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Abstract

In this research, we investigated the non-linear motion and magnetic forces in a chain
of magnetic pendulums with cylindrical magnets to eventually better understand the be-
haviour of Josephson junction-effect devices. We studied the nonlinear motions of our
system through the interaction forces between the magnets and analytically derived the
equations of motion with the aim of simulating the dynamics of the system. To obtain the
natural frequencies of our analytical system, we used the Fast Fourier transform. Finally,
we validated the accuracy of our simulated system’s response by comparing its behaviour
to that of an experimental setup consisting of two coupled magnetic pendulums.

Ultimately, we solved for the equations of motions of our magnets and integrated the
magnetic forces from the magnetic field function. We also experimentally validated the
nonlinear response of the system as well as its equilibrium points and natural frequency.
The results we obtained through comparing the simulated system response and the de-
signed experiment response indicated that our analytical model can accurately predict the
behaviour of such a system.
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Chapter 1

Introduction

Coupled magnetic oscillator systems are very interesting not only for energy harvesting
but also for helping researchers have a better understanding of the vibration of atoms
in a lattice. Magnetic pendulums are a type of coupled magnetic oscillator system and
consist of oscillating pendulums with magnets attached at their ends hence coupled mag-
netically. Studies have suggested using coupled magnetic pendulums to better understand
the Josephson junction which is used for coupling energy between two superconductors.
Josephson junction weak links are interesting because of their wide variety of existing and
potential applications such as in quantum computing. With memory cell circuit design in
quantum computing being based on coupled arrays of Josephson junctions, studying cou-
pled magnetic pendulums can ultimately help better understand this fairly new and more
e�cient computing technology. Therefore, our goal is to create a mechanical analogue of
Josephson junction that can be used to better understand quantum computing.

1.1 Overview

Quantum computing is a fairly new technology that has gained a lot of interest because
it make information processing faster and more e�cient partly due to its dissipation-less
nature. It can make a big positive di�erence in various �elds such as �nance, military and
intelligence applications, drug design and discovery, aerospace design, utilities (nuclear
fusion), polymer design, machine learning and arti�cial intelligence (AI) [8]. In this thesis,
we study the motion of a system of magnetic oscillators to provide a mechanical analog of
memory cells used in quantum computing.
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Coupled oscillators can be categorized into two types: linearly coupled and nonlinearly
coupled. Nonlinear oscillators have more interesting dynamics than the linear ones which
is why they will be our focus here. Coupled magnetic oscillators belong to the latter class
[9].

The goal of this research is to devise a model of magnetic pendulums in a chain and
investigate the nonlinear dynamics of the model and the interaction forces among the
pendulums. The pendulums are used in the model to better understand coupled Josephson
junctions which form the basis of memory cell circuit design in quantum computing. Our
analytical model was created using Mathematica and will be compared to the behaviour
of the system examined experimentally to ensure its accuracy.

In order to write the equations of motion for our system, we evaluated the interaction
forces between the magnets while taking their geometry into account. To evaluate the
validity of the model, we designed and constructed a system of coupled magnetic pendulum
constituted of a suspension system holding two pendulums with cylindrical magnets at their
ends. The equations of motion of the magnetic pendulums were used to simulate the system
response and compared to the results of experimental testing in order to tune the model
parameters. Ultimately, we were able to numerically solve the equations of motion and
validate the nonlinear response of the system including its equilibrium points and natural
frequency.

1.2 Literature Review

This section provides background on quantum computing and how the motion of coupled
magnetic oscillators could be used to improve this fairly new technology. The �rst subsec-
tion 1.2.1 describes the history of quantum computing and its advantage for information
processing. Subsection 1.2.2 covers quantum computing component memory cells, Joseph-
son Junctions and the mechanics of their motion. Finally, subsection 1.2.3 highlights how
the motion of coupled magnetic oscillators relates to that of Josephson Junctions, and thus
memory cells.

1.2.1 Quantum Computing

Quantum computing is the use of quantum-mechanical systems for information process-
ing. With the emergence of nanotechnology, quantum computing is becoming increasingly
predominant in the development of more compact and e�cient computers [2]. In general,
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energy dissipation is common in computing with every irreversible operation causing bit
losses and consequently energy loss. However, in quantum computing, the quantum logic
circuits are reversible which helps avoid energy loss when processing a bit.

