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Abstract

In this thesis, we study the majority problem using ordered comparisons under the
Las Vegas randomized algorithm model. The majority problem asks whether a given set
of n elements, each with some colour, has a colour which appears on more than half
of the elements. We focus on algorithms for this problem whose fundamental operation
is to compare two elements, and in particular the comparison returns one of {<,=, >}.
Additionally, we are interested specifically in Las Vegas randomized algorithms for this
problem, which solve the problem correctly in all cases but whose running time is a random
variable. Interestingly, most previous work studying this problem considers a different
model where comparisons return just whether two elements are equal or not, instead of
providing ordered information.

Our contribution is a novel Las Vegas algorithm that uses only n + o(n) comparisons
in the expectation, compared to 7n/6 + o(n) comparisons required in the expectation by
the previous best algorithm for this problem.
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Chapter 1

Introduction

In this thesis, we study the majority problem, and in particular we focus on the ordered
comparison model in a Las Vegas randomized algorithm context.

In this section, we give an overview of previous work on the majority problem, both in
general as well as in specific models, as well as a formal introduction to the problem and
relevant definitions. We begin with the classic algorithm for the problem due to Boyer and
Moore [1], then we cover the optimal deterministic algorithm due to Salzberg [5]. Next,
we discuss the problem in the Las Vegas randomized algorithm model, and specifically
the previous best algorithm for the problem due to Gawrychowski et al. [7], which uses
equality-test comparisons. Then, we survey the state of the art on solving the majority
problem using 3-way comparisons.

1.1 Background

1.1.1 Comparison-based Algorithms and Problems

The class of comparison-based algorithms is a classic and well-studied aspect of computer
science, and especially computational complexity.

Definition 1.1.1 (comparison-based algorithm). An algorithm where the algorithm can
only gain information about the input through comparing two elements.

Common problems often studied from the lens of minimizing the number of comparisons
required include finding the minimum element, finding the k-th smallest element, finding
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the majority element, and sorting a list of elements. There are still many fundamental
problems unsolved in the field, however. For example, there is still a discrepancy between
the best known lower bound and the best known upper bound for sorting.

Comparison-based problems are studied not only as a proxy for performance of algo-
rithms but also as an interesting fundamental question to ask about the information needed
to solve a problem. While many algorithms aiming to minimize comparisons are not useful
in practice, they are an important concept to study for theoretical computer scientists.

Comparison Models

Within comparison-based algorithms, depending on the underlying data there are multiple
different types of comparisons that can be performed.

If there is no ordering defined on the input elements, then a comparison can only return
that two elements are equal or that they are not equal. We refer to this as the equality-test
comparison model.

Definition 1.1.2 (equality-test comparison model). A comparison model where each com-
parison between two elements returns only whether or not they are equal.

If there is an ordering defined, then a comparison between two elements α and β could
return any of the three possibilities: α < β, α = β, or α > β. We refer to this as the
ordered comparison model.

Definition 1.1.3 (ordered comparison model). A comparison model where each compar-
ison between two elements returns whether or not they are equal, and if they are not, it
returns their relative ordering.

Some problems that lend themselves to comparison-based algorithms, such as sorting,
are viewed in a different light depending on the comparison model. Using only equality-
test operations, there cannot exist an algorithm that sorts a set of numbers by their value,
but there can exist an algorithm that partitions a set of numbers into all of its equal
subsets. However, some problems can be studied similarly under either model. Of course,
the ordered model is more powerful, because it indicates whether or not two elements are
equal, but it also indicates their relative order in the event that they are not.

For some problems, there exist algorithms known for a long time under an ordered
comparison model, but algorithms under the equality-test comparison model have not yet
been discovered, or have only been discovered recently. For example, there have been
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polynomial-time algorithms for computing statically optimal binary search trees under the
ordered comparison model since 1959 [8] but it took until 2015 before there was a known
polynomial time algorithm for the same problem under the equality-test model [2]. In
fact, the best known algorithm for the problem under the ordered comparison model is
quadratic in the size of the input, but the best known algorithm under the equality-test
model is quartic.

1.1.2 Randomized Algorithms

A randomized algorithm is an algorithm that employs randomness in some part of its
process, often to produce results using fewer operations than deterministic algorithms for
the same problem.

Definition 1.1.4 (randomized algorithm). An algorithm that employs randomness in some
part of its process.

There are two classes of randomized algorithms, known as Monte Carlo algorithms and
Las Vegas algorithms.

Definition 1.1.5 (Monte Carlo algorithm). A class of randomized algorithms that is
allowed to err with a certain (usually small) probability.

A common example of a Monte Carlo algorithm is the Miller-Rabin primality test [11]
which aims to determine whether a given number is composite or prime.

Definition 1.1.6 (Las Vegas algorithm). A class of randomized algorithms that always
produces a correct result but whose running time is a random variable that depends on
the input, though the expectation of the running time must be finite.

This means that some Las Vegas algorithms might never terminate (though the prob-
ability of this happening is infinitesimal), but in the expected case they terminate. Addi-
tionally, any Las Vegas algorithm that has bounded expected running time but that may
never terminate can be modified to guarantee termination by branching to a deterministic
method. A common example of a Las Vegas algorithm is the Quicksort algorithm using
a randomly chosen pivot. The number of operations this algorithm performs is a random
variable whose expected value is O(n log n) for an input of size n.

It is worth noting that the expectation of the running time of a Las Vegas algorithm
is averaged over possible random choices the algorithm could make on a fixed input, not
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over all possible inputs. That is to say, the expected running time of such an algorithm
is given by the average over the random choices made while processing the worst possible
input for the algorithm.

Randomized algorithms are interesting to study because they often provide more elegant
or more efficient solutions for certain problems than deterministic algorithms.

1.1.3 Majority Problem

In this work, we study the majority problem.

Definition 1.1.7 (majority problem). The problem of determining, among an input of
n values, whether there exists one value whose frequency is more than ⌊n/2⌋, and if so,
producing such a value and the number of times it occurs.

