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Abstract

The first part of this thesis is aimed at investigating the crucial role played by emergent
boundary degrees of freedom, called edge modes, in gauge theories defined in spacetimes
with boundaries. We propose a simple and systematic framework for including edge modes
in theories with internal gauge symmetries, and argue that this is necessary in order to
achieve the factorizability of the Hilbert space and the phase space. We also explain how
edge modes acquire effective boundary dynamics and how they contribute to entanglement
entropy using the path integral formulation. In addition, we investigate how edge modes
and their corner symmetries may shed new light on the novel understanding of electro-
magnetic duality and explain the existence of dual magnetic charges and their centrally
extended algebras with electric charges. The second part of this thesis addresses the newly
discovered connection between physics at null boundaries and Carrollian hydrodynamics.
We first present a new notion of symmetries, called near-Carrollian symmetries, that gen-
eralizes the Carrollian symmetries and show that they correspond to the conservation laws
of Carrollian fluids. Next, we consider a local portion of a spacetime bounded by a finite
distance null boundary (e.g., black hole horizons) and foliated into a series of timelike
hypersurfaces, known as stretched horizons. By employing the rigging technique, we show
that the Carroll geometry is naturally induced on the stretched horizon, and in turn provide
a unified geometrical construction of both timelike and null surfaces. We then construct
the horizon energy-momentum tensor, which correspondingly defines the dictionary be-
tween gravitational degrees of freedom and Carrollian fluid quantities, and show that its
conservation laws imply the Einstein equations. Finally, we put forward a proposal that
the gravitational phase space of the stretched horizon, treated as a radial expansion around
the null boundary, encodes (sub-leading) informations of the null boundary phase space.
Most importantly, we report the existence of spin-2 symmetries associated with the spin-2
sector of the Einstein equations on the null boundary.
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Chapter 1

Introduction

This thesis revolves around the theme of symmetries and dynamics of gauge theories and
gravity in the presence of boundaries. It is divided into two parts:

I. Edge Modes: Dynamics and Duality

II. Carrollian Hydrodynamics on Stretched Horizons

1.1 Background

The quote said by Wolfgang Pauli, “God made the bulk; surfaces were invented by the devil”,
encapsulates well the diabolic nature of surfaces. Surfaces, as boundaries that divide a
physical system from the external world, are the places where the system interacts with
the environment and where the harmony of bulk physics begins to break down, enabling
new boundary physics to emerge. Although it is not known what scenario this eminent
physicist had in mind, many modern theoretical physicists would still agree with him.

In the past century, the status of boundaries in theoretical physics has evolved, from
merely the locus at which boundary conditions are assigned to the location where abundant
intriguing physical phenomena make their appearances. Countless evidence that challenged
our perspective of boundaries can be found in many research fields, including the early
works concerning thermodynamics of black holes [4–6] and later the membrane paradigm
viewpoint of black holes [7–9], the bulk-boundary correspondence in condensed matter
systems [10–12], and the area-law characteristic of entanglement entropy [13–15]. One

1



fascinating, and perhaps the most important, aspect of boundaries is that that bulk physics
seems to be entirely encoded at the boundaries, and together with all this ample evidence,
it has led to the idea of the holographic principle [16, 17]. Holography was first properly
realized by the breakthrough discovery of AdS/CFT duality [18–20], which describes the
deep interplay between bulk dynamics of an asymptotically Anti-de Sitter spacetime and
conformal field theory living at its boundary. The attempt to extend the holographic
correspondence to an asymptotically flat spacetime has also led to recent developments in
celestial holography [21]. It is worth mentioning that, in addition to boundaries at finite
distances (e.g. black holes, condensed matter systems, or any subregions of spacetime)
and asymptotic boundaries at infinity, one can add to this list boundaries in the form of
defects of arbitrary codimension, and local excitations supported at these defects play an
integral role in topological quantum field theories [22], condensed matter physics [23, 24],
and quantum gravity [25–27].

While the study of new physics unfolded at boundaries of spacetimes has become one of
the most active research trends in past decades, there exists however no unified framework
to describe at once all interesting features of boundary physics. One thread that is believed
will guide us to the ultimate conclusion of this discovery journey is the notion of gauge
in bounded subdivisions of spacetime. Much researches developed in this direction has
already started to unravel numerous striking roles of boundaries in gauge theories (including
gravity) and in turn led to a new notion of holography — the local holography. Among
these, the most prominent results are the unified description of edge modes and their
(codimension–2) corner symmetries.

1.1.1 Edge Modes

The well-understood characteristic of gauge symmetries, including internal gauge symme-
tries and spacetime diffeomorphism, is that they are not physical symmetries but instead
correspond to mathematical redundancies in a theory. In this regards, gauge symmetries
cannot be used to label or distinguish physical states in the theory. However, this picture
changes in the presence of boundaries.

Gauge theories defined on spacetimes with boundaries, be they located at asymptotic
infinity or at finite distance, exhibit emergent boundary degrees of freedom, sometimes
referred to as edge modes (also called edge states and would-be-gauge degrees of freedom
in the literature). This occurrence stems from the fact that, when considering bounded
regions, a subset of transformations, which are gauge in the bulk, become physical sym-
metries on the boundary. These symmetries, which are anchored in codimension–2 corners
of spacetime, are referred to as corner symmetries.
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Early and in-depth investigations of these emergent boundary degrees of freedom has
been performed mostly for topological theories with no propagating bulk degrees of free-
dom. These include 3-dimensional gravity and Chern–Simons theory, where the edge modes
possess an explicit boundary dynamics and encode physical properties of, for example, con-
densed matter systems [10–12] and black holes [28–30]. Just recently, the study of edge
modes has gained ever-increasing attention in various research arenas, especially in the
field of quantum gravity and holography. Many new results revealing important insights
into the role of edge modes, even beyond topological theories, have been obtained, both
at finite distance and at infinity. At finite distance, there have been efforts to study local
subsystems of gauge theories at the level of classical phase spaces, in pursuit of the most
general corner symmetry algebras spanned by the edge modes [31–41], with potentially
important consequences for quantum gravity [37,42–44]. Another important development
at finite distance has been the realization that a proper treatment of the edge modes is cru-
cial even when dealing with fictitious entangling interfaces, which has consequences in the
computations of entanglement entropy [45–55]. At infinity on the other hand, a lot of work
has been dedicated towards understanding the intricate infrared properties of theories with
massless excitations, and there a central role is played by large gauge transformations and
soft modes (see [21] and references therein). Although the relationship between the edge
modes at finite distance and the soft modes at infinity is not fully understood, a unifying
thread is that of having degrees of freedom supported on the boundary, and parts of this
connection have been explored in [53,56]. Other evidence, also hinting toward this connec-
tion, is that asymptotic symmetries at null infinity [57–63] can be seen as the asymptotic
limit to infinity of the corner symmetry group of residual diffeomorphism associated to a
generic corner of spacetime [32,38,64].

The understanding of edge modes is undeniably necessary to properly define gauge
theories in local portions of spacetime. We highlight below some aspects of edge modes as
well as their applications that we will study in the first part of the thesis.

Splitting, Gluing, and Entanglement

The appearance of these edge modes can be seen as an inevitable outcome when considering
local subsystems of gauge theories. The reason lies on the fact that both physical phase
space and Hilbert space of a gauge theory on a spatial surface fail to be factorizable due
to the presence of the gauge constraints and the resulting inherent non-locality of gauge-
invariant observables (e.g. Wilson loops). Aside from being a conceptual issue for the
definition of local subsystems [32], this also represents an a priori technical obstruction to
computing quantities such as the entanglement entropy of gauge fields across a fictitious
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interface between two regions [54]. This difficulty can however be bypassed by resorting to a
so-called extended Hilbert space. The idea of this construction is as follows: starting from
two spatial (codimension-1) slices Σ and Σ sharing the same (codimension-2) boundary
S = ∂Σ = ∂Σ, the total Hilbert space HΣ∪Σ can be factorized into factors attached to Σ
and Σ provided that we extend these by attaching edge modes living on S and transforming
under the action of a corner symmetry group GS. Denoting the resulting extended Hilbert
space byHΣ,S, one can then realize the total physical Hilbert space of gauge-invariant states
as a subspace HΣ∪Σ ⊂ HΣ,S⊗HΣ,S, and is then recovered as HΣ∪Σ = HΣ,S⊗GSHΣ,S, where
⊗GS denotes an entangling product which identifies and gets rid of the extra boundary
degrees of freedom. Clearly, an advantage of the extended space is that it permits the
tensor product structure HΣ,S ⊗HΣ,S and therefore allows for the definition of a reduced
density matrix. This construction has proven very useful in computations of entanglement
entropy [45–48,54,65–68].

The classical analog of the extended Hilbert space is the extended phase space, and it
was pioneered by the authors of [32], for the case of Yang–Mills theory and metric gravity.
The extension consists in adding to the bulk (covariant) phase space, for each type of gauge
transformations in the theory, a corresponding edge mode field living on the boundary. This
allows us to differentiate between gauge redundancies and corner symmetries, as the former
has zero Hamiltonian charges while the latter, which are symmetries of edge modes, have
non-trivial charges. The construction has been further explored in [34] for non-Abelian BF
and Chern-Simons theories, in [35] for higher curvature gravity, in [36] for 3-dimensional
gravity in first order connection-triad variables, in [69] for open string field theory, in [70]
for Einstein–Maxwell theory, and in [38] for tetrad gravity in the Einstein-Cartan-Holst
formulation.

Having edge modes added to the theory phase space, one natural question arises —
what is the dynamics of these edge modes? Answering this seemingly simple question is
the main objective of Part I of this thesis.

Edge modes and Dualities

Another objective of Part I is to study the notion of dualities and the existence of dual
charges from the perspective of edge modes and corner symmetries. Duality is arguably one
of the most astounding concepts in modern theoretical physics, and its existence possibly
signifies unexplored structures of nature. The quintessential example is electromagnetic
duality, which exchanges the electric and magnetic fields in Maxwell’s theory. While the
classical realization of this duality has been studied extensively [71–78], it is only recently
that a new picture has started to emerge. Inspired by the infrared triangle of massless
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theories [21], there have been efforts to connect, in particular, soft photon theorems to
dual large gauge transformations and magnetic soft charges [79–85]. This development has
also fostered work on dual gravitational charges [86–95], although there is no known grav-
itational analog of electromagnetic duality in the full theory [96–100] (see also [101, 102]
for a notion of dual charges in 3-dimensional triad gravity and [103] for a gravitational
duality at null infinity). Dual charges corresponding to soft theorems have also been dis-
cussed in the case of the massless scalar [104–107]. In the context of Maxwell’s theory,
these developments have motivated the study of (asymptotic) magnetic charges. This was
done in [108] using the so-called duality-symmetric formulation, and in [109] by introducing
magnetic edge modes on an extended phase space. The remarkable result of these con-
structions is that the electric and magnetic charges satisfy a Kač–Moody current algebra
with non-vanishing central charge [82] (see however [110]).

In this thesis, we are motivated by a simple, yet important question — In a given
theory, specified by a Lagrangian and admitting asymptotic charges, how can we know if
there are “hidden” dual charges? In the gravitational case it has already been suggested
that a complete description of the charges (the dual ones included) should rely on the first
order formulation [38,39,86–90,94]. Inspired by this idea, we will dedicate the second half
of Part I to thoroughly inspect the duality of electromagnetism.

1.1.2 Gravity and Hydrodynamics

In Part II, we shift our attention from (internal) gauge theories to gravitational theories.
Although the (extended)1 corner symmetries [32,35,38,64] of gravity are more complicated
and require more subtle analysis than those in gauge theories, similar questions can still
be framed. One natural question, akin to what we asked in gauge theories, is that — what
is the gravitational dynamics of boundary degrees of freedom and corner charges of the
corresponding (extended) corner symmetries? Following the perspective of local holography
program, dynamics of corner charges is entirely encoded in general conservation laws,
which are also referred to as flux-balance laws. This is however not a totally new question
as understanding boundary dynamics and conservation laws are the subject of extended
studies [41, 111, 112]. In this thesis, we look deeper into these conservation laws and
scrutinize their physical interpretations as hydrodynamic conservation laws.

For the past half-century, physicists have been intrigued by the underlying connection
between two apparently completely unrelated topics — gravity and hydrodynamics. This

1The corner symmetry group is extended in a sense that it allows transformations that move the corner
along its normal directions.
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connection, in hindsight, might not appear to be a totally unexpected occurrence, as both
fields exhibit various similar traits:

i) In a similar spirit to hydrodynamics, which provides emergent effective descriptions
of classical and continuum dynamics of systems of multiple fluid particles, general relativity
can also be regarded as an effective theory of emergent classical and continuum dynamics
of quantum “atoms of spacetime”.

ii) The equations governing fluid dynamics (e.g. the Navier-Stokes equations) are non-
linear second order differential equations much like the Einstein equations that describe
the dynamics of spacetime geometry.

This connection, while starting off as a tentative analogy, is a clear reflection of a true
nature of gravity, offering a completely hydrodynamic route to gravitational dynamics and
opening unprecedented windows to explore some open questions in both fields.

The first-ever theoretical investigation which sparked this spectacular realization that
gravity can be understood as fluid mechanics was black hole thermodynamics [4–6], which
demonstrated that black hole horizons, much like fluids, can be assigned thermodynamic
properties such as internal energy, pressure, temperature, and entropy. Interestingly, grav-
itational physics controlling dynamics of these quantities can also be represented as the
standard laws of thermodynamics. Our understanding of this connection was further en-
hanced by the novel works of Damour [7] and, subsequently, Throne, Price, and Macdon-
ald [8, 9]. Their developed framework would become famously known as the black hole
Membrane Paradigm. It in particular realizes the idea that internal dynamics of a black
hole, as seen from outside observers, can be modeled effectively as a membrane located in
an infinitesimally close distance to the black hole horizon. The fictitious (timelike) mem-
brane, also called a stretched horizon, can be viewed as arising from quantum fluctuations
of geometry around the (null) horizon of the black hole, and is endowed with physical
properties of fluid2. One of the intriguing hallmark of this membrane viewpoint is that
gravitational dynamics of the stretched horizon can be fully written as the familiar equa-
tions of hydrodynamics. The fluid/gravity correspondence was put forth beyond black hole
physics in the context of AdS/CFT duality [113] (see [114–116] for comprehensive reviews
on this topic) and it has been since then generalized and applied in numerous works. It is
also worth mentioning other works that uncovered the link between gravitational physics
and fluids. Black holes, in many circumstances, actually exhibit droplet-like behaviors
akin to liquid. For instance, the Gregory-Laflamme instability of higher-dimensional black

2The stretched horizon can also be assigned electromechanical properties such as conductance. In this
circumstance, one needs to supplement the fluid equations with electromechanical equations, such as Ohm’s
law.
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strings [117] displays similar behavior to the Rayleigh instability of liquid droplets [118].
The work [119] also showed that dynamics of a timelike surface (which they called gravita-
tional screen) behaves like a viscous bubble with a surface tension and an internal energy.
Analog models of black holes [120] illustrated the converse notion and argued that kine-
matic aspects of black holes can be reproduced in hydrodynamical systems and that fluids
can admit sonic horizons and even the analog of Hawking temperature. Lastly, in the
context of local holography, the corner symmetry group of gravity was shown to contain
the symmetry group of perfect fluids as its subgroup [44].

Taking lessons from the black hole membrane paradigm, one pressing question is what
type of fluids emerged at the black hole horizon. It has been a long-standing belief that the
true nature of horizon fluids is either relativistic fluid or non-relativistic (Galilean) fluid,
describing by the Navier-Stokes equations. This belief however was recently challenged
by the authors of [121], where they demonstrated that the behavior displayed by horizon
fluids are neither relativistic nor non-relativistic, but rather ultra-relativistic or Carrollian.
As announced, the second part of this thesis aims to revise and formalize this proposal in
full generality. To this purpose, we explain below the meaning of the term Carrollian and
review developments in the area of Carrollian physics.

1.1.3 Carrollian Physics

The fascinating tale of Carroll geometries and Carrollian physics has begun purely out
of the mathematical curiosity of Lévy-Leblond [122] when he first proposed a new special
limit of a flat spacetime and derived its resulting isometry group. Heuristically, this limit is
viewed as another end of “non-Lorentzian” limits, lying at the opposite side to the familiar
Galilean (or non-relativistic) limit. This novel limit was deliberately given the name of the
Carrollian limit (it was also referred to as the ultra-relativistic limit and the ultra-local
limit by different authors) after Lewis Carroll, the author of Through the Looking-Glass.
Before proceeding to recent developments in Carrollian physics, let us first briefly review
the original construction of [122] and explain how the isometry of a flat spacetime, the
Poincaré symmetry, can be contracted to the Carrollian symmetry, along with making
comparisons to the well-known Galilean symmetry.

The Poincaré group, playing a pivotal role in relativistic field theories, is the isometry
group of the flat Minkowski spacetime consisting of coordinate transformations that leave
spacetime intervals invariant. To be more precise, starting from a flat Minkowski space-
time of general dimension, the pedestrian parameterization of the Poincaré coordinate
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transformations (x0, xi)→ (x′0, x′i) is given by

x′0 = γ
(
x0 + βi(Rx)i

)
+ a0, x′i = (Rx)i +

γ − 1

|β|2
(
βj(Rx)j

)
βi + γβix0 + ai, (1.1a)

where the Lorentz factor is defined in a standard way as γ = (1 − |~β|2)−
1
2 , and the norm

of a spatial vector is denoted as |β|2 := βiβ
i. The Poincaré transformations consist of

spacetime translations labelled by (a0, ai), spatial rotations given by a rotational matrix
R, and Lorentz boosts, which mix time and space, parameterized by a spatial vector βi.
The latter two transformations together make the Lorentz transformations.

To evaluate limits of the Poincaré transformations, one then needs to introduce a pa-
rameter c whose value can be varied. This parameter is nothing but the usual speed of light.
As we have already stated, there exist two types of non-Lorentzian limit — the Galilean
limit and the Carrollian limit. The former corresponds to the case where the value of the
speed of light approaches infinity, c→∞3., and in turn reduces the the Poincaré transfor-
mations to the Galilean transformations. The Carrollian limit on the other hand, contracts
the Poincaré transformations to the so-called Carrollian transformations by means of the
opposite limit, c→ 0. Obviously, changing the speed of light affects the structure of light
cones as schematically depicted in Figure 1.1. For the non-relativistic Galilean case, light
cones open up as c → ∞ and a particle can travel freely without any restriction on its
velocity. In contrary, light cones collapse in the Carrollian limit c → 0, hence freezing
a particle’s motion and completely inhibiting causal interactions between any events in
spacetime. It is in this particular sense that the Carrollian limit is sometimes called the
ultra-local limit4. Let us also mention that, at the level of Lie algebra, the Galilei algebra
and the Carroll algebra can be obtained from the respective limits of the Poincaré group
using the mathematical procedure known as the Inönü-Wigner contraction [123].

3Physically, it absolutely makes no sense to vary the value of the dimensionful parameter c. If one wants
to be more rigorous, one rather needs to introduce a dimensionless parameter c

v where a characteristic
velocity v depends on a problem under consideration. The end results however do not differ from naively
using c as the varying parameter.

4The clarification of terminology is in order here. In term of a dimensionless parameter c
v , the ultra-

local limit corresponds to the case where c
v → 0, meaning that the characteristic velocity of the problem

trends to zero slower that c, in turn freezing the dynamics. On the other hand, the ultra-relativistic limit
corresponds to the limit c

v → 1, inferring that v trends to c in this limit. Unfortunately, the terminology
for ultra-local limit and ultra-relativistic limit got mixed up at some point in the literature, and they were
often used to refer the same thing, namely the Carrollian limit.
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Figure 1.1: The effects of the non-Lorentzian limits on light cones. The limit c → ∞ is
the Galilean limit, while c→ 0 is the Carrollian limit.

Galilean limit

“Well, in our country, you’d generally get to somewhere else, if you ran very fast for a
long time, as we’ve been doing”5

said Alice, representing the Galilean world

To take the Galilean limit, we redefine the temporal coordinate, the boost parameter,
and the time translation as follows

x0 = ct, βi =
vi

c
, and a0 = cT, (1.2)

where t now represents the Galilean notion of time, vi is the spatial velocity, also represent-
ing Galilean boosts, and lastly, T parameterizes Galilean time translation. It is important
to point out that the Lorentz factor becomes

γ = 1 +
1

2

|v|2
c2

+O(c−4), (1.3)

when considering a large value of the speed of light c. Taking the Galilean limit c→∞ of
(1.1), while keeping t, vi, and T fixed, renders the Poincaré transformations to the Galilei
transformations,

t′ = t+ T, and x′i = (Rx)i + vit+ ai. (1.4)

These transformations in a sense reflect the core feature of Galilean theories, that is there
exists the notion of absolute time.

5Quoted from Through the Looking-Glass, the infamous novel authored by Lewis Carroll and inspired
the Carrollian terminology.
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Carrollian limit

“A slow sort of country! Now, here, it takes all the running you can do, to keep in the
same place.”,

responsed The Red Queen, representing the Carrollian world

For the Carrollian case, one needs to make the following rescalings

x0 = cu, βi = −cbi, and a0 = cτ, (1.5)

with u representing the Carrollian notion of time and τ labels Carrollian time translations.
The boost vector bi was however parameterized differently from the one chosen in the
Galilean case to ensure that the transformations (1.1) has a regular limit as c → 0. The
Lorentz factor can be expressed in the small-c expansion as6

γ = 1 +
1

2
c2|b|2 +O(c4). (1.6)

Properly taking the c→ 0 limit of (1.1), we arrive at the Carrollian transformations,

u′ = u− bi(Rx)i + τ, and x′i = (Rx)i + ai. (1.7)

The paramount trademark of Carrollian theories, contrary to the Galilean case, is the
existence of absolute space. Remarks are in order here:

i) It is not entirely correct to conclude that a particle has zero velocity in the Carrollian
limit as one can check that the particle’s velocity, vi = dxi

du
, transforms as,

v′i =
dx′i

du′
=

(Rv)i

1− bj(Rv)j
. (1.8)

This therefore dictates that if a particle starts with zero velocity, it remains at zero velocity
after Carrollian transformations. In contrast, if a particle has initially non-zero velocity, it
can then be boosted to any non-zero value, depending on the value of the boost parameter
bi. This characteristic however is not present in the Galilean case. This entails two classes
of Carroll particles — those with zero velocity and those with non-zero velocity. The latter
in a sense is tachyonic (see [125] for more in-depth discussions).

6If one were to alternatively employ the textbook definition of boost parameters in term of the relative
velocity of two reference frames, βi = wi

c , one would also need to impose that the velocity goes to zero
faster than the speed of light by setting wi = c2bi [124].
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ii) While it is true that a single non-tachyonic Carroll particle possesses no dynamics as
it cannot move [126], there exist nonetheless situations where Carrollian systems exhibit
non-trivial dynamics, e.g, when considering interacting particles and when a particle is
coupled to non-trivial background fields [127].

Although Lévy-Leblond himself remarked in his original paper [122] that practical uti-
lization of Carroll symmetry group at that time was quite problematic, interests in Carroll
symmetry has recently been rejuvenated and gained ever-increasing attention in many
fields of physics. This development was largely catalyzed by the connection between the
(conformal) Carroll group and the symmetry group of asymptotically flat spacetime, the
co-called Bondi-van der Burg-Metzner-Sachs (BMS) group [128–130], which plays a central
role in understanding flat space holography, and thereby motivated the studies on Carrol-
lian field theories [126,131,132]. Aspects of the Carroll symmetry in gravitational theories
have also been addressed in [133–142]. In addition, hydrodynamics of Carrollian fluids
that inspired the work in this thesis have previously been explored in [124], along with its
applications in the field of black holes and holography [121, 143–148]. Carrollian physics
has also appeared in the context of inflationary cosmology [125].

1.2 Outline of this Thesis

As announced, this thesis consists of two parts. The first part is dedicated to comprehen-
sive investigations of the status of edge modes, in theories with internal gauge symmetries.
We aim to explore the extended phase space of gauge theories, edge modes included, at the
level of boundary Lagrangian and scrutinize corner symmetries and boundary dynamics
of these edge modes, along with the applications to physical observables such as entangle-
ment entropy. We will also argue and demonstrate that edge modes and their symmetries
may help shed light on the improved understanding of dualities in physics, such as the
electromagnetic duality.

We will devote the second part of this thesis to the study of gravitational dynamics of a
subregion of spacetime bounded by a null horizon. A wealth of physics is however encoded
on stretched horizons, timelike surfaces placed in close vicinity of the null horizon, such
as the emerging connection with Carroll geometries and Carrollian hydrodynamics. This
correspondence has been first investigated by the authors of [121], and we will elucidate
this deep connection in full generality in this thesis.

In Chapter 2, we give a brief review of the covariant phase space formalism which we
shall adopt throughout the thesis.
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1.2.1 Part I: Edge Modes: Dynamics and Duality

Chapter 3 is devoted to the construction of extended phase space on gauge theories at the
level of action and scrutinize corner symmetries and boundary dynamics of edge modes.
We would like to elucidate these following points

1. Given a gauge theory, what is the action and the symplectic structure for the edge
modes, and which freedom is there in their construction?

2. Can we demonstrate the role played by edge modes in splitting and seamlessly gluing
of subregions, using the obtained action for edge modes?

3. What is edge modes contribution to entanglement entropy?

We will present in this chapter a framework for writing down a boundary action for edge
modes, and give some preliminary examples of the subtleties and differences which arise for
different gauge theories (e.g. depending on boundary conditions and Hamiltonians, and on
whether the theory is topological or not). To study the dynamics of the edge modes, we will
propose a new action principle which includes the edge modes in a boundary action and
then naturally reproduces the extended phase space and its symplectic structure. Then,
we will explain, using the path integral technique, how integrating out the bulk degrees of
freedom in a subregion produces an effective boundary action which will contribute to the
entanglement entropy.

In Chapter 4, we study electromagnetic duality from the perspective of corner symme-
tries and charges. The key message of this rather short chapter is that the electromagnetic
duality and the existence of dual magnetic charges in Maxwell’s theory can are better
understood using the first-order formulation of electromagnetism.

1.2.2 Part II: Carrollian Hydrodynamics on Stretched Horizons

We dedicate Chapter 5 to first review geometrical setups, namely Carroll structures and
Carroll geometries, which serve as fundamental building blocks for our studies in Part II.
Armed with the geometrical setups, we will then proceed to study Carrollian fluid and
corresponding conservation laws. To this end, we will present two approaches for deriving
Carrollian hydrodynamic equations.

For the first approach which is rather a standard one, we follow closely the derivation
already presented in [124] which was based on taking the Carrollian limit of the relativis-
tic conservation laws of the fluid energy-momentum tensor. We however will frame our
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derivation in a manner that the Carroll structure becomes apparent, thereby formalize and
generalize the results of [124].

For the second approach, we will give a new perspective for Carrollian hydrodynamics
based on the symmetry principle. This view point has been first explored in [144]. Their
derivation, which relied on Carrollian symmetries, however only reproduced parts of the full
set of fluid equations. In our work, we take an inspiration from near-horizon symmetries
of black holes and propose a new notion of symmetries for Carrollian fluids (we call these
symmetries the near-Carrollian symmetries). We finally show that these new symmetries
lead to the full set of Carrollian hydrodynamic equations.

Chapter 6 of this thesis focuses on gravitational physics in a subregion of spacetime
bounded by a null boundary. The spacetime near the null boundary is foliated into a family
of timelike hypersurfaces, the stretched horizons.

Our construction relies on the rigging technique of general hypersurfaces. We will show
that by endowing the null rigged structure on the surface, the Carroll structure is naturally
induced on the surface, regardless of whether the surface is null or timelike. This formalism
therefore treats the timelike stretched horizons and the null boundary in the same status,
and the limit from the stretched horizon to the null boundary is regular. This null limit
can be viewed as the analog to the Carrollian limit [121,149].

Having setup the intrinsic geometry of the surfaces, we then discuss the extrinsic ge-
ometry of the surfaces. Elements of extrinsic geometry, which are encoded in the rigged
Weingarten tensor, corresponds to the Carrollian fluid momenta. We will define the energy-
momentum tensor of the surface and then show that conservation laws of this tensor,
which yields Carrollian hydrodynamics, infers the Einstein equations, even on the timelike
stretched horizon and thus our results generalize the results of [149].

Similar to Chapter 5, we next consider in Chapter 7 conservation laws from the per-
spective of symmetries. We will show that the gravitational phase space of the surfaces
(either null or timelike) has the same structure as the phase space of Carrollian fluids, ex-
cept for some extra components arising from the embedding of the surfaces in the ambient
spacetime. We then proceed to derive the Einstein equations (which are viewed as the fluid
equations) from the near-horizon symmetries of the surface. We will further demonstrate
that the phase space of the stretched horizons situated in extremely close proximity to the
null boundary also encodes sub-leading information of the null boundary phase space. By
treating the stretched horizons as the small-r expansion around the null boundary, we will
show that the sub-leading term of the pre-symplectic potential is necessary to properly
derive all evolution equations (the Einstein equations) on the null boundary. Most impor-
tantly, the Einstein equations GAB = 0 are the consequence of a certain spin-2 symmetries.
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Chapter 2

Covariant Phase Space Formalism

This chapter provides a short review of aspects of the covariant phase space formalism (also
called the covariant Hamiltonian formalism) [150–152] and introduces relevant technologies
that will be adopted in this thesis. Recent development of this formalism can be found, for
example in [41,153,154]. See also [111,155–157] for the situations involving null boundaries.

2.1 Pre-symplectic Potential and Structure

The central object in the covariant phase space formalism, the pre-symplectic potential, is
implicitly defined through a variation of a Lagrangian. To see this, let us consider classical
field theories defined in a general d-dimensional spacetime. The classical dynamics of a
field1 Φ is fully encoded in a classical Lagrangian L[Φ], which is a differential d-form. In
general, any field variation of the Lagrangian has the following structure

δL[Φ] = EOM[Φ, δΦ] + dΘ[Φ, δΦ]. (2.1)

Classical equations of motion, EOM = 0, are usually derived by demanding that the varia-
tion of the Lagrangian vanishes up to total derivative terms (or equivalently, the variation
of an action S =

∫
L vanishes up to a boundary term). By definition, equations of motion

do not contain derivatives of the variations of the field and are uniquely determined by the
Lagrangian. This infers that we will always have EOM = E∧δΦ, where E = 0 is the usual
Euler-Lagrange equation. The spacetime (d − 1)-form Θ = Θ[Φ, δΦ] is the pre-symplectic

1In this thesis, it formally represents both gauge fields and gravitational (metric) fields.
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potential current and it encodes phase space information of the theories. Following a rather
standard nomenclature, we view a field variation δ as an exterior derivative over the field
space such that for a bosonic field Φ, the field variations commute,

δ2
(1,2)Φ =

1

2
(δ1δ2Φ− δ2δ1) Φ = 0. (2.2)

The pre-symplectic potential Θ is therefore a 1-form in the space of fields2. Repeated action
of δ is understood with anti-symmetrization. We define the pre-symplectic potential on a
codimension-1 Cauchy surface Σ to be the integral of the pre-symplectic potential current
over Σ,

ΘΣ :=

∫
Σ

Θ[Φ, δΦ]. (2.3)

The pre-symplectic structure on Σ is the field space 2-form and it is defined as the field
space differential of the pre-symplectic structure,

ΩΣ := δΘΣ =

∫
Σ

δΘ[Φ, δΦ]. (2.4)

The pre-symplectic structure contains two variations and is thereby a closed differential
form in the field space, i.e., δΩΣ = 0. We comment that the prefix “pre” is used to indicate
the fact that, at this stage, the object ΩΣ is not completely qualified as being symplectic
as it contains degenerate directions and the phase space is in a sense not physical. These
degenerate directions correspond to gauge redundancies and they are needed to be properly
quotient out in order to obtain the physical phase space.

2.2 Noether and Hamiltonian Charges

Having introduced the pre-symplectic potential and the pre-symplectic structure, we then
proceed to describe the Noether charges and the Hamiltonian charges associated with
symmetries.

To set our notations, we use δεΦ to denote variations of a field Φ under some symmetries
(e.g. gauge symmetries and diffeomorphism) labelled by a transformation parameter ε. We

2One can knit the spacetime and the field space into a single structure called the variational bi-complex
(see [158, 159] and references therein). In the literature, a spacetime p-form which is also a field space
n-form is usually denoted as a (p, n)-form. For instance, the pre-symplectic potential current Θ is a
(d− 1, 1)-form.
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regard the variation δε as a field space vector and denote by Iδε a field space interior product,
such that IδεδΦ = δεΦ. Since the thesis comprises a part that deals with internal gauge
symmetries and a part that deals with spacetime diffeomorphism, we thereby consider in
general gauge transformation parameter ε ∈ (α, ξ) where α labels usual internal gauge
transformations and ξ parameterizes diffeomorphisms. Under gauge transformations we
have δαL = dmα, and δξL = LξL = d(ιξL) for diffeomorphism3.

Now, it follows from the standard form of variation that

δεL = d(mα + ιξL) = E ∧ δεΦ + d(IδεΘ), (2.5)

leading us to
E ∧ δεΦ + d(IδεΘ−mα − ιξL) = 0. (2.6)

The Noether current, which is a spacetime (d− 1)-form, is defined as

Jε = IδεΘ−mα − ιξL. (2.7)

On-shell, we have the conservation of the Noether current, dJε ≈ 0. For local symmetries,
this implies that Jε ≈ dQε, with the spacetime (d− 2)-form Qε being the Noether charge.
According to the Noether’s second theorem for local symmetries, we also have

E ∧ δεΦ = −dCε, (2.8)

for a constraint Cε, that vanishes on-shell, and therefore

Jε = Cε + dQε. (2.9)

Let us now describe the Hamiltonian generators, or the Hamiltonian charges, of the
general gauge transformations. The field variation δεΦ is determined by the Poisson bracket
between the field and the Hamiltonian generators H[ε],{

H[ε],Φ
}

= δεΦ. (2.10)

Note however that the Hamiltonian of symmetries H[ε] may not exist in general, due to
the presence of symplectic fluxes.

The variation of the generator is given by the field space contraction of the pre-
symplectic structure

δ/H[ε] = −IδεΩΣ. (2.11)
3This is only valid for covariant Lagrangians. In general, we will have δξL = d(ιξL + aξ) where aξ

represented the Lagrangian anomaly (see [41]).
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It is important to remark that the notation δ/ is used to emphasize the aforementioned
feature that the variation of Hamiltonian charges are not always integrable, and that
Hamiltonians associated to the symmetries may not exist in general. The situations when
the Hamiltonian charges are non-integrable are encountered especially in gravitational
systems, when there are non-vanishing symplectic fluxes leaking through boundaries of
the spacetime under consideration. We will come back to this point momentarily. The
Hamiltonian charges (if they existed) satisfy the charge algebra,{

H[ε],H[η]
}

= δεH[η] = −IδεIδηΩΣ. (2.12)

2.2.1 Relation between Jε and Hε

To finally complete our discussion on the charges, we remark the fact that the Noether
charges and the Hamiltonian charges are in principle different. We will elaborate on how the
difference comes about, for the simplest case where the diffeomorphism is field-independent,
such that δξ = δα = 0, and the potential Θ is also covariant, meaning that δξΘ = LξΘ.
We point out for interested readers the discussion for the general case is presented in [41].

