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Abstract

Graph transversals are a classical branch of graph algorithms. In such a problem, one
seeks a minimum-weight subset of nodes in a node-weighted graph G which intersects all
copies of subgraphs F from a fixed family F .

In the first portion of this thesis we show two results related to even cycle transversal.
In Chapter 4, we present our 47/7-approximation for even cycle transversal. To do this, we
first apply a graph “compression” method of Fiorini et al. which we describe in Chapter 2.
For the analysis we repurpose the theory behind the 18/7-approximation for “uncrossable”
feedback vertex set problems of Berman and Yaroslavtsev noting that we do not need the
larger “witness” cycles to be a cycle that we need to hit. This we do in Chapter 3.

In Chapter 5 we present a simple proof of an Erdos Posa result, that for any natural
number k a planar graph G either contains k vertex disjoint even cycles, or a set X of at
most 9k such that G\X contains no even cycle.

In the rest of this thesis, we show a result for dominating set. A dominating set S in
a graph is a set of vertices such that each node is in S or adjacent to S. In Chapter 6 we
present a primal-dual (a + 1)-approximation for minimum weight dominating set in graphs
of arboricity a. At the end we propose five open problems for future research.
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Chapter 1

Introduction

Transversal problems in graphs have received a significant amount of attention from the
perspective of algorithm design [6, 9, 20, 41]. Node (resp. edge) transversal problems take as
input a node-weighted (resp. edge-weighted) graph G, and seek a minimum-weight subset S
of nodes (resp. edges) which intersect all graphs F from a fixed graph family F that appears
as subgraph in G. A set X ⊂ V (G) is an F-transversal if G\X contains no subgraph
isomorphic to a graph of F . A major part of this thesis is about the F -transversal problem
where F is defined to be the set of all even cycles of our graph.

Let us give an overview of the literature on F -transversal problems. Many prominent F -
transversal problems are at the same time generalized Feedback Vertex Set (FVS) problems.
In a generalized FVS problem (see [8]), we are given a (possibly directed) graph G = (V,E),
weights wv ∀v ∈ V, a set of cycles C ⊂ {0, 1}E, and wish to choose a set of vertices F such
that each C ∈ C is hit by F , that is, F contains a vertex of C. The cases of undirected FVS
and directed FVS (DFVS) are when C is the set of all cycles, or dicycles of a directed graph,
respectively. The cases of subset FVS (SFVS), odd cycle transversal (OCT), and even cycle
transversal (ECT) are given by setting C equal to the set of cycles going through a given set
of “special” vertices, the set of cycles of odd length and the set of cycles of even length.

Many results are known for FVS and its variants (the ones for our main problem ECT will
be reviewed in Section 1.1). FVS is one of Karp’s 21 NP-complete problems [36]. FVS has
many applications such as deadlock prevention, node weighted network design and minimum
feasible subsystem problem (MinFs2) [8, 22, 42]. MinFs2 is the problem of removing a
minimum weight set of equations from an infeasible system to obtain feasibility.

For α ∈ R, we say that an algorithm is an α-approximation algorithm, if it is guaranteed to
return a solution at most α times the optimum. Undirected FVS admits a 2-approximation
in polynomial-time [2, 6], which cannot be improved to a (2 − ε)-approximation for any
ε > 0 assuming the Unique Games Conjecture holds [38]. We say that a problem admits a
polynomial-time approximation scheme (PTAS) if, for any fixed ε > 0, there is a (1 + ε)-
approximation algorithm running in polynomial-time. If such an algorithm runs in time
nO(1)f(1/ε) for some function f where n is the problem size, we say that the problem admits
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an efficient PTAS (EPTAS). Many unweighted graph transversal problems have been shown
to admit PTASs for planar input graphs G, using a variety of techniques like the shifting
technique (Baker, J. [3]), bidimensionality (Fomin et al. [26]), or connectivity domination
(Cohen-Addad et al. [10]). Informally speaking, the techniques in [3, 26] employ a “divide
and conquer” approach which first looks for a set of vertices called a “separator” whose size
is small compared to the size of an optimal solution, that is o(OPT ) where OPT is the
size of an optimal solution, and whose removal divides the graph into pieces for which the
problem is easy. These techniques do not extend to weighted graphs as [3, 26] do not show
that weighted graphs contain a separator of small weight. A key advantage of the technique
of [10] is that it can be applied to weighted graphs.

A 2-approximation for (undirected) FVS is given in [2]. Undirected FVS with unit weights
admits an efficient polynomial-time approximation scheme (EPTAS) in H-minor free graphs
for any fixed graph H via the divide and conquer technique mentioned previously [26, 41].
Undirected (weighted) FVS also admits an EPTAS on graphs of bounded genus [10]. In fact
it is shown in [41], that local search yields a PTAS in H-minor free graphs. To be precise,
given any ε > 0, there exists some positive integer c for which the following algorithm is a
(1 + ε)-approximation. Given a graph G = (V,E), positive integer c, initialize S := V . For
each A ⊂ S of size at most c, B ⊂ V of size at most |A| − 1, if (S\A) ∪B is a feasible FVS
replace S with (S\A)∪B. If for each A ⊂ S of size at most c, B ⊂ V of size at most |A|−1,
we have that (S\A) ∪B is not a feasible FVS return S.

A tournament is a complete directed graph. A bipartite tournament is a directed com-
plete bipartite graph. DFVS has a 2-approximation in tournaments [45] and bipartite
tournaments [59], is polynomial-time solvable on graphs of bounded treewidth, and has
an O(log n log log n)-approximation in general graphs [20]. DFVS cannot be approximated
within 2 − ε for any ε > 0 assuming the unique games conjecture holds [38]. SFVS has
an 8-approximation [21] and also admits an 11-approximation based on Linear Program
(LP) rounding [9]. A characterization of digraphs for which the natural linear program (see
(PECT)) has integral primal and dual solutions in the unit weight case is given in [31]. A
characterization of the feedback vertex set polytope in series-parallel graphs is given in [25].

We say that a vertex deletion problem Π has a kernel of size f (where f : N → N), if
the following holds. For any instance L of Π and k ∈ N we can in polynomial-time find a
problem L′ of Π of “size” at most f(k) and an integer k′ ≤ f(k) such that L has a solution
which deletes k or fewer vertices if and only if L′ has a solution which deletes k′ or fewer
vertices. ECT, OCT, FVS, DFVS and SFVS admit O(k2), O(k4.5), O(k2), O(k4)and O(k9),
kernels [7, 33, 39, 49, 54, 57], respectively.

Feedback edge set (FES) problems, that is, the problem of given a graph G = (V,E)
weights we ∀e ∈ E, a set of cycles C ⊂ {0, 1}E, and finding a minimum weight set of edges
that intersects all cycles, can be easier than their FVS counterparts. Undirected FES is
equivalent to the maximum weight forest problem, which is polynomial-time solvable [40].
Thus, undirected FES is solvable in polynomial-time. It was shown in [48] that the natural
LP for directed FES (DFES) is totally dual integral in planar graphs. Directed FES (DFES)
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also has a polynomial-time approximation scheme (PTAS) in tournaments [37].

1.1 Approximating Even Cycle Transversal

Recall that two variants of FVS are Odd Cycle Transversal (OCT) and Even Cycle Transver-
sal (ECT), where one wishes to intersect the odd-length and even-length cycles of the input
graph G, respectively. These fall in the category of graph problems under parity constraints,
a topic that has been studied for graph transversal problems [46, 47, 49, 51].

Since FVS is NP-hard it is easy to see that ECT is NP-hard. OCT is known to be
NP-hard [61]. The approximability of these problems is much less understood than that of
FVS: for OCT, only an O(

√
log n)-approximation is known [1], which requires unit weights,

and for ECT, only a 10-approximation is known [49]. It is NP-hard to approximate OCT to
1.3606− ε for any ε > 0 [16].

Planar graphs are a natural subclass of graphs in which to consider graph transversal
problems. We provide a quick proof that ECT is hard in planar graphs for completeness.
Lichtenstein [44] showed that vertex cover is NP-hard in planar graphs. Given an instance
of vertex cover on a planar graph G, for each edge uv add another parallel edge between u
and v. Call this new graph G′. Given S ⊂ V (G), if S is a vertex cover of G, then given
any cycle of G′ let uv be an edge of G′, then uv is an edge of G and S contains at least one
vertex in u, v. If S is an ECT of G′, then note that for each uv ∈ G, G′ contains an even
cycle consisting of two parallel edges between u and v and hence S contains one of u, v. So
S is a vertex cover. This reduction thus shows that ECT is NP-hard in planar graphs.

For many NP-hard problems, there exist good approximations in planar graphs. One of
the first results here was Baker’s shifting technique [3], which yielded a PTAS for Vertex
Cover in planar graphs (which is an F -transversal problem where F is the single graph con-
sisting of an edge). The technique was generalized by Demaine et al. [11] who gave EPTASs
for graph transversal problems satisfying a certain bidimensionality criterion, including FVS
in unweighted planar graphs. That result was later extended to yield an EPTAS for FVS in
unweighted H-minor free graphs [27], for any fixed graph H. In the edge-weighted Steiner
Forest problem, we are given a graph G and a list of pairs of nodes of G and wish to find
a minimum weight set of edges that connect all pairs of nodes in our list. In edge-weighted
planar graphs, PTAS are known for edge-weighted Steiner Forest and OCT [5, 18, 32]. One
naturally hopes that better approximations exist for ECT in planar graphs than general
graphs.

On node-weighted planar graphs, the situation appears to be more complex. First, the
existence of a PTAS for FVS on node-weighted planar graphs was a long-standing open
question which was resolved only recently in a paper of Cohen-Addad et al. [10]. The
authors presented a PTAS for FVS in node-weighted planar graphs, crucially exploiting the
fact that the treewidth of G − S is bounded for feasible solutions S. The existence of an
EPTAS for FVS in node-weighted planar graphs is still open.
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Goemans and Williamson [29] first proposed a primal-dual based framework for FVS
problems where the cycle family F satisfies a certain uncrossing property. In an embedded
planar graph, two cycles C1, C2 cross if C1 contains an edge intersecting the interior of the
region bounded by C2 and C2 contains an edge intersecting the interior of the region bounded
by C1; see Figure 1.1. Informally, a set S of cycles is uncrossable if for any two crossing
cycles C1, C2 of S that cross one can find two cycles C ′1, C

′
2 ∈ S that do not cross and use the

same set of vertices. The latter property can be seen to be satisfied by OCT, Directed FVS
in directed planar graphs, and Subset FVS, which seeks a minimum-cost node set hitting
all cycles containing a node from a given node set T . For those problems, the authors
obtained 3-approximations1. The framework by Berman and Yaroslavtsev [29] also yields
a 3-approximation for S teiner Forest in node-weighted planar graphs [15, 50]. Berman and
Yaroslavtsev [8] later improved the approximation factor for the same class of uncrossable
cycle transversal problems from 3 to 2.4.

The main question driving this work is whether the framework of [8, 29] can be extended
to cycle transversal problems that do not satisfy uncrossability. We focus on ECT in node-
weighted planar graphs as a natural such problem: even cycles are not uncrossable, and
hence the frameworks of [8, 29] do not apply.

Figure 1.1: Here
the red cycle
crosses the black
cycle.

Figure 1.1 gives an example of a graph whose even cycles are not
uncrossable: the two even cycles depicted in red and black edges cross,
and they are the only two even cycles in the graph. One cannot find
two distinct even cycles that do not cross in that graph, which shows
that even cycles are not uncrossable. Furthermore, the framework of
Cohen-Addad et al. [10] requires that contracting edges only reduces
the solution value, which is not the case for even cycles either. For
example, the graph G consisting of a single odd cycle has the empty
set as an ECT, while G/e for any e ∈ G is an even cycle and does not
contain the empty set as an ECT. Our main result, which we prove in
Chapter 4 is a 47/7-approximation algorithm for ECT in node-weighted
planar graphs.

Theorem 1. [30] ECT admits an polynomial-time 47/7 ≈ 6.71-approximation algorithm on
node-weighted planar graphs.

This improves the previously best 10-approximation by Fiorini et al. [24] for planar
graphs.

1.2 Even Cycles Satisfy Erdős-Pósa in Planar Graphs

For a graph G, a set {F1, . . . , F`} of subgraphs of G is called an F-packing if the Fi are
pairwise vertex-disjoint and isomorphic to graphs in F . Clearly, the maximum size of an H

118/7-approximations were claimed but later found to be incorrect [8].
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packing is no greater than the minimum size of an H-transversal. A question of fundamental
interest is how large the gap between these two quantities can be. Erdős and Pósa proved
that there is a function f(k) such that for every graph G and every k ∈ N, either G contains
k vertex-disjoint cycles, or there is a set X of at most f(k) vertices such that G\X is a
forest.

Definition 1. We say that the Erdős-Pósa property holds for a set of graphs H in a class
of graphs G if there is a function f(k) (called the bounding function) such that any graph
of G either contains k vertex disjoint copies of graphs in H or an H-transversal X ⊂ V ,
|X| ≤ f(k).

Recently van Batenburg et al. [58] showed that for any planar graph H any graph G
either contains k vertex disjoint subgraphs each of which contain H as a minor, or a set X
of at most f(k) ∈ O(k log k) vertices such that G\X does not contain H as a minor. As a
corollary they show that even cycles satisfy the Erdős-Pósa property with f(k) ∈ O(k log k)
and f(k) ∈ OH(k) for H-minor free graphs. By OH(k) we mean f ∈ O(k) for fixed H. Going
through the details of their proof one finds their result shows that one can take f(k) = 145k.

Odd cycles do not satisfy the Erdős-Pósa property: Reed [55] showed that “Escher walls”
are graphs which do not contain two node-disjoint odd cycles, but for which a minimum odd
cycle transversal can be arbitrarily large. Given a graph G, T an even set of vertices of G,
a set of edges J is a T -join if each vertex of T is incident to an odd number of edges in J
and each vertex of G not in T is incident to an even number of edges of J . The minimum
T -join problem is the problem of finding a minimum weight T -join of a graph with weights
on its edges. Fiorini et al. [23] show that odd cycles satisfy the Erdős-Pósa property in
planar graphs: any planar graph G either contains k node-disjoint odd cycles, or a set X of
at most 10k vertices such that G−X has no odd cycles. Informally speaking, they achieve
this result by relating odd cycle transversals to the T -join problem in the dual graph of the
planar graph G. To illustrate their ideas, consider the problem of removing a set of edges X
from our planar graph such that G\X contains no odd cycle. Suppose that every face of G
is a cycle. Let T be the set of odd faces of the dual graph G∗. For a cycle C of G, one can
show that C is an odd cycle of G if and only if an odd number of faces in T lie in the region
bounded by C. Cycles in planar graphs are cuts of the dual graph and one can see that C
is a T -cut of G∗, that is, a cut for which the number of nodes in T on either side of the cut
is odd. They then use the theory of T -cuts and T -joins to obtain their result.

In Chapter 5, we give a simple proof that the Erdős-Pósa property holds for the set of
even cycles in the class of planar graphs with bounding function f(k) = 9k via a primal-dual
algorithm.

Theorem 2. For k ∈ N, a planar graph either has as set of at most 9k vertices that intersect
every even cycle in G, or a set of k vertex disjoint even cycles.
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1.3 Approximation Algorithm for Dominating Set

In the Minimum Weighted Dominating Set (MWDS) problem, we are given a graph G =
(V,E) with weights wv,∀v ∈ V , and wish to find a minimum weight set D of vertices for
which each vertex v ∈ V is either in D, or has a neighbour in D. When all weights are 1 we
call this the minimum dominating set (MDS) problem. One can see that MWDS is a special
case of weighted set cover. Hence, by applying the greedy algorithm for weighted set cover,
one can obtain a Hn approximation for MWDS, where n := |V | and Hn is the n-th harmonic
number. Bansal and Umboh [4] made the observation that it is NP-hard to approximate
MDS to within (1 − ε) lnn by reducing it to set cover and using a hardness result for set
cover proven in [17].

Baker [3] showed that MDS in planar graphs admits a PTAS. Fomin et. al. [26] extended
this to an EPTAS on H minor free graphs for any fixed graph H.

Given that planar graphs are sparse, it may seem natural to generalize the previous
results on MDS to sparse graphs. Lenzen and Wattenhofer [43] observed that MDS remains
hard on graphs of low average degree and unit weights by the following reduction. Given any
graph on n nodes, add a star on n2−n nodes. The resulting graph G′ has average degree at
most 2 and MDS one more than that of G. Hence, approximating the minimum dominating
set in H is as hard as approximating the minimum dominating set in G.

Lenzen and Wattenhofer [43] proposed studying MDS on a class of graphs that informally
speaking have a local sparsity property. A graph has arboricity a if a is the minimum number
of edge-disjoint forests into which its edges can be partitioned. It is well known that a graph
has arboricity a, if and only if each subgraph induced by a nonempty subset of vertices
S ⊂ V has at most a(|S| − 1) edges [52]. In this sense, bounded arboricity is equivalent
to local sparsity. We use a-MWDS and a-MDS to refer to MWDS and MDS in graphs of
arboricity a.

Lenzen and Wattenhofer presented a distributed O(a2) approximation algorithm for a-
MDS. Bansal and Umboh [4] improved this by giving a 3a-approximation for a-MDS by
rounding the natural LP relaxation. They also show that it is NP-hard to approximate
a-MDS to within a − 1 − ε for any ε > 0. Dvořak [19] showed that the algorithm of
Bansal and Umboh [4] actually gives a (2a + 1)-approximation for a-MDS. We present an
(a+ 1)-approximation algorithm for a-MWDS using the primal-dual method. We also show
in Theorem 12 that the algorithm of Bansal and Umboh is no better than a (2a − 1)-
approximation in the worst case. Our primal-dual algorithm, which has a combinatorial
flavour in the sense that it produces a “fractional packing”, beats the direct LP rounding of
Bansal and Umboh [4] in the worst case.

In Chapter 6, we show the following result for dominating set:

Theorem 3. [56] There is a polynomial-time (a+1)-approximation algorithm for a-MWDS.

Our analysis actually requires a slightly weaker condition than arboricity a, namely that
for our graph G, |E(G[S])| ≤ a|S| ∀S ⊂ V (G), in other words, our graph has maximum
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average degree at most a. Informally speaking, we show that the dual variables of nodes only
“pay” towards themselves and their neighbours. We use the sparsity of our graph, that is,
nodes of our graph have at most 2a neighbours on average to bound how much an average
dual variable pays. We also use the concept of a “witness” [29], which is a node that only pays
for one other node. Together with sparsity, this allows us to derive an (a+1)-approximation.
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Chapter 2

Preliminaries

In the even cycle transversal (ECT) problem, we are given a graph G = (V,E), costs cv for
all v ∈ V , and we wish to find a minimum cost set of nodes that intersects every even cycle
of G. Throughout this thesis, V will be the set of vertices V (G) of a graph G. Frequently
G will be a planar graph i.e. it can be drawn without crossing.

Given a matrix A, denote by Ai,: the ith row of A and A:,j the jth column. Given a graph
G = (V,E) and v ∈ V , denote by NG(v) the neighbours of v in G. If it’s clear what graph
we are talking about, we will use N(v) instead of NG(v).

Let V be a set, c ∈ RV costs on V , C ⊂ 2V a set of subsets of V . The C hitting set problem
is to find the minimum weight set S ⊂ V that hits C, that is, C ∩ S 6= ∅ ∀C ∈ C. We call
nodes of S hit nodes. Let A ∈ RC×V where AC,v = 1 if v ∈ C and 0 otherwise. Consider a
linear program (PC) and its dual (DC).

min cTx (PC)

s.t. Ax ≥ 1 (2.1)

x ≥ 0

max 1Ty (DC)

s.t. ATy ≤ c

y ≥ 0

Given feasible solutions x and y to (PC) and (DC) respectively, the residual cost of node
v ∈ V is cv − AT:,vy. Our general approach is the primal-dual method which proceeds as
follows: We start with a set S = ∅ and y = 0. Then, in each iteration, increase yC for
all C in some subset of C, maintaining dual feasibility until some condition is achieved.
Usually this condition is a node becoming tight, that is, its residual cost becoming 0. We
call this an iteration of our primal-dual algorithm. When a node becomes tight, we add it
to S. Once S is a feasible C-hitting set, we perform a reverse deletion procedure defined as
follows. Consider each node in the reverse order in which it was added to S, and if deleting
the node from S maintains feasibility and another condition that we specify later holds, we
delete it. Call the resulting set S ′. Given an inequality

∑
v∈V AC,vxv ≥ 1 of (PC) and the

corresponding dual variable yC , we say that yC “pays for”
∑

v∈S′ AC,v hit nodes. We also
call

∑
v∈S′ AC,v the primal increase rate. For brevity we will sometimes say C “pays for”
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∑
v∈S AC,v hit nodes instead of the dual variable yC “pays for”

∑
v∈S AC,v hit nodes. Let y∗

be the dual solution output by the primal-dual algorithm, and 1S
′

the characteristic vector
for S ′ i.e. [1S

′
]v = 1 if v ∈ S ′ and [1S

′
]v = 0 otherwise. It is well known e.g. [28], that if

during any iteration dual variables yi in some set C ′ were incremented uniformly, and the
dual variables {yC : C ∈ C ′} pay for α hit nodes (of S ′) on average, then cT1S ≤ α1Ty∗.

Lemma 1. [28] : Suppose that S and y are solutions to the primal and dual LP (PC), (DC)
output by our primal-dual algorithm such that the following holds.

1. y is obtained starting with the initial feasible solution y := 0 and incrementing some set
of dual variables {yC : C ∈ Ct} uniformly and maintaining feasibility of y for iterations
t = 1, 2, .., l for some l ∈ N.

2. For each iteration t ∈ {1, 2, 3, .., l}, the set {yC : C ∈ Ct} of incremented dual variables
satisfies

∑
C∈Ct |S ∩ C| ≤ α|Ct| for some α > 0. Intuitively, the number of nodes of S

each dual variable yC pays for,
∑

v∈S AC,v is at most α on average.

3. ∀v ∈ S, AT:,vy = cv.

Then S is a α-approximation. In fact, the characteristic vector x̂ := 1
S (that is, x̂v = 1 for

v ∈ S and x̂v = 0 for v /∈ S) satisfies
∑

v∈V cvx̂v ≤ α
∑

v∈V yv.

For the even cycle transversal problem and the rest of this thesis, C will refer to the set
of (vertices of) even cycles of our graph G. For a set T ⊂ V (G), define x(T ) =

∑
t∈T xt. Let

us define the even cycle LP and its dual.

min cTx (PECT)

s.t. x(C) ≥ 1 ∀ C ∈ C (2.2)

x ≥ 0

max 1Ty (DECT)

s.t.
∑

C∈C,v∈C

yC ≤ cv ∀v ∈ V (G) (2.3)

y ≥ 0

A key part of the primal-dual method is the reverse deletion procedure, which guarantees
every node we pick is informally speaking, needed. Let’s make this formal. Let us call a
hitting set S minimal, if S is an ECT, but no proper subset of S is an ECT. Note that if S
is output by a primal-dual algorithm that applies a reverse deletion procedure that deletes
a node from our hitting set, if feasibility is maintained, then the resulting set S is minimal.

Definition 2. We will say that A is a set of pseudo-witness cycles for a set S of vertices
if, for each node v of S, there is a cycle C ∈ A with C ∩ S = {v}. If C is even we will call
C a witness cycle for v.

Note that if S is a minimal hitting set then there is a set A of witness cycles for S.
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Figure 2.1: An example of a graph on the left and its block graph on the right.

2.1 Blended inequalities and compression

We begin by outlining the concept of “blended inequalities” for ECT and the necessary graph
compression operations in order to define such inequalities. Blended inequalities were used
by Fiorini et al. [24] in their work on diamond hitting sets, and our definitions follow theirs
closely.

A block of G is an inclusion-maximal 2(-vertex)-connected subgraph of G. The block
graph of G is the bipartite graph BG with bipartition V (BG) = B1 ∪ B2, where B1 are the
blocks of G, B2 are the cut nodes of G, and (b1, b2) ∈ B1×B2 is an edge if b2 is a node of b1.
Here we slightly abuse notation and use the blocks of G as vertices, formally for each block
B of our original graph, the block graph has a node vB which we informally refer to as B.
Let S be a partial solution to the given ECT instance at some point during the execution of
our algorithm. Then let GS be the corresponding residual graph that we obtain from G− S
by deleting all nodes that do not lie on even cycles. Our primal-dual algorithm now first
looks for an even cycle C in GS such that at most two nodes of C have neighbours outside
C. If such a cycle C is found, we increment its dual variable yC until a node becomes tight.
The reason for doing this is that such a cycle will pay for at most two hit nodes, which we
will show later.

If there is no even cycle C in GS such that at most two nodes of C have neighbours
outside C, we successively compress the residual graph GS using two types of graph com-
pression operations. To this end, first note that any minimal solution will only contain one
node in the interior of any induced path in GS. The interior of a path v1, v2, .., vl is the path
v2v3, .., vl−1. Suppose that we contract some path P of GS of length at least 2 down to an
edge e, that is, we repeatedly fold degree-2 nodes v in P , as long as they exist, which means
to delete v and adding the edge uw between its two neighbors u,w. Each cycle C of our
new graph that uses the new edge uw “corresponds” to the cycle (C\{uw})∪P obtained by
replacing the edge uw with the path P of our original graph. Each cycle C ′ of our original
graph “corresponds” to the cycle (C ′\P ) ∪ uw obtained by replacing the path P by uw of
our new graph. Under this correspondence, removing a node p in the interior of P is now
“equivalent” to removing the edge e, in the sense that a cycle of our original graph is removed
by the deletion of p if and only if the corresponding cycle of our new graph is removed by the
deletion of e. This is the motivation for the 1-compression, which we formally define later.