Whereas much prior work on this problem studied it under an equality-test comparison
model, we study the majority problem under the ordered comparison model, whereby there
is a total ordering on values and a comparison returns not only whether the values are equal,
but also their relative ordering if they are not. This problem has applications to voting
systems and leader elections in distributed systems, i.e. to determine which candidate, if
any, won a majority of the votes. We believe that it is a fundamental comparison-based
problem similar to sorting and deserves to be investigated deeply.

1.2 Prior Work

1.2.1 Equality-Test Comparison Model

The majority problem was initially studied under the equality-test comparison model.
The majority problem under this model can be formalized as follows: Given a set S =
{1, 2, . . . , n} of elements and an equivalence relation cmp that determines whether two
elements have the same colour, determine whether or not there exists a maximal equivalence
class V ⊆ S with |V | > n/2, and if there is, produce the cardinality of V and any element
v ∈ V . We use “colour” here, as is common in the literature for this problem, to denote
that there is no ordering associated with the elements; one can determine that two balls
have the same colour, but cannot order them by colour.
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Deterministic approaches

The problem of minimizing the number of comparisons required to determine a majority
was first studied in 1980 (but not published until 1991) by Boyer and Moore [1], who gave
a linear time algorithm that only requires a constant amount of space. Specifically, their
algorithm, MJRTY (Algorithm 1), uses two passes through the input to achieve an upper
bound of 2n − 2 comparisons, and their result is a prototypical example of a streaming
algorithm.1 This algorithm, and almost all of the work done on this problem thus far, uses
an equality-test comparison model, where the result of a comparison is simply “equal” or
“not equal.”

The algorithm works by making two passes through the data, the first to find a “ma-
jority candidate” and the second to determine if this element is actually a majority. The
majority candidate element is guaranteed to be the same colour as the majority if there
exists a majority in the input.

The first pass works by initializing a counter to zero and a reference to the current
majority candidate. It increments the counter whenever it finds a new element that is
equal to the current candidate, and decrements otherwise. If the counter reaches zero, the
next element that the algorithm finds is set to the candidate. The second pass works by
simply counting the number of instances of elements that are equal to the final candidate.

The MJRTY algorithm relies on an interesting fact that is very useful for the study of
this problem. If one removes from a set two elements that are known to be not equal, if
there is a majority before the removal, it is guaranteed to be preserved. This is because
at most one of the two elements removed can be equal to a majority element, and so this
removes at most one instance of a majority element and at least one instance of an element
that is not the majority.

Because this is used very frequently throughout this thesis, we use the term “hetero-
geneous pair” to refer to a pair of elements that are known to be not equal to each other,
and the term “homogeneous pair” to refer to a pair of elements that are known to be equal
to each other.

Definition 1.2.1 (heterogeneous pair). A pair of two elements that are known to not be
equal.

Definition 1.2.2 (homogeneous pair). A pair of two elements that are known to be equal.

1A streaming algorithm is an algorithm that only makes a small number of sequential passes through
the input.
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Algorithm 1 MJRTY(S)

1: cand← S[1]
2: location← 1
3: counter← 0
4: for i = 1 to |S| do ▷ Pass 1: determines majority candidate
5: if counter = 0 then
6: cand← S[i]
7: location← i
8: if equal(S[i], cand) then
9: counter++

10: else
11: counter--

12: counter← 1
13: for i = 1 to |S| do ▷ Pass 2: determine if candidate is majority
14: if i ̸= location and equal(S[i], cand) then
15: counter++

16: if counter > |S|/2 then
17: return cand is the majority with multiplicity counter in S
18: else
19: return there is no majority in S
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The MJRTY algorithm, in essence, is searching for heterogeneous pairs throughout
the first pass, and each time it finds an element that compares not equal to the current
candidate, it “discards” both values (which is represented by decrementing the counter).
The counter keeps track of the number of surplus instances of the candidate seen so far,
instances that can be discarded as soon as a non-equal element is found. Thus, after line 9,
the candidate is guaranteed to be the majority if there is a majority. Then, the algorithm
simply counts the total number of instances of this candidate to determine if it is, in fact,
a majority.

In 1981, Fischer and Salzberg [5] improved on MJRTY ; they proved that ⌈3n/2⌉ − 2
comparisons are necessary and sufficient for any deterministic algorithm that solves this
problem. Interestingly, the lower bound proof is due to Fischer and the algorithm is
due to Salzberg, but the results were published in the same paper. Salzberg’s algorithm
(Algorithm 2) behaves similarly to MJRTY but uses a clever optimization to reduce the
number of comparisons needed on the second pass. The first pass, like MJRTY, finds a
candidate for the majority element with the property that if there exists a majority element,
it must be this candidate. Unlike MJRTY, though, it also partitions and reorganizes the
data such that the second pass can spend fewer comparisons. The second pass then counts
the number of elements that compare equal to this element in order to determine if the
majority candidate found is a majority overall, using the organized data from the first pass.

We discuss the second pass first to give the intuition of how the data is organized in the
first pass. The goal of the second pass is to count the number of elements that compare
equal to the candidate element determined. In particular, in order to achieve the desired
number of comparisons, the algorithm can only spend ⌈n/2⌉ − 1 comparisons so it must
be able to remove two elements using only one comparison.

