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Abstract

In this work, we study the application of multi-agent reinforcement learning (RL) in

distributed systems. In particular, we consider a setting in which strategic clients compete

over a set of heterogeneous servers. Each client receives jobs at a fixed rate. For each

job, clients choose a server to run the job. The objective of each client is to minimize its

average wait time. We model this setting as a Markov game and theoretically prove that

the game becomes in the limit a Markov potential game (MPG). We further propose a

novel mean-field reinforcement learning algorithm, combining mean-field Q-learning and

fictitious play. Through rigorous experiments, we show that our algorithm outperforms

naive deployment of single-agent RL, and in some cases, performs comparably to the Nash

Q-learning [61], while being less complex in terms of memory and computation. We also

empirically analyze the convergence of our proposed algorithm to a Nash equilibrium and

study its performance in four benchmark examples.
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Chapter 1

Introduction

Uncoordinated load balancing is challenging when a set of strategic agents compete over

a set of shared resources. In game theory literature, this is often modeled as congestion

games [84, 57]. In congestion games, each agent’s utility depends on the resources it

chooses and the number of other agents using that resource. If all agents choose the most

efficient resource, that resource becomes congested and all agents suffer. As a result, agents

might have preference to choose less capable resources to avoid congested ones. Another

tool used in game theory to model uncoordinated competition over shared resources is the

multi-agent, multi-armed bandit games [105, 118]. In such games, a set of independent

decision-makers sequentially choose among a group of arms with the goal of maximizing

their expected gain, without having any prior knowledge about the properties of each arm.

A critical limitation of the aforementioned models is the assumption that subsequent

rounds of these games are independent. In other words, the outcome of these games at

any given round has no effect on the outcome of future rounds [38]. However, there is

a carryover effect between rounds in queuing systems. The carryover effect is caused by
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the jobs remaining in the queues. In fact, the average wait time of each queue at round

r depends not only on the number of tasks sent to it at r but also on the number of jobs

stored on the queue from previous rounds.

Krishnasamy et al. [73] study a variant of the multi-armed bandit problem with the

carryover effect which is suitable for queuing applications. They consider a bandit setting

where jobs queue for service, and service rates of different queues are unknown. The

authors study a queuing system with a single queue and K servers. Arrivals to the queue

and service offered by servers are according to a Bernoulli distribution. At any given time,

the queue is served by at most one server and the problem is to schedule a server at every

time slot. They further evaluate the performance of different scheduling policies against

the no-regret1 policy.

Gaitonde and Tardos (2020) [38] study the multi-agent version of the queuing system

in [73]. They consider a system where each client has a queue and servers process jobs

with a fixed time-independent probability. All unprocessed jobs are then sent back to their

respective queues. In settings with centralized scheduler, queues remain stable if the sum

of arrival rates is less than the sum of service rates. However, this condition does not

guarantee the stability of queues in settings with self-interested and independent clients.

Gaitonde and Tardos (2020) [38] show that if the capacity of servers is high enough2, and

agents use no-regret learning algorithms, then the system remains stable. In a follow up

work [39], the same authors show that if agents choose strategies that maximize their

long-run success rate, the extra capacity can be improved3.

Nash equilibrium always exists for finite-space infinite-horizon discounted stochastic

1The policy that schedules the optimal server in every time slot.
2To allow a centralized coordinator to get all jobs done even when the job arrival rate is doubled.
3The stability can be guaranteed even with e

e−1 ≈ 1.58 extra capacity.
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games [30]. However, finding a Nash equilibrium is challenging [21, 117, 23]. To address

this challenge, prior works have used machine learning [76, 34, 80, 61, 9, 46, 98]. Machine

learning is successfully used to find the optimal policy in single-agent environments. For

instance, Q-learning converges to the optimal Q-value function almost surely under some

certain conditions [123, 122, 20]. However, learning in multi-agent environments is com-

plicated as agents not only interact with the environment, but also with each other [14].

A key challenge in applying single-agent RL algorithms in such settings is that multiple

agents learn concurrently, causing the environment faced by each one of them to be non-

stationary. This invalidates the stationarity assumption for the convergence of single-agent

RL algorithms.

In recent years, there has been a growing interest in extending single-agent RL to

multi-agent RL (MARL) [34, 76, 129, 114, 113]. However, most MARL algorithms do

not scale when there many agents in the game [128, 34, 61]. Therefore, their application

is limited. This challenge is addressed in game theory by modelling games as mean-field

games (MFG). In such games, each agent’s effect on the overall environment is considered

to be negligible. However, the interaction with other agents can be captured by the average

action, or the empirical distribution over actions. Therefore, each agent only needs to find

the best response to the mean-field action rather than tracking actions of all other agents.

Mean-field reinforcement learning is a method to learn Nash equilibrium in MFGs using

multi-agent reinforcement learning. In this approach, interactions within the population of

agents are approximated by those between a single agent and the average effect from the

overall population or neighboring agents [126, 109]. In such algorithms, each agent only

considers the average effect of the overall population or the neighboring agents. However,

this approach requires each agent to track the neighboring agents’ policies, which can also

be intractable in the case of a large population of agents. In order to solve this issue, we
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combine mean-field reinforcement learning algorithm in [126] with fictitious play. Fictitious

play is a game in which the empirical distribution of other agents’ actions is considered to

be the belief about their mixed strategy. However, using mean-field reinforcement learning

is not necessary in potential games. In recent years, Leonardos et al. [76] and Macua et al.

[80] show the convergence of naive development of single-agent RL algorithms in potential

games. We aim to improve the state-of-the-art and also extend the related work by adding

fictitious play to the learning process.

In this work, we study the application of multi-agent reinforcement learning (RL) in

distributed systems. In particular, we consider the setting in which a set of strategic

clients compete over a set of servers. Each server has a unique service rate. Clients have

probabilistic job arrivals4 and each job has a probabilistic size5. Clients select a server for

each new job. In each server, jobs are queued to be served. At any given time, the wait

time of the job queue on each server depends on its queue lenght and service rate. The

objective of each client is to optimally distribute its jobs among servers to minimize its

average latency.

We aim to model our setting as an infinitely repeated game, where the system has a

global6 state. State is a vector containing the number of jobs held by each server (length

of queues). State changes as agents take actions, and the reward of each agent depends

not only on the joint action but also on the state. Our setting is a dynamic game with

multiple agents; therefore, we can not use congestion games or bandit models, as they have

no notion of state. We model this setting as a Markov game and theoretically prove that

when the number of clients goes to infinity, the game becomes a Markov potential game

4At each round, each client receives a new job with a fixed, time-independent probability.
5Each job size comes from a geometric distribution with a fixed, time-independent parameter.
6All agents have access to the state.

4



(MPG). We also study the use of machine learning in such systems and propose a novel

reinforcement learning algorithm to find the game’s Nash equilibria.

To the best of our knowledge, this is the first work to combine mean-field reinforcement

learning and fictitious play. Through rigorous experiments, we show that our algorithm

outperforms naive development of single-agent RL. In some cases, our algorithm performs

comparably to the Nash Q-learning [61], while being significantly less complex in terms of

memory and computation. We also empirically analyze the convergence of our proposed

algorithm to Nash equilibrium and study its performance in four benchmark examples7.

Through experiments, we present some scenarios that adding fictitious play to other

RL algorithms such as projected stochastic gradient ascent (PSGA) [76] and actor-critic

(AC) improves their performance by 167% and 550% on average, respectively. In short,

our contributions are as follows:

• We prove that our game is a Markov potential game when the number of clients goes

to infinity (Section 4).

• We develop a novel reinforcement learning algorithm, combining mean-field reinforce-

ment learning and fictitious play (Section 5.2).

• We implement a simulation environment where we can compare the performance of

different learning algorithms for arbitrary scenarios (Section 6).

• Using simulation, we suggest that our proposed algorithm outperforms the naive

development of single-agent RL by 307% on average and up to 1900% (Section 6).

7All examples are designed to be Markov potential games.
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Chapter 2

Background

In this chapter, we provide some background on the topics related to our research. We begin

by introducing stochastic games. Subsequently, we review potential games and then move

to Q-learning. In addition, we discuss regret minimization. We then review multi-agent

reinforcement learning and lastly, we discuss mean-field Q-learning.

2.1 Stochastic Games

Markov decision process (MDP) [60] is a mathematical concept for discrete-time stochastic

processes. It provides a framework for studying decision-making under uncertainty, i.e.,

situations where the outcome not only depends on the decision maker’s action, but on the

environment as well:

Definition 2.1.1. Markov decision process (MDP) [61]. A Markov Decision Process

is a tuple <S,A, r, p>, where S is the discrete state space, A is the discrete action space,
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r : S ×A → R is the reward function of the agent, and p : S ×A → ∆(S) is the transition

function, where ∆(S) is the set of probability distributions over state space S.

In an MDP, the agent acts according to a policy. In general, a policy is the repre-

sentation of agent’s behavior. A stationary policy is a policy that depends only on the

current state of the agent. Stationary policies can either be deterministic or stochastic.

A deterministic, stationary policy π : S → A, determines the action of the agent at each

state, i.e., π(s) = a ∈ A, while a stochastic, stationary policy π : S → ∆(A), specifies a

probability distribution over the action space for each state s ∈ S. In this case, the action

of the agent at time t, comes from a probability distribution that depends on the agent’s

current state, i.e., at ∼ π(st). A strategy can also be a behavioral strategy, in which the

agent’s decision may depend on the game’s history.

Stochastic games1 extend MDPs to the case where there are multiple agents interacting

with each other. It is a framework for studying multi-agent systems:

Definition 2.1.2. Stochastic game [116]. An n-agent stochastic game Γ is a tuple

<S,A1, ..., An, r1, ..., rn, p>, where S is the state space, Ai is the action space of agent

i(i = 1, ..., n), ri : S × A1 × ... × An → R is the payoff function for agent i, p : S × A1 ×

... × An → ∆(S) is the transition probability map, where ∆(S) is the set of probability

distributions over state space S.

At each state s, agents independently and simultaneously take actions a1, ...an and

receive rewards ri(s, a1, ...an), i = 1, ..., n2. The state then transitions to a new state s′,

with probability p(s′|s, a1, ...an), where
∑

s′∈S p(s
′|s, a1, ..., an) = 1.

The nature of agents’ interaction can be cooperative3, competitive, or mixed. The

1Also called Markov games.
2Note that the reward of each agent is a function of state and joint action of all agents.
3Also known as collaborative.
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cooperative setting, which is also the most studied one, assumes that all agents’ actions

improve the collective reward, also referred to as social welfare. Team games, i.e., games

in which all agents receive the same reward, are an example of cooperative games. On the

other hand, in a competitive setting, agents compete with each other. In this case, each

agent’s objective is to maximize its own utility function, which is not necessarily beneficial

for the social welfare. Zero-sum games, i.e., games in which the sum of utilities of all agents

is zero, are purely competitive games. In the case of two-agent zero-sum game, if an agent

wins, the other one loses, and the net change in utilities is zero. Constant-sum games,

i.e., games where the combined utilities of the agents are constant, are another example

of purely competitive games. There are games that do not belong to any of the above

categories, such as general-sum games, which are neither competitive nor cooperative.

In game theory, agents are considered to be self-interested. In stochastic games, each

agent’s objective is to maximize its own discounted expected sum of rewards. We can

define the exact value function as:

vi(s, π1, ..., πn) =
∞∑
t=0

γtE(rit|π1, ..., πn, s0 = s), (2.1)

where rit is the instantaneous reward of agent i at time t, γ is the discount factor4, s is

the initial state, and πj, j = 1, ..., n is the policy of agent j. The expectation is taken

over random policies and rewards and state transitions. Given the definition of v, the

concept of Nash equilibrium can be defined. A Nash equilibrium is a joint strategy where

each agent’s strategy is the best response to others’. In game theory, the best response is

the strategy (or strategies) which produces the optimal outcome for an agent, given other

agents’ strategies [8].