History of Quantum Computing

Quantum computing is not a new concept. In fact, so far, many people have suggested
the ideas of quantum computers and formalized their models. The idea of using quantum
mechanics for computational purposes has been explored as early as 1980 where Benio�
[10] noted that constructing a computer based on quantum mechanics is possible and
proposed building it. He started out by making smaller logic circuits thus showing that
atomic-scale circuit as one of the components of quantum computers can be built. Benio�
suggested representing every two binary digits using spins of elementary particles making
computation fully quantum-mechanically performed without consuming energy [11].

That same year, Manin [12] also proposed the idea of quantum computers in his book
\Computable and Non-Computable". In 1981, Feynman [13] in his lecture \Simulating
Physics with Computers", described a quantum computer that can simulate physics. He
argued that regular computers cannot adequately simulate complex quantum mechanical
phenomena:

...nature isn't classical, dammit, and if you want to make a simulation of na-
ture, you'd better make it quantum mechanical, and by golly it's a wonderful
problem, because it doesn't look so easy...

He pointed out the key features for quantum computers which generally should be useful
and obey laws of quantum mechanics.

After Benio�, Manin, and Feynman introduced the concept of quantum computers,
researchers started proposing models for such computers and the nature of the algorithms
that could be run on them [14]. Deutsch [15] proposed a model called thequantum computer
which is considered the �rst computational model for quantum computing. In this work,
he describes what a quantum algorithm would look like and predicts that \one day it
will become technologically possible to build quantum computers." To further his point,
Deutsch also developed a sample algorithm that would run faster on a quantum computer.

In 1993, Vazirani and Bernstein [16] elaborated on Deutsch's work by proposing the
universal quantum Turing Machinewhich generalizes Deutsch's model. This algorithm
showed clear quantum-classical separation even when small errors are allowed. They also
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described a quantum version of the Fourier transform, which was used [16] to develop an
algorithm to factor large numbers. This algorithm, also known asShor's algorithm, factors
numbers with a quantum computer that would involve six qubits and thus further proving
the possibilities of quantum computers.

In 1996, Grover [17] proposed a quantum search algorithm that would speed search
functions on quantum computers. This algorithm can search data in unstructured database
in the order of

p
n.

The �rst model of a quantum computer was only implemented in 1998 by Chuang
and Gershenfeld [18]. The 2-qubit quantum computer is based on chemical applications of
Nuclear Magnetic Resonance (NMR). In 2000, Knill, Laamme, and Martinez [19] were able
to develop a seven-qubit NMR quantum computer while implementing Shor's Algorrithm.

Currently, it is possible to develop quantum computers with more than 10-qubits. Many
fundamental theories for applications of quantum computing have also been established
[11].

Characteristics of Quantum Computing

As we can see, research on quantum computing has been gaining interest. The speed
of classical computing being still insu�cient to satisfy the constantly increasing needs
of technology, quantum computation could make information processing much faster and
more practical.

Quantum computers process information by using atoms at the micro level and the
properties quantum-mechanical systems. The basic unit of information used in quantum
computers is the quantum bit also called aqubit. It is based on a the principle ofQuantum
Superposition, that the 0 and 1 states can overlap [11]. While in regular computers, infor-
mation is represented by means of a bit which can have only one value of 0 or 1, quantum
computers use qubits which can represent more information than in bits as illustrated in
Figure 1.1.

Some scientist have already constructed quantum computers that can carry out basic
operations [2]. Many of these quantum computers adopt quantum mechanics by using
quantum logic gates to avoid redundant theories and algorithms.

A quantum gate is a basic quantum circuit operating on a small number of qubits
[2]. There are various quantum gates with di�erent functionalities most notably the NOT,
CNOT, controlled-V, and controlled-V+ gates as seen in Figure 1.2(V gate is the square
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Figure 1.1: Classical qubits are zero or one. Qubits are a superposition of zero and one [1].

root of NOT gate). In this �gure, the colored dot represents the control, while the circle
represents the target, and the contact qubits are illustrated by the vertical lines.

As opposed to classical computing, neither AND, OR, XOR, NAND or FANOUT can
be used in quantum computing. The AND, OR, XOR and NAND gates are not reversible
while the FANOUT involves duplication or cloning of states. Additionally, in quantum
computing, the number of outputs must equal the number of inputs. For reference, Fig-
ure 1.3 represent an example of a circuit in classical computing and quantum computing
respectively that performs addition/subtraction also know as a full-adder.