At the beginning of the second pass, the overall set has been partitioned into two
subsets: a list of assorted elements with the invariant that no two consecutive elements are
the same, and a “bucket” comprising only elements that compare equal to the majority
candidate. The algorithm repeatedly compares the last element of the list to the majority
candidate. If it is equal, then the algorithm can discard the last two elements of the list
(because the penultimate element cannot be equal to the last element, by the invariant). If
it is not equal, then the algorithm can discard the last element of the list and one element
from the bucket. If the bucket runs out, at most half of the elements remaining in the list
can be the majority candidate, and each operation discards exactly one majority candidate
and one non-majority candidate, so there cannot be a majority. Thus, the algorithm spends
one comparison to discard two elements from the overall set, and this pass uses ⌈n/2⌉ − 1
comparisons.
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Now, we explain how the first pass produces the list and bucket with the invariants
described above. The algorithm behaves very similarly to the MJRTY algorithm, and in
fact performs the same comparisons. The aforementioned bucket of elements behaves the
same as the counter from MJRTY, where adding something to the bucket is equivalent to
incrementing the counter, and removing an element is equivalent to decrementing. Simi-
larly, the last element of the list corresponds to the current majority candidate. The first
element that the algorithm comes across gets added to the end of the list. After that, the
algorithm compares the last element in the list to the next overall element. If it’s the same,
the algorithm adds the item to the bucket; otherwise, it adds the item to the end of the
list and moves an element from the bucket to the end of the list (if there is one to remove
from the bucket). Thus, this pass uses n − 1 comparisons to produce the list and bucket
subject to the invariants above.

Overall, this algorithm uses ⌈3n/2⌉ − 2 comparisons in the worst case to solve the
majority problem under the equality-test comparison model, which is optimal.

An alternative interpretation of the MJRTY algorithm leads to a simpler method also
minimizing the number of comparisons. The first pass of MJRTY can be viewed as orga-
nizing the data into “blocks,” where each block is a contiguous segment of elements with
the same majority candidate. We refer to the majority candidate for a given block (i.e.
the first element of the block) as the leader. Each block but the last has exactly half of its
elements equal to the leader. The last block gives the only possible candidate (the overall
majority candidate) and the margin by which it is the majority in that block.

The first pass performs n− b comparisons, where b is the number of blocks that there
are. The second pass compares all elements outside the last block with the final candidate,
so potentially 2n−b− l−1 comparisons for the entire process, where l is the size of the last
block. Unfortunately, MJRTY does not keep track of what it had learned in each block.

A simple twist is to record the size of each block, each block candidate, and (separately)
all other elements in the first pass. Pass two now takes (n − l)/2 + b − 1 comparisons in
the worst case. The total is, then, at most 3n/2− l/2− 2.2

Randomized approaches

Gawrychowski et al. [7] were the first to look at this problem in the context of randomized
algorithms. They produced a Las Vegas algorithm that solves the problem using 7n/6+o(n)
comparisons in the expectation, and in fact, it uses that many comparisons with very high

2Note that l can be 0, so this is not an improvement on Salzberg’s algorithm.
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Algorithm 2 Salzberg(S)

1: L and B are empty stacks that support push, pop, and peek operations
2: for i = 1 to |S| do ▷ Pass 1
3: if L is empty or cmp(peek(L), S[i]) = false then
4: push S[i] to L
5: if B is not empty then
6: pop from B and append the element to L

7: else
8: push S[i] to B

9: T ← peek(L)
10: while L is not empty do ▷ Pass 2
11: if T = pop(L) then
12: if size of L = 0 then
13: push T to B
14: else
15: pop(L)

16: else
17: if size of B = 0 then
18: return there is no majority in S
19: else
20: pop(B)

21: if |B| = 0 then
22: return there is no majority in S
23: else
24: return T is the majority in S with multiplicity ⌊(|S|+ |B|)/2⌋

9



probability.3 In this paper, note that we use Big-O terms (O, o,Ω) to mean strictly positive
functions, unless there is explicitly a negative symbol in front of the term, in which case it
refers to strictly negative functions.

Their algorithm works by selecting a random subset of elements without replacement
large enough to be representative of the overall set but small enough that they can compute
the most frequent two elements and their frequencies in the subset. Then, it proceeds with
one of three subroutines depending on the distribution of the most frequent elements in the
sample, which gives a hypothesis on the majority status. Each of the three subroutines aims
to verify that the distribution found in the sample matches that of the overall set, using
as few comparisons as possible. Since the sample was large enough to be representative,
with high probability each subroutine simply validates the correctness of the assumption
based on the sample. With low probability, sometimes a subroutine might report that the
hypothesis was incorrect. In this case, the algorithm simply runs one of the deterministic
algorithms for the problem, but since this happens infrequently, the average case is still
better than the deterministic algorithm.

The three hypothesis distributions are that there is no majority (if no element in the
sample had frequency above 45%), there is possibly a majority and it’s one of two elements
(if both elements had frequency close to 50% in the sample), or there is possibly a majority
and it could only be one element (if this element had frequency above 45% in the sample).

Gawrychowski et al. also produced a lower bound for Las Vegas algorithms for this
problem of 1.019n under the equality-test comparison model.

1.3 Ordered Majority Problem

Surprisingly, not much seems to be known about studying this problem under an ordered
comparison model. This is a natural extension to consider because many common data
types used, such as integers and strings, lend themselves nicely to ordered comparisons
and computers generally return the ordered information when a comparison is performed.

The majority problem under this model can be formalized as follows: Given a set
S = {1, 2, . . . , n} of elements with hidden values and a comparison function cmp(a, b)
that determines whether the hidden value of a is less than, equal to, or greater than that
of b, determine whether or not there exists a maximal subset V ⊆ S with |V | > n/2 and all
elements in V compare equal to each other. If such a set V exists, produce its cardinality
and any element v ∈ V .

3The formal definition of very high probability will follow.
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It is known that the lower bound of ⌈3n/2⌉−2 comparisons in the worst case due to [5]
still holds [12]. However, the lower bound of 1.019n for the expected number of comparisons
used by a Las Vegas randomized algorithm for the problem due to Gawrychowski et al. [7]
applies only to the case of equality-test comparisons, and in fact our algorithm achieves a
better expected number of comparisons.

Our main contribution is a Las Vegas-style randomized algorithm that solves the or-
dered majority problem using just n+ o(n) comparisons, specifically n+O(n1−f ) for small
positive f , in the expectation, beating the lower bound for the equality-test comparison
model. In our case, we use f = 1/20, but this term could certainly be optimized.
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Chapter 2

Randomized Algorithm for Ordered
Majority Problem

First, we describe how our algorithm works at a high level, then we specify more details
and parameters. The algorithm begins by producing a sample uniformly at random with-
out replacement, with the intention that the sample is sufficiently large such that it is
representative of the overall set. Then, it determines the frequencies within the sample
of the most common elements. Based on these relative frequencies, it calls one of three
subroutines, each of which is designed to validate a hypothesis about the overall set using
few comparisons.

