0≤t≤T

[∫ −cε−2t

0

e−σσβ−αdσ

]p
≤ CF ε

2p,

(6.29)

where the second line is by the semigroup property given in Proposition D.3.3, the third line is
by Assumption 6.1.9, and the last line is by change of variables.
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To better understand the effect of stochastic convolution in (6.9b) and (6.22b) under the
contraction semigroup, we introduce the following lemma.

Lemma 6.3.4. Given any u(0) = ũ(0) ∈ Hα with is of order O(ε), and any fixed time T > 0

and fixed p > 0, there exist constants Cw, C̃w > 0 such that

E sup
0≤t≤T

∥WG
s (t)∥pα ≤ Cwε

p. (6.30)

and
E sup

0≤t≤T
∥W̃G

s (t)∥pα ≤ C̃wε
p. (6.31)

Proof. We show the proof for W̃G
s (t) and the other should be similar. Note that there exists

some C > 0 such that E sup0≤t≤T ∥x̃(t)+ ỹ(t)∥α ≤ C by the assumption and Proposition 6.3.2.
Then,

E sup
0≤t≤T

∥WG
s (t)∥pα ≤ E sup

0≤t≤T

[∫ t

0

∥eε−2(t−σ)AsGs(x̃(σ) + ỹ(σ))∥αdσ
]p

≤ ℓ2p1 E sup
0≤t≤T

[∫ t

0

e−2cε−2(t−σ)∥x̃(σ) + ỹ(σ)∥2αdσ
] p

2

≤ Cpℓ2p1 E sup
0≤t≤T

[∫ t

0

e−2cε−2(t−σ)dσ

] p
2

≤ C̃wε
p.

(6.32)

Corollary 6.3.5. Given any ũ(0) ∈ Hα with is of order O(ε) and Psũ(0) of order O(ε2). For
some fixed time T > 0 and fixed p, there exist constants Cc, Cs > 0 such that

E sup
0≤t≤T

∥x̃(t)∥p ≤ Cc, E sup
0≤t≤T

∥ỹ(t)∥pα ≤ Csε
p. (6.33)

Proof. Since ỹ is driven by a linear equation, by the contraction property of As, we have

∥ỹ(t)∥pα ≤ e−ε
−2ct∥ỹ(0)∥pα + ∥W̃G

s (t)∥α. (6.34)

The conclusion follows by Lemma 6.3.4. The estimation for x̃ follows a similar way in Lemma
6.2.1 and 6.2.2.
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Note that the bounds given in Corollary 6.3.5 imply that the stochastic convolution gener-
ated by As only contributes a smaller order of value compared to the critical mode. Intuitively,
if one can show that E sup0≤t≤T ∥x̃(t)−x(t)+ ỹ(t)− y(t)∥pα is of order O(εp), by the Lipschitz
continuity of G as in (2) of Assumption 6.1.12 and by a similar argument as in (6.32), we can
obtain that E sup0≤t≤T ∥WG

s (t)− W̃G
s (t)∥pα is of order O(ε2p). We will formally complete this

part of proof after we investigate the brief properties of x̃.

6.3.2 A Rough Estimation of the Error in the Critical Mode

We show in this subsection that the error between (6.9a) and (6.22a), i.e. E sup0≤t≤T ∥x̃(t) −
x(t)∥pα, is at most of order O(εp). To do this and to avoid complicated interactions between x̃,
x, ỹ and y, we introduce an auxiliary equation

dx̂ = Aq
cx̂dt+ Fc(x̂)dt+Gc(x̂)dWt, x̂0 = x0 = x̃0 (6.35)

and show that E sup0≤t≤T ∥x̃(t)−x̂(t)∥p and E sup0≤t≤T ∥x̂(t)−x(t)∥p are both of order O(εp),
where x is the solution to (6.9a). We provide the proof for E sup0≤t≤T ∥x̂(t) − x(t)∥p and the
other one should be similar.
Remark 6.3.6. The over simplified critical model (6.35) provides error E sup0≤t≤T ∥x̃(t)− x̂(t)∥p
(resp. E sup0≤t≤T ∥x̂(t) − x(t)∥p) that is of same order as the stable modes y (resp. ỹ) and of a
smaller order than the linear perturbation Aer

c x (resp. Aer
c x̃). As ε goes to 0, the error term affects

the local behavior around the bifurcation parameter more than its own second order expansion.
To see more accurately how the stable mode and the multiplicative noise influence the dynamical
behavior near γc, we do not apply (6.35) to study the stochastic Hopf bifurcation. However, when the
system is away from the dynamical bifurcation point, one can use (6.35) to simulate the invariant
measure.

We rewrite the solution to (6.9a) as

x(t) = x(0) +

∫ t

0

Aq
cx(σ)dσ +

∫ t

0

Fc(x(σ))dσ +

∫ t

0

Gc(x(σ))dWσ +R(t),

where the truncated error term is given as

R(t) =

∫ t

0

Aer
c x(σ)dσ +

∫ t

0

Fc(y(σ))dσ

+ 3

∫ t

0

Fc(x(σ), y(σ), y(σ))dσ + 3

∫ t

0

Fc(x(σ), x(σ), y(σ))dσ

+

∫ t

0

[Gc(x(σ) + y(σ))−Gc(x(σ))]dWσ.

(6.36)
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Let R = x− x̂. Then,

R(t) = R(t)+

∫ t

0

Aq
cR(σ)dσ+

∫ t

0

Fc(x(σ))dσ−
∫ t

0

Fc(x̂(σ))dσ+

∫ t

0

Gc(R(σ))dWσ. (6.37)

We first evaluate E sup0≤t≤T ∥R(t)∥p and then E sup0≤t≤T ∥R(t)∥p.

Lemma 6.3.7. Given any x(0) ∈ Hα of order O(1). For any fixed time T > 0 and fixed p > 0,
there exist constants C > 0 such that

E sup
0≤t≤T

∥
∫ t

0

Aer
c x(σ)dσ∥pα ≤ Cε2p. (6.38)

Proof. The above bound can be verified by the boundedness of the operator Aer
c as well as the

property of E sup0≤t≤T ∥x(t)∥pα.

Lemma 6.3.8. Given any x(0) ∈ Hα of order O(1) and y(0) ∈ Hα of order O(ε). For any fixed
time T > 0 and fixed p > 0, there exist some constant C > 0 such that

E sup
0≤t≤T

∥∥∥∥∫ t

0

Fc(x(σ), y(σ), y(σ))dσ

∥∥∥∥p
α

≤ Cε2p. (6.39)

Proof. The expansion is given as∫ t

0

Fc(x(σ), y(σ), y(σ)dσ =

∫ t

0

Fc(x(σ), e
ε−2(t−σ)Asy(0), eε

−2(t−σ)Asy(0))dσ

+

∫ t

0

Fc(x(σ), IF (σ), IF (σ))dσ

+

∫ t

0

Fc(x(σ),W
G
s (σ),W

G
s (σ))dσ

+ 2

∫ t

0

Fc(x(σ), e
ε−2(t−σ)Asy(0), IF (σ))dσ

+ 2

∫ t

0

Fc(x(σ), e
ε−2(t−σ)Asy(0),WG

s (σ))dσ

+ 2

∫ t

0

Fc(x(σ), IF (σ),W
G
s (σ))dσ

:=
6∑
i=1

J (i)(t).

(6.40)
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Note that,

∥J (1)(t)∥α ≤ Ĉ1∥J (1)(t)∥β ≤ Ĉ1

∫ t

0

∥Fc(x(σ), eε
−2(t−σ)Asy(0), eε

−2(t−σ)Asy(0))∥βdσ

≤ Ĉ1∥y(0)∥2α sup
0≤t≤T

∥x(t)∥α
∫ t

0

e2csε
−2(t−σ)dσ

≤ C̃1ε
2∥y(0)∥2α sup

0≤t≤T
∥x(t)∥α.

(6.41)

Hence, by the property of y(0) and E sup0≤t≤T ∥x(t)∥pα, there exists somce C1 > 0 such that

E sup
0≤t≤T

∥J (1)∥pα ≤ C1ε
4p.

As for the bound for J (2), we have

∥J (2)(t)∥α ≤ Ĉ2∥J (2)(t)∥β

≤ Ĉ2

∫ t

0

∥Fc(x(σ), IF (σ), IF (σ))∥βdσ

≤ C̃2∥IF (t)∥2α sup
0≤t≤T

∥x(t)∥α.
(6.42)

Note that

∥IF (t)∥α ≤
∫ t

0

∥eε−2(t−σ)AsFs(x(σ) + y(σ))∥αdσ

≤ Cα,βε
2(β−α)

∫ t

0

e−cε
−2(t−σ)(t− σ)β−α∥Fs(x(σ) + y(σ))∥βdσ

≤ Cα,βε
2(β−α)

∫ t

0

e−cε
−2(t−σ)(t− σ)β−α∥(x(σ) + y(σ)∥3αdσ

≤ sup
0≤t≤T

∥x(t) + y(t)∥3α · Cα,βε2(β−α)
∫ t

0

e−cε
−2(t−σ)(t− σ)β−αdσ

≤ ε2Cα,β

(
sup

0≤t≤T
∥x(t)∥3α + sup

0≤t≤T
∥y(t)∥3α

)
.

(6.43)

Combining (6.41) and (6.43) we have

∥J (2)(t)∥α ≤ C2ε
2

(
sup

0≤t≤T
∥x(t)∥3α + sup

0≤t≤T
∥y(t)∥3α

)3

(6.44)
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Therefore, by Lemma 6.3.3 and the property of x and y, we obtain

E sup
0≤t≤T

∥J (2)∥pα ≤ C2ε
4p.

We proceed by a similar method for the rest of J (i)’s and obtain

E sup
0≤t≤T

∥J (3)∥pα ≤ C3ε
2p, E sup

0≤t≤T
∥J (4)∥pα ≤ C4ε

4p,

E sup
0≤t≤T

∥J (5)∥pα ≤ C5ε
2p, E sup

0≤t≤T
∥J (6)∥pα ≤ C6ε

2p.

By a similar approach, we obtain the following bounds.

Lemma 6.3.9. Let the assumptions in Lemma 6.3.8 be satisfied. For any fixed time T > 0 and
fixed p > 0, there exist some constant C > 0 such that

E sup
0≤t≤T

∥∥∥∥∫ t

0

Fc(x(σ), x(σ), y(σ))dσ

∥∥∥∥p
α

≤ Cεp. (6.45)

Lemma 6.3.10. Let the assumptions in Lemma 6.3.8 be satisfied. For any fixed time T > 0 and
fixed p > 0, there exist some constant C > 0 such that

E sup
0≤t≤T

∥∥∥∥∫ t

0

Fc(y(σ))dσ

∥∥∥∥p
α

≤ Cε3p. (6.46)

We now evaluate the last term in R(t) (recall (6.36)).

Lemma 6.3.11. Let the assumptions in Lemma 6.3.8 be satisfied. For any fixed time T > 0 and
fixed p > 0, there exist some constant C > 0 such that

E sup
0≤t≤T

∥∥∥∥∫ t

0

[Gc(x(σ) + y(σ))−Gc(x(σ))]dWσ

∥∥∥∥p
α

≤ Cεp. (6.47)
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Proof. By Burkholder–Davis–Gundy inequality,

E sup
0≤t≤T

∥∥∥∥∫ t

0

[Gc(x(σ) + y(σ))−Gc(x(σ))]dWσ

∥∥∥∥p
α

≤C ′E

[∫ T

0

∥Gc(x(σ) + y(σ))−Gc(x(σ))∥2L2(V,Hα)dσ

] p
2

≤C ′E

[∫ T

0

∥G(x(σ) + y(σ))−G(x(σ))∥2L2(V,Hα)dσ

] p
2

≤C ′E

[∫ T

0

ℓ22∥y(σ)∥2αdσ
] p

2

≤CpE
[∫ T

0

(∥eε−2(t−σ)Asy(0)∥2α + ∥IF∥2α + ∥WG
s ∥2α)dσ

] p
2

≤CE
[
(εp∥y(0)∥pα + sup

0≤t≤T
∥IF∥pα + sup

0≤t≤T
∥WG

s ∥pα)
]
,

(6.48)

where we have used Hölder’s inequality in the last line. The conclusion follows immediately
by the properties verified in Section 6.3.1.

Combining the bounds derived from Lemma 6.3.7 to 6.3.11, we obtain the bound for the
truncation error R(t).

Proposition 6.3.12. Let the assumptions in Lemma 6.3.8 be satisfied. For any fixed time T > 0
and fixed p > 0, there exist some constant C > 0 such that

E sup
0≤t≤T

∥R(t)∥pα ≤ Cεp. (6.49)

We then proceed to derive the bound for R(t). However, since R is not Itô differentiable,
we apply the method provided in [27, Lemma 4.9].

Proposition 6.3.13. Let the assumptions in Lemma 6.3.8 be satisfied. For any fixed time T > 0
and fixed p > 0, there exist some constant C > 0 such that

E sup
0≤t≤T

∥R(t)∥pα ≤ Cεp. (6.50)
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Proof. Let h = R +R, then

h(t) =

∫ t

0

Aq
c(h(σ)−R(σ))dσ +

∫ t

0

Fc(x̂(σ)− h(σ) +R(σ))dσ

−
∫ t

0

Fc(x̂(σ))dσ +

∫ t

0

Gc(h(σ)−R(σ))dWσ.

(6.51)

Let f(·) = ∥ · ∥p, then by [27, Lemma 4.9], we have

tr[f ′′(h(σ))Gc(h(σ)−R(σ))Gc(h(σ)−R(σ))∗] ≤ Cp(p−1)∥h(σ)∥p−2∥h(σ)−R(σ)∥2. (6.52)

Applying Itô’s formula to ∥ · ∥p and (6.52), we then have

∥h(t)∥p ≤p
∫ t

0

∥h(σ)∥p−2⟨Aq
c(h(σ)−R(σ)), h(σ)⟩dσ

+ p

∫ t

0

∥h(σ)∥p−2⟨Fc(x̂(σ)− h(σ) +R(σ))− Fc(x̂(σ)), h(σ)⟩dσ

+ p

∫ t

0

∥h(σ)∥p−2⟨Gc(h(σ)−R(σ)), h(σ)⟩dσ

+
1

2
C ′p(p− 1)

∫ t

0

∥h(σ)∥p−2∥h(σ)−R(σ)∥2dσ

≤C
∫ t

0

∥h(σ)∥pdσ + C

∫ t

0

∥h(σ)∥p−1∥R(σ)∥dσ

+ C

∫ t

0

∥h(σ)∥p−2∥R(σ)∥2dσ + C

∫ t

0

∥h(σ)∥p−2∥R(σ)∥4dσ

+ C

∫ t

0

∥h(σ)∥p−2∥R(σ)∥2∥y(σ)∥2dσ

+ p

∫ t

0

∥h(σ)∥p−2⟨Gc(h(σ)−R(σ)), h(σ)⟩dσ,

(6.53)

where we have used Cauchy-Schwarz inequality and Assumption 6.1.9 for Fc in the second
inequality. By Young’s inequality (for products), we obtain

∥h(t)∥p ≤C
∫ t

0

∥h(σ)∥pdσ + C

∫ t

0

∥R(σ)∥pdσ + C

∫ t

0

∥R(σ)∥2pdσ

≤C
∫ t

0

∥R(σ)∥p∥y(σ)∥pdσ + p

∫ t

0

∥h(σ)∥p−2⟨Gc(h(σ)−R(σ)), h(σ)⟩dσ,
(6.54)
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where the supreme bound for the last term can be obtained by using Burkholder–Davis–Gundy
inequality and [27, Eq.(33)] on [0, T ],

E sup
0≤t≤T

∣∣∣∣p ∫ t

0

∥h(σ)∥p−2⟨Gc(h(σ)−R(σ)), h(σ)⟩dσ
∣∣∣∣

≤CE
[∫ T

0

(∥h(σ)∥2p + ∥h(σ)∥2p−2∥R(σ)∥2)
] 1

2

≤1

2
E sup

0≤t≤T
∥h(t)∥p + C

∫ T

0

E sup
0≤σ≤T

∥h(σ)∥pdσ + CE

[∫ T

0

∥R(σ)∥2pdσ
] 1

2

.

(6.55)

Combining (6.53) and (6.55), taking the supreme norm, we have

E sup
0≤t≤T

∥h(t)∥p ≤ C

∫ T

0

E sup
0≤σ≤T

∥h(σ)∥pdσ + Cεp. (6.56)

Therefore, by Grownwall’s inequality, we have

E sup
0≤t≤T

∥h(t)∥p ≤ Cεp.

The conclusion follows by a triangle inequality argument on R = h−R.

Remark 6.3.14. As shown in the above proof, the bound for E sup0≤t≤T ∥h(t)∥p is dominated by
the estimation of E sup0≤t≤T ∥R(t)∥p. The order of error R should be consistent with the order of
R.

6.3.3 Final Estimation of Errors

We first show the estimation of E sup0≤t≤T ∥ỹ(t)− y(t)∥pα in (6.24).

Proof. Let Ry := y − ỹ, let Rx := x− x̃ then

Ry(t) = IF (t) +

∫ t

0

eε
−2(t−σ)AsGs(R

x(σ) +Ry(σ))dWσ. (6.57)
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Note that

∥
∫ t

0

eε
−2(t−σ)AsGs(R

x(σ) +Ry(σ))dWσ∥pα

≤
[∫ t

0

∥eε−2(t−σ)AsGs(R
x(σ) +Ry(σ))∥αdWσ

]p
≤ℓp1 sup

0≤t≤T
∥Rx(t) +Ry(t)∥pα

[∫ t

0

e−2cε−2(t−σ)dσ

] p
2

≤C ′εp( sup
0≤t≤T

∥Rx(t)∥pα + sup
0≤t≤T

∥Ry(t)∥pα)

≤C ′εp( sup
0≤t≤T

∥Rx(t)∥pα + sup
0≤t≤T

∥y(t)∥pα) + sup
0≤t≤T

∥ỹ(t)∥pα).

(6.58)

We take the supreme norm on both sides of (6.57), use the results in Section 6.3.1, and the
triangle inequality that sup0≤t≤T ∥Rx(t)∥α ≤ sup0≤t≤T ∥x− x̂∥α+ sup0≤t≤T ∥x− x̃∥α, as well
as the result in Section 6.3.2, we then have

E sup
0≤t≤T

∥Ry(t)∥pα ≤ Cε2p. (6.59)

We then show the improved bound for E sup0≤t≤T ∥x̃(t)− x(t)∥p given the information of
E sup0≤t≤T ∥ỹ(t) − y(t)∥p other than using the triangle inequality that was used above. Note
that we can rewrite the solution to (6.9a) as

x(t) = x(0) +

∫ t

0

Aq
cx(σ)dσ +

∫ t

0

Fc(x(σ) + ỹ(σ))dσ +

∫ t

0

Gc(x(σ) + ỹ(σ))dWσ + R̃(t),

where the truncated error term is given as

R̃(t) =

∫ t

0

Aer
c x(σ)dσ +

∫ t

0

Fc(R
y(σ))dσ

+ 3

∫ t

0

Fc(x(σ) + ỹ(σ),Ry(σ),Ry(σ))dσ

+ 3

∫ t

0

Fc(x(σ) + ỹ(σ), x(σ) + ỹ(σ),Ry(σ))dσ

+

∫ t

0

[Gc(x(σ) + y(σ))−Gc(x(σ) + ỹ(σ))]dWσ.

(6.60)
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By the exact procedure from Lemma 6.3.7 to 6.3.11, we obtain the bound for the truncation
error R̃(t).

Proposition 6.3.15. Let the assumptions in Lemma 6.3.8 be satisfied. For any fixed time T > 0
and fixed p > 0, there exist some constant C > 0 such that

E sup
0≤t≤T

∥R̃(t)∥pα ≤ Cε2p. (6.61)

The improved version of Rx based on the truncated error R̃ is then

Rx(t) = R̃(t) +

∫ t

0

Aq
cR

x(σ)dσ

+

∫ t

0

Fc(x(σ) + ỹ(σ))dσ −
∫ t

0

Fc(x̃(σ) + ỹ(σ))dσ

+

∫ t

0

Gc(R
x(σ))dWσ.

(6.62)

We can define h̃ = Rx + R̃ as in Proposition 6.3.13, then

h̃(t) =

∫ t

0

Aq
c(h̃(σ)− R̃(σ))dσ +

∫ t

0

Fc(x̃(σ) + ỹ(σ) + h̃(σ)− R̃(σ))dσ

−
∫ t

0

Fc(x̃(σ) + ỹ(σ))dσ +

∫ t

0

Gc(h̃(σ)− R̃(σ))dWσ.

(6.63)

We proceed by the same argument as in Proposition 6.3.13 and obtain the second estimation in
(6.24) as

E sup
0≤t≤T

∥Rx(t)∥pα ≤ Cε2p, (6.64)

for each fixed T > 0 and p > 0.

6.4 Error Estimates for Invariant Measures

In this section, we estimate the error of the invariant measure for the approximated solutions
to (6.22). We proceed by taking advantages of the results from Section 6.3.

We first reiterate the bounded Lipschitz distance and the total variation distance as the
probability metrics on the space of probability measures. More details can be found in Appendix
E. Given the state space Hα, we denote by P(Hα) the space of probability measures.
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Definition 6.4.1. Let µ, ν ∈ P(Hα), the bounded-Lipschitz distance is defined by

∥µ− ν∥L := sup
∥h∥BL≤1

{∣∣∣∣∫
Hα

h(x)dµ(x)−
∫
Hα

h(x)dν(x)

∣∣∣∣} ,
where the bounded Lipschitz metric is defined by

∥h∥BL = ∥h∥∞ + sup
x ̸=y

|h(y)− h(x)|
∥y− x∥α

.

Definition 6.4.2. Let µ, ν ∈ P(Hα), the total variation distance is defined by

∥µ− ν∥TV := sup
∥h∥∞≤1

{∣∣∣∣∫
Hα

h(x)dµ(x)−
∫
Hα

h(x)dν(x)

∣∣∣∣} ,
where the uniform norm is defined by ∥h∥∞ := supx∈Hα

|h(x)|.

We also introduce bounded-Lipschitz distance with test functions being Lipschitz along the
directions of stable modes.

Definition 6.4.3. Let µ, ν ∈ P(Hα), we define

∥µ− ν∥L, s := sup
∥h∥BL, s≤1

{∣∣∣∣∫
Hα

h(x)dµ(x)−
∫
Hα

h(x)dν(x)

∣∣∣∣} ,
where the Lipschitz norm along the stable direction is defined by

∥h∥BL, s := ∥h∥∞ + sup
x ̸=y∈Hα | Pcx=Pcy

|h(x)− h(y)|
∥Psx− Psy∥α

.

Definition 6.4.4. Given a measure µ ∈ P(Hα), we denote P ∗
c µ by the marginal of µ on PcHα.

Remark 6.4.5. Based the above definitions, for any µ, ν ∈ P(Hα), we can verify that

∥µ− ν∥L ≤ ∥µ− ν∥L, s ≤ ∥µ− ν∥TV

and
∥P ∗

c µ− P ∗
c ν∥TV ≤ ∥µ− ν∥L, s .
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Note that by the assumptions in Section 6.1, both the solution u to the original equation and
its approximation ũ possess strong Markov property. We denote Tt by the transition semigroup
generated by ε−1u(ε−2t) and T̃t by the transition semigroup generated by ε−1ũ(ε−2t).