Definition 2.1.3. Nash equilibrium [61]. In stochastic game Γ, a Nash equilibrium

4The discount factor determines how much agents care about future rewards.
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point is a tuple of n strategies (π1
∗, ...π

n
∗ ) such that for all s ∈ S and i = 1, ..., n,

vi(s, π1
∗, ..., π

n
∗ ) ≥ vi(s, π1

∗, ..., π
i−1
∗ , πi, πi+1

∗ , ..., πn
∗ ),

for all πi ∈ Πi, where Πi is the set of strategies available to agent i.

All stochastic games have at least one Nash equilibrium in stationary strategies [31].

We write π =
∏

i∈N πi and π−i =
∏

j ̸=i π
j to denote the joint strategies of all agents and

strategies of all agents except agent i, respectively. Similarly, a joint strategy π∗ = (πi
∗)i∈N

is an ϵ−Nash policy if there exists an ϵ > 0 such that for each agent i:

vi(s, πi
∗, π

−i
∗ ) ≥ vi(s, πi, π−i

∗ )− ϵ, (2.2)

for all πi ∈ Πi and for all s ∈ S.

We next define Markov potential games (MPGs).

2.2 Markov Potential Games

Monderer and Shapley (1996) [92] formally define a class of games called potential games.

In such games, there exists a global5 function called potential function such that if any agent

changes its policy unilaterally, the change in its reward equals the change in the potential

function. Although potential games are not necessarily cooperative, they embrace a notion

of cooperation, as all agents’ utilities are aligned with the shared potential function:

Definition 2.2.1. Potential game [92]. Let Γ(u1, u2, ...un) be a game in strategic form

with finite number of agents, where N = {1, 2, ..., n} is the set of agents, Y i is the set of

5Shared by all agents.
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strategies of agent i, ui : Y → R is the payoff function of agent i where Y = Y 1×Y 2×...×Y n

is the set of strategy profiles. A function ϕ : Y → R is a potential function for Γ, if for

every i ∈ N and for every y−i ∈ Y −i:

ui(y−i, x)− ui(y−i, z) = ϕ(y−i, x)− ϕ(y−i, z), for all x, z ∈ Y i

A trivial class of potential games is team games, i.e., games where all agents receive the

same reward. In this case, the reward function itself is the potential function. Although

Shapley defines potential games for stateless games, Leonardos et al. (2021) [76] introduce

an extension of potential games to Markov games called Markov potential games (MPGs).

Markov potential games are suitable frameworks for modeling sequential decision making.

Definition 2.2.2. Markov potential game [76]. A Markov Decision Process (MDP),

G, is called a Markov Potential Game (MPG) if there exits a state-dependent function

ϕs : Π → R for s ∈ S so that

ϕs(πi, π−i)− ϕs(π
′
i, π−i) = vi(s, πi, π−i)− vi(s, π′

i, π−i),

for all agents i ∈ N , all states s ∈ S and all policies πi, π
′
i ∈ Πi, π−i ∈ Π−i.

Monderer and Shapley (1996) [92] prove that all normal-form potential games have

a deterministic Nash policy profile. Leonardos et al. (2021) [76] prove that all Markov

potential games also have a deterministic Nash policy, i.e., there exists a Nash policy π∗

such that for all agents i ∈ N and for all states s ∈ S, there exists an action ai ∈ Ai, so

that π∗
i (ai|s) = 1.

10



2.3 Q-learning

Each agent’s objective in MDP (see 2.1.1) is to maximize the sum of its discounted expected

rewards:

vπ(s) =
∞∑
t=0

γtE(rt|π, s0 = s), s ∈ S, (2.3)

where s is an arbitrary initial state, rt is the instantaneous reward of the agent at time

t, and γ is the discount factor. The discount factor determines how much agents care about

future rewards, e.g., γ = 0 shows that they only care about the instantaneous reward.

In equation 2.3, vπ(s) is the expected sum of the accumulated reward of agent when it

starts from state s and follows policy π. This is also called the value function. It basically

represents the value of state s under policy π. The optimal value function is defined as:

v∗(s) = max
π

vπ(s). (2.4)

The agent’s objective is to find the optimal policy π∗, i.e., π∗ = argmaxπ v(s, π) for

all arbitrary initial states s ∈ S. The optimal policy can be found by an iterative search

method to find the fixed point of the corresponding Bellman equation (see Appendix B.1)

for π∗:

vπ
∗
(s) = max

a
{r(s, a) + γ

∑
s′

p(s′|s, a)vπ∗
(s′)}, (2.5)

where p(s′|s, a) is the probability of transitioning to state s′ from s, given action a. All

MDPs have an optimal policy π∗, which is not necessarily unique [110]. All optimal policies

achieve the optimal value function, i.e., vπ
∗
(s) = v∗(s) [110].

We can similarly define the action-value function, also called Q-function as:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)v(s′). (2.6)
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Qπ(s, a) is the total discounted expected reward of taking action a at state s and following

policy π afterward. We can rewrite the value function in terms of the Q-function as:

vπ(s) = Ea∼π(.|s)[Q
π(s, a)] =

∑
a∈A

π(a|s)Qπ(s, a). (2.7)

The state transition probabilities or the reward function are not always known. To address

this challenge, model-free reinforcement learning can be used to learn the optimal policy

directly without considering a model for the environment, i.e., without knowing either the

state transition probabilities or the reward function. Q-learning is an example of such

learning algorithm.

The basic idea behind Q-learning is that if we know the optimal Q-function for each

action-state pair, Q∗(s, a), we can simply find the optimal policy π∗ by identifying the

action that maximizes Q∗(s, a) in each state. So the problem of finding the optimal policy

boils down to the problem of finding Q∗(s, a) for all action-state pairs. In the case of small

state and action spaces, we can present the Q-function as a table, which is referred to as

the tabular setting. Suppose the agent takes action a at state s, receives r as reward, and

goes to s′. Given the sampled experience (s, a, r, s′), the vanilla Q-learning update is:

Qt+1(s, a) = Qt(s, a) + αt(s, a)(r + γmax
a′

Qt(s′, a′)−Qt(s, a)). (2.8)

where α is the learning rate. See Appendix B.2 for further explanation.

Generally, reinforcement learning algorithms can be grouped into three main categories:

value iteration, policy iteration, and policy gradient. We provide more information about

these methods in Appendix B.3.
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2.4 Regret Minimization

The main idea behind regret minimization algorithms is to learn the best fixed action in

hindsight [64]. The average overall regret of agent i at time T is:

RT
i =

1

T
max
π∗
i

T∑
t=1

(
ri(π

∗
i , π

t
−i)− ri(π

t
i , π

t
−i)
)
. (2.9)

This measures the performance of an algorithm compared to the best hindsight static

strategy. The objective of regret minimization algorithms is to find policies that minimize

the overall regret.

We can also define regret in the context of queuing systems. Let Qt be the queue length

of a server in a queuing system at time t, and let Q∗
t be the corresponding queue length

under a policy that always schedules the optimal server. Krishnasamy et al. [73] define

the queue-regret as:

ψ(t) := E[Qt −Q∗
t ]. (2.10)

Regret minimization algorithms are guaranteed to converge to the equilibria of certain

games [10, 51, 132]. EXP3 [7] and follow-the-leader (FTL) [52] are two examples of such

learning algorithms.

2.5 Multi-agent Reinforcement Learning

Most reinforcement learning applications involve the participation of more than one agent.

Multi-agent reinforcement learning (MARL) addresses sequential decision-making prob-

lems with more than one agent. In particular, it considers settings where the evolution

of the state and the reward of each agent are influenced by the joint action of all agents.

Stochastic games (see 2.1) are theoretical frameworks for MARL.
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The naive development of single-agent RL algorithms, also called independent learning,

may fail to converge in multi-agent environments [33]. Learning in multi-agent environ-

ments is highly nontrivial as agents are learning concurrently, causing the environment

faced by each one of them to be non-stationary. Action taken by each one of the agents

affects the reward of other agents and state transitions. This violates the stationarity

assumption in single-agent reinforcement learning algorithms, an assumption that guaran-

tees the convergence of such algorithms. However, there are some cases in which applying

single-agent RL algorithms to multi-agent settings would converge to the set of Nash equi-

libria [76, 91, 37, 80].

To handle non-stationarity, each agent may need to account for the joint action in their

learning process. Joint-action-learners [22], observe the action of all other agents. Each

agent assumes that other agents are selecting actions according to a stationary policy.

Therefore, each agent estimates other agents’ policies from their actions. They then play

optimally with respect to this learned estimate. Minimax-Q algorithms [78, 62, 61] observe

both the actions and rewards of the all other agents and learn a Nash equilibrium explicitly.

Such algorithms learn and play the equilibrium independent of the behavior of other agents.

LOLA [34] is another instance of MARL algorithms. A LOLA agent optimizes the expected

return after the rest of the population update their policy with one learning step, instead

of optimizing the expected return under the current parameters.

The downside of the aforementioned algorithms is that each individual agent has to

account for the joint action of all agents, whose dimension increases with the number of

agents. One way to tackle the scalability issue with a massively large number of agents is to

use the mean-field games (MFGs) models. In such games, each agent’s effect on the overall

environment is negligible. However, the interaction with other agents can be captured by

the average action, or the empirical distribution over actions. Therefore, each agent only
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needs to find the best response to the mean-field.

2.6 Mean-field Q-learning

Mean-field reinforcement learning is another method to tackle the multi-agent reinforce-

ment learning problem with a large number of agents. In this approach, interactions within

the population of agents are approximated by those between a single agent and the average

effect from the overall population or neighboring agents [126]. Yang et al. (2018) [126] pro-

pose mean-field Q-learning, an approach which adds the mean action of neighboring agents

to the Q-function of each agent. In this case, the Q-function of agent i ∈ N is written

as Qi(s, ai, a−i), where a−i is the mean action of all neighboring agents and is calculated

using the following equation:

āj =
1

N j

∑
k

ak, ak ∼ πk
t (.|s, âk), (2.11)

where N j is the number of neighbors of agent j, and ak is sampled from the policy of agent

k, which depends on the state and previous mean action of agent k’s neighbors. Policies

of neighbouring agents, πk
t , is parametrized by agents’ previous actions, âk. The main

assumption here is that the Q function can be approximated using only the pairwise local

interactions:

Qj(s, a) =
1

N j

∑
k∈N (j)

Qj(s, aj, ak), (2.12)

where N (j) is the index set of neighboring agents of agent j.

Therefore, each agent has to track all its neighbors’ policies in order to be able to

calculate āj. This is a drawback of MF-Q, as keeping track of neighboring agents’ policies

can be very expensive, especially when number of agents are massively large. A solution
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would be using fictitious action instead of mean action. We will explain this solution

further in next chapters.

16



Chapter 3

Problem Formulation

We study the following discrete-time queuing system. Suppose N = {1, ..., n} is the set of

heterogeneous clients, and M = {1, ...,m} is the set of heterogeneous servers. Each server

is characterized by its fixed processing rate µj, j ∈ {1, ...,m}. During each time step, each

client i ∈ N receives a new task with probability λi (0 ≤ λi ≤ 1). Clients that receive a job

choose a server to send their task to. Server j processes jobs at rate µj. Tasks are queued

in servers and processed according to the first-come, first-served (FCFS) discipline, while

ties are broken in favor of clients with a smaller id numbers.

All arrival times and task sizes are assumed to be independent of one another. In the

case of constant task sizes, each server can be modeled as an M/D/1 queuing system,

i.e., Poisson arrivals and deterministic task sizes. Each server can also be modeled as an

M/M/1 queuing system, i.e., Poisson arrivals and geometric task sizes, if task sizes come

from a geometric distribution, as it is the only memory-less discrete distribution.