Recall that we assumed that there is no even cycle C in GS such that at most two
nodes of C have neighbours outside C. It follows that for u, v ∈ V there are no in-
duced u − v paths of the same parity. Thus if we contract two u-v paths P1, P2 down
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to edges e1, e2 P1 and P2 must have different parity. Suppose that we contract two u-v paths
P1, P2 with lengths of different parity down to edges e1, e2, respectively (see Figure 2.2).

P1

P2

e1

e2

Figure 2.2: Two paths con-
tracted to edges.

We will find it helpful to think of these edges as a single twin
edge e between u and v whose parity is flexible. Formally,
note that any cycle that uses both e1 and e2 consists of just
those edges and hence corresponds to the odd cycle P1 ∪P2. If
a cycle C in our contracted graph uses exactly one ei, where
i ∈ {1, 2} then either C corresponds to an even cycle in our
original graph or (C ∪ {e1, e2})\{ei} corresponds to an even
cycle in our original graph. As an example consider the blue
and red edges of G in Figure 2.3. The blue and red paths get
compressed into two uw edges in G1 and replaced by a single twin edge in Ḡ1. The twin edge
in Ḡ1 indicates that there are two u-w paths in G of different parity which were compressed
to the single twin edge uw in Ḡ1. These are the blue u-w path of length 2 and the red u-w
path of length 3.

This is the motivation for the 2-compression.

Formally, we will successively compress GS as follows:

• We obtain the 1-compression GS
1 (see Figure 2.3) of GS by repeatedly folding degree-2

nodes v, as long as they exist.

• Note that no pair of nodes in GS
1 is connected by more than two edges. This is

because each edge of GS
1 is the result of contracting a path. If there were 3 edges

e1, e2, e3 between a pair u,w of nodes in GS
1 , then there are 3 node disjoint u,w paths

P1, P2, P3, whose internal nodes have degree 2 in GS which were contracted to e1, e2, e3

respectively. Then one of P1 ∪ P2, P2 ∪ P3, P3 ∪ P1 is an even cycle of GS whose only
nodes with outside neighbours are u and w, which contradicts our assumptions.

We obtain ḠS
1 from GS

1 by replacing each pair of parallel edges by a single twin edge.
In Figure 2.3 the two uw edges in G1 are replaced with a single twin edge.

In ḠS
1 , we now once again fold degree-2 nodes as long as those exist. The resulting

graph is the 2-compression GS
2 of GS.

See Figure 2.3 for examples of 1- and 2-compression of a graph. In the following, we
will sometimes call the subgraph Q of GS whose compression yields a subgraph R of GS

2 the
preimage of R. If R is an edge uv, call Q a piece, and say Q corresponds to R. Furthermore,
call u, v ends of Q and other nodes of Q internal nodes. If the edge was twin, call the piece
twin, otherwise, call the piece single. The blocks of a piece are cycles and paths, and the
block graph of a piece is a path. Each cycle of a piece is called an elementary cycle. For an
elementary cycle C, call its two nodes uC and vC with neighbours outside C branch nodes.
Call the two uC−vC-paths P1, P2 in C the handles of C, which form the handle pair (P1, P2).
For an illustration, see the red and light blue edges in Figure 2.3.
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G

v′
v

e1

u

e2

w

G1

e

u

w

t

Ḡ1

u

w
t

u t

G2

Figure 2.3: The figure shows the graph G and the 1 and 2-compression G1 and G2.

In the following, we will omit the superscript S from GS
1 , ḠS

1 , and GS
2 if this is clear from

the context. Let G3 be obtained from G2 by replacing every edge of G2 with a path of length
2. If a twin edge was replaced, call the two edges of the path added twin edges. By an abuse
of notation, we will say that a cycle of G1, G2 or G3 is even if it contains a twin edge, or if
its preimage in G is even. The reason for this is that we are interested in even cycles of G
and are interested in the cycles of our compressed graphs that correspond to or contain even
cycles of G. The reason for defining G3 is that intuitively selecting a node inside a piece
corresponds to selecting the edge corresponding to the piece in G2. It will be simpler for us
if our hitting set consists of only nodes, so we subdivide each edge of G2. Suppose that S is
the partial (and infeasible) hitting set for the cycles in C at some point during the algorithm.
Further, assume that GS has even cycles, but none with at most two outside neighbours. In
this case, one can see that if an even cycle C ′ in GS contains an internal node of some piece
Q, then C ′ ∩Q is a path between the ends of Q. We illustrate this in Figure 2.4. There, any
even cycle that contains v,v′ or w consists of a u-t path that goes through w and a u-t path
that does not go through w. It follows that C ′ has the form v1P1v2P2 . . . vkPkv1, where for
i = 1, . . . , k the nodes vi, vi+1 mod k are ends of some piece Qi, and Pi is a vi-vi+1 path in Qi.
For i = 1, . . . , k, the pieces Qi, Qj for i 6= j are disjoint except for their ends. We will say
that C ′ in GS corresponds to the cycle C = (v1, . . . , vk) in GS

2 .

For a cycle C ′ in GS corresponding to the cycle C = (v1, . . . , vk) in GS
2 , we wish to define

a valid inequality for (PECT). Note that the preimage of a non-twin piece is a path whose
endpoints are the only nodes with outside neighbours. If C contains no twin piece, then its
preimage is a cycle of GS and hence there is only a single cycle C ′ in GS which corresponds
to C in GS

2 .

If C contains a twin piece, then there may be many cycles C ′ that correspond to C.
Each such cycle uses exactly one handle of a pair and further, if (P1,1, P1,2), ..., (Pi,1, Pi,2)

are the set of handle pairs of C and f̂ : {1, 2, .., i − 1} → {1, 2} then there is an even
cycle C ′ which contains handles Pj,f̂(j) for 1 ≤ j ≤ i and one handle from the handle pair

(Pi,1, Pi,2). The inequality
∑

v∈C′ xv ≥ 1 is an inequality of (PC). For v ∈ V , define aC,f̂v = 1

if v ∈ C ′ ∪ (Pi,1, Pi,2). Then for x ∈ RV+,
∑

v∈V a
C,f̂
v xv ≥

∑
v∈C′ xv ≥ 1 so

∑
v∈V a

C,f̂
v xv ≥ 1 is
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Figure 2.5: The bottom dashed black path has odd length. The number of length-5 faces at
the top is assumed to be even.

a valid inequality for (PC).

u

e1

v
e2

w

v′ t

Figure 2.4: The light blue cycle
in G has two u-t paths lying in
different pieces of G; the dashed
path has odd length.

Suppose that C ′ uses handle Pi,̂i î ∈ {1, 2}. In the
primal-dual method, incrementing (the dual variable of)
the the inequality

∑
v∈C′ xv ≥ 1 decreases the residual

cost of nodes on Pj,f(j) for 1 ≤ j ≤ i − 1, but does
not decrease the residual cost of nodes in the interiors
of Pj,{1,2}\f(j) for 1 ≤ j ≤ i − 1, that is, the “other
handle” of the handle pairs (P1,1, P1,2), ..., (Pi−1,1, Pi−1,2).
Informally speaking, our algorithm wants some control
on which nodes become tight and are picked. Consider
the graph in Figure 2.5, assume that the nodes are unit
weight. Removing a single black node would remove all
even cycles. Removing a red node and a blue striped
node would also remove all even cycles and has size twice
the optimum. A really bad ECT is a set S consisting
of one blue striped node on each cycle of length 5. S is
minimal, in that any proper subset is not an ECT, but
has arbitrarily large size. Informally speaking, we wish to increment our dual variables in a
way that avoids this last case and we do this by choosing which handle of the handle pairs
(P1,1, P1,2), ..., (Pi−1,1, Pi−1,2)) is used by C ′ carefully. For the last handle pair (Pi,1, Pi,2) we
cannot decide which handle C ′ will use, however for reasons we explain later, we want the
residual cost of nodes on both handles to decrease at the same rate. Thus we set aC,f̂v = 1
for v ∈ Pi,1 ∪ Pi,2.

To be more precise, for f̂ , f̄ : {1, 2, .., i − 1} → {1, 2} define aC,f̂ ,f̄v = 1
2
(aC,f̂v + aC,f̄v ). We

refer to the set of inequalities
∑

v∈V a
C,f̂ ,f̄
v xv ≥ 1 over all functions f̂ , f̄ : {1, 2, .., i − 1} →

{1, 2} as a “family of blended inequalities”. This will be explained precisely in Chapter 4.
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Chapter 3

Generalizing a Feedback Vertex Set
Result

In this chapter we outline and generalize the 2.4 approximation of Berman and Yaroslatvsev
[8] for planar FVS problems satisfying a certain “uncrossability” criterion. This exposition
follows Section 4 of [8].Looking into Berman and Yaroslatvsev’s proof that their algorithm
is a 2.4-approximation, we see they prove the following result. Given a minimal hitting set
S (for an uncrossable FVS problem), a face of our graph is incident to at most 2.4 hit nodes
on average. We generalize their result by showing that the minimality assumption can be
replaced with each node of S has a “pseudo-witness cycle” satisfying certain properties we
specify later. This allows us to generalize their result to Theorem 4, which will be crucial
for the analysis of our even cycle transversal algorithm.

3.1 Pockets and their variants

Throughout this thesis, an embedding will refer to an embedding in the euclidean plane.
The following definition of crossing cycles is elementary in the approach of Goemans and
Williamson [29] for cycle transversal problems in planar graphs.

Definition 3. Fix an embedding of a planar graph. Two cycles C1, C2 cross if Ci contains
an edge intersecting the interior of the region bounded by C3−i, for i = 1, 2. That is, the
plane curve corresponding to the embedding of the edge in the plane intersects the interior
of the region of the plane bounded by C3−i (see Figure 3.1 (ii), the two crossing cycles are
depicted in red and black). A set of cycles C is laminar if no two elements of C cross (see
Figure 3.1 (iii), the pair of laminar cycles is depicted in red and black).

The improvement of Berman and Yaroslatvsev’s work on FVS [8] over Goeman’s and
Williamson [29] involves looking at a type of subgraph called a pocket. We formally define
pockets, and also introduce the new notion of “pseudo-pockets”, the lack of which will help
us “cover” our graph with even cycles.
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Definition 4. Let G be a graph and let C be a collection of cycles in G. A pseudo-pocket of
(G, C) is a connected subgraph G′ of G which contains a cycle such that at most two nodes of
G′ have neighbours outside G′. A pocket of (G, C) is a pseudo-pocket that contains a cycle
of C(see Figure 3.1 (i) the graph formed by red nodes is a pocket.). A pocket is minimal if it
contains no pocket as a proper induced subgraph.

(i) (ii) (iii)

Figure 3.1: (i) pocket in red (ii) crossing cycles in red and black (iii) uncrossed cycles in
red and black

One can generalize the 18/7-approximation for feedback vertex set problems satisfying a
certain “uncrossability property” of [8] to the more general statement of Theorem 4. Infor-
mally speaking Theorem 4 says given a “minimal” hitting set in a planar graph and a set
of faces in a minimal pocket, what the average degree of those faces is. That is our main
contribution, which we state formally below.

Theorem 4. Let G be a planar graph. Let H be an inclusion-wise minimal pocket of G.
Let S ⊂ V (G) be a set of nodes with some set A of laminar pseudo-witness cycles. Let R
be a set of finite faces of H such that each cycle A of A contains a face of R in its interior
(which may be A itself if A ∈ R). Then∑

M∈R

|M ∩ S| ≤ 18

7
|R| .

Let G,H,R, S,A be as in the statement of Theorem 4. To bound
∑

M∈R |M ∩ S| we
introduce the following definition.

Definition 5. [29][8] Let G be a graph, let R be a set of cycles of G, and let S ⊂ V (G). The
debit graph for R and S is the bipartite graph DG = (R ∪ S,E) with edges ER = {(C, s) ∈
R× S | s ∈ V (C)}. We will call R the face nodes of our debit graph.

For us R will generally be a set of faces of some subgraph of G.

Given an embedding of G and a set R of faces of G, we can obtain an embedding of DG
by placing a node vR inside the face R for each R ∈ R and drawing an edge from vR to each
node of S on R. This shows the following observation.

Observation 1. [8, 29] If R is a set of faces of G, then the debit graph is planar and simple.
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Recall that for an even cycle C, we said that the dual variable yC (or just C) corresponding
to the inequality

∑
v∈C xv ≥ 1 in (PC) pays for |C ∩ S| hit nodes. We say that R ∈ R pays

for |R ∩ S| hit nodes. Note that |R ∩ S| is the degree of R in the debit graph DG. As a
consequence,

∑
R∈R |R ∩ S| = |E(DG)|.

We introduce the notion of “balance”, which for subsets R′ ⊆ R of cycles will be non-
negative if cycles of R′ are incident to at most 18/7 nodes of S on average and negative
otherwise.

Definition 6. For each subset R′ ⊆ R, its balance bal(R′) is the quantity |R′|− 7
18
|E(DG[S∪

R′])|.

To build some intuition and to better understand the proof of Theorem 4, it may be
helpful to the consider the following proof that

∑
M∈R |M ∩S| ≤ 3|R| given the assumptions

of Theorem 4 (where A,R,.. are as in Theorem 4 ) in the special case that every cycle of A
is a cycle of R.

Lemma 2. Let G be a planar graph. Let S ⊂ V (G) be a set of nodes with some set A of
laminar pseudo-witness cycles such that each element of A is a face. Let R be a nonempty
set of finite faces of G such that A ⊂ R. Then∑

M∈R

|M ∩ S| ≤ 3|R| − 2 .

Proof. If R\A = ∅, that is A = R, then |E(DG[R\A])| =
∑

R∈R |R ∩ S| = |A| = |R| ≤
3|R| − 2. If A = ∅, then S = ∅ and

∑
R∈R |R ∩ S| = 0 ≤ R| − 2. Since the debit graph

DG[S∪R\A] is planar, simple and bipartite, andA 6= ∅, |R| ≥ 2, Euler’s formula for bipartite
planar graphs with at least 2 vertices yields |E(DG[S ∪R\A])| ≤ 2|V (DG[S ∪R\A])| − 2.

Since each node of S has a pseudo-witness |A| = |S|. Substituting in, we obtain
|V (DG[R\A])| = |R| − |A| + |S| = |R| and |E(DG[R\A])| ≤ 2|R| − 2. Recall that for
R ∈ R |R ∩ S| is the degree of R in DG, so

∑
R∈R\A |R ∩ S| = |E(D[R\A]) ≤ 2|R| − 2.

From |E(DG[S ∪ R\A])| ≤ 2|V (DG[S ∪ R\A])| − 2, it follows that
∑

R∈R |R ∩ S| ≤
3|R| − 2.

The following corollary follows from immediately from Lemma 2.

Corollary 1. Suppose that G, S, A and R are as in Lemma 2. Let A be a cycle in G
containing no node of S. Denote RA the set of cycles R lying inside the region bounded by
A. Then ∑

R∈RA

|R ∩ S| ≤ 3|R| − 2

Goemans and Williamson [29] essentially prove the following.

16



Figure 3.2: Tight example to algorithm of Goemans and Williamson.

Theorem 5. Suppose that G, H S, A and R are as in Theorem 4. Then∑
R∈R

|R ∩ S| ≤ 3|R|

If A ⊂ R, then Theorem 5 follows from Lemma 2. Otherwise, for a witness cycle A ∈ A
that is not a face, let vA ∈ S be the node that A is a witness of. Denote RA the set of cycles
R lying inside the region bounded by A. One can show using Corollary 1 that∑

R∈RA

|R ∩ (S\{vA}| ≤ 3|R| − 2.

Goemans and Williamson [29] manage to show that∑
R∈RA

|R ∩ (S\| ≤ 3|R| − 2

. Informally speaking this means that whenever our instance contains a witness cycle A that
is not a face, the set RA of cycles R lying inside the region bounded by A pay for slightly
less than 3 nodes of S on average.

Informally this is how Goemans and Williamson [29] (resp. Berman and Yaroslatvsev
[8]) deal with witness cycles A that are not faces, namely by arguing that the total number
of hit nodes that the cycles of R that are inside A pay for, is slightly less than 3 (resp.
18
7

for minimal pocket and 2.4 for minimal pocket or 3-pocket) on average. Goemans and
Williamson essentially show that for H = G in Theorem 4, one can have

∑
R∈R |R ∩ S| =

3|R| − 6 (see [29] Figure 2 also Figure 3.2 R is the set of finite faces that are dicycles A is
the set triangles that are dicycles).

Recall that for our proof above that
∑

R∈R |R ∩ S| ≤ 3|R|, we used Euler’s formula
|E(DG[SA∪R\A])| ≤ 2|V (DG[SAR\A])| on DG[SA∪R\A]). If we could get a better bound
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of |E(DG[SA ∪ R\A])| ≤ α|V (DG[SAR\A])| for some α < 2 one could get
∑

R∈R |R ∩ S| ≤
(α + 1)|R| which would be a better bound. Informally speaking, the only case this doesn’t

happen, that is,
∑

R∈R |R∩S|
|R| ≈ 3 our debit graph has to be as dense as a planar bipartite

graph can be. Berman and Yaroslatvsev show that this cannot happen if our graph contains
no pockets.

The previous paragraphs were for intuition only and are not necessary to understand the
proof of Theorem 4. Our proof follows the same methodology as Berman and Yaroslavtsev [8].
Let A be a pseudo-witness cycle that is not a face and is minimally so, that is, any pseudo-
witness cycle lying in the finite region bounded by A is a face. First, we show the instance
formed by the set of faces of R lying inside or on such a pseudo-witness cycle A, has balance
at least 1− 7

18
. Then our proof uses this to apply a reduction on G where a pseudo-witness

cycle A ∈ A that is not a face and is minimally so, is selected, all nodes of G and all cycles of
R lying in the interior of the region bounded by A are removed from G and R respectively,
and A is added to R. The key is that after sufficiently many reductions we obtain an
instance of smaller balance and informally speaking almost no pseudo-witness cycles that
are not faces. We then show that this reduced instance has positive balance, which will show
that our original instance had positive balance. We will use the following result of Berman
and Yaroslavtsev [8], which will be used both to show that reductions decrease balance and
that the final reduced instance has positive balance. We include the proof for completeness.

Proposition 1. [[8, Lemma 4.3]] Let W be a planar graph, Ŝ be a set of nodes on the outer
face of W and Q ⊂ Ŝ be a set of nodes of W that we call outer nodes. Let RW be a set of
faces of W such that each non-outer node of Ŝ ∩W has a pseudo-witness cycle in RW . If
W contains a ≤ 2 outer nodes, then bal(RW ) ≥ 1− 7

18
a.

Proof. We define the debit graph DG and balance as before with RW in place of R and again
refer to the nodes RW in DG as face nodes. If |RW | = 1, let {M} = RW . The balance of
RW is at least 1− 7

18
|M ∩ Ŝ|. If M is a witness cycle, then |M ∩ Ŝ| = 1 and the balance of

RW is at least 11
18

. Otherwise, M is not in A, so A = ∅. So Ŝ consists only of outer nodes.

Thus |Ŝ| ≤ a and the balance of W , 1− 7
18
|M ∩ Ŝ| is at most 1− 7

18
a.

Otherwise, |RW | ≥ 2 and we apply the following “pruning procedure” for cycles of R of
small degree. If a cycle M ∈ RW\AH is a node in at most two edges in DG, we remove M
from R. If Ah ∈ RW for some h ∈ Ŝ and h is a node in at most two edges in E, including
(Ah, h), we remove h from Ŝ and Ah from R. To be clear, we don’t prune W if |RW | = 1,
but instead apply the analysis in the previous paragraph.

Assume that we apply pruning on Ah, h. Our new debit graph D′G has R′W = RW\{Ah}
as its face nodes. We claim bal(ER′) ≤ bal(ER). The new debit graph D′G has at most 2 fewer
edges as h is incident to at most 2 other nodes. |R′W | = |RW | − 1 and |E(DG[S ∪ R′W ])| ≥
|E(DG[S∪R])|−2. The balance of our new debit graph D′G is |R′W |− 7

18
|E(DG[S∪R′W ])| ≤

|R| − 1− 7
18

(|E(DG[S ∪RW ])| − 2) which is less than the balance of RW .

We will henceforth assume that R\A has no cycles of degree at most two.
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Define A = RW ∩ AH , B = RW\AH and Z as the set of faces in W , but not in R. Let
G = (A ∪ Z,E) be a subgraph of the dual graph of W (we have an edge between two nodes
of G if the corresponding faces share an edge). Let C1, C2, . . . Cq be the components of G.
Let Ei be the set of boundary edges of Ci that are adjacent to one face in Ci and one face in
B. We call the Ei envelopes and the corresponding Ci as the inside of the envelope Ei. We
also associate the outside face of W with being an envelope which we call the outer envelope;
Figure 3.3 shows an example. Let us call the elements of A (resp. B), A- (resp. B-) faces.

AA

A

A

A
A

B

B

B

B

B

B

Z
B

i)

Figure 3.3: The left figure shows graph G with the 3 envelopes of G depicted by the yellow
edges, double stroke red edges and thick blue edges, and hit nodes (large black dots). On
the right shows a graph G with an envelope shown in blue, which is not a simple cycle.

Remark 1. We assume that the envelopes here are simple cycles. If the outside face of W
is a walk that intersects itself, then it is possible that the outer envelope is not a simple cycle.
(However in this case let Y1, Y2, ..., Yt be the cycles forming the outside face of W . We can
just apply our analysis to the subgraph of W lying in the interior of the region bounded by
Yi for each i.)

It is clear that any non-outer nodes in W ∩ Ŝ lie inside an envelope.

Definition 7. For an envelope S, its principal neighbours are the B-faces that have edges
on S.

For example, in Figure 3.3, the black B-faces are principal, but the green B face is not.
If a non-outer envelope had two principle neighbours B1 and B2, then the intersection of Bi

with our envelope forms a path Pi for i = 1, 2. Further P1, P2 partition the edges of the
outer face of our envelope and only the nodes of V (P1)∩V (P2) can have neighbours outside
our envelope (see Figure 3.4, there u, v are the only two nodes in the envelope with outside
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B1

B2

A

A

u v

Figure 3.4: An envelope where only 2 nodes have outside neighbours.

neighbours). Likewise if an envelope has only one principle neighbour, then it has at most
one node with an outside neighbour. Since our graph does not have pockets, any envelope
that is not the outer envelope must have at least 3 principal neighbours.

Definition 8. The intersection of a principal neighbour with an envelope is a path P , whose
endpoints we call contact nodes.

B1

A2

A1

A3
A4

B2
B3

(i)

B1

A2

A1

A3

B2
B3

(ii)

Figure 3.5: The figure shows the result of pruning a hit node of degree 2. On the left is a
debit graph with face nodes A1, A2, A3, A4, B1, B2, where the nodes Ai correspond to pseudo-
witness cycles. On the right is depicted the result of pruning A4 the face node A4 and the
hit node that A4 is a witness of is removed as well.

If a hit node h was not a contact node, then it lies in the interior of the shared path of a
principal neighbour B1 and the envelope it belongs to. This implies that h is incident to no
other B-faces and is hence incident to at most 2 faces of RW . Thus we would have pruned
h. Henceforth we assume that all hit nodes are contact nodes.

Let us construct a minor of our graph DG as follows: We delete edges of the form (h,Ah)
(and the resulting isolated nodes Ah) and contract the hitting set nodes of a single envelope
to a single node S. At this point S may be connected to its principal neighbours by 2 parallel
edges and if this happens we delete one. Let us call this new graph E . Further, since DG
has a natural embedding we get a natural embedding of E .

Remark 2. This embedding of E contains no parallel edges.

Proof. By construction, S and Bi do not have parallel edges between them for principal
neighbours Bi. Now let us consider a non-principal neighbour B of S.
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B1

A2

A1

A3

B2
B3

(i)
B2

B1

B3
(ii)

If B intersects two consecutive contact nodes hi, hi+1 then we have a pocket.

If B does not, then for any two edges between B and S through the nodes hi, hj, we have
j ≥ i+ 2.

Consider the portion of our envelope bounded by the two edges {hi, B} and {hi+1, B}.
Assume, without loss of generality that this portion is hi, hi+1, . . . hj; thus, Bi is bounded
by these two edges by property of contraction {S, Bi} lies inside {B, hi} {B, hi+1} after
contraction (and thus the two edges cannot be parallel).

A A

A

B1

B2

Z

B3

B4

(i)

E

B1

B3

B4B2
E

(ii)

Figure 3.6: Non-principal face B4 hits the yellow envelope twice, B3 lies between the two
edges between B4 and E in E and thus they are not parallel edges.

Recall that the balance of RW was defined as the quantity |RW | − 7
18
|E(DG[S ∪ RW ])|.

We will refer to |RW | as the “credit” and |E(DG[S ∪ RW ])| as the “debit”. In order to
show that the balance is positive we “divide up” the credit and debit among the envelopes
in such a way that every envelope has a non-negative balance. We break down the balance
of RW into envelopes, each of which has a non-negative balance and some of which have a
strictly positive balance. That is, we partition RW , E(DG[S ∪ RW ]) into disjoint sets that
we associate with the envelopes. Let S1,S2, ..,Sη be the envelopes of our instance. We will
define disjoint sets RW,1,RW,2, ..,RW,η ⊂ RW and partition E(DG[S∪RW ]) into disjoint sets
E1, E2, .., Eη such that |RW,i| − 7

18
|Ei| ≥ 0 ∀i ∈ {1, 2, .., η}. We will call |RW,i| − 7

18
|Ei| the

21



balance of envelope Si. We call RW,i the faces assigned to envelope Si, and Ei the edges
assigned to envelope Si. Each envelope Si has the A-faces that it contains assigned to it.
Let Ŝi denote the set of hit nodes corresponding to the set of A-faces assigned to Si. The set
of edges of the debit graph assigned to Si are all edges with one endpoint in Ŝ. The balance
of RW is at least the sum of balances of all the Si. Thus this breakdown of the balance of
RW into envelopes will show that RW has non-negative balance.