Let non-trivial measures µ (resp. ν) on B(Hα) satisfy the bounds on moments given in
Lemma 6.2.1, Lemma 6.2.6 and Proposition 6.3.2, i.e., for each p ≥ 1, there exists some C > 0
such that ∫

Hα

∥v∥pα µ(dv) ≤ Cεp, and
∫
Hα

∥Psv∥pα µ(dv) ≤ Cε2p. (6.65)

We aim to show a similar result as in [28, Theorem 5.2], i.e., for any t and ε ∈ (0, 1), there exist
constants C,C ′ and c > 0 such that∥∥∥T ∗

t µ− T̃ ∗
t ν
∥∥∥
L
≤ Ce−ct ∥µ− ν∥L + C ′ε2. (6.66)

Consequently, the non-trivial invariant measures µ⋆, ν⋆ for Tt and T̃t are bounded by

∥µ⋆ − ν⋆∥L ≤ C ′ε2. (6.67)

By Definition 6.4.1, we can rewrite the results in (6.24) as follows.

Proposition 6.4.6. Given any µ ∈ P(Hα) satisfying (6.65). Fixed a T > 0. Then, there exists a
constant C such that for all t ∈ [0, T ],∥∥∥T ∗

t µ− T̃ ∗
t µ
∥∥∥
L
≤ Cε2.

The following results are the dual version of Lemma 6.2.1, Lemma 6.2.6 and Proposition
6.3.2.

Proposition 6.4.7. Let µ ∈ P(Hα) satisfy (6.65). Then, for each p ≥ 1, there exists some C̃ > 0
such that, for each t > 0,∫

Hα

∥v∥pα T ∗
t µ(dv) ≤ C̃εp, and

∫
Hα

∥Psv∥pα T ∗
t µ(dv) ≤ C̃ε2p,

and ∫
Hα

∥v∥pα T̃ ∗
t µ(dv) ≤ C̃εp, and

∫
Hα

∥Psv∥pα T̃ ∗
t µ(dv) ≤ C̃ε2p.
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We now collect other ingredients to prove (6.66). Apart from the multiplicative noise, the
error estimate should fall in the same procedure as in the proof of [28, Theorem 5.2].

We show in the following lemma that transition semigroup Tt shows Feller property given
fixed critical modes. Note that the result is same as [28, Lemma 5.4] except that we need to
replace the noise by the multiplicative noise. We provide explicit proof for this case.
Lemma 6.4.8. Let µ, ν ∈ P(Hα). There exists a constant C > 0 such that, for each t > 0,

∥T ∗
t µ− T ∗

t ν∥L, s ≤ C(t−
1
2 + 1) ∥µ− ν∥L .

Proof. For any v ∈ Hα, we denote x = Pcv and y = Psv. Let U(t, v) := ε−1u(ε−2t) denote the
solution to (6.22) with initial condition v = x + y. We also define X(t, x) as the mild solution
of x(t) to (6.22a) with initial condition x; we define Y (t, y) in a similar way.
(1) We first show the growth rate of Ttψ along the critical subspace, i.e. DcTtψ, given test
functions satisfying ∥ψ∥BL, s ≤ 1, where Dc denotes the Fréchet derivative along the critical
subspace.

By [43, Lemma 9.33], the identity

ψ(U(t, v)) = Ttψ(v) +
∫ t

0

⟨DuTt−sψ(U(s, v)), G(U(s, v))dWs⟩ (6.68)

holds for any fixed t > 0, ξ ∈ Hα and test function ψ ∈ C2
b (Hα).

Multiply both sides of (6.68) by∫ t

0

⟨G−1
c (U(s, v))DxX(s, x)h, dWs⟩,

whereDxX(s, x)h is the directional derivative w.r.t. x along h. Then, we can show the following
modified version of Bismut–Elworthy–Li formula,

E

[
ψ(U(t, v))

∫ t

0

⟨G−1
c (U(s, v))DxX(s, x)h, dWs⟩

]
=E

[∫ t

0

⟨G∗(U(s, v))DuTt−sψ(U(s, v)), G−1
c (U(s, v))DxX(s, x)h⟩ds

]
=E

[∫ t

0

⟨DuTt−sψ(U(s, v)), P−1
c DxX(s, x)h⟩ds

]
=

∫ t

0

DcE[Tt−sψ(U(s, v))]hds

=

∫ t

0

Dc(TsTt−sψ(v))hds = tDcTtψ(v)h.

(6.69)
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For ψ ∈ C2
b (Hα), by (6.69), we have

|DcTtψ(v)h| ≤
1

t
∥ψ∥∞E

∣∣∣∣∫ t

0

⟨G−1
c (U(s, v))DxX(s, x)h, dWs⟩

∣∣∣∣
≤ Ĉ

t

(
E

∫ t

0

∥DxX(s, x)h∥2αds
) 1

2

,

(6.70)

where the constant Ĉ is obtained by ∥ψ∥∞ and the Lipshitz constant of G.
By the differentiablity of X(t, x) w.r.t. the initial condition along the critical subspace, we

can verify based on [43, Theorem 9.8] that the process ζh(t) := DxX(t, x)h is the unique mild
solution of{

dζh(t) = Aq
cζ
h(t)dt+Aer

c ζ
h(t)dt+DxFc(U(t, v)) · ζhdt+DxGc(U(t, v)) · ζhdWt

ζh(0) = h.
(6.71)

By the assumptions on F and G, using brute force as in the proof of [135, Lemma 2.5], we can
verify that for t, there exists some C̃ > 0 such that

E

∫ t

0

∥ζh(s)∥2αds ≤ C̃te2∥Ac∥αt.

Combining with (6.70), then there exists some C > 0 such that for any v ∈ Hα, the operator
norm

∥DcTt(ψ(v))∥ ≤ C√
t
.

Therefore,

|Ttψ(x+ y)− Ttψ(x̃+ y)| ≤ sup
v∈Hα

|Dc(Ttψ(v))(x− x̃)|

≤ C√
t
∥x− x̃∥α.

(6.72)

By a similar argument as in [135, Lemma 2.2], the inequality in (6.72) also holds for all ψ such
that ∥ψ∥BL, s ≤ 1.
(2) We then show the growth rate of Ttψ along the stable subspace given test functions satisfying
∥ψ∥BL, s ≤ 1. Note that As is a strong contraction, then ∥DyY (t, y)∥ ≤ 1 in the operator norm
for all y ∈ Hα. By the same procedure, we have

|Ttψ(x̃+ y)− Ttψ(x̃+ ỹ)| ≤ C∥y− ỹ∥α. (6.73)
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(3) Combining (6.72) and (6.73), by Definition 6.4.1, we have ∥Ttψ∥BL ≤ C( 1√
t
+ 1) for test

functions satisfying ∥ψ∥BL, s ≤ 1.
(4) By Definition 6.4.1, we have

∥T ∗
t µ− T ∗

t ν∥L, s = sup
∥ψ∥BL, s≤1

∣∣∣∣∫
Hα

Ttψ(x)dµ(x)−
∫
Hα

Ttψ(x)dν(x)
∣∣∣∣

≤ sup
∥φ∥BL≤1

sup
∥ψ∥BL, s≤1

∣∣∣∣∫
Hα

Ttψ(x)
φ(x)

φ(x)dµ(x)−
∫
Hα

Ttψ(x)
φ(x)

φ(x)dν(x)

∣∣∣∣
≤ sup

∥φ∥BL≤1

sup
∥ψ∥BL, s≤1

∥∥∥∥Ttψ(x)φ(x)

∥∥∥∥
Lip

∣∣∣∣∫
Hα

φ(x)dµ(x)−
∫
Hα

φ(x)dν(x)

∣∣∣∣
≤ C(t−1/2 + 1) ∥µ− ν∥L .

(6.74)

The following results repeat [28, Theorem 5.1]. We rephrase the statement and skip the
proof due to the identical procedure.

Theorem 6.4.9. [28, Thoerm 5.1]Let the assumptions in Section 6.1 be satisfied. There exists a
T > 0 such that

∥T ∗
T µ− T ∗

T ν∥L ≤ 1

2
∥µ− ν∥L + ε2

∫
Hα

(1 + ∥Psv∥α)(µ+ ν)dv

for any non-trivial µ, ν ∈ P(Hα).

Combining Theorem 6.4.9, Proposition 6.4.6 and 6.4.7, as well as Lemma 6.4.8, we can verify
(6.66) by the same procedure as in the proof of [28, Theorem 5.2]. In particular, we use the
following triangle inequality∥∥∥T ∗

t µ− T̃ ∗
t ν
∥∥∥
L
≤ ∥T ∗

t µ− T ∗
t ν∥L +

∥∥∥T ∗
t ν − T̃ ∗

t ν
∥∥∥
L

≤ ∥T ∗
t µ− T ∗

t ν∥L, s +
∥∥∥T ∗

t ν − T̃ ∗
t ν
∥∥∥
L
.

6.5 Summary

In this chapter, we verified the regularities of solutions to (6.1) under proper assumptions given
in Section 6.1. Then we proposed an approximation scheme (6.22) to the original system and
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investigated the error, including the error of transient solutions up to a fixed time T as well as
the distance between the invariant measures.

Unlike the finite-dimensional amplitude equation as in [27, Eq. (16)] as well as the am-
plitude equation obtained in Chapter 5 that are the limiting equations for the corresponding
infinite-dimensional dynamics, the purpose of the approximation scheme (6.22) is not to re-
duce dimension via homogenization. We do not cancel the coupling effects in the nonlinearies
(in Hc) and the multiplicative noise (in both Hc and Hs) so as to keep as much interaction
information between the critical and stable modes as in the original dynamics. This simpli-
fied scheme will finally be used along with the linearized equations to analyze the structural
changes in random attractors as the trivial solution loses its stability.

In particular, the proposed approximation scheme in (6.22) has the same linearization as
the original equation. By a careful multiscale analysis, we concluded that the errors of the
transient critical and stable solutions up to a fixed time T are of the same order as the error
generated by Aer

c , which indicates a sufficient accuracy to capture the local bifurcation. By the
same procedure as in [28], the invariant measure of (6.22) is also analyzed to be sufficient close
to the one of the original system.

It is worth mentioning that a rough approximation (6.35) of the amplitude equation was used
as an intermediate step to get the final error estimation. This equation cancels the random effect
of the stable modes completely and provides a worst-case scenario of how large the deviation
from the original solution could be. It will be shown in the next section that we cannot use
(6.35) as a local approximation to investigate the dynamical Hopf bifurcation due to its over-
simplified shape of the invariant measure for the stable modes, which is reduced to point mass
around 0.
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Chapter 7

Almost Sure Asymptotic Stability of
Scalar SPDEs with Multiplicative Noise
Close to Hopf Bifurcations

In this chapter, we investigate the almost-sure exponential asymptotic stability of the trivial so-
lution of an SPDE driven by multiplicative noise near the deterministic Hopf bifurcation point.
We show the existence and uniqueness of the invariant measure under proper assumptions,
and approximate the exponential growth rate via asymptotic expansion, given the strength of
the noise is small. We illustrate the results using a simplified stochastic Moore-Greitzer PDE
model with multiplicative noise.

As introduced in the previous chapter, the almost-sure asymptotic stability/instability at the
trivial solution is captured by the sign of the top Lyapunov exponent λ of the linearized system.
In particular, under proper conditions, for finite dimensional SDEs with coefficients dependent
on some parameter γ, if γ varies in a way that λ(γ) changes sign from negative to positive, the
trivial solution loses its almost-sure asymptotic stability and a nontrivial invariant measure is
formed [17]. Despite the fact that it is difficult to quantitatively describe the random invariant
manifolds and stochastic bifurcations for SPDEs driven by multiplicative noise [79, 156, 107, 37],
in terms of stability for infinite-dimensional case, the almost-sure stability of scalar stochastic
delay differential equation has been studied in [154].

As a necessary step to study the D-bifurcation (defined in [11]), we aim to investigate the
almost-sure asymptotic stability of the trivial solutions of SPDEs driven by small multiplicative
noise. In particular, we study the effect of multiplicative noise near the Hopf bifurcation point
γc of the unperturbed system. While it remains difficult to obtain the exact expressions for top
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Lyapunov exponents, we adopt a similar method as in [154] and find the asymptotic approxi-
mation of them. To be more precise, the multiscale analysis is conducted in the neighbourhood
of the deterministic bifurcation point γc, as the parameter γ slowly passes through γc (quasi-
static). For a fixed α ∈ (0, 1], we consider linear (linearized) SPDEs of the following general
form

du(t) = A(γ)u(t)dt+ ε(G(u(t))dW (t), u(0) = u0 ∈ Hα, γ ∈ R, (7.1)

where for each t, the state u(t) takes value in the fractional power subspace Hα of an infinite-
dimensional separable Hilbert space H = L2(E) for some boundedE ⊆ Rn. The notations and
assumptions keep the same as in Chapter 6.

Definition 7.0.1. For future reference, we also introduce the space Hα,s := PsHα, where Ps is
the stable projection as in Definition 6.1.3.

7.1 Stability Analysis of the Trivial Solution

In this section, we investigate the almost-sure asymptotic stability of the trivial solution 0, or
equivalently, the trivial invariant measure δ0, using multiscale techniques. We set γ = γc+ ε

2q
with some unfolding parameter q ∈ R, and introduce the notion of solution under re-scaled
space and time as follows, i.e. we introduce

z(t) = ε−1⟨h∗, u(ε−2t)⟩

and
z̄(t) = ε−1⟨h̄∗, u(ε−2t)⟩

as the complex amplitudes of the critical mode and y(t) = ε−1Psu(ε
−2t). Then the solution u

of (7.1) can be written as

u(t) = εz(ε2t)h+ εz̄(ε2t)h̄+ εy(ε2t).

We denote the real part and imaginary part of z as z1 = Re(z) and z2 = Im(z), respectively.
Note that when the system is close to the critical point, due to the existence of the spectral

gap, we decompose (7.1) into the re-scaled critical and fast-varying modes as follows:

dz = ε−2ρcczdt+ ρqczdt+ ⟨h∗, G(zh+ z̄h̄+ y)dWt⟩+ ρerc zdt,

dy = ε−2Asydt+Gs(zh+ z̄h̄+ y)dWt,
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or equivalently,

d

[
z1
z2

]
=

[
aqc −ε−2bcc − bqc

ε−2bcc + bqc aqc

] [
z1
z2

]
+

[
GR
c (zh+ z̄h̄+ y)

GI
c(zh+ z̄h̄+ y)

]
dWt +O(ε2), (7.2a)

dy = −ε−2Asydt+Gs(zh+ z̄h̄+ y)dWt, (7.2b)

where W (t) ∼ ε−1W (ε−2t)1 and

GR
c (u) =

Ĝ1(u) + Ĝ1(u)

2
, GI

c(u) =
Ĝ1(u)− Ĝ1(u)

2
; (7.3a)

Ĝ1(u)w := ⟨h∗, G(u)w⟩, ∀u ∈ Hα, ∀w ∈ V . (7.3b)

We impose the initial condition to (7.2) as z(0) = ε−1⟨h∗, u0⟩ and y(0) = ε−1Psu0.
The truncation error term O(ε2) in (7.2) comes from the transformation of ρerc zdt, whose

property has been verified in Proposition 6.1.7 and Lemma 6.3.7. We use the notation O(ε2) for
short to indicate its order of error after integration. By dropping the high order term O(ε2) in
the asymptotic expansion, we are able to verify the error between the transient solutions and the
error between the invariant measures in the same way as in Chapter 6. Due to the continuity of
the term O(ε2) in ε and the insignificant effect, to this end, we work on the following equation
to derive the first order approximation of the top Lyapunov exponent.

d

[
z1
z2

]
=

[
aqc −ε−2bcc − bqc

ε−2bcc + bqc aqc

] [
z1
z2

]
+

[
GR
c (zh+ z̄h̄+ y)

GI
c(zh+ z̄h̄+ y)

]
dWt, (7.4a)

dy = −ε−2Asydt+Gs(zh+ z̄h̄+ y)dWt. (7.4b)

7.1.1 TheFurstenberg–Khasminskii Formula for theTopLyapunovEx-
ponent

Let

p(t) =
1

2
ln(z21(t) + z22(t)), z1(t) = ep(t) cos(ϕ(t)), z2(t) = ep(t) sin(ϕ(t)) and ηt = e−p(t)yt,

where ϕ is the phase angle in the unit sphere S1 satisfying

z1 = |z| cos(ϕ), z2 = |z| sin(ϕ), ϕ = arctan

(
z2
z1

)
. (7.5)

1We abuse the notation as what we did in Chapter 6 to avoid redundancy.

211



Therefore, by Itô’s formula,
dp = aqcdt+ Ξ(ϕ, η)dt+ [GR

c (ϕ, η) cosϕ+GI
c(ϕ, η) sinϕ]dWt, (7.6a)

dϕ = (ε−2bcc + bqc)dt+ Γ(ϕ, η)dt−Gϕ
c (ϕ, η)dWt, (7.6b)

dη = ε−2Asηdt+Gs(ϕ, η)dWt, (7.6c)
where2

GR
c (ϕ, η) := GR

c (cos(ϕ)h+ sin(ϕ)h̄+ η), GI
c(ϕ, η) := GI

c(cos(ϕ)h+ sin(ϕ)h̄+ η),

Gs(ϕ, η) := Gs(cos(ϕ)h+ sin(ϕ)h̄+ η), Gϕ
c (ϕ, η) := GR

c (ϕ, η) sinϕ−GI
c(ϕ, η) cosϕ,

and

Ξ := −cos(2ϕ)

2
tr[GR

c (G
R
c )

∗ −GI
c(G

I
c)

∗](ϕ, η)− sin(2ϕ)

2
tr[GR

c (G
I
c)

∗ +GI
c(G

R
c )

∗](ϕ, η),

Γ :=
sin(2ϕ)

2
tr[GR

c (G
R
c )

∗ −GI
c(G

I
c)

∗](ϕ, η)− cos(2ϕ)

2
tr[GR

c (G
I
c)

∗ +GI
c(G

R
c )

∗](ϕ, η).

We also name Gp
c(ϕ, η) := GR

c (ϕ, η) cosϕ+GI
c(ϕ, η) sinϕ for future references.

The initial condition is such that p0 = p(0) = ln |z(0)|, ϕ0 = ϕ(0) = arctan
(
z2(0)
z1(0)

)
and

η0 = η(0) = e−p(0)y(0).
We also denote the drift term of (7.6a) as

Qq(ϕ, η) := aqc + Ξ(ϕ, η). (7.7)
Remark 7.1.1. Let a := tr[GR

c ] and b := tr[GI
c ] for some fixed (ϕ, η), then Ξ+ iΓ = −e−2iϕ(a+

bi)2.

Noticing that p(t) only depends on ϕ(t) and η(t), if there exists a unique invariant measure
µε for the product process (ϕ(t), η(t)) ∈ S1 ×Hα,s, the top Lyapunov exponent of ε−1u can be
determined by the Furstenberg–Khasminskii formula:

λq,ε = lim
t→∞

1

t
ln |z(t)|

=

∫
S×Hs

Qq(ϕ, η)µq,ε(dϕ, dη) =: ⟨Qq, µq,ε⟩.
(7.8)

Remark 7.1.2. Since in this section we do not vary q as what we do in the study of bifurcation
theory, to simplify the notation, we use λε, Q and µε instead.

2We abuse the notation G and recast the arguments as ϕ and η.
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7.1.2 Existence of Invariant Measure

Note that (7.6b) and (7.6c) are coupled via the multiplicative noise. The mutual dependence of ϕ
and η brings difficulty to study the explicit dependence of {ϕ(t)}t≥0 for the solution {η(t)}t≥0

to (7.6c) pathwisely. On the other hand, we are able to take the advantage of the compactness
of S1 and start with investigating the bounds for the stable marginals based on Assumptions
6.1.6 and 6.1.12.

Lemma 7.1.3. Let Assumptions 6.1.1, 6.1.6 and 6.1.12 be satisfied. For each arbitrarily small ε > 0,
there exists a C > 0 such that

sup
t≥0

E∥η(t)∥2α ≤ C.

Proof. Consider Yosida approximation As,n := nAs(nI − As)
−1 of As. We denote ηn by the

solution to
dηn = −ε−2As,nηndt+Gs(ϕ, ηn)dWt, ηn(0) = η(0).

Apply Itô’s formula to ∥ηn(t)∥2α, then

d∥ηn(t)∥2α =− 2ε−2⟨As,nηn(t), ηn(t)⟩αdt+ ∥Gs(ϕ(t), ηn(t))∥2L2
dt

+ 2⟨ηn(t), Gs(ϕ(t), ηn(t))dWt⟩α.

Taking the expectation, using the property of As,n and Gs, there exists an w > 0, w̃ > 0 and
C̃ > 0 such that for all t ≥ 0,

dE∥ηn(t)∥2α
dt

= E
{
−2ε−2⟨As,nηn(t), ηn(t)⟩α + ∥Gs(ϕ(t), ηn(t))∥2L2

}
≤ −2ε−2wE∥ηn(t)∥2α + ℓ2E| cos(ϕ(t)) + sin(ϕ(t))|2 + ℓ2E∥ηn(t)∥2α
≤ −w̃E∥ηn(t)∥2α + C̃

It follows from Gronwall’s inequality that E∥ηn(t)∥2α < C for every t ≥ 0 and some C > 0.
The conclusion follows by sending n to infinity.

Lemma 7.1.4. Let the assumptions in Lemma 7.1.3 be satisfied. Fix any T > 0 and any p ≥ 2.
For any initial condition η(0) ∈ Hα,s, there exists some C > 0 such that

E sup
0≤t≤T

∥η(t)∥pα ≤ ∥η(0)∥pα + Cεp.
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Proof. For any t ∈ [0, T ], the mild solution is given as

η(t) = eε
−2tAsη(0) +

∫ t

0

eε
−2(t−s)AsGs(ϕ(s), η(s))dWs. (7.9)

LetPsWG
A (t) :=

∫ t
0
eε

−2(t−s)AsGs(ϕ(s), η(s))dWs denote the stochastic convolution. The bound
for the stochastic convolution follows [43, Proposition 7.3]. Indeed, by Lemma 7.1.3, there exists
some C > 0 and C ′ > 0, such that∫ T

0

E∥Gs(ϕ(s), η(s))∥pL2(V,Hα)
ds ≤ C

∫ T

0

E∥ cos(ϕ(s)) + sin(ϕ(s)) + η(s)∥pαds < C ′ <∞.

Therefore Gs(ϕ(s), η(s)) is L2 predictable and there exists constants CT > 0 and C ′
T > 0 such

that

E sup
0≤t≤T

∥∥PsWG
A (t)

∥∥p
α
≤ εpCTE

(∫ t

0

∥Gs(ϕ(s), η(s)))∥pL2(V,Hα)
ds

)
≤ εpC ′

T , (7.10)

which implies that E sup0≤t≤T ∥η(t)∥pα ≤ ∥η(0)∥α + C ′
T ε

p.