As in [38], we can write Qj
t as the number of unprocessed tasks at the beginning of time
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step t in server j:

Qj
t+1 = Qj

t +Bj
t − Sj

t , (3.1)

where Bj
t is the number of tasks received by server j at time t, and Sj

t is the number of

tasks served by server j at time t. Both Sj
t and Bj

t are random variables. Note that Sj
t is

necessarily zero if Qj
t +Bj

t = 0. We initialize Qj
0 = 0.

Definition 3.0.1. System stability [38]. The above system is strongly stable under some

given dynamics if, for any fixed r ≥ 0, the random process Qj
t satisfies E[(Qj

t)
r] ≤ Cr for

some absolute constant Cr depending only on r and parameters λ =
∑n

i=1 λi and µ =∑m
j=1 µi, but not on t.

In other words, the queuing system is strongly stable if all moments of the queue length

of all servers are bounded. In order for the system to be strongly stable under a centralized

scheduling policy, the total arrival rate must be less than the total processing rate of the

system, i.e., λ < µ [38].

The problem faced by each client is how to distribute its jobs between servers to operate

optimally. Each client should find the probability of sending their task to servers so that

the expected execution time of its tasks are minimized.

We formulate the problem as a non-cooperative stochastic game. The game is non-

cooperative, as each client acts in a selfish manner and minimizes the expected wait time

for its own tasks. At each round, each client that has sent a task receives a reward

proportional to the inverse of the expected wait time of the chosen server. In addition

to rewards, clients also have access to a global state, which measures each server’s queue

length at the beginning of each time step. The game is stochastic1, as state transitions are

controlled by all agents’ current state and action.

1Markovian.
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We denote the state at round t by vector st = (s1t , s
2
t , ..., s

m
t ) and the state space by S,

where s0 = (0, ..., 0).

At the beginning of the game, the action space of client i, i ∈ {1, .., n} is Ai =

{e1, ..., em, e0}, where ej is a vector in which all elements are zero except the i-th ele-

ment, which is one. It represents the action of choosing server j, j ∈ {1, ..,m}. The vector

e0 = (0, ..., 0) represents no action when client i does not receive a task.

It is important to consider that state space size is proportional to the number of clients.

There is a capacity on the maximum number of tasks in each server. Clients can no longer

send their tasks to servers with full queues. These servers are not in the clients’ action

space until their queue length becomes less than the capacity. The state space size will

therefore be capacitym since we have m servers, and each one of them can have a queue

size of 0 to capacity − 1.

The reward received by client i when choosing server j at time t is:

Ri(ai, a−i, s) =
1

wj(s,Nj(a))2
, (3.2)

where wj(s, k) ≜ is the expected wait time on server j at state s, given that k tasks are

sent to it, and Nj(a) ≜ is the number of tasks sent to server j given joint action a. We can

also define the value function as:

vi(s, πi, π−i) =
∞∑
t=0

γtE(rit|π, s0 = s), s ∈ S, (3.3)

where rit is the instantaneous reward of agent i at time t and γ is the discount factor.

The value function is the expected accumulative reward of agent i when starting from state

s and following policy πi, while other agents act according to π−i. Note that all clients

have the same reward function but do not receive the same reward. Furthermore, note

19



that each agent’s reward, not only depends on its own action but on the action of all other

agents as well. It also depends on the state of the system.

The action taken by one agent affects the reward of other agents and the evolution of

the state. Therefore, each agent should account for how other agents behave and adapt to

the collective behavior accordingly [128].

We can now formally define the stochastic game. The following notation is standard

and mainly follows [76]. Using common conventions, we will write X = |X | and ∆(X ) to

denote all probability distributions’ size and space over any set X , respectively.

There are n agents who repeatedly choose actions in a Markov Decision Process (MDP).

Each agent’s goal is to maximize its value function vi(s, πi, π−i). The n-agent stochastic

game can then be defined as a tuple G = (S,N , {Ai,Ri}, P, γ), where:

• S is the finite state space with size |S| = capacitym. ∆(S) denotes the set of all

probability distributions over states.

• N = {1, ..., n} is the set of agents.

• Ai is the finite action space for agent i ∈ N , with generic elements ai ∈ Ai. Note

that we can write A =
∏

i∈N Ai and A−i =
∏

j ̸=iAj to denote the joint action spaces

of all agents and the joint action spaces of all agents except agent i with generic

elements a = (ai)i∈N and a−i = (aj)j ̸=i, respectively.

• Ri : S × A → [0, 1] is the reward function of agent i, i.e., Ri(s, ai, a−i) is the

instantaneous reward of agent i, when it takes action ai, and other agents take a−i

at state s.

• P is the state transition probability function, i.e., P (s′|s, a) is the probability of
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transitioning from s to s′, when all agents take the joint action a. In our game, state

transitions are deterministic, i.e., P (s′|s, a) ∈ {0, 1}.

• γ is the discount factor for future rewards.

We can index all the above terms with time t. At each time-step t ≥ 0, all agents

observe the state st, simultaneously take the joint action at = (a1,t, ..., an,t) and receive the

reward Ri(st, at), i ∈ N . The state then transitions to st+1 ∼ P (.|st, at).

Our goal is to solve the game G by finding the Nash equilibrium strategies. In the next

chapter, we prove that G becomes a Markov potential game (MPG) in the limit. We then

provide an algorithm to find the optimal Nash equilibrium.
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Chapter 4

Potentiality Proof

In this chapter, we prove that our game becomes a Markov potential game (MPG) in

the limit. A key challenge of learning in stochastic games is that multiple agents learn

concurrently. The action taken by one agent not only affects the state’s evolution but also

impacts the reward of other agents. This causes the environment faced by each individual

agent to become non-stationary, which violates the stationarity assumption for convergence

of single-agent reinforcement algorithms. However, Leonardos et al. (2021) [76] prove that

projected stochastic gradient ascent (PSGA) converges to ϵ-approximate Nash policy in

Markov potential games. The intuition behind the proof is that running gradient ascent

on each agent’s value function is equivalent to running gradient ascent on the potential

function. So instead of finding the ϵ-stationary point of all agents’ value functions, all we

have to do is to find the ϵ-stationary point of the potential function.

When a game is an MPG, running independent gradient ascent for each agent guaran-

tees convergence to the Nash policy [76]. The only drawback of naively applying indepen-

dent gradient ascent is that the number of steps to reach the ϵ-approximate Nash policy is
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proportional to 1
ϵ6

which makes the convergence too slow.

Not all games that are potential at each state are MPGs. According to [76], the sufficient

conditions for games that are potential at each state to be MPGs are as follows:

• C1. Agent-independent Transitions : State transitions do not depend on the joint

action, i.e., p(s′|s, a) = p(s′|s).

• C2. Equality of Individual Dummy Terms : p(s′|s, a) is arbitrary but the dummy

terms of all agents, i.e., uis(a−i), are equal across all the states, i.e., there exists a

function uis : A−i → R such that Ri(ai, a−i, s) = ϕs(ai, a−i) + uis(a−i), and

∇πi(s)Eτ∼π[
T∑

k=0

γkuisk(a−i,k)|s0 = s] = cs1, (4.1)

for all states s′, s ∈ S, cs ∈ R and 1 ∈ RAi , where πi(s) is the policy of agent i at

state s.

If either C1 or C2 are true, the game is an MPG [76].

The game described in Chapter 3 is potential at each state since we can write the

individual reward function (3.2) as:

Ri(ai, a−i, s) = ϕs(ai, a−i) + uis(a−i) , (4.2)

where:

ϕs(ai, a−i) ≜
m∑
j=1

Nj(a)∑
k=1

1

wj(s, k)2
, and (4.3)

uis(a−i) ≜ −
m∑
j=1

Nj(a−i)∑
k=1

1

wj(s, k)2
. (4.4)
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In 4.3 and 4.4, Nj(a) and Nj(a−i) are the number of tasks sent to server j given the joint

actions a and a−i
1, respectively. So if agent i deviates to a′i:

Ri(ai, a−i, s)−Ri(a
′
i, a−i, s) = ϕs(ai, a−i) + uis(a−i)− ϕs(a

′
i, a−i)− uis(a−i)

= ϕs(ai, a−i)− ϕs(a
′
i, a−i). (4.5)

The distributed load-balancing game does not satisfy C1, as state transitions are clearly

dependent on the joint action of all agents. However, we can show that as the number of

agents goes to infinity, ∇πi(s∗)Eτ∼π[
∑T

k=0 γ
kuisk(a−i,k)|s0 = s]2 goes to zero. In this case,

C2 holds for cs = 0 and hence, the game is an MPG. We are now ready to prove that our

game is a Markov potential game in the limit.

Assumption 1. Each client has an arrival rate of λ
n
3 and since limn→∞ n(λ

n
) = λ, it is

theoretically possible to have a feasible system with infinite number of clients, as long as∑m
j=1 µj > λ.

We want to show that ∇πi(s∗)Eτ∼π[
∑T

k=0 γ
kuisk(a−i,k)|s0 = s] goes to zero as n goes to

infinity. For finite horizon T, we define Pπ(s′, s) to be the probability of transitioning from

s to s′ under policy π. We now define vit(s) for 0 ≤ t ≤ T as:

vit(s) ≜ Eτ∼π[
t∑

k=0

γkuisk(a−i,k)|s0 = s]4. (4.6)

where the expectation is taken over random policies. Using dynamic programming, we can

rewrite vit(s) as:

vit(s) = Eτ∼π[u
i
s(a−i,0)] +

∑
s′

Pπ(s′, s) Eτ∼π[
t∑

k=1

γkuisk(a−i,k)|s0 = s′]. (4.7)

1Action of all agents except agent i.
2s and s∗ are two arbitrary states.
3Note that n is the number of agents.
4The expectation is taken over random policies.
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Since uis(a−i,0) is independent from πi(s), we have Eτ∼π[u
i
s(a−i,0)] = Ea−i∼π−i(s)[u

i
s(a−i,0)].

We can also factorize a γ from the second term:

vit(s) = Ea−i∼π−i(s)[u
i
s(a−i,0)] + γ

∑
s′

Pπ(s′, s)Eτ∼π[
t−1∑
k=0

γtuisk(a−i,k)|s0 = s′], (4.8)

where according to 4.6, we have vit−1(s
′) = Eτ∼π[

∑t−1
k=0 γ

kuisk(a−i,k)|s0 = s′]. So we can

write:

vit(s) = Ea−i∼π−i(s)[u
i
s(a−i,0)] + γ

∑
s′

Pπ(s′, s)vit−1(s
′). (4.9)

Our goal is to show that∇πi(s∗)v
i
T (s) goes to zero as n goes to infinity. ∇πi(s∗)v

i
T (s) measures

the change in viT (s), as agent i modifies its policy at state s∗. Intuitively, we expect viT (s)

not to change much when there are infinite number of agents in the game. We can write

∇πi(s∗)v
i
t(s) by taking derivative of 4.9 as:

∇πi(s∗)v
i
t(s) = ∇πi(s∗)

(
Ea−i∼π−i(s)[u

i
s(a−i,0)]

)
+∇πi(s∗)

(
γ
∑
s′

Pπ(s′, s)vit−1(s
′)

)
. (4.10)

Since Ea−i∼π−i(s)[u
i
s(a−i,0)] only depends on action of other agents, we have:

∇πi(s∗)Ea−i∼π−i(s)[u
i
s(a−i,0)] = 0. (4.11)

Therefore, we can write:

∇πi(s∗)v
i
t(s) = ∇πi(s∗)

(
γ
∑
s′

Pπ(s′, s)vit−1(s
′)

)
= γ

∑
s′

Pπ(s′, s)∇πi(s∗)v
i
t−1(s

′) + γ
∑
s′

vit−1(s
′)∇πi(s∗)P

π(s′, s). (4.12)

If we show that ∇πi(s∗)v
i
t(s) is bounded, and both bounds go to zero as n goes to infinity,

we can conclude the main theorem 4.0.4. The following lemmas are essential for proving

the main theorem. We postpone the proofs to Appendix C for more readability.
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In order prove the main theorem 4.0.4, we first show in lemma 4.0.1 that uis(a−i) has a

lower bound and therefore, vit(s) (4.6) is also lower bounded.