Let nS be the number of contact nodes of S, dS be the degree of S in E , lS be the number
of contact nodes that are not hit nodes, and eS be the number of edges of E incident to node
S. Since our graph contains no pockets, nS ≥ 3. Define bal := balance(N) = |N | − 7

18
|EN |.

Let E have m nodes, d edges and f faces. Then d = ΣSdS and m = s + b, where b is
the number of faces in B and s is the number of envelopes. Since E is embedded without
parallel edges and is bipartite, Euler’s formula applies. Therefore, m = d− f + 2 ≥ d/2 + 2.
Thus, we can allocate dS/2 − 1 nodes for non-outer envelopes S, and dS/2 + 1 nodes for
the outer envelope with a ≤ 2 outer nodes, and have enough to go around. For non-outer
envelopes S, we have 3( 7

18
)nS units of debit from the principal neighbours and witness cycles,

and (dS − nS)( 7
18

) units of debit from the other B faces. Under this allocation, non-outer
envelopes get nS + dS/2− 1 units of credit. As nS ≥ 3, it holds

balS = nS + dS/2− 1− (2nS + dS)( 7
18

)
= (3/2)nS − 1 + (dS − nS)/2− (3nS + (dS − nS))( 7

18
)

≥ (3/2)nS − 1− 3( 7
18

)nS

≥ 7/2− 9( 7
18

) = 0

(3.1)

For the outer envelope S of W we do not get the credit from the outer face of W , that
is the outer face of W is not in RW and is thus not assigned to S, but we allocate two extra
B nodes. That is, we only get nS− a units of credit from the witness cycles rather than the
usual nS units of credit, and we also have 7

18
a less debit from the witness cycles.

Since we have a ≤ 2 outer nodes, it holds

balanceS ≥ 3/2nS − 1− 3nS(
7

18
)− a(1− 1(

7

18
)) + 2 (3.1)

≥ 3nS(
1

2
− 1(

7

18
)) + 1− a(1− 1(

7

18
)) (nS ≥ 2)

≥ 4− 6(
7

18
)− a(1− 1(

7

18
))

> (2− a)(1− 7

18
) .

Definition 9. If all nodes of a pseudo-witness cycle A are contained in H, call A a hier-
archical pseudo-witness cycle. Otherwise, call A a crossing witness cycle. Denote the set of
crossing pseudo-witness cycles by Â.
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We are now ready to complete the proof of Theorem 4.

Proof. (of Theorem 4) We begin by reductions on our instance (G,H,R,A, S) which simplify
our instance and do not increase the balance. If after applying this reduction our instance
has positive balance, then our instance had positive balance before the reduction. We define
the reduction below.

Definition 10. We define the following reduction on our instance (G,H,R,A, S). If H
contains a hierarchical pseudo-witness cycle A that is not a face of R, delete all nodes, edges
and faces of R inside A from H and add A to R. If H does not contain a hierarchical
witness cycle, we call the instance (G,H,R,A, S) reduced.

For a cycle C, let RC be the faces in R contained in the region bounded by C. Let
H1,R1 be the result of applying the reduction in Definition 10 on H,R. The balance of
H1,R1 is equal to

|(R\RC) ∪ {C}| −
∑

M∈(R\RC)∪{C}

|M ∩ S|

=|R| −
∑
M∈R

|M ∩ S| − (|RC |+ 1− (
∑
M∈RC

|M ∩ S|) + 1)

=bal(H) + 1− bal(RC)− 7

18
.

That is to say, the reduction changes the balance by 1−bal(RC)− 7
18

, which by Proposition 1
is non-positive.

Thus if after applying the reduction in Definition 10, our instance has positive balance
then it initially had positive balance. We know apply the reduction in Definition 10 until
our instance is reduced, for simplicity we will continue to call this graph H.

The crossing pseudo-witness cycles Â partition H into regions, see Figure 3.7. That is,
consider the subgraph K ⊂ H consisting of nodes and edges lying on a witness cycle of Â
or on the outside face of H. The regions are defined as the portions of the plane bounded
by the finite faces of K. Define a subpocket [8] as the subgraph of H consisting of the nodes
and edges lying in or on the boundary of a region.

Proposition 2 ([8]). The regions that the set of crossing cycles Â partition the plane into
satisfy the following. For each region, there is a set Ã of at most 2 pseudo-witness cycles of
Â such that each node bounding the region either does not lie on a pseudo-witness cycle in
Â or lies on a cycle of Ã.

By the reduction described in Definition 10 each non-crossing cycle of A is a face. Since
by Proposition 2, the outside face of each subpocket W contains nodes from at most two
crossing pseudo-witness cycles, and contains all nodes that belong to pseudo-witness cycles
lie on the outside face, there are at most two hit nodes of W whose pseudo-witness is not
a face and they must lie on the outside face of W . Hence, each subpocket satisfies the
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R0 R1 R2 R3 R4 R5

C5 C4 C3 C2 C1

Figure 3.7: Pseudo-witness cycles C1, C2, .., C5 divide H into regions R0, R1, . . . , R5.

conditions of Proposition 1 and hence has positive balance. Thus, H has positive balance,
that is, 0 ≤ |R| − 7

18
|ER| = |R| −∑M∈R |M ∩ S|. Rearranging,

∑
M∈R |M ∩ S| ≤ 18

7
|R|,

which completes the proof of Theorem 4.
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Chapter 4

Approximation Algorithm for Even
Cycle Transversal

4.1 Introduction

In this chapter we show our 47/7-approximation algorithm for ECT in node-weighted planar
graphs. This result was published first with Göke, Mnich and Koenemann in [30].

Theorem 1. [30] ECT admits an polynomial-time 47/7 ≈ 6.71-approximation algorithm on
node-weighted planar graphs.

Our algorithm takes as input a node-weighted planar graph G with node weights cv ∈ N
for each v ∈ V (G). We then employ a primal-dual algorithm that is based on the following
natural covering LP for ECT and its dual, where C denotes the set of even cycles in G:

min cTx (PECT)

s.t. x(C) ≥ 1 ∀ C ∈ C (4.1)

x ≥ 0

max 1Ty (DECT)

s.t.
∑

C∈C,v∈C

yC ≤ cv ∀v ∈ V (G) (4.2)

y ≥ 0

Fiorini et al. [24] proved that the integrality gap of this LP is Θ(log n). Our main result
is an improved integrality gap of this LP for ECT in planar graphs:

Theorem 6. The integrality gap of the LP (PECT) is at most 47/7 ≈ 6.71 in planar graphs.
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4.1.1 Our approach

Designing a primal-dual algorithm is far from trivial, as the imposed parity constraints rule
out a direct application of the framework proposed by Goemans and Williamson [29]. Unlike
in their work, the face-minimal even cycles—even cycles that contain a minimal set of faces
in their interior—are not necessarily faces, and may thus overlap. Indeed, increasing the
dual variables of face-minimal even cycles does not yield a constant-factor approximation in
general.

Recall that in Section 2.1 we used an example of the unweighted graph in Figure 2.5 to
illustrate the intuition in choosing which nodes in a piece end up in our ECT. Recall that
in Section 2.1, we made the following observations about Figure 2.5. In Figure 2.5, a single
black node, two nodes one on each handle of a handle pair and a set comprised of taking one
blue node on each cycle of length 5 are all inclusion-wise minimal even cycle transversals.
As the number of length 5 cycles becomes arbitrarily large, the set comprised of taking one
blue node on each cycle of length 5 has arbitrarily larger size than taking a single black
node. Informally speaking, we wish for our primal-dual algorithm to avoid selecting one blue
node on each cycle of length 5 prior to the reverse deletion step as since this set of nodes
is an inclusion-wise minimal ECT, this set would be returned by our algorithm. Let’s see a
weighted example of this phenomenon.

Consider Figure 4.1, and let F be the inner face that is only incident to blue striped and
black nodes.

1 + ǫ 1 ∞

F

Figure 4.1: The bottom path has odd length,
and the number of length-5 faces at the top is
even.

For an even number of 5-cycles surrounding
F , F is the only face-minimal even cycle in
the graph. Using only F for the dual in-
crease, even including a reverse-delete step,
leaves one blue striped node of each 5-cycle.
Yet, an optimal solution would take a single
red and blue striped node from one 5-cycle.

To circumvent this impediment, we es-
tablish strong structural properties of planar
graphs related to ECT. Those properties along with results from matching theory allow us
to algorithmically find a large set of pairwise face-disjoint even cycles whose dual variables
we can then increment. Even with this set of cycles found, it remains technically challeng-
ing to bound the integrality gap. For this purpose, we first use the structure of minimal
hitting sets of our graph to associate each such set with a hitting set in a subdivision of the
2-compression of our graph. We then show that faces that are contained in even cycles we
increment are incident to few nodes on average. Crucial in this step is a technical result that
is implicit in the work of Berman and Yaroslavtsev [8]. Eventually, this approach leads to
an integrality gap of 47/7, and an algorithm with the same approximation guarantee.
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4.2 Primal-dual algorithm for ECT on node-weighted

planar graphs

4.2.1 Blended inequalities formally defined

Recall that the 2-compression and related graph compressions were defined in Section 2.1.
At the end of the section we briefly defined a family of “blended inequalities”, which were
dominated by a convex combination of inequalities

∑
v∈C xv ≥ 1 in (PECT). Let’s be precise

about which inequality we want.

For each cycle C, its blended inequality is∑
v

aCv xv ≥ 1, (~)

where aCv ∈ {0, 1/2, 1} for all nodes v, and where the support of aC is contained in the node
set of the preimage (defined in Section 2.1) of C. We next provide a precise definition of the
coefficients of (~). With those, one can show that (~) is dominated by a convex combination
of inequalities x(C) ≥ 1 in (PC).

Consider an elementary cycle of the preimage of C and let h1, h2 be its two handles.
For each of these handles, we define its residual cost as the smallest residual cost of any
of its internal nodes. Suppose that the residual cost of h2 is at most that of h1. We will
also call h1 the dominant, and h2 the non-dominant handle of this cycle. As an invariant,
our algorithm maintains that the designation of dominant and non-dominant handles of an
elementary cycle does not change throughout the algorithm’s execution.

Suppose first that the residual cost of h1 is strictly larger than that of h2. In this case,
let aCv = 1 for all internal nodes of handle h1, and let aCv = 0 of the internal nodes of h2.
If the residual cost of both handles is the same, we let aCv = 1/2 on internal nodes of both
handles.

One can see that the current inequality is a convex combination of inequalities of the
form

∑
v∈C xv ≥ 1 where C is a cycle. Namely consider the cycle C1 formed by nodes that

are on a dominant handle or not on a handle and the cycle C2 formed by nodes that are on
a non-dominant handle or not on a handle. One can see that the inequality

∑
v∈V a

C
v xv ≥ 1

is a convex combination of the inequalities
∑

v∈C1
xv ≥ 1 and

∑
v∈C2

xv ≥ 1. If C1 and C2

are both even cycles then
∑

v∈V a
C
v xv ≥ 1 is a convex combination of inequalities in (PECT).

Informally speaking, if C1 and C2 are not both even, we need to correct the parity of
C1 and C2. In this case, we pick an arbitrary elementary cycle on C, and declare it special.
For this special cycle, we then set aCv = 1 for the internal nodes on both handles. Following
the same reasoning as Fiorini et al. [24] for DHS, we can show the following for ECT:

Lemma 3. [24] Each feasible point of our LP (PECT) satisfies any blended inequality.
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Proof. We outlined this in Section 2.1, to recap, let (P1,1, P1,2), ..., (Pi,1, Pi,2) be the set of
handle pairs of C with Pj,1 the handle of greater residual cost and Pi,1, Pi,2 then handles
of the special cycle. For each choice of f : {1, 2, 3, .., i − 1} → {1, 2}, there is an even
cycle C ′ which contains handles Pj,f(j) for 1 ≤ j ≤ i − 1 , one handle from the handle
pair (Pi,1, Pi,2), all nodes not on a handle pair, and no other nodes, i.e. no node in the
interior of Pj,{1,2}\f(j). For v ∈ V , define aC,fv = 1 if v ∈ C ′ ∪ (Pi,1, Pi,2). Then for x ∈ RV+,∑

v∈V a
C,f
v xv ≥

∑
v∈C′ xv ≥ 1 so

∑
v∈V a

C,f
v xv ≥ 1 is a valid inequality for (PC). Now

define f̂(j) = 1 ∀j and f̄(j) = 1 if Pj,1 has strictly greater residual cost than Pj,2 and

f̄(j) = 2 otherwise. Define aC,f̂ ,f̄v = 1
2
(aC,f̂v + aC,f̄v ). Then aC,f̂ ,f̄v are the coefficients of our

blended inequality and
∑

v∈V a
C,f̂ ,f̄
v xv ≥ 1

2
(
∑

v∈V a
C,f̂
v xv +

∑
v∈V a

C,f̄
v xv) ≥ 1 so the blended

inequality is valid.

Just like in [24], in our algorithm, which we will define later, we assume that inequalities
(~) are part of (PECT). Throughout the algorithm, we increase dual variables y~ of such
inequalities.

Recall that we say that variable y~ (or cycle C) pays for
∑

v∈S′ a
C
v hit nodes. Also recall

from Lemma 1 that if during any iteration dual variables for a family of blended inequalities
are incremented uniformly, and the dual variables pay for α hit nodes (of S ′) on average,
then the final solution produced by the algorithm is α-approximate.

The motivation for blended inequalities is to pay for no more than one node in each piece.
Consider the example in Figure 4.1. Here, the bottom black dashed path is odd, there are an
even number of handle pairs in the top part, and ε is small. Suppose that we set aCv = 1/2
on internal nodes of each handle. If we were to increment the inequality (~), all the blue
nodes of weight 1 would become tight, and after reverse-delete, the algorithm would keep
one blue node for each handle pair. This solution has cost equal to the number of length
5 faces in Figure 4.1. However, selecting a red node and a blue node would be a cheaper
solution of cost 2 + ε. This could be achieved by setting aCv = 1 for red and black nodes, and
aCv = 0 on blue nodes, until the residual costs of the red nodes become 1, and afterwards
setting aCv = 1/2 on internal nodes of each handle.

Our algorithms will carefully in polynomial time choose a family of one or more even
cycles T in GS

2 and increments the dual variables of certain blended inequalities for each
C ∈ T until a node becomes tight, or the blended inequality changes; i.e. the residual costs
of two handles of a handle pair, which were previously not equal, become equal.

The general framework of primal-dual for even cycles will be the following.

We start with the empty candidate S := ∅. In every iteration, the algorithm first looks
for an even cycle C in the residual graph GS such that at most two nodes of C have outside
neighbours. If we find such a C, increment the variable yC until a node becomes tight. If no
such cycle exists, the algorithm increments the blended inequalities of some set T of even
cycles. The algorithm then adds all nodes X that became tight to our candidate hitting set
S.
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During an iteration, for each handle pair (Q1, Q2) for which the set X of nodes that
became tight contains a node in the interior of each handle, our algorithm will choose two
nodes a, b ∈ X with a in the interior of Q1 and b in the interior of Q2 and define (a, b) to
be a node pair. For instance, in Figure 2.3 if v and v′ are the only nodes added during some
iteration then the algorithm would define (v, v′) to be a node pair. For a set of nodes X
added during the same iteration, nodes in a pair are considered to be added before any node
not in a pair.

At the end of the algorithm, we perform a non-trivial reverse-delete procedure. Formally,
let w1, . . . , w` be the nodes of S in the order they were added to S by the algorithm. For
nodes wi, wj that were added during the same iteration we assume that the ordering satisfies
the property that if wi is in a pair and wj is not, then i < j. That is, for reverse-delete
purposes, nodes not in a pair are considered for deletion first. For p = `, `− 1, . . . , 1, if wp is
not in a node pair, then if S\{wp} is a feasible hitting set, the algorithm deletes wp from S;
otherwise, it does not. If wp is in a node pair (wp, w

′), then if S\{wp, w′} is a feasible hitting
set, then delete both wp, w

′ from S; otherwise, keep both wp, w
′. The complete description

is given in Algorithm 4.2.1.

To clarify, Algorithm 4.2.1 is the general framework that our 47/7-approximation algo-
rithm will fit into. T is currently an arbitrary nonempty set of even cycles; we will clarify in
Lemma 6 what its desired properties are and explain in Sections 4.2.2, 4.2.5 how to choose
it.

The intuition behind the caveat in our reverse-delete step is that node pairs are often
very useful to keep, because they disconnect a piece. Consider the example in Figure 4.2.
There is a length-5 face with green square nodes of cost 2, and an odd number r of length-5

1 ∞
2

1

Figure 4.2: The red and blue striped nodes have weight 1, black nodes have infinite weight
and green square nodes have cost 2. The bottom dashed black path has odd length. The
number of length-5 faces at the top is assumed to be even.

faces with red and blue striped nodes of cost 1. The black nodes have cost infinity. The
bottom dashed path has odd length. In the 2-compression, all length-5 faces in the figure
belong to one piece. Suppose that for the blended inequality we choose the length-5 face
with the green square nodes as the special cycle, and we increment this blended inequality.
One sees that the red, blue striped and green square nodes become tight simultaneously.

To see that reverse delete order needs to be chosen carefully, consider the following
adversarial ordering: in reverse delete, consider the two green square nodes other than v
first, then consider the red nodes, and then consider one blue striped node on each handle.
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Algorithm 4.2.1: EvenCycleTransversal(G, c)

Input : A graph G with node costs c : V (G)→ N.
Output: An even cycle transversal S of G.

1 S ← ∅
2 while Residual graph GS contains an even cycle do
3 if GS contains a cycle C with at most 2 outside neighbours then
4 increase the dual variable yC for C until a node v becomes tight.
5 else
6 compute the 2-compression GS

2 of GS.

7 T ← some (nonempty) set of cycles of GS
2 .

8 Increment dual variables of blended inequalities of all C ∈ T until a node v
becomes tight or the blended inequality changes.

9 Add all nodes that became tight to S.
10 Denote by X the set of nodes that became tight this iteration.
11 for each handle pair (Q1, Q2) do
12 if X contains a node in the interior of each handle then
13 choose two nodes a, b ∈ X with a in the interior of Q1 and b in the

interior of Q2 and define (a, b) to be a node pair.

14 w1, . . . , w` ← nodes of S in the order they were added, where for nodes X added
during the same iteration, any node of X in a node pair appears before others node
of X not in a node pair.

15 for i = ` downto 1 do
16 if wi is not part of a node pair then
17 if S\{wi} is feasible then
18 S ← S\{wi}.
19 else
20 Let (wi, wj) be the node pair containing wi. if S\{wi, wj} is feasible then
21 S ← S\{wi, wj}.

22 return S

Finally, consider the remaining blue striped nodes. One can see that the algorithm would
end up with v and one blue striped node per handle, which has cost r+2 while the optimum
(which selects the solution consisting of one red and one blue striped node on a handle pair)
has cost 2.

Recall that a piece of our graph is the preimage of an edge of the 2 compression. Also
recall that, informally speaking, we wish for a blended inequality to pay for at most one hit
node inside a piece. This is made formal in the following theorem which is a modification
of a result by Fiorini et al. [24, Theorem 5.7] for even cycles and tells us the structure of a
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minimal solution within a piece. (Fiorini et al. [24, Theorem 5.7] is for diamonds and has
differences in its reverse deletion procedure.)

Lemma 4. Let S ′ be the output of Algorithm 4.2.1 on input (G, c). Let t̄ be a time during
our algorithm, let St̄ be the current hitting set at this time and let GSt̄ be the residual graph.
Consider an edge uw ∈ E(GSt̄

2 ) on the even cycle whose dual variable we increase, and let Q
be the piece corresponding to uw in G. Then exactly one of the following occurs:

1. S ′ contains no internal node of Q,

2. S ′ contains exactly one node of Q, and this node is a cut-node of Q,

3. S ′ contains exactly two nodes of Q, and they belong to opposite handles of a cycle of
Q,

4. S ′ contains exactly one node per elementary cycle of Q, each belonging to the interior
of some handle of the corresponding cycle.

Proof. If S ′ contains two nodes a and b in the interiors of different handles of a handle pair,
then since removing both a and b disconnects u from w in Q, our algorithm would delete all
other nodes of V (Q)\{u,w} from S ′. If u or w were in S ′, then our algorithm would delete
both a and b. Thus u,w /∈ S ′, and case 3 holds.

Similarly, if S ′ contains a cut node z, then since removing z disconnects from u from v
in Q, our algorithm would delete all other nodes of V (Q)\{u, v} from S ′. If u or w were in
S ′, then our algorithm would delete z. Thus u,w /∈ S ′, and case 2 holds.

If u or w is in S ′, then for any r ∈ S ′ ∩ (V (Q)\{u,w}) there cannot be an even cycle of
G which intersects S ′ only at r as such a cycle would have to go through u or w, and thus S ′

contains no internal node of Q and case 1 holds.

By the above we may assume that S ′ does not contain a cut node of Q or two nodes in
the interiors of different handles of a pair. Suppose that case 1 does not hold. Let (P1, P2)
be a handle pair on Q such that P1 contains a hit node t in its interior and P2 does not.
Suppose that Y1, Y2 was another handle pair with no hit node on either of Y1 or Y2. By our
deletion procedure, there must be an even cycle C which intersects S ′ at t only. Such a cycle
C uses the handle P1 and one handle Yi of the pair Y1, Y2. Let C ′ be the cycle obtained
from C by replacing the paths P1 and Yi in C by the paths P2 and Y3−i. Since the lengths
of different handles of a pair have different parity, C ′ is even. Since P2, Y1 and Y2 contain no
nodes of S ′, C ′ contains no nodes of S ′, which is a contradiction. Since a handle can only
contain one hit node of S ′, this implies that case 4 holds.

An immediate corollary is the following.
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Lemma 5. For a cycle C with k pieces, the set S of nodes output by our algorithm satisfies∑
v∈S

aCv ≤ k + 1 . (4.3)

If C contains no twin piece, then ∑
v∈S

aCv ≤ k, (4.4)

Proof. Let C = v1v2, .., vl (vl+1 := v1). Let p(u, v) be the piece of G corresponding to
uv in G2. By Lemma 4 if the special cycle of the blended inequality for C does not lie on
p(vi, vi+1),

∑
v∈p(vi,vi+1)\vi+1

aCv ≤ 1. If the special cycle of the blended inequality for C lies on

p(vi, vi+1),
∑

v∈p(vi,vi+1)\vi+1
aCv ≤ 2. We sum up the inequalities

∑
v∈p(vi,vi+1)\vi+1

aCv ≤ 1 for

pieces p(vi, vi+1) not containing the special cycle and the inequality
∑

v∈p(vi,vi+1)\vi+1
aCv ≤ 2

for the one piece p(vi, vi+1), if it exists, that contains the special cycle. This yields the
result.

Recall that we defined G3 as being obtained from G2 by replacing every edge of G2 with
a path of length 2. Given a hitting set S ′ output by Algorithm 4.2.1, we wish to construct a
corresponding hitting set for GSt̄

3 such that the primal increase rate of any particular blended
inequality (with respect to S ′) is equals the number of nodes of S ′3 on the corresponding cycle
of GSt̄

3 .

Definition 11. Let S ′ be a hitting set output by Algorithm 4.2.1. The corresponding hitting
set for GSt̄

3 is the set S ′3 ⊂ V (GSt̄
3 ) obtained by first taking the nodes of S ′ ∩ V (GSt̄

3 ). Now,
consider an edge uv of GSt̄

2 with corresponding piece P . Replace uv by the path uwpv in GSt̄
3 ,

and add wp to S ′3 if P − S ′ has two components.1

Claim 5.1. Let C be the preimage of an even cycle in GSt̄
2 , and C3 the corresponding cycle

in GSt̄
3 . We claim

∑
v∈S′ a

C
v ≤ |C3∩S ′3|+ 1. Further, if C does not contain a twin edge, then∑

v∈S′ a
C
v ≤ |C3 ∩ S ′3|.

Proof. Define bC as follows: For a handle pair, while one handle has greater residual cost
than the other set bCv = 1 for v on the handle of greater residual cost bCv = 0 on internal
nodes of the other handle (change bC whenever residual costs become equal). Otherwise,
bCv = 1/2 on internal nodes of both handles. In short, bCv are the coefficients aCv if we had
not redefined aCv = 1 for nodes on the special cycle.

Let uw ∈ E(GSt̄
2 ), Q be the preimage of uw in GSt̄ and uwQw be the subdivision of uw

in GSt̄
3 . Let S ′3 be the corresponding hitting set of S ′ for GSt̄

3 . We claim
∑

v∈S′∩(Q\{u,w} b
C
v =

|S ′3 ∩ {wQ}|. We distinguish which case of Lemma 4 is satisfied by uw and S ′.

1Note that the minimality of S′ implies that removing S′ from P yields at most two connected components.
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• If uw and S ′ satisfy (1), then
∑

v∈S′∩(Q\{u,w} b
C
v = 0. Since S ′ contains no internal node

of Q, Q\S is connected and hence S ′3 does not contain wQ. Hence
∑

v∈S′∩(Q\{u,w}) b
C
v =

|S ′3 ∩ {wQ}|.