For test functions f ∈ C2
b (S1 ×Hα,s), the transition semigroup of (7.6b) and (7.6c) is such

that Ttf = E[f(ϕ(t), η(t))|(ϕ, η)]. Based on the compactness of S1 and the above uniform
bounds for {η(t)}t≥0, the existence of invariant measure is guaranteed.

Proposition 7.1.5. Let the assumptions in Lemma 7.1.3 be satisfied. Then there exists an invariant
measure for the transition semigroup {Tt}t≥0 of (7.6b) and (7.6c).

Proof. Let L (·) denote the law of random variables on the canonical space generated by S1 ×
Hα,s. By Lemma 7.1.4 and the compactness of S1, it is straightforward to show that{

1

tn

∫ tn

0

L (ϕ(s), η(s))ds

}
forms a tight family of measure. The existence of invariant measure for {(ϕ(t), η(t))}t≥0 under
Tt follows by Krylov–Bogoliubov’s Theorem (along the same time sequence).

7.1.3 Transient Dissipativity of the Stable Modes

The following lemma shows the approximated dissipativity condition given any transient tran-
sitions.
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Lemma 7.1.6. Let the assumptions in Lemma 7.1.3 be satisfied. For each arbitrarily small ε > 0
and fixed ϕ ∈ S1, there exists w > 0 such that, for all η1, η2 ∈ Hα,s,

−2ε−2⟨As,n(η1 − η2), (η1 − η2)⟩α + ∥Gs(ϕ, η1)−Gs(ϕ, η2)∥2L1
≤ −ε−2w∥η1 − η2∥α,

where As,n is the Yosida approximation of As.

Proof. The conclusion can be obtained under the assumptions considering sufficiently small
ε > 0.

Remark 7.1.7. Note that by a similar approach as in [43, Theorem 11.30], we can verify that
for each ϕ ∈ S1, given initial condition η(0) = 0 a.s., there exists a unique random variable
ηϕ ∈ L2(Ω;Hα,s) on some probability space (Ω,F ,P) as ε−2t→ ∞.

Indeed, we can show it by shifting the time and letting ηϕ(−τ) = 0 for some τ > 0. We denote
the solution for any t ≥ τ by ηϕτ (t, 0), where the 0 is referred as the initial condition. Then it is
clear that the probability law of ηϕτ (0, 0) is the same as ηϕ(τ). By Lemma 7.1.6, we have the mean
square stability for each ϕ ∈ S1:

E∥ηϕτ (0, 0)− ηϕσ(0, 0)∥2α ≤MCe−ε
−2wτ , σ > τ.

The above inequality demonstrates that the Cauchy sequence in L2 is dominated byCe−ε−2ωτ , and
as ε−2τ → ∞, the limit ηϕ exits as a random variable in L2(Ω;Hα,s).

The following proposition shows the transient behavior of the transition along the Hs sub-
space.

Proposition 7.1.8. As ε→ 0, at each each t > 0, the marginal transition probabilityHt(· | ϕ, η)
of (7.6c) behaves like a measure νϕ(dη) on Hα,s that only depends on ϕ.

Proof. By Remark 7.1.7, for η(0) = 0 and each ϕ ∈ S1, there exists a unique limit ηϕ with
probability law νϕ(dη) as an L2 random variable as ε−2t → ∞. Note that as ε → 0, at each
t > 0, we have ε−2t→ ∞. Therefore, the marginal transition of η(t) is given as

Ht(dηt | ϕ, η) = Ht(dηt | ϕ, η)1{η=0}

≈ νϕ(dηt).
(7.11)

We now consider random initial distribution and let L (η(0)) = ν0. Since we haveE[η2(0)] <
∞, by a similar argument as Lemma 7.1.3, we can show that

lim
ε−2t→∞

E∥ηϕ,0(t)− ηϕ,ν0(t)∥2α = 0, ϕ ∈ S1, (7.12)
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where ηϕ,0(t) denotes the solution of (7.6b) with η(0) = 0 a.s. and ηϕ,ν0(t) denotes the solution
of (7.6b) with L (η(0)) = ν0 for some fixed ϕ. We aim to show that for any test function
f ∈ Cb(Hα,s), each of {ηϕ(t)}ϕ with an arbitrary initial distribution converges weakly to the
same limit point with probability law in {νϕ}ϕ for νϕ(dηt) := lim

ε−2t→∞
Ht(dηt | ϕ, η)ν0(dη), i.e.,∫

Hs

f(η(t))Ht(dηt | ϕ, η)ν0(dη) ε−2t→∞−−−−−→
∫
Hs

f(η(t))νϕ(dηt), ϕ ∈ S1. (7.13)

Following the approach in [42, Theorem 1], we can show that for each fixed ϕ,∣∣∣∣E[f(ηϕ,ν0(t))]− ∫
Hs

f(η)νϕ(dη)

∣∣∣∣
≤E

∣∣f(ηϕ,ν0(t))− f(ηϕ,0(t))
∣∣+ ∣∣∣∣E[f(ηϕ,0(t))]− ∫

Hs

f(η)νϕ(dη)

∣∣∣∣
=:I1(t) + I2(t)

(7.14)

where I2(t) → 0 as discussed above, I1(t) is arbitrarily small. Indeed,

I1(t) ≤ C ·P[∥η0∥α ≥ R] + E[1{∥η0∥α≤R} · f(ηϕ,ν0(t))− f(ηϕ,0(t))]

=: I3(t) + I4(t)
(7.15)

where the constant C in I3(t) is by the boundedness property of f . For arbitrary ς > 0, since
η0 ∈ L2(Ω;Hα,s), there exists R > 0 such that

P[∥η0∥α ≥ R] < ς.

We choose R based on an arbitrary small ς . Note that I4(t) is restricted in a compact subspace
and f becomes uniformly continuous, by the property of f and (7.12), I4(t) → 0 as ε−2t→ ∞.

We have seen that νϕ(dη) is unique w.r.t. each ϕ with arbitrary initial distribution ν0, in-
cluding δη. The statement hence follows.
Remark 7.1.9. Unlike the case in Chapter 5 where the linearized equations have no coupling
effects, we are not able to explicitly solve the invariant measure for {η(t)}t≥0 by considering the
transitions separately.

The above proposition only provides a view that the marginal transition along Hα,s quickly
forgets the initial point η for sufficiently small noise. In this view, we can represent an invariant
measure by a disintegrated form

µ(dϕ× dη) =

∫
S1×Hs

R(dϕ | ϕ, η)νϕ(dη)µ(dϕ× dη)

=: µ̃(dϕ)ν̃ϕ(dη).
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Note that µ̃(dϕ) and ν̃ϕ(dη) are difficult to solve explicitly. This, however, motivates us to deliver
an approximation in Section 7.2 of the invariant measure with the above disintegrated form.

7.1.4 Conditions on Uniqueness of Invariant Measure

We have seen in Section 7.1.3 that the disintegration measure νϕ(dη) along Hs uniquely exists
given any ϕ. Similarly, under condition thatGϕ

c (G
ϕ
c )

∗ ̸= 0 for all ϕ [91], for each η, the solution
of

dϕ = (ε−2bcc + bqc)dt+ Γ(ϕ, η)dt−Gϕ
c (ϕ, η)dWt (7.16)

admits a unique limit measure that is solved by the associated Fokker-Plank equation

dp

dϕ

(
ε−2bcc + bqc + Γ(ϕ, η)

)
+

1

2

d2p

dϕ2

[
Gϕ
c (G

ϕ
c )

∗] (ϕ, η) = 0, (7.17)

where p is the density function.
However, as discussed in Remark 7.1.9, it will not be enough to consider ergodicity or

uniqueness of invariant measure for {ϕ(t)}t≥0 and {η(t)}t≥0 separately. It is not sufficient to
only suppose the full-rank property of Gϕ

c . We hence impose a set of extra stronger conditions
to guarantee the uniqueness of the invariant measure.

Assumption 7.1.10. For any α ∈ (0, 1], we assume that the operator G(u) is invertible for each
u ∈ Hα \ {0}.

The above assumption plays a role as the Lie algebra condition to guarantee the uniqueness
of the {Tt}t≥0 for the coupled linearized system. It is equivalent to verify the non-singular
condition, i.e., we need G(u) to be bounded from below in the following sense:

⟨G(u)v, v⟩α ≥ m∥u∥α∥v∥, m > 0, v ∈ V . (7.18)

Combining with Assumption 6.1.12 and 6.1.6, it can be verified that G(u) is holomorphic on
Hα \ {0}.

7.2 Asymptotic Approximation of the Top Lyapunov Ex-
ponent

Motivated by Remark 7.1.9, we derive the asymptotic expansion of the invariant measure µε in
this section for the approximation of the top Lyapunov exponent. By [43, Theorem 9.25], we
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can show that for any test function f ∈ C2
b (S1 ×Hα,s), the quantity Ttf satisfies

lim
t↓0

Ttf(ϕ, η)− f(ϕ, η)

t
= Lq,εf(ϕ, η)

where
Lq,ε =

1

ε2
L0 + Lq

1, (7.19)

and
L0(·) =

[
bcc
∂

∂ϕ
+Asη

∂

∂η

]
(·)

Lq
1(·) =

[
(bqc + Γ(ϕ, η)

∂

∂ϕ

]
(·) + 1

2
tr

[
∂2(·)
∂η2

GsG
∗
s +

∂2(·)
∂ϕ2

Gϕ
c (G

ϕ
c )

∗
]
(ϕ, η)

Remark 7.2.1. To simplify the notation, we use Lε and L1 in stead of Lq,ε and Lq
1 in this section.

For any test function f ∈ C2(S1 ×Hα,s) one should have ⟨Lεf, µε⟩ = 0. We expand µε as

µε = µ0 + ε2µ1 +O(ε3), (7.20)

then, respectively on the level O(ε−2) and O(1),

⟨L0f, µ0⟩ = 0 (7.21a)
⟨L0f, µ1⟩ = −⟨L1f, µ0⟩ (7.21b)

We proceed to find the solutions to (7.21). Here we adopt a method similar to [154] to
evaluate the first order asymptotic expansion of the top Lyapunov exponent.

Proposition 7.2.2. µ0(dϕ× dη) = dϕ
2π
δ0(dη) is an ergodic measure for Eq.(7.21a).

Proof. Note that L0 behaves like deterministic: η(t) → 0 due to the stable semigroup generated
by As. Rigorously,

⟨L0f, µ0⟩ =
∫∫

S×Hs

bcc
∂f

∂ϕ

dϕ

2π
δ0(dη) +

∫∫
S×Hs

Asη
∂f

∂η
(ϕ, η)

dϕ

2π
δ0(dη)

=

∫
S
bcc
df(ϕ, 0)

2π
− 0 = 0.
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To solve (7.21b), we first calculate R.H.S. of (7.21b).

Lemma 7.2.3.

−⟨L1f, µ0⟩ =
∫
S

∂Γ(ϕ, η)

∂ϕ
(ϕ, 0)f(ϕ, 0)

dϕ

2π
−
∫
S

{
f(ϕ, η) tr[(DϕG

ϕ
c )(DϕG

ϕ
c )

∗]
}
η=0

dϕ

2π

− 1

2

∫
S

{ ∑
k,j∈Zs

[GsG
∗
s]kjf

′′
η (ϕ, η; ek, ej)

}
η=0

dϕ

2π
,

(7.22)

where [GsG
∗
s]kj := ⟨GsG

∗
sek, ej⟩, and f ′′

η (ϕ, η; ek, ej) is the Fréchet derivative w.r.t. η along ek
and ej .

Proof.

−⟨L1f, µ0⟩ =−
〈
[bqc + Γ(ϕ, η)]

∂

∂ϕ
f,

dϕ

2π
δ0(dη)

〉
− 1

2

〈
∂2f

∂ϕ2
tr[Gϕ

c (G
ϕ
c )

∗],
dϕ

2π
δ0(dη)

〉
− 1

2

〈
tr

[
∂2f

∂η2
GsG

∗
s

]
,
dϕ

2π
δ0(dη)

〉
=

∫
S

∂Γ(ϕ, η)

∂ϕ
(ϕ, 0)f(ϕ, 0)

dϕ

2π
−
∫
S

{
f(ϕ, η) tr[(DϕG

ϕ
c )(DϕG

ϕ
c )

∗]
}
η=0

dϕ

2π

− 1

2

∫
S

{ ∑
k,j∈Zs

[GsG
∗
s]kj

〈
∂2f

∂η2
ek, ej

〉}
η=0

dϕ

2π

=

∫
S

∂Γ(ϕ, η)

∂ϕ
(ϕ, 0)f(ϕ, 0)

dϕ

2π
−
∫
S

{
f(ϕ, η) tr[(DϕG

ϕ
c )(DϕG

ϕ
c )

∗]
}
η=0

dϕ

2π

− 1

2

∫
S

{ ∑
k,j∈Zs

[GsG
∗
s]kjf

′′
η (ϕ, η; ek, ej)

}
η=0

dϕ

2π

Observing the above, we try ansatz of the following form to match the R.H.S. of (7.21b):

µ1(dϕ× dη) =
dϕ

2π
κ(ϕ)δ0(dη) +

dϕ

2π

∂2δ0
∂η2

(χ(ϕ), h)(dη), (7.23)

where κ : S1 → R, χ : S1 → Hα,s, and an arbitrary h =
∑

k∈Zs
⟨h, ek⟩ek ̸= 0 (recall notation

Zs in Definition 6.1.4) that can make the calculation simple.
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Remark 7.2.4. The expression ∂2δ0
∂η2

(a, b)(dη) appears in the above ansatz is the measure on Hs

in the sense of directional distribution, where a and b are the directions. For Fréchet differentiable
test function f(ϕ, η), we define the Fréchet derivatives

f ′(ϕ, η; a) :=
∂f

∂η
(ϕ, η)(a) and f ′′(ϕ, η; a, b) :=

∂2f

∂η2
(ϕ, η)(a, b).

Then the distributional measure should satisfy〈
f(ϕ, η),

∂δ0
∂η

(a)(dη)

〉
=

〈
∂f

∂η
(ϕ, η)(a), δ0(dη)

〉
= −f ′(ϕ, 0; a),

and, likewise, 〈
f(ϕ, η),

∂2δ0
∂η2

(a, b)(dη)

〉
= f ′′(ϕ, 0; a, b).

Proposition 7.2.5. Let κ(ϕ) and χ(ϕ) be the notions in the ansatz (7.23). Let χk(ϕ) := ⟨χ(ϕ), ek⟩
for k ∈ Zs and choose h =

∑
k∈Zs

hkek ∈ Hα,s, where hk = 1
2|k|+2(1−ρk)

. Suppose κ(ϕ) solves

−ωc
∂κ

∂ϕ
(ϕ) =

∂Γ

∂ϕ
(ϕ, 0)− tr[(DϕG

ϕ
c )(DϕG

ϕ
c )

∗](ϕ, 0). (7.24)

and χk(ϕ) solves (
bcc
∂

∂ϕ
− ρk + 1

)
χk(ϕ) = −

∑
j∈Zs

{[GsG
∗
s]kj}η=0 (7.25)

for all k ∈ Zs. Then

µ1(dϕ, dη) =
dϕ

2π
κ(ϕ)δ0(dη) +

dϕ

2π

∂2δ0
∂η2

(χ(ϕ), h)(dη).

Proof. For test function f ∈ C1,2(S1 ×Hα,s), we have〈
L0f,

dϕ

2π
κ(ϕ)δ0(dη)

〉
=

〈[
bcc
∂

∂ϕ
+Asη

∂

∂η

]
(f),

dϕ

2π
κ(ϕ)δ0(dη)

〉
=−

∫
S

{
bcc
∂κ

∂ϕ
(ϕ)f(ϕ, η)

}
η=0

dϕ

2π

=

∫
S

∂Γ(ϕ, η)

∂ϕ
(ϕ, 0)f(ϕ, 0)

dϕ

2π

−
∫
S
f(ϕ, 0) tr[(DϕG

ϕ
c )(DϕG

ϕ
c )

∗](ϕ, 0)
dϕ

2π
.

(7.26)

220



For each k ∈ Zs,〈
L0f,

dϕ

2π

∂2δ0
∂η2

(χk(ϕ), h)(dη)

〉
=

〈
bcc
∂f

∂ϕ
+Asη

∂f

∂η
,
dϕ

2π

∂2δ0
∂η2

(χk(ϕ), h)(dη)

〉
=−

〈
∂δ0
∂η

(h)(dη), −f ′
η

(
ϕ, η; bcc

∂χk
∂ϕ

(ϕ)

)
dϕ

2π

〉
−
〈
∂δ0
∂η

(h)(dη), [f ′′
η (ϕ, η;Asη, χk(ϕ)) + f ′

η(ϕ, η;Asχk(ϕ))]
dϕ

2π

〉
=

〈
δ0(dη), −f ′′

η

(
ϕ, η; bcc

∂χk
∂ϕ

(ϕ), h)

)
dϕ

2π

〉
+

〈
δ0(dη), f

′′′
η (ϕ, η;Asη, χk(ϕ), h)

dϕ

2π

〉
+

〈
δ0(dη), [f

′′
η (ϕ, η;Ash, χk(ϕ)) + f ′′

η (ϕ, η;Asχk(ϕ), h)]
dϕ

2π

〉
=−

∫
S

{
f ′′
η

(
ϕ, η; (bcc

∂

∂ϕ
−As)χk(ϕ), h

)
− f ′′

η (ϕ, η;χk(ϕ),Ash)

}
η=0

dϕ

2π
.

(7.27)

By the hypothesis on χk(ϕ) and h, the last line of the above can be expanded as

−
∑
j∈Zs

(1− ρj)hj

∫
S

{
f ′′
η

(
ϕ, η; (bcc

∂

∂ϕ
−As)χk(ϕ), ej)

)
+ f ′′

η (ϕ, η;χk(ϕ), ej)

}
η=0

dϕ

2π

=− 1

2

∫
S

∑
j∈Zs

{[GsG
∗
s]kj}η=0 f

′′
η (ϕ, 0; ek, ej)

dϕ

2π

Combining this and (7.27), we have〈
L0f,

dϕ

2π

∂2δ0
∂η2

(χ(ϕ), h)(dη)

〉
= −1

2

∫
S

∑
k,j∈Zs

{[GsG
∗
s]kj}η=0 f

′′
η (ϕ, 0; ek, ej)

dϕ

2π
.

Thus, by Lemma 7.2.3, we have

⟨L0f, µ1⟩ = −⟨L1f, µ0⟩ ,
which completes the proof.

By solving (7.24) and (7.25), we are able to obtain the exact form of µ1 as in (7.23).
Given the assumptions on G, the terms ∂Γ

∂ϕ
and tr[(Gϕ

c )(G
ϕ
c )

∗], tr[(DϕG
ϕ
c )(Dϕ(G

ϕ
c )

∗] are
Lipschitz continuous in ϕ, the existence of solutions is guaranteed. Based on the differentiability
assumption of G, the solution to (7.24) is

κ(ϕ) = −Γ′(ϕ) +
1

2
tr[Gϕ

c (DϕG
ϕ
c )

∗ + (DϕG
ϕ
c )(G

ϕ
c )

∗](ϕ, 0) (7.28)
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Note that (7.25) can also be represented as(
bcc
∂

∂ϕ
−As + 1

)
χ(ϕ) = −

∑
k,j∈Zs

{[GsG
∗
s]kj}η=0 <∞,

since the operator on the L.H.S. is both unbounded in S and Hα,s, we have

χ(ϕ) = −
(
bcc
∂

∂ϕ
−As + 1

)−1 ∑
k,j∈Zs

{[GsG
∗
s]kj}η=0

well defined. For short, we let GR
k + iGI

k = −∑j∈Zs
{[GsG

∗
s]kj}η=0, then for each k ∈ Zs,

bcc
∂

∂ϕ

[
χRk
χIk

]
(ϕ)−

[
ak − 1 −bk
bk ak − 1

]
χk(ϕ) =

[
GR
k

GI
k

]
,

and

[
χRk
χIk

]
(ϕ) =

[
ak − 1 −bk
bk ak − 1

]−1(
eϑk
[
cos(wk) − sin(wk)
sin(wk) cos(wk)

]
−
[
GR
k

GI
k

])
(7.29)

is the solution, where ϑk := (ak−1)ϕ
bcc

and wk := (bk−1)ϕ
bcc

. Then

χ(ϕ) =
∑
k∈Zs

(χRk (ϕ) + iχIk(ϕ))ek.

Now that λε = ⟨Q, µε⟩ = ⟨Q, µ0⟩+ ε2⟨Q, µ1⟩+ r(ε), where r(ε) represents the remainder.
By a similar argument as [10, Section 3] and [154, Lemma 4.3], we show that r(ε) = O(ε3).

Proposition 7.2.6. For the generator Lε = 1
ε2
L0+L1, there exists functions F0, F1 on S1×Hα,s

and functions f̃0, f̃1 that are independent of S ×Hα,s, such that the sequence of Poisson equations

L0F0 = ζ − f̃0

L0F1 + L1F0 = −f̃1
(7.30)

are satisfied. As a consequence,

r(ε) = −ε3[⟨L1F1, µ
ε⟩+ ⟨L1(F0 + ε2F1), µ1⟩ − ⟨L1F1, µ0 + ε2µ1⟩]. (7.31)
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Given the boundedness supϕ,η{|L1F1|, |L1F0|} = C , we immediately have |r(ε)| < O(ε3).
Notice that in (7.24),

1

2
tr[Gϕ

c (DϕG
ϕ
c )

∗ + (DϕG
ϕ
c )(G

ϕ
c )

∗](ϕ, 0) = Γ(ϕ),

combining with µε, we have

λε =⟨Q, µ0⟩+ ε2⟨Q, µ1⟩+O(ε3)

=
1

2π

∫
S
Q(ϕ, 0)dϕ+

ε2

2π

∫
S
Q(ϕ, 0)κ(ϕ)dϕ

+
ε2

2π

∫
S
Q′′

(
ϕ, 0;

∑
k∈Zs

(χRk (ϕ) + χIk(ϕ))ek,
∑
k∈Zs

1

2|k|+2(1− ρk)
ek

)
dϕ

+O(ε3).

(7.32)

7.3 Example

We illustrate the main result in application to the simplified stochastic Moore-Greitzer PDE
model in the subspace H rather than the full space H . We replace the state variable d in (1.2)
by u to keep the notation consistent with this chapter.

To investigate the local exponential a.s. stability of u ∈ H under multiplicative noise, we
linearize the system for γ = γc + ε2q with some q ∈ R and concern the perturbation, then we
obtain

du(t) = [A(γc) + ε2qA′(γc)]u(t)dt+ εG(u(t)) · dWt. (7.33)
We recall that

A(γc) = [A+Dfue(γc)]|H =

(
ν

2

∂2

∂θ2
− 1

2

∂

∂θ
+ aψ′

c

)
K−1,

and
A′(γc) = (aψ′′

cΦc)K
−1,

where ψ′
c := ψ′

c(Φe(γc)) =
3ι
2M

[
1−

(
Φe(γc)

M
− 1
)2]

, ψ′′
c := ψ′′

c (Φe(γc)) = − 3ι
M2 (

Φe(γc)
M

− 1) and

Φc = Φ′
e(γc).