Lemma 4.0.1. uis(a−i) (4.4) is lower bounded by −2π2

3

∑m
j=1 µ

2
j , where m is the number of

servers and µj is the service rate of server j.

Lemma 4.0.2 shows that ∇πi(s∗)v
i
t(s) is lower bounded by

∑t
i=1 γ

i λ
n
v̂t−i1, which goes to

zero as n→ ∞. We prove this lemma using lemma 4.0.1 and proof by induction.

Lemma 4.0.2. For all s ∈ S,
∑t

i=1 γ
i λ
n
v̂t−i1 ≤ ∇πi(s∗)v

i
t(s) (4.12), where v̂t−i is the

minimum of vit−i(.) (4.9) over all states.

In lemma 4.0.3, we use proof by induction to show that ∇πi(s∗)v
i
t(s) is upper bounded

by zero (see the complete proof in Appendix C).

Lemma 4.0.3. For all s ∈ S, ∇πi(s∗)v
i
t(s) (4.12) is upper bounded by 0.

We are now ready to prove the main theorem, which can be directly concluded from

lemma 4.0.2 and 4.0.3.

Theorem 4.0.4. For all s ∈ S, ∇πi(s∗)v
i
T (s) (4.12) goes to zero as n goes to infinity.

Proof. According to lemmas 4.0.2 and 4.0.3,
∑t

i=1 γ
i λ
n
v̂t−i1 ≤ ∇πi(s∗)v

i
t(s) ≤ 0. As n goes to

infinity, both lower and upper bounds of ∇πi(s∗)v
i
T (s) go to zero. Using squeeze (sandwich)

theorem, we can conclude that ∇πi(s∗)v
i
t(s) goes to zero as well.
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Chapter 5

Algorithm

In this chapter, we propose our novel reinforcement-learning algorithm ,which is a combi-

nation of mean-field Q-learning and fictitious play.

5.1 MF-Q + FP

One drawback of MF-Q (see 2.6) is that keeping track of neighboring agents’ policies can be

very expensive, especially when the number of agents is large. To address this challenge we

combine fictitious play (FP) with MF-Q. Fictitious play is a process in which all agents take

the empirical distribution of other agents’ actions as a belief about their mixed strategies.

In fictitious play, each agent plays the best response in accordance to their belief about

other agents’ strategies.

Strategies are first initialized arbitrarily at t = 0, and then agents use the following

rule to update the average strategy at time t subsequently [40]:

f t
i =

(t− 1)f t−1
i + ati
t

, (5.1)
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where f t−1
i is an m× 1 vector representing the average strategy of agent i until time t− 1,

and ati is an m × 1 vector with only one non-zero (one) element. ati is the best response

action of agent i to the profile f t−1
−i of the other agents played at time t− 1. Other agents

take f t
i as the mixed strategy of agent i at time t and best respond to it. Although fictitious

play was first defined for stateless games, we can extend it to Markov games. In this case,

the average strategy would be defined per state:

f t
i (s) =

(t− 1)f t−1
i (s) + ati(s)

t
, (5.2)

where s is the state at time t.

In fictitious play, each agent i has to keep track of the average strategy of all other

agents at all states, which can be summarized into matrix f−i:

f−i =


f1(s1) · · · fi−1(s1) fi+1(s1) · · · fn(s1)

f1(s2) · · · fi−1(s2) fi+1(s2) · · · fn(s2)
...

. . .
...

...
. . .

...

f1(s|S|) · · · fi−1(s|S|) fi+1(s|S|) · · · fn(s|S|)

 , (5.3)

where |S| is the size of state space.

As the number of agents increases, |S| also grows, making f−i intractable. To solve this

issue, we can use the same reasoning as in mean-field games literature [28]. As each agent

is small compared to the population size, its effect on the whole system can be neglected.

Therefore, each representative agent can best respond to the flow of the entire population.

In this case, each agent can see all other agents as a single entity. In other words, each

agent i plays in a two-agent game: i and N − {i}.

Instead of tracking a separate fictitious action for each agent, we can track the average

strategies of all agents. This would significantly reduce the dimensions of f .
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The average strategy update rule will now be:

f t(s) =
(t− 1)f t−1(s) + at(s)

t
, (5.4)

where f t−1(s) is the average strategy of all agents in state s until time t − 1 and at(s) is

the mean action of all agents in state s at time t. So now each agent has to keep track of

f(s), for all s ∈ S.

If the state space is not huge, keeping track of f requires far less memory than keeping

track of all agents’ policies. Each agent’s policy is normally parameterized by a parameter

vector θ. The size of f would be |S| ×m, where m is the size of action space, and the size

of the matrix keeping all agents’ policies would be |θ| × n, where |θ| is the size of policy

parameter vector and n is the number of agents. |θ| usually is more than m, but mainly

depends on how the basis function is defined.

We are now ready to introduce our algorithm, which is a combination of mean-field

Q-learning and fictitious play.

5.2 Fictitious Mean-field Reinforcement Learning Al-

gorithm

We use linear approximation of the Q function with a second-order basis, i.e., for each

agent i, Qθi(s, a
i, f(s)) = Ψ(s, ai, f(s))T θi. Where θi is the parameter vector of agent i.

We define the basis function Ψ(s, ai, f(s)) to be:

Ψ(s, ai, f(s)) =


sai

sfai

1

 , (5.5)
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where sai is a vector of sizem2, where each element is the multiplication of elements in s and

ai, i.e., {s}j{ai}k, ∀j, k ∈ {1, ...,m}. Also, sfai is a vector of size m3, where each element

is the multiplication of elements in s, f and ai, i.e., {s}j{f}k{ai}h, ∀j, k, h ∈ {1, ...,m}.

Here, 1 is the constant bias used to adjust the learning procedure.

The Boltzmann policy is then determined for each agent i that:

πi
t(a

i|s, f(s)) = exp(βQθi(s, a
i, f(s)))∑

a∈Ai exp(βQθi(s, a, f(s)))
, (5.6)

where β is the exploration rate. As the name suggests, β determines the amount of

exploration by policy, e.g., when β is large, the policy would become almost deterministic,

and vice versa; when β is close to zero, the policy would almost always explore all actions

with nearly the same probability.

The main advantage of using the Boltzmann policy is that it is Greedy in the Limit

with Infinite Exploration (GLIE). Such policies satisfy the two following properties:

• If a state is visited infinitely often, then all actions in that state are also chosen

infinitely often.

• As t→ ∞, the learning policy is greedy with respect to the learned Q-function.

One of the main assumptions for the convergence of MFQ is that the policy should

be GLIE. By iterating equations 5.4 and 5.6, the average strategy and the policies for all

agents improve alternatively [126].

The Q-function can now be updated in a recurrent manner for each agent i as:

Qi
t+1(s, a

i, f) = (1− α)Qi
t(s, a

i, f) + α[ri + γvit(s
′)], (5.7)

where α denotes the learning rate and γ is the discount factor.
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Here, yi = ri + γvit(s
′) is the target mean-field value, and the final goal is to update Q

parameters such that Qθi(s, a
i, f(s)) = ri + γvit(s

′), where vit(s
′) is calculated by:

vit(s
′) =

∑
ai

πi
t(a

i|s′, f)Qi
t(s

′, ai, f(s′)). (5.8)

We update the Q parameters by minimizing the loss function L(θj) = 1
K

∑
(yj −

Qθj(s
j, aj)) using gradient descent. The psudo code of the algorithm is as follows:

Algorithm 1: Fictitious Mean-field Reinforcement Learning

1 Initialize θj and f(s) for all j ∈ {1, ..., n} and s ∈ S

2 while training not finished do

3 for k = 1,...,batch size do

4 For each agent j, sample action aj from Qθj by equation 5.6, with the

current fictitious action f and the exploration rate β

5 For each agent j, update the mean action using equation 5.4

6 Take the joint action a = [a1, ..., an] and observe the joint reward

r = [r1, ..., rn] and the next state s′

7 Store < s, a, r, s′, f > in a replay buffer D

8 for j = 1,...,n do

9 Sample a mini batch of K experiences from D

10 Set yj = rj + γvMF
θj (s′) by equation 5.8

11 Update Q parameters by minimizing the loss L(θj) = 1
K

∑
(yj −Qθj(s

j, aj))
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Chapter 6

Experiments

In this chapter, we first apply our algorithm to four benchmark examples to empirically

show the effectiveness of our proposed algorithm. We then apply our algorithm to the

game presented in Chapter 3, and compare its performance against the state-of-the-art.

Each of four tests are designed to be potential games, as we have previously proven our

game to be Markov potential for many agents. All tests are played by 100 homogeneous

agents, batch size is set to 100, β = 0.01 and γ = 0.99. The learning rate is initially set to

1 and then geometrically decays by the discount factor with a minimum of 0.001.

We implement algorithm 1 and compare it against two baseline models:

1. Independent Q-learner (IQL), the simplest multi-agent version of Q-learning that

does not consider the action taken by other agents [113], and

2. Nash Q-learning (NQL) [61], where the action of all other agents is added to the

Q-function.
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We also implement actor-critic (AC) and projected stochastic gradient ascent (PSGA)

[76], once as an independent learner and once with fictitious action. Therefore, we can

evaluate the effect of adding fictitious action to learning algorithms other than Q-learning.

It is known that a Nash equilibrium exists in all finite games, and through these bench-

mark examples we empirically show that our iterative algorithm converges to an approx-

imation of the optimal Nash equilibrium. Each one of the tests has an infinite number

of mixed Nash equilibria; however, we empirically show that our proposed algorithm con-

verges to the optimal equilibrium.

6.1 Test I (two states, two actions team game)

Setting. This scenario has two states, s1 and s2, where state transitions are independent

of agents’ actions. Every agent can take two possible actions in both states, a1 and a2.

If all agents take a1 at state s1, they all get a reward of 100. If one or more of them

deviates, they all get 1. The same happens for s2, if all agents take a2 in s2, they all get

100 and if one or more of them deviates, they all get 1.

The reward function would be ∀i ∈ N :

Ri(a, s1) =

100, if a = (a1, ..., a1),

1, otherwise,

(6.1)

and

Ri(a, s2) =

100, if a = (a2, ..., a2),

1, otherwise.

(6.2)
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State transitions however, are independent from actions:

P(s2|s1, a) = P(s2|s1) = 0.1, (6.3)

P(s1|s2, a) = P(s1|s2) = 0.1, (6.4)

Bellow is the visual representation of the Markov chain:

s1 s20.9

0.1

0.9
0.1

This game is a team game (see Chapter 2), as all agents receive the same reward at

each state; therefore, it’s a potential game at each state. As state transitions are agent-

independent, C1 (see Chapter 4) is satisfied; therefore, the game is a Markov potential

game, where the potential function is the same as the reward function.

The only optimal deterministic Nash policy in s1 is all agents playing a1 with probability

one, as none of the agents get a higher utility by unilaterally deviating from it. By the

same reasoning, the deterministic Nash policy in s2 would be all agents playing a2 with

probability one. This strategy maximizes the potential function, and as we discussed

earlier, Nash equilibria are the optimal points of the potential function in potential games.

Results. Figure 6.1 illustrates the result, comparing the performance of algorithm 1

to two different baselines, independent Q-learner and Nash Q-learning. Nash Q-learning

has the best performance, as it calculates the Nash policy at each stage of the game and

updates Q-functions according to that.

Nash Q-learning is very expensive in terms of both space complexity and run time [61].