The three subroutines are each intended to quickly validate that the distribution in the
overall set matches that of the sample, which occurs with high probability. Here are the
three candidate distributions:

1. There are two elements which each comprise around half the sample. In this case,
the most likely scenarios are that one of those two elements is a majority, or that
they both narrowly miss the majority threshold and there is no majority.

2. There is exactly one element which comprises at least a little less than half the
sample. The most likely scenarios for this case are that this element is a majority,
or there is no majority.

3. There are no elements close to comprising half the sample. In this case, the most
likely scenario is that there is no majority.

12



As long as the sampling phase and the appropriate one of these subroutines runs in
n+O(n19/20) expected comparisons, our results hold. The lower-order term in the running
time is somewhat arbitrary; the important part is that it is of the form O(n1−f ) for some
small positive f , and we chose parameters for our algorithm to achieve this running time
with high probability.

2.1 Model

We denote a set of balls S = {1, 2, . . . , n} and use value(v) to refer to the value of a ball v.1

We use cmp(v1, v2) to return one of {=, <,>}. We define less(v1, v2) (and equal(v1, v2))
to return true if the value of v1 is less than (resp. equal to) that of v2.

2.2 Algorithm construction

Given an input set S of size n, the algorithm begins by constructing a random subset S ′ ⊆ S
uniformly at random without replacement. We use |S ′| = δ(n) (definition to follow) for
our sample size. Next, it computes statistics about S ′; most notably, it determines the
median, and the frequency of the two most frequent elements.

Let v1, v2, . . . be the values from S sorted by frequency of the elements within S ′ such
that v1 is the most frequent.

Let qi be the fraction corresponding to the proportion of elements of S ′ that compare
equal to vi. Note that this means qi|S ′| refers to the number of instances of elements that
compare equal to vi in S ′.

Let m be the median of S ′.

The constants that follow are set in order to give concrete values and to simplify the
analysis, but a range of values works for these parameters.

• Let δ(n) be n9/10 log2 n.2

1We depart from the “colour” terminology used by previous papers on the subject because “colour”
implies a lack of ordering.

2Note in particular that we chose a sample size larger than
√
n, which is a larger sample than an {=, ̸=}

comparison algorithm could afford, because with ordered comparisons we can compute the necessary
statistics of a sample of size x using x log x comparisons trivially by sorting, whereas an {=, ̸=} algorithm
must perform x2 comparisons. Also note that this sample size simplifies the analysis but is somewhat
arbitrary.
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• Let E be n11/20.

• Let ϵ be E
n
.

• Let b be n1/20.

• Let c be n2/5.

Then, the algorithm calls one of three different subroutines based on which distribution
the algorithm supposes the input is closest to.

• If q1, q2 ∈ [1
2
− cϵ, 1

2
+ cϵ], then it defers to TwoCandidates(S, v1, v2)

• Else if q1 ≥ 1
2
− bϵ, then it defers to OneCandidate(S, v1)

• Else, it defers to NoCandidates(S,m)

See Algorithm 3.

Algorithm 3 Majority(S)

1: if |S| = 1 then return S[1] is the majority with multiplicity 1 in S

2: randomly sample without replacement S ′ ⊆ S such that |S ′| = δ(n)
3: let v1, v2, . . . , vk be the representatives of the equivalence classes of values in S ′

4: let qi|S ′| be the number of elements that compare equal to vi in S ′, where q1 ≥ q2 ≥
· · · ≥ qk

5: let m be the median of S ′

6: if q1, q2 ∈ [1
2
− cϵ, 1

2
+ cϵ] then

7: return TwoCandidates(S, v1, v2)
8: else if q1 ≥ 1

2
− bϵ then

9: return OneCandidate(S, v1)
10: else
11: return NoCandidates(S,m)

2.2.1 TwoCandidates

The TwoCandidates(S, α, β) subroutine takes as input the overall set S and two rep-
resentative elements whose frequencies are both around half in the subset, α and β. The
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subroutine first pairs elements, compares each pair, and divides the pairs into homogeneous
pairs and heterogeneous pairs. For the heterogeneous pairs, it puts the smaller element
first. Then, it recurses on the elements in the homogenous pairs. Note that if there exists
a majority in the subproblem, it must be the majority of the overall set if there is one, and
the absence of a majority in the subproblem implies there does not exist a majority in the
overall set either.

If it does return that there was a majority in the subproblem, we now must validate
whether it is the majority of the overall set. The subroutine returns the multiplicity of the
candidate in the subproblem, so we only have to look at the heterogeneous pairs. In fact,
most pairs will comprise the two frequent elements, and their relative ordering indicates
which element of the pair to check first, so we can often avoid extra comparisons.

This algorithm is used with modification from [7].

See Algorithm 4.

2.2.2 OneCandidate

The OneCandidate(S, α) subroutine takes as input the overall set S and a representative
value for a very frequent element expected to either be the majority or narrowly miss being
the majority, according to the sample. It then iterates through S, comparing each element
to α. For each element that it finds equal, it increments a counter; for each element less
than α, it places it in a set X; for each element greater than α, it places it in a set Y . If the
counter is greater than half the size of S, then it returns that α is the majority. If neither
X nor Y contain more than |S|/2 elements, then it returns that there is no majority, as
all elements of a majority would have to be in exactly one of those sets.

Otherwise, it attempts to disprove the existence of a majority by iterating through
pairs in the larger of the two non-equal sets. We will call the larger set A. If the algorithm
finds sufficiently many heterogeneous pairs, there cannot exist a majority. It compares
consecutive elements in A until it has found enough heterogeneous pairs to disprove a
majority. If it still cannot disprove a majority, it falls back to Salzberg’s algorithm. The
OneCandidate(S, α) subroutine is used with slight modification from [7].