Let us first consider, for internal gauge transformations α, the equality

0 = δδαL− δαδL = d(δmα − δαΘ), (2.13)

which of course holds true because δα(E ∧ δΦ) = 0. This then implies that there exists a
(d− 2)-form Mα such that

δmα − δαΘ = dMα. (2.14)
Next, the variation of the Noether current (2.7) is given by

δJε = δ(IδεΘ)− δmα − δ(ιξL), (2.15)

where the last term can be rewritten using

δ(ιξL) = ιξδL = ιξ(E ∧ δΦ) + ιξ(dΘ)

= ιξ(E ∧ δΦ) + LξΘ− d(ιξΘ)

= ιξ(E ∧ δΦ) + δξΘ− d(ιξΘ), (2.16)

where we state again that this derivation is valid for the special case when the pre-
symplectic potential is covariant δξΘ = LξΘ. Putting everything together leads to

δJε = δ(IδεΘ)− δmα − ιξ(E ∧ δΦ)− δξΘ + d(ιξΘ)

= δ(IδεΘ)− δεΘ− ιξ(E ∧ δΦ) + d(ιξΘ−Mα)

= −IδεδΘ− ιξ(E ∧ δΦ) + d(ιξΘ−Mα). (2.17)
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Integrating the result on the Cauchy surface Σ, we arrive at the expression for the Hamil-
tonian charges,

δ/H[ε] =

∫
Σ

δCε + ιξ(E ∧ δΦ) +

∫
∂Σ

δQ− ιξΘ +M

≈
∫
∂Σ

δQ− ιξΘ +M.

(2.18)

It then becomes clear that the Hamiltonian charges are in general non-integrable and differ
from the Noether charges due to the presence of the flux term, −ιξΘ +M .

2.2.2 Noether charges of General Relativity

We will need the expression for the constraints and the Noether charges of general relativity
in Part II of the thesis. Now, let us consider the gravitational case described by the Einstein-
Hilbert Lagrangian4, L = 1

2
Rε, where R represents the spacetime Ricci scalar and ε is the

spacetime volume form. Denoting the Einstein tensor by Gab = Rab− 1
2
gabR, the equations

of motion are the Einstein equations,

EOM =
1

2
Gabδgabε. (2.19)

The pre-symplectic potential of the Einstein-Hilbert gravity is given by Θ = Θaεa where
we defined the contraction of the volume form, εa := ι∂aε, and the standard gravitational
pre-symplectic potential current is given in terms of variation of the spacetime metric δgab
and its trace δg := gabδgab by

Θa =
1

2

(
gac∇bδgbc −∇aδg

)
. (2.20)

Given the bi-normal εab := ι∂aι∂bε, the constraint and the Noether charges (which in this
case is particularly referred to as the Komar charges) associated with the spacetime diffeo-
morphism parameterized by ξ are

Cξ = ξaGa
bεb, and Qξ =

1

2
∇aξbεab. (2.21)

4We will only consider the case when the cosmological constant vanishes and the matter degrees of
freedom are absent in this thesis
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2.3 Anomaly Operator

Lastly, we define the anomaly5 operator which serves as a computational tool in this thesis.
Let us begin by mentioning that the variation δξ under spacetime diffeomorphism can be
promoted to be the field space Lie derivative which acts on any generic field space forms
via the field space analog of the Cartan formula6,

δξ := Iξδ + δIξ. (2.22)

Anomaly occurs when an object fails to be covariant under spacetime diffeomorphism.
An object is said to be covariant under spacetime diffeomorphism if its variation under
spacetime diffeomorphism agrees with its change under the action of spacetime Lie deriva-
tive. The prime example of covariant objects is the spacetime metric gab, meaning that

δξgab = Lξgab. (2.23)

This property however does not necessary hold for a general field Φ and the failure specifi-
cally occurs when there exist fixed background structures in spacetime that do not change
under diffeomorphism. In such circumstance, the field Φ is viewed as a function of the
metric components, Φ = Φ[gab]. The change of the field under diffeomorphism is thus due
to the change of the metric,

δξΦ[gab] = Φ[gab + δξgab]− Φ[gab] =
δΦ

δgab
Lξgab, (2.24)

and in general does not coincide with the Lie derivative LξΦ. With this logic in mind, we
define the anomaly operator as the difference

∆4ξ := δξ − Lξ − Iδξ. (2.25)

The last term Iδξ arises due to the field-dependence of the diffeomorphism vector field ξ.
It will cancel out the δξ contribution that comes from the term δIξ in the definition of the
field space Lie derivative, in turn making the anomaly ∆4ξ completely independent of δξ.
Any object is said to be covariant if its anomaly vanishes.

5which was assumed to be non-existent in previous derivations
6Clarification is in order here. In Chapter 3, we are going to deal with two types of symmetries:

gauge symmetries δα and corner symmetries ∆α. We will therefore use Iδα and I∆α to distinguish field
space contraction associated with different symmetry transformations. In Chapter 7 however, spacetime
diffeomorphism δξ is the only concern. As such, we will denote field space contraction simply with Iξ.
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In this thesis, the anomaly operator serves as a useful computation tool to compute the
transformations of non-covariant objects (we will utilize this technology in Chapter 5 and
Chapter 7). One of its useful properties is that it commutes with the spacetime covariant
derivative, ∆4ξ∇a = ∇a∆4ξ. Let us also mention that this technology has been extensively
utilized in the literatures [41, 111,149,154,157,160]
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Part I

Edge Modes: Dynamics and Duality

21



Chapter 3

Extended Action and Dynamics of Edge
Modes

We dedicate this chapter to a study of edge modes and their boundary dynamics. We will
propose a simple and systematic framework for including edge modes in gauge theories
defined on manifolds with boundaries. Starting with a boundary action containing edge
modes, we then introduce a new variational principle which systematically produces a
corner contribution to the symplectic structure, and thereby provides a covariant realization
of the extended phase space constructions that have appeared previously in the literature.
Furthermore, we demonstrate that this is necessary in order to achieve the factorizability
of the path integral, the Hilbert space and the phase space, and that it explains how
edge modes acquire a boundary dynamics and can contribute to observables such as the
entanglement entropy.

Before diving into our proposals and detailed computations, we believe it is more ben-
eficial to provide the readers the big picture of our construction, which is summarized
schematically on figure 3.1, and to get the general idea of what we are trying to understand.
Consider two spacetime manifolds M and M with respective time-like boundaries ∂M and
∂M . A gauge theory on each manifold is defined by bulk fields, but also by boundary
degrees of freedom. These edge modes are introduced via a boundary Lagrangian, which
couples in a gauge-invariant manner the bulk gauge fields and the edge modes to a bound-
ary current (which can be thought of as the edge mode’s conjugate momentum). The
presence of these edge modes is precisely what allows for the splitting of the path integral
over M ∪M into two factors. This is the covariant analogue of the factorization in terms
of extended Hilbert spaces, and it requires relaxation of the boundary conditions to allow
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Figure 3.1: On the top, we have the same gauge theory defined on two neighboring man-
ifolds with boundaries. Each factor contains bulk fields and edge modes. Integrating out
the edge modes leads to the theory defined over M ∪M and, conversely, the splitting of
M ∪M into subregions requires introducing edge modes on which Wilson lines can end.
Once the theory is split into factors associated with the regions M and M , one bulk region
can be integrated out, thereby leading to an effective boundary dynamics for the edge
modes. This latter will in turn be seen by and contribute to the entanglement entropy.

for open Wilson lines to end on the boundary. In a path integral context, one can then
manipulate the factorized path integrals over M and M in two ways:

i) integrating out the edge modes living on ∂M and ∂M (with suitable matching con-
straints) will glue the theories defined on the subregions and lead to the path integral over
M ∪M , while

ii) integrating out the bulk fields of regionM will produce an effective boundary theory
on ∂M . This second point is very important. It means that integrating out the bulk degrees
of freedom inM , when taking properly into account the presence of the edge modes on the
boundary ∂M = ∂M , does not reproduce the path integral defined on M only: there is
a residual contribution on the boundary due to the dynamics of the edge modes, and this
will contribute in particular to the entanglement entropy.

One can clearly see the fundamental role played by the edge modes in this construction:
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they appear once we split a theory (i.e. its Hilbert space, phase space, or path integral),
dictate how regions should be glued along an interface, and encode a leftover boundary
dynamics once one of the bulk regions is integrated out. For this, we will first recall
in section 3.1 how the edge modes can conveniently be parametrized in a Hamiltonian
setting by using an extended phase space containing a boundary symplectic structure,
then construct in section 3.2 compatible boundary actions, and finally present in section
3.3 examples and applications.

3.1 Extended phase spaces

For a given gauge theory, the extended phase space [32, 34–36, 38, 69, 70] is the classical
analog of the extended Hilbert space. The extension consists in adding to the bulk phase
space, for each type of gauge transformations in the theory, a corresponding edge mode
field living on the boundary.

The construction of the extended phase space takes place in the covariant phase space
formalism (see a short review in Chapter 2), and exploits a well-known corner ambiguity
[161,162], which is that of supplementing the pre-symplectic potential Θ by a total exterior
derivative dϑ. By adding edge mode fields living on the boundary S = ∂Σ of spatial
hypersurfaces and transforming in a particular way under gauge transformations, one can
construct in a minimal way an extended potential Θe = Θ + dϑ such that the associated
symplectic structure

Ω =

∫
Σ

δΘe =

∫
Σ

δΘ +

∫
S

δϑ (3.1)

disentangles in a natural manner the role of gauge transformations from that of corner
symmetries. This extended symplectic structure is indeed such that gauge transformations
are generated by constraints that vanish on-shell and have no Hamiltonian charge, while
boundary symmetries are generated by surface observables that satisfy a boundary sym-
metry algebra, and this without the need to impose boundary conditions on the dynamical
fields or on the parameters of gauge or symmetry transformations. The role of the edge
mode fields appearing with their canonical momenta in the boundary symplectic structure
is two-fold:

i) to restore the seemingly broken gauge-invariance due to the presence of the boundary,

ii) to parametrize the boundary symmetries and observables.
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Representing a gauge transformation by a tangent vector δα in field space, one has
in other words that the field space contraction IδαΩ is integrable and vanishing on-shell.
This is nothing but the familiar Hamiltonian generator of the transformation δα, which is
however stripped from its usual boundary charge because this latter has been cancelled by
the contribution of the boundary symplectic structure containing the edge modes. This is
a first advantage of the extended phase space: gauge transformations are null directions of
the extended symplectic structure even when they have support on the boundary. Similarly,
a boundary symmetry can be represented by a tangent vector ∆α, and is characterized by
a generator I∆αΩ, which is integrable, gauge-invariant in the sense that IδαI∆β

Ω = 0, equal
to a boundary integral, and satisfies a boundary symmetry algebra I∆αI∆β

Ω.

It has been shown in [34, 36] that the generators of such boundary symmetries ∆α are
the usual Hamiltonian boundary observables introduced in [163–168], in which however the
bulk fields are “dressed” in a gauge-invariant manner by the new edge mode fields that have
been introduced on the boundary. This is a second advantage of the extended phase space:
the edge modes that have been added through the boundary symplectic structure are now
part of the phase space and parametrize the boundary observables and their symmetry
algebra. While this description may seem formal at this point, we will provide explicit
examples in section 3.3.

The natural next step is to search for a dynamical description of these edge modes, and
to conceive them not as living only on the boundary S of a spatial slice, but on the whole
time-like boundary S × R. This is a familiar situation in CS theory, where the time-like
boundary is known to carry a gapless chiral theory [169–171]. However, the construction
of the boundary dynamics in CS theory typically relies on studying the behavior under
gauge transformations of the action itself. This explains the difference of treatment which
has subsisted so far between e.g. Maxwell–Yang–Mills and CS theory: the former has a
gauge-invariant action while the latter does not. From this, one would (wrongly) conclude
that Maxwell–Yang–Mills theory does not possess a boundary dynamics. However, as we
have argued above, the study of gauge (non)-invariance should instead be carried out at
the level of the symplectic structure. There, one can easily motivate the need to work
with an extended phase space containing edge mode fields. Let us now describe how their
boundary symplectic structure can be obtained from a boundary action.

3.2 Extended actions

Let us consider for simplicity that the d-dimensional spacetime manifold is of the form
M = Σ × R, where the time-like boundary is ∂M = S × R. The extended symplectic
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structure described above can be thought of as arising from an extended field theory, where
the bulk and codimension–1 boundary submanifolds each possess a Lagrangian, equations
of motion, and a (pre-symplectic) potential. In order to see this, let us write the extended
action and its variation in the form

S =

∫
M

LM +

∫
∂M

L∂M , δS =

∫
M

EOMM +

∫
∂M

Θ + δL∂M . (3.2)

This is of course a familiar step in field theory and in the covariant phase space formalism,
where it identifies the potential Θ as the total exterior derivative term arising from the
integrations by parts isolating the bulk equations of motion. In usual constructions of the
covariant phase space [159, 161, 172], the introduction of a boundary Lagrangian L∂M is
simply understood as resulting in a shift Θ 7→ Θ + δL∂M of the potential. The boundary
conditions defining the variational principle are then taken to be (Θ + δL∂M)

∣∣
∂M

:= 0,
and one concludes that the boundary Lagrangian cannot affect the symplectic structure
since upon taking a second variation to obtain the symplectic current one has δΘ 7→
δΘ + δ2L∂M = δΘ by virtue of the property δ2 = 0.

However, this viewpoint turns out to be unnecessarily restrictive, and one can be more
general by realizing that this ambiguity in the boundary term fits perfectly well with the
above-mentioned corner ambiguity. In other words, there is a natural way in which the
boundary Lagrangian may provide a corner term. We will now explain this construction in
full generality. Let us mention that similar construction to what we are about to presnt also
appeared in the work of Harlow and Wu [153]1, and the works [38,39] applied the formalism
to 4-dimensional first order gravity. The idea is simply to realize that acceptable boundary
conditions can be more generally taken to be

(Θ + δL∂M)
∣∣
∂M

:= −dc. (3.3)

Interestingly, this fits nicely with our desire to encode the dynamics of the edge mode fields
in the boundary Lagrangian. Indeed, if this latter contains derivatives, upon taking a field
space variation one can then integrate by parts to isolate boundary equations of motion
and a boundary pre-symplectic potential. We can then suggestively rewrite the variation
of the action in (3.2) as

δS =

∫
M

EOMM +

∫
∂M

EOM∂M − dc, (3.4)

1An important difference is that Harlow and Wu are not concerned with edge modes and extended
phase spaces. They describe how a boundary Lagrangian can provide a corner term and discuss at length
the example (among others) of Einstein–Hilbert gravity with the Gibbons–Hawking–York term, but do
not consider Lagrangians which include edge mode fields. Apart from this conceptual difference, our
constructions are the same.
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where on the boundary we have now explicitly combined the potential Θ of LM with
part of the variations of L∂M to get the boundary equations of motion, and also kept the
total exterior derivative containing the potential c of L∂M . In this picture, the boundary
conditions (3.3) are just rewritten as the requirement that EOM∂M := 0. As we will see in
explicit examples below, this requirement will generally translate into several conditions,
which can be fulfilled either by fixing some variables on ∂M (e.g. Dirichlet boundary
conditions in gravity), or by imposing boundary equations of motion.

As explained in [153], the correct potential to consider for the construction of a con-
served symplectic structure is then Θ + dc, and therefore naturally includes a corner con-
tribution. In our more general setup, where the boundary Lagrangian may contain edge
mode fields, we will see that the correct extended symplectic potential Θe = Θ + dϑ will
be obtained once we explicitly rewrite Θ + dc on-shell of (some of) the boundary equations
of motion which identify c ≈ ϑ. This is of course fine since in any case the covariant phase
space formalism is on-shell, and since going on-shell of the boundary equations of motion
is simply enforcing part of the boundary conditions (3.3) defining the variational principle.
More precisely, we will see that in the whole set EOM∂M we will have to explicitly use the
boundary equations of motion involving the initial potential Θ. This is a desired feature,
since it means that instead of holding fixed a field configuration on the boundary (e.g.
the gauge potential of Maxwell theory), we are relaxing this condition by imposing the
conjugated boundary equations of motion instead. Once again, this should become crystal
clear in the following section where we present concrete examples.

In summary, in order to achieve our construction relating the boundary Lagrangian
L∂M (which is the object we are trying to identify) to the extended symplectic structure
(3.1) defining the extended phase space (which is the object we already know from the
various constructions [32,34–36,69,70]), we simply have to look for a boundary Lagrangian
whose potential c is such that the extended potential is obtained as

Θ + dc ≈ Θ + dϑ = Θe. (3.5)

Our formalism and that of [153] guarantee that this is possible, and we will give illustrative
examples in the next section. A few comments are now in order before going on.

i) In this construction the boundary Lagrangian is more than a mere boundary term:
it contains derivatives, and therefore a potential, which is then combined with the bulk
potential in order to get the extended symplectic structure. As we have argued, this falls
outside of the usual covariant phase space formalism of e.g. [159,161,172], and fixes unam-
biguously the corner contribution c. Furthermore, adding edge modes into the boundary
Lagrangian achieves more than a simple change of polarization: it allows one to completely
relax the boundary conditions by replacing them with boundary equations of motion.
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ii) One can be puzzled by the apparent sign mismatch between the boundary potential
in (3.4) and its contribution to the extended potential in (3.5). This follows of course
from the compatibility of the symplectic current (more precisely the conservation of the
symplectic structure) with the boundary conditions (3.3). A more heuristic way to un-
derstand this is to remember that we are trying to match the corner terms constructed
in [32,34–36,69,70] by reaching the corner from the space-like hypersurface Σ, to the corner
terms inherited from the boundary Lagrangian, and which therefore reach the corner from
the time-like boundary ∂M . One can therefore understand the sign difference as coming
from the sign of the bi-normal to the co-dimension 2 corner S, which depends on whether
the corner is reached from a space-like slice or from a time-like boundary.

iii) We will see in the examples below that the boundary equations of motion that are
used to write c ≈ ϑ are, in the language of [32], gluing constraints, which determine the
extended phase space by soldering together, via a classical fusion product, the boundary
symplectic structure to the bulk one. The boundary Lagrangian L∂M contains initially the
edge mode fields and their unspecified conjugate momenta, and the boundary condition
obtained through the boundary equation of motion involving Θ identifies these momenta
with part of the initial bulk fields.

iv) The minimal requirement that we have imposed so far on the boundary Lagrangian
only specifies the symplectic structure for the edge mode fields, and not their dynamics.
In order to access this later, we will have to resort to an on-shell evaluation of the bulk
action, thereby leading to an effective boundary action. We are also free to add to the
boundary Lagrangian terms that do not change the symplectic structure and which are
compatible with gauge-invariance. Such terms are in fact boundary Hamiltonians, i.e. they
affect the boundary conditions (or equations of motion), but not the symplectic structure.
The details of this procedure will depend on the theory under consideration, so let us now
finally discuss some examples.

v) It is important to appreciate that there are two notions of “boundary dynamics”
in the framework that we are proposing and that we have outlined above. First, there
are boundary equations of motion that appear in (3.4) when varying the extended bulk +
boundary action. These can be seen as continuity conditions relating the bulk and bound-
ary fields. However, these equations alone do not determine the boundary dynamics of the
edge mode fields. As we have mentioned above, this latter is obtained when evaluating the
bulk fields on-shell. It will become clear in the examples discussed below that these two
levels of equations of motion are different2.

2One can think of this in analogy with first order theories, where one replaces a second order equation
of motion by two first order equations. One can focus on one single first order equation, but this may not
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3.3 Examples

We now present some relevant examples of extended bulk + boundary actions. This will
illustrate in particular formulas (3.4) and (3.5), and reproduce the extended symplectic
structures that have been studied before in the literature. It will also enable us to identify
and discuss some remaining ambiguities in the characterization of the boundary dynamics,
and to give more details on the factorization and the gluing of path integrals. We will also
be able to establish a connection with previous results on the edge mode contributions to
the entanglement entropy in various theories. We focus here on Abelian theories, and the
discussion of the extended actions and phase spaces for non-Abelian theories is deferred to
appendix A.4.

3.3.1 Chern–Simons theory

Let us focus on the Abelian case for simplicity, and describe in detail all the steps of
the calculations. As usual, the theory is defined in the bulk by a connection 1-form A,
transforming under gauge transformations as δαA = dα, and with curvature F = dA. On
the boundary, we now add a 0-form a transforming as δαa = −α, and a gauge-invariant
1-form j. With this field content, we can then form the action3

S = SM + S∂M =

∫
M

A ∧ F +

∫
∂M

aF + j ∧Da± 1

2
∗j ∧ j, (3.6)

where the Abelian covariant derivative is Da := da + A, and where ∗ is the Hodge dual
on the boundary. The first term on the boundary, which is not gauge-invariant by itself,
compensates for the gauge non-invariance of the bulk term, and the full action is therefore
gauge-invariant. The presence of the last term, which requires use of the metric and
therefore breaks the topological invariance of the theory, will be explained momentarily.
This term is a boundary Hamiltonian h[j], whose choice does not affect the boundary
symplectic structure, but does change the boundary dynamics.

Extended phase space

Following the discussion of the previous section, let us now see what the introduction of
the two fields a and j via the boundary Lagrangian implies. The variation of the action

determine completely the dynamics of a dynamical variable, which is only obtained when going on-shell
of the other first order equation.

3We have dropped for clarity the usual coupling constant k/(4π)
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can be written in the form (3.2) as

δS =

(
2

∫
M

δA ∧ F +

∫
∂M

δA ∧ A
)

+ δS∂M , (3.7)

where one can see that the potential coming from the bulk is Θ = δA∧A. Writing explicitly
the variation of the boundary action now leads to the form of expression (3.4), which is

δS = 2

∫
M

δA ∧ F +

∫
∂M

δA ∧ (Da− j) + δj ∧ (Da∓ ∗j) + δa(dj − F )− d(jδa− aδA),

(3.8)

where on the boundary the first three terms identify the boundary equations of motion,
and the last term identifies the boundary potential c. To access the bulk equations of
motion, we need to impose the vanishing of the first term on the boundary. Conveniently,
this can be done by imposing the boundary equation of motion j = Da instead of fixing
the variation δA of the gauge potential to be vanishing. This boundary equation of motion
is precisely the one involving the potential Θ coming from the bulk Lagrangian. With this,
the extended potential (3.5) becomes

Θe = Θ + d(jδa− aδA) = δA ∧ A+ d(jδa− aδA) ≈ δA ∧ A+ d(Daδa− aδA), (3.9)

where we have been careful about the sign when including the boundary potential as our
corner term, and then in the last equality used the boundary equation of motion involving
Θ. This result is interesting, as it reproduces precisely the extended potential that was
derived in [34] for Abelian CS theory, thereby proving that the extended phase space
structure can be recovered from the boundary Lagrangian introduced in (3.6) and the
construction outlined in the previous section.

With this extended potential we have all the desirable properties mentioned in section
3.1. In particular, the extended symplectic structure (3.1) is given by

Ω =

∫
Σ

δΘe = −
∫

Σ

δA ∧ δA+

∫
S

δ(Da)δa− δaδA, (3.10)

and is such that for gauge transformations the generator defined by IδαΩ is integrable and
vanishing on-shell. Indeed, this is

IδαΩ = −2

∫
Σ

dα ∧ δA+ 2

∫
S

αδA = 2

∫
Σ

αδF. (3.11)
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The transformation δα is therefore a true gauge transformation, even when it has support
on the boundary, and as such it has no Hamiltonian charge. In addition, the transformation
acting as ∆αA = 0 and ∆αa = α, which we will now call boundary symmetry as opposed to
gauge transformation, has an integrable generator given by the manifestly gauge-invariant
boundary integral

Q[α] = 2

∫
S

αDa, (3.12)

and these generators satisfy the Abelian Kač–Moody commutation relation{
Q[α],Q[β]

}
= I∆αI∆β

Ω = 2

∫
S

αdβ. (3.13)

As is well-known, these are the boundary symmetries of CS theory on a spatial disc. One
can see, as explained above, that their generator is a gauge-invariant “dressed” version of
the usual Hamiltonian charge of δα, where the dressing corresponds to the finite gauge
transformation of A by the edge mode field a.

Boundary dynamics

The Kač–Moody commutation relations which we have derived on the extended phase
space result from the presence of a chiral scalar field, which is evidently the edge mode
field a. To access the dynamics of this scalar field, we will write and manipulate the path
integral for the extended action (3.6), following [170]. The key point of this derivation is
to expand the components of the gauge field in the action and to carefully perform the
path integral. For this, we assume that the spacetime has the topology M = R ×D of a
cylinder, with coordinates xµ = (t, r, φ) such that εtrφ = 1 and φ is compact, and that the
space-like normal to the boundary cylinder at finite radius r is s = (0, 1, 0). The Hodge
dual is then such that ∗j ∧ j = (∗j)φjt − (∗j)tjφ = j2

t − j2
φ. After integrations by parts in

the bulk, the total action (3.6) can be written explicitly as

S =

∫
M

2At(∂rAφ − ∂φAr) + Aφ∂tAr − Ar∂tAφ

+

∫
∂M

a(∂φAt − ∂tAφ) + jφ(At + ∂ta)− jt(Aφ + ∂φa)− AtAφ ±
1

2
j2
t ∓

1

2
j2
φ. (3.14)

It is then clear that At plays the role of a Lagrange multiplier. Path integrating4 over
4As the details do not matter for our purposes so far, we will not explicitly write the path integrals and

the various pre-factors coming from the integrations, but simply the resulting effective actions.
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At imposes the bulk and boundary relations

∂rAφ − ∂φAr = 0, jφ = Aφ + ∂φa, (3.15)

which are part of the equations of motion imposed by δA (i.e. the bulk equation of motion
and the corresponding boundary condition). The first constraint can be solved by writing

Ar = ∂rα, Aφ = ∂φα. (3.16)

With this, after integrations by parts the bulk piece of the action becomes a boundary
term, as

Aφ∂tAr − Ar∂tAφ = ∂φα∂t∂rα− ∂rα∂t∂φα = ∂r(∂φα∂tα)− ∂φ(∂rα∂tα), (3.17)

and (3.14) reduces to the boundary action

Sedge =

∫
∂M

∂tϕ∂φϕ− jt∂φϕ±
1

2
j2
t ∓

1

2
(∂φϕ)2, (3.18)

where we have introduced the gauge-invariant scalar combination ϕ := a+α. We recognize
the first term as the canonical term of a chiral field. This is to be expected since so far
the current j has in a sense played no role, and we have reproduced the classic calculation
of [170]. The last step is to perform the Gaussian integral over the current jt to finally
obtain the effective action

Sedge =

∫
∂M

∂tϕ∂φϕ∓ (∂φϕ)2, (3.19)

which is known as the Floreanini–Jackiw action. Its equations of motion are that of a
chiral field, i.e. ∂tϕ = ±∂φϕ. This is the boundary dynamics of Abelian CS theory, and we
have recovered it from the on-shell evaluation of the path integral for the extended bulk
+ boundary action (3.6). The authors of [173, 174] have also presented a derivation of
the edge mode dynamics of CS theory, but we believe that our presentation follows more
closely the original construction presented in [173] for Maxwell theory. Moreover, we have
shown explicitly the link between the extended action and the extended phase space.

The last step of the above calculation makes clear the role of the quadratic j term
introduced in (3.6). Without this term, the construction of the extended potential (3.9)
would have of course gone through, but the derivation of the boundary dynamics would
not have provided a desirable Hamiltonian for the chiral field after (3.18). This shows,
as announced above, that the last term in (3.6) plays the role of a Hamiltonian: it does
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not affect the extended symplectic structure, but it changes the boundary dynamics. In
this simple example of Abelian U(1) CS theory, this change of dynamics is equivalent to
changing the velocity of the chiral bosons.

As a subtlety, one can observe in (3.8) that the two boundary equations of motion
obtained by varying A, j, when combined, simply imply that Da = ±∗Da, meaning that
a is a gauged chiral field. This is essentially the same equation of motion as that derived
from the effective boundary action (3.19). From this, one could conclude that the boundary
dynamics is in a sense already encoded in the initial bulk + boundary action (3.6). This
is however just a coincidence due to our choice of boundary Hamiltonian. Indeed, if we
choose instead h = (jt ∓ jφ)jφ, it is easy to see that replacing the last two terms in (3.18)
by jt∂φϕ ∓ (∂φϕ)2 and then path integrating over jt leads once again to (3.19), while,
however, the boundary equations of motion give Dta = (±2 − 1)Dφa. This last equation
is once again that of a chiral field, but now the two chiralities have a different velocity.
This is a known fact in CS theory and condensed matter, namely that the velocity is
an external input which can be tuned by changing the Hamiltonian [12]. However, this
example illustrates clearly the fact that there is a slight quantitative difference between
the boundary equations of motion derived from the bulk + boundary action (3.6) and
that derived from the on-shell evaluation of the action. For topological theories, these two
views on the boundary dynamics are in a sense equivalent (at least qualitatively, as we
have just seen), since on-shell bulk configurations are simply gauge transformations. For
non-topological theories however, the on-shell evaluation of the action is crucial since it
imprints on the boundary a left-over dynamics from the bulk (which is not just a gauge
transformation). We will see with the example of Maxwell theory that the derivation of
the boundary dynamics requires an on-shell evaluation of the action, and cannot be read
off the initial extended action alone.

Finally, as a curiosity, and in order to make contact with previous literature on the
subject, one can insert the boundary equation of motion j = Da back into the action to
obtain

S =

∫
M

A ∧ F +

∫
∂M

aF ± 1

2
∗Da ∧Da, (3.20)

which we recognize as the action for CS theory coupled to a gauged chiral field on the
boundary [175]. As in [176], this constitutes the off-shell and gauge-invariant description
of the boundary dynamics of CS theory, in the sense that it leads to the equations of
motion of a chiral field without having to evaluate the bulk theory on-shell. However, a
subtle yet important point is that variation with respect to a on the boundary of (3.20)
leads to the equation of motion Da = ∓∗Da, which is the opposite chirality to what we
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have derived from (3.6). This is to be expected since the manipulations leading to (3.20)
are different from that leading to the effective action (3.19). In particular, obtaining (3.20)
does not require the on-shell evaluation of the bulk fields. As it will become clear below, it
is indeed this on-shell evaluation which one should carry out in order to access the effective
boundary dynamics, and this latter cannot simply be read off from the boundary equations
of motion using (3.8) and (3.20).

Gluing of subregions

Referring to figure 3.1, we have so far described the operations of splitting and of integrat-
ing. Splitting CS theory on M ∪M requires to consider for each subregion with boundary
the extended actions (3.6). Integrating over the bulk gauge field of a subregion leads to a
path integral over boundary fields only, and the dynamics of the boundary edge mode field
a is that of a chiral theory.

We can now describe the operation of gluing of two subregions, which will involve
getting rid of the edge mode field contributions from the two boundaries. For two boundary
theories on ∂M and ∂M with opposite chirality, the gluing of S[A, a, j] and S[A, a, j] is
then given by

Z =

∫
D[A,A, a, a, j, j] δ(a+ a) δ(j + j)

exp

(
i

∫
M

A ∧ F + i

∫
M

A ∧ F + i

∫
∂M

aF + aF + j ∧Da+ j ∧Da± 1

2
∗j ∧ j ∓ 1

2
∗j ∧ j

)
=

∫
D[A,A, a, j] exp

(
i

∫
M

A ∧ F + i

∫
M

A ∧ F + i

∫
∂M

a(F − F ) + j ∧ (A− A+ 2da)

)
=

∫
D[A,A, a] δ(A− A+ 2da)

∣∣
∂M

exp

(
i

∫
M

A ∧ F + i

∫
M

A ∧ F + i

∫
∂M

a(F − F )

)
=

∫
D[A, a] exp

(
i

∫
M∪M

A ∧ F
)

∝
∫

D[A] exp

(
i

∫
M∪M

A ∧ F
)
. (3.21)

Here we have written the path integral over all the bulk and boundary fields coming
from the two subregions and their boundaries, with two delta functions enforcing the
identification of the edge modes coming from the two boundaries. After integrating over a
and the two currents j and j, in the third equality we are left with a delta function on the
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boundary, imposing that the gauge fields incoming from the two subregions are equal up to
a gauge transformation. Integrating over A

∣∣
∂M

then eliminates the last boundary integral,
and we are left with the path integral for CS theory over M ∪M . In the last step we have
simply eliminated a redundant integration over a by dropping a gauge volume factor. This
gluing operation is the application to CS theory of the gluing described in [173].

Entanglement entropy

Finally, let us conclude this section by discussing the role of the edge modes and the
extended phase space in the computations of entanglement entropy. In general, the entan-
glement entropy S of a spatially bipartite system Σ ∪ Σ receives contributions from two
sources,

S = Sbulk + Sedge. (3.22)

The first piece, Sbulk, comes from physical degrees of freedom in the bulk, while Sedge
originates from degrees of freedom localized at the boundary, which for the bipartite system
is the entangling surface S = ∂Σ = ∂Σ between the two subregions. CS theory being
topological, it does not have physical bulk degrees of freedom, and therefore the sole
contribution to its entanglement entropy comes from the boundary degrees of freedom,
i.e. the edge modes. Although the computation of entanglement entropy in CS theory is
already well understood and has been studied by many authors, it is still worth briefly
reviewing the different computational techniques in order to emphasize the role of the
edge modes. After all, this is the narrative which we are trying to build in the present
paper: there is a unified treatment of the extended phase space for all gauge theories,
and a Lagrangian description of the corresponding edge modes. In CS theory, it is well
accepted (and even tested) that these edge modes have a dynamics and a contribution to
entanglement entropy. This therefore strongly suggests that what is known about edge
modes in CS theory is actually a generic feature of any gauge theory.

There are essentially three approaches for computing entanglement entropy in CS the-
ory. The first one exploits the knowledge of the surface symmetry algebra, the second one
uses a Hamiltonian quantization of the effective boundary action [177], and the third one
the replica trick calculation [178]. We briefly mention the first approach below.