• If uw and S ′ satisfy (2) or (3), then S ′ does not contain either end node of Q, and
contains either a single cut node of Q, or exactly two nodes of Q in the interiors of two
handles of a handle pair of Q. Thus, S ′ ∩Q consists either of a single node v for which
bCv = 1, or two nodes j, k for which bCj = bCk = 1/2, and so

∑
v∈S′∩Q b

C
v = 1.

In either case (2) or (3), Q\S ′ is disconnected so |S ′3∩{wQ}| = 1. Hence
∑

v∈S′∩(Q\{u,w}) b
C
v =

|S ′3 ∩ {wQ}|.

• Suppose that S ′ satisfies (4). Suppose for a contradiction that Algorithm 4.2.1 added
a node pair (l,m) on some handle pair (P1, P2) of Q. It then follows from the reverse-
delete step that the final solution S ′ contains both l and m, or none of them. Since
we do not contain a node pair, the deletion procedure of Algorithm 4.2.1 implies the
algorithm did not add a node pair with nodes in Q.

Hence, throughout the algorithm, for each handle pair (P1, P2) of Q, the handle Pi,
which contains a hit node in its interior must have strictly less residual cost than the
other. Hence bCv = 0 on handle Pi. This implies∑

v∈(V (Q)\{u,w})

bCv = 0 . (4.5)

Thus
∑

v∈S′∩(Q\{u,w} b
C
v = |S ′3 ∩ {wQ}|.

Let C = v1v2..vlv1. Let Qi be the piece corresponding to vivi+1 mod l. Let qi be the node
resulting from subdividing vivi+1 mod l in GSt̄

2 to obtain GSt̄
3 . Let C3 := v1q1v2, q2, .., vlql the

cycle corresponding to C in GSt̄
3 . We showed∑
v∈S′∩(Qi\{u,w})

bCv = |S ′3 ∩ {qi}|. (4.6)

Summing (4.6) for i− 1, .., l yields
∑

v∈S′∩(∪li=1Qi\{v1,v2,..,vl}) b
C
v = |{q1, q2, .., ql} ∩ C3|.

Noting bCvi = 1 and bCv = 0 for v /∈ ∪li=1Qi for each i, yields∑
v∈S′

bCv = |C3 ∩ S ′3| . (4.7)

Let us now relate aCv to bCv . If C has no twin edge, then the blended inequality coefficients
aCv are equal to bCv , therefore

∑
v∈S a

C
v = |C3 ∩ S ′3|.

In general, C may contain a twin edge. In this case, aCv differs from bCv only in the interior
of the handles H1, H2 of the special cycle: then either bCv = 1

2
in the interior of H1 and H2,

or bCv = 0 in the interior of the dominant handle, and bCv = aCv everywhere else.

33



If bCv = 1
2

in the interior of H1 and H2, then note from Lemma 4 there are at most two
nodes of S ′ on H1 ∪H2. Thus,

∑
v∈S′ a

C
v ≤

∑
v∈S′ b

C
v + 1.

Otherwise, bCv = 0 in the interior of the dominant handle, and bCv = aCv everywhere else.
Since S ′ contains at most one node from the dominant handle

∑
v∈S′ a

C
v ≤

∑
v∈S′ b

C
v + 1.

Thus,
∑

v∈S′ a
C
v ≤ |C3 ∩ S ′3|+ 1 completing the proof.

Recall from Lemma 1 and the paragraph beforehand, that during any iteration of a
primal-dual algorithm dual variables yi in some set C ′ were incremented uniformly, and
the dual variables {yC : C ∈ C ′} pay for α (for some α > 1) hit nodes (of S ′) on av-
erage, then such an algorithm is an α-approximation. To show that Algorithm 4.2.1 is a
α-approximation, we need to show the following.

Lemma 6. During any iteration of Algorithm 4.2.1 the average number of hit nodes the
incremented dual variables {yC : C ∈ T } pay for, 1

|T |
∑

C∈T
∑

v∈S′ a
C
v is at most 47/7.

The rest of this section will be the proof of Lemma 6. By Claim 5.1, if we can show that
1
|T |
∑

C∈T
∑

v∈S′ |C3 ∩ S ′3| ≤ α − 1, then 1
|T |
∑

C∈T
∑

v∈S′ a
C
v ≤ α. It would suffice to argue

that 1
|T |
∑

C∈T
∑

v∈S′ |C3 ∩ S ′3| ≤ 40/7. We will instead argue that 1
|T |
∑

C∈T
∑

v∈S′ |C3 ∩ S ′3|
is small while also taking into account of how many cycles of T contain a twin edge. To
show that |C3∩S ′3|+1 is small on average we need the fact that S ′3 is a minimal ECT, which
is stated in the following remark.

Remark 3. Let S ′ be the output of Algorithm 4.2.1 on input (G, c). Let S ′3 be the corre-
sponding hitting set for GSt̄

3 in Definition 11. Then there is a witness cycle for each v ∈ S ′3.

Proof. Recall that cycles of GSt̄ take the form v1, R1, v2, R2.., Rn−1, vn, Rn, v1 where vi are
nodes of GD2 and Ri is a path between vi and vi+1 in the piece Pi with ends vi and vi+1 in
G. Let wvi,vi+1

(vn+1 = v1) be the node resulting from the subdivision of vivi+1 in GS
2 . Let

v ∈ S3. If v ∈ V (G), denote v1 = v and let v1, R1, v2, R2, . . . , Rn−1, vn, Rn, v1 be a witness
cycle for v. Since there is a path Ri connecting the endpoints of Pi, wvi,vi+1

is not in S3.
Since vi for i 6= 1 are not in S, v1, wv1,v2 , v2, wv2,v3 , . . . , wvn−1,vn , vn, wvn,v1 , v1 is a witness cycle

for v in GSt̄
3 .

If v /∈ V (G), then v = wv1v2 for some edge v1v2 ∈ G2. So S contains a hit node a of the
piece P1 (preimage of v1v2). Either a has a witness cycle or a is part of a node pair (a, b)
and b has a witness cycle. By replacing a with b if (a, b) is a pair we may assume that a
has a witness cycle v1, R1, v2, R2, . . . , Rn−1, vn, Rn, v1 where as before, Ri is a path between
vi and vi+1 in the piece Pi with ends vi and vi+1 in G, and R1 goes through a. For i 6= 2
since there is a path Ri connecting the endpoints of Pi, wvi,vi+1

is not in S3. Since vi are not
in S, v1, wv1,v2 , v2, wv2,v3 , . . . , wvn−1,vn , vn, wvn,v1 , v1 is a witness cycle for v in G3.
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4.2.2 Identifying families of even cycles via tilings

It remains to explain how to choose the set T for Algorithm 4.2.1. We motivate our choice
for this with the 12/5-approximation algorithm of Berman and Yaroslavtsev mentioned in
Chapter 3. Recall the 12/5-approximation of Berman and Yaroslavtsev mentioned in Chap-
ter 3. It starts with the empty hitting set S = ∅. As long as S is not a hitting set for the
directed cycles of G, it first looks for a pocket H of the directed residual digraph GS→, that
is the digraph obtained from G − S by deleting all nodes not on a directed cycle. It then
increments the dual variables for the set of face minimal directed cycles of H, which happen
to be faces. It then adds any nodes that become tight to S. Once S is feasible, the algorithm
performs a reverse deletion step.

Recall Definition 4: Given a graph G, a pseudo-pocket of G is a connected subgraph
G′ of G which contains a cycle such that at most two nodes of G′ have neighbours outside
G′. As pointed out, in our setting, face-minimal even cycles may not be faces, and may
cross. Following Berman and Yaroslavtsev [8], we wish to “cover” our residual graph with
face-minimal even cycles which do not cross, we call this a “tiling”; see Figure 4.3 (iii). As
we will see, this tiling allows us to identify the dual variables to increase. Let us formalize
the correspondence between edges of the dual between odd faces and even faces.

Definition 12. Let H be a plane graph without pseudo-pockets. For each face f of H, let
vf be the corresponding node of the planar dual H∗.

A tile of H is an even cycle C of H bounding one or two faces. If C is a single face
f , we say that C corresponds to the node vf . If C bounds two faces f and g, we say that
C corresponds to the edge vfvg ∈ E(H∗). We say that nodes vf , vg and the faces f, g are
covered by the tile.

For a node v of H∗, let fv ⊂ E(H) be the edges on the boundary of the corresponding
face of H. Denote by f∞ the infinite face of H. Denote by v∞ the node of H∗ corresponding
to the infinite face.

Given vfv∞ ∈ E(H∗), a cycle C ⊂ E(H) corresponds to vfv∞ if C is a cycle of f∆f∞,
or C = C ′∆f and C ′ is a cycle of f∆f∞. We also call such a cycle C a tile and say that C
covers v∞, vf , and the corresponding faces. Figure 4.3 (ii) depicts a cycle C which covers
vertices v∞ and vf of the dual. The cycle C is the disjoint union of the infinite face and f .
Figure 4.3 (v) depicts a cycle C which corresponds to vfv∞. Here f∞∆f is the union of two
cycles and C is one of them.

Given a matching E ′ ⊂ E(H∗) and V ′ ⊂ V (H∗), with E ′ = {e1, . . . , e`} and V ′ =
{v1, . . . , vt}, a set of tiles T = {C1, . . . , C`+t} corresponds to E ′ ∪ V ′ if Ci corresponds to ei
for i = 1, . . . , ` and Cj+` corresponds to vj for j = 1, . . . , t.

In Figure 4.3 (i), cycle C bounds two faces f and g. In Figure 4.3 (ii), the cycle C
corresponds to vfv∞.
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Figure 4.3: Diagrams(i) and(ii) show cycles in green and corresponding edges of the dual
graph in red. (i) The red edge corresponds to the symmetric difference of two finite faces. (ii)
The red edge corresponds to the symmetric difference of a finite and infinite face. Diagrams
(iii) and (iv) show a tiling indicated by the boundaries of the various finite regions in white,
light grey, etc and the corresponding matching.

Definition 13. For a plane graph H, a set T of tiles is a pseudo-tiling if no face of H is
covered by more than one tile. If the node vv∞ corresponding to the infinite face of H is not
covered by T , we call T a tiling.

Let C be an even cycle in GS
2 , and recall that we say that C pays for

∑
v∈S a

C
v hit nodes.

For an even cycle in a tiling covering two faces, we bound the number of hit nodes it pays
for by the number of hit nodes each face pays for.

We will show that a finite face of our graph intersects at most 18/7 hit nodes on average
(over all finite faces). Ideally, we would want to cover all finite faces by a tiling T . The
average number of hit nodes that an even cycle of a tiling T is incident to is 1

|T |
∑

C∈T |C∩S ′|.
If all finite faces of our graph are covered by T , then since each cycle of T covers at most
2 faces, |T | ≥ |F |/2, where F is set of faces of our graph. As all faces are covered by T ,

1
|T |
∑

C∈T |C ∩ S ′| = 1
|T |
∑

C∈F |C ∩ S ′| ≤ 2
|F |
∑

C∈F |C ∩ S ′|. That is, an even cycle of our
tiling is incident to at most twice the number of hit nodes as a finite face of of our graph is
on average. So an even cycle of our tiling would be incident to at most 36/7 hit nodes on
average. Alas, tilings covering all faces need not always exist (see Figure 4.5 on page 41).
Thus, we try to find a tiling that covers as many finite faces as possible.

Suppose that we find a tiling T that covers a set TFaces of finite faces consisting of α-
fraction of the finite faces of our graph. It follows that a face of TFaces will be incident to
at most 18/7α hit nodes on average, and so an even cycle of the tiling T is incident to at
most 36/7α hit nodes on average. Intuitively, even faces pay for fewer hit nodes than even
cycles containing two faces, so it is good if a tiling contains many even faces. The following
definition is a combined measure of how well a tiling covers the faces of our graph and how
many even faces are in the tiling. Note that for any tiling T , we can add all even faces not
in T to T and still remain a tiling. Since we want to cover as many faces as possible, we
will focus on tilings containing all even faces.

Definition 14. Let α ∈ (0, 1). A tiling is α-quasi-perfect if it covers all even finite faces,
a β-fraction of odd finite faces of GS, and a ψ-fraction of the finite faces of GS are even,
where

β(1− ψ) + 2ψ ≥ α . (4.8)
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We prove the following key result in Subsection 4.2.5.

Theorem 7. Let H be a 2-compression of some graph G such that H is planar, has an even
cycle and contains no pockets. Then H has a 2/3-quasi-perfect tiling that can be found in
polynomial-time.

Note that the “bad” example in Figure 4.1 does not have a 2/3-quasi-perfect tiling. In
some sense the purpose of the 2-compression is to have a 2/3-quasi-perfect tiling.

4.2.3 The algorithm in detail

We can now formally state our algorithm. It takes as input a planar graph G with cost
function c : V (G)→ N. Let C(G) denote the set of even cycles of G, and let opt(G, c) denote
the minimum cost of an even cycle transversal of G, which is a set of nodes intersecting
every cycle in C(G).

The algorithm maintains a candidate hitting set S at any time. Recall that we let GS

denote the residual graph consisting of the subgraph of G induced by those nodes of G\S
that lie on an even cycle. The algorithm first looks for a minimal pocket H of the two
compression of the residual graph. GS

2 . The algorithm looks for a 2/3-quasi-perfect tiling
TH of H and increments the dual variables of blended inequalities of all C ∈ TH until a node
v becomes tight or the blended inequality changes. We add all nodes that became tight to
S. For each handle pair (Q1, Q2), if the set X of nodes that became tight contains nodes
in the interior of each handle,choose two nodes a, b ∈ X with a in the interior of Q1 and b
in the interior of Q2 and define (a, b) to be a node pair. For a set of nodes X added during
the same iteration, nodes in a pair are considered to be added before any node not in a pair.
That is we let w1, . . . , w` be the nodes of S in the order they were added with the caveat
that for nodes X added during the same iteration, any node of X in a pair appears before
other nodes of X not in a pair. We then perform reverse delete on S = {w1, . . . , w`} with
the caveat that when considering node wi for deletion that is in a vertex pair (wi, wj), if
deleting both wi, wj from S maintains feasibility, we do so, otherwise we keep both wi and
wj.

As we will see, the algorithm returns an even cycle transversal S of G whose cost is at
most (47/7)opt(G, c).

This completes the description of our approximation algorithm for ECT, whose com-
plete pseudo-code is given as Algorithm 4.2.2. Since Algorithm 4.2.2 is a special case of
Algorithm 4.2.1, all of the previous theorems we showed for Algorithm 4.2.1 also apply to
Algorithm 4.2.2.

4.2.4 Analysis of the approximation ratio

We claim that Algorithm 4.2.2 is a 47/7-approximation for ECT on node-weighted planar
graphs.
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Algorithm 4.2.2: EvenCycleTransversal(G, c)

Input : A planar graph G with node costs c : V (G)→ N.
Output: An even cycle transversal S of G of cost at most 47

7
times the cost of an

optimal ECT.
1 S ← ∅
2 while Residual graph GS contains an even cycle do
3 if GS contains a cycle C with at most 2 outside neighbours then
4 increase the dual variable yC for C until a node v becomes tight.
5 else
6 compute the 2-compression GS

2 of GS.

7 H ← minimal pocket of GS
2 .

8 TH ← a 2/3-quasi-perfect tiling of H.
9 Increment dual variables of blended inequalities of all C ∈ TH until a node v

becomes tight or the blended inequality changes.
10 Add all nodes that became tight to S.
11 Denote by X the set of nodes that became tight this iteration.
12 for each handle pair (Q1, Q2) do
13 if X contains a node in the interior of each handle then
14 choose two nodes a, b ∈ X with a in the interior of Q1 and b in the

interior of Q2 and define (a, b) to be a node pair.

15 w1, . . . , w` ← nodes of S in the order they were added, where for nodes X added
during the same iteration, any node of X in a pair appears before others node of X
not in pairs.

16 for i = ` downto 1 do
17 if wi is not part of a pair then
18 if S\{wi} is feasible then
19 S ← S\{wi}.
20 else
21 Let (wi, wj) be the pair containing wi. if S\{wi, wj} is feasible then
22 S ← S\{wi, wj}.

23 return S
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Fix an input planar graph G with node costs cv ∈ N. Consider a set S ⊆ V (G) of nodes
and a node v ∈ S. Recall that a cycle C is a pseudo-witness cycle for v with respect to S
if C ∩ S = {v}. If C is additionally even, then C is a witness cycle for v. Note that if S
is an inclusion-minimal ECT for G, then there is a set Wv of witness cycles for each node
in v ∈ S. If the reverse-delete procedure does not delete any node of S, then each node not
in a pair has a witness cycle and for each pair, at least one of the nodes in the pair has a
witness cycle.

The analyses of the algorithms in [29] and [8] for Subset FVS on planar graphs rely
crucially on the fact that, each node of an inclusion-wise minimal solution has a witness
cycle. Goemans and Williamson [29] showed that one can find a laminar collection A of
witness cycles. Laminar families A are well-known to have a natural tree representation [29]
where we add an additional root node. Each cycle A ∈ A is the child of the smallest cycle
C ∈ A such that A is contained in the closure of the region of the plane bounded by C. If no
such cycle C exists then A is a child of the root. The key argument in [8, 29] is that for each
leaf cycle C of the laminar family, one can increment the dual variable of at least one face
contained in the region defined by C. Further, this dual variable pays only for the hit node
that C is a witness of. Using the fact that leaf cycles form a large portion of any laminar set
of cycles, this is used to argue that a large portion of the dual variables they incremented
pay for a single hit node. An additional bound on how many nodes the other dual variables
pay for is proven exploiting the fact that the “debit graph”, which will be defined later is
planar and hence sparse.

For the ECT problem, however, we do not have laminar witness cycles. Instead, we must
extend the analysis of Berman and Yaroslavtsev [8] to find a set of laminar pseudo-witness
cycles.

Consider some time t̄ during the algorithm when applied to (G, c). Let St̄ be the current
hitting set and GSt̄ the residual graph. Let {∑v∈V (G) a

C
v ≥ 1}C∈L be the set of inequalities

of the dual variables increased during the next iteration. Here, L will be either a single cycle
of GSt̄ , or a tiling of GSt̄

2 . We wish to show that the primal increase rate towards the final
set S ′ at time t̄,

∑
C∈L

∑
v∈S′ a

C
v is at most 47/7 times the dual increase rate |L|.

If the algorithm incremented yC , where C was a cycle of G for which at most two nodes
have outside neighbours, then the inequality we increase is

∑
v∈C xv ≥ 1. As S ′ is minimal

under reverse-delete, |C ∩S ′| ≤ 2, and hence the primal increase rate
∑

v∈S′ a
C
v = |C ∩S ′| is

at most twice the dual increase rate 1.

Otherwise, if the algorithm did not increment yC , then there is no cycle C of GSt̄ such that
at most two nodes of C have neighbours outside C. Hence, the set of increased inequalities
are the blended inequalities of a tiling TH of an inclusion-minimal pocket H of GSt̄

2 . For a
cycle C of GSt̄

2 , let
∑

v∈V (GSt̄ ) a
C
v ≥ 1 be the blended inequality C (see Equation ~).

Recall the definition of the Subset FVS problem, which seeks a minimum-weight node
set X which intersects all cycles from CT , the collection of cycles in G which contain some
node from a given set T ⊆ V (G). Observe that each node of S ′3 has a witness cycle in GSt̄

3 ;
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Figure 4.4: Left: A possible debit graph D with the cycles of the tiling in Figure 4.3. Right:
the graph D′ obtained by replacing each cycle with the faces that compose it.

therefore, it is an inclusion-minimal hitting set for the collection CT with T = S ′3. Goemans
and Williamson [29, Lemma 4.2] showed that any inclusion-minimal hitting set for CT has
a laminar set of witness cycles, which implies that there is a laminar set of pseudo-witness
cycles A for hitting set S ′3.

Proposition 3 ([29, Lemma 4.2 specialized for Subset FVS]). Let G′ be a planar graph
and let T ⊆ V (G′). Let CT be the set of cycles of G′ containing at least one node of T ,
and let X be an inclusion-minimal hitting set for CT . Then there is a laminar set of cycles
A = {Ax | x ∈ X}, satisfying Ax ∈ CT and Ax ∩X = {x}.

Applying Proposition 3 to G′ = G3 and X = T = S ′3 implies there is a laminar set
A = {Ax | x ∈ S ′3} of cycles satisfying Ax ∩ S ′3 = {x}. In other words, A is a laminar set
of pseudo-witness cycles for S ′3. Note that cycles of A may not be even, hence they may be
pseudo-witness cycles for S ′3, but not necessarily witness cycles for nodes of S ′3.

Recall that, during the current iteration, our algorithm incremented the blended inequal-
ities of the cycles in a 2/3-quasi-perfect tiling TH of H. Recall that H is an inclusion-minimal
pocket of GSt̄

2 . By abuse of notation, let TH denote the corresponding cycles of GSt̄
3 . Let D

be the debit graph formed using GSt̄
3 , the cycle set TH and hitting set S ′3. Obtain a graph D′

from D by replacing each even cycle C containing two faces with the two faces that compose
it.

For each even cycle C consisting of two faces f1, f2, and edge (C, v) ∈ E(D), graph D′
will have the edge (fi, v) where v lies on the face fi in G; see Figure 4.4. In Figure 4.4 (i)
is depicted a possible debit graph D, with face nodes depicted as squares, with the cycles of
the tiling in Figure 4.3. In (ii) is shown the graph D′ obtained by replacing each face node
of our debit graph with the faces that compose it. The face node labelled C in (i) is replaced
by two face nodes f1 and f2 in (ii). If fi is not incident to any hit nodes v, we remove fi
from D′. Let TFaces(H) be the “face nodes” of D′. Let Fall(H) denote the finite faces of H. Let
FH denote the set of finite faces of H that contain a hit node. Observe that M ∩ S ′3 = ∅ for
each M ∈ Fall(H)\FH . Now∑

M∈TH

|M ∩ S ′3| ≤
∑

M∈TFaces(H)

|M ∩ S ′3|

≤
∑

M∈Fall(H)

|M ∩ S ′3| − |FH\TFaces(H)| =
∑
M∈F

|M ∩ S ′3| − |FH\TFaces(H)| . (4.9)
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Figure 4.5: A graph consisting of a tessellation of the plane with twice as many triangles as
dodecagons. None of the triangles are adjacent, so a maximum tiling covers only the even
dodecagons.

The first inequality holds, because for each cycle C consisting of two faces f1 and f2 we have
|C∩S ′3| ≤ |f1∩S ′3|+ |f2∩S ′3|. The second inequality holds, because each face of FH contains
a hit node, and so |C ∩ S ′3| ≥ 1 for each C ∈ FH . The last inequality holds, because by
definition |M ∩ S ′3| = 0 for all M ∈ Fall(H)\FH .

If our tiling covers 2/3 of all finite faces, then |TFaces(H)| ≤ 2|TH | and (2/3)|FH | ≤
|TFaces(H)|, so |FH | ≤ 3|TH |. Alas, one can show that a tiling that covers 2/3 of all finite
faces does not always exist; see Figure 4.5. To overcome this impediment, we will show
that |FH | ≤ 3|TH | holds for a 2/3-quasi-perfect tiling. Suppose that our 2/3-quasi-perfect
tiling covers a b-fraction of the odd faces in FH , and a c-fraction of the faces in FH which
are even. Let Feven(H) be the even finite faces of FH . Then, as FH\Feven(H) are the odd
faces of FH , and TFaces(H)\Feven(H) are the odd faces covered by our tiling, it holds that
b|FH\Feven(H)| = |TFaces(H)\Feven(H)|. Simplifying, we get

b|FH |+ (1− b)|Feven(H)| ≤ |TFaces(H)| ≤ 2|TH | − |Feven(H)| .

By rearranging, we get b|FH\Feven(H)|+2|Feven(H)| ≤ 2|TH |. Noting that b(1− c)+ 2c ≥ 2/3,
and rearranging once more, yields

2

3
|FH | ≤ b|FH\Feven(H)|+ 2|Feven(H)| ≤ |TFaces(H)| ≤ 2|TH | .

Noting that |Feven(H)|/|FH | = c and b(1− c) + 2c ≥ 2/3, we get

3|TH | ≥
3

2
(b(1− c) + 2c)|FH | ≥ |FH | . (4.10)
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By (4.9), in order to bound
∑

M∈TH |M ∩ S ′3|, it suffices to bound
∑

M∈F |M ∩ S ′3|. To do
this, we need Theorem 4.

Let A be a set of laminar witness cycles for S ′3. If we were to set R = FH (the set of
finite faces of H incident to a hit node), then each cycle A ∈ A contains a face of R in its
interior, namely any face inside A that is incident to the hit node of S ′3 on A. Thus, S ′3,A
and R meet the conditions of Theorem 4.

To recap, we wish to bound the primal increase rate
∑

M∈TH

∑
v∈S a

M
v , so we analyze the

expression
∑

M∈TH |M ∩ S ′3|. Recall that
∑

v∈S a
M
v is at most one more than |M ∩ S ′3| and∑

v∈S a
M
v = |M ∩ S ′3| if M contains no twin edge. We bound

∑
M∈TH |M ∩ S ′3| by looking

at the quantity
∑

M∈FH
|M ∩ S ′3|, because FH fits the conditions of Theorem 4. One could

then use |FH | ≤ 3|TH | (by (4.10)), to bound
∑

M∈TH

∑
v∈S a

M
v in terms of the dual increase

rate |TH |. We will use 3|TH | ≥ 3
2
(b(1− c) + 2c)|FH | to obtain a stronger bound.