We consider a special case when V = H, then the periodic cylindrical Wiener process is
such that

W =
∑
k∈Z+

(βk + iβ−k)ek +
∑
k∈Z−

(β−k − iβk)ek,
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where {βk} are i.i.d. Ft-Brownian motions. Let G(u) be such that

G(u)h =
∑
k∈Z0

⟨e∗k, uQ1/2h⟩ek,

where Q is a trace-class operator with eigenvalues qk = |k|−(4α+1) for α > 0. It can be verified
that G(u) is a Hilbert-Schmidt operator satisfying Assumption 6.1.12.

Note that
aqc =

a

1 + am
ψ′′
cΦc, b

c
c =

1

2a
, bqc = 0,

and the eigenvalues of As(γc) + ε2qAs(γc) are given below:

ρk =
a|k|

|k|+ am

(
ψ′
c −

vk2

2a
+ ε2q

a|k|
|k|+ am

ψ′′
cΦc

)
+ i

|k|
2a
,

and for k ∈ Zs, ψ′
c =

vk2

2a
. We recast the critical mode of the abstract linear equation as in (7.2a),

then
GR
c (u)· =

∑
k∈Z+

√
qk+1

u−k⟨e−k−1, ·⟩+ uk⟨ek+1, ·⟩
2

and
GI
c(u)· =

∑
k∈Z+

√
qk+1

u−k⟨e−k−1, ·⟩ − uk⟨ek+1, ·⟩
2

,

where uk = ⟨e−k, u⟩. Consequently,

Ξ(ϕ, 0) = −sin(2ϕ)

2
q2, Γ(ϕ, 0) = −cos(2ϕ)

2
q2, Q(ϕ, 0) = aqc − Ξ(ϕ, 0).

We also have
∑

j∈Zs
{[GsG

∗
s]kj}η=0 =

qk
2
, ∀k ∈ Zs \ {±2} and

∑
j∈Zs

{[GsG
∗
s]kj}η=0 = 0 for

k = ±2. Therefore,

λε =
aqc
2π

+
ε2

2π

∫
S
Q′′

(
ϕ, 0;

∑
k∈Zs

(χRk (ϕ) + χIk(ϕ))ek,
∑
k∈Zs

1

2|k|+2(1− ρk)
ek

)
dϕ+O(ε3),

(7.34)

The second term is negative by the above calculation of χk. However, since
∫ 2π

0
Ξ(ϕ, 0)dϕ

2π
= 0

in this special case, the multiplicative noise does not stabilize the system given small values of
ε.
Remark 7.3.1. Note that

∫ 2π

0
Ξ(ϕ, 0)dϕ

2π
cannot generally be expected to be 0. However, in our

special case, we have set such that the basis of V ∋ W is exactly the same as H, the term Ξ is
averaged out to be 0 by the invariant measure.
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7.4 Summary

In this chapter, we provide for the first time a derivation of an asymptotic expansion for the
top Lyapunov exponent for SPDEs with multiplicative noise when the parameter moves slowly
through the deteriministic Hopf bifurcation point. Instead of obtaining a dimension reduction
using homogenization, the formula of top Lyapunov exponent was provided explicitly. We
prove the existence of invariant measure on the product space of the unit sphere and the stable
mode, and show the conditions for ergodicity. The disintegrated form of invariant measure as
in Remark 7.1.9 explains the long term dependence of the stable marginals on the unit sphere
of the critical mode. However, since it is difficult to solve, we derive an asymptotic expansion
of the invariant measure of the disintegrate form and apply it in the Furstenberg–Khasminskii
formula for the top Lyapunov exponent. The derived formula is illustrated in an example of a
simplified stochastic Moore-Greitzer PDE model with multiplicative noise.
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Chapter 8

Stochastic Hopf Bifurcations of
Semilinear SPDEs with Small
Multiplicative Noise

We have seen in Chapter 6 that, under certain proper hypothesis, in the neighborhood of the
critical point γc, a semilinear SPDE with a cubic nonlinearity can be approximated by an SPDE
with linear (linearized) stable dynamics whilst the critical modes keep the same form. The
approximated invariant measure generates a relatively small error of order O(ε2). We will take
advantages from this approximation to build a connection between the fully linearized equation
(7.1) or (7.4) to see how the change of the almost-sure stability of δ0 can affect the long-term
behavior of the amplitude of the critical modes within R2 \ {0}.

Due to the coupling effect in the linearized equation and the nonlinear equation, the critical
mode itself is not a Markov process. Hence, it is not sufficient to consider an invariant measure
only for the critical mode regardless of its dominant amount of mass. However, we can study
the changes of marginal distribution of the critical mode by looking at the invariant measure
for the joint process (z̃, ỹ). In particular, we would like to use the information from the mo-
ment Lyapunov exponent and its derivatives to quantify the recurrence (resp. null-recurrence)
property in (R2 \ {0})×Hα,s when the sign of λq,ε becomes positive (resp. 0).

The noncompactness of the support of the stable marginal distribution brings difficulties
when constructing the invariant measure using the Lyapunov exponents and moment Lya-
punov exponents for the joint process (z̃, ỹ). However, based on the analysis in Chapter 6,
given the strongly exponential stability of the stable semigroup, the marginal ỹ only possesses
a petite amount (of order O(ε2)) of probability in the tail of Hα,s (recall Definition 7.0.1). We
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take this advantage and consider an approximate result on S1×Hn
α,s, where Hn

α,s is a truncated
bounded domain Hn

α,s := {y ∈ Hα,s : ∥y∥α < n} ⊂ Hα,s, for some sufficiently large n.
As a consequence, the expected time spent within a deleted neighborhood of 0 ∈ R2 before

exiting some small ball with larger radius r is utilized to construct the invariant measure on
(R2 \ {0}) × Hn

α,s. We show that, as ε → 0, the regularity of the marginal measure on R2 \
{0} with reasonably good accuracy as well as the approximate bifurcation diagram can be
developed.

The notations and assumptions keep the same as Chapter 6 and 7. We revisit (6.22) and
consider the amplitude z̃ of x̃ in (6.22)

dx̃ = Aq
cx̃dt+ Fc(x̃+ ỹ)dt+Gc(x̃+ ỹ)dWt,

dỹ = ε−2Asỹdt+Gs(x̃+ ỹ)dWt,

where z̃ = ⟨h∗, x⟩ and, consequently, x̃ = z̃h+ ¯̃zh̄. We denote the real part and imaginary part
of z̃ as z̃1 = Re(z̃) and z̃2 = Im(z̃). Similar to (7.4), we convert (6.22) into dynamics of z̃1, z̃2,
and ỹ as follows,

d

[
z̃1
z̃2

]
=

[
aqc −ε−2bcc − bqc

ε−2bcc + bqc aqc

] [
z̃1
z̃2

]
+

[
FR
c (z̃h+ ¯̃zh̄+ ỹ)
F I
c (z̃h+ ¯̃zh̄+ ỹ)

]
+

[
GR
c (z̃h+ z̄h̄+ ỹ)

GI
c(z̃h+ ¯̃zh̄+ ỹ)

]
dWt,

(8.1a)
dỹ = −ε−2Asỹdt+Gs(z̃h+ ¯̃zh̄+ ỹ)dWt, (8.1b)

where

FR
c (u) =

F̂1(u) + F̂1(u)

2
, F I

c (u) =
F̂1(u)− F̂1(u)

2
; (8.2a)

F̂1(u)w := ⟨h∗, F (u)⟩, ∀u ∈ H. (8.2b)

We also name F̃ (z̃1, z̃2, ỹ) := [FR
c , F

I
c ](z̃h+ ¯̃zh̄+ ỹ) for simplicity. The linearized equation (7.4)

is given as below with a new numbering.

d

[
z1
z2

]
=

[
aqc −ε−2bcc − bqc

ε−2bcc + bqc aqc

] [
z1
z2

]
+

[
GR
c (zh+ z̄h̄+ y)

GI
c(zh+ z̄h̄+ y)

]
dWt, (8.3a)

dy = −ε−2Asydt+Gs(zh+ z̄h̄+ y)dWt. (8.3b)

Definition 8.0.1 (Notation). We make the following clarifications.

(1) Since we intend to investigate the bifurcation behaviors and particularly the change marginal
distribution of the critical modes subjected to the changes of q and ε, we denote the solutions
to (8.1a) and (8.3a), respectively, as z̃q,ε and zq,ε to explicitly indicate the dependence.
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(2) We denote the solutions to (8.1b) and (8.3b) respectively as ỹε and yε due to their strong
stability regardless of q.

(3) The top Lyapunov exponent will be denoted as λq,ε instead of the shorthand notation λε.

(4) The associated generator of (8.1) and (8.3) are denoted by L̃q,ε
u and TuL

q,ε, respectively.

(5) We recall that the generator for the (p, ϕ, η)-coordinate expression of the linearized sys-
tem, as in (7.6), is denoted by Lq,ε and was defined in (7.19).

(6) If the dependence on q or ε is not emphasized, we cancel the superscript accordingly.

The generator Lq,ε will be used as an intermediate step to study the properties of TuL
q,ε,

and hence the properties of L̃q,ε
u .

The main proof in this chapter deals with construction of suitable Lyapunov type functions
that are bounded away from 0 and ∞. In order to control the growth of these Lyapunov type
functions, which are related to the eigenvalue problem associated with the moment Lyapunov
exponent, we define a bounded subdomain below:

Definition 8.0.2. For each n that is not dependent on ε, we define

(1) A bounded subdomain of Hn
α,s (w.r.t. ∥ · ∥α for some fixed α ∈ (0, 1]) as

Hn
α,s := {y ∈ Hα,s : ∥y∥α < n}, (8.4)

where Hα,s is given in Definition 7.0.1.

(2) The stopping time τn to be the corresponding first exit time of Hn
α,s.

(3) The stopped processes, for (8.1) and (8.3) respectively, as

(z̃q,ε,τn , ỹε,τn) := {(z̃q,ε(t ∧ τn), ỹε(t ∧ τn)}t≥0

and
(zq,ε,τn , yε,τn) := {(zq,ε(t ∧ τn), yε(t ∧ τn)}t≥0.

Given y ∈ Hn
α,s, it can be verified that Pz,y[τn > 0] ≡ 1 and Pz,y,ε[τn = ∞] → 1 as ε → 0

for any q ∈ R. Furthermore, to ensure that the above mentioned eigenvalue problem is well
defined, we work with function spaces with nice properties.
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Definition 8.0.3. For continuous functions h : S1×Hn
α,s → R, we define the bounded Liptshcitz

metric as

∥h∥BL = ∥h∥∞ + sup
(ϕ,x)̸=(ϕ,y)

|h(ϕ, y)− h(ϕ, x)|
∥y− x∥α

.

For continuous mapping H : S1 × Hn
α,s → L(Hn

α,s;R), where L denotes the space of linear
bounded operators, we define the bounded Liptshcitz metric as

∥H∥BL = sup
(ϕ,η)∈S1×Hn

α,s

∥H(ϕ, η)∥L(Hn
α,s;R) + sup

(ϕ,x) ̸=(ϕ,y)

∥H(ϕ, y)−H(ϕ, x)∥L(Hn
α,s;R)

∥y− x∥α
.

The ∥·∥BL metrics are defined in a similar way for continuous mappings H : S1 × Hn
α,s →

Lk(∏kHn
α,s;R) with k ≥ 2.

Definition 8.0.4. We define Ck
BL(S1 ×Hn

α,s;R) as a subspace of Ck(S1 ×Hn
α,s;R) with norm

∥h∥Ck := ∥h∥BL +
k∑
i=1

∥D(i)
ϕ h∥∞ +

k∑
i=1

∥∥D(i)
η h
∥∥
BL
, h ∈ Ck

BL(S1 ×Hn
α,s;R).

Assumption 8.0.5. To this end, we suppose Assumption 6.1.6, 6.1.12 and 7.1.10 are satisfied. In
addition, we assume that for any A ∈ B((R2 \{0})×Hn

α,s), and any (z, y) ∈ (R2 \{0})×Hn
α,s

there exists a t ∈ (0,∞), such that Pz,y,ε[(z̃q,ε(t ∧ τn), ỹε(t ∧ τn)) ∈ A] > 0.

8.1 Moment Lyapunov Exponents and Approximations

8.1.1 Moment Lyapunov Exponents and the Approximate Eigenvalue
Problems

Let (Ω,F ,P) be the probability space. The moment Lyapunov exponent, which controls the
pth-moment stability of (8.3), is given as

Λq,ε(p) = lim
t→∞

1

t
logE|zq,ε(t)|p (8.5)

Recall from (7.6) that

log |zq,ε(t)| = p(t) = p(0) +

∫ t

0

Qq(ϕ(s), η(s))ds+

∫ t

0

Gp
c(ϕ(s), η(s))dWs,
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and hence, for zq,ε(0) = z0,

|zq,ε(t)|p = |z0|p exp
{
p

∫ t

0

Qq(ϕ(s), η(s))ds+ p

∫ t

0

Gp
c(ϕ(s), η(s))dWs

}
.

We attempt to define a continuous semigroup {T q,ε
t (p)}t≥0 on S1 ×Hα,s by

T q,ε
t (p)f(ϕ, η)

:=Eϕ,η

[
f(ϕ(t), η(t)) exp

{
p

∫ t

0

Qq(ϕ(s), η(s))ds+ p

∫ t

0

Gp
c(ϕ(s), η(s))dWs

}]
,

with test functions f ∈ C2
b (S1 ×Hα,s).

However, the operator G(u) is assumed to be linear in u and hence unbounded in the di-
rection of y ∈ Hα,s. Consequently, {T q,ε

t (p)}t≥0 is not bounded w.r.t. η and hence not a well-
defined semigroup. To fix this problem, we consider a bounded open domainHn

α,s, as introduced
in Definition 8.0.2, for arbitrarily large n that is not dependent on ε. Now we define the process
{zq,ε,τn(t)}t≥0 as

log |zq,ε,τn(t)| = p(0)+

∫ t

0

Qq(ϕ(s∧τn), η(s∧τn)))ds+
∫ t

0

Gp
c(ϕ(s∧τn)), η(s∧τn)))dWs, (8.6)

define the moment Lyapunov exponent of zq,ε,τn as

Λq,ε
n (p) = lim

t→∞

1

t
logE|zq,ε,τn(t)|p, (8.7)

and the semigroup

T q,ε
t,n (p)f(ϕ, η) :=

Eϕ,η

[
f(ϕ(t ∧ τn), η(t ∧ τn)) exp

{
p

∫ t

0

Qq(ϕ(s ∧ τn), η(s ∧ τn))ds

+p

∫ t

0

Gp
c(ϕ(s ∧ τn), η(s ∧ τn))dWs

}]
,

(8.8)

for f ∈ C2(S1 × Hn
α,s). Then for each fixed n, we have lim

t→∞
1
t
log T q,ε

t,n (p)1(ϕ, η) = Λq,ε
n (p) as

ε→ 0 for all p.
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Remark 8.1.1. Note that for any t ≥ 0 and (ϕ, η) ∈ S1 ×Hn
α,s, by Lemma 7.1.4, we have

Pϕ,η[τn ≤ t] = Pϕ,η

[
sup
0≤s≤t

∥η(s)∥α ≥ n

]
≤ Eϕ,η[sup0≤s≤t ∥η(s)∥pα]

np

≤ ∥η∥pα +O(εp)

np
=: ϑεn(p), ∀p ≥ 2.

(8.9)

Therefore, as ε → 0, for sufficiently large p, we have ϑεn := ϑεn(p) ≪ 1 arbitrarily small. Conse-
quently, the event {τn > t} carries a probability close to 1 for each t.

In addition, the probability law of {(ϕ(t ∧ τn), η(t ∧ τn))}t≥0 agrees with the probability law
of {(ϕ(t), η(t))}t≥0 on S1 × Hn

α,s until τn whenever (ϕ, η) ∈ S1 × Hn
α,s. In view of Proposition

7.1.5, the invariant probability measure µq,ε
n for {(ϕ(t∧ τn), η(t∧ τn))}t≥0 is the the weak limit of{

1

tk

∫ tk

0

L (ϕ(s ∧ τn), η(s ∧ τn))ds
}

as tk → ∞, i.e.
1

tk

∫ tk

0

L (ϕ(s ∧ τn), η(s ∧ τn))ds ⇀ µq,ε
n . (8.10)

On the other hand, for each sufficiently large tk and for all A ∈ B(S1 ×Hn
α,s),

1

tk

∫ tk

0

L (ϕ(s), η(s))(A)ds =
1

tk

[∫ tk

0

L (ϕ(s ∧ τn), η(s ∧ τn))(A) ·P[τn > tk]ds

]
=

1

tk

[∫ tk

0

L (ϕ(s ∧ τn), η(s ∧ τn))(A)
]
(1− ϑεn)

and hence

−Cϑεn ≤ 1

tk

∫ tk

0

L (ϕ(s), η(s))(A)ds− 1

tk

∫ tk

0

L (ϕ(s ∧ τn), η(s ∧ τn))(A) ≤ Cϑεn. (8.11)

As tk → ∞, the above indicates that |µq,ε(A)− µq,ε
n (A)| = O(ϑεn) for all A ∈ B(S1 ×Hn

α,s).

Lemma 8.1.2. For all t > 0 and p ∈ R, the infinitesimal generator of {T q,ε
t,n (p)}t≥0 is given by

Lq,ε
p = Lq,ε + pX+ pQq +

p2

2
R, dom(Lq,ε

p ) = C2(S1 ×Hn
α,s), (8.12)

where Lq,ε is the generator of processes {(ϕ(t), η(t))}t≥0 (on the truncated domain (S1 × Hn
α,s))

with (ϕ(0), η(0)) ∈ S1 × Hn
α,s in (7.6), the quantities X and R are continuous on S1 × Hn

α,s

satisfying X(ϕ, η) = 1
2
tr[Gp

c(G
ϕ
c )

∗ +Gϕ
c (G

p
c)

∗](ϕ, η) and R(ϕ, η) = tr[Gp
c(G

p
c)

∗](ϕ, η).
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Proof. The proof falls in a standard procedure as in [7, Lemma 2.3]. We just show the sketch.
We first define a new measure Q using Girsanov’s theorem by

dQ

dP

∣∣∣∣
Ft

= exp

{
p

∫ t

0

Gp
c(ϕ(s ∧ τn), η(s ∧ τn))dWs −

p2

2

∫ t

0

R(ϕ(s ∧ τn), η(s ∧ τn))ds
}
,

Then, under the new measure Q, for some valid test function f ∈ C2(S1 ×Hn
s ), we have

T q,ε
t,n (p)f(ϕ, η)

=Eϕ,η
Q

[
f(ϕ(t ∧ τn), η(t ∧ τn)) exp

{∫ t

0

[pQq(ϕ(s ∧ τn), η(s ∧ τn))ds

+
p2

2
R(ϕ(s ∧ τn), η(s ∧ τn))

]
ds

}]
.

Note that the generator determines a limit behavior when t → 0. Since P[τn > 0] = 1,
when t → 0, by the Feynman-Kac formula [60], the generator w.r.t. the measure Q is given as
Aq,ε + pQq + p2

2
R, where Aq,ε is the generator of the process {ϕ(t), η(t)}t≥0 for (ϕ(0), η(0)) ∈

S1 × Hn
α,s. By Girsanov’s theorem, for (ϕ(0), η(0)) ∈ S1 × Hn

α,s, the generator Aq,ε of the
process {ϕ(t), η(t)}t≥0 w.r.t. the original measure P is converted to Lq,ε + pX. Combining the
above, the result can be obtained.

Remark 8.1.3. Note that Lq,ε
p is analytic w.r.t. p on the subdomain S1 ×Hn

α,s.

Therefore, for each p, if {T q,ε
t,n (p)}t≥0 is irreducible, positive, and compact fromE ⊆ C2(S1×

Hn
α,s) to E, then there exists a strictly positive zq,εp,n ∈ E ⊆ C2(S1 × Hn

α,s) such that T q,ε
t,n (p)1

converges to ⟨µq,ε
p,n, 1⟩zq,εp,n as t→ ∞, which is equal to exp{tΛq,ε

n (p)}zq,εp,n. The consequences are
further summarized in Lemma 8.1.6.

Remark 8.1.4. Note that, by letting Yt = f(ϕ(t ∧ τn), η(t ∧ τn)) and

Zt = exp

{∫ t

0

[
pQq(ϕ(s ∧ τn), η(s ∧ τn))ds+

p2

2
R(ϕ(s ∧ τn), η(s ∧ τn))

]
ds

}
,

we have T q,ε
t,n (p)f(ϕ, η) = Eϕ,η

Q [YtZt], whereQ is the same measure generated by Girsanov’s trans-
formation as in the proof of Lemma 8.1.2. Given f ∈ Ck

BL(S1×Hn
α,s) and the Lipschitz continuity

of Q and R in η, let Y(t, y) represent the solution of η(t∧ τn) with initial condition η(0) = y, we
have T q,ε

t,n (p)f(ϕ, η) ≤ LEϕ,η
Q [DyY(t, y)η · exp{

∫ t
0
DyY(s, y)ηds}]. Since ζη(t) := DyY(t, y)η

uniquely solves (6.71), applying Itô’s formula to ζη and checking its boundness in moments by
brute force in a similar way as [135, Lemma 2.5], we can verify thatEϕ,η

Q [ζη(t) exp{
∫ t
0
ζη(s)ds}] ≤

C∥η∥α, which implies the Lipschitz continuity of T q,ε
t,n (p)f(ϕ, η) in η.
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For future references, the zq,εp,n is introduced to construct Lyapunov-like functions on the
Cartesian coordinates (z, y) of the form |z|p · zq,εp,n(ϕ(z), y/|z|) and estimate the up-crossing
behaviors of the radius |z̃q,ε,τn| near 0 regardless the value of (ϕ(z̃q,ε,τn), ỹε,τn/|z̃q,ε,τn|). For this
purpose, we directly work with the precompact subspaceE := Ck

BL(S1×Hn
α,s)with sufficiently

large k ∈ N to ensure uniform bounds for zq,εp,n(ϕ, η) and for its derivatives. It suffices to show
the irreducibility, positiveness1 of the semigroup {T q,ε

t,n (p)}t≥0.

Proposition 8.1.5. For each p, the semigroup {T q,ε
t,n (p)} is irreducible and positive at each t ≥ 0.

Proof. Note that a linear operator T : E → E is positive if Tf ≥ 0 whenever f ∈ E and f ≥ 0.
It is clear from the definition of {T q,ε

t,n (p)}t≥0 that, for each t ≥ 0 and p, given f ∈ C2(S1×Hn
α,s)

and f ≥ 0, we have T q,ε
t,n (p)f ≥ 0. The positiveness follows.

To show the irreducibility, we rely on the assumptions given in the statement. We aim to
verify that for each 0 < f ∈ C2S1 × Hn

α,s) and each strictly positive µ in the dual space of
C2(S1 ×Hn

α,s) (which is the space Borel measure on B(S1 ×Hn
α,s)), there exists a t ∈ (0,∞)

such that
⟨µ, T q,ε

t,n (p)f⟩ > 0.