We note here that using ordered comparisons here does not improve the behaviour of
the algorithm for certain inputs. The algorithm works and achieves the correct running
time bound if we simply put elements into “equal” and “not equal” sets, rather than
partitioning them into three sets. As written, we use fewer comparisons in certain cases
(if both sets are smaller than |S|/2, for example, there cannot be a majority). However,
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Algorithm 4 TwoCandidates(S, v1, v2)

1: randomly shuffle S
2: X ← [], Y ← []
3: for i = 1 to |S|/2 do
4: switch cmp(S[2i− 1], S[2i])) do
5: case =
6: append S[2i] to X

7: case <
8: append S[2i− 1], S[2i] to Y

9: case >
10: append S[2i], S[2i− 1] to Y

11: run Majority(X)
12: if there is no majority in X then return no majority in S

13: let value(v) be the majority value with multiplicity k in X
14: cnt← 2k
15: Check1stElemFirst ← (equal(v, v1) and less(v1, v2)) or (equal(v, v2) and less(v2, v1))
16: for i = 1 to |Y |/2 do
17: if Check1stElemFirst then
18: i1 ← 2i− 1
19: i2 ← 2i
20: else
21: i1 ← 2i
22: i2 ← 2i− 1

23: if equal(v, Y [i1]) or equal(v, Y [i2]) then ▷ The “or” short circuits
24: cnt← cnt + 1

25: if cnt ≤ |S|/2 then
26: return no majority in S
27: else
28: return value(v) is the majority value with multiplicity cnt in S

16



this does not improve the average-case running time, because there exist inputs where the
algorithm behaves the same way in either case.3

See Algorithm 5.

Algorithm 5 OneCandidate(S, α)

1: X ← [], Y ← [], Z ← []
2: for i = 1 to |S| do
3: switch cmp(S[i], α) do
4: case <
5: append S[i] to X

6: case =
7: append S[i] to Y

8: case >
9: append S[i] to Z

10: if |Y | > n/2 then return value(α) is the majority value with multiplicity |Y | in S

11: Let A be the larger set of {X,Z}
12: if |A| ≤ n/2 then return no majority in S

13: k ← |A| − n/2
14: randomly shuffle A
15: for i = 1 to |A|/2 do
16: if not equal(A[2i− 1], A[2i]) then k ← k − 1

17: if k = 0 then return no majority in S

18: return Salzberg(S)

2.2.3 NoCandidates

The NoCandidates(S,m) subroutine takes as input the overall set S and the median
of S ′. It then compares every element in S to m and partitions S into three subsets, X,
Y , and Z, whose elements are less than, equal to, and greater than m, respectively.4 If
none of the subsets have cardinality greater than n

2
, it declares that there is no majority.

3For example, if all elements in S compared less than or equal to α, the subroutine would produce
three sets, but all of the “not equal” elements would be in the “less than” set, so it would be isomorphic
to having only “equal” and “not equal” sets.

4Note that in this case, unlike in section 2.2.2, there is a benefit to using ordered comparisons and
three sets (less than, equal to, and greater than) as opposed to two sets (equal to, not equal to), because
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If |Y | > n
2
, then it declares that m is the majority with cardinality |Y |. If |X| > n

2
or

|Z| > n
2
it iterates through the larger subset until it finds enough heterogeneous pairs to

disprove a majority. If it iterates through the set and finds that there are not enough
heterogeneous pairs to disprove a majority (as discussed in the previous section), it falls
back to Salzberg’s algorithm.

See Algorithm 6.

Algorithm 6 NoCandidates(S,m)

1: X ← [], Y ← [], Z ← []
2: for i = 1 to |S| do
3: switch cmp(S[i],m)) do
4: case <
5: append S[i] to X

6: case =
7: append S[i] to Y

8: case >
9: append S[i] to Z

10: if |Y | > n/2 then return value(m) is the majority value with multiplicity |Y | in S

11: if |X| ≤ n/2 and |Z| ≤ n/2 then return no majority in S

12: Let A be the larger set of {X,Z}
13: k ← |A| − n/2
14: randomly shuffle A
15: for i = 1 to |A|/2 do
16: if not equal(A[2i− 1], A[2i]) then k ← k − 1

17: if k = 0 then return no majority in S
return Salzberg(S)

the element we are using to produce these sets is with high probability close to the median, so there is no
distribution where it is forced to be an extreme value.
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2.3 Algorithm Analysis

2.3.1 Preliminaries

In this paper, we use Big-O terms (O, o,Ω) to mean strictly positive functions, unless
there is explicitly a negative symbol in front of the term, in which case it refers to strictly
negative functions.

We define an eventA to happen with very high probability ifPr(A) ≥ 1−exp(−Ω(log2 n)).

Definition 2.3.1 (very high probability). The probability of an event is at least 1 −
exp(−Ω(log2 n)).

Henceforth, we use w.v.h.p. to mean with very high probability.

Note that this is a non-standard definition (though it was used in the Las Vegas ran-
domized algorithm by Gawrychowski et al. [7]). The primary reason for the usage of this
definition is that the intersection of polynomially many events that occur with very high
probability also occurs with very high probability, which is essential for the correctness of
our algorithm analysis.5

Lemma 2.3.1 (Sampling). Let X ⊆ S such that |X| = j. We sample uniformly at random
k ≤ n elements from S without replacement. Let j′ denote the number of elements from X
in these k elements. Then w.v.h.p. |j′/k − j/n| ≤ k−1/2 log n.

This lemma is reprinted with slight modification from [7]. Note that for k = δ(n) =
n9/10 log2(n), this implies that the absolute difference of j′/k and j/n is bounded above by
E.

We use Hypergeometric(N , K, n) to refer to the hypergeometric distribution that
describes the number of red balls drawn in n draws without replacement from a finite set
of size N with exactly K red balls. We define the rank of an element to be its position in
sorted order of a list that contains it, and for equal values we disambiguate them arbitrarily
but consistently.