The computation of entanglement entropy from the surface symmetry follows from
[55, 67, 68, 179, 180]. It relies on the extended Hilbert space construction, and on the
factorization

Hext = HΣ,S ⊗HΣ,S, (3.23)
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where HΣ,S denotes the extended Hilbert space on each subregion, containing edge states
living on the entangling surface S. This extended Hilbert space, though it has the advan-
tage of being factorized, contains in a sense two copies of the edge modes (one coming from
each subregion) and therefore many non-physical states. The total Hilbert space of physi-
cal gauge-invariant states, which is a subspace of the factorized extended Hilbert space, is
obtained as an entangling product

HΣ∪Σ = HΣ,S ⊗GS HΣ,S ⊂ Hext, (3.24)

and is spanned by gauge-invariant states |ψ〉phys satisfying the quantum gluing condition

(Q[α]⊗ I + I⊗Q[α]) |ψ〉phys = 0. (3.25)

Here, the boundary symmetry generators (3.12) derived from the classical theory are pro-
moted to quantum operators, and correspondingly the Poisson brackets are turned into
operator commutators. For Abelian CS theory, the algebra is the U(1) Kač–Moody alge-
bra (with the factor k/4π restored),[

Q[α],Q[β]
]

=
ik

2π

∫
S

dφ (α∂φβ). (3.26)

The fact that the boundary of CS theory carries a 2-dimensional chiral boson with cor-
responding Kač–Moody algebra allows us to use techniques in boundary conformal field
theory. In terms of the mode expansions

Q[α] =
∑
n∈Z

αnJn, α(φ) =
∑
n∈Z

αne
inφ, (3.27)

the algebra becomes

[Jm,Jn] = knδm+n,0. (3.28)

Identifying αn = α−n, the gluing condition, which can now be rewritten as

(Jn ⊗ I + I⊗ J −n)|ψ〉phys = 0, (3.29)

tell us that physical states are singlets under the action of left-moving and right-moving
current operators on each side of the entangling surface (therefore the entanglement entropy
in this case is known as left-right entanglement entropy). The gluing condition is solved
by the conformally-invariant Ishibashi states [181]

|q〉〉 =
∞∑
N=0

dim(N)∑
j=1

|q,N, j〉 ⊗ |q,N, j〉, (3.30)
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where the orthogonal states are labelled by a quasiparticle charge q, such that the choice
q = 0 corresponds to the vacuum state, and q 6= 0 to states with Wilson lines with charge q
and −q piercing through Σ and Σ. The quantum numbers N, j label the descendants. The
Ishibashi states are in general non-normalizable, and therefore need to be appropriately
regularized. The regularized Ishibashi states are defined via the CFT modular Hamiltonian
as

|q〉〉reg =
e−εH
√
nq
|q〉〉, H =

2π

`

(
J0 + J 0 −

c

12

)
, (3.31)

where ε is a cut-off parameter, ` is the length of the entangling surface S, and c is the
central charge of the corresponding CFT. With this, the generic edge states are linear
combinations of the regularized Ishibashi states, and the entanglement entropy can be
computed as the standard von-Neumann entropy. The result for the simplest case of a
spherical hypersurface divided into two disks, S2 = D ∪D, and without quasiparticles, is
given by [182–184]

SCS =
A

2π

π

24ε
− 1

2
log k +O(`−1). (3.32)

The first term is the non-universal area law, with A = 2π`, and the second term, which
is area- and cut-off-independent, is the famous topological entanglement entropy of CS
theory.

3.3.2 Maxwell theory

We now turn to the case of Maxwell theory. To construct the bulk + boundary action,
in addition to the bulk gauge field A, let us consider on the boundary a scalar field a
transforming as δαa = −α, and a gauge-invariant 2-form j. With this we can form the
gauge-invariant action

S = −1

2

∫
M

?F ∧ F +

∫
∂M

j ∧Da+ h, (3.33)

where once again Da := da + A and h[j] is a boundary Hamiltonian depending on the
current j only. This simple action for Maxwell theory coupled to boundary currents is
also the starting point of [173], where it is however introduced from the point of view of
the gluing of Maxwell theory for two neighboring regions M and M (this gluing is strictly
analogous to what we have described in section 3.3.1 for CS theory). This action is also
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motivated in [52] by the need to couple Maxwell theory to currents (or matter fields) in
order to achieve its factorizability. The introduction of the boundary edge mode fields
allows one to factorize the theory between two neighboring subregions, and here we will
furthermore show that these edge mode fields reproduce the extended phase space structure
of [32]. In this thesis, we will set h = 0 and show that even in this case there is non-trivial
boundary dynamics. We will leave the study of various other possibilities for h and their
physical interpretation for future work.

Following (3.4), the variation of this action reveals the bulk and boundary equations of
motion, as well as the boundary potential. This variation is

δS = −
∫
M

δA ∧ d?F +

∫
∂M

δA ∧ (j − ?F ) + δj ∧Da− δadj + d(jδa). (3.34)

We can observe that the boundary equations of motion imposed by the variation of A and a
on the boundary are together consistent with the bulk equations of motion. The boundary
condition imposed by δA identifies the edge mode momentum j with the normal electric
field ?F , i.e. states that5 j = ?F . With this, the extended potential (3.5) becomes

Θe = Θ− d(jδa) = −δA ∧ ?F − d(jδa) ≈ −δA ∧ ?F − d(?Fδa), (3.35)

which is the extended potential derived in [32]. The extended symplectic structure derived
from this potential is such that for gauge transformations the generator defined by IδαΩ is
vanishing on-shell. Indeed, this is

IδαΩ =

∫
Σ

dα ∧ δ(?F )−
∫
S

αδ(?F ) = −
∫

Σ

αδ(d?F ). (3.36)

In addition, the transformation acting as ∆αA = 0 and ∆αa = α has an integrable gener-
ator given by the “electric charge”

Q[α] =

∫
S

α?F (3.37)

smeared with an arbitrary function α. We therefore see how the extended bulk + boundary
action allows us to recover the extended phase space structure of Maxwell theory. We can
now turn to the boundary dynamics.

The boundary dynamics for the edge mode field a is obtained by integrating out the bulk
degrees of freedom in the path integral. Since Maxwell theory is quadratic, the integration

5We should always keep in mind that equalities involving j are pulled back to the boundary ∂M .
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over the bulk gauge field A produces a determinant of the bulk operator multiplying the
path integral for the bulk + boundary action evaluated on-shell. Using the fact that the
on-shell bulk Maxwell action is itself a boundary term, and that on the boundary the
normal electric field gets identified with the boundary current j according to the boundary
equation of motion j = ?F , we have that the path integral for (3.33) is∫

D[A, a, j] exp(iS) = (detO)−1/2

∫
D[a, j] exp

(
i

∫
∂M

j ∧Da− 1

2
?F ∧ A[j]

)
= (detO)−1/2

∫
D[a, j] exp

(
i

∫
∂M

j ∧
(

1

2
A[j] + da

))
. (3.38)

In this expression, the quantity A[j] refers to the boundary value of the gauge field obtained
by solving the bulk Maxwell equations and the boundary conditions, i.e. the solution to

d?F = 0, ?F
∣∣
∂M

= j. (3.39)

These equations can either be interpreted in the form given here, i.e. as the free bulk
equations of motion with specific boundary conditions, or alternatively as a bulk equations
of motion that are not free but sourced by boundary currents. The equivalence between
these viewpoints is explained in appendix A.3. The evaluation of A[j] depends on the
background spacetime geometry under consideration, but will always lead to a linear ex-
pression in j. The effective action on the right-hand side of (3.38) is therefore quadratic
in j, and integrating this auxiliary current out will therefore produce a boundary action
quadratic in the edge mode field a. This is the same construction as in [173], and we have
now shown its generality by comparison with the CS construction of the previous section.

To be more concrete, we consider the case of 3-dimensional Minkowski spacetime6 and
solve the equations (3.39). In the radial gauge Ar = 0, the boundary condition j = ?F
translates into the two conditions

jt =
∑
k

j̃t(k)eik·x = (?F )t = Frφ = ∂rAφ, (3.40)

jφ =
∑
k

j̃φ(k)eik·x = (?F )φ = Ftr = −∂rAt, (3.41)

which can be solved by writing

Aφ =
∑
k

j̃t(k)

ikr
eik·x, and At = −

∑
k

j̃φ(k)

ikr
eik·x. (3.42)

6The generalization to arbitrary dimension is of course straightforward, provided we keep track of more
spacetime indices.
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Noticing the switch of components between A and j, one can see that the term j ∧A[j] in
(3.38) is indeed quadratic in jt and jφ. In order to satisfy the bulk equations of motion,
which in the Lorentz gauge are �Aµ = 0, we simply need to restrict the sum over momenta
k to k2 = −k2

t + k2
r + k2

φ = 0. It is then clear that integrating (3.38) over j produces a
quadratic effective action for the edge mode a.

In appendix A.1 we give a more generic formula for this, and explain in details how A[j]
and the effective boundary action can be obtained in the case of 3-dimensional Maxwell
theory in the radial gauge. The result of this calculation is that the effective path integral
for the edge modes is

Zedge =

∫
D[ϕ] exp

(
i

2

∫
d2k k2ϕ̃(k)G̃(k)−1ϕ̃(−k)

)
, (3.43)

where ϕ is simply a field-redefinition7 of the initial edge modes a, and where G̃(k) is the
solution to (3.39). In appendix A.3, we explain how one can alternatively see the boundary
conditions in (3.39) as boundary sources for the bulk equations of motion. By doing so we
obtain an equivalent expression for the effective path integral for the edge modes, which is

Zedge =

∫
D[ϕ] exp

(
− i

2

∫
∂M

d2y
√
|q|
∫
∂M

d2y′
√
|q| ∂iϕ(y)G(0, y − y′)−1∂iϕ(y′)

)
.

(3.44)

This is the Maxwell analogue of the Poisson kernel integral obtained in [185] in the case
of a scalar field. There, it was argued that properly splitting and sewing scalar field the-
ory path integrals on manifolds with boundaries requires “scalar edge modes” in order to
reproduce the Forman-Burghelea-Friedlander-Kappeler (FBFK) gluing formula for func-
tional determinants8 [186–190], and that the corresponding edge scalar partition function
on each side of the boundary comes from the boundary term needed in order to have a
well-defined variational principle for the bulk scalar field action. As such, this argument
would be puzzling when transposed to Maxwell theory, since in Maxwell the bulk action
already has a well-defined variational principle without the need to add a boundary term,
and one does not see where the Poisson kernel contributions of [185] could come from. We
have shown that these contributions come from the path integral of the edge modes, whose
introduction is natural since in a gauge theory they are needed in order to even have a
notion of splitting of the path integral in the first place.

7More precisely, we have ϕ := α + a, where α comes from the Hodge decomposition (3.55) of the 3-
dimensional gauge field A. This variable ϕ is therefore gauge-invariant. Alternatively, if one does not use
the Hodge decomposition, the on-shell evaluation of the action in (3.38) requires as usual a gauge-fixing,
and the resulting effective action depends on a instead of ϕ. These two viewpoints are of course equivalent.

8We come back to this point in section 3.3.3.
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3.3.3 Maxwell–Chern–Simons theory

In this section we study 3-dimensional MCS theory. This is equivalent to a theory of massive
photons, where the so-called topological mass is provided by the CS term. This theory
has a wide range of applications in condensed matter physics. Its boundary dynamics
has been analyzed previously in [51, 191–193] in flat space, and in [194] in the context
of AdS holography, and reveals the presence of a chiral edge mode, just like in pure CS
theory. However, these references have conceptually different ways of introducing the edge
degrees of freedom, so we believe it is useful to revisit MCS theory in the light of the
general framework that we are presenting in this thesis. In particular, this will confirm the
result of [51] concerning the contributions to the entanglement entropy, which will feature
a contact term coming from the Maxwell part of the theory, but also a topological term
coming from the CS part.

Introducing for convenience the topological mass m = k/(4π), where k is the coupling
of CS theory, the bulk + boundary action is simply a combination of the extended actions
(3.6) and (3.33), i.e.

S = SM + S∂M =

∫
M

−1

2
?F ∧ F +mA ∧ F +

∫
∂M

maF + j ∧Da+ h, (3.45)

where h is a boundary Hamiltonian depending only on j, and which we leave unspecified
for now. Following the same logic as in the previous sections, we are going to study the
extended phase space of this theory, the boundary symmetries, the effective boundary
dynamics, and the edge mode contribution to the entanglement entropy.

Extended phase space

The variation of the action is

δS =

∫
M

δA ∧ (2mF − d?F )

+

∫
∂M

δA ∧ (mDa− ?F − j) + δj ∧ (Da+ δjh) + δa(dj +mF )− d(jδa−maδA),

(3.46)

from which we can read the bulk equations of motion

d?F − 2mF = 0, (3.47)
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together with the boundary equations of motion

j = mDa− ?F, Da = −δjh, dj = −mF. (3.48)

The first thing one can notice is that, similarly to the case of pure Maxwell theory, the first
and last set of boundary equations of motion (i.e. the ones obtained by varying A and a)
are together consistent with the bulk equations of motion. Furthermore, acting on these
bulk equations of motion with the operator ?d? leads to

(?d?d− 4m2)(?F ) = (�− 4m2)(?F ) = 0, (3.49)

which shows the equivalence of MCS theory with a massive scalar field. We will come back
to the precise statement of this relationship below when deriving the effective dynamics.

We can now construct the extended potential following the prescription (3.5) and im-
posing the first boundary equation of motion in (3.48), which gives

Θe = δA ∧ (mA− ?F ) + d
(
jδa−maδA

)
≈ δA ∧ (mA− ?F ) + d

(
(mDa− ?F )δa−maδA

)
.

(3.50)

This in turn leads to the extended symplectic structure

Ω =

∫
Σ

δA ∧
(
δ(?F )−mδA

)
+

∫
S

(
mδ(Da)− δ(?F )

)
δa−mδaδA, (3.51)

which as expected is that of Maxwell plus (m times) that of CS theory. From this one can
now easily check that the generators of gauge transformations obtained as IδαΩ are indeed
vanishing on-shell. For the boundary symmetries ∆α(A, a) = (0,−α), one can compute
I∆αΩ to find that this quantity is integrable and has a manifestly gauge-invariant generator
given by

Q[α] =

∫
S

α(2mDa− ?F ). (3.52)

Gauge-invariance of this generator is the statement that δαQ[β] = IδαI∆β
Ω = 0. Finally,

the algebra of these boundary charges is again given by the Kač–Moody commutation
relations {

Q[α],Q[β]
}

= I∆αI∆β
Ω = m

∫
S

αdβ. (3.53)

This shows that the surface symmetry algebra of MCS theory is identical to that of pure CS
theory, even though in both cases the generators are different. This suggests the presence
of a chiral boundary field, which we will now identify by evaluating the path integral.
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Boundary dynamics

We now focus on the effective boundary dynamics of the theory, which as in the previous
sections will be obtained by integrating out the bulk degrees of freedom. For clarity we will
proceed in three steps of increasing complexity, depending on the type of boundary. First,
if the spacetime has no boundary, integrating out the bulk degrees of freedom will lead as
expected to the path integral of a massive scalar field. Then, if the spacetime has an outer
boundary, i.e. a boundary separating the bulk from an empty manifold, the bulk will give
rise to the massive scalar field, and the boundary will carry a chiral field (for the specific
Hamiltonian which we choose). Finally, for an entangling boundary within the spacetime,
separating the bulk between two regions, the boundary will carry a chiral field but also an
additional contact contribution due to the splitting of the path integral measure between
the two subregions.

A convenient way to carry out these calculations is to use the temporal gauge At = 0
as well has a Hodge decomposition of the phase space variables. All the details are given
in appendix A.2 and here we will only summarize the results. Forgetting for the moment
about the boundary, we aim at computing the path integral for the bulk part SM of (3.45).
Using the 2 + 1 decomposition

SM =

∫
M

ΠaȦa −
1

4
(Fab)

2 − 1

2
(Πa −mεabAb)2 (3.54)

together with the decomposition

Aa = ∂aα + εab∂bβ, Πa = ∂aξ + εab∂bλ, (3.55)

it is explained in appendix A.2 that the path integral reduces to

ZM =

∫
D[A,Π]δ(G) exp(iSM)

= (det ∆)1/2

∫
D[β] exp

(
i

2

∫
M

β(−∆)(�− 4m2)β

)
=
(

det(�− 4m2)
)−1/2

. (3.56)

Here δ(G) is imposing the Gauss constraint coming from the use of the temporal gauge, and
the factor of (det ∆)1/2 comes from three contributions: inserting the Hodge decomposition
(3.55) in the phase space measure, in the Gauss constraint, and performing a Gaussian
integral over λ. This is, as expected, the path integral for a massive scalar field, and it
represents the contribution of the bulk degrees of freedom of MCS theory.
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Now we have to discuss how this result will be affected by the presence of a boundary.
The effective boundary dynamics will receive contributions from two sources: the boundary
action S∂M in the extended action (3.45), but also boundary terms coming from the the
Hodge decomposition of the bulk action SM . As shown in appendix A.2, carefully collecting
all these terms and imposing the bulk and boundary Gauss constraints due to the temporal
gauge, we find that the boundary contributions are given by

Sedge =

∫
∂M

B[β] +m∂tχ∂φχ− jt
(
∂φχ−

1

2m
∂t∂φβ − ∂rβ

)
+ h, (3.57)

whereB[β] is given in (A.44), and where we have defined the new field χ := a+α+∂tβ/(2m).
Guided by the fact that the boundary symmetries (3.53) are that of a chiral field, we can
now choose the boundary Hamiltonian to be

h =
1

m
(jt ∓ jφ)jφ, (3.58)

where jφ is fixed by the temporal gauge to be (A.46). With this the boundary contributions
become

Sedge =

∫
∂M

B[β] +m∂tχ∂φχ+ jt

(
1

m
∂t∂φβ + 2∂rβ

)
∓ 1

m

(
m∂rβ +

1

2
∂t∂φβ +m∂φχ

)2

,

(3.59)

and path integrating over jt finally yields the chiral action

Sedge = m

∫
∂M

∂tχ∂φχ∓ (∂φχ)2. (3.60)

In the limit m→∞, which corresponds to isolating the CS piece of the action, we recover
consistently (3.19). The result can be summarized by writing the total path integral for
(3.45) as

Z =
(

det(�− 4m2)
)−1/2

∫
D[χ] exp(iSedge) = Z3d massive scalar Z2d chiral scalar. (3.61)

This is consistent with what we have observed from the classical theory, namely that the
bulk equations of motion describe a massive scalar field, and that the boundary symmetries
are that of a chiral field.

It is interesting to notice that there is a global factor of m in front of the effective
boundary action (3.60). Naively, this suggests that taking the m = 0 limit of MCS theory,
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i.e. going back to pure Maxwell theory, leads to a vanishing effective boundary action.
There are however several subtleties with this reasoning. First, one should remember that
different boundary Hamiltonians were considered in the previous section for pure Maxwell
theory (where we have chosen h = 0), and in this section for MCS theory (where we have
chosen a chiral Hamiltonian). Second, the analysis of pure Maxwell theory in the previous
section was done in the radial gauge, while here we have studied MCS theory in the
temporal gauge. This means that the effective boundary dynamics (3.60) of MCS theory
cannot be straightforwardly compared in the m = 0 limit with the effective boundary
dynamics (3.44) of Maxwell theory. However, one can still go through the calculations
of appendix A.2 with h = 0 and m = 0, which can then be compared to the results
of appendix A.1. This provides the comparison between Maxwell theory in the radial
and temporal gauges. As we will see below, it reveals that a crucial difference between
the radial and temporal gauges is that in the latter there is a leftover determinant factor
coming from the rewriting of the path integral measure, which is precisely the FBFK gluing
factor identified in [51].

Let us now make a few important observations. The first one is that, due to our choice of
boundary Hamiltonian, the constraint imposed by jt in (3.59), namely 2m∂rβ+∂t∂φβ = 0,
corresponds actually to the vanishing of the normal electric field to the boundary. Indeed,
this latter quantity is given in the temporal gauge by (?F )φ = Ftr = ∂tAr = ∂t∂rα +
∂t∂φβ = 2m∂rβ + ∂t∂φβ, where for the last step we have used (A.37). In light of this,
we can investigate further the boundary equations of motion given the choice of boundary
Hamiltonian (3.58) we made. Explicitly, the first two sets of boundary equations of motion
in (3.48) are{

jt = mDta− (?F )t = mDta− Frφ,
jφ = mDφa− (?F )φ = mDφa− Ftr,

{
mDta = ±2jφ − jt,
mDφa = jφ.

(3.62)

Combining the two equations on the last line leads to Ftr = 0, while combining the ones
on the first line and using the boundary Gauss constraint (A.37) leads to

2m(∂tχ∓ ∂φχ) + (�− 4m2)β = 0, (3.63)

which features the chiral and massive scalars. Second, let us point out that we can also
use the decomposition (3.55) and the boundary Gauss constraint (A.37) into the boundary
observable (3.52) (which we smear with a function ε since α is the notation used for the
Hodge decomposition) to get

Q[ε] =

∫
S

dφ ε
(
2mDφa− (?F )φ

)
=

∫
S

dφ ε(2mDφa− Ftr) = 2m

∫
S

dφ ε∂φχ. (3.64)
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This consistency check shows that the boundary chiral field is indeed the variable χ which
we have identified in the computation of the effective boundary action.

The results of this section are in agreement with previous observations in the literature
about the fact that adding a Maxwell term to CS theory does not change the boundary
symmetry algebra nor affect the presence of a boundary chiral field [11,192,195]. However,
this does not mean that the entanglement entropy of MCS will only receive a topological
contribution from the CS term. As we are going to show, the Maxwell contact term also
appears in MCS theory, although in the form of the FBFK gluing factor identified in [51].

Entanglement entropy

In order to discuss contributions of the edge modes to entanglement entropy, we need to
consider an inner boundary that separates the spacetime between two subregions. In this
case we have the top of figure 3.1, and we want to integrate the bulk degrees of freedom of
one subregion.

At first sight, one would think that the result of the previous subsection is enough,
and that the entanglement entropy receives contributions from two sources: the massive
scalar field in the bulk (i.e. the usual distillable part with its non-universal area law),
and the chiral bosons representing the effective boundary theory and providing the same
topological contribution as in the pure CS case. However, as pointed out in [51, 185, 190],
one should acknowledge that there is a third contribution coming from the splitting of the
path integral measure and the constraint between the two subregions. Indeed, as can be
seen in (A.36), before integrating over the bulk fields the path integral written in terms of
the Hodge decomposition and the temporal gauge is

ZM = det ∆

∫
D[α, β, ξ, λ]δ(G̃) exp(iSM). (3.65)

The determinant factor can be traced back to the change of integration measure and the
rewriting of the Gauss law in terms of the Hodge variables following (A.34) and (A.35).
Importantly, one should recognize that this factor is not here in the radial gauge path
integral computed in appendix A.1. Crucially, this determinant does not simply split
between the two subregions. Instead, according to the FBFK gluing formula [186–189], we
have that

det ∆M∪M = K det ∆M det ∆M , (3.66)
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where the extra factor K := det(KM + KM) features the so-called Poisson kernels KM,M ,
which can be expressed in terms of the normal derivatives of the Green functions for ∆
restricted to M and M .

In fact, we could have expected the appearance of such a factor K on physical grounds.
Indeed, in the previous subsection we have shown that, when using the Hodge decomposi-
tion, the Maxwell fields contribute in the form of (massive) scalars, and the CS term gives
rise to a chiral boundary theory. Since the massive scalar is not a gauge theory and does
not bring edge modes, it would naively seem that when using the Hodge decomposition
we have lost track of some of the edge modes. This is not the case, and the factor of K
precisely keeps track of the pure Maxwell edge modes. This is the contact term identified
in [51]. We have already encountered it in the previous section when deriving the bound-
ary dynamics of pure Maxwell theory (both with and without the Hodge decomposition in
radial gauge), and here it resurfaces through our change of variables and the corresponding
splitting of the Gauss constraint and path integral measure.

Putting all the ingredients together, we get that the pure bulk (i.e. glued) path integral
ZM∪M over M ∪M factorizes in terms of extended bulk + boundary actions (3.45) as9

ZM∪M [A,Π] = Z[A,Π, a, j]×glue Z[A,Π, a, j]

= KZ[α, β, ξ, λ, a, j]×glue Z[α, β, ξ, λ, a, j]

= K
(
ZM [α, β, ξ, λ]Zedge[α, β, a, j]

)
×glue

(
ZM [α, β, ξ, λ]Zedge[α, β, a, j]

)
.

(3.67)

For the first equality, we have introduced the edge modes (a, j) and (a, j) on ∂M = ∂M ,
together with the constraints enforcing that the two left and right path integrals glue
together when integrating over the edge modes. This is the step that was described in (3.21)
for CS theory. For the second equality, we have simply used the Hodge decomposition,
which has produced the factor of K, and for the third equality we have further split the
Hodge decomposition into bulk and boundary actions. In the previous subsection we have
seen that integrating out the bulk degrees of freedom in a subregion produces a chiral
theory on its boundary. The contribution of this chiral theory has been computed in
section 3.3.1. We can therefore conclude that the entanglement entropy in MCS theory
receives contributions from three sources, i.e.

SMCS = S3d massive scalar + S2d left-right bosons + logK, (3.68)

in agreement with [51].
9It should be noted that of course all the fields are integrated over in the path integrals. Here we have

simply written the arguments of all the path integrals Z in (3.67) in order to keep track of which variables
(i.e. the initial gauge fields, the fields of the Hodge decomposition, or the edge modes) are integrated over.
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3.3.4 BF theory

We now discuss 3-dimensional Abelian BF theory. The generalization to arbitrary di-
mensions is straightforward, while the non-Abelian case is briefly discussed in appendix
A.4. BF theory is an interesting case study because of its relevance for the description of
topological phases of matter [196–198], which also involves the study of its entanglement
entropy, and because in the non-Abelian case it describes 3-dimensional gravity in the first
order formulation. Recently there has also been a lot of interest in a 2-dimensional BF
theory model known as Jackiw–Teitelboim gravity (although there it appears with the non-
Abelian gauge group SL(2,R)) [174, 199–202]. We hope to apply our construction of the
boundary dynamics to these more complicated cases in the future. General ideas on the
boundary dynamics of 3-dimensional BF theory have already been formulated in [203,204],
where the authors have identified chiral boundary currents. Here we show that depend-
ing on the choice of boundary Hamiltonian it is possible to obtain a chiral or non-chiral
boundary scalar field theory.

To construct the bulk + boundary action, in addition to the bulk 1-forms A and B we
add on the boundary the 0-forms a and b and a current 1-form j, and consider

S =

∫
M

B ∧ F +

∫
∂M

bF + j ∧Da+ h. (3.69)

The role of the new boundary field b is to make the total action invariant under the so-called
shift transformations

δφB = dφ, δφb = −φ. (3.70)

This is the edge mode field for the shift symmetry. Similarly to the cases studied above,
this action produces the corner term that is needed for the extended phase space. To see
this, consider the variation

δS =

∫
M

δB ∧ F + δA ∧ dB

+

∫
∂M

δA ∧ (B + db− j) + δj ∧ (Da+ δjh) + δadj + δbF − d(jδa− bδA). (3.71)

Using the boundary equation of motion j = B + db, the extended potential becomes

Θe = δA ∧B + d(jδa− bδA) ≈ δA ∧B + d
(
(B + db)δa− bδA

)
. (3.72)
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Now, notice that there exists an alternative boundary action, related to this one by a
change of polarization, and which reads10

S ′ =

∫
M

B ∧ F +

∫
∂M

B ∧Da+ j ∧ (B + db) + h. (3.73)

The bulk equations of motion are of course unchanged, and the on-shell variation is

δS ′ ≈
∫
∂M

δB ∧ (Da− j) + δj ∧ (B + db+ δjh) + δadB + δbdj − d(jδb+Bδa), (3.74)

from which one can clearly see the symmetry with (3.71). Using the boundary equation of
motion j = Da, the extended potential becomes

Θ′e = δA ∧B + d(jδb+Bδa) ≈ δA ∧B + d(Daδb+Bδa) = Θe + δd(bDa). (3.75)

Notice that with the introduction of the edge modes the boundary equations of motion in
the extended action “reverse” the polarization. Indeed, in (3.71) instead of fixing A on the
boundary we use the boundary equation of motion to fix (B, b) in terms of j. Conversely,
in (3.74) instead of fixing B on the boundary we impose a condition on (A, a).

Since the potentials derived from the two extended actions differ by a total field vari-
ation, they lead to the same symplectic structure (although in a discretized setting the
change of polarization can lead to inequivalent symplectic structures [205–207]), which is

Ω = −
∫

Σ

δA ∧ δB −
∫
S

δ(Da)δb+ δBδa, (3.76)

in agreement with [34]. With this extended symplectic structure, we can then show as
expected that the “Lorentz” and shift gauge generators δαyyΩ and δφyyΩ vanish on-shell.
In addition, we now also have boundary symmetries acting on the edge modes as

∆g
α(a, b) = (α, 0), ∆t

φ(a, b) = (0, φ), (3.77)

and generated by the boundary observables

Qg[α] =

∫
S

α(B + db), Qt[φ] =

∫
S

φ(A+ da). (3.78)

As expected from CS theory, these generators satisfy a U(1)× U(1) Kač–Moody algebra{
Qg[α],Qg[β]

}
= 0,

{
Qt[φ],Qt[χ]

}
= 0,

{
Qg[α],Qt[φ]

}
=

∫
S

φdα. (3.79)

10In higher-dimensional BF theory writing this action would require to change the form degree of j.
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Based on this algebra of boundary symmetries, we can expect to find two chiral fields on
the boundary.

Now, let us look at the effective boundary dynamics obtained by integrating out the
bulk degrees of freedom. This calculation follows closely that in CS theory, since the actions
are similar. In components, (3.69) becomes

S =

∫
M

Bt(∂rAφ − ∂φAr) + At(∂rBφ − ∂φBr) +Bφ∂tAr −Br∂tAφ

+

∫
∂M

At(jφ −Bφ − ∂φb) + Aφ∂tb+ jφ∂ta− jt(Aφ + ∂φa) + h. (3.80)

As usual, the time components At and Bt are Lagrange multipliers enforcing the bulk
Gauss and flatness constraints

εab∂aBb = 0, εab∂aAb = 0, (3.81)

and on the boundary the relation

jφ = Bφ + ∂φb. (3.82)

Path integrating over At and Bt allows us to go on-shell and to write Aa = ∂aα and
Ba = ∂aβ, and with this the extended action reduces to

Sedge =

∫
∂M

∂tϕ∂φψ − jt∂φϕ+ h, (3.83)

where we have introduced the gauge-invariant scalars ϕ := a+ α and ψ := b+ β. Starting
instead from the alternative action (3.73) we have

S ′ =

∫
M

Bt(∂rAφ − ∂φAr) + At(∂rBφ − ∂φBr) +Bφ∂tAr −Br∂tAφ

+

∫
∂M

Bt(jφ − Aφ − ∂φa) +Bφ∂ta+ jφ∂tb− jt(Bφ + ∂φb) + h, (3.84)

and path integrating over At and Bt gives

S ′edge =

∫
∂M

∂tψ∂φϕ− jt∂φψ + h. (3.85)

The kinetic terms of the two effective boundary actions differ only by an integration by
parts, and show that ϕ and ψ are canonically conjugated (with a derivative ∂φ). This
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means that we have the freedom of integrating out one of the fields (together with the
current j) in order to obtain an effective boundary dynamics for the remaining one. This
dynamics will depend on the choice of boundary Hamiltonian.

With the chiral Hamiltonian h = (jt ∓ jφ)jφ, which we have used previously in CS and
MCS theory, we obtain

Sedge =

∫
∂M

∂tϕ∂φψ − jt(∂φϕ− ∂φψ)∓ (∂φψ)2. (3.86)

Integrating over jt then yields the chiral action

Sedge =

∫
∂M

∂tϕ∂φϕ∓ (∂φϕ)2. (3.87)

One can verify that using the alternative action (3.73) also leads to this chiral action.
Alternatively, we can also use the boundary Hamiltonian 2h = ±∗j ∧ j = ±(j2

t − j2
φ). In

CS theory, this has produced the chiral action (3.19). Here, integrating over jt leads to

Sedge =

∫
∂M

∂tϕ∂φψ ∓
1

2
(∂φϕ)2 ∓ 1

2
(∂φψ)2, (3.88)

from which the equations of motion obtained by varying ϕ or ψ are chiral for ψ and ϕ
respectively. This is the form of the edge theory that was studied in a condensed matter
context in [197] (although in four dimensions), where it has been shown that it can also be
quantized using the Hamiltonian methods, and leads to a topological contribution to the
entanglement entropy of − log k.

Going one step further, one may also integrate out one of the two chiral fields. For
example, integrating out ψ leads to

Sedge = ±1

2

∫
∂M

(∂tϕ)2 − (∂φϕ)2, (3.89)

which is now a single non-chiral scalar field.
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Chapter 4

Electromagnetic Duality from First
Order Formulation

In this chapter, we revisit the notion electromagnetic duality from the point of view of edge
modes and corner symmetries, and sketch a speculative viewpoint on the magnetic charges
and the centrally-extended electromagnetic charge algebra. This is done by exploiting the
first order formulation of Maxwell’s theory as a constrained topological BF theory.

The idea behind this proposal is the observation that electromagnetic duality swaps
Maxwell’s field equations d∗F = 0 and the Bianchi identity dF = 0. These are second
order equations, and as their names indicate the first one is an equation of motion while the
second one is an identity. This therefore suggests to study the first order formulation, where
instead of a single second order equation of motion one has two first order equations [208].
The first order formulation of Yang–Mills theories can be obtained from topological BF
theory [209] supplemented by a potential [210,211]. It is known that the BF theory admits
two types of charges (which we could suggestively call electric and magnetic), arising
from two independent gauge symmetries, and that these charges form a centrally-extended
current algebra [165] (see also [34,101] in the case of 3-dimensional gravity as a BF theory
and [43,212] in the case of first order 4-dimensional gravity). The idea behind this chapter
is then to argue that Maxwell’s theory could inherit its magnetic charge from BF theory,
as well as the corresponding centrally-extended electromagnetic charge algebra.

The main message is that the magnetic charges of BF arise because of the topological
nature of the theory, and the existence of so-called “translational” gauge symmetries. In
Maxwell’s theory, which is evidently not topological, this symmetry is broken. Depending
on the dimensionality of spacetime, the translational symmetries can however be reducible
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[213], and therefore admit zero-modes. Here we argue that in the 4-dimensional case these
zero-modes can be identified with the magnetic gauge parameter of Maxwell’s theory. The
magnetic charges are then seen as arising from the reducible part of the broken translational
symmetries of a topological theory. For p-form theory1 in a d-dimensional spacetime, this
is possible as long as d−p > 1, and in this case the translation zero-mode and the magnetic
gauge parameter both have degree d−p−2. Consistently, this argument can also be applied
to 3-dimensional Maxwell theory to show that it does not admit magnetic charges.

We organize this chapter as follows. In Section 4.1 we recall the study of the charges
and charge algebra in the case of topological BF theories with Abelian gauge group. This
includes the derivation of the electric and magnetic BF charges and of their centrally-
extended charge algebra. For completeness and in order to describe dual scalar fields as
well, we consider a BF theory of p-forms in d-dimensional spacetimes. In Section 4.2 we
briefly introduce p-form theories. We then explain in Section 4.3 how p-form theories can
be written in a first order formulation by adding a potential to the p-form BF theories.
We apply this to 4-dimensional Maxwell theory and derive our observation concerning the
origin of the magnetic charges as zero-modes of BF translations. We also apply this idea
to 3-dimensional Maxwell theory, where it shows consistently that there are no magnetic
charges. This is reinterpreted as the non-reducibility of the translations in 3-dimensional
BF theory.

It is important to remark that in this chapter, unlike the previous one, we will not
explicitly include extra edge mode fields to the theory phase space. This is however because
we are only working with corner charges and corner symmetries of gauge theories, and their
expressions agree with ones derived properly with edge mode and extended phase space
formalism. One just has to keep in mind the philosophy that gauge symmetries are broken
at boundaries, turning into physical corner symmetries, and the gauge parameters at the
boundaries now label the corner charges.

Setups

To set the stage, we work on a d-dimensional Lorentzian manifold M with boundary ∂M .
It is foliated by Cauchy slices Σ with (d − 2)-dimensional boundary ∂Σ. This boundary
has poles, which can be understood as Wilson line singularities, surrounded by (d − 3)-
dimensional “circles” C providing a regularization of such singularities. This geometrical
setup is depicted on Figure 4.1. The variables used throughout this chapter and their
corresponding form degree are summarized in table 4.1 below.