In this algorithm, each agent has to keep track of all other agents Q-functions and also
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Figure 6.1: Test I; Comparing reward of Nash Q-learning, independent learner and

MFQ+F.

has to calculate the Nash policy at every stage of the game. Regarding space complexity,

the algorithm is linear in the number of states, polynomial in the number of actions, but

exponential in the number of agents. On the other hand, the algorithm’s running time is

mainly dominated by the calculation of Nash policy in each state. The computational com-

plexity of finding an equilibrium in matrix games is unknown [61]. Overall, implementing

Nash Q-learning for settings with a large number of agents or general-sum matrix games

can be very complex and infeasible. Therefore, we only implement it for the benchmark

examples.

Algorithm 1, on the other hand, is far less complex in terms of time and memory and

has comparable performance with NQL. As expected, it also outperforms the independent

learner.

Figure 6.2 illustrates the performance of vanilla PSGA and PSGA with fictitious action

added. Leonardos et al. (2021) [76] prove that PSGA converges to the Nash equilibrium,
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Figure 6.2: Test I; Comparing reward of vanilla PSGA and PSGA with fictitious action.

but as mentioned before, the convergence is very slow. Naive policy gradient methods

perform poorly in simple multi-agent settings, which is also supported in our experiment.

They are also known to exhibit high variance gradient estimates, which is exacerbated in

multi-agent settings. As shown, adding f improves the performance dramatically.

Figure 6.3 illustrates the performance of vanilla actor-critic and actor-critic with ficti-

tious action added. As shown, independent actor-critic does not converge. Adding fictitious

action is beneficial, especially when the number of agents is high and collaboration is nec-

essary between a large population of agents. Independent actor-critic can perform well

with a small number of agents, but it cannot compete with AC+f when there are many

agents. As illustrated in figure 6.4, independent learner can perform well when we only

have ten agents in the game.

In the figures below, the y axis is the average reward of all agents, which is equal to

the instantaneous reward of each agent.
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Figure 6.3: Test I; Comparing reward of vanilla actor-critic and actor-critic with fictitious

action.
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Figure 6.4: Test I; Comparing reward of independent actor-critic and actor-critic with

fictitious action with 10 agents.
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6.2 Test II (one state, two actions team game)

Setting. This scenario has one state, s1. Every agent can take either of two possible

actions, a1 and a2. If all agents take the same action, i.e., all of them take a1 or all of them

take a2, they get a reward of 100. Otherwise their reward would be 1.

The reward function would be ∀i ∈ N :

Ri(a, s1) =


100, if a = (a1, ..., a1),

100, if a = (a2, ..., a2),

1, otherwise.

(6.5)

This game is also a Markov potential game, with the same reasoning as test I. The

deterministic Nash policy would be all agents taking action a1 with probability one, or all

of them taking a2 with probability one.

Results. We expect the independent learner to perform poorly in this setting, as co-

operation is necessary to achieve the optimal outcome.

Figure 6.5 illustrates the result, comparing the performance of algorithm 1 to two

different baselines, independent Q-learner and Nash Q-learning. As illustrated, MFQ+FP

performs comparable to NQL, while being less expensive. As expected, independent learner

does not learn the optimal policy in this setting. The results for PSGA and actor-critic

can be seen in figures 6.6 and 6.7 respectively.
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Figure 6.5: Test II; Comparing reward of Nash Q-learning, independent learner and

MFQ+F.
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Figure 6.6: Test II; Comparing reward of vanilla PSGA and PSGA with fictitious action.
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Figure 6.7: Test II; Comparing reward of vanilla actor-critic and actor-critic with fictitious

action.

6.3 Test III (two states, two actions team game)

Setting. This scenario has two states, s1 and s2, where state transitions are independent

of agents’ actions. Every agent can take either of two possible actions in both states, a1

and a2.

If all agents take the same action at state s1, i.e., they all take a1 or they all take a2,

they all get a reward of 100. If only one of them deviates, they all get 1. The reverse

happens for s2, if all agents take the same action at state s2, they all get 1 and if at least

one of them deviates, they all get 100.

The reward function would be ∀i ∈ N :
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Ri(a, s1) =


100, if a = (a1, ..., a1),

100, if a = (a2, ..., a2),

1, otherwise.

(6.6)

and

Ri(a, s2) =


1, if a = (a1, ..., a1),

1, if a = (a2, ..., a2),

100, otherwise.

. (6.7)

State transitions however, are independent from actions:

P(s2|s1, a) = P(s2|s1) = 0.1, P(s1|s2, a) = P(s1|s2) = 0.1. (6.8)

Bellow is the visual representation of the Markov chain:

s1 s20.9

0.1

0.9
0.1

Results. As in test II, we expect the independent learner to perform poorly in this setting,

as cooperation is necessary to achieve the optimal outcome.

The nature of interaction between agents in all previous tests is collaborative, i.e.,

all agents’ objective is to maximize a common reward function. So far, we can conclude

that adding fictitious action is beneficial in collaborative settings, especially with massive

number of agents.

Test IV, on the other hand, is neither collaborative nor competitive; each agent’s reward

is independent of other agents’ actions or states. Also, each agent has a separate state.

Therefore, test iv is not at all a Markov game.
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Figure 6.8: Test III; Comparing reward of Nash Q-learning, independent learner and

MFQ+F.

0 5000 10000 15000 20000 25000 30000 35000
Iteration

50

60

70

80

90

Re
wa

rd PSGA+f
PSGA

Figure 6.9: Test III; Comparing reward of vanilla PSGA and PSGA with fictitious action.

Independent PSGA converges to the Nash equilibrium very slowly.
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Figure 6.10: Test III; Comparing reward of vanilla actor-critic and actor-critic with ficti-

tious action.

6.4 Test IV (two states, two actions mixed game)

Setting. This scenario has two states, s1 and s2. Every agent can take two possible actions

in both states, a1 and a2, and agents have separate states.

If agent i, i ∈ N selects action a1 in s1, it receives a reward of 80 and stays in s1 with

probability 0.9. Otherwise, it gets a reward of 100 and moves to s2 with probability 1. In

s2, all actions yield a reward of 1.

The reward function would be ∀i ∈ N :

Ri(ai, s1) =

80, if ai = a1,

100, if ai = a2,

(6.9)

and

Ri(ai, s2) = 1. (6.10)
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Figure 6.11: Test IV; Comparing reward of independent learner and MFQ+F. As expected,

independent learner performs as good as our proposed algorithm.

State transitions would therefore be:

P(s2|s1, a1) = 0.1, P(s2|s1, a2) = 1. (6.11)

This game is also potential, as we can define the potential function as the sum of all

agents’ value functions; as change of each agent’s policy does not affect the value function

of all other agents.

The optimal policy for each agent would be πi(a1|s1) = 1 and πi(a1|s2) = πi(a2|s2) = 1
2
,

∀i ∈ N . We expect the independent learner to have a good performance in this case, as

agents’ rewards are independent from each other. Each agent’s action has no impact on

other agents’ rewards or state transitions. Therefore, the independent learner can learn

the optimal policy without cooperating with other agents.
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6.5 Load Balancing Game

We can model the distributed load-balancing game as a collaborative or competitive game.

In the competitive setting, strategic agents compete over shared resources, which in this

case are the servers. A critical question in such settings is whether a mechanism with fair

allocation of resources exists, despite agents’ strategic behavior. The objective function

used for measuring the fairness of an allocation is the geometric mean of the agents’ values,

also known as the Nash social welfare (NSW) [11].

In the collaborative setting, however, strategic agents maximize a common reward

function. Therefore, the best objective function for such settings would be the common

reward function, also known as social welfare.

From the server side, we care about balancing the load between servers. In order to

measure the performance of each algorithm, we plot each server’s average wait time and

compare them. Algorithms with closer average wait times perform better. We also plot

the mean average wait time across all servers.

We have three different configurations for each setting:

I. number of servers = 2, clients total arrival rate = 4, servers service rates = 6, 2,

II. number of servers = 3, clients total arrival rate = 10, servers service rates = 4, 4, 4,

and

III. number of servers = 3, clients total arrival rate = 10, servers service rates = 6, 6, 4.

All configurations are with 100 agents, and job sizes are set to be 1. The capacity is set

to 25 for each server, the batch size is 100, and β = 1. We show results for mean-field
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Q-learning and actor-critic, with and without the fictitious action. We also present the

results for both competitive and collaborative versions of each algorithm.

6.5.1 Competitive Setting

Results. For the competitive setting we have:

• Configuration I: In this configuration server 1 is way faster than server 2, and can

solely handle the system’s arrival. However, servers have a limited capacity, and

there’s also a chance that at some time step, the input to the system is more than

server one’s service rate, but overall we expect the clients to choose server 1 with high

probability. As illustrated in figure 6.12a, servers are load balanced when fictitious

action is added to the learning procedure. 6.12b also suggests that Nash social welfare

converges faster to the optimal solution with MFQ+f. It is also clear from 6.12a that

the mean average wait time of servers is less when the fictitious action is added.

As illustrated in figure 6.13a, servers are more load balanced when fictitious action is

added. Also the mean average wait time across both servers is lower in AC+f, 6.13b.

As shown in 6.13c, the Nash social welfare in AC+f is higher at first, but eventually

the naive learner would also converge. Also, note that server one is so fast; therefore,

it always has an average wait time close to one.

• Configuration II: There are three identical servers in this configuration. We expect

the clients to send tasks equally to all servers. We also expect the independent

learner to perform well in this setting, as agents start the learning process with the

optimal strategy. As shown in figure 6.14, independent learner performs comparably

to MFQ+f. It is even performing better in terms of mean average wait time. In
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Figure 6.12: Competitive load balancing; Configuration I; Comparing performance of naive

Q-learner and MFQ+f.

terms of Nash social welfare, IQL performs better at first, but eventually, MFQ+f

has a better performance. In general however, both algorithms have almost the

same performance. Moreover, as we can see in figure 6.15, AC+f is outperforming

the independent learner in terms of Nash social welfare. In terms of mean average

wait time, the independent learner performs better by iteration 2500, but eventually,

AC+f outperforms the independent learner.

• Configuration III: In this configuration, server one and two are faster than server 3

and can handle the arrival of the system. We expect the learning algorithm to learn

to choose the first two servers with high probability.

As illustrated in figure 6.16, the average wait time of server three, the slowest server,

is going down by iteration 2000. Still, there is a difference with the average wait

time of the other two servers for both independent learner and MFQ+f. The load on
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Figure 6.13: Competitive load balancing; Configuration I; Comparing performance of naive

actor-critic and AC+f.
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Figure 6.14: Competitive load balancing; Configuration II; Comparing performance of

naive Q-learner and MFQ+f.
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Figure 6.15: Competitive load balancing; Configuration II; Comparing performance of

naive learner and AC+f.
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other servers is one and remains one. The mean average wait time is decreasing in

both algorithms. However, the mean average wait time is less in MFQ+f. As shown

in the figure, the Nash social welfare is also higher in MFQ+f. We can also see in

figure 6.17 that adding fictitious action to actor-critic, is beneficial to the Nash social

welfare and also the average wait time of servers. In this case, the independent learner

performs comparably to AC+f by iteration 3500, but eventually, AC+f outperforms

the independent learner.

We now present the results for the collaborative setting. In this setting, social welfare

is defined as the sum of all agents’ rewards. Note that the evaluation criteria is social

welfare and no longer the NSW. Configurations are the same as before, and we present

the results for both mean-field Q-learning and actor-critic, with and without the fictitious

action. Also as configuration 2 does not highlight the effect of adding fictitious action, we

do not present it here.