It is clear that the irreducibility of {T q,ε
t,n }t≥0 (for p = 0) is guaranteed by the assumptions,

i.e., given any µ-measurable set Γ ∈ B(S1 × Hn
α,s), there exists a positive time t such that

Pϕ,η[(ϕ(t), η(t)) ∈ Γ] > 0 for any (ϕ, η) ∈ Γ. Since for ε ≪ 1, Pϕ,η[τn > t] → 1, we also have
Pϕ,η[(ϕ(t ∧ τn), η(t ∧ τn)) ∈ Γ] > 0 for some t given any initial point.

It can be easily verified that, for each Γ ∈ B(S1 ×Hn
α,s) and each strictly positive µ, there

exists a time t ∈ (0,∞) such that

⟨1Γ, T q,ε
t,n (p)

∗µ⟩ > 0. (8.13)

Since f(S1×Hn
α,s) is bounded subset in R, we can find a finite open converingG1, G2, · · · , Gn

for the range of f in R with arbitrarily small diameter ϵ > 0. We slice the set ∪niGi into disjoint
subsets by defining A1 = G1 and Ak = Gk \ (∪k−1

i=1Gi). Let Γk = f−1(Ak), then we can
approximate f as a simple functions with finite summation fϵ =

∑n
k=1 ak1Γk

. Thus, by (8.13),
we can immediately verify that, given an arbitrary valid f and ϵ > 0, we have

⟨f, T q,ε
t,n (p)

∗µ⟩ − ς(ϵ) < ⟨fϵ, T q,ε
t,n (p)

∗µ⟩ < ⟨f, T q,ε
t,n (p)

∗µ⟩+ ς(ϵ),

where ς(ϵ) is generated by the evaluation of inner product (integral) and is continuous w.r.t. ϵ.
We set ϵ arbitrarily small such that ⟨f, T q,ε

t,n (p)
∗µ⟩ − ς(ϑ) > 0, which concludes the proof.

1These standard definitions will be provided in the proofs of such properties.
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We now summarize the result in view of the generator Lq,ε
p of {T q,ε

t,n (p)} as follows.

Lemma 8.1.6. For any compact interval that contains p, there exists a constant K ∈ (0,∞),
such that there exists a strictly positive sufficiently smooth function zq,εp,n : S1 × Hn

α,s → R with
1
K

≤ ∥zq,εp,n∥C2 ≤ K and zq,ε0,n ≡ 1 for all ε≪ 1 sufficiently small, and satisfying

(1)
Lq,ε
p zq,εp,n = Λq,ε

n (p) · zq,εp,n, ⟨zq,εp,n, µq,ε
p,n⟩ = 1. (8.14)

Moreover, by differentiating both sides of the eigenvalue problem in (8.14), and taking the appro-
priate scalar product with µq,ε

p,n, we have the following set of equations and associated solvability

conditions for φq,ε
n =

∂zq,εp,n

∂p

∣∣∣
p=0

and ψq,ε
n =

∂2zq,εp,n

∂p2

∣∣∣
p=0

:

(2) Lq,εφq,ε
n = λq,εn −Qq + ϑq,ε

n , with ∥φq,ε
n ∥C2 ≤ K and

λq,εn = ⟨µq,ε
n ,Qq⟩ = ⟨µq,ε,Qq⟩ ± ϑq,ε

n = λq,ε ± ϑq,ε
n

for and some smallness ϑq,ε
n . The quantity µq,ε

n is an approximate invariant probability mea-
sure with the weak limit µq,ε as ε→ 0.

(3) Lq,εψq,ε
n = V q,ε

n − 2(X+Qq − λq,εn )φq,ε
n −R, where V q,ε

n = d2Λq,ε
n (p)
dp2

∣∣∣
p=0

, ∥ψq,ε
n ∥C2 ≤ K

and
V q,ε
n = 2⟨µq,ε

n , (X+Qq − λq,εn )φq,ε
n ⟩+ ⟨µq,ε

n ,R⟩.

Proof. We show a sketch of proof due to the similarity to [9, Theorem 2]. Equation (8.14) comes
straightforward from the asymptotic property of the associated semigroup {T q,ε

t,n (p)}t≥0. For
each ε ≪ 1, we can obtain the bounds (denoted as Kε and 1/Kε) for the eigenfunction zq,εp,n,
which is achieved by utilizing the analyticity w.r.t. p and the particular choice zq,ε0 = 1. The
result (2) and (3) for each ε ≪ 1 follows easily given (8.14). We observe that the term X
is generated by an absolute continuous measure Q w.r.t. P in Lemma 8.1.2, which should
be always 0 considering the invariant measure µq,ε

n and the cancellation should not affect the
almost-sure exponential stability. We also have used the fact that λq,εn = dΛq,ε

n (p)
dp

∣∣∣
p=0

. Note that
the quantity ϑq,ε

n is caused by the rare event {τn ≤ t}. In view of Remark 8.1.1, due to the
smallness of the stable process ỹε or yε in pth-moment, the convergence follows.

In addition, since for each p and ε, we can write zq,εp,n = zq,ε0,n + pφq,ε
n + p2

2
ψq,ε
n +O(p3), and,

by the expansion w.r.t. ε ([9]), we have
∥∥fq,ε′n − fq,εn

∥∥
BL

≤ O(ε2) +O((ε′)2) where f = z0, φ, ψ.
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For any ε≪ 1 sufficiently small, the uniform boundsK and 1/K can be obtained based on this
perturbation.

Remark 8.1.7. We abuse the notation of ϑq,ε
n just to indicate the smallness regardless of the way

of being generated. This quantity will eventually be utilized for the asymptotic analysis as ε→ 0.

We have seen the eigenvalue problems of Λq,ε
n (p) and λq,ε w.r.t. the associated generators

Lq,ε
p and Lq,ε for the converted (p, ϕ, η) coordinates. Now we consider the amplitude of the pro-

cess (zq,ε,τn , yε,τn) given the original linearized equation (8.3) in the Cartesian coordinate. The
following corollary provides direct connections between the generator TuL

q,ε of (8.3) and the
quantities Λq,ε

n (p), λq,ε and V q,ε
n . Such relations will finally be utilized to estimate the amplitude

|z̃q,ε,τn| of the (approximated) nonlinear system with the generator L̃q,ε
u .

Corollary 8.1.8. Let zq,εp,n, φq,ε
n and ψq,ε

n be given in Lemma 8.1.6. Then

TuL
q,ε

(
|z|p · zq,εp,n

(
ϕ(z),

y

|z|

))
= Λq,ε

n (p) · |z|p · zq,εp,n
(
ϕ(z),

y

|z|

)
, (8.15)

TuL
q,ε

(
φq,ε
n

(
ϕ(z),

y

|z|

)
+ log |z|

)
= λq,ε + ϑq,ε

n , (8.16)

and, if λq,ε = 0,

TuL
q,ε

(
(log |z|)2 + 2φq,ε

(
ϕ(z),

y

|z|

)
log |z|+ ψq,ε

(
ϕ(z),

y

|z|

))
= V q,ε

n . (8.17)

Proof. Let r = |zq,ε|, ϕ = ϕ(zq,ε) and η = y/|zq,ε|. Then

TuL
q,ε(rpzq,εp,n(ϕ, η)) = rpLq,ε

p zq,εp,n(ϕ, η).

Similarly, we have

TuL
q,ε(rp log(r)zq,εp,n(ϕ, η)) = rp(log(r))Lq,ε

p zq,εp,n(ϕ, η) + rp(X+Qq + pR)zq,εp,n(ϕ, η). (8.18)

Equation (8.16) and (8.17) is by differentiating both sides of the eigenvalue problem in (8.18),
taking the appropriate scalar product with µq,ε

p,n, and setting p = 0.
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8.1.2 Continuous Dependence on the Parameter

We have seen in Lemma 8.1.6 and Corollary 8.1.8 about the approximated eigenvalue problems
regarding λq,ε and Λq,ε

n (p) for each fixed ε and q. We have also determined by asymptotic
expansion in Chapter 7 that there exists a critical w = w(ε) at which λw,ε = 0 for each fixed ε.

For bifurcation analysis, we are also interested in how the truncated measure µq,ε
n on the

product space S1×Hn
α,s continuously dependent on q within some small neighborhood. For fu-

ture references, this continuous dependence allows us to investigate the regularities of a family
of solutions (z̃q,ε,τn , ỹε,τn) for q residing in a small interval, including the expected time spent
within some annulus.

Lemma 8.1.9. For each w ∈ R, there exists a neighborhood N of w such that

(1) λq,ε is continuous in q for q ∈ N .

(2) For each p ∈ R, Λq,ε
n (p) is continuous in q for q ∈ N .

Proof. Note that there exists an N such that the generators Lq,ε
p and Lq,ε are continuous in

q, therefore, the family of solutions {µq,ε
n }q is continuous w.r.t. q in the weak topology (see

Appendix E for details about the weak topology). By Lemma 8.1.6, λq,ε = ⟨Qq, µq,ε
n ⟩ ± ϑq,ε

n .
Since there exists a neighborhood N such that ϑq,ε

n is uniformly bounded and continuously
dependent on q, and Qq is Lipschitz continuous in q for all (ϕ, η) ∈ S1 ×Hn

α,s, the continuity
of {λq,ε}q for q ∈ N follows by the above facts.

To verify the continuity of Λq,ε
n (p) in q for each p, we are able to show that, for each ς > 0,

there exists a small neighborhood N such that

|⟨Lq,ε
p zq,εp,n, µ

q,ε
p,n⟩ − ⟨Lw,εp zw,εp,n , µ

w,ε
p,n⟩| ≤ ς.

This is again by the continuity of Lq,ε
p w.r.t the parameter q. Therefore, by (8.14), we have

|(Λq,ε
n (p)− Λw,εn (p))| ≤ ς.

The conclusion follows after this.

8.2 D-Bifurcation

Due to the the couplings in the multiplicative noise, to investigate the D-bifurcation of the
critical marginal, we still need to determine the evolution w.r.t. the joint probability measure.
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The problem is reduced to quantifying the expected time spent within some annulus using
submartingale/supermartinale arguments. To do this, we first construct Lyapunov-like func-
tions with the same procedure as in [17]. The difference should only be regarding the strongly
damped stable modes.

Lemma 8.2.1. Let r = |z|, ϕ = arctan(z2/z1), η = y/r be the coordinate rather than a stochastic
process {r(t), ϕ(t ∧ τn), η(t ∧ τn)}t≥0 as in (7.6). Then, for any ς ∈ (0, 1), any fixed r ∈ (0, ς)
and (ϕ, η) ∈ S1 ×Hn

α,s, there exists a neighborhood N of w and a constant K such that, for all
q ∈ N ,

|(L̃q,ε
u −TuL

q,ε)f(r)h(ϕ, η)| ≤ K(r2f(r) + r3|f ′(r)|) · ∥h∥C2 , (8.19)

where f ∈ C2(0, ς) (w.r.t. ∥ · ∥∞) and h ∈ C2(S1 ×Hn
α,s).

Proof. The proof follows directly by the comparison between the two generators at the same
position of (r, ϕ, η) in a small neighborhood of r. Note that df

dzi
= f ′(r) zi

r
for i = 1, 2,

dh

dz1
= −hϕ(ϕ, η)

sin(ϕ)

r
− hη(ϕ, η)

η cos(ϕ)

r
,
dh

dz2
= hϕ(ϕ, η)

cos(ϕ)

r
− hη(ϕ, η)

η sin(ϕ)

r

and
d(fh)

dzi
= h

df

dzi
+ f

dh

dzi
, i = 1, 2.

Let Lyh(ϕ, η) = Asηhη(ϕ, η) +
1
2
tr[∂

2h(ϕ,η)
∂η2

Gs(ϕ+ η)G∗
s(ϕ+ η)]. Then,

TuL
q,εf(r)h(ϕ, η) = Lyh(ϕ, η) +

∑
i

Ai
d(fh)

dzi
+

1

2
tr

[
Gp
c(G

p
c)

∗∂
2(fh)

∂z2

]
,

where A1 = aqcz1 − (ε−2bcc + bqc)z2 and A2 = aqcz2 + (ε−2bcc + bqc)z1. On the other hand,

L̃q,ε
u f(r)h(ϕ, η) = Lyh(ϕ, η) +

∑
i

Ãi
d(fh)

dzi
+

1

2
tr

[
Gp
c(G

p
c)

∗∂
2(fh)

∂z2

]
,

where Ã1 = A1+F
R
c (r cos(ϕ)h+r sin(ϕ)h̄+rη) and Ã2 = A2+F

I
c (r cos(ϕ)h+r sin(ϕ)h̄+rη).

Note that FR
c and F I

c are cubic nonlinearities with properties in Assumption 6.1.9, and for each
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(r, ϕ, η), there exists a K > 0 such that both ∥FR
c ∥∞ ≤ r3K and ∥F I

c ∥∞ ≤ r3K . Therefore,

|(L̃q,ε
u −TuL

q,ε)f(r)h(ϕ, η)| =
∣∣∣∣FR

c · d(fh)
dz1

+ F I
c · d(fh)

dz2

∣∣∣∣
≤ Kr3

∣∣∣∣d(fh)dz1
+
d(fh)

dz2

∣∣∣∣
= Kr3

∣∣∣∣h(ϕ, η)f ′(r)(cos(ϕ) + sin(ϕ)) + f(r)
dh

dz1
+ f(r)

dh

dz2

∣∣∣∣
≤ K|r2f(r) + r3f ′(r)|∥h∥C2 .

We notice that, unlike the settings in [17], the only difference in the nonlinear equation and
the linearized equation comes from FR

c and F I
c , whereas the multiplicative noise in the critical

modes and the entire stable modes keep the same. Therefore, the second order derivatives ∂2(fh)
∂zi∂zj

for i, j = 1, 2 and the trace term in Lyh should not contribute to the difference.

Remark 8.2.2. The small r and the boundedness of h are to match the conditions in application
of Dynkin’s formula (see Remark 3.1.13 for details) up to a first exit time of a bounded domain in
rB × Hn

α,s. On the other hand, Lemma 8.2.1 is not intended to compare the difference of f ⊗ h
acting on some processes generated by (8.3) and (8.1) at a deterministic time. The purpose is to
quantify that, at each fixed position in the field, the quantity L̃q,ε

u f(r)h(ϕ, η) provides a different
evolution rate compared to the linear dynamics. Such a difference can be bounded by a term in
proportion to r regardless of the input in S1 and Hn

α,s.

Combining Lemma 8.2.1 and Corollary 8.1.8, we are able to construct Lyapunov-like func-
tions which will be used for the sub/super-martingale arguments. The following results are
rephrased from [17, Proposition 4.13].

Proposition 8.2.3. Let Assumption 7.1.10 be satisfied. Then,

(1) For each p ̸= 0 and ϑ > 0, there exist ς > 0, a constant K (dependent on n), and a neigh-
borhood N ofw such that for every q ∈ N and ε≪ 1 sufficiently small, there exist smooth
functions z̄q,εp,± : R2 × Hn

α,s → R as perturbations of z̄q,εp (z, y) := |z|p · zq,εp,n(ϕ(z), y/|z|)2

satisfying
(L̃q,ε

u − Λq,ε
n (p))z̄q,εp,+ ≥ 0 ≥ (L̃q,ε

u − Λq,ε
n (p))z̄q,εp,− (8.20)

2Recall that ϕ is the projection of z onto the S1 space. Therefore, the function |z|p ·zq,εp (ϕ(z), y/|z|) is a function
of z and y.
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for all (z, y) ∈ B′(ς), where B′(ς) := {(z, y) ∈ R2 ×Hn
α,s : 0 < |z| ≤ ς}. Furthermore, we

have
1

K
(|z|)p ≤ z̄q,εp,±(z, y) ≤ K(|z|)p, ∀y ∈ Hn

α,s.

(2) There exist ς > 0, a constantK , and a neighborhood N of w such that, for every q ∈ N ,
there exist smooth functions φq,ε

± : B′(ς) → R for all (z, y) ∈ B′(ς) satisfying

L̃q,ε
u φ

q,ε
+ (z, y) ≥ λq,ε ≥ L̃q,ε

u φ
q,ε
− (z, y) (8.21)

(3) If λq,ε = 0, then for all ϑ > 0 there exist an ς > 0, K < ∞ and and smooth functions
ψq,ε
± : B′(ς) → R such that

L̃q,ε
u ψ

q,ε
+ (z, y) ≥ V q,ε ≥ L̃q,ε

u ψ
q,ε
− (z, y) (8.22)

and |ψq,ε
± (z, y)− (log |z|)2| ≤ K| log |z|| for (z, y) ∈ B′(ς).

Remark 8.2.4. The above proposition is intended for verifying the supper/sub-martingale prop-
erties of (z̃q,ε,τn , ỹε,τn) near 0 × Hn

α,s. The y argument plays a role as a ‘dummy variable’ that
does not influence the estimation along z ∈ R2. This independence in y is inherited directly from
Lemma 8.2.1.

The proof for any fixed q ∈ N is given in [18]. We do not show the details due to the similarity.
The idea is to quantify a feasible range of ς based on Lemma 8.2.1 and Corollary 8.1.8 such that

✧ There exists a sufficiently small k and z̄q,εp,± = z̄q,εp ±k|z|p′zq,εp′,n satisfying the requirement as
in (1) of the above, where p′ can be carefully designed within a neighborhood of p. The asso-
ciated moment Lyapunov exponents of z̄q,εp,± also only create small difference. The estimation
relies on the following fact:

(L̃q,ε
u − Λq,ε

n (p))z̄q,εp,±

=(L̃q,ε
u − Λq,ε

n (p))z̄q,εp ± (L̃q,ε
u − Λq,ε

n (p))(k|z|p′zq,εp′,n)
=(L̃q,ε

u −TuL
q,ε)z̄q,εp ± (L̃q,ε

u − Λq,ε
n (p′) + Λq,ε

n (p′)− Λq,ε
n (p))(k|z|p′zq,εp′,n)

=(L̃q,ε
u −TuL

q,ε)z̄q,εp ± (L̃q,ε
u −TuL

q,ε)(k|z|p′zq,εp′,n)
± (Λq,ε

n (p′)− Λq,ε
n (p))(k|z|p′zq,εp′,n)

(8.23)

Apart from the approximated quantities Λq,ε
n (p) and Λq,ε

n (p′), the rest of the above estima-
tions are the same as in the proof of [18, Theorem 3.18]. In particular, by Lemma 8.2.1, L̃q,ε

u

creates a distance with TuL
q,ε that is not dependent on p and ε given any valid test function.

For a sufficiently small ς > 0 and r ∈ (0, ς), the above construction is valid for (1).
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✧ By differentiating both sides of the eigenvalue problems, and setting p = 0, the above
construction procedure can be applied to (2) and (3) of the statements. In particular, φq,ε

± is
selected based on

φq,ε
± = log |z|+ (z̄q,ε0 )′ ± k|z|p′zq,εp′,n

as well as a similar derivation as in (8.23). The effect of ϑq,ε
n that appears in (2) can also be

reduced by carefully choosing the parameters in this step.

The fact that constants ς and K can be selected locally uniform w.r.t. q is by the continuous depen-
dence on q from Section 8.1.2. The proof follows [17, Proposition 4.13] without extra ingredients.

Taking the advantages of the above construction, the problem can be reduced to qualify
the recurrence and null recurrence properties w.r.t. (R2 \ {0}) × Hn

α,s of the joint process
{(z̃q,ε(t ∧ τn), ỹ

ε(t ∧ τn))}t≥0 when λq,ε ≥ 0. The key is to use supper/sub-martingale argu-
ments to estimate the expected occupation time near 0 × Hn

α,s, which will be utilized later to
construct invariant measures on B(R2\{0})×Hn

α,s. The effect of (ϕ(z̃q,ε,τn), ỹε/|z̃q,ε,τn|) finally
contribute to the top Lyapunov exponent λq,ε, which only determines the evolution of |z̃q,ε,τn|.
We state the key ingredients and procedures for the final construction of invariant measures
on B(R2 \ {0})×Hn

α,s, the proofs should be the same as [17].

Proposition 8.2.5. On {τn = ∞}, there exists ς > 0, K <∞ and a neighborhood N of w such
that Pz,y,q[τϑ ∧ τR <∞] = 1 whenever 0 < ϑ < |z| < R < ς3, y ∈ Hn

α,s and q ∈ N , where

τϑ = inf{t > 0, (z̃q,ε(t ∧ τn), ỹε(t ∧ τn)) ∈ ∂Bϑ ×Hn
α,s}

and
τR = inf{t > 0, (z̃q,ε(t ∧ τn), ỹε(t ∧ τn)) ∈ ∂BR ×Hn

α,s}.
In particular, if λq,ε > 0 for all q ∈ N , then

1

λq,ε

[
log

R

|z| − 2K

]
≤ Ez,y,q[τR] ≤

1

λq,ε

[
log

R

|z| + 2K

]
.

In addition, for d > 0 such that Λq,ϑ
n (−d) = 0, there exists a k ∈ (0, 1) such that

1

K

(
ϑ

|z|

)d

≤ Ez,y,q

(∫ τR

0

1{Bϑ×Hn
s }(z̃

q,ε,τn
t , ỹε,τnt )dt

)
≤ K

(
ϑ

|z|

)d

.

whenever 0 < ϑ < |z| < kR < kς and y ∈ Hn
α,s.

3Recall that z̃q,ε0 = ⟨h∗, x⟩.
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Proposition 8.2.6. Let w be such that λw,ε = 0 and Λw,εn (p) ̸= 0. Let ς > 0, K <∞ and N be
as in Lemma 8.2.5. Fix 0 < ϑ < R < ς with ϑR < 1. Then, on {τn = ∞},

(1) Ez,y,ε[τR] = ∞ whenever 0 < |z| < R < ς and y ∈ Hn
α,s.

(2) there exists k ∈ (0, 1) such that, whenever 0 < |z| < kR < kς and y ∈ Hn
α,s,

2

V w,ε
n

[
log

(
R

|z|

)
− 4K

]
≤ lim inf

ϑ→0

1

|log(ϑ)| lim inf
q→w

Gq,ε,−
ϑ,R (|z|)

≤ lim sup
ϑ→0

1

|log(ϑ)| lim sup
q→w

Gq,ε,+
ϑ,R (|z|)

≤ 2

V w,ε
n

[
log

(
R

|z|

)
+ 4K

]
,

where

Gq,ε,+
ϑ,R (r) = sup

|z|=r
Ez,y,q

(∫ τR

0

1{(R2\ϑB)×Hn
α,s}(z̃

q,ε,τn
t , ỹε,τnt )dt

)
and

Gq,ε,−
ϑ,R (r) = inf

|z|=r
Ez,y,q

(∫ τR

0

1{(R2\ϑB)×Hn
α,s}(z̃

q,ε,τn
t , ỹε,τnt )dt

)
.

(3) for each 0 < R < ς and p ∈ (0, 1], there exists a K̃ <∞ such thatEz,y,q
∫ τR
0

(|z̃q,ε,τnt |)pdt ≤
K̃ whenever 0 < |z| < R and y ∈ Hn

α,s.