Although the two-level qubit systems is the most generally used to build quantum
computers, there are other types of quantum computing architectures. For example, it
is possible to build a quantum computer with qutrits which are three-level systems with
states of 0, 1 or 2 or a superposition of those states.

1.2.2 Memory Cells

Just like for any computing device, depending on the computing task at hand, there are
two main components in quantum computing needed for the device to operate properly:

5



Figure 1.2: Basic Quantum gates [2].

(a) Classical computing [14]. (b) Quantum computing [20].

Figure 1.3: Full-adder circuit in di�erent computing.

a long-lived memory and a fast data-bus for communication between di�erent registers or
processors [21]. The cells of the memory unit have to be well isolated from the rest of
the system. Several types of memory cells have been developed by tunnelling Josephson
junctions. The main advantages of using a Josephson junction as a qubit (classical bit) is
that it is not only easily controllable by an applied magnetic �eld [22], but also helps create
a system with states that can be manipulated and well protected against decoherence.

Another advantage of using a Josephson junction as a memory cell is the resemblance
of its dynamics to that of a pendulum under an applied torque. This allowed many re-
searches to use the motion of pendulum systems under constant torque to better understand
Josephson junction-e�ect devices.

Figure 1.4 shows the circuit diagram of a Josephson Junction (JJ). The Josephson
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Figure 1.4: Schematic diagram of a circuit with a Josephson junction.

voltage-phase relationship de�nes the instantaneous voltage across the junctionV in terms
of the rate of � which is the phase di�erence that the two superconductors of the junction
will be driven apart at [23]:

V =
h
2e

_� (1.1)

where h is Planck's constant and e is the electron charge. In cases where the maximum
current realizable by the JJI is larger than the bias currentI DC , the current through the
JJ is limited to:

I j = I c sin�

Noting that the voltage drop across all branches of the circuit is equal toVout , we apply
Kirchho�'s current law to the circuit and set the sum of the currents through the capacitor
C, the resistorRn and the junction equal to the bias currentI DC [23]:

C _Vout +
Vout

Rn
+ I sin� = I DC (1.2)

Using the relationship between the junction voltage and phase in Equation (1.2), it reduces
to:

hC
2e

•� +
h

2eRN

_� + I sin� = I DC (1.3)

Equation (1.3) is analogous to the equation of motion of a damped pendulum under a
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constant torqueT, namely:

mL 2•� + b_� + mgL sin� = T (1.4)

wherem is the pendulum e�ective mass,L is its distance from the suspension point,b is the
viscous damping coe�cient, andg is the acceleration of gravity. This mechanical analog
has been use by many in visualizing the dynamics of Josephson junctions; the earliest being
Anderson and Rowell [24] in 1963.

1.2.3 Josephson Junctions and Coupled magnetic systems

Di�erent magnetic pendulum models have been used to better understand the Josephson
coupling energy between two superconductors. Sullivan and Zimmerman [3] model seen
in Figure 1.5 is an example of a mechanical analog of a single (point) Junction. In this
model, an electric motor produces a constant torque source that rotates magnet-studded
disk which in turn moves the pendulum at the right end. The constant torque represents
the constant current source of a Josephson Junction.

Figure 1.5: Sullivan's mechanical analog of a point JJ1.

A year later, Hansma and Rochlin [4] based their mechanical analog, illustrated in
Figure 1.6, on that of Sullivan and Zimmerman. Their system contains a pair of masses
�xed to the disc at the right end which are used as pendulum bobs. These two masses can
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be changed and used to vary the e�ective pendulum mass without altering the moment of
inertia [4].

Figure 1.6: Hansma and Rochlin's mechanical analog of a point JJ2.

Another interesting model [5] illustrated in Figure 1.7 presents a mechanical analogue
of the Josephson transmission line. The constant torque that moves the disks seen in the
�gure is produced by the air that passes through the nozzles at the top which is blown
against the edges of each aluminum disks. Similarly to Hansma and Rochlin's model, the
two masses symmetrically fastened on each disk are used as pendulum bobs to the same
end. Again, the constant torque is analogous to a constant current source.

Figure 1.7: Mechanical analogue of a JJ transmission line3.

Blackburn et al. [25] experimentally investigated the motion of a damped pendulum
driven by linear motor that serves as a mechanical analogue of a current biased JJ. The
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