6.5.2 Collaborative Setting

Results. For the collaborative setting we have:

• Configuration I: As we can see in figure 6.19, the average wait time on server 2 goes

down by iteration 2000 in both algorithms. The average wait time of both servers

become the same by iteration 3500 in MFQ+f. However, they still have a difference

by iteration 4000 when using independent Q-learning. The mean average wait time

is also lower in MFQ+f. As it can be seen, adding fictitious action is also beneficial

to the social welfare. We can also see in figure 6.20 that adding fictitious action to

actor-critic, is beneficial to social welfare and also the average wait time of servers.
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Figure 6.16: Competitive load balancing; Configuration III; Comparing performance of

naive Q-learner and MFQ+f.
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Figure 6.17: Competitive load balancing; Configuration III; Comparing performance of

naive learner and AC+f.
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Figure 6.18: Collaborative load balancing; Configuration III; Comparing performance of

naive learner and AC+f.

53



Unlike AC+f, the average wait time of server two in IAC maintains a difference with

the average wait time of server one. Moreover, the mean average wait time is lower

in AC+f and the social welfare is higher. Also as shown in 6.19a and 6.20a, adding

fictitious action has helped the system to become more load balanced. Also, note

that server one is so fast; therefore, it always has an average wait time close to one.

• Configuration iii: As illustrated in figure 6.21, the average wait time of server

three becomes almost the same with the other two servers in MFQ+f. However, it

maintains a difference in IQL. The mean average wait time is less in MFQ+f and

social welfare is also higher in MFQ+f. We can also see in figure 6.18 that adding

fictitious action to actor-critic, is beneficial to social welfare and also the average

wait time of servers. The average wait time of server three is closer to one in AC+f.

Moreover, the mean average wait time is significantly less in AC+f and the social

welfare is higher. In Q-learning, we have also shown in figure 6.21a that the system

becomes more load balanced when the fictitious action is added.
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Figure 6.19: Collaborative load balancing; Configuration I; Comparing performance of

naive Q-learner and MFQ+f.
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Figure 6.20: Collaborative load balancing; Configuration I; Comparing performance of

naive learner and AC+f.
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Figure 6.21: Collaborative load balancing; Configuration III; Comparing performance of

naive Q-learner and MFQ+f.
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Chapter 7

Related work

In this chapter, we begin by going through studies on load balancing, a large number of

them elaborating on distributed systems. Only a few instances within this broad literature

have been devoted to studying such systems from a game theoretic approach. Subsequently,

we review works related to fictitious play, e.g., the original definition, the fictitious play

property, and fictitious play in stochastic games. Later, we move to studies on potential

games. In addition, we review the body of literature studying conditions for stochastic

games to be Markov potential games. We then review works related to mean-field games

and Q-learning. Lastly, we review the large body of literature on multi-agent reinforcement

learning and mean-field reinforcement learning.

7.1 Load Balancing

A large number of literature has studied load balancing in distributed systems. Most of

them study systems with a centralized scheduler [130, 53, 59, 86, 77]. Join-shortest-queue
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(JSQ) is one the best-studied load balancing disciplines [47, 29, 35, 69, 68, 42, 124]. In

this method, jobs are sent to the server with the shortest queue length. Join-idle-queue

(JIQ) [79, 87, 65] is another load balancing policy where jobs are sent to idle servers, if

there is any, or to a randomly selected server. These methods might not perform well as

the queue length is not a good indicator of the servers’ wait times. Power-of-d-choices

[86, 125, 41, 96, 102, 94, 131] queries d randomly selected servers and sends the jobs to the

least loaded ones. This method is proved to yield short queues in homogeneous systems,

but might be unstable in heterogeneous systems.

Studying distributed load balancing through a game-theoretic lens is a natural ap-

proach. However, there exist only a few studies on the game theoretic approach for the

load balancing problem [67, 100, 93, 27, 26, 95, 1, 70, 71, 82, 101]. Grosu and Chronopou-

los (2005) [44] model the optimal load balancing problem in heterogeneous systems as a

non-cooperative, repeated finite game and find a structure for the Nash equilibrium in

pure strategies. They later introduce a distributed greedy algorithm to reach the equilib-

rium. As their setting is stateless, the proposed algorithm does not necessarily perform

well in dynamic games. Moreover, Grosu et al. [45] model the load balancing problem as

a cooperative game among agents.

Schaerf et al. (1994) [103] study the distributed load balancing problem using multi-

agent reinforcement learning methods. Their framework is highly similar to our setting,

but differs on one element: Each server simultaneously works on multiple tasks, and the

efficiency with which the server handles the job depends on its capacity and the number of

tasks it handles. They model the problem as a stochastic system, where local information

is available to each agent. Each agent’s evaluation of servers’ efficiency is summarized in

a vector called an efficiency estimator, which can also be the state of those agents. Each

agent’s policy is a function of the state. They compare the performance of their algorithm
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to other existing algorithms such as non-adaptive algorithms, i.e., algorithms that agents

use servers in a predetermined manner, while revealing that naive communication between

agents will not necessarily improve system’s efficiency.

Krishnasamy et al. [73] study a variant of the multi-armed bandit problem with the

carryover effect which is suitable for queuing applications. They consider a bandit setting

where jobs queue for service and service rates of different queues are unknown. The authors

study a queuing system with a single queue and K servers. Arrivals to the queue and service

offered by servers are according to a Bernoulli distribution. At any given time, the queue

is served by at most one server and the problem is to schedule a server at every time

slot. They further evaluate the performance of different scheduling policies against the

no-regret1 policy.

Gaitonde and Tardos (2020) [38] study the multi-agent version of the queuing system in

[73]. Their setting is slightly different from ours. In our setting, each server has a separate

queue and processes tasks with a fixed service rate. However, Gaitonde and Tardos (2020)

[38] describe a system where each client has a queue and servers process jobs with a fixed

timed-independent probability. All unprocessed jobs are then sent back to their respective

queues. Queues also receive bandit feedback on whether their packet cleared at their

chosen server. One concern in such settings is whether the system remains stable, despite

the selfish behavior of the learning agents. Such concern does not arise in settings with a

centralized scheduler, as they remain stable if the sum of arrival rates is less than the sum

of service rates. However, this condition does not guarantee the stability in settings with

strategic clients. Gaitonde and Tardos (2020) [38] show that if the capacity of the servers

is high enough to allow a centralized coordinator to get all jobs done even with double

the job arrival rate, and agents use no-regret learning algorithms, then the system remains

1The policy that schedules the optimal server in every time slot.
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stable. A no-regret learning algorithm minimizes the expected difference in queue sizes to

that of a strategy that knows the optimal server. They later show in [39] that the stability

can be guaranteed even with e
e−1

≈ 1.58 extra capacity, only if agents choose strategies

that maximizes their long-run success rate.

7.2 Fictitious Play

Brown proposed fictitious play in 1951 [12]. The original version of the fictitious play

depicts a two-agent, finite, repeated game where at every round, each agent simultaneously

plays a myopic pure best response to the empirical strategy distribution of her opponent

[5]. Each agents takes the empirical distribution of other agents’ actions to be her belief

about their mixed strategy. A game has the fictitious play property (FPP) if every fictitious

play process converges in beliefs to the set of Nash equilibria [91]. While Robinson (1951)

[99] proves that every 2-agent zero-sum game has the fictitious play property, Miyasawa

(1961) [88] extends it to all two-agent 2× 2 games, and Monderer and Shapley (1996) [91]

go on to convey convergence for identical interest games. Shapley (1964) [106] conveys

an example of a 2-agent 3 × 3 game as well, but without the fictitious play property. A

significant number of papers in the literature attempt to identify classes of games with

FPP, including [85, 6, 56, 92, 58, 49, 104, 25, 4, 115]. There also exists works that find

classes of games without the FPP, e.g., [24, 66, 43, 90, 36, 72].

An issue is that Fictitious play requires each agent to have complete knowledge of other

agents’ strategies. To solve this issue, Perolat et al. (2018) [97] develop a decentralized

online algorithm inspired by actor-critic that approximates the fictitious play process.

They prove the convergence of such an algorithm towards a Nash equilibrium in both cases

of zero-sum two-agent multistage games and cooperative multistage games. It is worth
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mentioning that this study focuses only on multistage games that can be modeled by a

tree, meaning that the interaction proceeds from stage to stage without going back to a

previously visited state. Even though this model represents a broad class of multi-agent

sequential decision processes where the interaction never reverts back to the same state, it

also does not apply to many settings.

Fictitious play can also be extended to stochastic games, but the main challenge is to

define and compute the best response to empirical observations. Given what other agents

do, calculating the total discounted payoff is not always straightforward. To address this

issue, Baudin (2021) [2] combines ideas from Q-learning and fictitious play; a standard

method of reinforcement learning, and a standard game theory method. Baudin defines

three reinforcement learning algorithms and proves their convergence to the set of Nash

equilibria in identical interest discounted stochastic games for both continuous and discrete-

time systems. In this case, identical interest translates to all agents having the same reward

function, which is different from how it is defined in [91]. Monderer and Shapley (1996)

[91] define an identical interest game as a game which is best response equivalent in mixed

strategies to a game with identical payoff functions, which can also be interpreted as a

potential game.

7.3 Potential Games

Monderer and Shapley (1996) [92] introduce the concept of potential games and their

properties. Potential games are one of the most important and best-studied classes of

games, representing multi-agent coordination, as all agents’ utilities are perfectly aligned

with each other via a potential function. To put in simply, cooperation is desirable in such

games. The authors prove that fictitious play converges to equilibrium in a class of games
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that contains the finite (weighted) potential games [91].

Although the concept of potential games was first defined for single-stage games,

Leonardos et al (2021) [76] extend it to stochastic games. They carefully study the defini-

tion of Markov potential games and establish its structural properties. The authors provide

sufficient conditions for Markovian/stochastic games that are potential at each state to be

Markov potential games. They also prove convergence to the ϵ-NE in MPGs with finite

state space when agents independently run policy gradient on their own policy. Fox et al.

(2022) [37] also reveal that in a Markov potential game, with all agents using independent

natural policy gradient, their policies converge to the equilibrium.

Mguni et al. (2021) [83] provide sufficient conditions for a stochastic game to be an

MPG. However, in this thesis we provide a counterexample for proposition four. The au-

thors use this proposition to prove of the main theorem. Our example has conditions stated

in the paper but we show that it is not a Markov potential game. The counterexample is

in Appendix A.

Macua et al. (2018) [80], on the other hand, provide necessary and sufficient conditions

on agents’ reward functions for a stochastic game to be an MPG. Moreover, they provide

two methods of obtaining the potential function and convey that since the game is potential,

the Nash equilibrium can be found by solving only one optimal control problem instead of

several, as in one for each agent.

7.4 Mean-field Games

Mean-field game (MFG) is a framework dedicated to the analysis of games with an infinite

number of identical agents [75, 63]. For such large population of agents, it is unrealistic
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for an agent to collect information about all the other agents. Mean-field theory explains

that an agent only needs to implement strategies based on the distribution of all other

agents. Since all agents are identical and indistinguishable, individual interaction between

agents is redundant, and only the distribution of agents over states matters [16, 3]. In

such games, two dynamics determine the system’s evolution: state dynamics and mean-

field flow dynamics. Hence finding the Nash equilibrium boils down to identifying the

equilibrium distribution of the population and the best response of a representative agent

to the mean-field flow of the population. Studying mean-field games can be easier, as the

impact of one single agent on others is negligible. Furthermore, one can use the optimal

policy for the MFG as an approximate Nash equilibrium for the game with a finite number

of agents [16, 3, 19].