Note that, based on Assumption 6.1.9 about the dissipativity of F in the critical mode, by a
standard Lyapunov-like argument (using a quadrtic Lyapunov function), we can also show that
there exists some K such that, on {τn = ∞},

Ez,y,q[τϑ] ≤ K + z2

whenever |z| ≥ ϑ and y ∈ Hn
α,s. This in turn indicates a down crossing from the place away

from 0×Hn
α,s for almost all sample paths on {τn = ∞}.

The existence and construction of the new invariant measure on (R2 \ {0}) × Hn
α,s when

λq,ε ≥ 0 follows the procedure in [90, 17]. One can show that the up/down-crossings of the
spheres with radius r and R are infinitely often for {(z̃q,ε(t ∧ τn), ỹ

ε(t ∧ τn))}t≥0 a.s. given
τn = ∞. It can be verified that, under Assumption 8.0.5, there exists a unique invariant measure
ν̂ for the Markov chain on Γ = {(z, y) ∈ R2 ×Hn

α,s : |z| = r} which is induced by {(z̃q,ε(t ∧
τn), ỹ

ε(t ∧ τn))}t≥0 (on {τn = ∞}) stopping sequentially at the sphere. Let

τ0 = inf{t ≥ 0, |z̃q,εt | = r},
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τ ′0 = inf{t ≥ τ0, |z̃q,εt | = R},
and

τ1 = inf{t ≥ τ ′0, |z̃q,εt | = r}.
Then,

(1) When λq,ε > 0, the measure ν̃q,ε = ν̃q,ε∞ · Pz,y,q[τn = ∞] + L (z̃q,ετn , ỹ
ε
τn) · Pz,y,q[τn < ∞]

where

ν̃q,ε∞ (A) =

∫
Γ
Ez,y,q

(∫ τ1
0
1{A×Hn

s }(z̃
q,ε
s , ỹεs)ds

)
dν̂(x, y)

Pz,y,q[τn = ∞] ·
∫
Γ
Ez,y,q[τ1]dν̂(x, y)

, A ∈ B(R2 \ {0}) (8.24)

is a marginal invariant probability measure of z̃q,ε,τn for the stopped process (z̃q,ε,τn , ỹε,τn)
w.r.t. ν̂, where the normalizer is finite based on Proposition 8.2.5. Such a measure al-
ready averages out the estimations along the Hn

α,s direction due to the way of construc-
tion. Nonetheless, since the critical mode contributes more to the radius of the process
{u(t)}t≥0, the above result fulfills our goal.
Note that, since Λq,ε

n (p) is convex in p, there exists a unique d = dq,ε > 0 such that
Λq,ε
n (−d) = 0. Furthermore, using the results from Proposition 8.2.5, there exists ς̃ > 0

and K̃q <∞ such that, for all ε≪ 1, the (conditional) probability measure ν̃q,ε∞ satisfies

rd

K̃q
≤ ν̃q,ε∞ ({z ∈ R2 \ {0} : |z| < r}) ≤ K̃qrd, r ∈ (0, ς̃). (8.25)

Since for ε ≪ 1, the quantity L (z̃q,ετn , ỹ
ε
τn) · Pz,y,q[τn < ∞], though may not be unique,

can be arbitrarily small, a similar result can be obtained for ν̃q,ε. Due to the uniqueness
of ν̃q,ε∞ , the unique weak limit of ν̃q,ε as ε→ 0 is ν̃q∞.

(2) A quick corollary can be made on the marginal invariant measure νq,ε of z for the process
{z(t ∧ τn), y(t ∧ τn)}t≥0 (the stopped solution to the original nonlinear equation (6.10)
for y(0) ∈ Hn

α,s) based on (6.67) for arbitrarily small ε > 0, i.e., there exists ς > 0 and
Kq <∞ such that the measure νq,ε satisfies the marginal property

rd

Kq
≤ νq,ε({z ∈ R2 \ {0} : |z| < r}) ≤ Kqrd, r ∈ (0, ς). (8.26)

(3) Whenλw,ε = 0, there exists a σ-finite measure on (R2\{0})×Hn
α,s, such that the marginal

on B(R2\{0}) is of the form ν̃w,ε = ν̃w,ε∞ ·Pz,y,w[τn = ∞]+L (z̃q,ετn , ỹ
ε
τn) ·Pz,y,w[τn <∞]
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where

ν̃w,ε∞ (A) =

∫
Γ
Ex,y,w

(∫ τ1
0
1{A×Hn

s }(z̃
w,ε
s , ỹεs)ds

)
dν̂(x, y)

Px,y,w[τn = ∞]
, A ∈ B(R2 \ {0}). (8.27)

Similarly, as ε→ 0, ν̃w∞ captures the limit behavior.

It has been proved in [17, Theorem 2.12, 2.13] that, if λq,ε > 0, λw,ε = 0, and as q → w
continuously, the invariant measure ν̃q,ε in (8.24) converges weakly to the probability measure
δ0 rather than the σ-finite measure ν̃w,ε. The convergence rate is as follows.

Theorem 8.2.7. [17, Theorem 2.13] Let q → w continuously for all q satisfying λq,ε > 0. Then,

1

λq,ε

∫
R2

h(x)dν̃q,ε(x) →
∫
R2

h(x)dν̄(x),

where ν̄ is the unique σ-finite invariant measure for z̃w,ε on R2 \ {0} satisfying

ν̄({x ∈ R2 \ {0} : |x| > r})
| log r| → 2

V w,ε
n

, r → 0,

and h : R2 \ {0} → R satisfying h(x)/|x|p → 0 as x→ 0 for some p > 0.

Corollary 8.2.8. Let νq,ε be the invariant measure on R2 \ {0} for the amplitude z of the system
(6.10). Then, as ε→ 0, and q → w = wε, we have

1

λq,ε

∫
R2

h(x)dνq,ε(x) →
∫
R2

h(x)dν̄(x),

where ν̄ is the same as in Theorem 8.2.7.

Remark 8.2.9. Note that the original system (6.10) has the same λq,ε for every fixed ε and q. We
control ε in a way such that the O(ε2) error term is absolutely continuous to λq,ε as q → w.

8.3 A Discussion on P-Bifurcation Point

We have seen in (8.26) that, if λq,ε > 0, for each n, the new invariant measure for the process
{(z(t∧τn), y(t∧τn))}t≥0 with y(0) ∈ Hn

α,s has marginal νq,ε that possesses mass within a small
neighborhood in a way that

νq,ε(rB)
vol(rB)

∼ Crd−2, (8.28)
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where d = dq,ε > 0 and Λq,ε
n (−d) = 0.

Now, let νq,εu be the invariant measure of the critical amplitude of uτn , which is within the
time scale ε2t (recall Definition 6.1.14); let Λq,ε

u,n(p) denote the associated moment Lyapunov
exponents. By the same argument, we can verify that

νq,εu (rB)
vol(rB)

∼ Crd−2, (8.29)

where d = dq,ε > 0 and Λq,ε
u,n(−d) = 0 as well. The shape of the density of νq,εu changes at some

q at which dq,ε = 2, i.e., the density has a pole at x = 0 for dq,ε < 2 and has a zero at x = 0
for dq,ε > 2. We need to decide the q such that dq,ε = 2, which is known as the P -bifurcation
point.

Proposition 8.3.1. For any compact interval that contains p, there exists a strictly positive func-
tion zq,εp,n : S1 ×Hn

α,s → R satisfying ∥zq,εp,n∥C2 ≤ K , zq,ε0,n ≡ 1, such that

Lq,ε
p,uz

q,ε
p,n = Λq,ε

u,n(p) · zq,εp,n, ⟨zq,εp , µq,ε
p,n⟩ = 1, (8.30)

where Lq,ε
p,u = Lq,ε + ε2pX+ ε2pQ+ ε2 p

2

2
R, Q and R are the same as in Lemma (8.1.2).

Proof. Due the change of time scale, the quantity Λq,ε
u,n(p) is driven by a continuous semigroup

{T q,ε
t,n (p)}t≥0 on S1 ×Hn

s as

T q,ε
t,u (p)f(ϕ, η) :=

E [f(ϕ(t ∧ τn), η(t ∧ τn))

· exp
{
ε2p

∫ t

0

Q(ϕ(s ∧ τn), η(s ∧ τn))ds+ εp

∫ t

0

Gp
c(ϕ(s ∧ τn), η(s ∧ τn))dWs

}]
,

(8.31)

By the Girsanov’s theorem as in the proof of Lemma 8.1.2, the generator Lq,ε
p,u = Lq,ε + ε2pX+

ε2pQ + ε2 p
2

2
R can be obtained. The existence of the eigenvalue function is followed by the

compactness of the transition semigroup.

Corollary 8.3.2. For ε ≪ 1, the moment Lyapunov exponent Λq,ε
u,n(p) has the following asymp-

totic expansion:

Λq,ε
u,n(p) = pε2λq,ε +

p2ε2

2
V q,ε
n +O(ε3), (8.32)

where λq,ε and V q,ε
n solve the eigenvalue problem of Lq,εφq,ε

n = λq,ε − Qq + ϑεn and Lq,εψq,ε
n =

V q,ε
n − 2(X+Qq − λq,ε)φq,ε −R, respectively.
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Proof. The expansion is done by consecutively differentiating both sides of the eigenvalue prob-
lem in (8.30), and taking the appropriate scalar product with µq,ε

p,n. We have also used the fact
that Λq,ε

u,n(0) = 0.

Utilizing the fact that Λq,ε
u,n(−2) = 0, we can approximate q by eliminating the high order

error term and equating

−2ε2λq,ε + 2ε2V q,ε
n ≈ 0 ⇔ λq,ε ≈ V q,ε

n .

The problem is reduced to the approximation of V q,ε
n .

Recall that Lq,ε = 1
ε2
L0 + L1. Let φq,ε

n = φ0 + ε2φ1 + ε4φ2. Therefore,

1

ε2
L0φ0 + L0φ1 + L1φ0 + ε2L1φ1 + ε2L0φ2 +O(ε3)

=λ0 −Q+ ε2λ1 +O(ε3).

Then, L0φ0 = L1φ0 = 0 and φ1 solves the first-order PDE

L0φ1 = λ0 −Q, (8.33)

whereas φ2 solves
L0φ2 = −L1φ1 + λ1. (8.34)

By the solvability condition of Lq,εψq,ε
n = V q,ε

n − 2(X+Q− λq,ε)φq,ε
n −R, we have

V q,ε
n = 2⟨µq,ε, (X+Q− λq,ε)φq,ε

n ⟩+ ⟨µq,ε,R⟩ ± ϑεn.

The expansion of V q,ε
n is given as

V q,ε
n = ⟨R, µ0⟩+ 2ε2⟨(X+Q− λ0)φ1, µ0⟩+O(ε3). (8.35)

The approximated P-bifurcation point q is determined by

(λ0 + ε2λ1)(q) = (⟨R, µ0⟩+ 2ε2⟨(X+Q− λ0)φ1, µ0⟩)(q). (8.36)

8.4 Summary

In this chapter, we have investigated the stochastic bifurcations of the approximation system
(8.1) and hence the asymptotic bifurcation behaviors of the original system (6.10) when ε →
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0. The key point is to verify the approximate eigenvalue problems for Λq,ε
n , λq,ε and V q,ε

n by
checking the compactness of the approximated semigroup T q,ε

t,n (p). Taking the advantages of
the strong mixing effect of the stable modes, the problem is reduced to an R2 × Hn

α,s system
with a small L2-stable stable marginal. Relying on the construction based on Lemma 8.2.1 and
Proposition 8.2.3, the recurrence and null-recurrence property of (z̃q,ε,τn , ỹε,τn) on {τn = ∞}
within the critical marginal for λq,ε > 0 and λq,ε = 0, respectively, can be verified and utilized
for constructing the unique invariant marginal measure on R2 \ {0}. The approximated D-
bifurcation property of (zq,ε, yε) within the R2 projection is then justified. On the other hand, a
P-bifurcation point can be approximated using the relation λq,ε ≈ V q,ε

n . The effect of the small
stable marginals comes in with a second-order correction as in ε2λ1 and ε2φ1.

Compared to the approximation scheme in [27], where the critical modes and stable modes
in the stochastic term are decoupled, we have investigated the mixing effect of the stable modes
by an approximation up toO(ε2). Such a coupling has a slight impact on the D-bifurcation point
as well as on the P-bifurcation point via second-order corrections. Unlike the deterministic case
where deterministic parametric perturbations do not affect the structural stability, even a small
intensity of stochastic perturbations from the stable modes shifts both of the dynamical and
phenomenological bifurcation points. Other than capturing the stochastic bifurcation points,
the simplified scheme in [27] can be used to simulate the density of the critical amplitude z,
which is solved by the approximated Fokker-Planck equation, with a reasonably small error
when the system has passed the P-bifurcation point.
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Chapter 9

Conclusions and Future Work

Within the scope of dynamical systems with uncertainties, this research is motivated to develop
novel theories and methods of verification and control synthesis for finite-dimensional nonlin-
ear systems with non-stochastic and stochastic perturbations, and to understand the impact
of small Gaussian-type space-time noise on stochastic Hopf bifurcations of parabolic SPDEs.
We summarize the main contributions in this final chapter and bring up some related future
research direction.

Lyapunov-Barrier Approaches Safety and Stability Related Specifications

For deterministic systems with non-stochastic uncertainties, we showed that smooth Lyapunov
barrier functions can be defined on the entire set of initial conditions from which stability with
a safety constraint can be satisfied. We built the connection between reach-avoid-stay type
specifications and stability with a safety constraints via a robustness argument, upon which
a converse Lyapunov-barrier function theorem for reach-avoid-stay type specifications can be
established. It was shown by an example that the statement cannot be strengthened without
additional assumptions. We further extended the results to deterministic hybrid systems and
establish converse control Lyapunov-barrier functions for deterministic systems with control
inputs. The general topological structure of the initial sets, target sets and unsafe sets leaves
us more flexibility to design control Lyapunov-barrier functions. In comparison with formal
methods, the effectiveness of such an approach was investigated in a case study of jet engine
compressor control problem using a simplified Moore-Greitzer ODE model.

Limitations exist in the current results. We only considered an additive measurable dis-
turbance in the dynamical systems for the purpose of establishing converse Lyapunov-barrier
results. Similar to other converse Lyapunov theorems, the existence results are not constructive.
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In addition, the extension of the converse Lyapunov-barrier functions to the converse con-
trol Lyapunov-barrier functions was based on the existence of a Lipschitz continuous feedback
law. It is also necessary to investigate the necessary and sufficient conditions for the existence
of universal control laws for control-affine nonlinear systems. We would like to emphasize that
the focus of this part is not on designing controllers. However, such theoretical results can be
used to characterize control Lyapunov functions. Besides a deeper understanding of the feasi-
bility of QP, it would also be necessary to investigate new algorithm framework other than QP
to synthesize controllers utilizing the verified Lyapunov-barrier criteria. On the other hand, a
crucial question to ask is whether the Lyapunov-barrier conditions can bring a finite number
of feedback controllers to achieve a (robust) reach-avoid-stay specification and whether the
resulting feedback controllers possess certain regularities.

Another interesting future direction is to explore computational techniques for construct-
ing Lyapunov-barrier function that is defined on the whole set of initial conditions (or as large
a subset as possible of this set) from which a stability with safety guarantee or reach-avoid-stay
specification is achievable, for instance, learning techniques [142, 22, 183] or interval analy-
sis [141, 47]. In this regard, the results, especially Theorems 2.3.7 and 2.3.18, can hopefully
shed some light into the development of such computational techniques with completeness (or
approximate completeness) guarantees.

It would be an promising application in using the current Lypunov-barrier characteriza-
tions, which provide the required building blocks of linear temporal logic specifications, as
high-level abstractions for controller synthesis. It is also valuable to design algorithms based
on this theoretical work to construct Lyapunov-like functions that improves the estimated re-
gion of attractions.

In the stochastic contexts, we also formulated stochastic Lyapunov-barrier functions to de-
velop sufficient conditions on probabilistic reach-avoid-stay specifications for continuous-time
stochastic systems with extra uncertainties. Robustness was also taken into account such that
a worst-case scenario is guaranteed. Unlike solutions of deterministic systems, the diffusion
effects renders more difficulties of selecting Lyapunov/barrier functions under the restrictive
geometric requirements of the initial conditions and unsafe sets.

To improve the current stochastic Lyapunov-barrier approach, it would be interesting to
establish converse stochastic Lyapunov-barrier function theorems. In addition, due to the dif-
ficulty of obtaining full observations, the existence of feasible control policies given the whole
set of sample paths based on the stochastic Lyapunov-barrier scheme is not verified. We only
delivered numerical examples given certain successfully controlled sample paths under con-
straints for control inputs. The existence of feasible controller and the conditional probability
of satisfaction given such control inputs should be quantified mathematically for future work.
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We finally proposed a data-driven approach embedded in the Lyapunov-barrier scheme
dealing with safety-critical control of unknown stochastic systems. A first-moment conver-
gence rather than convergence in probability is needed to deal with the potential numerical
uncertainties. One straightforward future direction is to establish the convergence rate w.r.t.
the size of the training data and the sampling time.

Stochastic Abstractions

We investigated the mathematical properties of formal abstractions for discrete-time control-
free and controlled stochastic systems in view of metrizable space of probability measures. We
proposed the concept of robust completeness in the stochastic context for the first time and
constructed formal stochastic abstractions with both soundness and such a property. The phi-
losophy of stochastic abstractions was discussed in comparison with numerical approximations.

For future work, it would be interesting to design algorithms to construct IMC (resp. BMDP)
abstractions for more general robust stochastic (resp. control) systems with L1 perturbations
based on metrizable space of measures and weak topology. The size of state discretization can
be refined given more specific assumptions on system dynamics and LT objectives. Now that
the stochastic abstractions are analyzed from the mathematical perspectives, it would be crucial
to design more powerful robust verification and control synthesis algorithms based on abstrac-
tions. For verification or control synthesis w.r.t. probabilistic safety or reachability problems,
comparisons can be made with stochastic Lyapunov-barrier function approaches.

Another important issue is in abstracting continuous-time stochastic systems by discrete-
time stochastic systems with certain guarantees. The difficulties exist due to the conversion of
measurability from the continuous-time canonical space to the discrete-time counterpart. The
probabilistic behaviors in between sampling time need to be evaluated in a proper sense. We
aim to show whether there exists some computable temporal space discretization and a decision
procedure of a control policy based on the discretized sampling period that can realize a given
probabilistic LTL specification.

Stochastic Hopf Bifurcation Analysis for SPDEs

We considered parabolic type SPDEs in the presence of small space-time stochastic perturba-
tions near the deterministic bifurcation points. This setting renders us convenience to separate
the slowly and fast varying modes and then conduct multiscale analysis. For the systems with
additive noise, inspired by recent advances in stochastic PDEs given in [29], the bifurcation
analysis was provided for the stochastic version of the Moore and Greitzer PDE model for an
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axial flow compressor. The homogenized evolution equation for the critical coordinates was
derived and proved with relatively small error bound. Such a transient dynamic can be treated
as the normal form.

For the case with multiplicative noise, we considered cubic nonlinearities with proper as-
sumptions to guarantee the existence of invariant measures. Compared to the recent work in
[27], where the stable modes and the critical modes are decoupled, we proposed a different
simplification scheme for the original system and proved the error bounds. We keep the mul-
tiplicative noise in both stable and critical modes such that the linearization of the simplified
scheme stay the same as that of the original system. This approximation scheme is readily al-
lied with the almost-sure exponential stability of the trivial solution to analyze the stochastic
bifurcation diagram as the noise becomes smaller. The analysis shows that the stochastic effects
from the stable modes do have small impact on determining the stochastic bifurcation points.

Now that we have a clearer view of stochastic Hopf bifurcations of parabolic SPDEs with
cubic nonlinearities and small multiplicative noise, a straightforward extension in the future
work would be considering the presence of both bilinear and cubic nonlinearities. Since we have
been taken the advantages of spectral gap and multiscale analysis due to the small intensity of
stochastic perturbations, to fully understand the concept of stochastic bifurcations in SPDEs,
we need to develop theories for more general type of noise with regular intensity.

As discovered in the stochastic Moore-Greitzer model with additive noise, the approxima-
tion depends on the spatial regularity of the solution. However, for parabolic SPDEs with more
than one spatial dimension under a space-time white noise, the solutions only exit in a distri-
bution sense (correspondingly with α-Hölder continuity for α < 0). In this case, the traditional
regularity analysis approaches fail to capture the irregularity. Instead, we will find regularity
based pathwise arguments to make sense of equations. To look at the SPDEs in a ‘rough path’
perspective is a promising technique. Rough path allows stochastic integrals with less regular
integrands that take values in a more general Banach space.

Formal Methods of Verification and Control Synthesis for PDEs

This would be a promising future direction to work with based on our current understanding
of stochastic abstractions, whose solutions are closely related to Fokker-Planck parabolic PDE.
Rather than LTL specifications, spatio-signal temporal logic would be a better fit for specify-
ing space-time properties for PDE systems. Finite Element Method is preferred as the spatio-
temporal discretization approach. It is possible to formulate optimization problems to improve
the computational searching time. We can start the problem with considering linear parabolic
PDEs such as heat equations, then it is natural to extend the result to a general class of semi-
linear parabolic PDEs.
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Appendix A

Linear Temporal Logic (LTL)

As the need of regulating a transition progress or performing surveillance in a dynamical sys-
tem is growing, controllers are designed to guarantee the satisfaction of complex task specifi-
cations with LT properties. A particular class of LT properties can be conveniently specified by
LTL. This appendix provides a brief introduction to transition systems, LT properties, LTL and
automation methods. We follow the references from [14, 112, 108, 157] for succinct definitions.

Transition systems

Definition A.0.1. A transition system is a tuple

T = (X ,U , R,AP, L),

where X is the set of states; U is the set of actions (or control inputs); R ⊆ X × U × X is the
transition relation; AP is the set of atomic propositions; L : X → 2AP is the labelling function.

An execution of T is an infinite sequence of state and actions, i.e.,

Z = x0u0x1u1x2u2 · · · ,

where xi ∈ X and ui ∈ U for all i. The path of Z is the extraction of the sequence of state
evolution, i.e.,

Path(Z) = x0x1x2 · · · .
The trace of Z is defined by the sequence of observations generated by the labelling function,

Trace(Z) = L(x0)L(x1)L(x2) · · · .
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LT properties

An LT property over a set of atomic proposition AP is a subset of the power set of (2AP)ω,
which is defined by

(2AP)ω = {l0l1, · · · : li ∈ 2AP, i ≥ 0}.
We also call (2AP)ω the set of all infinite words (or infinite repetition) over the alphabet 2AP.

Remark A.0.2. Here, we use ω to denote the infinity.

Remark A.0.3. LT properties of a transition system are evaluated over its traces.

Definition A.0.4 (ω-regular properties). LT property P over AP is called ω-regular if P is an
ω-regular language over 2AP, which admits the inductive form

✧ Aω where A is a nonempty regular language1 not containing the empty string;

✧ AB, the concatenation of a regular language A and an ω-regular language B;

✧ A ∪B where A and B are ω-regular languages.