Let T be our 2/3-quasi-perfect tiling from Theorem 7. Recall from Definition 14 that
the fraction β of odd finite faces that are covered by the tiling, and the fraction ψ of finite
faces of H, that are even satisfy β(1−ψ) + 2ψ ≥ α. Let A be a set of pseudo-witness cycles
in H for S ′3, the corresponding set for the hitting set S ′ returned by our algorithm. Define
R = FH . We have that every cycle of A contains a face of R in its interior. Thus, R,A and
S ′3 satisfy the conditions of Theorem 4. Therefore,

∑
M∈TH

|M ∩ S ′3| ≤
( ∑
M∈FH

|M ∩ S ′3|
)
− |FH\TFaces(H)| ≤

18

7
|FH | − |FH\TFaces(H)| . (4.11)

Note that
∑

v∈S a
M
v ≤ |M ∩ S|, unless M contains a twin edge. If M ∈ T is the disjoint

union of two odd faces which share an edge, then M will not contain a twin edge. That is,
M can only contain a twin edge if M ∈ Feven(H), so M is an even face then. So∑

M∈TH

∑
v∈S

aMv ≤
∑
M∈TH

|M ∩ S|+ |Feven(H)| ≤
18

7
|FH | − |FH\TFaces(H)|+ |Feven(H)| . (4.12)

Recall that c = |Feven(H)|/|FH | is the fraction of finite faces of FH which are even, and that
b = |TFaces(H)\Feven(H)|/|FH\Feven(H)| is the fraction of odd finite faces of FH covered by our
tiling. Note that

|F\TFaces(H)| = |FH Feven(H)| − |TFaces(H)\Feven(H)|
= |F\Feven(H)| − b|FH\Feven(H)|
= (1− b)(1− c)|FH | .

We now recall (4.10), by which 3|TH | ≥ 3
2
(b(1− c) + 2c)|FH |.
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Substituting these bounds for |FH | and |FH\TFaces(H)| into (4.12), we obtain

∑
M∈TH

∑
v∈S

aMv ≤ c|FH |+
18

7

(
2

b(1− c) + 2c
|TH |

)
− (1− b)(1− c)|FH |

=
2c

b(1− c) + 2c
|TH |+

18

7

(
2

b(1− c) + 2c
|TH |

)
− 2(1− b)(1− c)

b(1− c) + 2c
|TH | .

If we maximize the right-hand side factor 2c
(b(1−c)+2c)

+ 36
7(b(1−c)+2c)

− 2(1−b)(1−c)
(b(1−c)+2c)

subject to

b(1− c) + 2c ≥ 2/3, we obtain that the right-hand side is bounded by 47
7
|TH |.

Assuming Theorem 7, each iteration of Algorithm 4.2.2 can be done in polynomial-time.
Since each iteration adds a node to out hitting set, our algorithm has at most |V | iterations
and thus runs in polynomial-time.

This completes the proof of Theorem 1 modulo the proof of Theorem 7; i.e., the fact that
large quasi-perfect tilings can be computed efficiently. The remaining part of this paper will
provide details for this remaining task.

4.2.5 Obtaining a 2/3-quasi-perfect tiling

We now show how to find the 2/3-quasi perfect tiling in line 8 of Algorithm 4.2.2. The
following result states that the minimal pockets picked by the algorithm have such tilings.

Theorem 7. Let H be a 2-compression of some graph G such that H is planar, has an even
cycle and contains no pockets. Then H has a 2/3-quasi-perfect tiling that can be found in
polynomial-time.

To prove this theorem we will use the following lemma.

Lemma 7. For any set S, any pseudo-pocket contained in GS
2 contains an even cycle.

Proof. Informally speaking, the proof will show that any pseudo-pocket without even cycles
contains an odd cycle for which only two nodes have outside neighbours; this, however,
cannot appear in the 2-compression, as we would have replaced this cycle by an edge in GS

2 .
An example is given in Figure 4.6 on the left is depicted the two compression GS

2 of a graph
GS. The pseudo-pocket Q is formed by the black edges, C is a cycle for which only two nodes
t, w have outside neighbours. On the right is shown the result of compressing cycle C into
the green edge. This is a contradiction as the two compression GS

2 cannot be compressed
further.

Suppose, for sake of contradiction, that GS
2 contained a pseudo-pocket Q without even

cycles. Since each node of Q is in an even cycle of G2 and Q contains no even cycle, Q
contains exactly two nodes u and v with neighbours outside Q, and each node of Q lies on
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GS
2 \Q

vu t w
C

GS
2 \Q

vu t w

Figure 4.6: Cycle C compressed to edge.

a u-v path of Q. Let Bu and Bv be the blocks of Q containing u and v in the block graph B
of Q, respectively.

If B is not a path, then there would be some block B1 (see Figure 4.7) that does not
lie on a Bu-Bv path in B, and thus there would be a node of B1 that would not lie on a
u-v path in Q—a contradiction. Hence, B is a path. Figure 4.7 depicts an example of a
graph with a pseudo-pocket Q depicted as the non-gray edges consisting of blocks labelled
B1, B2, B3, B4, Bu, Bv, with blocks Bu and Bv containing u and v respectively. Block B1

depicted in blue contains nodes not on any u-v path, which is a contradiction.

GS
2 \Q

Bu
B2

B3

B4 Bv

vu

B1

Figure 4.7: Graph Q consisting of blocks labelled B1, B2, B3, B4, Bu, Bv. Block B1 depicted
in blue/dashed contains nodes not on any u-v path, which is a contradiction.

Let B be a block of Q. Suppose for a contradiction that B contains a cycle C and a node
v′ of C with a neighbour u′ ∈ V (B) outside C. Since v′ is not a cut node, there is a path P
from u′ to C\v′. Construct the u′-v′ path P ′ from P by traversing P from u′ to the first node
w′ of C\v′ and appending to that a w′-v′ path in C. Since Q contains no even cycles, the
cycles P ′∪v′u′ and C are odd. Then the cycle formed by the edges E(C)∆E(P ′∪v′u′), that is
edges of C or P ′∪v′u′, but not both, has length |E(C)|+|E(P ′∪v′u′)|−2|E(C)∩E(P ′∪v′u′)|
which is even, and hence a contradiction. Thus if B contains a cycle then it does not contain
nodes outside the cycle, or put simply B is a cycle. Since we assume that B contains no even
cycles, B is an odd cycle. Thus, the blocks of Q are odd cycles or edges. Since Q contains
at least one cycle, there is an odd cycle C ′. Since B is a path, C ′ contains 2 nodes a and
b with neighbours outside C ′. However, GS

2 cannot contain such an odd cycle, as that we
would have contracted the two a-b paths of C ′ to parallel edges and then replaced them by
a twin edge; see Figure 4.8. This completes the proof.

For any set S, if GS
3 contained a pseudo-pocket Q without even cycles, then Q was

44



G Ḡ1G1

Figure 4.8: Cycle is replaced by an edge in 2-compression.

obtained from a subgraph Q′ of GS
2 by subdividing edges. Then Q′ would be a pseudo-

pocket of GS
2 without even cycles. This contradicts Lemma 7. This shows the following

corollary.

Corollary 2. For any set S, any pseudo-pocket of GS
3 contains an even cycle.

Recall from Definition 12 and the paragraph afterwards, that a pseudo-tiling of our graph
corresponds to the union of a matching of the dual graph and a set of even faces. A tiling
corresponds to the union of a matching of the dual graph not containing any edge incident
to the infinite face and a set of even finite faces. Under this correspondence, the existence
of large pseudo-tilings is a much more natural thing to prove. Let us first formally define a
large pseudo-tiling.

Definition 15. Let α ∈ (0, 1). A pseudo-tiling T is α-pseudo-perfect if it covers all even
faces (including the infinite face if it is even) and a β-fraction of the odd faces, and a ψ-
fraction of the faces of H are even, where

β(1− ψ) + 2ψ ≥ α . (4.13)

We will first prove the existence of large pseudo-perfect pseudo-tilings. We fix an em-
bedding of H. For any multigraph W , let oc(W ) be the number of odd components of W .
Since pseudo-tilings correspond to matchings, Tutte’s Theorem stated below on the size of
a maximum matching will be important to our proof that large pseudo-tilings exist.

Theorem 8 (Tutte’s Theorem). For any graph G, the number of nodes of G which are not
covered by a maximum size matching of G is at most

oc(G\X)− |X| . (4.14)

for some X ⊂ V (G). Further, if some node v ∈ V (G) is covered by every maximum matching
of G, then (4.14) holds for some X ⊂ V (G) containing v.

The main idea of why such large pseudo-perfect pseudo-tilings should exist is that by
Tutte’s Theorem, the absence of a large pseudo-tiling implies that for some set X of nodes
of the dual graph H∗, the set of odd components of H∗\X is large relative to |X|.

Construct a new graph H1 as follows. Start with the graph H∗ and add as many edges as
possible between nodes of X while preserving planarity and not creating any faces of length
2 (see Figure 4.9). We will show that each odd component of H1\X lies in a different face
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X E(H1)\E(H∗)

X

Figure 4.9: The graph H∗ with set X ⊂ V (H∗) (depicted in blue/shaded) on the left. On
the right, the graph H1 obtained from H∗ by adding edges (dashed) between X.

of H1[X] and that H1 contains at most two faces of length 2. Thus using Euler’s formula,
|E(H1[X])| ≤ 3|V (H1[X])|−4, H1[X] does not have too many edges. The crucial observation
is that since each odd component of H1\X lies in a different face of H1[X], each node x ∈ X
is adjacent to more other nodes of X in H1 than there are odd components of H1\X which
contain a neighbour of x. By facial region, we mean the region of the plane bounded by a
face. We will also show there are at most 2 odd components J1, J2 for which at most 2 nodes
of X have neighbours in Ji. (See Figure 4.10(ii). There for the odd component Ji there are
2 nodes u,w ∈ X which have neighbours in Ji. Figure 4.10 (iii) shows the “corresponding
dual graph” Qi which contains only two nodes s and d with neighbours outside Qi, which
gives a contradiction.) We can then show that the number of odd components is at most 2/3
the number of edges of H1[X] plus 2

3
, which will contradict that the set of odd components

is large.

Lemma 8. Let H be as in Algorithm 4.2.2, that is, H is a minimal pocket of GS
2 . Then H

has a 2/3-pseudo-perfect pseudo-tiling.

Proof. Suppose, for sake of contradiction, that H does not have a 2/3-pseudo-perfect pseudo-
tiling. Recall that each edge of the dual graph H∗ of H between two nodes which correspond
to odd faces in H corresponds to an even cycle of H. Thus, we may think of pseudo-tilings
as the union of a set of even faces and a matching on the odd faces. Let Y be the set of even
faces of H.

Consider a maximum matching of the odd faces of H, that is, a maximum matching Q of
H∗\Y . Assume that Q misses a (1− b)-fraction of the odd faces (of H), that is, (1− b) = q′

q
,

where q′ is the number of odd faces not incident to an edge of the matching, and q is the
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total number of odd faces. By Theorem 8 applied to G = H∗\Y (by an abuse of notation
we also use Y to denote the nodes of H∗ which correspond to faces of Y ), there is a set of
nodes of V (H∗)\Y such that removing these nodes creates a relatively large number of odd
components. More precisely, for some X ⊂ V (H∗)\Y we have

(1− b)|V (H∗\Y )| ≤ oc(H∗\(X ∪ Y ))− |X| . (4.15)

Tutte’s Theorem also says that if v∞ is covered by every maximum matching of H∗\Y ,
then we may pick X containing v∞. By rearranging (4.15), we obtain |V (H∗)| − |Y | −
b|V (H∗\Y )| ≤ oc(H∗\(X ∪ Y ))− |X|. Subtracting |Y | from both sides, we get

|V (H∗)| − 2|Y | − b|V (H∗\Y )| ≤ oc(H∗\(X ∪ Y ))− |X ∪ Y | . (4.16)

Note that a |Y |/|V (H∗)|-fraction of all the faces of H are even, and by definition, a
b-fraction of all the odd faces are covered by Q. There is a pseudo-tiling T corresponding to
Y ∪Q under Definition 12 and the paragraph afterwards.

Let J1, . . . , J` be the odd components of H∗\(X ∪Y ). Let Ĥ be the graph obtained from
H∗ by contracting each Ji deleting created parallel edges and loops. For i = 1, . . . , ` let ji
be the node obtained by contracting Ji; let J = {j1, . . . , j`}. Let H ′ be an edge maximal
(multi) graph obtained from Ĥ by adding edges between nodes of X ∪ Y while preserving
planarity and not creating any faces of length 2.

We will show the following 3 claims.

Claim 8.1. The inequality
∑`

i=1 |δĤ(ji)| ≥ 3`− 2 holds.

Claim 8.2. It holds |E(H ′[X ∪ Y ])| ≤ 3|X ∪ Y | − 3.

Claim 8.3. It holds |E(H ′) ∩ J × {x}| ≤ 2|E(H ′(X ∪ Y )|.

We defer the proofs for now and show how to finish the proof given these claims. From
Claim 8.1, it follows that 3|J | − 2 ≤ ∑`

i=1 |δH′(ji)| = |E(H ′) ∩ J × (X ∪ Y )|. Thus, by
Claim 8.3 and Claim 8.2, it follows that

3|J | − 2 ≤ 2|E(H ′(X ∪ Y )| ≤ 6|X ∪ Y | − 6 .

So |X ∪ Y | ≥ 0.5|J | = `.

Suppose for a contradiction that the pseudo-tiling T is not 2/3-pseudo-perfect, then
(4.13) of Definition 15 is violated, that is,

b(1− (|Y |/|V (H∗)|)) + 2|Y |/|V (H∗)| < 2/3 .

After simplifying, we obtain 2|Y | + b|V (H∗\Y )| < 2
3
|V (H∗)|. Therefore, it holds

1
3
|V (H∗)| < |V (H∗)| − 2|Y | − b|V (H∗\Y )|. Substituting this into the left-hand side of

(4.16), we obtain

1

3
|V (H∗)| < |V (H∗)| − 2|Y | − b|V (H∗\Y )| ≤ oc(H∗\X ∪ Y )− |X ∪ Y |. (4.17)
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From |J |+ |X ∪ Y | ≤ |V (H∗)| and |X ∪ Y | ≥ 1
2
|J |, we get 2

3
|V (H∗)| ≥ |J |. Consequently,

1

3
|V (H∗)| ≥ 1

2
|J | ≥ |J | − |X ∪ Y | = oc(H∗\(X ∪ Y ))− |X ∪ Y |,

which contradicts (4.17). Therefore, T is 2/3-pseudo-perfect. This completes the proof of
the lemma.

We use the notation in the proof of Lemma 8 throughout the rest of this section. Denote
by Qi the subgraph of H induced by the faces of H corresponding to Ji. Given a node
v ∈ V (H∗), denote by v∗ ⊂ H the face of H which v corresponds to. Let v∗∞ denote the
infinite face of H and v∞ the node of the dual graph H∗ corresponding to v∗∞.

We need the following remark for the next claim.

Remark 4. If h∞ /∈ Ji, then the infinite face of Qi is a cycle.

Proof. Assume for a contradiction that the infinite face fQi∞ of Qi was not a cycle. Then
there is a cycle C of fQi∞ for which the region bounded by C contains at least one and not
all finite faces of Qi. Let F be the set of finite faces of Qi bounded by C. Since C “separates”
the faces of F from the other finite faces of Qi, the vertices of Ji corresponding to faces of
F are not reachable from the other vertices of Ji in H∗\v∞.

We argue that Qi cannot be a pseudo-pocket. If Qi is a pocket, then since Qi is contained
in H, this contradicts the fact that H is an inclusion-wise minimal pocket. Otherwise, Qi is
a pseudo-pocket with no even cycle, which by Lemma 7, cannot appear in the 2-compression
of a graph. The following claim shows that a certain condition on ji implies Qi is a pseudo-
pocket, which implies that such a condition cannot hold for ji.

Claim 8.4. Suppose that the degree |δĤ(ji)| of ji in Ĥ is at most 2, h∞ /∈ Ji and no node
of Qi on the infinite face has a neighbour outside H (see node t in Figure 4.10 (vi)). Then
Qi is a pseudo-pocket.

We illustrate the previous claim in Figure Figure 4.10 (i)-(iii). In (i), ji has two neigh-
bours u and w. In (iii), Qi is bounded by the two faces u∗ and w∗ and only the nodes s and
d in Qi, the two nodes of Qi which belong to both u∗ and w∗, have neighbours outside Qi.

Proof. Intuitively, the neighbours of Ji in H∗\Ji correspond to the faces of H bound Ji.
Informally, if Ji has only 2 neighbours u,w in H∗\Ji and u,w 6= v∞, then the corresponding
faces u∗ and w∗ bound Qi, which implies Qi is a pocket (see Figure 4.10 (iii)).

To be precise, suppose that ji has degree 2 and u,w are the only nodes of V (H∗)\Ji with
neighbours in Ji (see Figure 4.10 (ii)). Each edge e on the infinite face Wi of Qi lies on a
face a∗ of H where a is a node of H∗\Ji. The only nodes of V (H∗) that have neighbours in
Ji are u,w. Thus, a is either u or w. So the edge e lies on one of the faces u∗ or w∗. We may
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assume that u 6= h∞ Recall that H contains no pseudo-pockets. Therefore, the intersection
of any two finite faces of a subgraph of H with a common edge is a path. Let Wi denote the
outside face of Qi, which by Remark 4 is a cycle. It follows that A1 = Wi ∩ u∗ is a path.
Let s and d denote the endpoints of A1. Since each edge of A1 lies on a face of Qi and u∗,
it does not lie on the face w∗. Thus A2 = Wi ∩w∗ consists of the subgraph of Wi formed by
the nodes not in the interior of A1. Thus A2 is a path with endpoints s and d. Thus, in the
graph H, only nodes s and d of Qi can have neighbours in H\Qi. Thus if no node of Qi has
a neighbour outside H, then Qi is a pseudo-pocket of H.

Now suppose that ji has a single neighbour u. Let Wi denote the outside face of Qi,
which is a cycle. If u∗ is the infinite face, then Wi ∩ u∗ is the infinite face of Qi, which is a
cycle. In this case Qi = H. Suppose that u 6= v∞. Since each edge lies on two faces, each
edge of Wi lies on u∗. Note that faces of graphs are enclosed by closed walks such that each
cycle contains at most one node with a neighbour in the walk but outside this cycle. Thus
there is exactly a single node s ∈ Wi for which s contains a neighbour in u∗\Wi. This node
s is the only node of Qi with a neighbour outside Qi (see Figure 4.10 (vii)). Thus Qi is a
pseudo-pocket of H.

Figure 4.10: Figures (i), (ii), and (iii) show how a degree 2 node in Ĥ, not incident to
v∞, which is shown in (i), corresponds to a pseudo-pocket, which is shown in (iii). Figures
(iv), (v), (vi) show the exception when conditions of Claim 8.4 are not satisfied, that is, the
node ji is adjacent to v∞, and a node t on the infinite face of Qi has a neighbour outside H.
In this case, ji may not correspond to a pseudo-pocket of GS

2 . The shaded nodes in (vi) are
part of GS

2 \H. Figure (vii) shows Qi bounded by a single face u∗. In this case Qi is also a
pseudo-pocket.

This completes the proof of Claim 8.4.

The proof of Claim 8.1 will use the fact that H∗\v∞ is connected, which we prove next.

Remark 5. For the minimal pocket H found by Algorithm 4.2.2, H∗\v∞ is connected.

Proof. We show H is 2-connected. Note that if H has a cut node v, then some component
of H\v, say H1, contains at most one node with a neighbour outside H. As a consequence,
H1 would be a smaller pocket, which would contradict the fact that H is a minimal pocket.
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Thus, H is 2-connected. It is well known that if H is two connected, then the infinite face
v∗∞ is a cycle. Thus each face of H lies in the finite region bounded by v∗∞ and thus H∗\v∞
is connected.

We now prove Claim 8.1, Claim 8.2 and Claim 8.3.

Proof of Claim 8.1. We distinguish two cases.

1. Some ji contains only one neighbour in X.

2. Each ji contains at least 2 neighbours in X.

In Case 1, we claim that for ja such that a 6= i, |δĤ(ja)| ≥ 3. We consider 3 sub-cases.

Case 1a) v∞ /∈ Ji and the one neighbour that Ji has in X is not v∞. Then by Claim 8.4 the
subgraph of H corresponding to the faces Ji is a pocket, which contradicts our assumption
that H is a minimal pocket.

Case 1b) v∞ /∈ Ji and the one neighbour that Ji has in X is v∞. Then v∞ separates Ji
from the rest of H∗\h∞. That is, Ji is a component of H∗\v∞. By Remark 5, H∗\v∞ is
connected, so Ji = H∗\v∞. Thus there do not exist Ja for a 6= i and the condition is trivially
true.

Case 1c) v∞ ∈ Ji. Then Ji contains all nodes that have neighbours outside H and no
other Ja contains a node with a neighbour outside H. Thus for each a 6= i, ja satisfies
|δĤ(ja)| ≥ 3.

In all three sub-cases, Ja does not contains a node with a neighbour outside H. Thus,
|δĤ(ja)| ≥ 3 for all a ∈ {1, . . . , `}\{i}.

Therefore in Case 1,
∑`

t=1 |δĤ(jt)| ≥ 3`− 2. This completes the analysis of Case 1.

In the Case 2, each Ji contains at least two neighbours in X. If Qi contains a node vi
with a neighbour outside H in the interior of the shared path between Qi and the infinite
face of H, then vi has degree 2 in H. Thus, vi is incident to only faces v∞ and Ji. So vi does
not lie in any Qt for t 6= i. Since at most two nodes of H have neighbours outside H, there
are at most two Qa that contain a node va with a neighbour outside H in the interior of the
shared path between Qa and the infinite face of H. For these Qa, |δĤ(ja)| ≥ 2. For every

other Qr, |δĤ(jr)| is at least 3, and thus
∑`

t=1 |δĤ(jt)| ≥ 3`− 2.

In either case, we get
∑`

t=1 |δĤ(jt)| ≥ 3` − 2, as desired. This completes the proof of
Claim 8.1.

Proof of Claim 8.2. First note that if H ′[X ∪ Y ] contains parallel edges e1, e2 between two
nodes u,w ∈ X ∪ Y , then in the planar embedding of H ′, there are nodes of J that lie in
the region bounded by e1 and e2. The faces corresponding to u and w in H then bound a
pocket unless one of those faces is the infinite face, and the region bounded contains a node
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with a neighbour outside H. Hence, H ′[X ∪Y ] contains at most two faces of length 2. Thus,
if |X ∪ Y | ≥ 2, then H ′[X ∪ Y ] contains at most two more edges than a planar graph on
at least two nodes, that is, at most 2 + 3|X ∪ Y | − 5 = 3|X ∪ Y | − 3 edges. Otherwise,
|X ∪Y | ≤ 1, so |E(H ′(X ∪Y )| = 0, which is at most 3|X ∪Y |− 3. This completes the proof
of Claim 8.2.

Proof of Claim 8.3. We claim that in any embedding of H ′ each node r ∈ X ∪ Y does not
have two consecutive neighbours in J in the clockwise orientation about r. Assume that
some r ∈ X ∪ Y has two consecutive neighbours ja, jb ∈ J . Consider the face containing the
nodes r, ja, jb. Let r′ be a neighbour of jb in this face. Then the edge rr′ can be added to H ′

without creating a face of length 2, which contradicts the fact that H ′ is an edge maximal
multigraph with respect to planarity and not having faces of length 2, that is, no edge can
be added to H ′ while maintaining planarity and not creating any face of length 2.

This implies that, for each x ∈ X ∪ Y , it holds

|E(H ′) ∩ J × {x}| ≤ |E(H ′) ∩ (X ∪ Y )× {x}| .

Summing up over all each x ∈ X ∪ Y we obtain

|E(H ′) ∩ J × (X ∪ Y )| =
∑

x∈X∪Y

|E(H ′) ∩ J × {x}|

≤
∑

x∈X∪Y

|E(H ′) ∩ (X ∪ Y )× {x}|

≤ 2|E(H ′(X ∪ Y )| .

Thus, it holds |E(H ′) ∩ J × (X ∪ Y )| ≤ 2|E(H ′(X ∪ Y )|.
This completes the proof of Claim 8.3.

So let T be a 2/3-pseudo-perfect pseudo-tiling of H. Let β′ be the fraction of odd faces of
H which are covered by T , and let ψ′ be the fraction of even faces of H. Next, we will show
that if T covers more faces than a maximum tiling of H, then T satisfies a slightly stronger
condition than 2/3-pseudo-perfect, namely, β′(1−ψ′)|V (H∗)|+ 2ψ′|V (H∗)| ≥ 2

3
|V (H∗)|+ 4

3
.

Formally, this means:

Lemma 9. Let H be as in Algorithm 4.2.2, that is, H is a minimal pocket of GS
2 . Suppose

that any maximum size pseudo-tiling of H covers the infinite face. Then H has a pseudo-
tiling covering a β′-fraction of all odd faces such that

β′(1− ψ′)|V (H∗)|+ 2ψ′|V (H∗)| ≥ 2

3
|V (H∗)|+ 4

3
. (4.18)

Proof. To show the statement of Lemma 9, we will need the following slight strengthening
of Claim 8.2.
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Claim 9.1. Suppose that any maximum size pseudo-tiling of H covers the infinite face and
H admits no 2/3-quasi-perfect tiling. Then |E(H ′(X ∪ Y )| ≤ 3|X ∪ Y | − 4.

Proof of Claim 9.1. Let T , X, Y be as in the proof of Lemma 8. If the infinite face of H
is odd, then by assumption, every maximum matching of H∗\Y covers v∞. Recall that this
meant we picked X to contain v∞. Otherwise, v∞ ∈ Y . So we may assume that v∞ ∈ X∪Y .