1With our conventions p denotes the degree of the field strength F = dA of the (p− 1)-form A.
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Figure 4.1: A spacetime M with boundary ∂M and codimension-1 Cauchy slice Σ. The
boundary of this latter is ∂Σ = Σ ∩ ∂M . In the case where ∂Σ has poles, we can think of
∂Σ\{poles} as having a set {C} of codimension-3 boundaries encircling these poles. In 4
dimension, this is the usual picture of a Dirac string piercing through the north and south
poles of a 2-sphere.

variable A B F = dA (α, β) (φ, χ) α̃
form degree p− 1 d− p p p− 2 d− p− 1 d− p− 2

Table 4.1: Variables and their associated form degree in d dimension. Note that with
our conventions when talking about a p-form theory the degree p is that of the curvature
F = dA.

4.1 BF theories

Let us begin by reviewing the covariant phase space of Abelian BF theory in the case of
p-forms in d-dimensional spacetimes, which is the general case of what we considered in
Chapter 3. This is a topological field theory whose basic fields are a connection (p−1)-form
A with curvature F = dA, and a (d− p)-form B. The Lagrangian is

LBF[A,B] = F ∧B, (4.1)

where the order of wedge product has been chosen in order to minimize the amount of
signs showing up below. Varying this Lagrangian gives

δLBF[A,B] = F ∧ δB + (−1)pδA ∧ dB + d(δA ∧B), (4.2)
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which leads to the equations of motion

F = 0, dB = 0. (4.3)

The symplectic potential is Θ = δA ∧B. Given a Cauchy slice Σ ⊆M , the corresponding
symplectic structure is

ΩΣ =

∫
Σ

δΘ = −
∫

Σ

δA ∧ δB, (4.4)

and as usual it is independent of Σ provided there is no symplectic flux leaking through
the time-like boundary ∂M .

We now turn to the analysis of the Hamiltonian charges of BF theory. There are two
kinds of conserved charges, associated with the two symmetries of the theory, namely
the gauge symmetries and the translational symmetries (one can also use field-dependent
combinations of these to describe diffeomorphisms).

Gauge symmetry. If p ≥ 2, the BF Lagrangian (4.1) is invariant under the infinitesimal
U(1) gauge transformations

δ(g)α A = dα, δ(g)α B = 0, (4.5)

where α is a (p− 2)-form. The Hamiltonian generator associated with this symmetry can
be computed as

δH(g)[α] = −I
δ
(g)
α

ΩΣ =

∫
Σ

dα ∧ δB. (4.6)

On-shell, the gauge charges are therefore given by

H(g)[α] =

∫
Σ

dα ∧B ≈
∫
∂Σ

α ∧B. (4.7)

These charges satisfy as expected a U(1) current algebra{
H(g)[α],H(g)[β]

}
= −I

δ
(g)
α
I
δ
(g)
β

ΩΣ = 0. (4.8)
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Translational symmetry. By virtue of the Bianchi identity dF = 0, in the case d−p ≥ 1
the BF Lagrangian (4.1) is also (quasi-)invariant under translational (or shift) symmetries,
whose infinitesimal action is

δ
(t)
φ A = 0, δ

(t)
φ B = dφ, (4.9)

where φ is a (d− p− 1)-form. The Hamiltonian generator is found from

δH(t)[φ] := −I
δ
(t)
φ

ΩΣ = −
∫

Σ

δA ∧ dφ, (4.10)

from which we get that the translational charges are

H(t)[φ] = −
∫

Σ

A ∧ dφ ≈ (−1)p
∫
∂Σ

A ∧ φ. (4.11)

These charges obey the Abelian algebra{
H(t)[φ],H(t)[χ]

}
= −I

δ
(t)
φ
I
δ
(t)
χ

ΩΣ = 0. (4.12)

Central extension. The gauge and translational charges form a U(1)×U(1) Kač–Moody
algebra, where in addition to the brackets given above we have a central term given by the
mixed bracket {

H(g)[α],H(t)[φ]
}

= −I
δ
(g)
α
I
δ
(t)
φ

ΩΣ = (−1)p
∫
∂Σ

dα ∧ φ. (4.13)

Our goal is now to show that, when going from topological BF theory to a dynamical
p-form theory (such as 4-dimensional Maxwell) the translational charge (4.11) can survive
as a magnetic charge, which then has a centrally-extended bracket (4.13) with the electric
charge.

4.2 p-form theories

We are interested in the electromagnetic duality for Abelian p-form theories, where p is the
degree of the curvature F . We note that asymptotic symmetries in p-form theories were
studied in [214]. Let us first recall that the Lagrangian for such theories is

Lp[A] =
1

2
∗F ∧ F, (4.14)
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where F = dA is again the curvature of the gauge field A. The equations of motion are

d∗F = 0, dF = 0, (4.15)

where the second equation is the Bianchi identity. The theory is invariant under the action
of U(1) gauge transformations, whose finite form is A → A + dα. The conserved charges
associated with this gauge symmetry are the electric charges

Q(E)[α] =

∫
∂Σ

∗F ∧ α, (4.16)

as can be worked out by computing the symplectic structure and contracting it with an
infinitesimal gauge transformation.

The equations of motion (4.15) and the Lagrangian suggest that interchanging F and
∗F leaves the theory unchanged. In other words, instead of using F = dA we can define
∗F = dÃ and work with Ã. This is the duality between a p-form and a (d−p)-form theory.
In the case of Maxwell theory in 4 dimensions, which is a 2-form theory, this map is the
electromagnetic duality. In the general case of a d-dimensional p-form theory, this suggests
that there must exist another type of charges, the magnetic charges, of the form

Q(M)[α̃] =

∫
∂Σ

α̃ ∧ F. (4.17)

Since ∂Σ is a codimension-2 manifold, a necessary condition for these magnetic charges to
exist is that the form degree of the field strength F be such that p ≤ (d−2), i.e. d−p > 1.
This ensures that (d − p − 2)-forms exist, so that the wedge product of F with a such a
(d − p − 2)-form α̃ produces a (d − 2)-dimensional form which can be integrated on the
codimension-2 boundary ∂Σ. This is the reason for which magnetic charges cannot exist
in e.g. 3-dimensional Maxwell theory.

As it is well-known, differently than for the electric charge, the magnetic counterpart
does not arise as the Noether charge of a bulk gauge transformation in the theory (4.14).
It is however possible to achieve this by changing the starting theory, and working instead
with the so-called dual symmetric formulation as in [108] or with an extended phase space
as in [109]. Here we want to show that another understanding of these magnetic charges
can be achieved from the first order formulation of the p-form theory, which we now present.
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4.3 First order p-form theories from BF theories

The first order formulation of a p-form theory can be obtained as a BF theory with
quadratic potential. The corresponding d-dimensional Lagrangian is

L[A,B] = F ∧B +
1

2
∗B ∧B. (4.18)

The presence of the metric in the definition of the Hodge dual breaks the topological
nature of this theory. Its canonical analysis is performed in [210, 211]. To see that it
indeed describes a p-form theory, we compute the variation

δL[A,B] = (F + ∗B) ∧ δB + (−1)pδA ∧ dB + d(δA ∧B), (4.19)

which gives the first order equations of motion

F = −(∗B) ⇒ B = (−1)p(d−p)∗F , dB = 0. (4.20)

Combining these leads to the second order p-form Maxwell equation d∗F = 0. On-shell of
the first equation of motion (4.20), the initial first order Lagrangian (4.18) then reduces
exactly to the p-form Lagrangian (4.14).

Evidently, because of this on-shell equivalence, performing the analysis of the symme-
tries and of the charge algebra at the level of the first order p-form Lagrangian (4.18)
cannot a priori teach us anything valuable about the magnetic charges. This Lagrangian
is indeed not invariant under the translational symmetry (4.9) because of the presence of
the potential term. Instead, our (admittedly non-standard) strategy will therefore be to
first consider the charges and the charge algebra of BF theory alone, and only then impose
in this structure the reduction to the non-topological p-form theory. The idea is simply to
study how the reduction from BF theory to the p-form theory affects the charges discussed
above in section 4.1. The gauge symmetry A→ A+ dα survives this reduction, since this
is still a symmetry of the p-form theory. Using the first equation of motion in (4.20) shows
that the BF gauge charge (4.7) becomes

H(g)[α] 7→ Q(E)[α] =

∫
∂Σ

∗F ∧ α, (4.21)

which is the electric charge (4.16).

At first, the translational charges seem not to exist because, once the B field is in-
tegrated out, the translation symmetry no longer survives. It is indeed evidently not a
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symmetry of the p-form theory. However, the subtlety is that the translational symmetry
is reducible [213], so that one should actually think of its breaking as a constraint on the
transformation parameter φ. This latter must be such that

dφ = 0 ⇒
{
φ = dα̃ when d− p > 1
φ = const. when d− p = 1

(4.22)

everywhere except at poles where d2α̃ 6= 0. These restricted translations are symmetries
of the Lagrangian (4.18). When d − p > 1, which is precisely the condition of existence
of magnetic charges as explained below (4.17), the reducible part of the translational
symmetry is encoded in the (d − p − 2)-form α̃, which has the same form degree as the
dual ∗α of the electric gauge parameter. With this identification, the translational charges
become the magnetic charges as

H(t)[φ] 7→ Q(M)[α̃] = (−1)p
∫
∂Σ

A ∧ dα̃. (4.23)

Notice how this expression differs from the guess (4.17). To understand this difference, we
should recall that when poles are present the space ∂Σ can be seen as having boundaries
by cutting out all the poles. The resulting space, ∂Σ\{poles}, is the (d − 2)-dimensional
space with small compact boundaries {C} enclosing the poles, as in figure 4.1. This allows
us to use integration by parts to obtain

Q(M)[α̃] =

∫
∂Σ\{poles}

F ∧ α̃−
∑
{C}

∮
C
A ∧ α̃, (4.24)

which agrees with the magnetic charge derived in [108,109].

The algebra of electric and magnetic charges then inherits the central extension of BF
theory, and in addition to the vanishing Abelian brackets we find that (4.13) becomes{

Q(E)[α],Q(M)[α̃]
}

= (−1)p
∫
∂Σ

dα ∧ dα̃ = −
∑
{C}

∮
C

dα ∧ α̃, (4.25)

which is also in agreement with [108,109]. It is now useful to study some explicit examples,
such as Maxwell theory as well as scalar field theory and its dual.

4.3.1 Maxwell theory

For Maxwell theory the form degree is p = 2. When d = 4, we have the duality between
the 2-forms F and ∗F , and on the 2-sphere ∂Σ = S2 we get the electric and magnetic
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charges

Q(E)[α] =

∫
S2

α ∗F , Q(M)[α̃] =

∫
S2\{poles}

α̃F −
∑
{C}

∮
C
α̃A, (4.26)

They form the U(1)× U(1) Kač–Moody algebra{
Q(E)[α],Q(M)[φ̃]

}
= −

∑
{C}

∮
C
α̃dα. (4.27)

For other dimensions, the magnetic charges and the centrally-extended algebra exist in
p = 2 Maxwell theory as long as d ≥ 4, with the degree of the various fields given in table
4.1.

For d = 3 there is an electric charge, but since φ = const. according to (4.22) there is
only a global charge

Q(M)
global[φ] = φ

∫
S1

A, (4.28)

and therefore no current algebra nor central extension.

Now, recall that while 4-dimensional Maxwell theory is self-dual, 3-dimensional Maxwell
theory is dual to a scalar field theory. Let us therefore study the duality and first order
formulation of a d-dimensional scalar field.

4.3.2 Scalar field theory

A free massless scalar field theory in d dimensions can equivalently be thought of as a
1-form theory with Lagrangian

Lscalar[Φ] =
1

2
∗dΦ ∧ dΦ, (4.29)

where the 0-form Φ ∈ Ω0(M) is the scalar field on M . Since this is not a gauge theory,
it does not a priori admit conserved gauge charges. It is indeed obvious that the electric
gauge transformations are not defined, since they require the form degree to be p ≥ 2. As
such, this theory has no electric charges (4.21).

It was however shown in [104, 215] that scalar field theories do admit a reformulation
of the soft theorem in terms of asymptotic symmetries, and contain scalar soft charges.
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Following the argument built from the first order formulation, these are precisely the
magnetic charges (4.23), which in the scalar case become

Q(M)[α̃] = −
∫
∂Σ

Φdα̃, (4.30)

where now α̃ ∈ Ωd−3(M). This is consistent with the proposal of [105–107], which is
to understand the scalar soft charges in terms of a gauge theory dual to the scalar field
theory. In this reformulation, the above magnetic charges are interpreted as the electric
charges of the gauge theory dual to the scalar theory (4.29). This relies on the fact that
a d-dimensional scalar field theory is dual to a gauge theory of (d − 1)-forms via the
identification

F(d−1) = dA(d−2) = ∗dΦ. (4.31)

One can now apply our first order argument to this dual gauge theory, and verify by looking
at the form degree that the electric charge exists while the magnetic one does not. The
electric charge is given by

Q(E)[α] =

∫
∂Σ

∗
(
F(d−1)

)
∧ α = (−1)d

∫
∂Σ

dΦ ∧ α, (4.32)

where α ∈ Ωd−3(M). We see that the magnetic charge in the scalar field theory agrees (up
to an integration by parts and a possible sign) with the electric charge in the dual gauge
theory. This charge, which is either magnetic for the scalar theory or electric for its dual,
is the hidden scalar soft charge.

The same conclusion is reached when using the first order BF formulation. For a 4-
dimensional scalar field, the dual is a theory of 3-forms. This latter has a first order
formulation where the B field is a 1-form. The translational symmetry is therefore not
reducible, and no zero-mode survives the reduction from BF to the 3-form theory. Consis-
tently, we get only a single charge for the scalar field or its dual, as described above.
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Part II

Carrollian Hydrodynamics on Stretched
Horizons
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Chapter 5

Carrollian Hydrodynamics

In the second part of the thesis, we turn our attention to the topic of gravitational physics
of null boundaries and stretched horizons. Our objective is to explore and elucidate the
fascinating connection between spacetime geometry near a null boundary and Carroll ge-
ometries. Inspired by the recent work of Donnay and Marteau [121], we aim to formalize
their idea and thoroughly establish the correspondence between the horizon dynamics and
a type of “non-relativistic” hydrodynamics, the so-called Carrollian hydrodynamics.

The entirety of this first chapter is devoted to the study of Carroll geometries and
Carrollian hydrodynamic as a standalone subject. Essential elements of Carroll geometries
and the characteristic of Carrollian fluids which we will carefully lay down and elaborate in
this chapter will however be adopted in the next chapter when we fully discuss gravitational
dynamics near a null boundary.

This chapter is structured as follows. We start in section 5.1 with the introduction
of Carroll structures, which serves as the most basic building block of Carroll geometries
and Carrollian physics. We will discuss Carrollian hydrodynamics in section 5.2 starting
from relativistic conservation laws and then carefully consider the Carrollian limit. This
closely follows the idea first explored in [124] and we formalize it using the language of
Carroll structures. Finally, in section 5.3, we present a new view point on Carrollian hy-
drodynamics based on symmetries. We propose a new notion of symmetries, which we call
near-Carrollian symmetries, that extends the usual Carroll symmetries. We will demon-
strated that these symmetries are associated to the full set of Carrollian hydrodynamics.

63



5.1 Carroll Structures

Carroll geometries, which underpin the research field of Carrollian physics, are suitably
studied by introducing Carroll structures as the starting building block. In what follows,
we consider a 3–dimensional1 Lorentzian space H which can be equipped with a (weak)
Carroll structure [126, 130] given by the triplet (p, `, q). This specifically means that the
space H is a fiber bundle, p : H → S, with a 1–dimensional fiber. The 2–dimensional
base space S can be chosen, for relevant physics at hand, to have a topology of a 2–sphere.
We will denote local coordinates on the sphere S by {σA} and denote by qABdσA ◦ dσB a
metric on S.

Stemming from the fiber bundle structure of the space H, one can naturally define the
vertical subspace, which is denoted by vert(H), of the tangent space TH. This vertical
subspace is defined to be the 1–dimensional kernel of the differential, dp : TH → TS, of
the projection map p,

vert(H) := ker(dp). (5.1)

We will refer to a vector field that belong to vert(H) as being vertical. The second
element of the Carroll structure is a vertical vector field ` ∈ vert(H) which can be seen as
a preferred representative of the equivalence class [`]∼ with the equivalence relation being
rescaling that preserves the direction of `, that is ` ∼ eε`, where ε is any arbitrary function
on the space H. In this regards, we will also call the Carrollian vector ` the vertical basis
vector. Lastly, the third element of the Carroll structure is a null Carrollian metric q whose
1–dimensional kernel coincides with the vertical subspace, inferring that q(`, ·) = 0. The
null metric can be obtained by pulling back a metric on the sphere S by the projection
map p,

q = p∗(qABdσA ⊗ dσB) = qABe
A ⊗ eB. (5.2)

We have introduced the co-frame field eA2 which is given by the pullback of the coordinate
form dσA on the sphere S by the projection map p,

eA := p∗(dσA), such that ι`e
A = 0. (5.3)

Let us note that the co-frame field, by definition, is a closed form on H, deA = 0.
1In the next chapter, the space H is regarded as a 3–dimensional hypersurface in a 4–dimensional

ambient spacetime. We should also note that the dimension of H does not affect our discussions in this
part and one can easily generalize our setups to any spacetime dimension.

2In Part II of this thesis, we are dealing with both vectors and differential forms. To avoid confusion
in notations, we will denote differential forms on spacetime by bold-face letters.
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Figure 5.1: The space H endowed with the Carroll structure. The general coordinates are
xi = (u, yA) where the surfaces at the cuts u = constant are identified with the sphere S.
The vertical vector ` and the horizontal vector eA span the tangent space TH

Provided the Carroll structure on H, it is then possible to have a separation of the tan-
gent space TH = vert(H)⊕ hor(H) into the aforementioned vertical subspace, vert(H),
and its complement, the horizontal subspace denoted by hor(H). This splitting is achieved
by introducing a connection 1–form, k ∈ T ∗H, dual to the vertical vector `,

ι`k = 1. (5.4)

The 1–form k is known as the Ehresmann connection in the literature. The kernel of k,
seen as a linear map k : TH → R, thus defines the horizontal subspace. This equivalently
means that

hor(H) := {X ∈ TH|ιXk = 0}. (5.5)

We will denote a basis of the horizontal subspace by eA ∈ hor(H) which, by definition,
obeys ιeAk = 0. Furthermore, without loss of generality, we can choose these horizontal
basis vectors to be ones that are dual to the co-frame field,

ιeAe
B = δBA . (5.6)

The frame (`, eA) and the dual co-frame (k, eA) therefore serve as a complete basis for
the tangent space TH and the cotangent space T ∗H, respectively (see Figure 5.1). In
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this basis, any vector field X ∈ TH and any 1–forms ω ∈ T ∗H can therefore be uniquely
decomposed as follows:

X = (ιXk)`+ (ιXe
A)eA, and ω = (ι`ω)k + (ιeAω)eA. (5.7)

Similarly, a differential of a function F can be expressed in this frame as

dF = `[F ]k + eA[F ]eA. (5.8)

Having the splitting of the tangent space TH = vert(H)⊕ hor(H), one can naturally
define the horizontal projector from the tangent space TH to its horizontal components as

qi
j := eAieA

j = δji − ki`j, (5.9)

and it satisfies the conditions qijkj = 0 and `iqij = 0.

5.1.1 Acceleration, Vorticity, and Expansion

Next, we introduce two important objects that are naturally inherited from the Carroll
structure and will later appear when discussing Carrollian hydrodynamics [124,144]. These
objects are the Carrollian acceleration, denoted by ϕA, and the Carrollian vorticity, de-
noted by wAB, and they are defined to be components of the curvature of the Ehresmann
connection 1–form,

dk := −
(
ϕAk ∧ eA +

1

2
wABe

A ∧ eB
)
. (5.10)

Let us also recall that the co-frame eA is closed, i.e., deA = 0. We can show that the
components (ϕA, wAB) are also determined by the commutators of basis vector fields. This
correspondence can be established by invoking the identity [ιX ,LY ]ω = ι[X,Y ]ω for any
vector fields X, Y ∈ TH and any 1–form ω ∈ T ∗H. By making use of the Cartan formula,
LX = dιX + ιXd, one can show that

ιXιY dω = ι[X,Y ]ω + LY (ιXω)− LX(ιYω). (5.11)

Using this result and the property deA = 0, we show that the commutators of the frame
fields satisfy the conditions,

ι[`,eA]e
B = 0, and ι[eA,eB ]e

C = 0, (5.12)
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suggesting that both commutators [`, eA] and [eA, eB] lie in the vertical subspace. Further-
more, using the definition (5.10), it follows that,

ϕA = ι[`,eA]k, and wAB = ι[eA,eB ]k. (5.13)

All these conditions therefore fix the commutation relations of the Carrollian frame fields,

[eA, eB] = wAB`, and [`, eA] = ϕA`. (5.14)

We comment here that the Jacobi identity of the commutators determines the evolution
of the Carrollian vorticity,

`[wAB] = eA[ϕB]− eB[ϕA]. (5.15)

It is important to appreciate that, as we have already derived, the commutator between
horizontal basis vectors [eA, eB] does not lie in the horizontal subspace hor(H) when the
Carrollian vorticity wAB does not vanish. Geometrically speaking, following from the
Frobenius theorem, this means that the horizontal subspace hor(H) is not integrable in
general, meaning that it cannot be regarded as a tangent space to a 2–dimensional sub-
manifold of H.

Given the metric qAB on the sphere S, we define the expansion tensor θAB as the change
of the sphere metric along the vertical direction,

θAB :=
1

2
`[qAB]. (5.16)

The trace of the expansion tensor, called the expansion and denoted by θ, computes the
change of the are element of the sphere S along the vector `,

θ := qABθAB = `[ln
√
q]. (5.17)

5.1.2 Horizontal Covariant Derivative

Another ingredient that is needed in order to write the Carrollian conservation laws is the
notion of the horizontal covariant derivative. To this end, we introduce the Christoffel-
Carroll symbols [124] defined as

(2)ΓABC :=
1

2
qAD (eB[qDC ] + eC [qBD]− eD[qBC ]) . (5.18)
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It is torsion-free, (2)ΓABC = (2)ΓACB. We then define the horizontal covariant derivative
(or sometimes called the Levi-Civita-Carroll covariant derivative) DA which acts on a
horizontal tensor T = TABeA ⊗ eB in the standard way,

DAT
B
C = eA[TBC ] + (2)ΓBDAT

D
C − (2)ΓDCAT

B
D, (5.19)

and it can straightforwardly be generalized to a tensor of any degree. By construction, the
sphere metric qAB is compatible with this connection, that is DCqAB = 0.

One useful formula will be that the horizontal divergence of a horizontal vector X =
XAeA is given by

DAX
A =

1√
q
eA
[√
qXA

]
. (5.20)

More details on this covariant derivative can be seen in Appendix B.2.

5.1.3 Adapted coordinates for the Carroll structure

Up until this point, we have always kept our presentation of the Carroll structure abstract
and is thus completely independent of the choices of coordinates on the space H. We
can pretty much continue this trend for the rest of this chapter. However, some physical
pictures can be easily garnered when working explicitly with coordinates and, for practical
purposes, some computations are conveniently carried out when expressing in coordinates.
We will discuss the coordinate choices in this section.

Since the space H is structured as the fiber bundle over the sphere S, we can, without
loss of generality, choose a general coordinate system xi = (u, yA) such that open sets of
the cuts at u = constant, which denoted by Su, are identified with open sets of the sphere
S through the projection map, Su → S, which maps the coordinates yA to the coordinates
on the sphere3,

yA → σA = pA(u, yB). (5.21)

In what follows, we will denote the Jacobian of the push-forward by J : TSu → TS, and
it is explicitly given in coordinates by JA

B = ∂Ap
B, where we have used the notation

3More rigorously, pA is a transition map, pA := (σ ◦ p ◦ x−1(u, y))A, where x : H → RD−1 and
σ : S → RD−2 provide, respectively, local coordinates on H and S.
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∂A := ∂
∂yA

. In this general coordinate system, the Carroll structure is then characterized
by a scale factor α and a velocity field V A such that

` = e−αDu, and eA = (dyB − V Bdu)JB
A, (5.22)

where we defined Du := (∂u + V A∂A). Following from the definition of the co-frame field
eA := p∗(dσA), the velocity field V A can be expressed in terms of the projection map as

V A = −∂upB(J−1)B
A, (5.23)

where we introduced the matrix J−1 to be the inverse of the Jacobian such that JAC(J−1)C
B =

(J−1)A
CJC

B = δBA . Let us also remark here that a change of the scale factor α preserves the
Carroll structure while a variation of the velocity field V A changes the Carroll structure.
It follows from the definition of the Jacobian that

∂BJC
A = ∂CJB

A. (5.24)

In addition, the property deA = 0 imposes the following constraint on the Carrollian
velocity and the Jacobian,

DuJB
A = −(∂BV

C)JC
A, and Du(J

−1)B
A = (J−1)B

C∂CV
A. (5.25)

The Ehresmann connection, obeying the condition ι`k = 1, is characterized by the
Carrollian connection density, βA, and it can be parameterized as

k = eα(du− βAeA). (5.26)

The choice of the Ehresmann connection also fixes the form of the horizontal basis vectors
eA by the conditions, ιeAk = 0 and also ιeAeB = δBA . In our parameterization, the horizontal
basis is given by

eA = (J−1)A
B∂B + βADu. (5.27)

In this general coordinate system, we can evaluate the Carrollian commutators and in
turn obtain the coordinate expression of the Carrollian acceleration ϕA and the Carrollian
vorticity wAB (see Appendix B.1). They are given by

ϕA = DuβA + eA[α], (5.28)
wAB = eα (eA[βB]− eB[βA]) . (5.29)
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In this thesis, we will always work with the general coordinates xi = (u, yA) on the space
H as they are, by construction, independent of the Carroll structure. Let us, however,
mention that we can also choose to work with the adapted coordinates (u, σA) on H which
are such that the action of the projection is trivial, p : (u, σ) → σ. With this choice,
the coordinate u is regarded as the fiber coordinate. By definition, the velocity field
V A = 0 vanishes in the adapted coordinates. These coordinates are therefore co-moving
coordinates, which are such that

` = e−α∂u, and eA = dσA. (5.30)

To connect with the previous parameterization, one can derive, given the coordinates
yA(u, σ), the following relations

V A =
∂yA

∂u
, and (J−1)A

B =
∂yB

∂σA
. (5.31)

The Ehresman connection in the adapted coordinates therefore reads

k = eα
(
du− βAdσA

)
. (5.32)

The expressions for the the Carrollian acceleration and the Carrollian vorticity simplifies
in the co-moving coordinates becomes

ϕA =

(
∂

∂σA
+ βA

)
α + ∂uβA, (5.33)

wAB = eα
((

∂

∂σA
+ βA

)
βB −

(
∂

∂σB
+ βB

)
βA

)
. (5.34)

The co-moving coordinates have been widely adopted in the Carrollian literature (see for
example [126, 130, 144]) as the apparent absence of the velocity field and the Jacobian
factor heavily simplifies all computations. Also, this choice of coordinates works well when
considering field variations that leave the Carroll structure unchanged. We will, however,
be more general by considering the set of variations that can change the Carroll structure,
and will therefore work with the general, field-independent, coordinates xi = (u, yA).

5.1.4 Carrollian transformations

We will conclude our geometrical setup on Carroll structures by discussing Carrollian dif-
feomorphism. There are two types of diffeomorphism of the space H — one that preserves
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the Carroll structure and one that changes it. Here we will focus on the former case and
we will discuss the latter case when considering hydrodynamics in the next section.

Transformations that preserve the Carroll structure (p, `, q), which has been particularly
referred to as Carrollian transformations or Carrollian diffeomorphism are such that

u→ u′(u, σA), and σA → σ′A(σB). (5.35)

As a consequence, the co-frame field eA can only change by the diffeomorphism on the
sphere S, inferring that the Carrollian vector ` can only change by rescaling, δCarr` ∝ `.
In other words, the new Carrollian vector still belongs to the equivalence class [`]∼. This
therefore means that the velocity field is unchanged under Carrollian transformations,

δCarrV A = 0. (5.36)

We now compute how the components (α, βA, qAB) of the Carroll structure change under
infinitesimal Carrollian diffeomorphism generated by a vector field

ξ = τ`+ Y AeA, (5.37)

where τ and Y A are, in principle, generic functions on the space H. It follows from

δξ` = Lξ` = [ξ, `] = −
(
`[τ ] + Y AϕA

)
`− `[Y A]eA, (5.38)

that Carrollian diffeomorphism enforces the condition

`[Y A] = 0. (5.39)

Since δCarr` = −(δCarrα)`, we thus obtain

δCarr
(τ,Y )α = `[τ ] + Y AϕA. (5.40)

For the Carrollian connection density βA, we use that δCarr
(τ,Y )k = Lξk to read off the trans-

formation of βA, which is

−eα�Carr
(τ,Y )βA = (eA − ϕA)[τ ] + wABY

B, (5.41)

where we defined the variation �CarrβA := (J−1)A
BδCarr(JB

CβC). Lastly, we use that
δCarr

(τ,Y )q = Lξq and the property `[Y A] = 0 for Carrollian diffeomorphism to show that
the sphere metric qAB transforms as

�Carr
(τ,Y )qAB = 2

(
τθAB +D(AYB)

)
, (5.42)

where �CarrqAB := (J−1)A
C(J−1)B

DδCarr(JC
EJD

F qEF ). Let us also note that one can con-
sider Carrollian isometries such that Lξq = 0 or conformal Carrollian isometries such that
Lξq = Ωq, for a conformal factor Ω. In such cases, we will have more constraints on the
transformation parameters (τ, Y ) (see for instance the discussions in [121,128,130,144]).
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5.2 Carrollian Hydrodynamics

Having formally established essential elements of the Carroll structure, we proceed to
the discussion of hydrodynamics and its ultra-relativistic cousin, namely the Carrollian
hydrodynamics. It has been well established fact that Galilean fluids can be derived by
taking the non-relativistic limit, c → ∞, of the general relativistic energy-momentum
tensor T ij and their corresponding dynamics are therefore controlled by the non-relativistic
version of the conservation laws, ∇jTi

j = 0. The equations governing the ‘Galilean’ time
evolution of the fluid are the continuity equation, energy conservation equation, and the
Navier-Stokes equations. In a much similar spirit, taking the Carrollian limit, c→ 0, leads
to a new, and peculiar, kind of fluid and their corresponding hydrodynamic equations
that are Carrollian-covariant [124]. In this section, we will present how the Carrollian
hydrodynamic equations can be obtained from the c → 0 contraction of the relativistic
conservation laws.

5.2.1 Metric on H

Until this stage, all introduced elements of the geometry of the space H have been con-
structed from the Carroll structure which relied on the concept of fiber bundle. In order
to discuss the conservation equations of the fluid energy-momentum tensor, ∇jTi

j = 0, the
space H needs to be equipped with an additional structure: a 3–dimensional Lorentzian
metric h = hijdx

i ⊗ dxj and the Levi-Civita connection ∇ compatible with it4.

We are considering a family of Lorentzian matrices whose elements are labelled by a
single real parameter, the speed of light5 c. We also assume that a metric h, that belongs to
this family, is constructed entirely from the data of the Carroll geometry we have already
defined in the previous section. By doing so, we can ensure that the chosen metric is
covariant under Carrollian diffeomorphism. We further make the following assumptions on

4In this thesis, we use the symbol∇ to denote the Levi-Civita connection compatible with the Lorentzian
metric of the space under consideration. In the next chapter, we will also use the same symbol for the
connection compatible with the 4–dimensional metric g. Be noted that they are different.

5In practice, it is the square of the speed of light, c2, that will enter the metric.
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the components of the metric6,

h(`, `) = −c2, h(`, eA) = 0, and h(eA, eB) = qAB. (5.43)

These conditions infer that, when taking the limit c → 0, the resulting metric on H

coincides with the null Carrollian metric, i.e., h c→0
= q. Observe that the Carrollian vector

` is timelike in general and becomes null in the Carrollian limit, h(`, `)
c→0
= 0. The metric

h and its inverse h−1 are given in the Carrollian basis by7.

h = −c2k ◦ k + qABe
A ◦ eB, and h−1 = −c−2` ◦ `+ qABeA ◦ eB. (5.44)

The inverse metric is thus singular in the Carrollian limit c → 0. This particular form of
the metric is known as the Randers-Papapetrou metric and it has been utilized extensively
in Carrollian physics literatures [124, 144–146]. Also, having the metric h, one can derive
the relations between the basis vectors and 1–forms, which are

k = − 1

c2
h(`, ·), and eA = qABh(eB, ·). (5.45)

It is important to appreciate that the metric (5.44) can be viewed as the expansion in
the small parameter c2 around the Carrollian point, c2 = 0. With this in mind, we will also
make another assumption that the sphere metric qAB admits the expansion in the small
parameter c2 such that

qAB = q̊AB + 2c2λAB +O(c4), and qAB = q̊AB − 2c2λAB +O(c4), (5.46)

where q̊AB is the inverse of q̊AB and we defined λAB := q̊AC q̊BDλCD and λ := q̊ABλAB.
At first glance, doing this expansion may seem like we have introduced unnecessary com-
plications to the problem. We will later demonstrate that this expansion is necessary to
derive the hydrodynamic conservation equations from symmetries. Note also that, to prop-
erly manipulate the c2–expansion, we will use the leading-order sphere metric q̊AB and its
inverse q̊AB to lower and raise indices of horizontal tensors.

6The second condition h(`, eA) = 0, in fact, can be relaxed by choosing h(`, eA) = c2eαBA for an
arbitrary function BA. The choice of BA is gauge as one can always absorb BA into the definition of the
horizontal basis eA, and correspondingly redefine the Ehresmann connection k and the sphere metric qAB ,
by shifting the Carrollian connection βA → βA + BA. This new basis e′A = eA + BADu then satisfies the
second condition h(`, e′A) = 0.

7We use ◦ to denote the symmetric tensor product of tensors, i.e., A ◦B = 1
2 (A⊗B +B ⊗A)
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Since we now have the c2–expansion of the metric, some objects will also inherit this
similar expansion. The obvious ones are the expansion tensor and its trace, which exhibit
the following expansion

θAB = θ̊AB + c2`[λAB] +O(c4), and θ = θ̊ + c2`[λ] +O(c4), (5.47)

where the zeroth-order terms are

θAB =
1

2
` [̊qAB] , and θ = q̊AB θ̊AB = `

[
ln
√
q̊
]
. (5.48)

Another object that will admits the c2–expansion is the Christoffel-Carroll synbols (2)ΓABC ,
and we present its expansion in Appendix B.2.

In order to do integration on the space H, we need the volume form on H. We define
the volume form as

εH :=
1

2
(εAB
√
q)k ∧ eA ∧ eB, (5.49)

where εAB is the standard Levi-Civita symbol (satisfying εACεCB = δBA ). Denoting by εS
the canonical volume form on the sphere S, we then have the relation

ι`εH = p∗(εS), where we have εS =
1

2
(εAB
√
q) dσA ∧ dσB. (5.50)

As before, using that √q =
√
q̊(1 + c2λ) +O(c4), we thus obtain the c2–expansion of the

volume form,

εH =
(
1 + c2λ

)
ε̊H +O(c4), where ε̊H =

1

2

(
εAB

√
q̊
)
k ∧ eA ∧ eB. (5.51)

In the following, we will also use the notation ε̊S for the zeroth-order of the volume form
on the sphere S. One can verify the following relations

d(fεS) = (`[f ] + θf) εH , and d
(
XAιeAεH

)
=
(
DAX

A + ϕAX
A
)
εH , (5.52)

for a function f on H and for a horizontal vector XAeA ∈ hor(H).