There is not much literature on multi-agent reinforcement learning in mean-field games,

especially in non-cooperative settings. Hadikhanloo (2018) [48] shows that fictitious play

converges in first-order monotone mean-field games. Cardaliaguet and Hadikhanloo (2017)

[17] also introduce a learning procedure similar to fictitious play and prove its convergence

when the mean-field game is potential. The downside, however, is that they only consider

the Nash equilibrium between fully informed agents, assuming that agents know the exact

best response and take action according to that. Only a few papers have considered the

realistic version in which agents learn game dynamics and rewards as they play. For

instance look at [48, 28, 127, 18]. Elie et al. (2019) [28] focus on the realistic setting where

agents have no prior information about the game and eventually learn their best response

by a reinforcement learning algorithm. Having only the classical assumptions on MFGs,

they prove the convergence of first-order mean-field game and provide some numerical

results.
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7.5 Q-learning

The main goal of reinforcement learning is to find a policy that maximizes each agent’s

accumulated reward without having explicit information about the reward structure or

the dynamics of the environment. Q-learning is one of the most-studied reinforcement

learning algorithms. In a nutshell, Q-learning estimates the value of each action at each

state. Therefore, it can be used to find the optimal policy in a dynamic environment by

choosing the action with the highest Q-value at each state. Under particular conditions,

i.e., finite state and action spaces and bounded reward, Q-learning is proven to converge

to the optimal policy [122, 111].

However, Q-learning does not perform well in MDPs with large state and action spaces.

As the amount of time and memory required for exploring all state-action pairs and up-

dating the Q-table becomes unrealistic. It also does not work in settings with continuous

state or action spaces. In order to solve this issue, Google DeepMind [89] introduce deep

Q-learning. In this algorithm, instead of having a Q-table, there is a neural network for

approximating the Q-values. The state is given as input to the neural network and the

Q-values of all possible actions are the outputs. However, this algorithm requires a con-

siderable amount of data before reaching a practical experience, and the performance may

be abysmal during training. Hester et al. (2018) [55] introduce an improved algorithm to

solve this issue.

Q-learning is not a good fit for multi-agent environments because of the high number of

possible states. A straightforward approach to extend Q-learning for multi-agent settings

is independent Q-learning (IQL) [113]. In IQL each agent independently runs Q-learning

to learn its own policy while treating other agents as part of the environment. One crucial

issue is that agents’ policies are changing during the training, and the environment be-
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comes non-stationary from the perspective of each individual agent. This means that the

dynamics that produced the data for past experience replay in Deep Q-network (DQN)

no longer represent the dynamics that agents are currently learning. Therefore using past

experience, which is crucial for stabilizing deep Q-learning, is no longer helpful in this sit-

uation. However, Matignon et al. (2012) [81] show with empirical evidence that IQL often

works well in some cooperative settings, but there is no guarantee for its performance.

One way to tackle this issue is to limit the use of experience replay to short buffers [89]

or disable the experience replay [32]. ”Hyper Q-learning” [114] is a different approach that

avoids non-stationarity in IQL by having each agent learn a policy that is dependent on an

estimate of other agents’ mixed policies (rather than base actions) as well its own policy,

while other agents’ strategies are estimated from observed actions via Bayesian inference.

Technically, this method reduces each agent’s learning problem to a single-agent problem

in a stationary environment. The author did not provide any proof for convergence, but

the results show that Hyper Q-learning performs well in rock-paper-scissors.

Foerster et al. (2017) [33] propose two approaches for effectively using experience replay

in multi-agent RL. The first approach augments each tuple in the experience replay with

the probability of the joint action in that tuple, using the current policy. The second

approach is inspired by Hyper Q-learning. The main difficulty of Hyper Q-learning is that

it increases the dimensionality of the Q-function, which makes learning the Q-function

to be unrealistic, specially when other agents’ policies are high dimensional deep neural

networks. The authors show that doing so is feasible as each agent can only conditions

on a low dimensional fingerprint, which only disambiguates where in the experience replay

was a sample from. Tampuu et al. (2017) [112] also use deep Q-learning approach to train

competing pong agents.

Hu and Wellman (2003) [61] propose Nash Q-learning, an extension of Q-learning to
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general-sum stochastic games. One way to adapt Q-learning to multi-agent context is

to augment the Q-function with the joint action of all agents. Given the multi-agent

version of Q-function, the authors define Nash Q-value, as the expected sum of discounted

rewards when agents follow Nash equilibrium strategies from the next time-step on. The

Q-function is then updated with future Nash equilibrium payoffs, instead of agent’s own

maximum payoff. In this algorithm, each learning agent should maintain all other agents’

Q-functions, assuming that it can observe other agents’ rewards and actions. Therefore,

the algorithm’s complexity, in terms of space, is exponential in the number of agents.

Also, the algorithm’s running time is dominated by the calculation of Nash equilibrium.

The computational complexity of calculating an equilibrium in multi-agent, general-sum

matrix games is unknown. Consequently, Nash Q-learning is not a good fit for games with

massively large number of agents.

7.6 Multi-agent Reinforcement Learning

Most reinforcement learning applications involve the participation of more than one agent.

Multi-agent reinforcement learning (MARL) studies the behavior of multiple learning

agents interacting in a shared environment. There is a huge body of literature on MARL

[14, 13, 62, 113, 78, 108, 119, 74, 22, 54, 9, 121, 54, 22, 78, 62]. Zhang et al. (2021)

[128] review theoretical results of multi-agent reinforcement learning in stochastic and

extensive-form games. Learning in multi-agent environments is highly nontrivial as agents

are learning concurrently, causing the environment faced by each one of them to be non-

stationary. Action taken by each one of the agents affects the reward of other agents and,

in the case of stochastic games, will also affect the state transitions. This violates the

stationarity assumption in single-agent reinforcement learning algorithms, an assumption
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that guarantees the convergence of such algorithms.

The naive development of single-agent RL algorithms, also called independent learning,

may fail to converge in multi-agent environments [33]. In this learning method, each agent

independently learns its own policy and treats other agents as a part of non-stationarity

in the environment. However, there are some cases in which applying single-agent RL

algorithms to multi-agent settings would converge to the set of Nash equilibria [76, 91, 37,

80].

Foerster et al. (2017) [34] introduce learning with opponent-learning awareness (LOLA).

LOLA includes an additional term that accounts for the impact of one agent’s policy on

the learning step of the other agents. Instead of optimizing the expected return under

the current parameters, a LOLA agent optimizes the expected return after the rest of the

population update their policy with one learning step. The authors show that iterated pris-

oner’s dilemma lead to cooperation if both agents are LOLA agents. Applied to infinitely

repeated matching pennies, LOLA agents converge to the Nash equilibrium. The authors

support the algorithm’s performance with empirical results, but no proof is provided.

Zhang et al. (2018) [129] study the problem of multi-agent reinforcement learning

(MARL) in a setting where the agents are located at the nodes of a time-varying com-

munication network. Each agent’s objective is to maximize the globally averaged return

over the network by communicating with their neighbors. The setting is fully decentralized

as each agent makes individual decisions and agents can only access their own rewards.

The authors propose two decentralized actor-critic algorithms, one of them updates the

Q-function and the other one updates the value function. They also use function approx-

imation, which makes the algorithms suitable for settings with massively large number of

agents. With linear function approximation, they provide proof for convergence of both

algorithms.
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7.7 Mean-field Reinforcement Learning

Most MARL algorithms have scalability issue. In such algorithms, each agent has to

account for the joint action of all agents, whose dimension increases with the number of

agents. One way to tackle the scalability issue in MARL algorithms with a huge number of

agents is to use mean-field games models. Mean-field reinforcement learning is a method

to tackle the MARL problem with a large number of agents [126]. In this algorithm,

each agent only considers the average effect of the overall population or the neighboring

agents. The authors develop mean-field Q-learning (MF-Q) and mean-field actor-critic

(MF-AC) algorithms. The authors also provide a proof for the convergence of MF-Q

to Nash equilibrium under three assumptions, and the most strict one is that all Nash

equilibria in each stage game should have the same value. The downside of MF-Q is that

it requires each agent to track the neighboring agents’ policies, which can be intractable

in the case of many agents.

Subramanian et al. (2020) [109] introduce the concept of multiple types to model agent

diversity, as agents belonging to a single type have similar strategies and goals. Since

agents within each type are identical, the mean-field approximation is reasonable within

types. In this case, many agent interactions is reduced to N agent interactions, where each

agent represents a type. They also consider two different kinds of mean-field games with

types. First, games where agents have predefined types, and it is known a priori. Second,

games where the type of each agent is unknown and must be learned during the game.

The authors suggested novel algorithms for both types of mean-field multiple-type games,

which outperform the state-of-the-art algorithms that assume all agents belong to the same

type.
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Chapter 8

Conclusion and Future Work

Within the course of this thesis, we set to study the application of multi-agent reinforcement

learning (RL) in distributed systems. In particular, we consider a setting in which strategic

clients compete over a set of heterogeneous servers. In such an environment, each client

receives jobs at a fixed rate, and has to choose an appropriate server to run each job. The

main goal of each client then is to minimize the average wait time. This setting is modeled

as a Markov game, and we theoretically prove that the game becomes asymptotically a

Markov potential game (MPG). We also further propose a novel mean-field reinforcement

learning algorithm which combines mean-field Q-learning and fictitious play. Lastly, we

attempt to demonstrate through rigorous experiments that our algorithm outperforms the

naive development of single-agent RL, and in some cases, performs even on par with the

Nash Q-learning, while also being less complex in terms of memory and computation. In

addition, we also offer an empirical analysis of the convergence of our proposed algorithm as

compared to the Nash equilibrium and study its performance in four benchmark examples.

Many different tests and experiments is left for the future due to lack of time. Future work
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concerns deeper analysis of particular scenarios. Moreover, there’s still no proof provided

for the convergence of our proposed algorithm to the set of Nash equilibria.
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[14] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement

learning: An overview. Innovations in Multi-agent Systems and Applications-1, pages

183–221, 2010.

73



[15] Dan Calderone and S Shankar Sastry. Markov decision process routing games. In

2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS),

pages 273–280, 2017.

[16] Pierre Cardaliaguet. Notes on mean field games. Technical report, 2010.

[17] Pierre Cardaliaguet and Saeed Hadikhanloo. Learning in mean field games: the

fictitious play. ESAIM: Control, Optimisation and Calculus of Variations, 23(2):569–

591, 2017.

[18] Pierre Cardaliaguet and Charles-Albert Lehalle. Mean field game of controls and an

application to trade crowding. Mathematics and Financial Economics, 12(3):335–

363, 2018.
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Appendix A

A.1 Counterexample

In this section, we provide a counterexample of proposition 4 in [83]. Our example’s setting

is as follows:

• There are only two players, player 1 and 2.

• The game is infinite horizon.

• The state space is continuous and each state is a number between zero and 1.

• Action space of both players is continuous and each action is a number between zero

and 1.

• State transitions according to action of player 1, e.g., if player 1 plays x, state tran-

sitions to x.

We define the reward functions such that for all a1, a2 ∈ [0, 1] and s ∈ [0, 1] we have:

R1(a1, a2, s) = 0, and (A.1)
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R2(a1, a2, s) = a2. (A.2)

We define the ϕ function as: ϕ(a1, a2, s) = R2(a1, a2, s) = a2, so that the game is both

c-SPG and state transitive:

R1(a1, a2, s)−R1(a
′
1, a2, s) = ϕ(a1, a2, s)− ϕ(a′1, a2, s) = a2 − a2 = 0, (A.3)

R1(a1, a2, s)−R1(a1, a2, s
′) = ϕ(a1, a2, s)− ϕ(a1, a2, s

′) = a2 − a2 = 0, (A.4)

R2(a1, a2, s)−R2(a
′
1, a2, s) = ϕ(a1, a2, s)− ϕ(a′1, a2, s) = 0, (A.5)

R2(a1, a2, s)−R2(a1, a2, s
′) = ϕ(a1, a2, s)− ϕ(a1, a2, s

′) = 0. (A.6)

Suppose under policy π, both players play x at state x, where x ∈ [0, 1]. Also policy

π′ is such that player 1 always plays 1 and player two acts the same as policy π. We also

define V π
1 (s) as the value function of player 1, starting at state s under policy π. We now

have:

V π
1 (0)−V π′

1 (0) = R1(0, 0, 0)(1+γ+γ
2+...)−(R1(1, 0, 0)+γR1(1, 1, 1)+γ

2R1(1, 1, 1)+...) = 0,

(A.7)

Bπ(0)−Bπ′
(0) = ϕ(0, 0, 0)(1 + γ + γ2 + ...)− (ϕ(1, 0, 0) + γϕ(1, 1, 1) + γ2ϕ(1, 1, 1) + ...)