By Remark 5, if X ∪ Y = {v∞}, then oc(H∗\(X ∪ Y )) = 1, which means that either
β′ = 1 or X = ∅.

Suppose that X ∪ Y = {v∞}.
In case β′ = 1, then a maximum pseudo-tiling covers all odd faces, and a maximum tiling

covers all but at most one odd face.

In case X = ∅, we get that at most one odd face is not covered by a maximum pseudo-
tiling. As X ∪ Y = {v∞}, the infinite face is even. Thus, at most one odd face is missed by
a maximum tiling.

In either case, a maximum tiling T misses at most one odd face.

Let β be the fraction of odd finite faces that are covered by T , and ψ the fraction of finite
faces of H that are even. As T misses at most one odd face, it holds
β(1− ψ)(|V (H∗)| − 1) ≥ (1− ψ)(|V (H∗)| − 1)− 1.

First, assume that H contains some even finite face. Then

β(1− ψ)(|V (H∗)| − 1) + 2ψ(|V (H∗)| − 1) ≥ (1− ψ)(|V (H∗)| − 1)− 1 + 2ψ(|V (H∗)| − 1)

= (|V (H∗)| − 1)− 1 + ψ(|V (H∗)| − 1)

≥ (|V (H∗)| − 1) .

So, T is 2/3-quasi-perfect.

Second, suppose that H contains no even finite faces. If H contains a single odd finite
face, then it contains no even cycle, which is a contradiction. If H contains exactly two odd
finite faces, then since the maximum tiling misses at most one odd finite face, all odd finite
faces of H are covered; so, a maximum tiling is 1-quasi-perfect.

If H contains three or more finite faces. Then noting that at most one face of H is not
covered by T , it follows that ψ(|V (H∗)| − 1) + β(1−ψ)(|V (H∗)| − 1) ≥ |V (H∗)| − 2. So the
inequality β(1−ψ)(|V (H∗)|−1)+2ψ(|V (H∗)|−1) ≥ ψ(|V (H∗)|−1)+β(1−ψ)(|V (H∗)|−1) ≥
|V (H∗)| − 2 holds, which by algebra yields β(1− ψ) + 2ψ ≥ |V (H∗)|−1

|V (H∗)|−2
. As |V (H∗)| − 1 ≥ 3,

|V (H∗)|−1
|V (H∗)|−2

≥ 2
3
, so the tiling is 2

3
-quasi-perfect.

Henceforth, we assume that |X ∪ Y | ≥ 2.

Suppose first that |X∪Y | = 2. If H ′(X∪Y ) contains three parallel edges e1, e2, e3, then it
contains three faces of length 2 each bounded by a pair of parallel edges. Since H ′ contains no
parallel edges, the set Ri of nodes lying in the face bounded by the parallel edges eiei+1 where
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Figure 4.11: In (i) 3 parallel edges e1, e2, e3 bounding node sets R1, R2, R3 in H∗ and in (ii)
the duals R∗1, R

∗
2, R

∗
3 in H respectively.

e4 = e1 is nonempty for i = 1, 2, 3. For illustration, see Figure 4.11(i). LetR∗i be the subgraph
of H induced by the nodes that lie on a face which is the dual of a node of Ri. Note that R∗i
lies in a region Ti bounded by the faces fx and fy of H which are dual to x and y respectively,
see Figure 4.11(ii). Denote by wi and si the two nodes on the boundary of the region Ti
belonging to both faces fx and fy. Then R∗i is a pocket unless some node of V (R∗i )\{wi, si}
has a neighbour outside H. Note that for i 6= j, V (R∗i )\{si, wi}) ∩ (V (R∗j )\{sj, wj}) = ∅.
Since at most 2 nodes of H have neighbours outside H, at least one Ri has no node with
a neighbour outside H and thus is a pocket, which is a contradiction. Hence H ′(X ∪ Y )
contains only two edges, and |E(H ′(X ∪ Y ))| ≤ 2 = 3|X ∪ Y | − 4.

Second, suppose that |X ∪ Y | > 2. By Euler’s formula, any planar graph with nodes
X ∪ Y without faces of length 2 has at most 3|X ∪ Y | − 6 edges. Suppose that Fi for
i = 1, . . . , p are faces of length 2 in H ′(X ∪ Y ). Let qi, ri be the nodes, and ei, di the edges
of Fi. Since H ′ contains no parallel edges, the subgraph Ri of H ′ lying inside the region
bounded by Fi, is nonempty. Let R∗i denote the subgraph of H induced by the set of nodes
that lie on a face which is the dual of a node of Ri. Then each R∗i lies in a region Ti bounded
by two faces fqi and fri which are the dual of qi and ri. Let si, wi be the nodes of H on the
boundary of Ti that belong to both faces fqi and fri . See Figure 4.12 for an illustration.

If no node of V (R∗i )\{si, wi} has a neighbour outside H, then R∗i is a pseudo-pocket.
Note that for i 6= j, the sets V (R∗i )\{si, wi} and V (R∗j )\{sj, wj} are disjoint. Hence, if there
were three length-2 faces F1, F2, F3, then one of R1, R2, R3 would be a pseudo-pocket, which
is a contradiction. Thus, H ′(X ∪Y ) contains at most two faces of length 2. Therefore, there
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are two edges e′1e
′
2 that we can remove from H ′(X∪Y ) such that H ′(X∪Y )\{e′1, e′2} contains

no face of length 2. Hence, |E(H ′(X ∪ Y )\{e′1, e′2}| ≤ 3|X ∪ Y | − 6 and |E(H ′(X ∪ Y ))| ≤
3|X ∪ Y | − 4.

This completes the proof that |E(H ′(X ∪ Y ))| ≤ 3|X ∪ Y | − 4.

qi

R1

ri

(i)

w1 fri

R∗
1

fqi

si

(ii)

Figure 4.12: One the left, one parallel edge in H ′ bounding a region containing a set of nodes
R1. On the right is shown the dual graph, in which R∗1 is a pocket.

By assumption T covers more faces than a maximum tiling of H. Suppose for a con-
tradiction that β′(1 − c)|V (H∗)| + 2c|V (H∗)| < 2

3
|V (H∗)| + 4/3. Then, by Claim 9.1, it

holds |E(H ′(X ∪ Y )| ≤ 3|X ∪ Y | − 4. Further, by Claim 8.3, it holds |E(H ′) ∩ J × {x}| ≤
2|E(H ′(X ∪ Y )|. Also, by Claim 8.1, we have

∑`
i=1 |δĤ(ji)| ≥ 3` − 2. So in summary, we

obtain

3|J | − 2 ≤
∑̀
i=1

|δH′(ji)| = |E(H ′) ∩ J × (X ∪ Y )| .

Hence, 3|J | − 2 ≤ 2|E(H ′(X ∪ Y )| ≤ 6|X ∪ Y | − 8. Therefore,

|J | ≤ 2|X ∪ Y | − 2 . (4.19)

Substituting ψ′ = |Y |
|V (H∗)| into β′(1 − ψ′)|V (H∗)| + 2c|V (H∗)| < 2

3
|V (H∗)| + 4/3, we obtain

β′(1−(|Y |/|V (H∗)|))|V (H∗)|+2|Y | < 2
3
|V (H∗)|+ 4

3
. So 2|Y |+β′|V (H∗\Y )| < 2

3
|V (H∗)|+ 4

3
,

and thus 1
3
|V (H∗)|− 4

3
< |V (H∗)|−2|Y |−β′|V (H∗\Y )|. Substituting this into the left-hand

side of (4.16), we obtain

1

3
|V (H∗)| − 4

3
< |V (H∗)| − 2|Y | − β′|V (H∗\Y )| ≤ oc(H∗\X ∪ Y )− |X ∪ Y | . (4.20)

Multiplying both sides by (−1) and adding to oc(H∗\X∪Y )+ |X∪Y | ≤ |V (H∗)|, we obtain
2|X ∪ Y | < 2

3
|V (H∗)|+ 4

3
. Simplifying, we obtain |X ∪ Y | < 1

3
|V (H∗)|+ 2

3
. Thus,

oc(H∗\X ∪ Y ) > 2|X ∪ Y | − 2 . (4.21)
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This, however, contradicts (4.19). Hence, β′(1−ψ′)|V (H∗)|+ 2ψ′|V (H∗)| ≥ 2
3
|V (H∗)|+ 4/3,

which completes the proof.

Theorem 9. Let H be an inclusion-minimal pocket of GS
2 . Then we can obtain 2/3-quasi-

perfect tiling of H in polynomial time.

Proof. We first show that H admits a 2/3-quasi-perfect tiling. Let us show that if some
tiling T is 2/3-pseudo-perfect, then it is 2/3-quasi-perfect. Let β′ be the fraction of odd
faces of H that are covered by T and ψ′ the fraction of faces of H, that are even. As T is
2/3-pseudo-perfect, it covers all even faces. Since T is a tiling, the infinite face is odd. As

the number of even finite faces is ψ′|V (H∗)|, so ψ′|V (H∗)|
|V (H∗)|−1

is the fraction of finite faces of H

that are even. (1− ψ′)|V (H∗)| is the number of odd faces of H, so β′(1− ψ′)|V (H∗)| is the
number of odd faces of H covered by T . Since the infinite face is odd, (1− ψ′)|V (H∗)| − 1

is the number of odd finite faces. Thus β′(1−ψ′)|V (H∗)|
(1−ψ′)|V (H∗)|−1

is the fraction of odd finite faces of H
covered by T . Since

β′(1− ψ′)|V (H∗)|
(1− ψ′)|V (H∗)| − 1

(1− ψ′|V (H∗)|
|V (H∗)| − 1

) +
2ψ′|V (H∗)|
|V (H∗)| − 1

=
β′(1− ψ′)|V (H∗)|

(1− ψ′)|V (H∗)| − 1
(1− ψ′) + 2ψ′ +

(
2− β′(1− ψ′)|V (H∗)|

(1− ψ′)|V (H∗)| − 1

)(
ψ′ − ψ′|V (H∗)|

|V (H∗)| − 1

)
≤ β′(1− ψ′)|V (H∗)|

(1− ψ′)|V (H∗)| − 1
(1− ψ′) + 2ψ′

≤ 2

3
,

it holds that T is 2/3-quasi-perfect.

If there is a maximum size pseudo-tiling that is also a tiling, then it follows from Lemma 8
that such a tiling is 2/3-quasi-perfect.

Otherwise, if no pseudo-tiling exists, the largest pseudo-tiling is larger than the largest
tiling. Let T be a maximum size pseudo-tiling.

If the infinite face of T is even, consider the tiling T ′ obtained by removing the infinite
face from T . Let ψ(1) := (ψ′|V (H∗)| − 1)/(|V (H∗)| − 1) be the fraction of finite faces of H
which are even. As the infinite face is even, β′ is the fraction of odd finite faces of H which
are covered by T ′. It holds that

β′(1− ψ(1))(|V (H∗)| − 1) + 2ψ(1)(|V (H∗)| − 1) = β′|V (H∗)|(1− ψ′) + ψ′|V (H∗)| − 1

≥ 2

3
|V (H∗)|+ 4

3
− 1

=
2

3
(|V (H∗)| − 1) .

So T ′ is 2/3-quasi-perfect.
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If the infinite face is odd, consider the tiling T ′ obtained by removing the even cycle
covering the infinite face from T . Let ψ(2) := ψ′|V (H∗)|/(|V (H∗)| − 1) be the fraction
of finite faces of H that are even. At least β′|V (H∗)| − 2 of the finite faces of H are
covered by T ′ so the fraction β′′′ of finite odd faces of H that are covered satisfies b′′ ≥
(β′|V (H∗)| − 1)/(1− ψ(2))(|V (H∗)| − 1). Therefore,

b′′(1− ψ(2))(|V (H∗)| − 1) + 2ψ(2)(|V (H∗)| − 1) ≥ (β′|V (H∗)| − 1) + 2c|V (H∗)|

≥ 2

3
|V (H∗)|+ 4

3
− 1

=
2

3
(|V (H∗)| − 1) .

Hence also in this case, T ′ is 2/3-quasi-perfect.

Finally, since a tiling corresponds to the union of a matching and a set of even faces,
finding a maximum tiling of H corresponds to finding a maximum matching of the odd finite
faces of H. Computing such a maximum matching can be done in polynomial time.
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Chapter 5

Even Cycles in Planar Graphs Have
The Erdős-Pósa Property

Recall the Erdős-Pósa property from Section 1.2. In this chapter, we will prove our main
combinatorial result, namely, that even cycles in planar graphs satisfy the Erdős-Pósa Prop-
erty with a linear function f(k) = 9k.

Theorem 2. For k ∈ N, a planar graph either has as set of at most 9k vertices that intersect
every even cycle in G, or a set of k vertex disjoint even cycles.

We will prove this by formulating a primal-dual 9-approximation algorithm for ECT that
yields an integral dual solution for unit weights. Note that for c = 1, if y is an integral dual
solution to (PECT), then the support of y, Q := {yC : yC > 0} is a set of vertex disjoint
cycles. Further one can show that |Q| = 1ty. Thus if our primal-dual solution outputs
an ECT S of size at most 9(1ty), S is at most 9 times the size of Q, which will show the
Erdős-Pósa property holds. The main idea of the proof will be to show that we can find
short even cycles in the 2-compression (see Section 2.1).

This approach requires that the output dual solution y be integral, so the 47/7-approxi-
mation for ECT from Chapter 4 does not give an Erdős-Pósa result.

It can be shown that our 9-approximation algorithm runs in polynomial-time. Since the
only purpose of our algorithm is to show an Erdős-Pósa result, we will not bother to show
that our algorithm runs in polynomial-time.

A key first observation is captured in the following special case of Kotzig’s Theorem on
Light Planar Subgraphs; see the survey by Jendrol and Voss [34, Section 3]). Let us call a
node heavy if it has degree 6 or more, and light otherwise.

Lemma 10. (Kotzig’s Theorem [34, Section 3]) Let G be a planar multigraph (with a fixed
embedding) where every node has at least 3 distinct neighbours and that has no face of length
2. Then G contains
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(i) a node of degree at most 10 that is adjacent to a node of degree 3, or

(ii) two adjacent nodes whose degrees sum to at most 11.

Further, this bound is tight, that is, there exist planar graphs where every node has at least
3 distinct neighbours and that has no face of length 2 such that any two adjacent nodes have
degrees summing to 13. The proof of Lemma 10 will provide insights on when tightness can
occur.

Proof. Suppose, for sake of contradiction that the statement is not true. Let G be an
edge-maximal counterexample. In G, every node has degree at least three, and any two
neighbouring nodes have degree sum exceeding 11. Edge-maximality implies that if u and v
are nodes of combined degree less than 11, then G+ uv is not planar.

We assign a charge of 6− d(v) to each node v. The sum of node charges is∑
v

(6− d(v)) = 6|V | − 2|E| ≥ 12,

using Euler’s formula. We now apply a discharging argument [34], and redistribute charges
as follows. Each node v with positive charge, splits its charge evenly over its incident edges
(and sends these portions to its neighbours).

Abusing notation, we refer to the resulting redistributed charge of a node simply as its
charge. There clearly must be a node v with positive charge. Therefore, v must have a light
neighbour. As we assumed G contained no two adjacent nodes whose degrees sum up to at
most 11, v must itself be heavy.

Let u1, . . . , u` be the neighbours of v in clockwise order in our embedding, and let u`+1 =
u1. We first argue that ui and ui+1 cannot both be light, for any i ∈ {1, . . . , `}. For if they
were, uiui+1 is not an edge of G. Hence, the face containing ui, ui+1 and v must contain
another node, say w, and w must be heavy. But then adding vw to G preserves planarity; a
contradiction to edge-maximality. Thus, v does not have two consecutive light neighbours,
and so has at most as many light neighbours as heavy neighbours.

Let ` and h be the number of light and heavy neighbours of v. We consider three cases.

Case 1: v has a neighbour u of degree 3.
Node v starts with charge at most 6− `−h, and it receives charge at most 1 from each light
neighbour and none from heavy neighbours. So the charge of v is at most 6−`−h+` = 6−h.
Thus, v has at most 5 heavy neighbours, and hence at most 10 neighbours. Therefore, v and
u have combined degree no more than 13; a contradiction.

Case 2: v has no degree-3 neighbours, but at least one neighbour u of degree 4.
A node of degree 4 or more sends a charge of at most 0.5. Therefore, v has charge at most

6− `− h+ 0.5` = 6− .5`+ h ≤ 6− .75(h+ `) .
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The right-hand side is positive, by choice of v, showing that v has degree at most 7; a
contradiction.

Case 3: all light neighbours of v have degree 5.
Then v has charge at most 6 − ` − h + 0.2`, which is at most 6 − 0.9(h + `). Because the
charge is positive, v has degree at most 6. Let u be any light neighbour of v; then u and v
are a pair of adjacent nodes whose degrees sum to at most 11.

Applying Lemma 10 to the dual of a planar graph yields the following consequence.

Corollary 3. Suppose that G2 has no face of length 2. Then

(a) it contains an even cycle that has no twin edges and that has length at most 11, or

(b) it contains a cycle C that contains a twin edge and that has length no more than 10.

Proof. Since G2 contains no face of length 2, its dual G∗2 contains no node of degree 2.
Applying Lemma 10 to G∗2, we obtain that G∗ contains two adjacent vertices v, w whose
degrees sum to at most 11. In G2, v∗, w∗ are faces that share an edge whose lengths sum
to at most 11. If either v∗ or w∗ contains a twin edge, then (b) holds. Otherwise, if either
v∗, w∗ is an even cycle, then it is an even cycle without twin edges of length at most 11.
Otherwise, the cycle formed by their disjoint union v∗∆w∗ is an even cycle without twin
edges of length at most 11.

Lemma 10 is tight, that is, there exist planar graphs where every node has at least 3
distinct neighbours and that has no face of length 2 such that any two adjacent nodes have
degrees summing to 13 (see the example in Figure 5.1), and its proof provides a set of useful
features of tight instances. Let us make the following definition.

Definition 16. For a graph G, a node v is particular if it has degree 10, its neighbours are
alternating light and heavy, all of its light neighbours have degree 3, and all its incident faces
have length 3.

Let us classify what the tight instances look like.

Lemma 11. Let G be a tight instance of Lemma 10. That is, G is a planar multigraph (with
a fixed embedding) where every node has at least 3 distinct neighbours and that has no face
of length 2 such that any two adjacent nodes have degrees summing to 13. Then G contains
a particular node.

Proof. Since no two adjacent nodes in G have combined degree at most 11, it follows from
Lemma 10 that there must be a degree-10 node v neighbouring a degree-3 node u. From the
proof of Lemma 10, we then learn that v’s light and heavy neighbours alternate, and that v
must have at least 4 neighbours of degree exactly 3. Furthermore, tightness implies that G is
edge-maximal subject to satisfying the assumptions of Lemma 10, and this has consequences
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Figure 5.1: A tight example for Lemma 10. Each pair of adjacent nodes has combined
degree at least 13.

for the structure of faces incident to v. Consider one such face f , and let v′, u′ be the two
neighbours of v on f . As argued above, one of these two nodes, say v′, is light, and the
other is heavy. Then we see that v′ and u′ are neighbours. Otherwise, there exists a heavy
neighbour w of v′ on f such that G+wv is planar; a contradiction to the edge-maximality of
G. This shows that all faces incident to v have length 3. This shows that v is particular.

Consider the following algorithm: If the residual graph GS contains an even cycle C such
that at most 2 nodes of C have outside neighbours, increase the dual variable yC for C until
a node v becomes tight (

∑
v∈C yC = wv). Otherwise, compute the 2-compression GS

2 of GS.
By Corollary 3 applied on G2, there is an even cycle C of G2 with at most 11 pieces and no
twin piece, or at most 10 pieces. Increment the dual variable yC for the blended inequality
for C. At the end of the algorithm, perform the reverse-delete step of Algorithm 4.2.2. That
is, for nodes added during the same iteration nodes in a pair are considered for deletion only
after deleting nodes not in a pair added during that iteration. Since C either has at most
11 pieces and no twin piece, or at most 10 pieces, by Lemma 5 the following holds.

Corollary 4. For C the cycle selected in Algorithm 4.2.2, the set S of nodes output by
Algorithm 4.2.2 satisfies ∑

v∈S

aCv ≤ 11 . (5.1)

By standard primal-dual arguments this shows our algorithm is an 11-approximation.

5.0.1 Improving to a 10-approximation

Let G∗ be the dual of the graph G embedded in the plane. One can improve the 11-
approximation by noting that tightness in Corollary 3 only happens in a very specific case.
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In particular, it requires tightness of Lemma 10 for G∗2. That is, suppose that nodes v and u
of G∗2 have degrees summing up to 12 or less. Then either the face v, or face u, or the cycle
C consisting of the disjoint union of the face v and the neighbouring face u is even. If u or
v is an even face of G2, then we get an even cycle with 9 or fewer pieces, otherwise C has at
most 10 pieces, none of which is twin. Else, by Lemma 11, G∗2 has a particular node. Let us
define a notion of what the corresponding face of a particular node of G∗2 looks like.

Definition 17. A face f of G2 is particular if f is adjacent to exactly 5 faces of degree 5
or less, and 5 faces of degree 6 or more, which alternate in clockwise order around f . We
also require that at least 4 of the faces of length 5 or less have length 3, and all nodes on f
have degree 3.

We state our above observations in the following lemma:

Lemma 12. If G2 has no faces of length 2, one of the following holds:

(a) G2 contains an even cycle without twin edges of length at most 10.

(b) G2 contains a cycle C that contains a twin edge of length no more than 9.

(c) G2 contains an even cycle without twin edges of length 11 that contains exactly two
faces f1 and f2, and f1 is particular.

(d) G2 contains a particular face f that contains a twin edge.

Our new algorithm is the same as the 9 approximation case except that we use Lemma 12
instead of Corollary 3. That is it starts with S = ∅. If the residual graph GS contains an
even cycle C such that at most 2 nodes of C have outside neighbours, increase the dual
variable yC for C until a node v becomes tight (

∑
v∈C yC = wv). Otherwise, compute the

2-compression GS
2 of GS. The algorithm for this part looks for an even cycle with 10 or fewer

edges in the 1-compression. If this cannot be found, it will look for an even cycle with 9 or
fewer edges in GS

2 . If both previous steps fail to find an even cycle, we choose an even cycle
of G2 that is guaranteed by Lemma 12. Denote this cycle by C and construct its blended
inequality as before. Increment the dual variable for this inequality as much as possible until
a node becomes tight. Add newly tight nodes to S. The algorithm terminates when S is
feasible, and runs a reverse-delete step to obtain S̄.

Theorem 10. The algorithm described above is a 10-approximation.

Proof. To prove this, we will show that the set S̄ returned by our algorithm satisfies
∑

v∈X̄ aCv
≤ 10 whenever yC > 0. If C is a cycle in the 1-compression with 10 or fewer pieces, then the
claim is clear. If C satisfies case (a) or (b) of Lemma 12, the 10-approximation follows in
the same manner as the previous 11-approximation. In case (c), denote the nodes of f1 by
v1, v3, v4, . . . , v11, and the node of f2 not on f1 by v2. Recall that a piece of G is the preimage
of an edge of G2. In the following remark, for neighbours u and v on cycle C, we let p(u, v)
be the corresponding piece in G.
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(i)
<latexit sha1_base64="t1PcjuVj80UJrcOttl5wdsd8dUc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBT0WvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7qv8vF+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMuavW7y0rDzeMowgmcQhU8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weQt41E</latexit>

(ii)
<latexit sha1_base64="JoyMntbvzqSuOmdbYbJlEprww5Q=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkpSBT0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaC2V3m956o0iySj2YeU1/giWQhI9hkUp2xy1G15jbcHGideAWpQYH2qPo1HEckEVQawrHWA8+NjZ9iZRjhdFEZJprGmMzwhA4slVhQ7af5rQt0YZUxCiNlSxqUq78nUiy0novAdgpspnrVy8T/vEFiwls/ZTJODJVkuShMODIRyh5HY6YoMXxuCSaK2VsRmWKFibHxVGwI3urL66TbbHhXjebDda3lFnGU4QzOoQ4e3EAL7qENHSAwhWd4hTdHOC/Ou/OxbC05xcwp/IHz+QNVzI23</latexit>

(iii)
<latexit sha1_base64="OSfZxp6UT3vcuxw7VniMrg2Mq8s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBT0WvHisYNpCG8pmu2mXbjZhdyKU0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhakUBl332ylsbG5t7xR3S3v7B4dH5eOTlkkyzbjPEpnoTkgNl0JxHwVK3kk1p3EoeTsc38399hPXRiTqEScpD2I6VCISjKKV/KoQ4rJfrrg1dwGyTrycVCBHs1/+6g0SlsVcIZPUmK7nphhMqUbBJJ+VepnhKWVjOuRdSxWNuQmmi2Nn5MIqAxIl2pZCslB/T0xpbMwkDm1nTHFkVr25+J/XzTC6DaZCpRlyxZaLokwSTMj8czIQmjOUE0so08LeStiIasrQ5lOyIXirL6+TVr3mXdXqD9eVhpvHUYQzOIcqeHADDbiHJvjAQMAzvMKbo5wX5935WLYWnHzmFP7A+fwBG0yOKg==</latexit>

w
<latexit sha1_base64="BNJ7vOL4qmUQWi7L/HWUlKOHr6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU/LgVvHhswX5AG8pmO2nXbjZhd6OU0l/gxYMiXv1J3vw3JmkQtT4YeLw3w8w8LxJcG9v+tApLyyura8X10sbm1vZOeXevpcNYMWyyUISq41GNgktsGm4EdiKFNPAEtr3xdeq371FpHspbM4nQDehQcp8zahKp8dAvV+yqnYEsEicnFchR75c/eoOQxQFKwwTVuuvYkXGnVBnOBM5KvVhjRNmYDrGbUEkD1O40O3RGjhJlQPxQJSUNydSfE1MaaD0JvKQzoGak/3qp+J/XjY1/6U65jGKDks0X+bEgJiTp12TAFTIjJgmhTPHkVsJGVFFmkmxKWQhXKc6/X14krZOqc1o9bZxVanYeRxEO4BCOwYELqMEN1KEJDBAe4RlerDvryXq13uatBSuf2YdfsN6/APgTjSA=</latexit>

Figure 5.2: In (i), w′′ = w. Since w, u are consecutive in G, u′′ must lie before w′. In (ii), if
there is a heavy node between w,w′ then there is a non-d neighbour heavy node.