We now introduce LTL for specifying a particular class of LT properties. All LTL formulas
are ω-regular. An LTL formula consists of propositional logic operators (e.g., true (⊤), negation
(¬), and conjunction ∧)), and temporal operators (e.g., next (⃝ ) and until (U)). The syntax of
LTL over AP is defined inductively:

φ ::= ⊤ | p | φ1 ∧ φ2 | ¬φ | ⃝ φ | Uφ,

and reads as

✧ φ = ⊤ is an LTL formula;

✧ φ = p ∈ AP is an LTL formula;

✧ if φ, φ1, φ2 are LTL formulas, then ¬φ, φ1 ∧ φ2, ⃝φ and Uφ are also LTL formulas.

Other commonly used logical operators can be defined based on the syntax, for example,

1. φ1 ∨ φ1 := ¬(¬φ1 ∧ ¬φ2);
1We omit the definition for regular language to prevent extra confusion. As an analogy, regular languages are

generated in a similar way as generating algebras based on union and concatenation operations.

269



2. (φ1 =⇒ φ2) := ¬φ2 ∧ φ2;

3. (eventually) ♢φ := ⊤Uφ;

4. (always) □φ := ¬♢¬φ.

The semantics of LTL are defined over an abstract system model with a run of words (ob-
servations) w = w0w1w2... in 2AP. The satisfaction of an LTL formula φ by w at position i is
written as wi ⊨ φ, which is inductively defined as:

1. wi ⊨ ⊤ if and only if wi = ⊤;

2. wi ⊨ p if and only if p ∈ wi;

3. wi ⊭ ¬φ if and only if wi ⊨ p;

4. wi ⊨ ⃝φ if and only if wi+1 ⊨ φ;

5. wi ⊨ φ1 ∨ φ2 if and only if wi ⊨ φ1 ∨ wi ⊨ φ2;

6. wi ⊨ φ1Uφ2 if and only if ∃j ≥ i s.t. wj ⊨ φ2 and wn ⊨ φ1 ∀i ≤ n < j.

A run of words w ⊨ φ if w0 ⊨ φ. An execution Z of a transition system T is said to satisfy an
LTL formula φ, written as Z ⊨ φ, if and only if its trace Trace(Z) ⊨ φ.

Automation

The underneath idea of an automation is to keep track of an infinite word using a small finite
graph.

Definition A.0.5. A DA is a tuple DA = (Q,L,R, q0,Acc), where Q is the set of automation
states; L ⊆ 2AP is the set of labels; R : L×Q→ Q is a deterministic transition function; q0 ∈ Q
is the unique initial state; Acc ⊆ 2Q is the set of final states in a finite automaton or the set of
accepting states in an ω-automation.

Remark A.0.6. A NA generalizes DA by considering a set of initial states Q0 ⊆ Q, and a non-
deterministic transition R : L×Q → 2Q. Given a label l, e.g. from some LTL formula, to an NA
state qi, there may be more than one transitions that cause us to lose track of the status of a token.
An NA cannot be used to synthesize controllers or to solve a game, but can be used in a posteriori
explanation or verification of LTL formulas, i.e., the reason why the run of the token satisfies the
accepting condition of the NA or not.
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Remark A.0.7. Compared to NA, a DA can be considered as a graph, where the automaton states
Q are the nodes and the transition function R is hidden in the edges.

We compare NBA and DRA due to their equivalent expressive power in terms of recognizing
the complete ω-regular languages. Apart from the general differences between an NA and a DA,
the accepting conditions are different.

(1) Büchi Condition. An infinite run of automation states is accepted by NBA if and only if
one of the states in Acc occurs infinitely many often in the run.

(2) Rabin Condition. Acc = {(G1, B1), · · · , (Gk, Bk)}, where Gi, Bi ⊆ Q, i = 1, · · · , k.
Gi’s are referred as the set of ‘Good’ states, whereasBi’s are the set of ‘Bad’ states. An infinite
run of automation states is accepted by DRA if and only if at least one of the states in Gi’s
occurs infinitely often and the states in Bi’s occur only finitely many times in the run.

We prefer to use the systematic automatic conversion from an LTL formula φ to an automa-
tion to increase the efficiency. After a φ is converted into an NBA, we can always determinize
it into a DRA. The trade-off is, however, the complexity issue.

RemarkA.0.8. In the control or verification problems, a trajectory satisfies the accepting condition
of an LTL formula φ if its input word satisfies the accepting condition of the DA converted from
φ. We find the winning set and the winning strategy such that all the controlled (or automatic)
trajectories initialized in the winning set subjected to the winning strategy satisfy the accepting
condition.

Note that, by connecting non-deterministic transition systems with some DA generated from
som LTL formula, the control and verification problems w.r.t. such an LTL specification can be
automatically solved based on the product graph as a graph searching problem. The size of the
non-deterministic transition systems is the dominating factor of the size of the product graph.
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Appendix B

Martingales, Markov Processes, and
Martingale Problem

This appendix provides a brief introduction to martingales, Markov processes, and the martin-
gale problem. Details and more rigorous descriptions can be found in .

Stochastic processes, filtrations, and martingales

A stochastic process is a collection X := {Xt}t∈T indexed by a time parameter T, where T
falls into the following three cases: 1) discrete time T = N; 2) continuous time finite horizon
T = [0, T ] for some T > 0; and 3) continuous time infinite horizon T = [0,∞). On the
canonical spaces (Ω,F ,P), the mapping t 7→ Xt(ϖ) for some fixed ϖ ∈ Ω is called a sample
path.

A filtration is a collection of σ-field {Ft}t∈T with the property Fs ⊆ Ft for s, t ∈ T and
s ≤ t. Given a stochastic process X , the natural filtration up to time t generated by X is the
family of σ-fields Ft := σ{Xs : s ∈ T, s ≤ t}, which contains the information about the
evolution of X up to time t.

Now consider a given filtration {Ft}t∈T, we say that a stochastic process X is adapted to
{Ft}t∈T if X is Ft-measurable for each t. Roughly speaking, this means that X does not look
into the information available in future.

DefinitionB.0.1 (Martingale). For a fixed filtered probability space (Ω,F , {Ft}t∈T,P), a process
X is called a martingale if X is adapted, E[Xt|Fs] = Xs for all s < t, and E[Xt] <∞ for all t.
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We can also consider a decreasing filtration and backward martingales, based on which the
L1 convergence of LLN. For simplicity, we only consider the situation when T = N.

DefinitionB.0.2 (Backward martingale). A backward martingale is a stochastic process {X−n}n=1,2,···
such that, for each n, X−n is L1 integrable and F−n-measurable, and satisfies

E[X−n−1 | F−n] = X−n. (B.1)

Theorem B.0.3 (Backward martingale convergence theorem). For every backward maringale,
as n→ ∞,

X−n → E[X−1 | F−∞] P-a.s. and in L1. (B.2)

Theorem B.0.4 (Kolmogorov’s 0-1-law). Let F1,F2, · · · be independent σ-fields and denote by
F∞ = ∩∞

n=1σ (∪∞
k=nFk) the corresponding tail field. Then

P[A] ∈ {0, 1}, ∀A ∈ F∞.

Proof of LLN: Let Yi be L1 integrable and i.i.d. w.r.t. P. Let Sn =
∑n

i=1 Yi be the finite sum
and let X−n = Sn

n
be the average. Then the σ-field F−n = σ{Sn, Sn+1, · · · } is a decreasing

filtration. Due to the independence of {Yi}, we have

E[X−1 | F−n] = E[Y1 | Sn, Sn+1, · · · ]
= E[Y1 | Sn, Yn+1, Yn+2, · · · ]
= E[Y1 | Sn].

(B.3)

Notice that E[Yi | Sn] = E[Yj | Sn] by symmetry for i, j ∈ {1, · · · , n}, then

nE[Yi | Sn] =
n∑
i=1

E[Yi | Sn] = E[Sn | Sn] = Sn. (B.4)

Combining the above, we have E[X−1 | F−n] = Sn

n
= X−n, which verifies that {X−n} is

a backward martingale. By the backward martingale convergence theorem, we immediately
have

Sn
n

→ E[Y1 | F−∞], P-a.s. and in L1.

By Kolmogorov’s 0-1 law, we have that all A in the tail field F−∞ have probability either 0 or
1, which in turn implies that the conditional expectation E[Y1 | F−∞] must be a constant (by
the definition of conditional expectation) and should be equal to the average E[Y1]. In words,∑n

i=1 Yi
n

→ E[Y1] P-a.s. and in L1.
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Markov Processes

Consider a complete and separable state space X .

Definition B.0.5 (Markov process). A stochastic process X is said to be a Markov process if each
X is adapted and, for any Γ ∈ B(X ) and t > s, we have

P[Xt ∈ Γ | Fs] = P[Xt ∈ Γ | Xs], a.s. (B.5)

Correspondingly, for every t, we define the transition operator Ts,t : Cb(X ) → Cb(X ) as

(Ts,tf)(x) := E[f(Xt) | Xs = x], s ≤ t. (B.6)

The function Θs,t(x,Γ) = Ts,t1Γ(x), Γ ∈ B(X ), is called transition function (probability). We
denote Θs,t := {Θs,t(x,Γ) : x ∈ X , Γ ∈ B(X )} as the family of transition probabilities from s
to t.

Remark B.0.6. Note that {Ts,t}s,t∈T is a semigroup. Homogeneous (autonomous) Markov pro-
cesses are such that Ts,t = T0,t−s for all t ̸= s.

Remark B.0.7. For discrete time Markov processes, i.e. T = N, we specifically consider one-step
transition function at every t ∈ T, which is defined as

Θt(x,Γ) := P[Xt+1 ∈ Γ | Xt = x], Γ ∈ B(X ). (B.7)

We denote correspondingly Θt := {Θt(x,Γ) : x ∈ X , Γ ∈ B(X )} as the family of one-
step transition probabilities at time t. Homogeneous (autonomous) Markov processes are such that
Θt = Θs for all t ̸= s, and the n-step transition can be recursively defined by Θn+1(x, ·) =∫
X Θ(y, ·)Θn(x, dy) with any initial distribution Θ0(x, ·) = δx.

The generator of a time-homogenous Markov process is defined as in Definition 3.1.8. Any
finite dimensional distribution can be constructed based on the transition function and the
Chapman-Kolmogorov property. We use a discrete-time homogenous Markov process X with
initial distribution µ(dx) as an example, the finite-dimension distribution is given as

P[X0 ∈ A0, X1 ∈ A1, · · · , Xn ∈ An]

=

∫
A0

∫
A1

· · ·
∫
An−1

Θ(xn−1, An)Θ(xn−2, dxn−1) · · ·Θ(x0, dx1)µ0(dx0)
(B.8)

The probability lawP ofX on the canonical space can be guaranteed by the famous Kolmogorov
extension theorem.
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Martingale problem

Consider system S (see Equation (3.1)) with X0 = x a.s.. For any test function f ∈ C2
b (X ), we

define
M f

t = f(Xt)− f(x)−
∫ t

0

Lf(Xs)ds. (B.9)

It can be verified that the process M f is a martingale.
Now consider an inverse problem. SupposeX is a continuous process such that the process

M f defined in (B.9) is a martingale, then it can be shown that there exists a Wiener process W
such that the processX satisfies the SDE (3.1) (with ϑ = 0). In other words, X becomes a weak
solution of S if the above M f is a martingale. We say that X solves (or the probability law P
of X solves) the martingale problem for operator L if M f is a martingale under P for valid test
functions f . The martingale problem for L is called well posed if there is a unique probability
law solving the martingale problem.

Remark B.0.8. Note that the martingale problem for finite-dimension system can be applied to
construct weak (in terms of probability) solutions for SPDEs (see procedures in [43, Chapter 8]).
Since weak solution in the PDE context has a different meaning, we also use the term martingale
solutions to refer the notion of weak solutions in Definition 3.1.3 (2).
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Appendix C

Controlled Stochastic Processes

Let the set of states X and set of control U be given. Suppose that X and U are complete and
separable metric spaces.

C.1 Canonical Setup forDiscrete-TimeControlled Processes

Let (Ω†,F †,P†) be a probability space (most likely unknown). Without loss of generality, we
assume that a stochastic processX and a process of control values u are defined on (Ω†,F †,P†),
and that ut is provided (according to some rule) at each instant of time. To describe the con-
trolled process, it is necessary to define the probability law of X and the rule that u is selected.

Definition C.1.1. Given processes X and u, for any fixed T > 0, we define the following short
hand notations:

X[0,T ] := {Xt}t∈[0,T ], and u[0,T ] := {ut}t∈[0,T ] (C.1)

SupposeX is fully observed, it is natural to assume that the marginal distribution ofXT for
each T is completely determined byX0, · · · , XT−1 and the values of the controls u0, · · · , uT−1.
Let µT (· | ·) be such that

µT (Γ | X[0,T−1]; u[0,T−1]) = P†[Xt ∈ Γ | X[0,T−1]; u[0,T−1]], Γ ∈ B(X ), (C.2)

then for each realization, µT (· | X0 = x0, · · · , XT−1 = xT−1; u0 = u0, · · · , uT−1 = uT−1)
defines the (transitional) conditional distribution of XT , and for each Γ ∈ B(X ), the random
variable µT (Γ | X[0,T−1]; u[0,T−1]) is jointly measurable w.r.t. the product σ-algebra B(X T ) ⊗
B(UT ).
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For any initial distribution µ0 ∈ P(X ), given any realization of u and fixed T > 0, the
finite-dimensional distribution of X[0,T ] is∫

Γ0

µ0(dx0)

∫
Γ1

µ1(dx1 |X0 = x0; u0 = u0)

· · ·
∫
ΓT

µT (dxT |X0 = x0, · · ·XT−1 = xT−1; u0 = u0, · · · , uT−1 = uT−1)

=:pT

(
T∏
i=0

Γi | u0 = u0, · · · , uT−1 = uT−1

) (C.3)

where dxi = [xi, xi + dx] for i ∈ {1, · · · , T}. It is clear that the finite-dimensional distribu-
tion pT of X[0,T ] on the cylinder set

∏T
i=0 Γi ∈ B(X T ) is only dependent on the realization

of u[0,T−1]. Note that by Kolmogorov’s extension theorem, for any known process of control
values, there exists a unique p(· | u) on X∞.

Now we determine how u is generated. It is natural to suppose that the selection of a control
at time T is based on X[0,T ] and u[0,T−1]. For each fixed T > 0, let κT (· | ·) be such that

κT (C | X[0,T ]; u[0,T−1]) = P†[uT ∈ C | X[0,T ]; u[0,T−1]], C ∈ B(U), (C.4)

then for each realization, κT (· | X0 = x0, · · · , XT = xT ; u0 = u0, · · · , uT−1 = uT−1) defines
the conditional distribution of uT , and for eachC ∈ B(U), the random variableκT (Γ | X[0,T ]; u[0,T−1])
is jointly measurable w.r.t. the product σ-algebra B(X T+1)⊗ B(UT ).

Definition C.1.2. A randomized control policy is the sequence

κ = {κt, t ≥ 0},

where, for each t ≥ 0, κt is given in the form of (C.4).

Similarly, given any realization of X and fixed T > 0, the finite-dimensional distribution of
u[0,T ] under the policy κ is∫

C0

κ0(du0 | X0 = x0)

∫
C1

κ1(du1 |X0 = x0, X1 = x1; u0 = u0)

· · ·
∫
CT

κT (dxT |X0 = x0, · · ·XT = xT ; u0 = u0, · · · , uT−1 = uT−1)

=:dT

(
T∏
i=0

Ci | X0 = x0, · · · ,XT = xT

) (C.5)
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where dui = [ui, ui + du] for i ∈ {1, · · · , T}. Given the control policy κ, it is clear that
the finite-dimensional distribution dT of u[0,T ] on the cylinder set

∏T
i=0 Ci ∈ B(UT ) is only

dependent on the realization of X[0,T ]. Again, by Kolmogorov’s extension theorem, suppose the
process X is known, there exists a unique law d(· | X ) on U∞.

Suppose the initial distribution µ0 ∈ P(X ) and a control policy is given, one can construct
a product process (X, u) := {(Xt, ut)}t≥0 with law Pµ0,κ. We also alternatively denote Xu by
the controlled process if we emphasize on the state-space marginal of (X, u). Note that every
finite distribution of (X, u) is given as

Pµ0,κ[X0 ∈ Γ0, u0 ∈ C0, · · · , XT ∈ ΓT , uT ∈ CT ]

=

∫
Γ0

µ0(dx0)

∫
C0

κ0(du0 | X0 = x0) · · ·

×
∫
ΓT

µT (dxT |X0 = x0, · · ·XT−1 = xT−1; u0 = u0, · · · , uT−1 = uT−1)

×
∫
CT

κT (duT |X0 = x0, · · ·XT = xT ; u0 = u0, · · · , uT−1 = uT−1).

(C.6)

In particular, the transitional distribution of the controlled process X at each T is such that

Pµ0,κ[XT ∈ ΓT | X0 = x0, u0 = u0, · · ·XT−1 = xT−1, uT−1 = uT−1]

=µT (ΓT |X0 = x0, · · ·XT−1 = xT−1; u0 = u0, · · · , uT−1 = uT−1);
(C.7)

whereas
Pµ0,κ[uT ∈ CT | X0 = x0, u0 = u0, · · ·XT−1 = xT−1, uT−1 = uT−1, XT = xT ]

=κT (CT |X0 = x0, · · ·XT−1 = xT−1; u0 = u0, · · · , uT−1 = uT−1, XT = xT ).
(C.8)

Let
F := σ{(Xt, ut) ∈ (Γ,C), (Γ,C) ∈ B(X )⊗ B(U), t ∈ N}.

We then work on the space ((X×U)∞,F ,P) rather than the original probability space (Ω†,F †,P†).

C.2 Canonical Setup forContinuous-TimeControlled Pro-
cesses

Without loss of generality, we consider non-randomized control. Note that, by [66], control
policy can not always be established if we attempt a sequential definition as in the discrete-
time cases. However, if we apply a step control strategy, the difficulty can be conquered.
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Definition C.2.1. [66] A control u(t) is called a step control if u(t) is piecewise constant on some
given time horizon [0, T ], i.e., for some n and 0 = t0 < t1 < · · · < tn = T ,

u(t) = u(tk) = uk, t ∈ [tk, tk+1).

In fact, a constant control (within some time horizon [0, T ]) uniquely determines the joint
distributions of (X, u) on the given horizon [0, T ]. At the jump points tk’s, the new control
values are decided. One can verify that the controlled object and the step control uniquely
determine the joint distributions of the controlled process in a similar manner as discrete-time
controlled processes.

We can define a step control policy κ similar to Definition C.1.2, where the non-random
decision is made at the jump points. We denote by Pµ0,κ the law of (X, u) given the initial
distribution µ0 ∈ P(X ) and the step control policy κ.

C.3 ControlledMarkovModels andClasses ofControl Poli-
cies

We focus on discrete-time systems. Consider

Xt+1 = f(Xt, ut, wt), (C.9)

where f is a measurable function, the state Xt(ϖ) ∈ X for all t ∈ N, u is a U-valued control
signal, {wt}t∈N are i.i.d. Gaussian random variables. We have seen in Section C.1 that, given an
initial distribution µ0 and a control policy κ, (C.9) generated processes (X, u) := {(Xt, ut)}t≥0

with the probability law Pµ0,κ. The model (C.9) also possesses a Markov transition property in
the sense that

Pµ0,κ[Xt+1 ∈ Γ | X[0,t], u[0,t]] = Pµ0,κ[Xt+1 ∈ Γ | Xt, ut]. (C.10)

We further define the Markov transition function as

Θu
t (x,Γ) = Pµ0,κ[Xt+1 ∈ Γ | Xt = x, ut = u]. (C.11)

Classes of control policies

We suppose thatX is fully observed. Admissible control policies KA is a class of control policies
such that κt ∈ P(U) for all t ∈ N, i.e., κt( · | X[0,t], u[0,t−1]) is a (random) measure on U . Given
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any realization of the history (X[0,t], u[0,t−1]), if κt is a Dirac measure δ{u} for some u ∈ U
and for all t ∈ N, we call it a deterministic admissible control policy. It is equivalent to write
ut = κt(X[0,t], u[0,t−1]) in this case. Note that the notion of ‘deterministic’ is in term of the
output based on the history realization (X[0,t], u[0,t−1]).

We focus on Markov control policies KM , which is a subclass of KA.
Definition C.3.1 (Markov policies). A policy is Markov if, for all t ∈ N,

κt(ut ∈ C | X[0,t], u[0,t−1]) = κt(ut ∈ C | Xt), ∀C ∈ B(U). (C.12)

A deterministic Markov policy is such that ut = κt(Xt) for all t ∈ N.

By (C.8), a straightforward consequence of κ being Markov is that

Pµ0,κ[ut ∈ C | X[0,t], u[0,t−1]] = κt(ut ∈ C | Xt), ∀C ∈ B(U).
Definition C.3.2. A class KS ⊆ KM is called stationary if for all κ ∈ KS , we have κt = κs for
all t ̸= s. The deterministic stationary policy can be defined accordingly.

The following proposition shows a nice property of controlled Markov model under a Markov
policy κ.
Proposition C.3.3. Let κ ∈ KM . Then the state processX (orXu) becomes a Markov process, i.e.,
for every t ∈ N, we have

Pµ0,κ(Xt ∈ Γ | X[0,t], u[0,t−1]] = Qκ[Xt+1 ∈ Γ | Xt], Γ ∈ B(X ),

where Qκ is generally a transition kernel defining a Markov chain (recall (B.7)).

Proof.

Pµ0,κ[Xt+1 ∈ Γ | X0 = x0, · · ·Xt = xt]

=

∫
U
Pµ0,κ[Xt+1 ∈ Γ, ut ∈ du | X0 = x0, · · ·Xt = xt]

=

∫
U
Pµ0,κ[Xt+1 ∈ Γ | ut = u,X0 = x0, · · ·Xt = xt]P

µ0,κ[ut ∈ du | X0 = x0, · · ·Xt = xt]

=

∫
U
Θt(x, u,Γ)κt(ut = u | Xt = xt)

=

∫
U
Θt(x, u,Γ)κt(ut = u | Xt = xt)

=

∫
U
Qκ[Xt+1 ∈ Γ, ut ∈ du | Xt = xt] = Qκ[Xt+1 ∈ Γ | Xt = xt]

(C.13)
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Note that if κ ∈ KS , the transition kernel becomes time-independent, i.e., the controlled process
X (or Xu) is a homogeneous Markov process.

In terms of optimal control, the following rephrased statements allow us to restrict the
policies to be deterministic Markov.

Theorem C.3.4. [66, Theorem 1.2] For any κ ∈ KA, there exists a non-randomized control κ̄ such
that

Eµ0,κ̄

[
N−1∑
t=0

c(Xt, ut) + CN(XN)

]
≤ Eµ0,κ

[
N−1∑
t=0

c(Xt, ut) + CN(XN)

]
Theorem C.3.5. [181, Theorem 5.12] Let (X, u) be a process generated by a Markov model with
initial distribution µ0. Consider the minimization of

J := inf
κ∈KA

Eµ0,κ

[
N−1∑
t=0

c(Xt, ut) + CN(XN)

]

for some Borel measurable and bounded cost function c. Then, any κ ∈ KA can be replaced with
one deterministic κ⋆ ∈ KM which is at least as good as the original policy. In particular, if an
optimal control policy exists, there is no loss in restricting policies to be Markov.