One can imagine the space H to have a boundary ∂H situated at a certain constant
value of the coordinate u. This boundary, in our construction, is identified under the
projection map with the sphere S. In this setup, the Stokes theorem is written as∫

H

(
`[f ] + θ̊f

)
ε̊H =

∫
S

f ε̊S, (5.53a)∫
H

(
D̊AX

A + ϕAX
A
)
ε̊H =

∫
S

eαXAβAε̊S. (5.53b)

74



5.2.2 Covariant derivative

Before considering Carrollian hydrodynamics, let us compute the covariant derivative the
basis vector fields, namely ∇``,∇eA`,∇`eA, and ∇eAeB, as they will become handy tools
when evaluating the hydrodynamic conservation equations. We will start with the covariant
derivative ∇``, which presenting the computation in full detail here. Complete derivations
of the others, which are done in a similar vein, are provided for the reader in Appendix
B.3. The term ∇``, can be decomposed as

∇`` = (ki∇``
i)`+ (qABeBi∇``

i)eA. (5.54)

Using the metric h and the Leibniz rule, one can show that the vertical component vanishes
as follows:

ki∇``
i = − 1

c2
h (`,∇``) = − 1

2c2
` [h (`, `)] = 0, (5.55)

as h(`, `) = −c2 is constant. The horizontal components can be evaluated with the help of
the commutation relations (5.14) as follows:

eBi∇``
i = h (eB,∇``) = −h (`,∇`eB)

= −h (`, [`, eB])− 1

2
eB[h (`, `)]

= c2ϕB.

(5.56)

Therefore, the covariant derivative of the vertical vector field along itself is given by

∇`` = c2ϕAeA +O(c4). (5.57)

Observe that it vanishes in the Carrollian limit c2 → 0, dictating that the vector ` is the
null generator of null geodesics on the space H.

The covariant derivative of the vertical vector along the horizontal vectors can be com-
puted using the same technique. One can show that (see Appendix B.3) it is given by

∇eA` =

(
θ̊A

B + c2

(
1

2
wA

B + q̊BC`[λAC ]− 2λBC θ̊AC

))
eB +O(c4). (5.58)

The covariant derivative of the horizontal basis along the vertical basis, ∇`eA, is already
determined from∇eA` and the commutator [`, eA]. We are left with the remaining covariant
derivative, ∇eAeB. Its vertical component, ki∇eAeB

i can be inferred from ∇eA`. For the
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horizontal components, eCi∇eAeB
i, using that qAB = h (eA, eB) and the definition of the

Christoffel-Carroll symbols (5.18), we can show that

∇eAeB =

(
1

c2
θ̊AB +

(
1

2
wAB + `[λAB]

))
`+ (2)Γ̊CABeC

+ c2
(
DAλB

C + DBλA
C −DCλAB

)
eC .

(5.59)

With all these results, one can calculate the spacetime divergence of the basis vectors.
Using the decomposition (5.9), we obtain

∇i`
i = δi

j∇j`
i =

(
ki`

j + eBieB
j
)
∇j`

i = θ̊ + c2`[λ], (5.60)

and in a similar manner,

∇ieA
i = δji∇jeA

i =
(
ki`

j + eBieB
j
)
∇jeA

i = ϕA + (2)Γ̊BAB + c2eA[λ]. (5.61)

It is important to remark that the 3-dimensional metric compatible connection ∇i

diverges when taking the Carrollian limit c → 0. This is to be expected since the metric
(5.44) diverges in this special limit. This suggests that practical computations have to be
carried out at finite c and the Carrollian limit needs to be taken at the last step. In the next
Chapter, when we embed the space H into a higher-dimensional spacetime, there exists
another notion of connection, the so-called rigged connection, which exhibits a regular
limit.

5.2.3 Carrollian Hydrodynamics

Armed with all these tools, we are ready to discuss the hydrodynamics of Carrollian fluid.
Let us start from the general form of relativistic energy-momentum tensors,

T ij = (E + P)
`i`j

c2
+ Phij +

qi`j

c2
+
qj`i

c2
+ τ ij, (5.62)

where we chose the vertical vector ` to be the fluid velocity. The variables appeared in
the fluid energy-momentum tensor consist of the fluid internal energy density E, the fluid
pressure P, the heat current qi, and the viscous stress tensor τ ij, which is symmetric
and traceless. The latter two quantities represent dissipative effects of the fluid and, by
construction, they obey the orthogonality conditions with the fluid velocity, qi`i = 0 and
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τij`
j = 0. This means that, in light of Carrollian geometry we have introduced, these

dissipative tensors are horizontal tensors,

qi = qAeA
i, and τ ij = τABeA

ieB
j. (5.63)

We are interested in the mixed indices version of the fluid energy-momentum tensor.
Using the metric (5.44), it is given by

Ti
j = −

(
E`j + qAeA

j
)
ki +

(
1

c2
qABq

B`j +
(
qACτ

CB + PδBA
)
eB

j

)
eAi. (5.64)

Furthermore, we choose the following c2–dependence [124, 145, 216] of the dissipative ten-
sors,

qA = JA + c2
(
πA − 2λABJ

B
)
, τAB =

ΣAB

c2
+ SAB. (5.65)

Note also that qABqB = JA + c2πA +O(c4). Following from this parameterization, the fluid
energy-momentum tensor can be expressed as the expansion in c2 as

Ti
j =

1

c2
T(−1)i

j + T(0)i
j +O(c2), (5.66)

where each term reads

T(−1)i
j =

(
JA`

j + ΣA
BeB

j
)
eAi (5.67a)

T(0)i
j = −

(
E`j + JAeA

j
)
ki +

(
πA`

j +
(
KA

B + PδA
B
)
eB

j
)
eAi, (5.67b)

and we defined for convenience the combination,

KA
B := SA

B + 2λACΣCB. (5.68)

The dynamics of the relativistic fluid is governed by the relativistic conservation laws,
∇jTi

j. Let us first evaluate the vertical component of the conservation equations. With
all the tools we derived previously, we show that

`i∇jTi
j = ∇j

(
`iTi

j
)
− Tij∇j`

i

= −∇j

(
E`j + qAeA

j
)
− 1

c2
qA
(
eAi∇``

i
)
−
(
τAB + PqAB

) (
eAi∇eB`

i
)

= −(`+ θ)[E]− Pθ − (DA + 2ϕA)qA − τABθAB
=

1

c2
C + E +O(c2),

(5.69)
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where the coefficients of the c2–expansion are

E = −(`+ θ̊)[E]− Pθ̊ − (D̊A + 2ϕA)JA − SAB θ̊AB − ΣAB`[λAB], (5.70)

C = −ΣAB θ̊AB. (5.71)

Imposing `i∇jTi
j = 0 as one taking the limit c→ 0 demands E = 0 and C = 0. The first

equation is the Carrollian energy evolution equation and second equation is the constraint
equation. Note that the expression E for the energy equation differs from the original
work [124] due to the presence of the tensor λAB and the fluid velocity V A contained
implicitly in the Carrollian `. As we will discuss in the next section, these two additional
variables are part of the phase space of Carrollian fluids and they are necessary when one
wants to derive Carrollian conservation laws from symmetries. In this sense, our results
are the generalization of [124].

In a similar manner to the vertical component, we compute the horizontal components
of the conservation laws and consider the c2–expansion. This is given by

eA
i∇jTi

j = ∇j

(
eA

iTi
j
)
− Tij∇jeA

i

= ∇j

(
1

c2
qABq

B`j +
(
qACτ

CB + PδBA
)
eB

j

)
+

(
Eki −

1

c2
qBeBi

)
∇`eA

i

+
(
qBki −

(
qCDτ

BD + PδBC
)
eCi
)
∇eBeA

i

=
1

c2
(`+ θ)[qABq

B] + EϕA − wABqB + (DB + ϕB)(qACτ
CB + PδBA )

=
1

c2
JA + PA +O(c2),

(5.72)

where the zeroth-order term is

PA = (`+ θ̊)[πA] + EϕA − wABJB + (D̊B + ϕB)(KA
B + PδBA )

+
(
`[λ]JA + ΣA

BD̊Bλ+ ΣBCD̊AλBC

)
,

(5.73)

while the other term is

JA = (`+ θ̊)[JA] + (D̊B + ϕB)ΣB
A. (5.74)

Taking the Carrollian limit c → 0 of the conservation laws, eAi∇jTi
j = 0, imposes the

Carrollian momentum evolution, PA = 0 and the conservation of Carrollian current, JA = 0.
Again, our expression for PA is the more general case of [124].
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Let us provide a comment here that the case when the sub-leading components of the
sphere metric vanishes, λAB = 0 simplifies the Carrollian evolution equations,

E = −(`+ θ̊)[E]− Pθ̊ − (D̊A + 2ϕA)JA − SAB θ̊AB, (5.75a)

PA = (`+ θ̊)[πA] + EϕA − wABJB + (D̊B + ϕB)(SA
B + PδBA ), (5.75b)

JA = (`+ θ̊)[JA] + (D̊B + ϕB)ΣB
A, (5.75c)

C = −ΣAB θ̊AB. (5.75d)

These are the Carrollian fluid equations given in the literature [124,144].

5.3 Hydrodynamics from Symmetries

In this section, we tackle Carrollian hydrodynamics from a different, but nonetheless equiv-
alent, perspective. Our objective is to re-derive the equations that govern Carrollian hy-
drodynamics (5.70), (5.71), (5.73), and (5.74) from the symmetries of the space H.

5.3.1 The Action for Carrollian Fluid

Since the metric h is defined on the space H, we can consider the action of the fluid whose
variation yields the fluid energy-momentum tensor. We will consider the fluid action that
is finite when taking the Carrollian limit c → 0. The variation of the fluid action we will
use takes the form

δSfluid = −
∫
H

(
E�α− eαJA�βA + e−απ̃A�V A − 1

2

(
S̃AB + Pq̊AB

)
�q̊AB − ΣAB�λAB

)
ε̊H

(5.76)

where we defined the momentum conjugated to the velocity field V A and the leading-order
sphere metric q̊AB to be

π̃A := πA + λJA (5.77)

S̃AB := SAB + λΣAB. (5.78)

79



We also absorbed the Jacobian factors and the velocity field variation into the definition
of the variation � as follows,

�α := δα + βA�V A, (5.79)
�βA := (J−1)A

Cδ
(
JC

BβB
)
− (β · �V )βA, (5.80)

�q̊AB := (J−1)A
C(J−1)B

Dδ
(
JC

EJD
F q̊EF

)
− 2q̊C(AβB)�V

C , (5.81)
�λAB := (J−1)A

C(J−1)B
Dδ
(
JC

EJD
FλEF

)
− 2λC(AβB)�V

C , (5.82)

and that we define

�V A :=
(
δV B

)
JB

A. (5.83)

The action (5.76) is simply derived from the fluid energy-momentum tensor T ij and the
metric variation δhij. To see this, let us consider an action S[hij] and its metric variation
yields the energy-momentum tensor,

δS =

∫
H

(
1

2
T ijδhij

)
εH (5.84)

Since the fluid energy-momentum tensor (5.66) has a part that diverges when taking the
limit c→ 0, the variation δS also diverges in this limit. To obtain the finite action (5.76),
we subtract the divergent part from δS then take the Carrollian limit, that is

δSfluid := lim
c→0

(
δS − 1

c2
δS(−1)

)
. (5.85)

We note that the divergent part is given by

δS(−1) := lim
c→0

(
c2δS

)
=

∫
H

(
1

2
T ij(−1)δh(0)ij

)
ε̊H , (5.86)

where we used that the metric variation is regular as c→ 0 and schematically expands as
δhij = δh(0)ij + c2δh(1)ij +O(c4). The fluid action (5.76) is thus

δSfluid =

∫
H

1

2

(
T ij(0)δh(0)ij + T ij(−1)δh(1)ij + λT ij(−1)δh(0)ij

)
ε̊H . (5.87)
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5.3.2 Near-Carrollian Diffeomorphism

To derive the Carrollian hydrodynamic equations from the variation of the action (5.76) un-
der certain symmetries, we first need to specify those symmetries and derive the symmetry
transformations for the metric components, (α, βA, V

A, q̊AB, λAB). The seemingly obvious
choice one could consider is the Carrollian diffeomorphism. However, Carrollian diffeomor-
phism is not sufficient to derive the complete set of hydrodynamic equations (5.70), (5.71),
(5.73), and (5.74), as already shown in [144]. The reasons for this limitation are as follows:

i) Carrollian diffeomorphism fixes the variation of the velocity field, δCarrV A = 0, hence
turning off a phase space degree of freedom conjugated to the velocity, that is the fluid
momentum.

ii) There are only two symmetry parameters (τ, Y A) for the Carrollian diffeomorphism,
while there are four hydrodynamic equations. The symmetries labelled by the parameter
τ and Y A correspond, respectively, to the the energy equation (5.70) and the momentum
equation (5.73). To obtain the remaining two equations, the current conservation (5.74)
and the constraint (5.71), we would need two more symmetry parameters.

We therefore need to detach our consideration from the Carrollian diffeomorphism and
consider a general diffeomorphism on the space H. A general diffeomorphism on H is
labelled by vector fields of the form,

ξ = f`+XAeA, (5.88)

where f and XA are arbitrary functions on H. This general diffeomorphism will definitely
change the Carroll structure. In the same fashion as our prior discussions, let us expand
the transformation parameters (f,XA) in the small parameter c2 as

f = τ + c2ψ +O(c4), and XA = Y A + c2ZA +O(c4), (5.89)

where now the parameters (τ, ψ, Y A, ZA) are functions on H. This way, we have already
secured four parameters we need for four equations of Carrollian fluid. It is of extreme
importance to point out that expanding the diffeomorphism c2 = 0 can be regarded as the
analog to the diffeomorphism of spacetime geometry in the close vicinity of a black hole
horizon, the near-horizon diffeomorphism, where c2 plays the same role as the distance away
from the black hole horizon. We will refer to this diffeomorphism as the near-Carrollian
diffeomorphism.

As stated previously, we need to find how the metric components vary under the near-
Carrollian diffeomorphism. To carry out this task, we employ the technology of the anomaly
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operator ∆4ξ. The metric h is covariant under the near-horizon diffeomorphism, meaning
that its anomaly ∆4ξh := δξh−Lξh vanishes. The anomaly of the metric h decomposes as

∆4ξh = −2c2(∆4ξk) ◦ k + ∆4ξq

= −2c2(ι`∆4ξk)k ◦ k + 2
(

∆4ξq(`, eA)− c2(ιeA∆4ξk)
)
k ◦ eA + ∆4ξq(eA, eB)eA ◦ eB.

(5.90)
Demanding covariance, ∆4ξh = 0, imposes the following conditions,

ι`∆4ξk = 0, ∆4ξq(`, eA) = c2(ιeA∆4ξk), and ∆4ξq(eA, eB) = 0. (5.91)

The problem then boils down to the computation of the anomaly of the Ehresmann con-
nection k and the anomaly of the null Carrollian metric q (we defer the derivations to
the Appendix B.4). Solving the above conditions for different powers of c2 gives us the
transformation of the metric components under the near-Carrollian diffeomorphism,

�ξα = δCarr
(τ,Y )α (5.92a)

eα�ξβA = eαδCarr
(τ,Y )βA + q̊AB`[Z

B] (5.92b)

�ξ q̊AB = δCarr
(τ,Y )q̊AB (5.92c)

�ξλAB =
1

2
δCarr

(ψ,Z)q̊AB + τ`[λAB] + Y CD̊CλAB + 2λC(AD̊B)Y
C , (5.92d)

where we recalled the functional form of the Carrollian transformations8 (5.40), (5.41), and
(5.42), and the transformation of the velocity field is given by,

�ξV
A = −DuY

A. (5.93)

5.3.3 Hydrodynamics from Near-Carrollian Diffeomorphism

The Carrollian hydrodynamic equations (5.70), (5.71), (5.73), and (5.74) can be recovered
by demanding invariance, up to boundary terms, of the fluid action (5.76) under the near-
Carrollian transformations, δξSfluid = 0. Using the near-Carrollian transformations (5.92)
and (5.93) and the Stokes theorem (5.53), one can show that

δξSfluid = −
∫
H

(
τE + ψC + Y APA + Z

AJA
)
ε̊H +Qξ (5.94)

8Although now there is no constraint on Y A, unlike the Carrollian transformations where `[Y A] = 0.
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where we defined the combinations of the transformation parameters, ψ := ψ + λτ and
Z
A

:= ZA+λY A. The boundary term Qξ is the Noether charge corresponding to the near-
Carrollian diffeomorphism. We clearly see that imposing δξSfluid = 0 up to the boundary
term yields the fluid equations.

The Noether charge of these transformations has three components associated with
different sectors of the near-Carrollian symmetries,

Qξ = Qτ +QY +QZ , (5.95)

where each components are given by

Qτ = −
∫
S

τ
(
E + eαJAβA

)
ε̊S, (5.96a)

QY =

∫
S

Y A
(
πA + eα

(
KA

B + PδBA
)
βB
)
ε̊S, (5.96b)

QZ =

∫
S

Z
A (

JA + eαΣA
BβB

)
ε̊S. (5.96c)

As one would expect, the transformations labelled by ψ have zero Noether charges, as they
are generators of the non-dynamical constraint (5.71).

It is important to appreciate that our results generalize those presented in [144] (which
was only the case V A = 0 and λAB = 0). In our consideration, we allow non-zero V A

and λAB and by using the proposed near-Carrollian diffeomorphism (5.89), we managed to
derive the complete set of Carrollian hydrodynamic equations and identified all the Noether
charges.
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Chapter 6

Carrollian Hydrodynamics on Stretched
Horizons

Having laid down the core concept of Carrollian hydrodynamics in the previous chapter, we
now aim at exploring the correspondence between gravitational dynamics in a spacetime
region around the null boundary and hydrodynamics of Carrollian fluids.

In section 6.1, we study a timelike foliation of a spacetime in a local region with a
null surface as its boundary. We adopt the rigging technique to construct the geometry of
timelike hypersurfaces, called stretched horizons, and we will show that a Carroll structure
is naturally induced on the surfaces. In section 6.2, we construct the energy-momentum
tensor of the surfaces and argue that it can be regarded as the energy-momentum tensor
of Carrollian fluids. We also show that its conservations laws corresponds to the Einstein
equations on the stretched horizons.

6.1 Geometries of Stretched Horizons and Null Surfaces

This first section aims to lay down relevant geometries of null and timelike hypersurfaces.
As advertised, we will focus particularly on the case when the surfaces are situated at
finite distances, with the prime example being event horizons of black holes (null) and
fictitious membranes (timelike) located at small distances outside the black hole horizons.
The reasons to consider timelike surfaces along with null boundaries are as follows:

i) Our study takes inspiration from the black hole membrane paradigm [8, 9], which is
the statement that gravitational dynamics of a black hole as seen from outside observers is
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captured entirely at the membrane located at or vanishingly close to the black hole horizon.
This timelike membrane placed at infinitesimal small distance, usually treated to be in the
same magnitude as Planck length, outside the horizon is particularly referred to as the
stretched horizon, and they are furnished with physical quantities such as energy, pressure,
and heat flux. One fascinating feature of the membrane viewpoint is that it establishes
the correspondence between gravitational dynamics of the membrane and dynamics of the
fluid. The correspondence allows us to construct a dictionary between gravitational objects
and fluid quantities, then study black hole physics from a hydrodynamic perspective.

ii) We want to elaborate the emerging connection between black hole horizons and Car-
rollian physics. Donnay and Marteau [121] demonstrated that the limit from the stretched
horizon to the black hole horizon can be regarded as the Carrollian limit, and the cor-
responding hydrodynamic picture displayed at the horizon is Carrollian in nature. We
therefore want to properly treat null and timelike surfaces on the same footing.

To set the stage, we consider a family of 3–dimensional timelike and null hypersurfaces
H embedded in an ambient 4–dimensional spacetime M . We indicate the embedding map
by  : H ↪→ M . The spacetime is endowed with a Lorentzian metric and a Levi-Civita
connection, (g,∇), and we denote coordinates on M by {xa}. We further provide on H
the fiber bundle structure, p : H → S. The space S is a 2–sphere with coordinates {σA}
and a metric qABdσA ◦ dσB. The complete Carroll structure on H will be induced from
another structure, the rigged structure.

Geometry of hypersurfaces can be studied through many different approaches, de-
pending on types of hypersurfaces and problems under consideration. For example, the
Arnowitt-Deser-Misner (ADM) formalism, also known as the (3+1)-decomposition of space-
time, has become a go-to tool to deal with spacelike Cauchy surfaces and timelike bound-
aries. This approach, however, relies on the existence of the apparent notion of time
and is thus useful when one wants to tackle initial-value problems of general relativity or
study Hamiltonian formulation of general relativity (see for instance [217] and references
therein). The (3+1)-splitting formalism can also be applied to null hypersurfaces [218].
This “time-first” formalism instinctively imprints a Galilean nature to the considerations,
rather than a Carrollian nature, which relies on “space-first” constructions. In this regard,
we then refrain from adopting the ADM formalism in our study. The spacetime geome-
try in close vicinity to the null surface has been studied extensively using Gaussian null
coordinates, which utilizes null geodesics to extend the coordinates on the null surface to
the surrounding spacetime. This formalism has been used to describe the near-horizon ge-
ometry of black holes [121,219,220] and also the geometry of general null surfaces located
at finite distances [112,221]. Let us also mention that another type of framework suitable
for studying the geometry of null hypersurfaces is the double null foliation [222], which
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can be perceived as a spacial, gauge fixed, case of a more general formalism, the (2+2)-
formalism. The (2+2)-splitting of spacetime has been proven to be the most apt formalism
for describing the geometry around codimension–2 corner spheres, regardless of the nature
of codimension–1 boundaries, and has been tremendously utilized in the arena of local
holography program [32, 44, 155]. In the context of asymptotic null infinity, the Bondi-
Metzner-Sachs (BMS) formalism and its extensions are widely adopted [63, 160, 223–225].
Our construction will rely on another framework suitable for describing general hypersur-
faces, the rigging technique [226].

The key point of this section is to demonstrate that by starting from a rigged structure
equipped on the surfaceH, a Carroll structure is naturally induced, and together, they fully
describe the intrinsic and extrinsic geometry of H. Our construction holds true for both
timelike hypersurfaces and null hypersurfaces and therefore provides a unified description
of these hypersurfaces. In this set up, the null boundary N can then be properly treated
as a limit of the stretched horizon H.

6.1.1 Rigged Structures

The Carroll structure we introduced in the previous chapter is purely intrinsic to the surface
H. Describing the complete geometry of H as a hypersurface embedded in the ambient
spacetime M requires extrinsic structures. As stated, we will utilize the rigging technique
for general hypersurfaces introduced by Mars and Senovilla [226]. We dress the surface H
with a rigged structure which by definition, is given by a pair (n, k), where n = nadx

a is
the normal 1–form to H and its dual vector, called the rigging vector, k = ka∂a is transverse
to H and thus obeys

ιkn = 1. (6.1)

In this construction, vectors X tangent to the surface H are such that ιXn = 0. In the
following, we will work with the normal form that defines a foliation of M . Following
from the Frobenius theorem, this means dn = a ∧ n for a 1-form a on M . To make
this statement more precise, we foliate the spacetime M into a family of null or timelike
surfaces whose leaves are specified at a constant positive value of a function r(x). Without
loss of generality, we choose the leaves at r(x) > 0 to be timelike stretched horizons H and
situated at r(x) = 0 is the null boundary N . In this sense, the null limit from H to N
corresponds to the limit r → 0. In this setup, the normal form is given by

n = eαdr, (6.2)
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Figure 6.1: Stretched horizons H are chosen to be surfaces at r = constant and the null
boundary N can be regarded as the limit r → 0 of the sequence of stretched horizons. The
surface H is endowed with the rigging vector k and its dual form n. The Carroll structure
with the vertical vector ` and the horizontal vector eA is induced from the rigged structure,
and together with k, they form a complete basis for the tangent space TM .

and that dn = a ∧ n where a = dα as desired.

The rigged structure allows us to define the projection tensor, Π : TM → TH, whose
components are given in terms of the rigged structure by

Πa
b := δba − nakb, such that kaΠa

b = 0 = Πa
bnb. (6.3)

This projector is designed such that, for a given vector field X on M , the vector Xb
:=

XaΠa
b ∈ TH is tangent to H with X

a
na = 0. In the same vein, for any given 1–form

ω ∈ T ∗M , the 1–form ωa := Πa
bωb ∈ T ∗H is a 1–form on H such that kaωa = 0.

6.1.2 Induced Carroll Structures

Assuming that the spacetime M is equipped with a Lorentzian metric g, we can now use
the metric and its inverse to define the 1–form k = g(k, ·) and the vector n = g−1(n, ·). We
restrict our consideration to the case when the rigged structure (n, k) is null, meaning that
k is a 1–form on H, hence satisfying the conditions ka = Πa

bkb ∈ T ∗H and thus kaka = 0.
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In addition, we denote by
√

2ρ the norm of the normal 1–form. Overall this means that

g(k, k) = 0, g−1(n,n) = nan
a := 2ρ. (6.4)

We choose the ρ such that it is constant on the surface H, such that Πa
b∂bρ = 0. We can

furthermore define a tangential vector field ` = `a∂a ∈ TH whose components are given
by `a := nbΠb

a. This vector is related to the vector n and k by

na = 2ρka + `a. (6.5)

One can easily verify that the tangential vector ` and the 1–form k obey the following
properties,

ι`n = 0, and ι`k = 1. (6.6)

The first property emphasizes the fact that ` is tangent to the space H while the second
one suggests that ` can be thought of as an element of a Carroll structure on H where
the 1–form k plays a role of the corresponding Ehresmann connection. Other elements of
the Carroll geometry, including the horizontal basis eA and the co-frame field eA, follow
naturally from this construction. To see this, note that the rigging projector can be further
decomposed as

Πa
b = qa

b + ka`
b, with qa

bkb = 0 = `aqa
b. (6.7)

The tensor qab = eAaeA
b is the horizontal projector from the tangent space TH to the

horizontal subspace hor(H). The last element of the Carroll structure, the null Carrollian
metric on H, is given by qab = qa

cqb
dgcd. We will also make an additional assumption that

the projection map, p : H → S, is the same for all H, inferring that the co-frame eA on H
is closed, deA = 0, throughout the spacetime M .

It is important to appreciate the result we have just developed. That is, the Carroll
structure on the space H is fully determined from the rigged structure and the spacetime
metric. Let us summarize again all important bits in the box below.

Induced Carroll structure: Given the null rigged structure (k,n) on any hypersurface,
with the rigged vector field k being null, and the spacetime metric g, the Carroll structure
(π, `, q) is naturally induced on the hypersurface. The vertical vector field ` and the
Ehresmann connection k are related to the rigged structure by

`a = ncg
cbΠb

a, and ka = gabk
b. (6.8)

The null Carrollian metric is qab = qa
cqb

dgcd, where qab = Πa
b−ka`b is a horizontal projector.
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The basis vectors (`, k, eA) and the dual 1–forms (k,n, eA) then span the tangent space
TM and the cotangent space T ∗M , respectively (see Figure 6.1). The spacetime metric
then decomposes as

gab = qab + ka`b + nakb

= qab + 2n(akb) − 2ρkakb.
(6.9)

It is also important to appreciate that, in general, the Carrollian vector field ` is not null
and its norm is

`a`
a = −2ρ. (6.10)

This expresses the fact that the Carroll structure is null only on the null surface N . Note
that the metric expression is regular when ρ = 0. Moreover, on N , we have that na = `a.

Armed with the induced Carroll structure onH, almost all analysis done in the previous
chapter can be applied, including the Carrollian commutation relations (5.14) and the
general coordinates xi = (u, yA) on H. We will elaborate more on coordinate choices in
later section. One, however, has to keep in mind that rather than considering the space
H only on its own, viewing H as a surface embedded in the higher-dimensional spacetime
benefits us with richer geometry. In our consideration, this additional geometry arises from
the transverse direction, capturing by the rigged structure (k,n).

To simplify our computations, we make another assumption that the null transverse
vector k generates null geodesics on the spacetime M , meaning that ∇kk = 0. This
particularly infers that the curvature of the Ehresmann connection retains the form1 (5.10),

dk := −ϕA(k ∧ eA)− 1

2
wAB(eA ∧ eB), (6.11)

where ϕA and wAB are the previously introduced Carrollian acceleration and the Carrollian
vorticity, respectively. Let us recall that we have chosen earlier that the null normal
n = eαdr defines a foliation of the spacetime M , and the curvature of the normal form is

dn = `[α]k ∧ n− eA[α]n ∧ eA, (6.12)

The components `[α] and eA[α] are related to the surface gravity and the Hájíček 1-form
field. They are parts of the extrinsic geometry of the surface H which we will explain
momentarily. Let us also mention again that the curvature deA = 0 by construction.

1This is equivalent to the condition ιkdk = Lkk = 0, and one can verify, using the null-ness property
of k, that gab(Lkk)b = ∇kka.
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Similar to the derivation carried out in the previous chapter, the curvatures of the
basis 1–forms determine the commutators of their dual vector fields through the relation
(5.11). In this 4–dimensional case, it follows from (6.11) and (6.12) that the non-trivial
commutators of the basis vector fields are

[`, eA] = ϕA`, [eA, eB] = wAB`, [k, `] = `[α]k, [k, eA] = eA[α]k. (6.13)

The first two terms again are the Carrollian commutation relations.

6.1.3 Rigged metric and Rigged connection

On the surface H, we can define the rigged metric, Hab := Πa
cΠb

dgcd, and its conjugate,
Hab := gcdΠc

aΠd
b. Given any two tangential vectors X, Y ∈ TH that, by definition, satisfy

the condition Xana = Y ana = 0, we can clearly see that

HabX
aY b = gabX

aY b, and Hbak
a = 0. (6.14)

This shows that the rigged metric Hab acts on tangential vector fields the same way as
the induced metric hab = gab − 1

2ρ
nanb. The difference, however, lies in the fact that the

induced metric is orthogonal to n, i.e., habnb = 0 while the rigged metric satisfies the
transversality condition Habk

b = 0. Combining this definition with (6.9) we see that the
rigged and induced metric on the space H can be written in terms of the Carroll structure
as

Hab = qab − 2ρkakb, and hab = qab −
1

2ρ
`a`b, (6.15)

Observe that the advantage of the rigged metric is that it provides an expression that is
regular when taking the null limit, ρ→ 0, while, on the other hand, the expression for the
induced metric blows up when ρ→ 0. In this thesis, we will only use the rigged metric in
our computations. It is crucial to notice that the rigged metric is precisely in the form of
the Randers-Papapetrou metric (5.44) we have discussed in the previous chapter, with the
parameter ρ plays a role of the virtual speed of light.

We next introduce a notion of a connection on the space H, a rigged connection, de-
scended from the rigged structure. Recall that by definition, a rigged tensor field Tab on H
is a tensor on M such that kaTab = 0 = Ta

bnb. We defined a rigged connection of a tensor
field Tab as a covariant derivative projected onto TH,

DaTb
c = Πa

dΠb
e(∇dTe

f )Πf
c. (6.16)
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One can first check that this connection is torsionless

[Da, Db]F = Πa
cΠb

d(∇cΠd
e −∇dΠc

e)∇eF

= −Πa
cΠb

d(∇cnd −∇dnc)k[F ]

= 0

(6.17)

where we used in the last equality the fact that na defines a foliation ∇[anb] = a[anb]. It is
straightforward to check that the rigged connection preserves the rigged projector

DaΠb
c = Πa

dΠb
e(∇dΠe

f )Πf
c = −Πa

dΠb
e∇d(nek

f )Πf
c = 0. (6.18)

It does not, however, preserve the rigged metric. Instead, we can show that

DaHbc = Πa
dΠb

eΠc
f∇d(Πe

iΠf
jgij)

= Πa
dΠb

eΠc
f
(
(∇dΠe

j)gfj + (∇dΠf
j)gej

)
= −Πa

dΠb
eΠc

f ((∇dne)kf + (∇dnf )ke)

= −Kabkc −Kackb

(6.19)

where Kab := Πa
cΠb

d∇cnd = 1
2
LnHab is the extrinsic curvature of the surface H computed

with the rigged metric.

6.1.4 Coordinates

We conclude our geometrical construction of intrinsic structure of stretched horizons with
the introduction of coordinates. As we have stated that stretched horizons H are defined
to be hypersurfaces labelled by a parameter r ≥ 0, we can then adapt r to serve as a radial
coordinate. Furthermore, since the Carroll structure is induced on H, this means we can
use the general coordinates (u, yA) defined in Section 5.1.3 as the coordinates on H, and
they are extended throughout the spacetime M by keeping their values fixed along null
geodesics generated by the transverse vector k. Overall, we adapt xa = (u, r, yA) as the
coordinates on M .

In this coordinate system the basis vector fields are expressed as follows

` = e−αDu, k = e−α∂r eA = (J−1)A
B(∂B + βBDu) (6.20)

where Du = ∂u + V A∂A. The dual basis 1-form are given by

k = eα(du− βAeA), n = eαdr, eA = (dyB − V Bdu)JA
B. (6.21)
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The components (α, βA, V
A, JA

B) which are parts of the Carroll geometry are functions
of the coordinates (u, yA) on H. Their independence of the radial coordinate r stems from
our construction that the Carroll projection p : H → S is independent of the foliation
defined by the function r(x), and that k is tangent to null geodesics. One can indeed be
more general by relax the r-independent conditions. Doing so would inevitably introduce
more variables, i.e., radial derivatives of these components, to the consideration, thereby
renders computations more complicated. We refrain from doing so and keep our analysis
simple in this thesis. Let us also remark that, even though the frame eA is set to be
independent of the radial direction r, the null Carrollian metric qab can still depend on r due
to the possible r-dependence of the sphere metric qAB. The remaining metric components,
which are the norm ρ and the scale α, are in general functions of (u, r, yA). We will however
impose in the following section that ρ only depends on r, that is Daρ = 0 for the reason
we will justify momentarily.

6.2 Conservation Laws on Stretched Horizons

We are now at the stage where we can discuss the Carrollian fluid energy-momentum
tensor on the stretched horizon H and derive its conservation laws. We will first outright
define the Carrollian fluid energy-momentum tensor and how Einstein equations imply
conservation laws (or vice versa). The correspondence between fluid quantities and the
extrinsic geometry of stretched horizons will be discussed afterwards.

Following the definition presented in [149], the rigged energy-momentum tensor on the
null surface is related to the the null Weingarten tensor Πa

c∇c`
dΠd

b. Since the vector na
goes to `a on the null boundary, it suggests that the fluid energy-momentum tensor on the
surface is defined as,

Ta
b = Wa

b −WΠa
b, (6.22)

where Wa
b := Πa

cΠd
b∇cn

d is the rigged Weingarten tensor on H and W = Wa
a is its

trace. This tensor agrees with the one defined in [149] on the null boundary. We will show
next that the Einstein equations Gab = 0 and the condition Daρ = 0, imply hydrodynamic
conservation laws DbTa

b = 0 .