Remark 6. Let tvivi+1 be a face of length 3 of G2 without twin edges, whose projection in G
is odd. Suppose that vi and vi+1 have neighbours vi−1, vi+1, t, and vi, vi+2, t, respectively.
Then p(vi−1, vi) ∪ p(vi, vi+1) ∪ p(vi+1, vi+2) contains at most two hit nodes.

For an example, see Figure 5.2 (iii). In the figure the face tvivi+1 is odd and vi, vi+1

have exactly 3 neighbours. Suppose that the hit node on vivi+1 had a witness cycle that
does not contain any other black hit node. One can check that such a cycle must be
p(t, vi), p(vi, vi+1), p(vi+1, t).

Proof. Suppose, for sake of contradiction, that p(vi−1, vi)∪ p(vi, vi+1)∪ p(vi+1, vi+2) contains
three hit nodes. Let w be the “middle” hit node. That is if (p(vi, vi+1)\vi)\vi+1 contains a hit
node define w to be that hit node. Otherwise, one of p(vi−1, vi), p(vi+1, vi+2) contains two hit
nodes. If p(vi−1, vi) contains 2 hit nodes, then vi is a hit node and we define w = vi, otherwise
define w = vi+1. Then each of p(vi−1, vi) and p(vi+1, vi+2) contains a hit node besides w. Let
Aw be a witness cycle for w, and consider the subpath Qw of Aw containing w and lying in
p(vi−1, vi) ∪ p(vi, vi+1) ∪ p(vi+1, vi+2) ∪ p(vi+1, t) ∪ p(vi, t) such a path cannot use nodes of
p(vi−1, vi)\vi, p(vi+1, vi+2)\vi+1 and hence both ends of the path are t and so tvivi+1 is the
projection of Aw. But by assumption this cycle is odd in G, which is a contradiction.

Let vitvi+1 be a triangle face sharing an edge with f1 that is not on f2, and let vi−1,
and vi+2 be the neighbours of vi and vi+1 on C. Remark 6 shows that the three pieces
corresponding to the subpath vi−1, vi, vi+1 have at most two nodes from X̄. The remaining

8 pieces have at most 8 hit nodes not counting vi−1, vi+2; hence,
∑

v∈X a
C′1,C

′
2

v xv ≤ 10.

5.0.2 Proof of Theorem 6

We now begin to describe our 9-approximation for ECT. For use in the following results, we
define several quantities, for each node v of some graph G:

• av1: number of neighbours of degree 3 for which the next neighbour of v in the clockwise
order is heavy.
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• av2: number of other neighbours of degree 3.

• cv1:number of neighbours of degree 4 or 5 for which the next neighbour of v in the
clockwise order is heavy.

• cv2: number of other neighbours of degree 4 or 5.

• bv: number of faces of length 4 or more containing v and both a light and heavy
neighbour of v in G.

• d: number of heavy neighbours w of v whose such that the next clockwise neighbour
of v is also heavy.

See Figure 5.4 for an example. We may omit the superscript v from the above quantities if
the node v in use is clear from context.

Lemma 13 ([34, Theorem 3.1]). Any simple, plane multigraph G of minimum degree at least
three contains an edge uv such that one of the following holds:

(1) u has degree 3, and if v has degree more than 6 it has degree at most 2a1 +a2 +2c1 +c2 +d
with 6− (a1 + a2)− 1.5(c1 + c2)− d− b > 0.

(2) The sum of degrees of u and v is at most 11.

When G and v ∈ V (G) are specified we will denote by a′1, a
′
2, b
′, d′, c′1, c

′
2 neighbours as

those neighbours of v counted by a1, a2, b, d, c1, c2 respectively and a a′1, a
′
2, b
′, d′, c′1, c

′
2 edge

as an edge between v and a a′1, a
′
2, b
′, d′, c′1, c

′
2 neighbour respectively. We also say that a face

of G∗ is an a′1, a
′
2, b
′, d′, c′1, c

′
2 face if the face corresponds to an a′1, a

′
2, b
′, d′, c′1, c

′
2 node of G

respectively.

Remark 7. In case (1) of Lemma 13 we have that v has degree at most 10 − a2 − c2 −
2b0.5(c1 + c2)c − d− 2b

Proof. Using the same variables as in Lemma 13, we get 6 > (a1 +a2)+1.5(c1 +c2)+d+b so
5 ≥ b(a1 +a2)+ 1.5(c1 + c2)+d+ bc so 5− (a1 +a2)−b1.5(c1 + c2)c−d− b ≥ 0 which implies
10 ≥ 2(a1 +a2)+2(c1 +c2)+2b0.5(c1 +c2)c+2d+2b ≥ deg(v)+a2 +c2 +2b0.5cc+d+2b.

Lemma 14. We can find an even cycle C of G2 such that either:

(1) C is the union of 2 faces f1 and f2 of G2 with, f1 length 3 and at most max(9, 11− a2−
c2 − 2b0.5(c1 + c2)c − d− b) pieces.

(2) C has at most 9 pieces and is disjoint from the interior of any double piece.

(3) C has at most 10− a2 − c2 − 2b0.5(c1 + c2)c − d− b pieces. One piece may be double.
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(4) C has at most 8 pieces.

Above, we define a1, a2, c, d, b, c2 as in Lemma 13 with v = f2 u = f1 in the dual of G2.

Proof. We apply Lemma 13 to G∗2.

In case (1), we find a node u of degree 3 adjacent to a node v of degree at most 10−a2−
c2 − 2b0.5(c1 + c2)c − d − b in G∗ Let f1, f2 be the faces corresponding to v, u in G if f1 or
f2 is even such an even cycle satisfies the conditions of the lemma. Otherwise, f1 ∪ f2 is an
even cycle in G with at most 11− a2 − 2b0.5cc − d− b pieces.

In case (2) if either f1 or f2 contains a twin edge, then note that as the lengths of f1 and
f2 sum to 11 and G2 contains no faces of length 2, both f1 and f2 have length at most 8 and
the fi where i ∈ {1, 2} that contains the twin edge is an even cycle with at most 8 pieces.
Otherwise, neither f1 or f2 contains a twin edge. If either fi is even then it is an even cycle
with at most 9 pieces and disjoint from the interior of any double piece. If not and both
f1 and f2 are odd, then f1∆f2 is an even cycle with at most 9 pieces and disjoint from the
interior of any double piece.

Our 9-approximation does the following: If the residual graph GS contains an even cycle
C such that at most 2 nodes of C have outside neighbours, increase the dual variable yC for
C until a node v becomes tight (

∑
v∈C yC = wv). Otherwise, compute the 2-compression GS

2

of GS. Find a cycle C of G2 as guaranteed by Lemma 14. Note from the proof of Lemma 14,
it is clear that one can choose C so that C covers 2 faces. Hence such a cycle C can be
found in polynomial-time by checking every pair of adjacent faces of G2. Increment the dual
variable yC for the blended inequality for C. At the end of the algorithm perform a reverse
deletion step where for nodes added during the same iteration nodes in a pair appear before
nodes not in a pair. See Algorithm 5.0.1 for a complete description of the algorithm.

Theorem 11. The algorithm in Algorithm 5.0.1 is a 9-approximation.

Proof. We will consider each case of Lemma 14 separately. Define c := c1 + c2.

Case (1) If C has 9 or fewer pieces the proof follows from Lemma 5. Otherwise b =
0, c ≤ 1, let v1, v2, .., vl be the cycle C in G2, with v1, v2, v3 nodes belonging to a triangle
face of G2. We denote:

p′(vi, vj) =

{
∪j−1
u=ip(vu, vu+1) if i < j

∪lu=jp(vu, vu+1) ∪ (∪i−1
u=1p(vu.vu+1)) otherwise

(5.2)

where vl+i = vi in the above equation. If l = 11, then 11− a2− c2− 2b0.5(c1 + c2)c− d− b =
11. Since a2, a2, c2, d ≥ 0 this implies a2, a2, c2, d = 0. So v1v3...vl has length at most
2a1 + 2c and so a1 ≥ 4, where a1 is the number of triangle faces sharing an edge with
v1v3, .., vl. In fact, just as in the proof of Theorem 10 v1v3...vl must be particular. Let
vjtjvj+1, vktkvk+1, vrtrvr+1 be 3 different a′1 faces of length 3 that have an edge on v1v3...vl
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Algorithm 5.0.1: AlternativeEvenCycleTransversal(G, c)

Input : A planar graph G with non-negative node-costs cv, for each v ∈ V .
Output: An even-cycle transversal S of G and solution y ∈ C to the dual LP

(DECT) such that
∑

v∈S cv ≤ 9
∑

C∈C yC .
1 S = ∅
2 while Residual graph GS contains an even cycle do
3 if GS contains a cycle C with at most 2 outside neighbours then
4 increase the dual variable yC for C until a node v becomes tight.
5 else
6 compute the 2-compression GS

2 of GS.

7 Find an even cycle C satisfying Lemma 14.
8 Increment the dual variable yC for the blended inequality until a node v becomes

tight or the blended inequality changes.
9 Add all nodes that became tight to S.

10 Let w1, w2, .., wt be the nodes of S in the order they were added, where for nodes X
added during the same iteration, any node of X in a pair appears before any other
node of X not in a pair.

11 for i = t downto 1 do
12 if wi is not part of a pair then
13 if S\{wi} is feasible then
14 S ← S\{wi}.
15 else
16 Let (wi, wj) be the pair containing wi.
17 if S\{wi, wj} is feasible then
18 S ← S\{wi, wj}.

19 return S

that are not v1v2v3. If any 2 distinct q, r ∈ {j, k, r} satisfy |q − r| 6= 3 mod l then
p(vq−1, vq)∪ p(vq, vq+1)∪ p(vq+1, vq+2), p(vr−1, vr)∪ p(vr, vr+1)∪ p(vr+1, vr+2) are disjoint and
each contain at most 2 hit nodes. The remaining 5 pieces not containing nodes of p(vq−1, vq)∪
p(vq, vq+1)∪ p(vq+1, vq+2), p(vr−1, vr)∪ p(vr, vr+1)∪ p(vr+1, vr+2) contain at most 5 hit nodes.
Thus C contains at most 9 hit nodes.

Finally suppose that l = 10, then a2 + c2 +d ≤ 1. The length l−1 of v1v3, .., vl is at most
2a1 + a2 + 2c+ d and so a1 ≥ 3. At most one of the a′1 neighbours of v1v3, .., vl of v1v3, .., vl
in G∗2 follows an a′2 or c′2 node in the clockwise order and at most one of them is v1v2v3 in
G2. Let vjtvj+1 be an a′1 face of v1v3, .., vl in G2 that does not follow an a′2 or c′2 node, then
by Remark 6, p(vq−1, vq) ∪ p(vq, vq+1) ∪ p(vq+1, vq+2) contains at most 2 hit nodes and the
remaining 7 pieces of C not including nodes of p(vq−1, vq)∪ p(vq, vq+1)∪ p(vq+1, vq+2) contain
at most 7 hit nodes. So C has at most 9 hit nodes.
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Thus we can find an a1 edge vrvr+1 distinct from v1v3 that is not proceeded or followed
by a c edge. Since one of v1, v3 is incident to more than 3 faces of G2 either one of vlv1, v3v4

is an a2 or c edge or one of v1, v3 is a b face in G∗2 which implies that neither vr or vr+1 can
be a b-face in G∗2, nor can vr−1vr be an a2 edge. Combined with vrvr+1 is an a1 edge we get
that vr, vr+1 both have exactly 3 neighbours and by Remark 6 p(vr−1, vr+2) contains at most
2 hit nodes and hence C has at most 9 hit nodes.

Case (2). A 9-approximation follows from Lemma 5.

Case (3). Let G′ be obtained from G by deleting the internal nodes of one handle of the
special cycle of our blended inequality if our inequality has a special cycle, otherwise set
G′ = G. Denote the 2-compression of G′ by G′2.

Denote m(u, v) = p(u, v) ∩ G′ and m′(u, v) = p′(u, v) ∩ G′. Where the edges of C in G2

are v1, v2, .., vl note that if vi, vi+1, ti is a face of length 3 in G′2 then vivi+1 is a single piece in
G′ and remark 6 holds for m′(vi−1, vi+2). From l ≤ 2a1 +a2 +2c+d, one can check that either

(i) a1 ≥ 4 c ≤ 1, b = d = 0, or

(ii) l ≤ 9, a2 + 2b0.5cc+ d+ b ≤ 1.

vl�2<latexit sha1_base64="PNWoPpK4+EmFTndD0mG+65ljm84=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsB/QhrLZTtqlm03Y3RRK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7G93O/PUGleSyfzDRBP6JDyUPOqLFSe9LPxFVt1i9X3Kq7AFknXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4Ezkq9VGNC2ZgOsWuppBFqP1ucOyMXVhmQMFa2pCEL9fdERiOtp1FgOyNqRnrVm4v/ed3UhHd+xmWSGpRsuShMBTExmf9OBlwhM2JqCWWK21sJG1FFmbEJlWwI3urL66RVq3rX1drjTaXu5nEU4QzO4RI8uIU6PEADmsBgDM/wCm9O4rw4787HsrXg5DOn8AfO5w8AuY9K</latexit>

vl�1<latexit sha1_base64="i8gs5L//LrMoIL6bXD5+kprzBfc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsB/QhrLZTtqlm03Y3RRK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7G93O/PUGleSyfzDRBP6JDyUPOqLFSe9LPxJU365crbtVdgKwTLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCZ6VeqjGhbEyH2LVU0gi1ny3OnZELqwxIGCtb0pCF+nsio5HW0yiwnRE1I73qzcX/vG5qwjs/4zJJDUq2XBSmgpiYzH8nA66QGTG1hDLF7a2EjaiizNiESjYEb/XlddKqVb3rau3xplJ38ziKcAbncAke3EIdHqABTWAwhmd4hTcncV6cd+dj2Vpw8plT+APn8wf/JY9J</latexit>

vl<latexit sha1_base64="D+jWfXaUzfhLZ/Jy6WRcQbAQvJU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0lf9ssVt+ouQNaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyWamXGp5QNqZD3rVU0YgbP1ucOiMXVhmQMNa2FJKF+nsio5Ex0yiwnRHFkVn15uJ/XjfF8NbPhEpS5IotF4WpJBiT+d9kIDRnKKeWUKaFvZWwEdWUoU2nZEPwVl9eJ61a1buq1h6uK3U3j6MIZ3AOl+DBDdThHhrQBAZDeIZXeHOk8+K8Ox/L1oKTz5zCHzifP130jcs=</latexit>

v1<latexit sha1_base64="KzSwjoA28DWjG0AqNwaOeq7VPw0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf65crbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4a2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68Tlq1qndVrT1cV+puHkcRzuAcLsGDG6jDPTSgCQyG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAEiI2Q</latexit>

v2<latexit sha1_base64="YxxqCrDmlg8GGq0TrzK6w92VPzE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3dxvT1BpHssnM03Qj+hQ8pAzaqz0OOnX+uWKW3UXIOvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAWamXakwoG9Mhdi2VNELtZ4tTZ+TCKgMSxsqWNGSh/p7IaKT1NApsZ0TNSK96c/E/r5ua8NbPuExSg5ItF4WpICYm87/JgCtkRkwtoUxxeythI6ooMzadkg3BW315nbRqVe+qWnu4rtTdPI4inME5XIIHN1CHe2hAExgM4Rle4c0Rzovz7nwsWwtOPnMKf+B8/gAGDI2R</latexit>

v3
<latexit sha1_base64="q6NrrtWHaBGR+0EkHnZ3d3QEyKw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz69X654lbdBcg68XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPiv1UsMTysZ0yLuWKhpx42eLU2fkwioDEsbalkKyUH9PZDQyZhoFtjOiODKr3lz8z+umGN74mVBJilyx5aIwlQRjMv+bDITmDOXUEsq0sLcSNqKaMrTplGwI3urL66Rdq3r1au3+qtJw8ziKcAbncAkeXEMD7qAJLWAwhGd4hTdHOi/Ou/OxbC04+cwp/IHz+QMHkI2S</latexit>

v4<latexit sha1_base64="3KhcakC9MfevIU94aGsF/VRfa3c=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWNF+wFtKJvtpF262YTdTaGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bu63J6g0j+WTmSboR3QoecgZNVZ6nPRr/VLZrbgLkHXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgrNhLNSaUjekQu5ZKGqH2s8WpM3JplQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtO0Ybgrb68TlrVinddqT7UynU3j6MA53ABV+DBDdThHhrQBAZDeIZXeHOE8+K8Ox/L1g0nnzmDP3A+fwAJFI2T</latexit>

v5
<latexit sha1_base64="/osaySMHm96Bbxb6jH5xX586LW0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnvXvVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeOtnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWtuHkcBTuEMLsCDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAKmI2U</latexit> v6

<latexit sha1_base64="bHhHdTUhENi9vt4kxH5ccmrgFKk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnvXvVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeOtnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWtuHkcBTuEMLsCDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAMHI2V</latexit>

v4 = vi+1
<latexit sha1_base64="HXXQsRj2dyLnyMSY4wFM2sLN0iY=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRZBEMpuLehFKHjxWMF+wHZZsmnahmaTJckWytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5kUJZ9q47rdT2Njc2t4p7pb29g8Oj8rHJ20tU0Voi0guVTfCmnImaMsww2k3URTHEaedaHw/9zsTqjST4slMExrEeCjYgBFsrORPwvrdJMzYlTcLyxW36i6A1omXkwrkaIblr15fkjSmwhCOtfY9NzFBhpVhhNNZqZdqmmAyxkPqWypwTHWQLU6eoQur9NFAKlvCoIX6eyLDsdbTOLKdMTYjverNxf88PzWD2yBjIkkNFWS5aJByZCSa/4/6TFFi+NQSTBSztyIywgoTY1Mq2RC81ZfXSbtW9a6rtcd6pVHP4yjCGZzDJXhwAw14gCa0gICEZ3iFN8c4L86787FsLTj5zCn8gfP5A4YHkLY=</latexit>

v3 = vi
<latexit sha1_base64="xLIfNPHi8kAtAf0ILNpZbiBNNiI=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkr6EUoePFYwX5AG8Jmu22XbjZhd1IooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxMpDLrut7OxubW9s1vYK+4fHB4dl05OWyZONeNNFstYd0JquBSKN1Gg5J1EcxqFkrfD8f3cb0+4NiJWTzhNuB/RoRIDwShaqT0JaneTQASlsltxFyDrxMtJGXI0gtJXrx+zNOIKmaTGdD03QT+jGgWTfFbspYYnlI3pkHctVTTixs8W587IpVX6ZBBrWwrJQv09kdHImGkU2s6I4sisenPxP6+b4uDWz4RKUuSKLRcNUkkwJvPfSV9ozlBOLaFMC3srYSOqKUObUNGG4K2+vE5a1YpXq1Qfr8t1N4+jAOdwAVfgwQ3U4QEa0AQGY3iGV3hzEufFeXc+lq0bTj5zBn/gfP4A3+iPNQ==</latexit>

v2<latexit sha1_base64="YxxqCrDmlg8GGq0TrzK6w92VPzE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3dxvT1BpHssnM03Qj+hQ8pAzaqz0OOnX+uWKW3UXIOvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAWamXakwoG9Mhdi2VNELtZ4tTZ+TCKgMSxsqWNGSh/p7IaKT1NApsZ0TNSK96c/E/r5ua8NbPuExSg5ItF4WpICYm87/JgCtkRkwtoUxxeythI6ooMzadkg3BW315nbRqVe+qWnu4rtTdPI4inME5XIIHN1CHe2hAExgM4Rle4c0Rzovz7nwsWwtOPnMKf+B8/gAGDI2R</latexit>

v4<latexit sha1_base64="3KhcakC9MfevIU94aGsF/VRfa3c=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWNF+wFtKJvtpF262YTdTaGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bu63J6g0j+WTmSboR3QoecgZNVZ6nPRr/VLZrbgLkHXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgrNhLNSaUjekQu5ZKGqH2s8WpM3JplQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtO0Ybgrb68TlrVinddqT7UynU3j6MA53ABV+DBDdThHhrQBAZDeIZXeHOE8+K8Ox/L1g0nnzmDP3A+fwAJFI2T</latexit>

v9 = vj
<latexit sha1_base64="ZF2pe/4q4tcY1arB9Ezu8zZeim8=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQT0IBS8eK9gPaJclm2bb2Gx2SbKFsvRHePGgiFd/jzf/jWm7B219MPB4b4aZeUEiuDaO840Ka+sbm1vF7dLO7t7+QfnwqKXjVFHWpLGIVScgmgkuWdNwI1gnUYxEgWDtYHQ389tjpjSP5aOZJMyLyEDykFNirNQe+ze3Y//JL1ecqjMHXiVuTiqQo+GXv3r9mKYRk4YKonXXdRLjZUQZTgWblnqpZgmhIzJgXUsliZj2svm5U3xmlT4OY2VLGjxXf09kJNJ6EgW2MyJmqJe9mfif101NeO1lXCapYZIuFoWpwCbGs99xnytGjZhYQqji9lZMh0QRamxCJRuCu/zyKmnVqu5FtfZwWak7eRxFOIFTOAcXrqAO99CAJlAYwTO8whtK0At6Rx+L1gLKZ47hD9DnD+qcjzw=</latexit>

v10 = vj+1
<latexit sha1_base64="Y4H0stfP2f5jIm6RxkMtkK0p7W4=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBb0IBS8eK5i20May2W7atZtN2N1USsj/8OJBEa/+F2/+G7dtDtr6YJjHezPs7PNjzpS27W+rsLK6tr5R3Cxtbe/s7pX3D5oqSiShLol4JNs+VpQzQV3NNKftWFIc+py2/NHN1G+NqVQsEvd6ElMvxAPBAkawNtLDuJc6dnZt2uOZk/XKFbtqz4CWiZOTCuRo9Mpf3X5EkpAKTThWquPYsfZSLDUjnGalbqJojMkID2jHUIFDqrx0dnWGTozSR0EkTQmNZurvjRSHSk1C30yGWA/VojcV//M6iQ6uvJSJONFUkPlDQcKRjtA0AtRnkhLNJ4ZgIpm5FZEhlphoE1TJhOAsfnmZNGtV57xau7uo1O08jiIcwTGcggOXUIdbaIALBCQ8wyu8WU/Wi/VufcxHC1a+cwh/YH3+AL8kkfY=</latexit>

v5
<latexit sha1_base64="/osaySMHm96Bbxb6jH5xX586LW0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnvXvVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeOtnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWtuHkcBTuEMLsCDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAKmI2U</latexit>

v1<latexit sha1_base64="KzSwjoA28DWjG0AqNwaOeq7VPw0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf65crbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4a2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68Tlq1qndVrT1cV+puHkcRzuAcLsGDG6jDPTSgCQyG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAEiI2Q</latexit>

v8
<latexit sha1_base64="EA/18p1wKdgDTfZqUd9BBR7ntJ4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWNF+wFtKJvtpl262YTdSaGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7Gd3O/PeHaiFg94TThfkSHSoSCUbTS46Rf65fKbsVdgKwTLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjks2IvNTyhbEyHvGupohE3frY4dUYurTIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6KYc3PhEpS5IotF4WpJBiT+d9kIDRnKKeWUKaFvZWwEdWUoU2naEPwVl9eJ61qxbuuVB9uynU3j6MA53ABV+DBLdThHhrQBAZDeIZXeHOk8+K8Ox/L1g0nnzmDP3A+fwAPJI2X</latexit>

v7
<latexit sha1_base64="Xj7CXi91/iwWeXr7bpxGsJCUz04=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV6rHgxWNF+wFtKJvtpF262YTdTaGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bu63J6g0j+WTmSboR3QoecgZNVZ6nPRr/VLZrbgLkHXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgrNhLNSaUjekQu5ZKGqH2s8WpM3JplQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtO0Ybgrb68TlrVinddqT7clOtuHkcBzuECrsCDGtThHhrQBAZDeIZXeHOE8+K8Ox/L1g0nnzmDP3A+fwANoI2W</latexit>

v6
<latexit sha1_base64="bHhHdTUhENi9vt4kxH5ccmrgFKk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnvXvVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeOtnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWtuHkcBTuEMLsCDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAMHI2V</latexit>

(i)
<latexit sha1_base64="t1PcjuVj80UJrcOttl5wdsd8dUc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBT0WvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7qv8vF+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMuavW7y0rDzeMowgmcQhU8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weQt41E</latexit>

(ii)
<latexit sha1_base64="JoyMntbvzqSuOmdbYbJlEprww5Q=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkpSBT0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaC2V3m956o0iySj2YeU1/giWQhI9hkUp2xy1G15jbcHGideAWpQYH2qPo1HEckEVQawrHWA8+NjZ9iZRjhdFEZJprGmMzwhA4slVhQ7af5rQt0YZUxCiNlSxqUq78nUiy0novAdgpspnrVy8T/vEFiwls/ZTJODJVkuShMODIRyh5HY6YoMXxuCSaK2VsRmWKFibHxVGwI3urL66TbbHhXjebDda3lFnGU4QzOoQ4e3EAL7qENHSAwhWd4hTdHOC/Ou/OxbC05xcwp/IHz+QNVzI23</latexit>

Figure 5.3: (i) shows case 1 and (ii) shows case 3a).