The above deterministic (or non-randomized) control policy is guaranteed by [66, Theo-
rem 1.2], which is, ‘if K is a class of control policies, then for any κ ∈ K, there exists a non-
randomized control κ⋆ ∈ K such that

Eµ0,κ⋆

[
N−1∑
t=0

c(Xt, ut) + CN(XN)

]
≤ Eµ0,κ

[
N−1∑
t=0

c(Xt, ut) + CN(XN)

]
.
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Appendix D

A Brief Introduction to SPDEs

This appendix provides a brief introduction to Gaussian measure theory, model of space-time
Gaussian-type noise, and semilinear parabolic SPDEs driven by space-time Wiener processes.

D.1 Gaussian Measure Theory

Gaussian measures on separable Banach spaces

We first consider Gaussian measure for more general separable Banach spaces. Let E be a
separable Banach space w.r.t. norm ∥ · ∥.

Gaussian measures on Rn can be characterised by prescribing that the projections of the
measure onto any one-dimensional subspace of Rn are all Gaussian. This is a property that can
readily be generalised to infinite-dimensional spaces [81].

DefinitionD.1.1 (Gaussian measure on a Banach space). A probability measureµ on (E,B(E))
is said to be a Gaussian measure if and only if the law of an arbitrary linear functional h ∈ E∗,
considered as a random variable on (E,B(E), µ), is a Gaussian measure on (R,R(R)) [43].

If the law of each h ∈ E∗ additionally a mean-zero Gaussian on R, then µ is called a symmetric
Gaussian measure on (E,B(E)).

Given a symmetric Gaussian measure we define the covariance operatorCµ : E∗×E∗ → R
by

Cµ(h, k) =

∫
E

h(x)k(x)µ(dx). (D.1)
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The following theorem identifies the property of Gaussian tails.

Theorem D.1.2 (Fernique). Let µ be an arbitrary symmetric Gaussian measure on E. Let r > 0
and α > 0 be such that

log

(
1− µ(Br)
µ(Br)

)
+ 32αr2 ≤ −1.

Then
∫
E
eα∥x∥

2
µ(dx) <∞.

As an immediate corollary of Fernique’s theorem, µ has all moments finite. One can also
identify that the linear operator Ĉµ : E∗ → E

Ĉµh :=

∫
E

xh(x)µ(dx) (D.2)

is one-to-one and continuous by applying Fernique’s theorem. As a consequence, for any h, k ∈
E∗, we have Cµ(h, k) = k(Ĉµh).

Reproducing kernel Hilbert spaces

Let µ be a symmetric Gaussian measure on a Banach space E. A linear subspace H ⊆ E with a
Hilbert norm ∥·∥H is said to be a RKHS for µ ifH is complete, continuously embedded inE and
such that for arbitrary h ∈ E∗, we have h(x) ∼ N (0, ∥h∥2H), where ∥h∥H = sup∥x∥H≤1 |h(x)|
[43, Section 2.2.2].

It has been verified in [43, Theorem 2.9] that, every arbitrary symmetric Gaussian measure
µ on E admits a unique RKHS (H, ∥ · ∥H) with scalar product

⟨Ĉµ(h), Ĉµ(k)⟩H =

∫
E

h(x)k(x)µ(dx). (D.3)

Within H , we also have the following reproducing kernel formula:∫
E

⟨h, x⟩H⟨g, x⟩Hµ(dx) = ⟨h, g⟩H , h, g ∈ H. (D.4)

Remark D.1.3. RKHS is isomorphic to the Cameron-Martin space (see [81, Section 3.2] for more
details) in a natural way. There are authors who use a slightly different terminology.

The RKHS characterizes those directions (denoted by h ∈ H) in E in which translations
leave the measure µ ‘quasi-invariant’, i.e., the measure µh(Γ) := µ(Γ − h) for Γ ∈ B(E) is
absolutely continuous w.r.t. µ. Moreover,
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Proposition D.1.4. Assume that a Banach space E1 is continuously and as a Borel set embedded
in E. If the measure µ is symmetric and Gaussian on E and E1, then the RKHS calculated with
respect to E or E1 is the same [43, Proposition 2.10].

Based on the notion of RKHS, we are able to construct an arbitrary symmetric Gaussian
measure µ onE via expansions. LetHµ be the associated RKHS of µ, let {χk} be an orthonormal
and complete basis in Hµ, and {ξn} be a sequence of independent R-valued r.v. such that
ξn ∼ N (0, 1) for all n ∈ N. Then

∑∞
n=1 ξnχn converges a.s. in E and the probability law of∑∞

n=1 ξnχn is µ [43, Theorem 2.12].

Gaussian measures on Hilbert spaces

We are more interested in Gaussian measures on Hilbert spaces. By Definition D.1.1, a prob-
ability measure µ on (H,B(H)) is called Gaussian if for arbitrary h ∈ H , there exist m ∈ R
and q ≥ 0 such that

µ({x ∈ H : ⟨h, x⟩ ∈ A}) = N (m, q)(A), ∀A ∈ B(R). (D.5)

It turns out that if µ is Gaussian onH , then there exist anm ∈ H and a symmetric nonnegative
linear operator Q, such that ∫

H

⟨h, x⟩µ(dx) = ⟨m,h⟩, ∀h ∈ H, (D.6)

and ∫
H

⟨h, x−m⟩⟨k, x−m⟩µ(dx) = ⟨Qh, k⟩, ∀h, k ∈ H. (D.7)

The operator Q is called the covariance operator of µ, which is also verified to be of trace class
in the sense of Definition D.1.5. A Gaussian measure µ on H is uniquely determined by the
mean m and the covariance Q, which is denoted by N (m,Q).
Definition D.1.5. Let {χk} be a complete orthonormal basis inH . A linear operator T : H → H
is said to be a trace class operator, denoted by L1(H), if

∥T∥L1 := trT =
∑
k

⟨Tχk, χk⟩ <∞.

Let G be another separable Hilbert space. A linear operator T : H → G is said to be Hilbert-
Schmidt if

∥T∥L2(H;G) :=

(∑
k

∥Tχk∥2
)1/2

<∞.
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D.2 Q-Wiener Processes

In this section, we focus on Hilbert space valued Wiener processes before we get into SPDEs.
Suppose we are given a separable Hilbert spaceH with a complete orthonormal basis {χk}, and
W is a H-valued Wiener process. Then, the probability law of W (t) for each t is a Gaussian
measure on H with a trace class covariance Q satisfying

E[⟨W (t), a⟩⟨W (s), b⟩] = t∧sE[⟨W (1), a⟩⟨W (1), b⟩] = t∧s⟨Qa, b⟩, a, b ∈ H, t, s ≥ 0. (D.8)

Conversely, given a trace class nonnegative operator Q (Q has all nonnegative real part
of eigenvalues) on H as the spatial covariance, we are able to define an H-valued Q-Wiener
process in a similar way as the finite-dimensional cases.

Definition D.2.1 (Q-Wiener process). An H-valued stochastic process W is called a Q-Wiener
process if

(1) W (0) = 0,

(2) W has continuous trajectories (in t)

(3) W has independent increments,

(4) W (t)−W (s) ∼ N (0, (t− s)Q), 0 ≤ s < t.

In view of RKHS, we are able to define W as an expansion

W (t) =
∑
k

√
qkβk(t)χk,

where βk are real valued Brownian motions mutually independent, qk are the eigenvalues ofQ.
The operator Q characterizes the spatial regularity of Q-Wiener processes.

Now suppose that Q is only self-adjoint and positive definite without finite trace, e.g. Q =
id, we are not able define spatially Gaussian processes in H as in Definition D.2.1. Instead, we
consider generalized Wiener processes in the following sense.

Definition D.2.2 (Generalized Q-Wiener process). Let H ′ be a larger Hilbert space containing
H as a dense subset and such that the inclusion map I : H → H ′ is Hilbert-Schmidt. Let Q be
self-adjoint and positive definite without finite trace. Suppose W is a process with

E[⟨W (t), a⟩⟨W (s), b⟩] = t ∧ s⟨Qa, b⟩, a, b ∈ H, t, s ≥ 0.
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We then call W a generalized Q-Wiener process on H if it is an H ′-valued II∗Q-Wiener process
such that

E[⟨W (t), a⟩H′⟨W (s), b⟩H′ ] = t ∧ s⟨II∗Qa, b⟩H′ , a, b ∈ H ′, t, s ≥ 0.

In particular, if Q = id, we simply call W a cylindrical Wiener process on H .

Proposition D.2.3. The Gaussian measure µ on H ′ with covariance II∗Q has H as its RKHS.
Furthermore, for every h, k ∈ H , we have ⟨h, k⟩µ = ⟨Ih, Ik⟩ = ⟨II∗h, k⟩H′ .

The above proposition implies that we can still use the same basis as H to construct cylin-
drical Wiener processes on H , that is II∗-Wiener process on H ′.

Remark D.2.4. For conventional Wiener processes on Rn, the Gaussian measure µ on the sample
space E = C([0, T ];Rn) is such that the (temporal) convariance operator is s∧ t. The RKHS of E
is the Hilbert space of all absolutely continuous functions h with h(0) = 0 and

∫ T
0
ḣ2(t)dt <∞1.

Similarly, we can define a the cylindrical Wiener process on H in an alternative way as a space-
time white noise, where the Gaussian measure on the spatial projection has the same property as
the temporal domain.

D.3 Semilinear Parabolic SPDEs

Given separable Hilbert spaces H, V . In particular, we denote by ⟨·, ·⟩ and ∥ · ∥ the asscociated
inner product and norm, respectively. For simplicity, we assume that {hn := einθ}n∈Z0 is the
complete orthonormal basis ofH and denote by {ρn}n∈Z0 the eigenvalues. Semilinear parabolic
SPDEs have the form of

du(t) = Au(t)dt+ f(u(t))dt+G(u(t))dW (t) (D.9)

where A is a self-adjoint elliptic linear operator, f is a nonlinear function, W is a generalized
Q-Wiener process on V , andG(u) : V → H . The solutions should be inH . For the special case
whenG(u) = G ∈ R, we should require that the space V has the same RKHS asH . The famous
stochastic reaction-diffusion equations fall in the category of semilinear parabolic SPDEs.

The solution of (D.9) with u(0) = u0 is given as

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s))ds+

∫ t

0

S(t− s)G(u(s))dWs. (D.10)

1ḣ(t) is the derivative w.r.t. t in a distributional sense.
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We have seen the solution subspace H2
per (see Remark 1.2.1) of the deterministic Moore-

Greitzer model restricted to the H subspace, which coincides with the domain of its linear
operator A(γ). However, with the appearance of noise that is white in time, either white or
colored in space, the regularity especially the differentiability of the solution varies.

Now we assume that dom(A) in (D.9) equals to H2
per, and define the fractional spaces w.r.t.

dom(A) as well as the Sobolev space in order to render a more flexible scale of regularity.

Definition D.3.1 (Fractional Power Space). For α ∈ R, define the interpolation fractional power
(Hilbert) space [134] Hα := dom(Aα) endowed with inner product ⟨u, v⟩α = ⟨Aαu,Aαv⟩ and
corresponding induced norm ∥ · ∥α := ∥Aα · ∥. Further more, we denote the dual space of Hα by
H−α w.r.t. the inner product in H.

Remark D.3.2. We list other properties [81] of the fractional power spaces and the semigroup etA:

1. Hα ⊂ Hβ for α ≥ β.

2. For any α > 0, we have Hα ⊂ H ⊂ H−α;

3. The quantity etA commutes with any power of its generator;

4. ∥AαetA∥ ≤ Cα

tα
e−ct for all t > 0 and for some cα > 0. In particular, ∥AαetA∥ ≤ Cα

tα
when

t ∈ (0, 1].

The following proposition is straightforward from the above remark.

Proposition D.3.3. For any α > β, there exists a constant Cα,β > 0 such that for t ∈ (0, 1],
∥etAx∥α ≤ Cα,β∥x∥βtβ−α. Moreover, if all eigenvalues of A only have negative real part, for
all t > 0 and u ∈ H, there exists a constant C ′

α,β > 0 and a cs > 0 such that ∥etAu∥α ≤
C ′
α,β∥x∥βtβ−αe−cst.

Now we look at the same problem from the Sobolev space point of view. We specify that
the spatial domain is D = [0, 2π] as in the Moore-Greitzer model.

Definition D.3.4 (Sobolev Space). For r ∈ N0, denote by Hr(D) as the Hilbert Sobolev space
with weak derivative up to r, the norm on Hr(0, 2π) is

∥u∥Hr :=

 ∑
0≤|k|≤r

∥Dku∥22

1/2

. (D.11)
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DefinitionD.3.5 ((Fractional) Sobolev Space). DenoteW r,p(D) by the (fractional) Sobolev space.
We particularly define the following cases:

(a) for r ∈ N, p ∈ [1,∞)

Wr,p(D) =

u ∈ Lp(D) : ∥u∥Wr,p :=
∑

0≤|k|≤r

∥∂ku∥p <∞

 ; (D.12)

(b) for r ∈ (0, 1), p ∈ [1,∞)

Wr,p(D) :=

{
u ∈ Lp(D) : ∥u∥Wr,p :=

(∫∫
D×D

|u(x)− u(y)|p
|x− y|1+rp

)1/p

<∞
}
; (D.13)

(c) for r = k + q, p ∈ [1,∞) k ∈ N, q ∈ (0, 1),

Wr,p(D) :=

u ∈ Lp(D) : ∥u∥Wr,p := ∥u∥Wk,p +
∑
|ν|=k

∥∂νu∥Wq,p <∞

 ; (D.14)

(d) for r ∈ (−∞, 0), p ∈ (1,∞), Wr,p(D) = (Wr,p(D))∗.

If p = 2, we use Hr(D) for short. Correspondingly, we can also define Hr
per := {u ∈ Hr : u(0) =

u(2π), uθ(0) = uθ(2π),
∫ 2π

0
u(θ)dθ = 0} for all r ∈ R.

It is clear that in the special case where r = 1, dom(Ar) = H2r
per. In the following lemma,

we show that such relation holds for any r ∈ N. The results can be further extended when
H2r

per[0, 2π] is defined for negative and non-integer r.

Lemma D.3.6. On the spatial domain D = [0, 2π], the Sobolev norm ∥ · ∥Hr is equivalent as the
fractional power norm ∥ · ∥r/2 for r ∈ N.

Proof. The proof easily follows [116, Proposition 1.93]. Initially, we have

dom(A) = H2
per(D) ⊂ U.

For u ∈ Hr, we can write u =
∑

n∈Z\{0} une
inθ, then the Sobolev norm can be expanded as

∥u∥2Hr =
∑

n∈Z\{0}

(1 + n2 + ...+ n2r)|un|2
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However, as the discrete spectrum of A are ρn ∈ C (∀n ∈ Z0), we can explicitly express ∥u∥2r/2
by

∥u∥2r/2 = ⟨Ar/2u,Ar/2u⟩ = C
∑

(ρnρ−n)
r/2|un|2,

whereC is a normalizer. By the definition of ρn, we can findC1, C2 > 0 such thatC1(1+n
2)r ≤

C(ρnρ−n)
r/2 ≤ C2(1 + n2)r. We also have

1

2r
(1 + n2)r ≤ (1 + n2 + ...+ n2r) ≤ (1 + n2)r

Combine the above two sets of inequalities,

C

C22r
(ρnρ−n)

r/2 ≤ (1 + n2 + ...+ n2r) ≤ C

C1

(ρnρ−n)
r/2

Then, by the definition of the two norms, it is not hard to see that ∥u∥2r/2 ∼ ∥u∥2Hr .

For more regularity results, we kindly refer readers to [43].
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Appendix E

Metric and Topological Spaces of
Probability Measures

We briefly review some of the useful facts concerning metric spaces of probability measures.
Note that, ‘if a space is metrisable, the topology is determined by convergences of sequences,
which explains we sometimes only define the concept of convergence, without explicitly men-
tion the topology.’[82] We introduce two concepts of convergence of sequence of probability
measures as well as probability metrics.

Consider any separable and complete state space (Polish space) X , we denote by P(X ) by
the space of probability measures on (X ,B(X )).

Convergence concepts

Definition E.0.1 (Setwise (strong) convergence). A sequence {µn}∞n=0 ⊆ P(X ) is said to con-
verge setwisely to a probability measure µ, denoted by µn → µ, if∫

X
h(x)µn(dx) →

∫
X
h(x)µ(dx) (E.1)

for all measurable and bounded test functions h.

The notion of setwise convergence is a stringent notion for convergence.
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Example E.0.2. It is interesting to note that xn → x in X does not imply the strong convergence
of the associated Dirac measures. A classical counterexample is to let xn = 1/n and x = 0, and we
do not have limn→∞ δ1/n = δ0 in the strong sense since, i.e., 0 = limn→∞ δ1/n({0}) ̸= δ0({0}) =
1.

Definition E.0.3 (Weak convergence). A sequence {µn}∞n=0 ⊆ P(X ) is said to converge weakly
to a probability measure µ, denoted by µn ⇀ µ, if∫

X
h(x)µn(dx) →

∫
X
h(x)µ(dx), ∀h ∈ Cb(X ). (E.2)

We frequently use the following alternative condition [43, Proposition 2.2]:

µn(A) → µ(A), ∀A ∈ B(X ) s.t. µ(∂A) = 0. (E.3)

Remark E.0.4. Weak convergence describes the weak topology1. The meaning of the weak topol-
ogy is to extend the normal convergence in deterministic settings. Note that, in Example E.0.2,
xn → x in X is equivalent to the weak convergence of Dirac measures δxn ⇀ δx.

To describe the convergence (in probability law) of more general random variables {Xn} in
X , it is equivalent to investigate the weak convergence of their associated measures {µn}. It is
also straightforward from Definition E.0.3 that weak convergence also describes the convergence of
probabilistic properties related to {µn}.

Weak compactness

We aim to give a compactness theorem that provides us with a very useful criteria to verify
whether a given sequence of probability measures has a weak convergent subsequence. We
first introduce the notion of tightness.

Definition E.0.5 (Tightness of set of measures). Let X be any topological state space and M ⊆
P(X ) be a set of probability measures on X . We say that M is tight if, for every ϵ > 0 there exists
a compact set K ⊂ X such that µ(K) ≥ 1− ϵ for every µ ∈M .

Once can show that, for each sequence {µn} of tight Λ, there exists a µ ∈ Λ̄ and a subse-
quence {µnk

} such that µnk
⇀ µ.

1The weak topology in this case is actually the weak* topology. However, as the term ‘weak’ is commonly
accepted under the clear context of spaces of probability measures, we use weak topology for simplicity unless
otherwise noted.
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Theorem E.0.6 (Prokhorov). Let X be a complete separable metric space. A family Λ ⊆ P(X )
is relatively compact if an only if it is tight.

Remark E.0.7. Prokhorov’s theorem provides an alternative criterion for verifying the compact-
ness of family of measures w.r.t. the corresponding metric space using tightness. In addition, on a
compact metric space X , every family of probability measures is automatically tight.

Probability metrics

The space of probability measures on a complete, separable, metric (metrisable) space endowed
with the topology of weak convergence is itself a complete, separable, metric (metrisable) space
[24]. While not easy to compute, the Prohorov metric can be used to metrize weak topology.
We introduce two other frequently used metrics that can implies weak convergence.

Total Variation =⇒ setwise convergence
⇓

Wasserstein(dim(X ) <∞)

⇓
Prokhorov ⇐⇒ weak topology

(E.4)

Definition E.0.8 (Total variation distance). Given two probability measures µ and ν on B(X ),
the total variation distance is defined as

∥µ− ν∥TV = 2 sup
Γ∈B(X )

|µ(Γ)− ν(Γ)|. (E.5)

In particular, if X is a discrete space,

∥µ− ν∥dTV = ∥µ− ν∥1 =
∑
q∈X

|µ(q)− ν(q)|. (E.6)

Remark E.0.9. It is equivalent to use the dual representation

∥µ− ν∥TV = sup
∥h∥∞≤1

∣∣∣∣∫
X
h(x)µ(dx)−

∫
X
h(x)ν(dx)

∣∣∣∣ . (E.7)

Definition E.0.10 (Wasserstein distance). Let µ, ν ∈ P(X ) for (X , | · |), the Wasserstein dis-
tance2 is defined by ∥µ− ν∥W = inf E|X − Y |, where the infimum is is taken over all joint
distributions of the random variables X and Y with marginals µ and ν respectively.

2This is formally termed as 1st-Wasserstein metric. We choose 1st-Wasserstein metric due to the convexity and
nice property of test functions.
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We frequently use the following duality form of definition3,

∥µ− ν∥W := sup

{∣∣∣∣∫
X
h(x)dµ(x)−

∫
X
h(x)dν(x)

∣∣∣∣ , h ∈ C(X ),Lip(h) ≤ 1

}
.

The discrete case, ∥ · ∥dW, is nothing but to change the integral to summation. Let BW = {µ ∈
P(X ) : ∥µ− δ0∥W < 1}. Given a set G ⊆ P(X ), we denote ∥µ∥G = infν∈G ∥µ− ν∥W by the
distance from µ to G, and G+ rBW := {µ : ∥µ∥G < r}4 by the r-neighborhood of G.

Remark E.0.11. Note that BW is dual to B. For any µ ∈ BW , the associated random variable X
should satisfy E|X| ≤ 1, and vice versa.

The following well-known result estimates the Wasserstein distance between two Gaus-
sians. Note that the R.H.S. of (E.8) is the 2nd-Wasserstein metric, which, intuitively, captures
the second moment deviation.

Proposition E.0.12. Let µ ∼ N (m1,Σ1) and ν ∼ N (m2,Σ2) be two Gaussian measures on Rn.
Then

|m1 −m2| ≤ ∥µ− ν∥W ≤
(
∥m1 −m2∥22 + ∥Σ1/2

1 − Σ
1/2
2 ∥2F

)1/2
, (E.8)

where ∥ · ∥F is the Frobenius norm.

On finite state spaces, total variation and Wasserstein distances manifest equivalence [65,
Theorem 4]. We only show the following side of inequality in favor of our needs.

Proposition E.0.13. For any µ, ν on some discrete and finite space Q, we have

∥µ− ν∥dW ≤ diam(Q) · ∥µ− ν∥dTV . (E.9)

Definition E.0.14. (Bounded-Lipschitz metric) Let µ, ν ∈ P(X ) for (X , ∥ · ∥), the bounded-
Lipschitz metric is defined by

∥µ− ν∥L := sup

{∣∣∣∣∫
X
h(x)dµ(x)−

∫
X
h(x)dν(x)

∣∣∣∣ , h ∈ C(X ), ∥h∥BL ≤ 1

}
,

where

∥h∥BL := sup
x,y∈X

{
|h(x)|, |h(x)− h(y)|

∥x− y∥

}
.

3Lip(h) is the Lipschitz constant of h such that |h(x2)− h(x1)| ≤ Lip(h)|x2 − x1|.
4This is valid by definition.
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