6.2.1 Conservation laws

Our goal here is to show that conservation of the energy-momentum tensor follows from
the Einstein equations. In the following derivation, we will keep track of the tangential
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derivative of the norm of the normal form, Daρ, by allowing its value to be non-zero.
We will show that the condition Daρ = 0 is necessary to have a proper definition of the
energy-momentum tensor that obeys conservation laws outside the null boundary N , hence
justifying our prior assumption.

To start with, the covariant derivative of the vector n decomposes as

∇an
b = Wa

b + kbDaρ+ na∇kn
b, and thus ∇an

a = W + k[ρ], (6.23)

where we used that na∇bn
a = 1

2
∇b(nan

a) = ∇bρ. The rigged covariant derivative of the
rigged Weingarten tensor can then be written as

DbWa
b = Πa

cΠd
b∇bWc

d = Πa
c∇bWc

b + Wa
c∇knc. (6.24)

We can then show that

Πa
c∇b∇cn

b = Πa
c∇b(Wc

b + kbDcρ+ nc∇kn
b)

= Πa
c∇bWc

b + (Daρ)(∇bk
b) + Πa

c∇k(Dcρ) + Πa
c(∇bnc)(∇kn

b)

= DbWa
b + (Daρ)(∇bk

b) + Πa
c∇k(Dcρ) + (Πa

c∇bnc −Wab)∇kn
b

= DbWa
b + (Daρ)(Dbk

b) + Πa
c∇k(Dcρ)− aak[ρ],

(6.25)

where to arrive at the last equality, we used the property that ∇ak
a = Dak

a := Πa
b∇bk

a,
provided that k is the geodesic vector field, and

(Πa
c∇bnc −Wab) = Πa

c(∇bnc −∇cndΠ
d
b) = Πa

c(∇bnc −∇cnd(δ
d
b − ndkb))

= Πa
c(abnc − acnb) +Daρkb

= −aanb +Daρkb.

(6.26)

Next, using the property that the Einstein tensor along the vector na projected onto H
coincides with the Ricci tensor, Πa

cnbGbc = Πa
cRnc, and invoking the definition of the

Ricci tensor in term of the commutator, we derive

Πa
cGnc = Πa

c[∇b,∇c]n
b = Πa

c∇b∇cn
b −Da(∇bn

b)

= Db(Wa
b −WΠa

b) + (Dbk
b)Daρ− aak[ρ] + Πa

c[∇k, Dc]ρ.
(6.27)

We then show that the last term can be manipulated as follows:

Πa
c[∇k, Dc]ρ = Πa

ckb(∇bΠc
d)∇dρ− Πa

d(∇dk
b)∇bρ

= −Πa
ckb(∇bnc)k[ρ]− Πa

dnb(∇dk
b)k[ρ]− Πa

d∇dk
bDbρ

= Πa
ckb (∇cnb −∇bnc) k[ρ]−Dak

bDbρ

= aak[ρ]−Dak
bDbρ,

(6.28)
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where we used that ∇[anb] = a[anb] to arrive at the last equality. Finally putting everything
together, the Einstein tensor can therefore be expressed as

Πa
cGnc = Db

(
Wa

b −WΠa
b + kbDaρ

)
. (6.29)

It then becomes crystal clear that because the condition Daρ = 0, the energy-momentum
tensor (6.61) is conserved once imposing the Einstein equations Πa

cGnc = 0,

Πa
bGnb = DbTa

b = 0. (6.30)

Remarks are in order here:

i) Conservation laws are automatically satisfied on the null boundary N without posing
an extra condition on ρ as its value already vanishes on N . This again agrees with [149].

ii) It is also tempting to use instead Tab = Wa
b −WΠa

b, where Wa
b := Πa

c∇cn
b =

Wa
b + kbDaρ, as the conserved energy-momentum tensor. This however raises a problem.

As the tensor Tab contains components in transverse direction, it does not serve as a
bonafide energy-momentum tensor of the stretched horizons.

iii) There are in fact two possible solutions to this difficulty, that is we either require
Dak

a = 0 or Daρ = 0. The former is too restrictive as it deliberately kills a degree of
freedom θ := Dak

a on the surface H. As such, we instead require Daρ = Da(
1
2
nan

a) = 0.

iv) One can always reach the condition Daρ = 0 by exploiting the fact that the rigging
condition naka = 1 only defines the normal form n and the transverse vector k up to the
rescaling n→ Ωn and k → Ω−1k for a function Ω on M . We will comeback to this point
again shortly.

6.2.2 Fluid Energy-Momentum Tensor

We have already defined the energy-momentum tensor of stretched horizons and showed
that it obeys conservation laws as desired. We now discuss how its components, which
are interpreted as Carrollian fluid momenta, can be expressed in terms of the extrinsic
geometry of the surface. As a tensor tangent to the surface H, the energy-momentum
tensor decomposes as

Ta
b := Wa

b −WΠa
b = −

(
E`b + Jb

)
ka + πa`

b +
(
Ka

b + Pqa
b
)
, (6.31)

which is precisely the form of the zeroth order Carrollian fluid energy-momentum tensor
(5.67b). The rigged Weingarten tensorWa

b (sometimes called the shape operator) captures
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essential elements of extrinsic geometry of the surface H. It has been established that
components of the extrinsic geometry serve as the conjugate momenta to the intrinsic
geometry of the surface, in the gravitational phase space (see [111,155] for the case of null
boundaries). In our construction, the intrinsic geometry is encoded in the Carroll structure
and the extrinsic geometry is the Carrollian fluid momenta. We will come back and have
an in-depth discussion on this aspect at the level of phase space in the upcoming Chapter.

The rigged Weingarten tensor by definition is the covariant derivative of the vector na
projected, using the rigged projector, on to H,

Wa
b = Πa

cΠd
b(∇cn

d) = Πa
c∇cn

b, (6.32)

where the last equality holds because we have chosen the norm of the 1-form n to be
constant on H, that is ndΠa

c∇cn
d = Daρ = 0. On the null hypersurface N , the tensor

Wa
b = Πa

c∇c`
b is called the null Weingarten tensor [111, 149, 157]. Following from the

definition of the energy-momentum tensor, the Weingarten tensor (6.61), which is a tensor
field on H, can be parameterized in terms of Carrollian fluid momenta as

Wa
b = Ka

b +
1

2
Eqa

b + πa`
b − Jbka −

(
P +

1

2
E

)
ka`

b, (6.33)

where we emphasize again that the tensors Ka
b, πa, and Ja are horizontal. Since the vector

na is a linear combination of the tangential vector `a and the transverse vector ka, the
Weingarten tensor then decomposes as follows

Wa
b = W(`)a

b + 2ρW(k)a
b, (6.34)

where we defined

W(`)a
b := Da`

b = θa
b + πa`

b + Abka + κka`
b (6.35)

W(k)a
b := Dak

b = θa
b − (πb + ϕb)ka. (6.36)

Note that the absence of the `b terms in W(k)a
b is due to the fact that the vector k is null.

Let us now elaborate the connection between fluid momenta and the components of the
tensor W(`)a

b and W(k)a
b.

Viscous stress tensor and Energy density

Let us first consider the spin-2 components of the rigged Weingarten tensor, which are the
extrinsic curvature tensor, qacqbdWc

d = qa
cqb

d∇cnd. Observe that this object is symmetric
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in its two indices which follows from the fact that the normal form n defines foliation,
∇[anb] = a[anb]. Its trace corresponds to the Carrollian fluid energy density E,

E := qa
b∇bn

a or equivalently, E := qABg(eB,∇eAn), (6.37)

and the traceless part corresponds to the viscous stress tensor, Kab = KABe
A
ae
B
b, of

Carrollian fluids,

Kab := q〈a
cqb〉

d∇cnd, or, KAB := g(eB,∇eAn)− 1

2
qCDg(eD,∇eCn)qAB. (6.38)

We can also define the extrinsic curvature tensor2 associated with the tangential vector
` to be θab := qa

cqbdW(`)c
d = qa

cqb
d∇c`d. Components of this extrinsic curvature tensor can

be expressed in the horizontal basis as

θAB = g(eB,∇eA`) =
1

2
`[qAB] + ρwAB. (6.39)

Notice that this tensor is symmetric only on the boundary N and its antisymmetric part
is given by the Carrollian vorticity. The trace and the symmetric traceless components of
tensor θAB are the expansion and the shear tensor associated with the tangential vector `,

θ := qABθAB = `[ln
√
q], and σAB := θ(AB) −

1

2
θqAB. (6.40)

In a similar manner, we define the extrinsic curvature tensor associated with the transverse
direction k as θab := qa

cqbdW(k)c
d = qa

cqb
d∇ckd, and its components can be expressed as

θAB = g(eB,∇eAk) =
1

2
k[qAB]− 1

2
wAB. (6.41)

Observe that θAB is not symmetric even on the null surface. Its trace and its symmetric
traceless components are respectively the expansion and the shear associated with k and
they are given by

θ := qABθAB = k[ln
√
q], and σAB := θ(AB) −

1

2
θqAB. (6.42)

2Note that despite the terminology, the tensor Da`
b does not truly describe the extrinsic geometry of

the space H as ` is tangent to H. Its values are completely determined by the intrinsic geometry, i.e. the
Carrollian structure of the surface.
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Let us also note that the combination

g(eB,∇eAn) = θAB + 2ρθAB =
1

2
n[qAB] (6.43)

is symmetric as we have already stated. The fluid energy density and the viscous stress
tensor are given in terms of expansions and shear tensors by

E = θ + 2ρθ, and KAB = σAB + 2ρσAB. (6.44)

It is important to appreciate that geometrically, the internal energy E computes the ex-
pansion of the area element of the sphere S along the vector n. On the null surface N ,
it therefore computes the expansion of the area element along null vector `, while the
traceless part Kab corresponds to the shear tensor [111,149,155].

Momentum density

There are two spin-1 components of the energy-momentum tensor Tab. The first one
corresponds to the Carrollian fluid momentum density, πa = πAe

A
a, which is defined as

πa := qa
ckb∇cn

b, or in the horizontal basis, πA := g(k,∇eAn). (6.45)

It then follows from the null rigged condition, kaka = 0, that πa = qa
ckb∇c`

b is the Hájíček
field computed with the basis vector (`, k, eA). The expression of the fluid momentum can
be derived starting from the commutators 6.13 as follows

eA[α] = g(`, [k, eA]) = g(`,∇keA)− g(`,∇eAk)

= g(k,∇`eA) + g(k,∇eA`)

= g(k, [`, eA]) + 2g(k,∇eA`)

= ϕA + 2πA,

(6.46)

where to get from the first line to the second line, we repeatedly applied Leibniz rule and
used that g([k, `], eA) = 0. We therefore arrive at the expression for the fluid momentum

πA =
1

2
(eA[α]− ϕA) . (6.47)
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Carrollian heat current

Another spin–1 quantity is the Carrollian heat current, Ja = JAeA
a, defined as

Ja := −qba∇`n
b, or in the horizontal basis, JA := −qABg(eB,∇`n) (6.48)

This object is related to the tangential acceleration Aa = qb
a∇``

b of the vector ` and the
Carrollian momentum density as one can check using (6.5) and repeatedly applying Leibniz
rule and the commutators (6.13),

JA = −g(eA,∇``)− 2ρg(eA,∇`k)

= −AA + 2ρg(eA, [k, `]) + 2ρg(`, [k, eA])− 2ρg(k,∇eA`)

= −AA + 2ρ (eA[α]− πA) .

(6.49)

We can evaluate the tangential acceleration as follows

AA = g(eA,∇``) = −g(`, [`, eA])− g(`,∇eA`) = eA[ρ] + 2ρϕA. (6.50)

Observe that the acceleration vanishes on the null surface N . Overall, the Carrollian heat
current Ja thus becomes

JA = 2ρπA − eA[ρ], (6.51)

and it vanishes on the null boundary N .

Surface gravity and Pressure

The last spin-0 component of the energy-momentum tensor is the fluid pressure P defined
as the combination

P = −µ where we define µ := κ+
1

2
(θ + 2ρθ). (6.52)

Note that our combination µ on the stretched horizon is the generalization of what is called
the gravitational pressure in [111] defined for the case of null boundary. The surface gravity
κ is defined as

κ = ka∇``
a = g(k,∇``). (6.53)
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It also measures the vertical acceleration of the vector `. Its value is non-zero even on
the null boundary N . Let us also comment that we write the directional derivative of the
Carrollian vector field ` along itself as

∇`` = κ`+ AAeA + (2ρκ− `[ρ])k
N
= κ`, (6.54)

Recalling that AA N
= 0, this means ∇`` = κ` which clearly dictates that on the null

boundary N , the Carrollian vector ` generates non-affine null geodesics, and the in-affinity
is measured by the surface gravity κ. We can show that the surface gravity is given by

κ = g(k,∇``) = −g(`, [`, k])− g(`,∇k`) = `[α] + k[ρ]. (6.55)

Let us summarize below the dictionary between Carrollian fluid quantities and the
components of the Weingarten tensors W(`)a

b and W(k)a
b,

Energy density: E = θ + 2ρθ (6.56a)
Pressure: P = −µ (6.56b)

Momentum density: πA =
1

2
(eA[α]− ϕA) , (6.56c)

Carrollian heat current: JA = 2ρπA − eA[ρ], (6.56d)
Viscous stress tensor: KAB = σAB + 2ρσAB. (6.56e)

Lastly, let us provide the general form of the covariant derivative of the tangential
vector `, the transverse vector k, an their combination n = ` + 2ρk which will become
handy in further computations,

∇a`
b = W(`)a

b + (2ρ(πa + κka)−Daρ) kb − na
(
k[ρ]kb + (πb + ϕb)

)
(6.57)

∇ak
b = W(k)a

b − (πa + κka)k
b (6.58)

∇an
b = Wa

b + (Daρ)kb + na
(
k[ρ]kb − (πb + ϕb)

)
. (6.59)

6.2.3 Comment on the energy-momentum tensor

As we have explained, the condition Daρ is necessary to have conservations of the energy-
momentum tensor (6.61) and that this condition can always be chosen by properly rescaling
the normal form n. Let us now demonstrate how this is done. Suppose that we start from
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the norm ρ that is not constant on the surface, Daρ 6= 0, and consequently the energy-
momentum tensor Tab naively defined as in (6.61) is no longer conserved. In close vicinity
of the null boundary N , we can always express the norm as ρ = rη, where η is a function
on M . We can now define the new normal form as

n̂ :=
1√
η
n, with its norm being n̂an̂

a = 2r, (6.60)

which is now constant on the surface H. Notice that this corresponds to the change in the
scale factor α. One can then define the new energy momentum tensor,

T̂ a
b := Ŵa

b − ŴΠa
b = −

(
Ê`b + Ĵb

)
ka + π̂a`

b +
(
K̂a

b + P̂qa
b
)
, (6.61)

where Ŵa
b is the Weingarten tensor now defined with the rescaled vector n̂a. This new

energy-momentum tensor is now conserved, DbT̂ a
b = 0. One can check that this new

conserved tensor is related to the naive, non-conserved, one by

T̂ a
b =

1√
η

(
Ta

b − qab∂b(ln
√
η)`b + `[ln

√
η]qa

b
)
. (6.62)

Note that when working with the closed normal form, α = 0, the function η coincides
with the surface gravity κ on the null boundary. In such case, this particular form of
the conserved energy-momentum T̂ a

b, with the presence of the derivatives Da ln
√
κ terms,

has been proposed in [121]. In our previous construction, we have already bypassed this
construction by assuming a priori the condition Daρ = 0.

6.2.4 Einstein equation of the stretched horizons

We have already proved the the Einstein equations corresponds to the conservation laws
of energy-momentum tensor (6.61). With the extrinsic geometry of the stretched horizon
H defined, we now finally explicitly write the Einstein equations on H in terms of the
Carrollian fluid momenta.

Recalling the conservation equation (6.30), the component Gn` of the Einstein tensor
can be written as

Gn` = `aDbTa
b

= Da(`
bTb

a)− TabDb`
a

= −Da (E`a + Ja)− TabW(`)b
a

= −(`+ θ)[E]− Pθ − (DA + 2ϕA)JA −KA
BθB

A,

(6.63)
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where we used that DaJ
a = DAJ

A + (πA +ϕA)JA. This is precisely the form of the energy
equation (5.70) of Carrollian hydrodynamics. It is necessary to note that in this Chapter,
we have not expanded the sphere metric qAB as in (5.46). This is the reason why we will
not see the term λAB and the viscous tensor ΣAB in the present derivation. A similar
expansion to those in hydrodynamics will be discussed in the next chapter.

The remaining components of the Einstein tensor are GnA. In a similar manner, we
can show that

GnA = eA
aDbTa

b

= Da(eA
bTb

a)− TabDbeA
a

= Da (KA
a + PqA

a + πA`
a)− TabDbeA

a

= (`+ θ)[πA] + EϕA − wABJB + (DB + ϕB)(KA
B + PδBA ),

(6.64)

where we recalled that JA = 2ρπA and P = −κ− 1
2
E. We observe that GnA has the same

form as the Carrollian momentum equations (5.73).
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Chapter 7

Symmetries and Einstein Equations

In this final chapter, we explore the gravitational phase space and the Noether charges
associated with the so-called near-horizon diffeomorphism. The main plots of this Chapter
are the following:

i) The pre-symplectic potential capturing information about gravitational phase space
on the stretched horizon H are given in terms of the Carrollian conjugate pairs as in (5.76)

ii) The complete set of the Einstein equations, governing the evolution of the geometry
of the null boundary N can be derived from the near-horizon symmetries, and we compute
the Noether charges associated with these symmetries.

To accomplish the point ii), we need to forsake the preconception that the pre-symplectic
potential strictly evaluated at the null boundary fully captures all information, including
the dynamics, of the null boundary. Instead, we will show that a wealth of information of
the null boundary can be gained by considering the stretched horizon as the near-horizon
deviation from the boundary. This gives us access to the sub-leading contributions to
the null boundary phase space, and from these we can ultimately derived the Einstein
equations, specifically the components G̊`k = 0 and G̊AB = 0. The latter equations are
associated with the diffeomorphism-derived spin-2 symmetries of the surfaces. Let us now
discuss these plot points in details.

7.1 Pre-Symplectic Potential

Gravitational phase space of the stretched horizonH can be constructed using the covariant
phase space formalism (see an introductory review given in Chapter 2). The main object
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that encodes phase space information of the theory is the pre-symplectic potential. In our
study, we consider the 4-dimensional Einstein-Hilbert Lagrangian without the cosmological
constant and without matter degrees of freedom, L = 1

2
RεM where R stands for the

spacetime Ricci scalar and εM denotes the spacetime volume form. The standard pre-
symplectic potential of the Einstein-Hilbert gravity pulling back to the stretched horizon
H is given by

ΘH = −ΘanaεH , where Θa =
1

2

(
gac∇bδgbc −∇aδg

)
, (7.1)

where we recalled the volume form on the surface εH := −ιkεM and we also denote the
trace of the metric variation with δg := gabδgab. In order to evaluate the pre-symplectic
potential ΘH , one starts with the variation of the spacetime metric, whose components are
expressed in terms of the co-frame fields as,

δgab = δqab + 2k(aδnb) + 2`(aδkb) − 2(δρ)kakb. (7.2)

Computations of the variation δgab then boil down to the computation of variations of the
co-frame n and k and the null metric qab. These variations are given by

δn = δαn, δk = �αk − eα�βAe
A, δq = −2eαqAB�V Bk ◦ eA + �qABe

A ◦ eB, (7.3)

where we define the variation � as follows

�α := δα + βA�V A, (7.4)
�βA := (J−1)A

Cδ
(
JC

BβB
)
− (β · �V )βA, (7.5)

�qAB := (J−1)A
C(J−1)B

Dδ
(
JC

EJD
F qEF

)
− 2qC(AβB)�V

C , (7.6)
�V A :=

(
δV B

)
JB

A. (7.7)

One can then compute the trace of the metric variations and it is given by

δg = 2(δα + δα + δ ln
√
q) = 2(δα + �α + � ln

√
q). (7.8)

After tedious but straightforward computations, we finally obtain the expression for the
pre-symplectic potential on the stretched horizon,

ΘH =

∫
H

(
−E�α + eαJA�βA − πAe−α�V A +

1

2

(
KAB + PqAB

)
�qAB − θδρ

)
εH

+ δ

∫
H

(
κ+ 2ρθ

)
εH +

∫
S

(
1

2
(δα− δα) + δ ln

√
q

)
εS

(7.9)
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We observe that the bulk piece of the pre-symplectic potential contains the same conjugate
pairs as in the Carrollian hydrodynamics (5.76) with the addition of the term θδρ that
vanishes on the null boundary N . We also notice that the scale α of the normal form only
appear in the corner term, in agreement with the one presented in [111,155] for the case of
null boundary. This suggests that we can safely set α = 0 without losing any phase space
data. We will do so for the rest of this chapter.

7.2 Near-Horizon Expansion

As we have promoted, we shall focus our attention on the study of spacetime geometry in
extremely close vicinity of the null boundary N located at the coordinate r = 0. To this
end, we are considering the stretched horizon H located at an infinitesimally small value of
the coordinate r. This means that variables on H that are functions of r admit power series
expansions in the coordinate r. This picture indeed in the same spirit as to when studying
spacetime geometry near (null) horizon of black holes (see for example [121, 219, 220] and
[112] for general null surfaces at finite distances). We will hence adopt in this thesis the
terminology near-horizon to refer to this particular scenario.

Let us recall that the variables contained in the metric (6.9) fall into two categories:
those that are independent of the radial coordinate r and those that depend on r. The
former comprises (α, βA, V

A, JA
B) while the latter contains (ρ, qAB) (we recall here again

that we will set α = 0 from this point on). Since the variables ρ and qAB depend on the
radial coordinate, they hence admit the power series in r around the null boundary (r = 0).
Let us first focus on the norm ρ which we now take to be a function on M1. Let us recall
the expression (6.55) for the surface gravity, κ = k[ρ] infers that the norm ρ completely
determines the surface gravity, or vice versa. Let us now express the surface gravity as

κ = κ̊+ rκ(1) +O(r2), (7.10)

where κ̊ and κ(1) are functions on the surface. The leading-order2 κ̊ is the surface gravity
evaluated on the null boundary, κ N

= κ̊, and the sub-leading order is given by ∂rκ
N
= κ(1).

1This seemingly contradicts the condition Daρ = 0 required for conservation laws of energy-momentum
tensor we have placed previously. However, as we have explained in the previous chapter, when focusing
on the null boundary, this condition can be relaxed. We will see that, when setting α = 0, the norm ρ
completely determines the surface gravity. Imposing ρ to be constant on the surface means the surface
gravity on the surface is constant, and this scenario corresponds to the case when the Carrollian fluid on
the null surface is in global equilibrium. This condition in a sense is too restrictive in this case.

2We will use the symbol −̊ to denote the zeroth (or leading) order of quantities.
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Given the form of κ, we can then integrate it to obtain the norm ρ as

ρ = rκ̊+
1

2
r2κ(1) +O(r3). (7.11)

Another element of geometry that can depend on the radial coordinate r is the sphere
metric qAB. In a much similar manner, we express the sphere metric as a power series in
r as follows

qAB = q̊AB + 2rλAB +O(r2), (7.12)

where again qAB
N
= q̊AB and ∂rqAB

N
= 2λAB, and both q̊AB and λAB are functions on the

surface. To avoid mixing different orders of the r-expansion, we will use the metric q̊AB
and its inverse q̊AB to lower and raise horizontal indices. In this setup, the inverse of the
sphere metric is then qAB = q̊AB − 2rλAB + O(r2). As a consequence of the near-horizon
expansion of ρ and qAB, some elements of extrinsic geometry derived from them also admit
the near-horizon expansion.

Let us first look at the extrinsic curvature associated with the vector k, that is θAB =
1
2
k[qAB]. One can then check that λAB coincides with the leading-order in r of the sym-

metric part θ(AB)
N
= λAB. We then have the trace-traceless split3,

λAB = θ(AB) = σAB +
1

2
θq̊AB, and θ := q̊ABθAB = λ, (7.13)

where we denote the trace λ = q̊ABλAB. In the same vein, the extrinsic curvature associated
to the tangential vector ` is then written as θAB = θ̊AB + rθ(1)

AB +O(r2) where we have

θ̊AB =
1

2
`[̊qAB] and θ(1)

(AB) = `[θ(AB)]. (7.14)

The expansion θ := qABθAB = θ̊ + rθ(1) +O(r2) is then

θ̊ = `[ln
√
q̊], and θ(1) = `[θ]. (7.15)

We can also define the leading-order shear tensor, which is traceless, as

σ̊AB := θ̊AB −
1

2
θ̊q̊AB. (7.16)

3The extrinsic curvature θAB and its offsprings will always appear at the sub-leading order in our
analysis and hence only its value at the zeroth order θ̊AB will become relevant in our computations. To
prevent cumbersome notations, we will omit the symbol −̊ in θAB , θ, and σAB , while keeping in mind that
these notations already represent their values on the null boundary.
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Lastly, we comment that the volume forms on the stretched horizon H and on the sphere
S also admit a near-horizon expansion as

εH = (1 + rθ)εN +O(r2), and εS = (1 + rθ)̊εS +O(r2), (7.17)

where the volume form on the null boundary is εN := ε̊H = εH |r=0.

7.2.1 Near-horizon expansion of pre-symplectic potential

We now write the near-horizon expansion of the pre-symplectic potential on the stretched
horizon, ΘH , as

ΘH = ΘN + rΘ(1)

N +O(r2) (7.18)

The leading-order term represents the pre-symplectic potential when strictly evaluated on
the null boundary. It is given by

ΘN =

∫
N

(
−E̊�α− πAe−α�V A +

1

2

(
K̊AB + P̊q̊AB

)
�q̊AB

)
εN + δ

∫
N

κ̊εN + Θ̊S

(7.19)

where the conjugate momenta are the Carrollian fluid quantities living on the null boundary
N . They are given by

E̊ = θ̊, πA = −1

2
ϕA, K̊AB = σ̊AB, P̊ = −

(
κ̊+

1

2
θ̊

)
. (7.20)

Notice that the momentum πA = −1
2
ϕA does not depend on the radial coordinate r be-

cause its value is determined from the r-independence sector of the metric components
(α, βA, V

A, JA
B). The corner term in the pre-symplectic potential is

Θ̊S =

∫
S

(
1

2
δα + δ ln

√
q̊

)
ε̊S. (7.21)

The sub-leading contributions to the null boundary phase space are encoded in the sub-
leading pre-symplectic potential,

Θ(1)

N =

∫
N

(
Pα�α + Pκδκ+ δκ(1) + Pθδθ + e−α(PV )A�V A + eα(Pβ)A�βA

+
1

2
(Pq)AB�q̊AB + (Pλ)AB�λAB

)
εN + Θ(1)

S ,

(7.22)
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where we defined the spin-0 sub-leading conjugate momenta as

Pα = −`[θ] + (̊κ− θ̊)θ + κ(1), Pκ = 2θ, and Pθ = 2̊κ− 1

2
θ̊. (7.23)

For spin-1 sector, we have that

(PV )A = −θπA, and (Pβ)A = −q̊ABeB[κ]− κϕA. (7.24)

Lastly, the spin-2 momenta are given by

(Pq)AB = q̊AC q̊BD`[σCD] + (2̊κ− θ̊)σAB − 4σC(Aσ̊B)
C −

(
1

2
(`+ θ̊)[θ]− κ̊θ

)
q̊AB (7.25)

(Pλ)AB = σ̊AB. (7.26)

The sub-leading corner piece is then

Θ(1)

S =

∫
S

(
θ

(
1

2
δα + δ ln

√
q̊

)
+ δθ

)
ε̊S. (7.27)

7.3 Near-Horizon Symmetries

We are now looking at the diffeomorphism that preserves our geometrical structures near
the null boundary, the so-called near-horizon symmetries. To derive the form of near-
horizon diffeomorphism and how the metric variables transform under such symmetries,
we first write the diffeomorphism vector field ξ as a power series in the radial coordinate,

ξ = (τ + rψ)`+ (W +
1

2
rU)rk + (Y A + rZA +

1

2
r2XA)eA + ... (7.28)

where ... denotes possible higher-order terms. The components (τ, ψ,W,U, Y A, ZA, XA)
are a prior independent functions on the null boundary. They are however not completely
independent as some of them are determined from the others, stemming from the fact that
there exist fixed background structures in our constructions.

In order to derive constraints on near-horizon symmetries, let us recall that the space-
time metric is covariant under diffeomorphisms, meaning that its anomaly vanishes, ∆4ξgab =
0. Using the decomposition (6.9), we write the anomaly of the metric as

∆4ξg = −2(∆4ξρ)k ◦ k − 4ρ(∆4ξk) ◦ k + 2(∆4ξn) ◦ k + 2(∆4ξk) ◦ n+ ∆4ξq = 0. (7.29)
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Components of this equation dictate the form of the vector field ξ and how the metric
variables change under diffeomorphisms generated by ξ. First, let us observe that the
component ∆4ξg(k, k) = 0 imposes the condition

−ιk∆4ξk = ιkLξk = k[ιξk] = 0 (7.30)

where we used the variation (7.3) (for the case α = 0) and that the vector k is null and
geodesic. The condition k[ιξk] = 0 dictates that the vertical component of the near-
horizon diffeomorphism is independent of the radial coordinate r. In other words, the
transformation parameter ψ and the higher-order terms vanish for near-horizon diffeomor-
phism. Other constraints on ξ are derived following from that the variables (α, βA, V

A) are
independent of r. For instance, the component ∆4ξg(`, k) = 0 yields

�ξα =
(
`[τ ] + Y AϕA +W

)
+ r

(
U + ZAϕA

)
+O(r2), (7.31)

which fixes the transformation �ξα and imposes the condition U = −ZAϕA. The equations
∆4ξg(k, eA) = 0 gives

−eα�ξβA =
(
(eA − ϕA)[τ ] + wABY

B + ZA
)

+ r
(
XA + 2θBAZ

B
)

+O(r2), (7.32)

thereby fixing the form of �βA and imposing the relation XA = −2ZBθB
A. Furthermore,

the components ∆4ξg(e, eA) = 0 of the metric anomaly can be expressed as

−e−α�V A = `[Y A] + r
(

(`+ 2̊κ)[ZA] + D̊AW
)

+O(r2). (7.33)

Since �V A is r-independent, the above equation places the condition

(`+ 2̊κ)[ZA] + D̊AW = 0. (7.34)

The remaining components of the anomaly ∆4ξg = 0 only impose transformations of the
remaining metric variables, namely (̊κ, κ(1), q̊AB, λAB), under the near-horizon diffeomor-
phism, and they do not impose additional constraints on the diffeomorphism vector field
ξ, at least up to the sub-leading order in r.

To summarize, the near-horizon symmetries are labelled by the diffeomorphism vector
field of the form

ξ = τ`+
(
W + rZAπA

)
r∂r +

(
Y A + rZA − r2ZBθB

A
)
eA +O(r3), (7.35)
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where (τ,W, Y A, ZA) are generic functions on H. We emphasize again that the functions
W and ZA are related via the equation (7.34). Transformations of leading-order metric
components under this near horizon-diffeomorphism are

�ξα = `[τ ] + Y AϕA +W, (7.36a)
δξκ̊ =

(
τ`+ Y AeA −W

)
[̊κ]− `[W ], (7.36b)

−eα�ξβA = (eA − ϕA)[τ ] + wABY
B + ZA, (7.36c)

�ξV
A = −DuY

A, (7.36d)

�ξ q̊AB = 2
(
τ θ̊AB + D̊(AYB)

)
. (7.36e)

For the sub-leading components, we have that

δξκ(1) =
(
τ`+ Y AeA

)
[κ(1)] + 2ZAeA [̊κ]− 2(`+ 3̊κ)[Z · π], (7.37a)

δξθ =
(
τ`+ Y AeA +W

)
[θ] + D̊AZ

A, (7.37b)

�ξλAB = (τ`+W ) [λAB] + D̊(AZB) + Y CD̊CλAB + 2λC(AD̊B)Y
C . (7.37c)

Let us comment on some special cases. The first special case, which we will assume in
the upcoming section, is the case where we set the Carrollian connection βA = 0. In this
particular case, we have that the Carrollian acceleration is a total derivative ϕA = eA[α] and
the Carrollian vorticity vanishes wAB = 0. It also follows from (7.36c) that the parameter
ZA is now given by

ZA = −(eA − ϕA)[τ ], for the case βA = 0. (7.38)

In this case, the near-horizon diffeomorphism (7.35) agrees with [112,221].

The second special case one can consider is when the velocity field vanishes, V A = 0.
In this case, the near-horizon diffeomorphism reduces to the Carrollian diffeomorphism,

`[Y A] = 0, for the case V A = 0. (7.39)

In the upcoming section, we will also set the sub-leading horizontal diffeomorphism to
be zero, i.e., ZA = 0. The transformation labelled by ZA does not however contribute to
the leading-order symplectic potential, and in a sense can be regarded as gauge on the null
boundary N . Requiring ZA also imposes, following from (7.34) that

D̊AW = 0. (7.40)
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7.4 Einstein Equations and Noether Charges

We demonstrate in this section how the Einstein equations on the null boundary N can
be derived from the near-horizon diffeomorphism (7.35) and compute the Noether charges
associated with these symmetries.

As we have mentioned, in the following analysis, we will consider the case where the
Carrollian connection vanishes, βA = 0. In this particular case, the Carrollian acceleration
becomes the total derivative, ϕA = eA[α], while the Carrollian vorticity now vanishes,
wAB = 0. Furthermore, in the 4-dimensional spacetime, the 2-dimensional curvature tensor
(2)RAB is diagonal,

(2)R̊AB =
1

2
(2)R̊q̊AB. (7.41)

where R̊ := q̊ABR̊AB.

The components of the Einstein tensor whose corresponding Einstein equations gov-
erning dynamics of the null boundary are (see derivations in Appendix C)

−G̊`` = (`+ θ̊)[̊E] + P̊θ̊ + K̊ABσ̊AB (7.42a)

G̊`A = (`+ θ̊)[πA] + E̊ϕA + (D̊B + ϕB)
(
K̊A

B + P̊δBA

)
(7.42b)

G̊`k = (`+ θ̊ + κ̊)[θ]− (D̊A − πA)πA − 1

2
(2)R (7.42c)

−G̊〈AB〉 = 2`[σAB] + (2̊κ− θ̊)σAB + θσ̊AB − 4σC(Aσ̊B)
C − 2(D̊− π)〈AπB〉 (7.42d)

The first two equations are kwon as the null Raychaudhuri equation and the Damour
equations, respectively. Let us also remark here that in general, there will be the curvature
term (2)R̊〈AB〉 contained in the expression of the components G̊〈AB〉, although this term
vanishes in the four dimensional case. In addition, the trace part of the components G̊AB

is determined by the Ricci tensor,

1

2
q̊ABG̊AB = −R`k = (`+ µ̊)[θ] + κ(1) − (D̊A + ϕA)πA + σ̊ : σ. (7.43)

Others components of the Einstein equations do not describe the time-evolution dynamics
of the null boundary. Instead, they are viewed as constraints. The components that we
will encounter during the analysis below are

G̊kA = −θπA + D̊B(σA
B − 1

2
θ.δBA ) (7.44)
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7.4.1 Noether Charges for tangential symmetries

To start with, we consider the tangential near-horizon diffeomorphism, ξ = τ` + Y AeA
and analyze how it acts on the null boundary phase space. Let us recap that the Noether
charges Qξ associated with the symmetries ξ are derived from the pre-symplectic potential
ΘH by evaluating the field space contraction,

IξΘH −
∫
H

ιξL = Cξ +Qξ (7.45)

where L is the Lagrangian of the theory and Cξ is the constraint that vanishes once
enforcing equations of motion.