The following median lemma is a folklore result, but its analysis is similar to some
analyses found in Motwani and Raghavan [10].

5A standard definition of high probability might be that an event A happens with high probability if
Pr(A) ≥ 1− n−O(1), but this weaker requirement does not meet this requirement.
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Lemma 2.3.2 (Median). If we take a sample S ′ of size s and compute its median m, the
rank of m in S is between n

2
− E and n

2
+ E with probability at least 1− 2e−2ϵ2s.

Proof. Consider the set Y of elements comprising the first n
2
− E elements in the sorted

order of S, and the set Z comprising the last n
2
− E elements in the sorted order of S.

Let us consider the case where we produce a median whose absolute distance to the “true
median,” that is, the element whose rank in S is n

2
, is greater than E. In this case, we must

have sampled more than |S ′|/2 elements from Y , or sampled more than |S ′|/2 elements
from Z. Since these cases are symmetric, we can use a union bound to show that the
probability of choosing a “bad” median, i.e. an m whose rank in S is not within E of n

2
,

is at most twice the probability of choosing more than |S ′|/2 elements from Y .

Let us define a random variable X that corresponds to the number of elements cho-
sen from Y . Note that X follows Hypergeometric(n

2
− E, n, s). We can thus use the

hypergeometric tail bound [9] given by the following:

Pr
(
X ≥ (p+ t)|S ′|

)
≤ e−2t2|S′|

with p = 1
2
− ϵ. If we substitute t = ϵ, then we get

Pr

(
X ≥ s

2

)
≤ e−2ϵ2s

So we produce an appropriate median with probability at least 1− 2e−2ϵ2s.

Note that for s = δ(n), this occurs with very high probability.

Lemma 2.3.3 (Heterogeneous Pairs). Consider a partition {X1, X2} of a set X such that
|X1||X2|
|X|−1

∈ Ω(log2 n). We use (X1, X2) to refer to a pair of elements comprising one element
from X1 and the other from X2. We draw pairs from X at random, and we want to find at
least r (X1, X2) pairs. Using d = 4(|X|−1)|X|r

|X1||X2| draws, we find at least r (X1, X2) pairs with

probability at least 1− e−
|X1||X2|r
|X|(|X|−1) .

Proof. We will reason about drawing random pairs from X by considering the set of pairs
of elements P produced by randomly pairing all elements of X. First, we will establish
that with very high probability there is a sufficient number of (X1, X2) pairs in P . Thus,
we can reason about the expected number of such pairs we find after drawing d elements
from P .
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Let Q be a random variable representing the number of (X1, X2) pairs in P . First, we
discuss the expected value of Q. Note that |P | = |X|/2.

We can write

Q =

|P |∑
i=1

Qi

where Qi is an indicator variable that is 1 if the i-th pair has one element from X1 and the
other from X2, and 0 otherwise. If we consider this event without knowing about other
draws, we have

Pr
(
Qi = 1

)
=

2|X1||X2|
|X|(|X| − 1)

(because the pairs can occur in either order).

Thus, E(Q) = |X1||X2|
|X|−1

. We now want to show that the concentration around this
quantity is relatively tight. We set

q =
1

2
E(Q) =

1

2

|X1||X2|
|X| − 1

Now, we will show that
Pr

(
Q > q

)
≥ 1− e−q/4

The indicator variables Qi are not independent; indeed they are negatively correlated,
so we apply a Chernoff bound [4]. We have

Pr
(
Q > (1− δ)E(Q)

)
≥ 1− e−δ2E(Q)/2

If we set δ = 1
2
, we get

Pr
(
Q > q

)
≥ 1− e−q/4

Note that since |X1||X2|
|X|−1

∈ Ω(log2 n) (by a condition of this lemma), Q > q with very
high probability.

Now, we want to show that drawing d pairs from P will give us at least r (X1, X2) pairs
with very high probability. Let’s call the number of such pairs we find R, assuming that
there are q such pairs in P . Note that q is a lower bound on the actual number of (X1, X2)
pairs.

We note that R follows a hypergeometric distribution since we are drawing elements
without replacement, so we can use hypergeometric tail bounds.
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We have Pr
(
R > (p− t)d

)
≥ 1− e−2t2d where p = q

|P | (the fraction of (X1, X2) pairs in

P ) for any t ∈ (0, dp) by the tail bounds of hypergeometric distributions [9]. We set t = p
2

and d = 2p−1r.

Thus, we get

Pr
(
R > (p− t)d

)
= Pr(R > r) ≥ 1− e−pr = 1− e−

|X1||X2|r
|X|(|X|−1)

Note that if pr = |X1||X2|r
|X|(|X|−1)

∈ Ω(log2 n), this happens with very high probability.

2.3.2 Algorithm analysis

We argue that our algorithm solves the majority problem using n + O(n19/20) ordered
comparisons with very high probability, and in fact uses n+O(n19/20) comparisons in the
expectation. Since our algorithm is a Las Vegas algorithm, our running time is a random
variable, but our algorithm is always correct. Note that our goal with this algorithm is
to produce a Las Vegas algorithm that uses n + o(n) comparisons, and we do not aim
to minimize the o(n) term. We prove that our algorithm follows the recurrence relation
T (n) = n+O(n19/20) by strong induction on n.

2.3.3 Sampling phase

Our algorithm produces a sample S ′ by drawing uniformly at random δ(n) = n9/10 log2 n
elements without replacement. Then, it computes the frequencies of the two most frequent
elements within the sample, and determines the median of the sample.

We can clearly compute these statistics in time O(|S ′| log |S ′|) by sorting the sample.
Note that we can afford to sort the sample within our desired bound on the number of
comparisons spent, which could not be done on a sample this large in a 2-way comparison
model.