= −(γ + γ2 + ...)

= − γ

1− γ
. (A.8)

It is now trivial that V π
1 (0)− V π′

1 (0) ̸= Bπ(0)−Bπ′
(0).

Now suppose distribution P (.|) puts all the weight on state zero and nothing on other

states:

Es∽P (.|)[V
π
1 (s)− V π′

1 (s)] = V π
1 (0)− V π′

1 (0), (A.9)

Es∽P (.|)[B
π(s)−Bπ′

(s)] = Bπ(0)−Bπ′
(0), (A.10)
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So we have

Es∽P (.|)[V
π
1 (s)− V π′

1 (s)] ̸= Es∽P (.|)[B
π(s)−Bπ′

(s)]). (A.11)

which contradicts proposition 4.
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Appendix B

B.1 Bellman Equation

We can decompose the value function into two parts, the instantaneous reward and the

discounted expected future value. This is the idea behind the Bellman equation. We

can solve a complex optimization problem using Bellman equation by decomposing it into

simpler recursive sub-problems and finding their optimal solutions. The Bellman equation

for the value function will then be:

vπ(s) =
∑
a

π(a|s)

(
r(s, a) +

∑
s′

p(s′|s, a)vπ(s′)

)
. (B.1)

We can now define the Bellman operator T π : R → R, in the following way:

(T πv) (s) =
∑
a

π(a|s)

(
r(s, a) +

∑
s′

p(s′|s, a)v(s′)

)
. (B.2)

In this way, we can rewrite the Bellman equation as:

T πv(s) = v(s). (B.3)

The above equation has a unique solution, vπ(s).
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B.2 Q-learning

We can no not use the tabular setting in case of large state or action spaces. In this case,

we can represent the Q-function using a class of parameterized function approximators

Q = {Qw|w ∈ Rp}, where p is the number of parameters. We can now approximate the

Q-function as:

Qw(s, a) = wTϕ(s, a), (B.4)

where ϕ is called the feature function. The update in the function approximation setting

is:

wt+1 = wt + αt(s, a)(r + γmax
a′

Qt
w(s

′, a′)−Qt
w(s, a))∇wQw(s, a). (B.5)

It is basically gradient descent on the loss function:

l(w) = Es,a,r,s′(r + γmax
a′

Qw(s
′, a′)−Qw(s, a))

2. (B.6)

When taking the gradient, we assume that maxa′ Qw(s
′, a′) is a fixed target and is inde-

pendent of w. Therefore, we can have a target Q-network to approximate maxa′ Qw(s
′, a′)

and update its parameters every once in a while with the original Q parameters. This will

stabilize the learning procedure. This setting is also called deep Q-learning since we are

parametrizing the Q-function using a neural network.

Q-learning is proved to converge to the optimal Q-function with probability one as long

as ∑
t

αt(s, a) = ∞ ,
∑
t

α2
t (s, a) <∞. (B.7)

We also have to ensure that ∀t, 0 ≤ αt ≤ 1, so that all action-state pairs are visited

infinitely many times. The first convergence proof is outlined in [123], and the complete

proof is in [122]. [20] also proposes conditions that guarantee the convergence of deep

Q-learning.
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B.3 RL Algorithms

Value iteration algorithms are algorithms that iteratively determine the value of each state-

action pair and assume that agent(s) take the best possible action under the current esti-

mate of the state-action pair value. Q-learning for instance is a value iteration algorithm.

On the other hand, policy iteration algorithms first initialize a value function, v(s),

and a policy, π(a|s). These estimations are then improved using two main steps, policy

evaluation, and policy improvement, by iteratively fixing the policy using the value function

and fixing the value function using policy.

Actor-critic is probably one of the most studied policy iteration reinforcement learning

algorithms. In this setting, the value function, called the critic, estimates the value of each

state, which is almost a measurement of the actor’s performance. The actor, responsible for

policy, then improves the performance using policy gradient. The critic also gets updated

using gradient ascent. The online update of critic reduces the variance of the policy gradient

and, therefore, leads to a better performance than the policy gradient.

Unlike the policy iteration method, the policy gradient learns a parametrized policy

directly and without relying on the value function. The policy gradient method can be

seen as an optimization problem with the objective function as:

J(θ) = Ea∼πθ(s)[
∞∑
t=0

γtrt|s0 = s]. (B.8)

In policy gradient, we want to find the policy parameters θ that maximize the expected

future reward. We can then update θ by applying gradient ascent to maximize J(θ):

θt+1 = θt + α∇θJ(θ). (B.9)

Different policy gradient algorithms depend on how they estimate ∇θJ(θ). Most policy

gradient algorithms are known to have high variance.
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Appendix C

C.1 Proof of lemma 4.0.1

Proof. With a fixed k, wj(s, k)
1 is the smallest when there are no tasks in the queue. In

this case, the wait time of all tasks is { 1
µj
, 2
µj
, ..., k

µj
}, and the average wait time is k+1

2µj
. So

each wj(s, k) is lower bounded by k+1
2µj

. We now have:

uis(a−i) ≜ −
m∑
j=1

Nj(a−i)∑
k=1

1

wj(s, k)2
≥ −

m∑
j=1

Nj(a−i)∑
k=1

4µ2
j

(k + 1)2
.

By rearranging the terms we get:

uis(a−i) ≥ −
m∑
j=1

Nj(a−i)∑
k=1

4µ2
j

(k + 1)2
= −

m∑
j=1

4µ2
j

Nj(a−i)∑
k=1

1

(k + 1)2
.

We know the summation of the reciprocals of the squares of the natural numbers is equal

to π2

6
. Then:

uis(a−i) ≥ −
m∑
j=1

4µ2
j

Nj(a−i)∑
k=1

1

(k + 1)2
≥ −

m∑
j=1

4µ2
j(
π2

6
) = −2π2

3

m∑
j=1

µ2
j .

1The expected wait time on server j at state s, given that k tasks are sent to it.
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C.2 Proof of lemma 4.0.2

Proof. Suppose s∗ = s. At each time step, player i receives a packet with probability λ
n
. If

it does not receive a packet, the action of other players will change the state. Also, suppose

the action of players is an integer in {1, ..,m}, which determines the chosen server. We

can write:

Pπ(s′, s) = (1−λ

n
)
∑
a−i

π(a−i|s)P(s′, s, a−i)+
λ

n

∑
ai

π(ai|s)
∑
a−i

π(a−i|s)P(s′, s, ai, a−i) (C.1)

By taking derivative of πi(s
∗) we get:

∇πi(s∗)P
π(s′, s) =

λ

n


∑

a−i
π(a−i|s)P(s′, s, 1, a−i)

...∑
a−i

π(a−i|s)P(s′, s,m, a−i)

 (C.2)

∑
s′

∇πi(s∗)P
π(s′, s) =

λ

n

∑
s′


∑

a−i
π(a−i|s)P(s′, s, 1, a−i)

...∑
a−i

π(a−i|s)P(s′, s,m, a−i)



=
λ

n


∑

s′
∑

a−i
π(a−i|s)P(s′, s, 1, a−i)

...∑
s′
∑

a−i
π(a−i|s)P(s′, s,m, a−i)



=
λ

n


∑

a−i
π(a−i|s)

∑
s′ P(s′, s, 1, a−i)
...∑

a−i
π(a−i|s)

∑
s′ P(s′, s,m, a−i)

 =
λ

n


1
...

1

 . (C.3)

If s∗ ̸= s, the change in strategy has no effect on transitions from state s. We therefore

have ∇πi(s∗)Pπ(s′, s) = 0. From 4.10 we have:

∇πi(s∗)v
i
T (s) = γ

∑
s′

Pπ(s′, s)∇πi(s∗)v
i
T−1(s

′) + γ
∑
s′

viT−1(s
′)∇πi(s∗)P

π(s′, s)). (C.4)
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Using C.3, we can write the second term as:∑
s′

viT−1(s
′)∇πi(s∗)P

π(s′, s) ≥ v̂T−1

∑
s′

∇πi(s∗)P
π(s′, s) ≥ λ

n
v̂T−11 . (C.5)

Where v̂T−1 is the minimum of viT−1(.) over all states. This lower bound exists since u has

a lower bound (see lemma 4.0.1).

So we have:

∇πi(s∗)v
i
T (s) ≥ γ

∑
s′

Pπ(s′, s)∇πi(s∗)v
i
T−1(s

′) + γ
λ

n
v̂T−11. (C.6)

We now use proof by induction. For t=0, according to 4.11:

∇πi(s∗)v
i
0(s) = ∇πi(s∗)Ea−i∼π−i(s)[u

i
s(a−i,0)] = 0. (C.7)

So the statement holds. For t=1, according to C.6:

∇πi(s∗)v
i
1(s) ≥ γ

∑
s′

Pπ(s′, s)∇πi(s∗)v
i
0(s

′) + γ
λ

n
v̂01. (C.8)

Again by using 4.11 we have:

∇πi(s∗)v
i
1(s) ≥ γ

λ

n
v̂01. (C.9)

Therefore, the base case is proved. Now suppose the statement holds for an arbitrary t,

i.e., ∇πi(s∗)v
i
t(s) ≥

∑t
i=1 γ

i λ
n
v̂t−i1, we now want to show that it also holds for t+1. By the

induction hypothesis we have:

∇πi(s∗)v
i
t+1(s) ≥ γ

∑
s′

Pπ(s′, s)∇πi(s∗)v
i
t(s

′) + γ
λ

n
v̂t1

≥ γ
∑
s′

Pπ(s′, s)
t∑

i=1

γi
λ

n
v̂t−i1+ γ

λ

n
v̂t1

= γ
t∑

i=1

γi
λ

n
v̂t−i1+ γ

λ

n
v̂t1

=
t+1∑
i=1

γi
λ

n
v̂t+1−i1. (C.10)
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This shows that the statement holds for t+1. Therefore, by proof by induction, we can

conclude the statement is true for all 0 ≤ t ≤ T .

C.3 Proof of lemma 4.0.3

Proof. We use proof by induction. Since ∇πi(s∗)v
i
0(s) = ∇πi(s∗)Ea−i∼π−i(s)[u

i
s(a−i,0)] = 0

(4.11), the base case is proved. Now suppose the statement holds for an arbitrary t, i.e.,

∇πi(s∗)v
i
t(s) ≤ 0. We want to show that it also holds for t+1. Similar to 4.10, we have:

∇πi(s∗)v
i
t+1(s) = γ

∑
s′

Pπ(s′, s)∇πi(s∗)v
i
t(s

′) + γ
∑
s′

vit(s
′)∇πi(s∗)P

π(s′, s)). (C.11)

But we know that vit(s
′) ≤ 0, and from induction hypothesis we have ∇πi(s∗)v

i
t(s

′) ≤ 0.

Moreover, Pπ(s′, s) and ∇πi(s∗)Pπ(s′, s) are always positive. Therefore, all the terms on the

right side of C.11 are non-positive. This means:

∇πi(s∗)v
i
t+1(s) = γ

∑
s′

Pπ(s′, s)∇πi(s∗)v
i
t(s

′) + γ
∑
s′

vit(s
′)∇πi(s∗)P

π(s′, s)) ≤ 0. (C.12)

This shows that the statement holds for t+1. Therefore, by proof by induction, we can

conclude that the statement is true for all 0 ≤ t ≤ T .
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