Following the procedure that was put forward by the authors of [111], we can define for
tangential diffeomorphism the canonical pre-symplectic potential on the boundary N by
exploiting the ambiguities of the pre-symplectic potential, known as the JKM ambiguities
[162]. In our consideration, we define the canonical pre-symplectic potential on N as

Θcan
N := ΘN − δ

(∫
N

κ̊εN

)
− Θ̊S (7.46)

=

∫
N

(
−E̊�α− πAe−α�V A +

1

2

(
K̊AB + P̊q̊AB

)
�q̊AB

)
εN , (7.47)

which are given only in terms of the Carrollian conjugate pairs. We can then show that

I(τ,Y )Θ
can
N = −

∫
N

(
τG̊`` + Y AG̊`A

)
εN + Q̊(τ,Y ). (7.48)

We now see that the null Raychaudhuri equation G̊`` = 0 and the Damour equations G̊`A

are associated with the tangential diffeomorphism on N . This result has been already
well-established in the literature (see [111]). The Noether charges are given (for non-zero
βA by) by

Q̊(τ,Y ) =

∫
S

(
−τ E̊ + Y A

(
πA + (K̊A

B + P̊δBA )eαβB

))
ε̊S. (7.49)

They are precisely the charges for Carrollian hydrodynamics on the null boundary.

7.4.2 The Einstein equation G̊`k = 0 from symmetries

We next demonstrate that the component G̊`k = 0 of the Einstein equations can be derived
from symmetries. To accomplish this, we consider the rescaling symmetry generated by
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the diffeomorphism vector field ξ = Wr∂r. Recalling the transformations (7.36), we first
perform the field space contraction of the leading-order pre-symplectic potential. One can
show that it simply is the corner term,

IWΘN = −
∫
S

1

2
W ε̊S. (7.50)

We next evaluate the sub-leading pre-symplectic potential with this symmetry,

IWΘ(1)

N =

∫
N

W

(
`[θ] + (κ+

1

2
θ)θ + κ(1) + σ : σ

)
εN −

∫
S

1

2
Wθε̊S

=

∫
H

W

(
`[θ] + (κ+

1

2
θ)θ + κ(1) + σ : σ − (D̊A + ϕA)πA

)
ε̊H −

∫
S

1

2
Wθε̊S

= −
∫
H

WR̊`kε̊H −
∫
S

1

2
Wθε̊S

(7.51)

where to obtain the second equality, we added to the intregrand the term (D̊A+ϕA)(WπA)

which integrated to zero and recall the condition D̊AW = 0.

When considering transverse diffeomorphisms, unlike the tangential one, the Lagrangian
term ιξL now becomes relevant. For the Einstein-Hilbert Lagrangian L = 1

2
RεM , we use

the relation between spacetime curvature tensors and the Einstein tensor, 1
2
R = R`k−G`k,

to show that the contribution from the Lagrangian term appears at the sub-leading order,

ιξL
H
= −rW (R̊`k − G̊`k )̊εH +O(r2). (7.52)

Gathering all the results, we can finally show that

IWΘH −
∫
H

ιξL = −r
∫
N

WG̊`kε̊N +QW . (7.53)

It is important to appreciate the result we have just derived. We have shown that the
Einstein equation G̊`k = 0 on the null boundary N actually corresponds to the rescaling
transformation ξ = Wr∂r. This feature however is manifest only when considering the
sub-leading terms in the pre-symplectic potential. The Noether charges associated with
this symmetry, up to sub-leading order in powers of r, are given by

QW = Q̊W + rQ(1)

W = −
∫
S

1

2
W
(
1 + rθ

)
ε̊S. (7.54)

Observe also that while the conservation laws G̊`k = 0 only appear at sub-leading order,
the Noether charges nonetheless have non-zero values on the null boundary N .
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7.4.3 Deriving GAB = 0 from symmetries

The remaining evolution equations on the null boundary are the horizontal components
of the Einstein equations, G̊AB = 0. Similar to the component G̊`k = 0 the equations
G̊AB = 0 are unveiled at the sub-leading order of the pre-symplectic potential. The spin-2
symmetries that generate these Einstein equations are labelled by D(AY B). In the same
vein as the previous computations, we consider the field space contraction of the sub-
leading pre-symplectic potential, IY Θ(1)

H . Let us consider each sector of the pre-symplectic
potential separately.

For the spin-0 sector of the pre-symplectic potential, we have that

Pα�Y α + PκδY κ+ δY κ(1) + PθδY θ

= Y A(D̊A + ϕA)(κ(1) + 2̊κθ)− (Y · ϕ)(`[θ] + (̊κ+ θ̊)θ)− 1

2
θ̊Y AD̊Aθ

= −(D̊ · Y )

(
κ(1) + 2̊κθ − 1

2
θ̊θ

)
− (Y · ϕ)

(
`[θ] + (̊κ+ θ̊)θ − 1

2
θ̊θ

)
+

1

2
θLY θ̊,

(7.55)

where we dropped the divergence term as its integration on H vanishes for the particular
case when βA = 0. The last term can be expressed as

LY θ̊ = −(D̊A + ϕA)(`[Y A])− (Y · ϕ)θ̊ + `[D̊ · Y ]. (7.56)

We therefore obtain,(
Pα�Y α + PκδY κ+ δY κ(1) + PθδY θ

)
ε̊H

= −(D̊ · Y )

(
1

2
`[θ] + κ(1) + 2̊κθ

)
ε̊H − (Y · ϕ)

(
`[θ] + (̊κ+ θ̊)θ

)
ε̊H

+
1

2
`[Y A]D̊Aθε̊H + d

(
1

2
(D̊ · Y )θε̊S

)
.

(7.57)

The spin-1 sector only contains the velocity field term, which is simply −e−α(PV )A�Y V A =
`[Y A](θπA). There are two spin-2 components in the sub-leading pre-symplectic poten-
tial, namely the terms (Pq)AB�Y q̊AB and (Pλ)AB�Y λAB. The former is straightforwardly
evaluated,

1

2
(Pq)AB�Y q̊AB = D̊〈AY B〉

(
`[σAB] + (2̊κ− θ̊)σAB − 4σC〈Aσ̊B〉

C
)

− (D̊ · Y )

(
1

2
(`+ θ̊)[θ]− κ̊θ + σ̊ : σ

)
.

(7.58)
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The latter however requires more careful analysis. We first employ the Leibniz rule and
write

(Pλ)AB�Y λAB = σ̊abLY λab = Y AD̊A (̊σ : σ)− λabLY
(
θ̊ab − 1

2
θ̊q̊ab

)
(7.59)

Let us focus on the term λabLY θ̊ab, which can be manipulated as follows

λabLY θ̊ab =
1

2
λabLY

(
q̊acq̊bdL`q̊cd

)
= λa

b(LY qac)(L`qcb) +
1

2
λabL[Y,`]q̊ab +

1

2
λabL`LY q̊ab

= λAB`
[
D̊(AY B)

]
− λAB(D̊B + ϕB)

(
`[Y A]

)
− (Y · ϕ)

(
σ̊ : σ +

1

2
θ̊θ

)
.

(7.60)

Recalling the result of (7.56), we arrive at the expression

(Pλ)AB�Y λAB ε̊H = D̊〈AY B〉 (`[σAB] + θσ̊AB
)
ε̊H − `[Y A]D̊BσA

B ε̊H

− d
(
D̊〈AY B〉σAB ε̊S

) (7.61)

Upon including the contribution from the corner term Θ(1)

S in the sub-leading pre-symplectic
potential, we overall obtain the contraction

IY Θ(1)

N =

∫
N

[
D̊〈AY B〉

(
2`[σAB] + (2̊κ− θ̊)σAB + θσ̊AB − 4σC(Aσ̊B)

C
)

− (D̊ · Y )

(
`[θ] + (̊κ+

1

2
θ̊)θ + κ(1) + σ̊ : σ

)
− (Y · ϕ)

(
`[θ] + (̊κ+ θ̊)θ

)
− `[Y A]

(
−θπA + D̊B(σA

B − 1

2
θδBA )

)]
εN

+

∫
S

(
−D̊〈AY B〉σAB +

1

2
(D̊ · Y )θ +

1

2
(Y · ϕ)θ

)
ε̊S.

(7.62)

Let us observe that the first three terms contained in the bulk piece almost have the form of
the Einstein tensors G̊〈AB〉, the Ricci tensor R̊`k and the Einstein tensor G̊`k, respectively.
The last term however already has the form of the components G̊kA of the Einstein tensors.
To write all these terms in the form of the Einstein tensors, we use that∫
H

2D̊〈AY B〉
(
−D̊〈AπB〉 + π〈AπB〉

)
+ (D̊ · Y )(D̊A + ϕA)πA + (Y · ϕ)

(
(D̊A − πA)πA +

1

2
(2)R

)
= 0,

(7.63)
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up to the divergence terms of the form (D̊A + ϕA)XA that vanish once integrated on the
stretched horizon H. We therefore arrive at the final result

IY Θ(1)

H =

∫
H

(
−D̊(AY B)G̊AB − (Y · ϕ)G̊`k − `[Y A]G̊kA

)
ε̊H

+

∫
S

(
−D̊〈AY B〉σAB +

1

2
(D̊ · Y )θ +

1

2
(Y · ϕ)θ

)
ε̊S.

(7.64)

Note that we used the fact that in 4-dimensional spacetime, the trace of the horizontal
components of the Einstein tensor coincides with the Ricci tensor q̊ABG̊AB = −2R̊`k.

We have discovered that the remaining Einstein equations G̊AB = 0 on the finite dis-
tance null boundary are associated with the spin-2 symmetries. These spin-2 symmetries
are related to the diffeomorphism ξ = Y AeA and the parameters labelling these transfor-
mations are the specific symmetric tensor D̊(AY B). We also recover the Einstein equation
G̊`k = 0 with the symmetry parameter being Y · ϕ in this case. The Einstein equa-
tion G̊kA = 0, although it is not the evolution equation on the boundary N , is also ob-
tained. Note however that if one restricts to a diffeomorphism that is Carrollian, such that
`[Y A] = 0, the term G̊kA disappears from (7.64).

7.4.4 Bianchi Identity

We have shown that the Einstein equations governing gravitational dynamics on the null
boundary are indeed consequences of near-horizon symmetries. Interestingly for some
components of the Einstein equations, namely G̊`k = 0 and G̊AB = 0, this appealing
correspondence is only manifest when carefully analyzing phase space of the stretched
horizon located near the null boundary.

We will now show that the result (7.64), revealing the special (diffeomorphism-related)
spin-2 symmetries that generate the spin-2 equations G̊AB = 0, follows from the Bianchi
identity of the Einstein tensor,

∇aGab = 0. (7.65)

In what follows, we will focus on the horizontal component eAa∇bGab of the Bianchi identity.
Using the expression of the metric in terms of the frame fields, we can then write the
divergence of the Einstein tensor as

eA
a∇bGab = eA

a(nbkc + kb`c + qBCeB
beC

c)∇cGab

= eA
anb∇kGab + eA

akb∇`Gab + qBCeA
aeB

b∇eCGab.
(7.66)
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Let us consider each terms separately. We begin with the first term which, by using the
Leibniz rule, can be written as

eA
anb∇kGab = k[GnA]−GAa∇kn

a −Gna∇keA
a

N
= ∂rGnA + (ωB + ϕB)G̊AB − κ̊G̊kA − θABG̊`B + ωAG̊`k,

(7.67)

where we used that [k, eA] = 0. Similarly for the second term, we can evaluate it on the
null boundary N as

eA
akb∇`Gab = `[GkA]−GAa∇`k

a −Gka∇`eA
a

N
= (`+ κ̊)[G̊kA] + (ωB + ϕB)G̊AB − (ϕA + ωA)G̊`k − θ̊ABG̊kB.

(7.68)

The last term can be expressed as follows

eA
aeB

b∇eCGab = eC [GAB]−GAa∇eCeB
a −GBa∇eCeA

a

N
= eC [G̊AB]− (2)Γ̊DCBG̊AD − (2)Γ̊DCAG̊BD + θCBG̊A` + θ̊CBG̊kA

+ θCAG̊B` + θ̊CAG̊kB

= D̊CG̊AB + θCBG̊A` + θ̊CBG̊kA + θCAG̊B` + θ̊CAG̊kB.

(7.69)

Putting these results together, we therefore express the Bianchi identity eAa∇bGab = 0 as

−∂rGnA
N
=
(
D̊B + ϕB

)
G̊AB + (`+ θ̊)G̊kA + θG̊`A − ϕAG̊`k. (7.70)

Having derived the desired Bianchi identity, we now finally explain how it connects to
the result (7.64) provided in the previous section. The key point of this connection lies in
the constraint term when computing the Noether charges associated to the near-horizon
diffeomorphism on the surface H. For the Einstein-Hilbert theory, this constraint is the
Einstein tensor on H,

Cξ = −
∫
H

GnξεH . (7.71)

When considering the diffeomorphism ξ = Y AeA, the constraint only imposes the Einstein
equations GnA = 0 on H. As we have been trying to emphasize the central plot of this
Chapter, more underlying information of the null boundary N can only be accessed by
considering the surface H, not as its own surface, but instead as a near-horizon expansion
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around N . This means that the constraint Cξ can be expand as a power series in r around
the boundary located at r = 0 as

Cξ = C̊ξ + rC(1)

ξ +O(r2), (7.72)

where the leading-order imposes the Damour equation on N ,

C̊ξ =

∫
N

Y AG̊`AεN = 0. (7.73)

The sub-leading order of the constraint is given by

C(1)

ξ = −
∫
N

Y A
(
∂rGnA + θG̊`A

)
εN

=

∫
N

Y A
((

D̊B + ϕB
)
G̊AB + (`+ θ̊)[G̊kA]− ϕAG̊`k

)
εN ,

(7.74)

where we used the previously derived Bianchi identity (7.70). We hence obtain, up to the
boundary term, the sub-leading constraint

C(1)

ξ =

∫
H

(
−D̊(AY B)G̊AB − (Y · ϕ)G̊`k − `[Y A]G̊kA

)
. (7.75)

This is precisely the constraint obtained in the equation (7.64).
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Chapter 8

Concluding Remarks

Let us summarize what has been done in this thesis and mention some possible future
directions.

Part I: Edge Modes: Dynamics and Duality

The first part of this thesis was dedicated to the investigation of emergent boundary degrees
of freedoms called edge modes and their associated corner symmetries. Our objective was
to unravel the role of these edge modes in theories with internal gauge symmetries.

In Chapter 3, we proposed an extended variational principle which supplements the
bulk symplectic structure with a boundary symplectic structure including the edge mode
fields and descending from a boundary action. With the addition of a boundary action
with edge modes, we then demonstrated that edge modes are necessary in order to factorize
the Hilbert space, phase space, or path integral of a theory (this property is summarized
schematically on figure 3.1). Most importantly, once a theory has been split between
two subregions by introducing edge modes on the boundary, the bulk of a subregion can
be evaluated on-shell and a residual dynamics gets imprinted on the boundary. This
agrees with the proposal made in [173], which we have now therefore connected with
the extended phase space constructions originally proposed in [32] and later expanded
in [34, 36] (for the cases concerning internal gauge symmetries). We put our proposal for
deriving the boundary dynamics of edge modes to the test in various examples of theories
with Abelian internal gauge symmetries, including Chern-Simons theory, Maxwell theory,
Maxwell-Chern-Simons theory, and the topological BF theory.
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In Chapter 4, we explored a surprising role of corner symmetries in the understanding
of electromagnetic duality, the existence of dual boundary magnetic charges and their
centrally-extended algebra with electric charges which has been studied in [82, 108, 109].
We argued in this thesis that the existence of dual charges is naturally described in the
first order formulation. We validated this proposal by studying the first order formulation
of Maxwell’s theory and we showed that in this picture, the magnetic charges are the zero-
modes of the translational symmetry of the first order theory. Moreover, the electric and
magnetic charges inherit the centrally-extended charge algebra also descending from the
first order formulation.

Many directions however remain to be explored. Let us list some of them below.

i) Relationship between boundary conditions, Hamiltonian, and dynamics. It is now
important to study more precisely the nature of the boundary theory obtained for non-
topological theories ( e.g., Maxwell theory) and investigate in particular its dependency on
the choice of boundary Hamiltonian.

ii) Extension to other theories : There are essentially two types of theories to which
the present work should be extended — non-Abelian gauge theories, and theories with dif-
feomorphism symmetry. Here we have presented the construction of the extended action
and symplectic structure for non-Abelian gauge theories in appendix A.4. This does not
present any conceptual difference with the Abelian case. However, the study of the bound-
ary dynamics of non-Abelian theories is for the most part unknown (although preliminary
steps have been taken in [173]). In the case of diffeomorphism symmetry however, already
the introduction of the edge modes in the extended phase space or the boundary action is
conceptually different from what we have presented in this work, since it requires embed-
ding variables [32]. Inclusion of gravitational edge modes through the boundary action has
been studied extensively in [38–40]. It would then be interesting to apply or generalize our
proposal to study dynamics and entanglement of edge modes in gravity.

Concerning the dualities, it would also be interesting to study how this construction
can be extended to the non-Abelian case. A new complication in this case is that the
reducibility condition (4.22) now involves a gauge covariant derivative dAφ = 0, and cannot
naively be solved without imposing a condition on the boundary field strength.

iii) Link with soft modes at asymptotic infinity. A major open question is to relate the
edge modes presented in this work (and in all the references) to soft modes which appear
in the infrared regime of massless theories [21]. Some steps in this direction have already
been taken in [53,56], and there have also been proposals for the description of the infrared
dynamics itself [227, 228]. It is therefore natural to ask whether such proposals can be
recovered (or corrected) from the boundary dynamics of Maxwell theory presented in this
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work, provided we can choose appropriate boundary conditions and push the boundary to
infinity.

It would also be interesting to properly study the appearance of magnetic charges from
the first order BF theory asymptotically, following e.g. [110] and [214].

Part II: Carrollian Hydrodynamics

In the second part of this thesis, we turned our attention to the study of gravitational
dynamics of spacetime around null boundary and explored the emerging connection with
the so-called Carroll geometries and Carrollian hydrodynamics (which was first proposed
in [121]).

Chapter 5 was devoted to the construction of Carroll geometries starting from the most
fundamental building blocks, namely Carroll structures. We then proceeded to examine
Carrollian fluid and their corresponding hydrodynamics. We presented two methods to
derive Carrollian hydrodynamic equations. In the first (and rather old-school) method, we
started from conservation laws of the relativistic energy-momentum tensor, then properly
took the Carrollian limit (c → 0) of the standard relativistic conservation laws. Our
derivations could be viewed as a generalization of the one originally presented in [124] due
to the fact that we now have in our construction the fluid velocity V A and the sub-leading
sphere metric λAB. These two quantities are indeed important parts of the phase space
of Carrollian hydrodynamics. The second route, which was the highlight of this chapter,
was to viewed Carrollian hydrodynamics as the consequence of symmetries. We argued
that Carrollian diffeomorphisms are not sufficient to derive the full set of Carrollian fluid
equations (this has already been done in [144]) and that we need to go beyond Carrollian
diffeomorphisms. To this end, we introduced the notion of near-Carrollian symmetries
(5.89) and showed, once and for all, that it leads to the complete Carrollian conservation
laws.

In Chapter 6, we considered a subregion of spacetime bounded by a null boundary and
located at a finite distance. We expressed this spacetime region as a series of timelike
hypersurfaces, called stretched horizons. We then studied the geometry of theses stretched
horizons using the so-called rigging technique and showed that there is a natural Carroll
structure induced from this rigged structure, enabling us to talk about Carroll geometries
and Carrollian hydrodynamics beyond null surfaces. We then proposed the Carrollian
energy-momentum tensor of the stretched horizon and showed that its conservation laws
infer the Einstein equations on the surfaces (or vice versa).
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Gravitational phase space of stretched horizons was finally investigated in Chapter 7.
We showed that the pre-symplectic potential, capturing phase space information, is given
by the Carrollian conjugate pairs. We additionally put forward the perspective that pre-
symplectic potential of stretched horizons located extremely close to the null boundary
actually encodes sub-leading information of the null boundary phase space. In this thesis,
we unraveled for the first time the symmetries associated with the Einstein equations
governing the evolutions of the radial expansion θ and the shear σAB on a finite distance
null boundary

Some possible future avenues of investigation include:

i) Thermodynamics of Carrollian fluids : Having this new type of fluid, the Carrollian
fluid, a natural question therefore emerges — what are thermodynamical properties of
Carrollian fluids? Although this question may not garner much interest in the field of
fluid mechanics due to the sole fact that everyday life fluids are Galilean in nature, we
believe that this question will provide unprecedented insights to the realm of black hole
physics. One possible direction we would like to investigate in the future is the notion of
thermodynamical horizons, the types of horizons that obey all laws of thermodynamics,
and also the universal notion of equilibrium in any surface.

ii) Understanding better the sub-leading charges : We believe that the results presented
in this thesis may open new investigation windows to probe hidden (sub-leading) symme-
tries and charges on null surfaces at finite distances. However, we only managed to scratch
the surface, laid down the idea, and presented the symmetries and Noether charges in some
limiting cases. Needless to say that numerous studies are required in order to deepen our
understanding on this topic. One question, for example, concerns the algebras of these
charges, especially how to compute the algebra of the charges appearing at different orders
of the pre-symplectic potential.

iii) Connection with null infinity : It would be interesting to connect our idea at finite
distances with asymptotic null infinity. The understanding of sub-leading (and sub-sub-
leading) symmetries and charges at null infinity is in a sense far more developed than the
finite distance cases. For example, the recent works [225,229] have suggested the existence
of infinite tower of higher-spins symmetries, charges, and associated conservations at null
infinity. This characteristic, we believe, should also persist at finite distances. In-depth
investigations however need to be done.
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Appendix A

Edge Modes

A.1 Maxwell theory in radial gauge

Inspired by holography, let us work in the radial Hamiltonian formulation, where the radial
coordinate r is treated as the Hamiltonian time. The natural gauge fixing corresponding
to this choice is then the radial gauge where we set Ar = 0. This condition, together with
the Lorenz gauge ∂µAµ = 0, are the gauge choices used in [173] and in section 3.3.2.

Let us focus on the 3-dimensional case, and decompose the spacetime coordinates xµ =
(t, r, φ) as xµ = (r, yi), with yi = (t, φ) the coordinates on the r = constant hypersurfaces.
With this, the spacetime metric can be decomposed as

gµνdx
µdxν = dr2 + qij(r)dy

idyj, (A.1)

where in cylindrical coordinates

qij(r)dy
idyj = −dt2 + r2dφ2. (A.2)

Placing the time-like boundary ∂M at r = `, we have that the induced metric at the
boundary is gij

∣∣
∂M

= qij(`) =: qij. With this radial decomposition, all the total deriva-
tives are along the directions yi, and can therefore be discarded because of our choice of
cylindrical topology M = R×D. We will therefore freely integrate by parts over t and φ.

Similarly to the standard Hamiltonian analysis with respect to time t, the bulk Maxwell
action in (3.33) can be written in radial Hamiltonian form as

SM =

∫
M

√
|g|
(
Πi∂rAi −H

)
, (A.3)
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where the conjugate momentum to Ai is Πi := −F ri, and the Hamiltonian is

H =
1

4
F ijFij −

1

2
ΠiΠi. (A.4)

We now use a Hodge decomposition of the gauge field and the momenta by writing

Ai = ∂iα + εij∂
jβ := ∂iα + βi, Πi = ∂iξ + εij∂jλ := ∂iξ + λi, (A.5)

where βi and λi are the divergence-free parts ∂iβi = 0 = ∂iλ
i. The constraint enforced by

the radial gauge fixing is that

∂iΠ
i = ∂2ξ = 0, (A.6)

where we define ∂2 := ∂i∂
i to be the Laplace operator on the slices of constant radius r.

In terms of this Hodge decomposition, the canonical term of the action and the terms of
the Hamiltonian can be decomposed as

Πi∂rAi = ∂iξ∂i∂rα + λi∂i∂rα + ∂iξ∂rβi + λi∂rβi = −∂2ξ∂rα + λi∂rβi, (A.7a)
ΠiΠi = ∂iξ∂iξ + 2∂iξλi + λiλi = −ξ∂2ξ + λiλi, (A.7b)

1

2
F ijFij = ∂iβj∂iβj − ∂iβj∂jβi = −βi∂2βi. (A.7c)

With this, the bulk Maxwell action becomes

SM =

∫
M

√
|g|
(
−
(
∂rα +

1

2
ξ

)
∂2ξ + λi∂rβi +

1

2
βi∂2βi +

1

2
λiλi

)
. (A.8)

The first term vanishes once the constraint (A.6) is imposed. Path integrating over the
momentum variable λ then yields

SM =
1

2

∫
M

√
|g|
(
βi∂2βi − ∂rβi∂rβi

)
, (A.9)

so one can see that the bulk contribution is determined by the divergence-free part of the
Hodge decomposition. Notice that if we write explicitly the path integral with the Hodge
decomposition, taking into account the change of measure

D[A,Π] = D[α, β,−∂2ξ, λ] = det(−∂2)D[α, β, ξ, λ] (A.10)

and the change of variables in the Gauss constraint using

δ
(
∂2ξ
)

= det(−∂2)−1δ(ξ), (A.11)
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the two determinant factors cancel out. Furthermore, there is no determinant factor pro-
duced when integrating over λ, and we are therefore left with the path integral over β of
(A.9). This is a crucial difference with the Hodge decomposition of the path integral in
the temporal gauge, which produces determinant factors as explained in appendix A.2.

We can now add to this the boundary action containing the edge mode field a to obtain
the full bulk + boundary action (3.33). More precisely, using the radial gauge with the
Hodge decomposition, imposing the constraint (A.6) and integrating out the momenta λ,
we obtain the extended Maxwell action1

S =
1

2

∫
M

√
|g|
(
βi∂2βi − ∂rβi∂rβi

)
+

∫
∂M

√
|q| εimji(βm + ∂mϕ), (A.12)

where we have introduced the gauge-invariant scalar ϕ := a+α. Variation with respect to
βi gives in the bulk the flat massless Klein–Gordon equation in cylindrical coordinates,

1√
|g|
∂µ
(√
|g|∂µβi

)
= −∂2

t β
i +

1

r
∂r(r∂rβ

i) +
1

r2
∂2
φβ

i = 0, (A.13)

and on the boundary the boundary condition

∂rβ
i(`, y) = −εimjm(y), (A.14)

where βi(`, y) = βi(r, y)
∣∣
∂M

. Similarly to the calculation (3.38), path integrating over β
in the bulk produces an operator determinant for the massless scalar, and, recalling that
on-shell the bulk action is a boundary term, the total boundary action (i.e. the initial one
in (3.33) plus the piece coming on-shell from the bulk) becomes

Sedge =

∫
∂M

√
|q|
(
εimji(βm + ∂mϕ)− 1

2
βi∂rβ

i

)
=

∫
∂M

√
|q|εimji

(
1

2
βm[j] + ∂mϕ

)
,

(A.15)

where we have used the boundary condition. This expression is the effective boundary
action in (3.38).

The boundary value βi[j] is now determined by solving the bulk equation of motion
with respect to a Neumann-type boundary condition, i.e.

�βi = 0, ∂rβ
i(`, y) = −εimjm(y), (A.16)

1We deliberately include the boundary metric into the boundary volume form. This does not alter the
analysis of the extended phase space symplectic structure, as it can be viewed as the redefinition of j.
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which is the 3-dimensional version of (3.39) in the radial gauge. The bulk equation is
solved by going to momentum space, with ki = (kt, kφ), as

βi(r, y) =

∫
d2k

2π
Jkφ(rkt)β̃

i(k)eik·y, (A.17)

where k · y = kiy
i, and Jn denotes the Bessel function of integer order. Note that kφ has a

discrete spectrum due to the compactness of the φ direction. Now, writing

ji(y) =

∫
d2k

2π
j̃i(k)eik·y, ϕ(y) =

∫
d2k

2π
ϕ̃(k)eik·y, (A.18)

the boundary condition translates into

β̃i(k) = − 1

kt∂rJkφ(`kt)
εimj̃m(k). (A.19)

We therefore obtain β at the boundary in the form

βi(`, y) = −εim
∫

d2k

2π
G̃(k)j̃m(k)eik·y, (A.20)

where G̃(k) represents the momentum space Green function. In the present case, we have

G̃(k) =
Jkφ(`kt)

kt∂rJkφ(`kt)
. (A.21)

Putting this together, the effective edge mode action becomes

Sedge =

∫
d2k

(
1

2
j̃i(k)G̃(k)j̃i(−k) + εimj̃i(k)(ikm)ϕ̃(−k)

)
. (A.22)

As expected, this action is quadratic in j̃. We can now choose to integrate over ϕ̃ to obtain
the condition

εimj̃i(k)km = 0 ⇒ j̃i(k) ∼ ki, (A.23)

which is equivalent to the condition that boundary current is conserved, i.e. dj = 0.
The path integral then reduces to an integral over all conserved currents of the quadratic
action written above. Alternatively, we can integrate out the current j̃i in order to get the
quadratic action for ϕ̃ which is

Sedge =
1

2

∫
d2k k2ϕ̃(k)G̃(k)−1ϕ̃(−k). (A.24)

This is the effective boundary action in momentum space.
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A.2 Maxwell–Chern–Simons theory in temporal gauge

Here we present the detailed calculations of the Hodge decomposition of MCS theory,
keeping carefully all the boundary terms, together with the manipulations of the path
integral with and without boundaries. We recall that the spacetime has the topology
M = R×D of an infinite cylinder with xµ = (t, r, φ) such that εtrφ = 1, so total derivatives
∂t and ∂φ can be ignored. We will constantly use this fact to freely move these derivatives
around. For simplicity, even though we are using cylindrical-looking coordinates, our choice
of metric will be gµν = diag(−1, 1, 1), so we will allow ourselves to write the expressions
below with all spatial indices downstairs for simplicity, and drop the determinant

√
|g| in

the integrals. This does not affect the results of this appendix. We denote the spatial Levi–
Civita tensor by εab := εtab, with εabεac = δbc and εrφ = 1. Finally, the spatial Laplacian
will be denoted by ∆ := ∂a∂a, the wave operator by � = −∂2

t + ∆, and the time derivative
∂tα by a dot α̇.

With a 2 + 1 decomposition identifying the momentum, the Gauss constraint, and the
Hamiltonian, the bulk part of the action in (3.45) can be written as

SM =

∫
M

ΠaȦa + AtG−H −
∫
∂M

AtΠr. (A.25)

The momentum conjugated to the gauge field is

Πa = −F ta +mεabAb = Fta +mεabAb, (A.26)

where one should notice that the first term has picked up a sign because we have lowered
the indices. The Gauss constraint is

G = ∂a(Πa +mεabAb), (A.27)

and the Hamiltonian is

H =
1

4
(Fab)

2 +
1

2
(Πa −mεabAb)2 =:

1

4
(Fab)

2 +
1

2
(Ea)

2. (A.28)

We are now going to rewrite these quantities using the Hodge decomposition

Aa = ∂aα + εab∂bβ, Πa = ∂aξ + εab∂bλ. (A.29)

In various expressions, we will only keep total derivatives in r since the ones in φ vanish
when going to the boundary. In these total derivative, which will give boundary terms, we
will furthermore use (A.26) and the temporal gauge At = 0 to rewrite

ξ = α̇−mβ, λ = β̇ +mα. (A.30)
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This is justified since on the boundary it is A (and therefore α and β) which is conjugated
to the edge mode field a. The Hodge decomposition gives

ΠaȦa = −ξ∆α̇− λ∆β̇ + ∂r(ξ∂rα̇ + λ∂rβ̇ + ξ∂φβ̇ − λ∂φα̇)

= −ξ∆α̇− λ∆β̇ + ∂r
(
α̇∂rα̇ + β̇∂rβ̇ + 2α̇∂φβ̇ −m(α∂φα̇ + β∂φβ̇)−m∂r(α̇β)

)
,

(A.31a)

G = ∆(ξ −mβ) =: ∆G̃, (A.31b)
1

2
(Fab)

2 = β∆2β + ∂2
r (∂rβ∂rβ − β∂2

rβ), (A.31c)

(Ea)
2 = −ξ∆ξ − λ∆λ− 2m(ξ∆β − λ∆α)−m2(α∆α + β∆β)

+ ∂r
(
ξ∂rξ + λ∂rλ+ 2ξ∂φλ− 2m(λ∂rα− ξ∂rβ + ξ∂φα + λ∂φβ) +m2(α∂rα + β∂rβ + 2α∂φβ)

)
= −ξ∆ξ − λ∆λ− 2m(ξ∆β − λ∆α)−m2(α∆α + β∆β) + ∂r(α̇∂rα̇ + β̇∂rβ̇ + 2α̇∂φβ̇).

(A.31d)

From this, we can now derive several results.

First, let us focus on the bulk contributions to explain how the path integral for the
massive scalar field arises. We will perform manipulations at the level of the Lorentzian
path integral, but simply write the actions alone in order to avoid unnecessary notational
cluttering. Working in the temporal gauge At = 0 we have to impose the Gauss constraint,
which we write here in the form G̃ = ξ−mβ = 0. This transforms all the bulk terms above
according to

SM =
1

2

∫
M

−2ξ∆α̇− 2λ∆β̇ − β∆2β + ξ∆ξ + λ∆λ+ 2m(ξ∆β − λ∆α) +m2(α∆α + β∆β)

=
1

2

∫
M

−2mβ∆α̇− 2λ∆β̇ − β∆2β + λ∆λ− 2mλ∆α +m2α∆α + 4m2β∆β, (A.32)

where for the second equality we have used the constraint enforced by the temporal gauge.
Performing now the Gaussian integral over λ leads to

SM =
1

2

∫
M

β(−∆)(�− 4m2)β − m

2

∫
∂M

α∂rβ̇ + β∂rα̇. (A.33)

Let us now keep track of the various determinants which have been produced by these ma-
nipulations in the path integral. First, when using the Hodge decomposition, the measure
on phase space changes as

D[A,Π] = D[−∆α,−∆β, ξ, λ] = (det ∆)2D[α, β, ξ, λ]. (A.34)
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Using the identity

δ(G) = δ(∆G̃) = (det ∆)−1δ(G̃), (A.35)

we have also picked up a factor (det ∆)−1 when imposing the Gauss law with a delta
function in the path integral. Then, the Gaussian integral over λ has produced a factor of
(det ∆)−1/2. Putting all these factors together, assuming that there is no boundary, and
performing a final Gaussian integral over β in (A.33), we finally get that

ZM =

∫
D[A,Π]δ(G) exp(iSM)

= (det ∆)2

∫
D[α, β, ξ, λ]δ(G) exp(iSM)

= det ∆

∫
D[α, β, ξ, λ]δ(G̃) exp(iSM)

= (det ∆)1/2

∫
D[β] exp

(
i

2

∫
M

β(−∆)(�− 4m2)β

)
=
(

det(�− 4m2)
)−1/2

, (A.36)

where we have dropped gauge volume factors (which can be absorbed by properly normal-
izing the path integral). As expected, we recover the evaluation of the path integral for a
massive scalar field, and all the factors of det ∆ have cancelled out.