We note, in passing, that in fact we can tune down the running time of this operation.
We can determine the high frequency values required (or their absence) in time linear in
the sample size, though it has little bearing on our majority theorem, as we can afford to
sort the sample without impacting the worst case analysis. If an element occurs close to
|S ′|/2 times, it must be at least one of the upper quartile, lower quartile, or median values.
Using the selection algorithm of Floyd and Rivest [6], we find the median and then apply it
again to the elements greater than and less than this median to find the quartiles. With a
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3-way comparison, it is straightforward to get the frequencies of any value occurring more
than about |S ′|/4 times. The number of comparisons used will be 3|S ′|+ o(|S ′|) with very
high probability. Following the expected case median lower bound of Cunto and Munro
[3], 3|S ′| − o(|S ′|) comparisons are necessary in the expected case.

2.3.4 TwoCandidates

This subroutine starts by pairing all elements and comparing the elements of consecutive
odd-even pairs. This uses n/2 comparisons. We construct a set X comprising one ele-
ment from each homogeneous pair found through the pairing process, and another set Y
comprising each heterogeneous pair pair found, with the smaller element first.

The next step of the algorithm is to recurse on X. Note that if there is a majority in
S, it must be the majority of X as well. That is, if the recursive call returns that there is
no majority in X, then the algorithm reports that there is no majority.

First, we note that we expect |X| to be approximately equal to |S|/4 given that our
algorithm ended up in this subroutine, since we expect there to be two elements that occur
around half the time each in the overall set based on the sample. Precisely,

|X| =
(
1

4
±O(cϵ)

)
n

w.v.h.p. [7]. Thus, it follows that w.v.h.p. T (|X|) ≤ n
4
+O(cE) +O(n19/20).

If our algorithm returns here, then it has spent only 3n
4
+O(n19/29) comparisons, which

is within our bound. If it continues, it must determine if the majority element of X is a
majority in S as well. Note also that the recusive call will return the cardinality of the
majority candidate in X, so all that is left to do is determine whether there are enough
instances of it in Y to declare a majority.

We can establish that |Y | = (1
2
±O(cϵ))n w.v.h.p. [7].

The algorithm then iterates through pairs in Y . Each of the following statements occur
with very high probability. Note that Y comprises almost exclusively pairs of both α and
β. In particular, at most O(cE) pairs within Y contain an element that is neither α nor
β. This is because there are at most O(cE) elements in S are neither α nor β.

We then iterate through Y , pair by pair, and declare whether there is a majority based
on how many elements we found that were equal to our majority candidate found via
recursion. We claim that for all pairs comprising both α and β, we must only spend
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one comparison to properly count all instances of our majority candidate. Let us assume
without loss of generality that α is the majority candidate and α < β. For pairs that
contain both frequent elements, we only spend one comparison because we compare the
first element of each pair to α, and find it, so we don’t have to compare the other element
to α. (Note that if α > β then we would compare the second element instead.)

For pairs that don’t contain both α and β, we spend either one or two comparisons,
because we might find our candidate on the first comparison, might find it on the second,
or might not find it at all. But, as mentioned, w.v.h.p. there are at most O(cE) pairs not
comprising both of the frequent elements. Thus, this loop thus costs at most 2×O(cE) +
|Y |/2 ≤ n

4
+O(n19/20) w.v.h.p.

The total number of comparisons thus used by this subroutine is n+O(n19/20) w.v.h.p.

2.3.5 OneCandidate

This subroutine begins by comparing the frequent element passed to it from the main
algorithm with every element in the overall set. Since we are in this case, we know that the
frequency of the frequent element in the sample, q1, is at least

1
2
−bϵ, so by Lemma 2.3.1 we

can say w.v.h.p. that its frequency in the overall set, p1, is at least
1
2
− b′ϵ with b′ = b− 1.

If p1 > 1
2
, then we terminate on line 10 using only n comparisons, so for the rest of this

case we can assume that p1 ∈ [1
2
− b′ϵ, 1

2
], and thus the goal is to show that there does

not exist a majority. That is, this frequent element must have narrowly missed being a
majority element, and since it was the only element in the sample frequent enough to be
a contender for the majority, it must mean that there is no majority w.v.h.p.

Our algorithm has already compared every element to α, so it must spend no more
than O(n19/20) comparisons to determine that there cannot be another majority element.
Note that if both X and Z are smaller than n/2, then there cannot exist a majority;
furthermore, all instances of any majority element must be in exactly one of these sets.
We call the larger of these sets A, and we use k to refer to the number of elements in A
above n/2; i.e. k = |A| − n/2.

Note that w.v.h.p., k is no more than b′E based on the reasoning about q1 above.
Because we did not end up in the TwoCandidates case, we have that q2 < 1

2
− cϵ, so

w.v.h.p. p2n < n
2
− c′E with c′ = c − 1. We have already spent n comparisons, but here

we argue that the number of extra comparisons spent to disprove a majority is O(n19/20).
If we find k heterogeneous pairs in A, that is enough to disprove a majority, so we shuffle
A and draw pairs until we meet this condition. Drawing a pair and determining if it is
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heterogeneous requires one comparison, so we count the number of pairs we expect to draw
in order to find k heterogeneous ones.

Let us consider a partition of A: {A1, A2} with the requirement that for any value, all
balls with that value are in the same part. If we have a pair of elements that comprises one
element from A1 and one element from A2, then this will necessarily be a heterogeneous
pair. Thus, we can lower bound the number of heterogeneous pairs in A drawn at random
by the number of pairs of elements where one came from A1 and the other from A2.
Intuitively, we will get the strongest lower bound on the number of heterogeneous pairs by
picking a partition whose components are as close to equal in size as possible. With very
high probability, we can say that the number of instances of the most frequent element in A
(which corresponds to the second most frequent element in S) is 0.5n−c′E where c′ = c−1
(by Lemma 2.3.1). We will place all instances of this element in A1. Thus, the largest A1

we might require has cardinality 0.5n− c′E. In this case, |A2| = n
2
+ k − |A1| = c′E + k.