We can now look more carefully at all the boundary contributions coming from the bulk
action SM , we will will denote by ∂SM . More precisely, these contributions come from the
decomposition (A.31) and from (A.33). On the boundary, we will use the relation (A.30)
to write the Gauss law as

G̃
∣∣
∂M

= α̇− 2mβ = 0. (A.37)

With this the boundary term in (A.33) is actually vanishing. More precisely, the boundary
contributions are

∂SM =
1

2

∫
∂M

α̇∂rα̇ + β̇∂rβ̇ + 2α̇∂φβ̇ − 2m(α∂φα̇ + β∂φβ̇)− 2m∂r(α̇β)− ∂r(∂rβ∂rβ − β∂2
rβ)

−m(α∂rβ̇ + β∂rα̇)

=
1

2

∫
∂M

β̇∂rβ̇ + 2mβ∂φβ̇ − 4m2β∂rβ − 4m2α∂φβ − ∂r(∂rβ∂rβ − β∂2
rβ). (A.38)
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In order to get the dynamics of the edge modes, we have to compute the path integral for
this boundary theory coupled to the boundary action in (3.45), in which we have to take
into account the constraint

jφ = Πr +m∂φa = ∂rα̇ + ∂φβ̇ +m
(
∂φ(a+ α)− ∂rβ

)
= m∂rβ + ∂φβ̇ +m∂φ(a+ α)

(A.39)

imposed by the temporal gauge At = 0. With this the boundary action (3.45) becomes

S∂M =

∫
∂M

(jφ +mAφ)ȧ− jt(∂φa+ Aφ) + h

=

∫
∂M

(
jφ +m(∂φα− ∂rβ)

)
ȧ− jt

(
∂φ(a+ α)− ∂rβ

)
+ h

=

∫
∂M

(
∂φβ̇ +m∂φϕ+m∂φα

)
ȧ− jt(∂φϕ− ∂rβ) + h, (A.40)

where we have introduced ϕ := a + α. Combining the two boundary actions (A.38) and
(A.40) into a total boundary action

Sedge := ∂SM + S∂M (A.41)

now leads to

Sedge =

∫
∂M

1

2
β̇∂rβ̇ +mβ∂φβ̇ + 2m2β∂rβ −

1

2
∂r(∂rβ∂rβ − β∂2

rβ)

+ ϕ̇∂φβ̇ +mϕ̇∂φϕ− jt(∂φϕ− ∂rβ) + h. (A.42)

With a further change of variables χ := ϕ+ β̇/(2m) we finally get

Sedge =

∫
∂M

B[β] +mχ̇∂φχ− jt
(
∂φχ−

1

2m
∂φβ̇ − ∂rβ

)
+ h, (A.43)

where

B[β] :=
1

2
β̇∂rβ̇ +mβ∂φβ̇ + 2m2β∂rβ −

1

2
∂r(∂rβ∂rβ − β∂2

rβ)− 1

4m
β̈∂φβ̇. (A.44)

We then have to choose a boundary Hamiltonian h and integrate over jt in order to get
the final form of the effective boundary action. In the main text we use the Hamiltonian

h =
1

m
(jt ∓ jφ)jφ. (A.45)
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Noticing that the expression (A.39) for jφ can be written in terms of χ as

jφ = m∂rβ +
1

2
∂φβ̇ +m∂φχ, (A.46)

with this Hamiltonian we get

Sedge =

∫
∂M

B[β] +mχ̇∂φχ+ jt

(
1

m
∂φβ̇ + 2∂rβ

)
∓ 1

m

(
m∂rβ +

1

2
∂φβ̇ +m∂φχ

)2

,

(A.47)

which can be path integrated over jt to finally obtain

Sedge = m

∫
∂M

χ̇∂φχ∓ (∂φχ)2. (A.48)

Note that this last step involves the fact that, under the constraint imposed by jt, we have

B[β]
∣∣∣(

2m∂rβ+∂φβ̇= 0
) = 0, (A.49)

as one can easily check.

A.3 Boundary conditions as boundary sources

In this appendix we show how the boundary conditions obtained from the extended bound-
ary + boundary action can equivalently be treated as boundary sources. To see this in
a simpler setting, we will use the 3-dimensional radial gauge formulation of Maxwell the-
ory introduced in appendix A.1, where the coordinates are xµ = (t, r, φ) = (r, yi) with
yi = (t, φ). We have shown in (A.12) that in this case the extended action is given by

S =
1

2

∫
M

√
|g|
(
βi∂2βi − ∂rβi∂rβi

)
+

∫
∂M

√
|q| εimji(βm + ∂mϕ), (A.50)

where Ai = ∂iα + βi and ϕ = a + α. Variation with respect to βi leads to the bulk and
boundary equations of motion

�βi = 0, ∂rβ
i(`, y) = −εimjm(y), (A.51)
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where r = ` is the location of the boundary ∂M . Alternatively, we can use a Dirac delta
to rewrite this action as

S =
1

2

∫
M

√
|g|
(
βi∂2βi − ∂rβi∂rβi + 2εimjiβmδ(r − `)

)
+

∫
∂M

√
|q| εimji∂mϕ, (A.52)

which leads to the massless Klein–Gordon equation with boundary sources

�βi(r, y) = εimjm(y)δ(r − `), ∂rβ
i(`, y) = 0. (A.53)

To solve this boundary problem we use the decomposition

βi(r, y) = βi0(r, y) +

∫
d2y′

√
|g|G(r − `, y − y′)εimjm(y′), (A.54)

where βi0 is the homogeneous solution with Dirichlet boundary condition, i.e.

�βi0(r, y) = 0, βi0(`, y) = 0, ∂rβ
i
0(`, y) = 0, (A.55)

and the Green function satisfies

�G(x− x′) = δ(x− x′), ∂rG(r − `, y − y′)
∣∣
r=`

= 0. (A.56)

Using this ansatz, the extended action can be written as

S =− 1

2

∫
M

√
|g| βi0�βi0 +

∫
∂M

d2y
√
|q|
(
εimji∂mϕ+

1

2

∫
∂M

d2y′
√
|q| ji(y)G(0, y − y′)ji(y′)

)
.

(A.57)

Finally, focusing on the boundary piece (the bulk gives a factor of (det�)−1/2 computed
with Dirichlet boundary conditions) and path integrating over ji leads to the effective
action

Sedge = −1

2

∫
∂M

d2y
√
|q|
∫
∂M

d2y′
√
|q| ∂iϕ(y)G(0, y − y′)−1∂iϕ(y′). (A.58)

One can verify that in momentum space this effective edge mode action coincides with
(A.24).

We have shown that the boundary current j can be treated either as a boundary
condition or as a boundary source. In general, this is valid for any theory whose equations
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of motion involve a Laplace-type operator. In order to see this, let us consider two functions
ϕ and ψ defined over M and satisfying

�ϕ = 0, �ψ = −jδ(x− x|∂M), (A.59)

with the boundary conditions

n[ϕ] = j, n[ψ] = 0, (A.60)

where n = nµ∂µ is a unit normal vector to the boundary. From Green’s second identity∫
M

(
ϕ�ψ − ψ�ϕ

)
dV =

∫
∂M

(
ϕn[ψ]− ψn[ϕ]

)
dS (A.61)

we get ∫
∂M

j(ϕ− ψ)dS = 0, (A.62)

which therefore means that ϕ|∂M = ψ|∂M .

A.4 Extended action and phase space for non-Abelian
theories

In this appendix we present the extended actions for non-Abelian Chern–Simons, Yang–
Mills and BF theories, and show that they lead as expected to the extended phase space
structures which have been derived in [32, 34]. We postpone the study of the effective
boundary dynamics to future work.

Throughout this appendix, the gauge fields are 1-forms with values in the Lie algebra g,
whose bracket is denoted by [· , ·]. The non-Abelian covariant derivative and field strength
are given by

dAP = dP + [A ∧ P ], F = dA+
1

2
[A ∧ A]. (A.63)

For forms P and Q of respective degree p and q the bracket satisfies [P ∧Q] = (−1)pq+1[Q∧
P ]. For a group element g we denote the finite gauge transformations by

g∗A = g−1(A+ d)g. (A.64)

Finally, recall that all the expressions below should be understood with an implicit pairing
between the Lie algebra elements, which we choose to drop for notational clarity, and which
is furthermore invariant under the adjoint action of the group on its algebra.
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A.4.1 Chern–Simons theory

In non-Abelian CS theory, the edge mode field that we need to introduce is now a group
element. We will denote it by u. Under the action of finite gauge transformations, this
edge mode field transforms as g∗u = g−1u, and the current j transform as g∗j = g−1jg.
With this, the extended bulk + boundary action naturally takes the form

S =

∫
M

A ∧
(
F − 1

6
[A ∧ A]

)
− 1

6
duu−1 ∧ [duu−1 ∧ duu−1] +

∫
∂M

A ∧ duu−1 + j ∧ (A+ duu−1),

(A.65)

where by comparison with the Abelian case we have now included the bulk NWZW term.
The variation of this action can be written as

δS = 2

∫
M

δA ∧ F

+

∫
∂M

δA ∧ (A+ duu−1 − j) + δj ∧ (A+ duu−1) + u−1δud
(
u∗(A+ j)

)
− d
(
δuu−1(A+ j)

)
,

(A.66)

where

u∗(A+ j) = u−1(A+ j)u+ u−1du. (A.67)

To obtain this form of the variation of the action, we have used several identities. The first
one is the variation of the bulk WZNW term, which gives a boundary term according to

1

6
δ
(
duu−1 ∧ [duu−1 ∧ duu−1]

)
=

1

2
d
(
δuu−1[duu−1 ∧ duu−1]

)
. (A.68)

The second one is δ(duu−1) = ud(u−1δu)u−1. Finally, we have also used the fact that

u−1δud(u−1du) = u−1δudu−1u ∧ u−1du = −1

2
δuu−1[duu−1 ∧ duu−1], (A.69)

which comes from the invariance of the (implicit) pairing under the adjoint action of u.

To obtain the extended potential, we have to remember that the bulk NWZW term
also brings a contribution. The total extended potential is therefore given by

θe = δA ∧ A− 1

2
δuu−1[duu−1 ∧ duu−1] + d

(
δuu−1(A+ j)

)
≈ δA ∧ A− 1

2
δuu−1[duu−1 ∧ duu−1] + d

(
δuu−1(2A+ duu−1)

)
= δA ∧ A+ d(δuu−1) ∧ duu−1 + 2d(Aδuu−1). (A.70)
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Upon taking a further variation the NWZW term gets pushed to the corner using

δ
(
d(δuu−1) ∧ duu−1

)
= d
(
d(δuu−1)δuu−1

)
, (A.71)

and one finally obtains the extended symplectic structure

Ω = −
∫

Σ

δA ∧ A+

∫
S

(
2δA+ dA(δuu−1)

)
δuu−1, (A.72)

in agreement with [36]. As explained in this reference, similarly to what happens in Abelian
Chern–Simons theory, we then have that the generators of δα are integrable and vanish-
ing on-shell, while the boundary symmetries acting as ∆αA = 0 and ∆αu = uα have a
generator I∆αΩ which satisfies a non-Abelian current algebra.

A.4.2 Yang–Mills theory

To treat the case of 4-dimensional Yang–Mills theory, we need once again a group element
u and a current 2-form j, transforming respectively under gauge transformations as g∗u =
g−1u and g∗j = g−1jg. With this we can then form the extended action

S = −1

2

∫
M

?F ∧ F +

∫
∂M

j ∧ (A+ duu−1). (A.73)

Its variation is given by

δS = −
∫
M

δA ∧ dA?F +

∫
∂M

δA ∧ (j − ?F ) + δj ∧ (A+ duu−1)− u−1δu d(u∗j) + d(jδuu−1),

(A.74)

where the third term on the boundary can actually be rewritten using

u−1δu d(u∗j) = δuu−1(dj − [duu−1 ∧ j]). (A.75)

The two boundary equations of motion imposed by δj and δuu−1 imply that the boundary
current is conserved, i.e. dAj = 0. The extended potential is given by

θe = −δA ∧ ?F − d(jδuu−1) ≈ −δA ∧ ?F − d(?Fδuu−1), (A.76)

in agreement with [32] and with the Abelian limit (3.35).
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A.4.3 BF theory

For 3-dimensional non-Abelian BF theory, which is actually 3-dimensional first order grav-
ity (here with a vanishing cosmological constant), the edge mode fields are a group element
u and a Lie algebra element b, transforming respectively as g∗u = g−1u and g∗b = g−1bg.
The extended action is

S =

∫
M

B ∧ F +

∫
∂M

bF + j ∧ (A+ duu−1), (A.77)

and is of course invariant under the shift symmetry δφ and the non-Abelian gauge trans-
formation δα. The variation of this action is

δS =

∫
M

δB ∧ F + δA ∧ dAB

+

∫
∂M

δA ∧ (B + dAb− j) + δj ∧ (A+ duu−1) + u−1δu d(u∗j) + δbF − d(jδuu−1 − bδA).

(A.78)

From this we can read once again the bulk and boundary equations of motions, and the
extended potential becomes

θe = δA ∧B + d(jδuu−1 − bδA) ≈ δA ∧B + d
(
(B + dAb)δuu

−1 − bδA
)
, (A.79)

in agreement with [34]. The computation of the extended symplectic structure, the bound-
ary observables, and their algebra, then follows the results of this reference.
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Appendix B

More details on Carroll geometries

B.1 Coordinate expressions for ϕA and wAB

Expressions for the Carrollian acceleration ϕA and the Carrollian vorticity in coordinates
are straightforwardly computed from the Carrollian commutators. Let us start with the
acceleration, we evaluate

ϕA` = [`, eA]

= [e−αDu, eA]

= eA[α]`+ e−α[Du, (J
−1)A

B∂B + βADu]

= (DuβA + eA[α]) `+ e−α
(
Du(J

−1)A
B − (J−1)A

C∂CV
B
)
∂B.

(B.1)

The last term vanishes due to the condition (5.25). We therefore obtain the expression

ϕA = DuβA + eA[α]. (B.2)

In a similar vein, the Carrollian vorticity can be evaluated as follows,

wAB` = [eA, eB]

= [(J−1)A
C∂C + βADu, (J

−1)B
D∂D + βBDu]

= [(J−1)A
C∂C , (J

−1)B
D∂D] + [(J−1)A

C∂C , βBDu] + [βADu, (J
−1)B

D∂D]

+ [βADu, βBDu]

= eα (eA[βB]− eB[βA]) `+
(
eA[JB

C ]− βA(J−1)B
D∂DV

C − (A↔ B)
)
∂C

(B.3)
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The last term, again, computes to zero by means of (5.25). The Carrollian vorticity is then
given by

wAB = eα (eA[βB]− eB[βA]) . (B.4)

One can alternatively check by computing the curvature of k = eα(du− βAeA), which is

dk = dα ∧ k − eαdβA ∧ eA

= − (DuβA + eA[α])k ∧ eA − 1

2
eα (eA[βB]− eB[βA]) eA ∧ eB

= −ϕAk ∧ eA −
1

2
wABe

A ∧ eB.

(B.5)

B.2 Horizontal covariant derivative

One property of the horizontal covariant derivative DA is that we can define the analog
of the Riemann tensor with this connection and it is called the Riemann-Carroll tensor,
(2)RA

BCD. Its components are determined from the commutator,

[DC ,DD]XA = (2)RA
BCDX

B + wCD`[X
A], (B.6)

where the vertical derivative term `[XA] appeared due to the non-integrability of the hor-
izontal subspace. We can then define corresponding the Ricci-Carroll tensor, (2)RAB :=
(2)RCADBq

CD, and the Ricci-Carroll scalar, (2)R := (2)RABq
AB. Let us also note that the

Ricci-Carroll tensor is not symmetric, (2)RAB 6= (2)RBA, in general.

Since we are dealing with the expansion in c2 of the sphere metric, qAB = q̊AB+2c2λAB,
it then becomes essential to define the similar expansion for the connection (2)ΓABC . With
this in mind, let us define the following connection,

(2)Γ̊ABC :=
1

2
q̊AD (eB [̊qDC ] + eC [̊qBD]− eD [̊qBC ]) , (B.7)

and the new horizontal covariant derivative D̊A compatible with the zeroth-order of the
sphere metric q̊AB, that is D̊Aq̊BC = 0. This operator D̊A acts on a horizontal tensor the
same way as DA but with the new connection (2)Γ̊ABC instead of (2)ΓABC . One can therefore
show that (2)ΓABC admits the following expansion in c2,

(2)ΓABC = (2)Γ̊CAB + c2
(
D̊AλB

C + D̊BλA
C − D̊CλAB

)
+O(c4). (B.8)
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B.3 Covariant derivatives

In the main text, we already presented the derivation of the covariant derivative ∇``.
Here we complete the detailed derivations of the remaining covariant derivatives, which
are ∇eA`,∇`eA, and ∇eAeB.

• Derivation of ∇``: For completeness, let us quote the result derived in the main text,

∇`` = c2ϕAeA +O(c4). (B.9)

• Derivation of ∇eA`: We begin by writing the vector∇eA` in the Carrollian basis (`, eA),

∇eA` =
(
ki∇eA`

i
)
`+

(
eBi∇eA`

i
)
eB, (B.10)

then consider each component separately. The vertical component is identically zero as
one can easily see from

ki∇eA`
i = − 1

c2
h(`,∇eA`) = − 1

2c2
eA [h(`, `)] = 0. (B.11)

The horizontal components are computed using repeatedly the Leibniz rule and the
commutators (5.14),

eBi∇eA`
i = qBCh(eC ,∇eA`)

=
1

2
qBC (h(eC ,∇eA`) + h(eC ,∇eA`))

=
1

2
qBC (−h(∇eAeC , `) + h(eC ,∇eA`))

=
1

2
qBC (−h([eA, eC ], `)− h(∇eCeA, `) + h(eC ,∇eA`))

=
1

2
qBC

(
c2wAC + h(eA,∇eC`) + h(eC ,∇eA`)

)
=

1

2
qBC

(
c2wAC + h(eA,∇`eC) + h(eC ,∇`eA)

)
=

1

2
qBC

(
c2wAC + 2θAC

)
,

(B.12)

where we recalled 2θAB = `[qAB]. Expanding the metric qAB in c2, we therefore obtain

∇eA` =

(
θ̊A

B + c2

(
1

2
wA

B + q̊BC`[λAC ]− 2λBC θ̊AC

))
eB +O(c4). (B.13)
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• Derivation of ∇`eA: This term decomposes as

∇`eA =
(
ki∇`eA

i
)
`+

(
eBi∇`eA

i
)
eB. (B.14)

Its components are already determined by the components of ∇`` and ∇eA`. For the
vertical component, we have

ki∇`eA
i = − 1

c2
h(`,∇`eA) =

1

c2
h(∇``, eA) = ϕA, (B.15)

and for the horizontal components, we have

eBi∇`eA
i = qBCh(eC ,∇`eA)

= qBC (h(eC ,∇eA`) + h(eC , [`, eA]))

= θ̊A
B + c2

(
1

2
wA

B + q̊BC`[λAC ]− 2λBC θ̊AC

)
+O(c4).

(B.16)

Together, they give

∇`eA = ϕA`+

(
θ̊A

B + c2

(
1

2
wA

B + q̊BC`[λAC ]− 2λBC θ̊AC

))
eB +O(c4). (B.17)

• Derivation of ∇eAeB: For this covariant derivative, we write its decomposition in the
Carrollian basis as

∇eAeB =
(
ki∇eAeB

i
)
`+

(
eCi∇eAeB

i
)
eC , (B.18)

where the vertical component is

ki∇eAeB
i = − 1

c2
h(`,∇eAeB) =

1

c2
h(∇eA`, eB) =

1

c2
θ̊AB +

(
1

2
wAB + `[λAB]

)
. (B.19)

The horizontal components, eCi∇eAeB
i = qCDh(eD,∇eAeB), can be evaluated using the

following trick. First, the covariant derivative is metric compatible, which following from
this yields the obvious identity, eA[qDB] = h(eD,∇eAeB) +h(eB,∇eAeD). It then become
a straightforward computation to show that

eA[qDB] + eB[qAD]− eD[qAB] = 2h(eD,∇eAeB) + h(eA, [eB, eD])

+ h(eB, [eA, eD]) + h(eD, [eB, eA]).
(B.20)
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Using the commutator [eA, eB] = wAB` and that h(eA, `) = 0, we arrive at the expression
for the horizontal components,

eCi∇eAeB
i =

1

2
qCD (eA[qDB] + eB[qAD]− eD[qAB]) = (2)ΓCAB. (B.21)

We finally obtain the covariant derivative ∇eAeB expanded in c2 as

∇eAeB =

(
1

c2
θ̊AB +

(
1

2
wAB + `[λAB]

))
`+ (2)Γ̊CABeC

+ c2
(
DAλB

C + DBλA
C −DCλAB

)
eC .

(B.22)

B.4 Anomaly computations

To evaluate the anomaly of the Ehresmann connection, ∆4ξk = δξk − Lξk, one first com-
putes its variation under the near-Carrollian diffeomorphism. Using the fact that the the
coordinates xi = (u, yA) are field-independent and thus δdxi = 0, we can straightforwardly
write the variation of the Ehresmann connection as

δξk = �ξαk − eα�ξβAe
A. (B.23)

Next, we need to compute the Lie derivative of the Ehresmann connection. Using the
Cartan formula and recalling the curvature of the Ehresmann connection (5.10), one can
proof that

Lξk = d(ιξk) + ιξdk

= df + (X · ϕ)k +
(
−fϕA + wABX

B
)
eA

= (`[f ] +X · ϕ)k +
(
(eA − ϕA)[f ] + wABX

B
)
.eA

(B.24)

Expanding the transformation parameter f = τ + c2ψ and XA = Y A + c2ZA, the anomaly
of the Ehresmann connection ∆4ξk decomposes as

∆4ξk = (ι`∆4ξk)k + (ιeA∆4ξk) eA, (B.25)

where the components are

ι`∆4ξk = �ξα− �Carr
(τ,Y )α +O(c2),

ιeA∆4ξk = −eα
(
�ξβA − �Carr

(τ,Y )βA
)

+O(c2).
(B.26)
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Next, we compute the anomaly of the null Carrollian metric, q = qABe
A ◦ eB. We begin

by considering its variation under the near-Carrollian diffeomorphism and show that

δξq = −2e−α
(
qAB�ξV

B
)
k ◦ eA + �ξqABe

A ◦ eB. (B.27)

Using the Cartan formula and the fact that deA = 0, the Lie derivative of the null Carrollian
metric thus given by

Lξq = ξ[qAB]eA ◦ eB + 2qAB(LξeA) ◦ eB

= 2qAB`[X
B]k ◦ eB +

(
ξ[qAB] + qC(AeB)[X

C ]
)
eA ◦ eB.

(B.28)

The anomaly of the null Carrollian metric is

∆4ξq = δξq − Lξq = 2∆4ξq(`, eA)k ◦ eA + ∆4ξq(eA, eB)eA ◦ eB, (B.29)

where its components, in the c2–expansion, are

∆4ξq(`, eA) = −e−α(q̊AB + 2c2λAB)
(
�ξV

B +DuY
B
)
− c2q̊AB`[Z

B], (B.30)

and

∆4ξq(eA, eB) =
(
�q̊AB − �Carr

(τ,Y )q̊AB
)

+ 2c2

(
�ξλAB −

1

2
�Carr

(ψ,Z)q̊AB − τ`[λAB]− Y CD̊CλAB − 2λC(AD̊B)Y
C

)
.

(B.31)
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Appendix C

Einstein equations on the null boundary

C.1 Gauss-Codazzi equation

In this section, we give a derivation of the Gauss-Codazzi equation which will be used to
write the Einstein equations on the null boundary.

On the null boundary N , the covariant derivative of the horizontal basis eA along
another horizontal basis is given by

∇eAeB = (2)Γ̊CABeC − θAB`− θ̊ABk (C.1)

Using the decomposition of the metric (6.9) we express the divergence of the horizontal
basis as

∇aeA
a =

(
nak

b + ka`
b + qBCeBaeC

b
)
∇beA

a N
= (2)Γ̊BBA + ϕA. (C.2)

where we recall our choice that we set the scale factor α = 0. With these, we show that
the covariant derivative of a generic horizontal vector fields Xa := XAeA

a projected onto
the horizontal subspace is

eBa∇eAX
a = eA[XB] +XCeBb∇eAeC

b = D̊AX
B. (C.3)

Furthermore, the spacetime divergence of the horizontal vector is

∇a

(
XAeA

a
)

= eA[XA] +XA∇aeA
a =

(
D̊A + ϕA

)
XA. (C.4)

Armed with these tools, we are ready to derive the Gauss-Codazzi equation on N
which is the relation between the Riemann tensor R̊ABCD := eA

aeB
beC

ceD
dR̊abcd and the
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Riemann-Carroll tensor (2)R̊ABCD defined in (B.6)

[D̊C , D̊D]XA = (2)R̊A
BCDX

B + wCD`[X
A]. (C.5)

To derive the relation, let us start by considering the following projection of the covariant
derivative,

eAaeC
c∇eB∇cX

a = eB[eAa∇eCX
a]− (∇eCX

a)(∇eBe
A
a)− eAa(∇bX

a)(∇eBeC
b). (C.6)

The second term can be written as

(∇eCX
a)(∇eBe

A
a) = −(2)Γ̊ABDD̊CX

D + (θB
Aθ̊CD + θ̊B

AθCD)XD. (C.7)

The third term can also be written as

eAa(∇bX
a)(∇eBeC

b) = (2)Γ̊DBCD̊DX
A − (eAa∇`X

a)θBC − (eAa∇kX
a)θ̊BC . (C.8)

We therefore obtain

eAaeC
c∇eB∇cX

a = D̊BD̊CX
A − (θB

Aθ̊CD + θ̊B
AθCD)XD

+ (eAa∇`X
a)θBC + (eAa∇kX

a)θ̊BC .
(C.9)

Using that [∇b,∇c]X
a = Ra

dbcX
d and recalling the definition of the Riemann-Carroll

tensor, we obtain the Carrollian analog of the Gauss-Codazzi equation on the null boundary,

R̊ADBC =(2)R̊ADBC −
(
θBAθ̊CD + θ̊BAθCD − θCAθ̊BD − θ̊CAθBD

)
− wBC θ̊DA. (C.10)

Observe that if the Carrollian vorticity is zero, such as when one considers the case βA = 0,
we recover the standard Gauss-Codazzi equation. The trace of the Riemann tensor R̊ABCD

is related to the symmetric part of the Ricci-Caroll tensor,

q̊CDR̊CADB = (2)R̊(AB) −
(
θθ̊AB + θ̊θ(AB)

)
+
(
θ̊C(AθB)

C + θC(Aθ̊B)
C
)
− wC(Aθ̊B)

C .

(C.11)
Taking the trace of the Riemann tensor, we obtain the scalar relation

q̊AB q̊CDR̊CADB = (2)R̊− 2θθ̊ + 2θ
AB
θ̊AB. (C.12)
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C.2 Derivation of the Einstein tensors on the null hy-
persurface

We present in this section the derivation of the complete set of the Einstein equations on
the null hypersurface N . We provide the general form of the covariant derivative of the
tangential vector `, the transverse vector k, an their combination n = ` + 2ρk which will
become handy in further computations,

∇a`
b = W(`)a

b + (2ρ(πa + κka)−Daρ) kb − na
(
κkb + (πb + ϕb)

)
(C.13)

∇ak
b = W(k)a

b − (πa + κka)k
b (C.14)

The (``)-component

Let us first consider the (``)-component of the Einstein tensor. For this component, the
Einstein tensor on the null boundary N is simply given by the corresponding Ricci tensor,

G̊`` = R̊`` = `a∇b∇a`
b − `a∇a∇b`

b. (C.15)

Using the decomposition (C.13), we can write the Einstein tensor as

G̊`` = ∇a (∇``
a)− (∇a`

b)(∇b`
a)− `[∇a`

a]

= ∇a(̊κ`
a + 2rκ̊ka)− θ̊AB θ̊AB − 2̊κ2 − `[̊θ]

N
= −`[̊θ] + κ̊θ̊ − θ̊AB θ̊AB.

(C.16)

Recalling the definition µ̊ = κ̊+ 1
2
θ̊, we can then write the Einstein tensor as

−G̊`` = (`+ θ̊)[̊θ]− µ̊θ̊ + σ̊ABσ̊AB. (C.17)

The (`A)-components

Similarly, these components of the Einstein tensors are simply given by the corresponding
Ricci tensor,

G̊`A = R̊`A = eA
a∇b∇a`

b − eAa∇a∇b`
b. (C.18)
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Then by using the decomposition (C.13), one can express the Einstein tensors on the null
hypersurface N as

G̊`A = eA
a∇b

(
θ̊a
b + πa`

b + κ̊ka`
b + (2rκ̊(πa + κ̊ka)− rDaκ̊) kb − `a(̊κkb + πb + ϕb)

)
− eA [̊θ]

= (D̊B + ϕB)θ̊A
B + `[πA] + θ̊πA − (2πB + ϕB)θ̊A

B + 2̊κπA − eA [̊θ + κ̊]
(C.19)

Recalling that 2πA + ϕA = 0, we arrive at the following expression of the Einstein tensor

G̊`A
N
= (`+ θ̊)[πA] + θ̊ϕA + (D̊B + ϕB)

(̊
σA

B − µ̊δBA
)
. (C.20)

The (`k)-component

Expressing the (`k)–component of the Einstein tensor in terms of the extrinsic geometry
of the null hypersurface requires the Gauss-Codazzi relation. Let us start by writing the
Einstein equation as

G`k = R`k −
1

2
R. (C.21)

By using the decomposition of the spacetime metric, the spacetime Ricci scalar can be
expressed on the null boundary N as

R = gabRab
N
= (`akb + ka`b + q̊ABeA

aeB
b)R̊ab

= 2R̊`k + q̊ABR̊AB

= 2R̊`k + 2q̊ABR̊`AkB + q̊AB q̊CDR̊CADB.

(C.22)

This allows us to express the Einstein tensor as

G̊`k = −q̊ABR̊`AkB −
1

2
q̊AB q̊CDR̊CADB, (C.23)

The second term is the scalar Gauss-Codazzi equation we have already derived. Let us
focus on the first term which can be expressed as the commutator as

q̊ABR̊`AkB = q̊ABeAaeB
b`c[∇b,∇c]k

a = q̊ABeAaeB
b`c(∇b∇ck

a −∇c∇bk
a). (C.24)

Using the decomposition (C.13) and (C.14), we are able to write the following terms as

eAa`
c∇eB∇ck

a = eAa∇eB(∇`k
a)− eAa(∇ck

a)(∇eB`
c)

= −eAa∇eB (πa + ϕa + κ̊ka)− eAa(∇ck
a) (θB

c + πB`
c)

= −(D̊B − πB)(πA + ϕA)− κ̊θBA − θ̊BCθCA,
(C.25)
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and for the second term, we have

−eAaeBb∇`∇bk
a = −`[eAa∇eBk

a] + eAa(∇bk
a)(∇`eB

b) + (∇eBk
a)(∇`eAa)

= −`[θBA] +
(
θbA − (πA + ϕA)kb

)
∇`eB

b +
(
θBa − πBka

)
∇`eA

a

= −`[θBA] + θCAθ̊B
C + θ̊A

CθBC

(C.26)

where we used again 2πA + ϕA = 0. We thus obtain

R̊`AkB = −(`+ κ̊)[θBA] + D̊BπA − πAπB + θ̊A
CθBC . (C.27)

After taking the trace, we arrive at the expression

q̊ABR̊`AkB = −(`+ κ̊)[θ] + (D̊A − πA)πA − θABθAB, (C.28)

where we note that on N the tensor θAB is symmetric. Using the Gauss-Codazzi equation
(C.12), we then arrive at the expression for the Einstein tensor

G̊`k = (`+ θ̊ + κ̊)[θ]− (D̊A − πA)πA − 1

2
(2)R. (C.29)

For completeness, let us also consider the component R̊`k of the spacetime Ricci tensor.
This can be written as

−R̊`k = `a[∇a,∇b]k
b = `[∇ak

a]−∇a (∇`k
a) + (∇b`

a)(∇ak
b). (C.30)

Now using the decomposition (C.13) and (C.14), we finally arrive at

−R̊`k = (`+ µ̊)[θ] + κ(1) − (D̊A + ϕA)πA + σ̊ : σ, (C.31)

where we recall the notation σ̊ : σ = σ̊ABσ
AB

The (AB)-components

Next, we consider the fully horizontal components of the Einstein tensor,

G̊AB = R̊AB −
1

2
R̊q̊AB = R̊AB −

(
R̊`kq̊AB +

1

2
q̊CDR̊CD

)
q̊AB. (C.32)

These components can be split into the traceless part and the trace part as1

G̊〈AB〉 = R̊〈AB〉, and q̊ABG̊AB = −2R̊`k. (C.33)

1In D-dimensional spacetime, the relation is q̊ABG̊AB = (D − 4)G̊`k − (D − 2)R̊`k.
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Let us first consider the horizontal components of the spacetime Ricci tensor, RAB =
eA

aeB
bRab. Using the previous result and the Gauss-Codazzi equation, we have

−R̊AB =−
(
R̊`AkB + R̊`BkA

)
− q̊CDR̊CADB

= 2(`+ κ̊)[θ(AB)]− 2D̊(AπB) + 2π(AπB) − 4θ̊(A
CθB)C + θθ̊AB + θ̊θ(AB) − (2)R̊(AB).

(C.34)
One can verify that −q̊ABR̊AB = 2G̊`k. We can therefore show that the symmetric traceless
components of the Einstein tensor are given by

−G̊〈AB〉 = 2`[σAB]− 2D̊〈AπB〉 + 2π〈AπB〉 + θσ̊AB + (2̊κ− θ̊)σAB
− 4σ̊(A

CσB)C + 2σ̊(A
CwB)C − (2)R̊〈AB〉.

(C.35)

The (kA)-components

For these components, we can use the decomposition (C.14) to write the Einstein tensor
as

G̊kA = R̊kA = eA
a∇b∇ak

b − eAa∇a∇bk
b. (C.36)

Using the decomposition (C.14), we can derive the following expression

G̊kA = R̊kA = eA
a∇b∇ak

b − eAa∇a∇bk
b

= −θπA + D̊B

(
θA

B − θδAB
)

+ wABπ
B.

(C.37)

The last term vanishes when the vorticity vanishes, wAB = 0.

The (kk)–component

For the last component, we have that G̊kk = R̊kk and we use (C.14) to write

G̊kk = ka∇b∇ak
b − ka∇a∇bk

b = −∇ak
b∇bk

a − ∂r(∇ak
a). (C.38)

The equation G̊kk = 0 fixes the higher order terms in the near-horizon expansion of qAB.
Let us now write qAB = q̊AB + 2rλAB + r2KAB + ... with the symmetric tensor KAB being
a function of (u, σA). One has that

∇ak
a =

1

2
qAB∂rqAB = θ + r

(
−2θ

(AB)
θAB + q̊ABKAB

)
, (C.39)
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and thus the Einstein tensor can be expressed as

G̊kk = θ
AB
θAB − q̊ABKAB. (C.40)

Demanding G̊kk = 0 determines the trace of the sub-sub-leading order in the sphere metric.
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