We now want to argue that this bound is sufficient such that when we draw some
number of pairs d ∈ O(n19/20) we find at least b′E heterogeneous pairs, which disproves the
existence of a majority in S. By Lemma 2.3.3, we will find at least b′E heterogeneous pairs

after drawing only d = 4(|X|−1)(|X|)b′E
|X1||X2| pairs from A with probability at least 1−e−

|X1||X2|b
′E

|X|(|X|−1) .

Since |X1||X2|b′E
|X|(|X|−1)

∈ Ω(log2 n), this occurs with very high probability. Each pair drawn
uses exactly one comparison, so this subroutine thus disproves a majority using n + d
comparisons w.v.h.p. Since d ∈ O(n19/20), that means this subroutine terminates using
n+O(n19/20) comparisons w.v.h.p.

2.3.6 NoCandidates

This subroutine starts by comparing every element to the median of the sample, m. From
that, it forms a family of sets X, Y , and Z (elements less than, equal to, and greater than
m, respectively) that partition the input. Forming the X, Y , and Z subsets clearly takes
exactly n comparisons. If none of the subsets have cardinality greater than n

2
, or if |Y |

has such cardinality, then the algorithm terminates there and spends only n comparisons
total.

If X or Z have more than n
2
elements, then the algorithm has to spend more com-

parisons, but we argue here that the number of extra comparisons is bounded above by
O(n19/20) w.v.h.p. We use A to refer to the larger of X or Z. Let us say that set A has
cardinality |A| = n

2
+ k. With very high probability, k ≤ E because by Lemma 2.3.2 the

rank of the median of S ′ is expected to not be farther than E off from the median of S.
To disprove a majority in S, it suffices to find k heterogeneous pairs in A.
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The algorithm continues by drawing pairs from A until it has disproven a majority.
Similar to the previous section, we will consider a partition of A: {A1, A2} with the re-
quirement that for any value, all balls with that value are in the same part. We will again
lower bound the number of heterogeneous pairs by the number of (A1, A2) pairs.

Since we ended up in this subroutine, that must mean q1 < 1
2
− bϵ by Lemma 2.3.1.

Note also that this implies that ∀i ∈ [1, n], qi <
1
2
− bϵ. With very high probability, we can

say that the number of instances of the most frequent element in A is 0.5n − b′E where
b′ = b− 1. We will place all instances of this element in A1. Thus, the largest A1 we might
require has cardinality 0.5n− b′E. In this case, |A2| = n

2
+ k − |A1| = b′E + k.

By Lemma 2.3.3, we will find at least E heterogeneous pairs after drawing only d =
4(|A|−1)(|A|)E

|A1||A2| pairs w.v.h.p. Each pair drawing uses exactly one comparison, so this sub-

routine disproves a majority using n + d comparisons w.v.h.p. Since d ∈ O(n19/20), that
means this subroutine terminates using n+O(n19/20) comparisons w.v.h.p.
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Chapter 3

Conclusion and Future Work

In this thesis, we presented the first Las Vegas-style randomized algorithm that correctly
solves the majority problem under an ordered comparison model using just n+ o(n) com-
parisons in the expected case, and in fact, does so with very high probability.

3.0.1 Optimality

We conjecture that any Las Vegas-style randomized algorithm that correctly solves the
majority problem under an ordered comparison model must use at least n− o(n) compar-
isons in the expectation, which would imply that our result is optimal to a lower order
term. We attempted to prove this from the lower bound proof of Gawrychowski et al. [7],
but unfortunately their proof technique could not be easily adapted to show a similar re-
sult in the ordered comparison model. Their proof technique relied on upper bounding
the amount of knowledge that any correct algorithm A could know at a given stage and
showing that in order for A to declare a majority, it must have made at least a certain
number of comparisons. Unfortunately, their technique did not immediately extend to the
ordered comparison model because ordered comparisons have transitivity, which violated
some of the assumptions of the proof. We think that proving this conjecture is a promising
avenue for future work.

3.0.2 Optimizing Lower-Order Term

In this work, we did not make any effort to produce an algorithm with the smallest lower-
order term. Our focus was to produce an algorithm with an n+ o(n) expected number of
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comparisons, as opposed to finding the smallest lower-order term. We are confident that
there exist Las Vegas algorithms for the ordered majority problem that correctly solve the
problem in n + γ(n) comparisons where γ(n) ∈ Ω(1) ∩ o(n19/20), and so it could be an
avenue of future work to minimize this term.

3.0.3 Comparison Systems

Another possible goal for future work is to study this problem using 2-way comparison
models that are not equality-test, such as a model where a comparison tells you a ≤ b or
a > b. Alternatively, an interesting model through which to study this problem could be
one that allows any type of 2-way comparison, so one could perform any combination of
{=, ̸=} comparisons or {<,≥} comparisons. We are not aware of any work on this problem
using models of either of these types.
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Glossary

comparison-based algorithm an algorithm where the algorithm can only gain informa-
tion about the input through comparing two elements. 1

equality-test comparison model a comparison model where each comparison between
two elements returns only whether or not they are equal. 2, 4

heterogeneous pair a pair of two elements that are known to not be equal. 5, 15, 18,
23, 24, 26

homogeneous pair a pair of two elements that are known to be equal. 5, 15, 23

Las Vegas algorithm a class of randomized algorithms that always produces a correct
result but whose running time is a random variable that depends on the input, though
the expectation of the running time must be finite. 3, 8, 22

majority problem the problem of determining, among an input of n values, whether
there exists one value whose frequency is more than ⌊n/2⌋, and if so, producing such
a value and the number of times it occurs. 4

Monte Carlo algorithm a class of randomized algorithms that is allowed to err with a
certain (usually small) probability. 3

ordered comparison model a comparison model where each comparison between two
elements returns whether or not they are equal, and if they are not, it returns their
relative ordering. 2, 4, 10

randomized algorithm an algorithm that employs randomness in some part of its pro-
cess. 3, 8

very high probability the probability of an event is at least 1− exp(−Ω(log2 n)). 19
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