Case (3a). We have b = b0.5cc = d = a2 = 0. Then there are at least 4 a′1 edges. Since
b = 0 each endpoint of an a′1 edge vivi+1 has exactly 3 neighbours. Thus we can find 2 a′1
edges vivi+1, vjvj+1 with i 6= j − 2, j + 2. Hence m′(vi−1, vi+2) , m′(vi−1, vi+2) each contain
at most 2 hit nodes and hence C1 contains at most 8 hit nodes.

Case (3b). We have b + d + a2 + 2b0.5cc = 1 and C1 has 9 pieces. Here we wish to show
there is an a1 edge with both endpoints having exactly 3 neighbours. If b = 1, a2 = d = 0
and from l ≤ 2a1 +a2 + c+d we get there are at least 3 a1 edges and the endpoints and thus
for at least 1 a1 edge vivi+1 vi, vi+1 both (since they are not b nodes ) have 3 neighbours. If
d = 1 then a1 ≥ 2 and the endpoints of any a1 edge have exactly 3 neighbours, since they
are not b nodes.

Case (4). Our even cycle C has fewer than 8 pieces, then our inequality will count at most
9 hit nodes.
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We are now ready to complete the proof of Lemma 13.

Proof. If G contains 2 adjacent light neighbours, the proof is clear. Otherwise note that each
heavy neighbour of v either follows an a1 neighbour, a c1 neighbour, or another heavy edge
and are counted by a1, c1, d respectively. Thus v has degree at most 2a1 + a2 + 2c1 + c2 + d.
Let G′ be a triangulation of G by drawing edges between heavy nodes. Note that this is
possible, since any face of length four or more contains 2 heavy nodes, and we can add an
edge between them. Just as Jendrol and Voss [34], by maximality of our triangulation v
cannot have 2 consecutive light neighbours in G′.

v
<latexit sha1_base64="P61xuf3rTwwyrcq1F+63vIUI8nY="></latexit><latexit sha1_base64="P61xuf3rTwwyrcq1F+63vIUI8nY=">AAACrnicbZHPahsxEMblbdOmTtMm7bEXURPoadGGQHsM9JJeQhJqJ+BdjCSPYxH9WSRtGiP0BL229Nn6NtXapok3GRB8zO8bjUbDaimcJ+RvL3v2fOvFy+1X/Z3Xu2/e7u2/GznTWA5DbqSxV4w6kELD0Asv4aq2QBWTcMluvrb88hasE0Z/94saKkWvtZgJTn1Knd9O9gYkJ8vAj0WxFgO0jrPJfu9POTW8UaA9l9S5cUFqXwVqveASYr9sHNSU39BrGCepqQJXheVLIz5ImSmeGZuO9niZfVgRqHJuoVhyKurnrsva5FNs3PjZlyoIXTceNF81mjUSe4PbsfFUWOBeLpKg3Ir0Vszn1FLu0+dsdGFMbQwR2maMGRn7/VLDD26Uonoaym8XMZQrGC5i7MDTBEG7xkJr+W88jTHiTSu5v4Z0rynuWdFlzreQmbvgcp/HmFZZdBf3WIwO84LkxfnR4Jisl7qNPqCP6BMq0Gd0jE7QGRoijgD9RL/Q74xko6zKJitr1lvXvEcbkc3/AYa42cE=</latexit><latexit sha1_base64="P61xuf3rTwwyrcq1F+63vIUI8nY="></latexit><latexit sha1_base64="P61xuf3rTwwyrcq1F+63vIUI8nY="></latexit>

v
<latexit sha1_base64="P61xuf3rTwwyrcq1F+63vIUI8nY="></latexit><latexit sha1_base64="P61xuf3rTwwyrcq1F+63vIUI8nY="></latexit><latexit sha1_base64="P61xuf3rTwwyrcq1F+63vIUI8nY="></latexit><latexit sha1_base64="P61xuf3rTwwyrcq1F+63vIUI8nY="></latexit>

Figure 5.4: Example of a graph G and edges added in obtaining G′. The grey, white, and
red nodes are a2, other light neighbours of v, and heavy nodes, respectively. The grey face
is a b-face.

In the proof of Lemma 10 it was shown there exists an edge uv, where v is a node with
positive charge such that either

• u has degree 3 and degG′(v) ≤ 10, or

• degG′(u) + degG′(v) ≤ 11.

We claim v has degree at least 2a1 + 2a2 + 2(c1 + c2) + d+ b in G′. First, let f1, f2, .., fb
be the b′-faces of G. Let E ′ be the set of edges of δG′(v) contained in the interior of some
fi and E ′′ be the d-edges. In any fi one neighbour u of v is light and the other u′ is heavy.
Therefore uu′ is not an edge of G′. So δG′(v) contains an edge in the interior of fi. It thus
suffices to prove that |δG′(v)\E ′\E ′′| ≥ 2a1 + 2a2 + 2c. We claim that in (G′\E ′)\E ′′ there
are no consecutive light neighbours of v. Assume for a contradiction that there were 2 such
neighbours w,w′ with w′ the next neighbour after w in (G′\E ′)\E ′′ in the clockwise order
about v. Suppose that there is a d neighbour u′ between w and w′ in G′, let u′′ be the
last such d neighbour of v before w′ in the clockwise order. Then there is a heavy non d
-neighbour q of v in G which lies between u′′ and w′. So henceforth we assume that no
d-neighbours lie between w and w′ in the clockwise order about v in G′.

Let u′ be the previous neighbour before w′ in G′. Assume that vu ∈ E ′ so u′ ∈ fj for
some fj. Note that fj contains 2 consecutive neighbours of v in G and contains the edge vu
in its interior, and u lies between w,w′ in the clockwise order. So the neighbours of v in fj
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lie between w,w′ in the clockwise order. So fj must contain vw or vw′. Since one of them is
light, that neighbour must be w or w′. Let w′′ be the one of w,w′ contained in fj and let u′′

be the other neighbour of v in G, then u′′ lies between w,w′ in the clockwise order, which
is a contradiction. Hence there are no 2 consecutive light neighbours. Since each light edge
is preceded and followed by a heavy edge hence |δG′(v)\E ′\E ′′| ≥ 2a1 + 2a2 + 2(c1 + c2).
Calculating charge thus gives us 6− (a1 + a2)− 1.5c− d− b > 0.

We are now ready to prove Theorem 2.

Proof. Consider the 9-approximation algorithm defined in Definition 5.0.1 on an unweighted
graph. We prove by induction on |V (GS)| that at anytime during the algorithm, the dual
solution is zero-one and the residual cost of any node of the residual graph GS, where S is
the current hitting set, is 1. Since our instance has unit weights, this holds at the beginning
of the algorithm. Suppose that this holds after some iteration.

During the next iteration, if algorithm incremented the dual variable yC of a cycle in-
equality

∑
v∈C xv ≥ 1, then since all nodes have residual cost 0 or 1, the nodes on C have

residual cost 0, and the algorithm increments yC by 1. Since prior to this step nodes on C
had residual cost 0, yC was 0 before this step. Hence yC is 1 after this step.

If the algorithm incremented the dual variable yC of a blended inequality
∑

v∈V a
C
v xv ≥ 1,

then since all nodes have residual cost 0 or 1 and the maximum of aCv is 1, yC is incremented
by 1. Since prior to this step nodes on C had residual cost 0, yC was 0 before this step.
Hence yC is 1 after this step.

Afterwards, the only nodes v ∈ V (GS) that can have residual cost not 1 or 0 are those
with aCv = 1/2. Note that such nodes v are non-branch nodes of some piece Pv whose
preimage is an edge of C. Thus aCu = 1 for branch nodes of Pv and thus nodes with residual
cost 1/2 are not present in the new residual graph. This is because for such nodes v of V (GS)
with residual cost 1/2 the new hitting set S ′ contains both endpoints of Pv, and hence there
is no even cycle of GS′ that uses v. This completes the induction.

Let Q := {C : yC > 0} be the cycles in the support of the dual solution y. Let D be the
final hitting set output by the algorithm. Since the dual solution output by our algorithm is
zero-one, |Q| = ∑C∈C yC ≤ 9|D|. Since |Q| ≤ 9|D|, for any k ∈ Z, either D is an even cycle
transversal of size at most 9k or Q is a set of vertex disjoint even cycles of size at most k.
This completes the proof of Theorem 2.
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Chapter 6

Minimum Dominating Set in Graphs
of Bounded Arboricity

Recall that in the Minimum Weighted Dominating Set (MWDS) problem, we are given a
graph G = (V,E) with weights wv for all v ∈ V , and wish to find a minimum weight set D
of vertices for which each vertex v ∈ V is either in D, or has a neighbour in D. A graph has
arboricity a, if a is the smallest number of forests into which its edge set can be decomposed.
It is well known that a graph has arboricity a if and only if each subgraph induced by a
subset of vertices S ⊂ V has at most a(|S| − 1) edges. We use the term a-MWDS to denote
MWDS in graphs of arboricity a.

We first introduce some preliminaries and show that the LP rounding algorithm of
Bansal and Umboh [4] for the unweighted version of MWDS is no better than a (2a − 1)-
approximation in the worst case. Afterwards, we present our main result, that MWDS
admits an (a+ 1)-approximation in graphs of arboricity a.

6.0.1 Preliminaries

Let G = (V,E) be a graph, v ∈ V and S ⊂ V . Denote by NH(v) := {u ∈ V (H) : vu ∈ E(H)}
the neighbourhood of v in graph H, NH(S) := ∪v∈SNH(v) and N(S) := NG(S). Denote by
N [S] := S ∪N(S) and N [v] := N(v)∪{v} the closed neighbourhood of S and v respectively.
Consider the following natural LP relaxation for MWDS and its dual. Given a graph G,
for each v ∈ V (G), the LP has a variable xv indicating whether v is part of the minimum
dominating set.
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Algorithm 6.0.1: BansalUmbohMinWeightDominatingSet (G, c)

Input : A graph G = (V,E) with non-negative node-costs wv, for each v ∈ V .
Output: A dominating set S of G.

1 Solve LP (PMWDS) get solution x∗.
2 H = {v ∈ V : x∗v ≥ 1

3a
}

3 U := V \N [H]
4 return H ∪ U

min
∑
v∈V

wvxv (PMWDS)

s.t. xv +
∑

u∈N(v)

xu ≥ 1 ∀ v ∈ V

x ≥ 0

max
∑
v∈V

yv (DMWDS)

s.t.
∑

u:v∈N(u)∪{u}

yu ≤ wv ∀ v ∈ V

x ≥ 0

The algorithm of Bansal and Umboh [4] first solves the LP (PMWDS). Let x∗ be this
solution. Then they take the set H of vertices v whose LP value x∗v is at least 1

3a
and then

taking the remaining set U := V \N [H] of undominated vertices. H has cost at most 3a
times

∑
v∈H cvxv where xv is the LP value for node v in the a-MWDS LP. To bound the

cost of U , they then use the fact the graph has arboricity a to obtain an orientation of the
graph so that each node has at most a out neighbours. They analyze the size of U relative
to
∑

v∈V \H xv (their analysis requires unit weights) by effectively having each node of V \H
“pay” its cost to each out neighbour. The final step of their proof is to observe that each
node u ∈ U satisfies

∑
v∈δin(u) xv ≥ 1

3
, where δin(u) are the in neighbours of u. Combining

this observation with the fact that each node of V \H pays towards at most a other nodes
yields a 3a-approximation.

Theorem 12. For each a > 1 there exists a graph of arboriticy at most a for which the
algorithm of Bansal and Umboh in [4] (Algorithm 6.0.1) returns a solution that has size
2a− 1− o(1) times the optimum.

Proof. Let a, k ∈ N and n = k(a−1)+1. Construct graph G with vertex set {v0, v1, .., vk(a−1)}
and edge set {vivj : 0 ≤ i− j ≤ a− 1, i 6= j} ∪ {vivj : 0 ≤ i+ k(a− 1) + 1− j ≤ a− 1}.
See Figure 6.1 for an example of G for a = 3, k = 4, the red, thick green and double-
stroke black edges form a partition of the edges of G into 3 forests. One can see that
|E(G(U))| ≤ a(|U |−1) for any U ⊂ V and hence G has arboricity at most a. For i > k(a−1)
and i < 0, define vi = vi (mod k(a−1)+1).

Consider the Bansal and Umboh algorithm on G with unit weights. We claim x =
1

2a−1
1 = [ 1

2a−1
, 1

2a−1
, . . . , 1

2a−1
]T is the optimal LP solution for the a-MWDS LP on G with

unit weights. Note that the LP cost
∑

v∈V (G) xv of x is k(a−1)+1
2a−1

. Adding up
∑a−1

i=−a+1 xi+j ≥ 1
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Figure 6.1: Graph G in proof of Theorem 12 for a = 3, k = 4.

for j = 0, 1, .., k(a− 1) we get

(2a− 1)
∑

v∈V (G)

xv ≥ k(a− 1) + 1

so
∑

v∈V (G) xv ≥ k(a−1)+1
2a−1

and that equality can only hold if
∑a−1

i=−a+1 vi+j = 1 for all i. It

thus follows the unique optimal solution satisfies xvi = xvj ∀i, j ∈ {0, 1, 2, .., k(a − 1)} and
is thus 1

2a−1
1.

The algorithm of Bansal and Umboh would thus take every vertex of G, which has a
cost of k(a− 1) + 1. However, the vertices {v(2a−1)i : 0 ≤ i ≤ dk(a−1)+1

2a−1
e − 1} are a solution

of cost dk(a−1)+1
2a−1

e ≈ k(a−1)+1
2a−1

for large k. Hence the solution returned by the algorithm is
2a− 1− o(1) times the optimum.

6.1 Approximation Algorithm

In this section we obtain an approximation algorithm for minimum dominating set in graphs
of arboricity a using the primal-dual method. As mentioned in Section 1.3, our analysis
actually requires a slightly weaker condition than arboricity a, namely that for our graph G,
|E(G[S])| ≤ a|S| for any subset S ⊂ V (G), in other words, our graph has maximum average
degree at most a.

This result was first published at WAOA 2021 [56].

Theorem 3. [56] There is a polynomial-time (a+1)-approximation algorithm for a-MWDS.

We use an integer programming formulation and apply the primal-dual method [28].

In each iteration, let S denote the current hitting set. The set of incremented dual
variables are all yv for which v is not in or adjacent to a vertex of S. As standard in the
primal-dual method, we apply the standard reverse deletion procedure at the end of our
algorithm. The complete description of our algorithm is given in Algorithm 6.1.1.

One can see that each iteration of Algorithm 6.1.1 runs in polynomial time. Since in each
iteration the algorithm adds a node to S, there are at most |V | iterations and so the overall
run-time is polynomial as well.
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Algorithm 6.1.1: MinWeightDominatingSet (G, c)

Input : A graph G = (V,E) with non-negative node-costs wv, for each v ∈ V .
Output: A dominating set S of G.

1 S = ∅
2 while S is not a dominating set of G do
3 Increment all dual variables yv for v ∈ V \N [S] uniformly until a node becomes

tight. Add all nodes that became tight to S.

4 Reverse-Deletion:
5 Let s1, s2, .., sl be nodes of S in the order they were added.
6 for t = l downto 1 do
7 if S\{st} is feasible then
8 S ← S\{st}

9 return S

6.1.1 Analysis of our algorithm

We now show Algorithm 6.1.1 is an (a+ 1)-approximation. To do so we to show that during
each iteration the number of hit nodes our dual variables pay for is at most a+ 1 on average
[28].

Theorem 13. Algorithm 6.1.1 is a polynomial-time (a + 1)-approximation algorithm on
graphs of arboricity a.

Proof. Let SA be the set of nodes returned by our primal-dual algorithm. We follow the
standard method of analyzing the primal and dual increase rates.

Using Lemma 1 adapted for MWDS, the amount that a dual variable yv pays for is
|S ∩ N [v]|. It suffices to prove that during any iteration t, the set Wt of nodes whose dual
variables are incremented satisfies∑

u∈Wt

|SA ∩N [u]| ≤ (a+ 1)|Wt|. (6.1)

We illustrate the intuition of our proof as follows. Graphs G of arboricity a have at most
a|V (G)| edges, so the average degree of G is at most 2a. Suppose that each node of G had
degree 2a. Then for all u ∈ V (G), |SA ∩ N [u]| ≤ 1 + 2a which shows that SA is a 2a + 1-
approximation. This analysis does not work in general because it may be the case that
incremented dual variables correspond exclusively to high degree nodes. We will show that
because SA is “minimal” in the sense that Algorithm 6.1.1 performed a reverse deletion step,
it follows that although the nodes corresponding to incremented dual variables may have high
average degree, they are not adjacent to too many nodes of SA on average. Minimality of
SA also means that for each node u of SA there is another node v ∈ V (G) called a witness,
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for which N [v]∩SA = {u}. Informally speaking, we show yv for witnesses v will pay for only
one solution node. Intuitively, these yv which pay for a single solution node help to bring
the average number of solution nodes a dual variable pays for down to a+ 1.

Now we make these concepts formal.

Definition 18. [60] For v ∈ SA we call a node u ∈ V such that N [v] ∩ SA = {v} a witness
node for v.

Consider some iteration t during the algorithm. Let St be the solution set during iteration
t, so {yv : v ∈ V \N [S]} is the set of incremented dual variables. Thus Wt, the nodes
corresponding to the dual variables incremented during this iteration, is equal to V \(S ∪
N(S)). To simplify notation, we will refer to Wt and St simply by W and S. Define
SAW := W ∩ SA, the set of solution nodes in W and SAN(W ) := (SA ∩ N(W ))\W , the set
of solution nodes outside W adjacent to nodes of W . Using the convention introduced in
Theorem 1, SAW ∪ SAN(W ) are the nodes “paid for” during this iteration.

Proposition 1. At our fixed time t, each node u ∈ SAW ∪ SAN(W ) has a witness node in W .

Proof. Let t′ be the time in our reverse deletion procedure when node u was considered for
deletion. Let S ′ be the solution set the algorithm keeps at time t′. Since u ∈ W ∪N(W ), we
have u 6∈ S. Since u ∈ SA, it follows that node u was added to our solution after all nodes
of S. Therefore u gets considered in the reverse deletion procedure before the vertices of S,
hence S ⊂ S ′. Since we did not remove u from our solution, there is a node wu ∈ V such
that N [wu] ∩ S ′ = {u}. Because u 6∈ S ⊂ S ′, therefore N [wu] ∩ S = ∅. By definition of W ,
it follows that wu ∈ W .

Now we actually argue Inequality (6.1) holds for any time t. For s ∈ SAW ∪ SAN(W ) let

p(s) be a witness node for s in W . Denote ŜW := {s ∈ SAW : p(s) 6= s}, the set of nodes in
SAW that are not their own witness and suppose that ŜW = {s1, s2, .., sl}. For brevity, we let
pt := p(st).

Let A := {p1, p2, .., pl} be the set of witnesses for nodes of ŜW , Ã := {p(s) : s ∈ SAN(W )}
the set of witnesses for SAN(W ) and B = W\(A∪SAW ∪ Ã) be the nodes of W that are neither

solution nodes nor witnesses (see Figure 6.2). Note that for v ∈ A ∪ (SAW\ŜW ), the equality
|SA ∩N [v])| = 1 holds as such a node is a witness.

Intuitively, |N(v) ∩ X| “counts” the number of edges with one endpoint v and the
other in X. In this sense,

∑
v∈B |N(v) ∩ SAW | counts edges between B and SAW once, while∑

q∈SAW
|(N(q))∩SAW | counts edges within SAW twice. In the same line, 2

∑
v∈B |N(v)∩SAW |+∑

q∈SAW
|(N(q)) ∩ SAW | counts each edge of E(G[B ∪ SAW ])\E ∩ (B ×B) twice. Thus

2
∑

v∈B |N(v) ∩ SAW |+
∑

q∈SAW
(|(N(q)) ∩ SAW |+ 1)

= 2|E(G[B ∪ SAW ])|+ |SAW | − 2|E ∩B ×B|
≤ 2|E(G[B ∪ SAW ])|+ |SAW |.

(6.2)
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Figure 6.2: Partition of W into SAW\ŜW , B, ŜW , Ã and A. Nodes of SAW are colored in red.
The square blue nodes forming SAN(W ), are solution nodes outside W but adjacent to some
node inside W .

Note that each node of SAW\ŜW is its own witness, and hence is not adjacent to other solution
nodes. Thus,

∑
q∈(SAW \ŜW )(|N(q) ∩ SAW | + 1) = |SAW\ŜW |. This also implies

∑
q∈ŜW

(|N(q) ∩
SAW |+ 1) =

∑
q∈ŜW

(|N(q) ∩ ŜW |+ 1).

Note that
∑

q∈(SAW \ŜW ) |N(q) ∩ ŜW | counts each edge of G[ŜW ] twice, so
∑

q∈ŜW
(|N(q) ∩

ŜW |+ 1) = 2|E(G[ŜW ])|+ |ŜW |.
Thus, ∑

q∈SAW
(|N(q) ∩ SAW |+ 1)

=
∑

q∈ŜW
(|N(q) ∩ ŜW |+ 1) +

∑
q∈(SAW \ŜW )(|N(q) ∩ SAW |+ 1)

= 2|E(G[ŜW ])|+ |ŜW |+ |SAW\ŜW |.
(6.3)

Adding (6.2) and (6.3) and dividing by 2 we get∑
v∈B |N(v) ∩ ŜW |+

∑
q∈SAW

(|N(q) ∩ SAW |+ 1)

≤ 1
2
(2|E(G[B ∪ SAW ])|+ 2|E(G[ŜW ])|+ 2|ŜW |) + |SAW\ŜW |.

= |E(G[B ∪ SAW ])|+ |E(G[ŜW ])|+ |SAW |.
(6.4)

To recap, we wish to bound
∑

v∈W |N [v] ∩ SA|. Note that for v ∈ W , if v ∈ B, then

|SA ∩N [v]| = |N(v) ∩ ŜW |. For v ∈ ŜW , |SA ∩N [v]| = |N(v) ∩ ŜW |+ 1.

We will next bound
∑

v∈B∪SAW
(|(N [v])∩ (SAN(W ) ∪SAW )| − |(N [v]∩SAW |), which will get us

a bound on
∑

v∈B∪SAW
|N [v] ∩ SA|, the number of nodes dual variables indexed by B ∪ SAW

pay for. Using bounded arboricity we will bound the number of edges in subgraphs of G.
Afterwards we will bound

∑
v∈A∪Ã |N [v]∩SA|, which will bound

∑
v∈W |N [v]∩SA| completing

the analysis.
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Recall that SAN(W ) := (SA ∩N(W ))\W . Let us account for the amount nodes of W pay

towards SAN(W ), their neighbours outside W which are solution nodes. Each node of Ã only

pays towards the node of SAN(W ) it is a witness of.

Note that
∑

v∈B∪SAW
(|(N [v] ∩ (SAN(W ) ∪ SAW )| − |(N [v] ∩ SAW |) counts every edge of G[B ∪

SAW ∪ SAN(W )] not in G[B ∪ SAW ], thus the following equality holds.∑
v∈B∪SAW

(|(N [v] ∩ (SAN(W ) ∪ SAW )| − |(N [v] ∩ SAW |)
= |E(G[B ∪ SAW ∪ SAN(W )])| − |E(G[B ∪ SAW ])|.

Adding this to (6.4) we obtain the following.∑
v∈B∪SAW

|N [v] ∩ SAW |+∑
v∈B∪SAW

(|N [v] ∩ (SAN(W ) ∪ SAW )| − |(N [v] ∩ SAW |)
≤ |E(G[B ∪ SAW ])|+ |E(G[ŜW ])|+ |SAW |+ |E(G[B ∪ SAW ∪ SAN(W )])| − |E(G[B ∪ SAW ])|.

This simplifies to |E(G[B ∪ SAW ∪ SAN(W )])|+ |E(G[ŜW ])|+ |SAW |. So the following inequality
holds.∑

v∈B∪SAW

|(N [v] ∩ (SAN(W ) ∪ SAW )| ≤ |E(G[B ∪ SAW ∪ SAN(W )])|+ |E(G[ŜW ])|+ |SAW |. (6.5)

We now have a bound on the number of nodes that dual variables for B ∪ SAW pay for. Let
us bound the right hand side of the above equation. From the fact that G has arboricity a,
|E(G[X])| ≤ a|X| for any X ⊂ V (in fact this weaker condition is sufficient for our analysis.
The condition |E(G[X])| ≤ a|X| which we require, is also equivalent to G has maximum

average degree a. Maximum average degree is defined as maxH subgraph of G
|E(H)|
|V (H)| .). Thus,

the right hand side of the above inequality is at most

a(|B|+ |SAW |+ |SAN(W )|) + a|ŜW |+ |SAW |
≤ a|B|+ (2a+ 1)|ŜW |+ (a+ 1)|SAW\ŜW |+ a|SAN(W )|.

(6.6)

So combining inequalities (6.5) and (6.6), we obtain the following.∑
v∈B∪SAW

|(N [v] ∩ (SAN(W ) ∪ SAW )| ≤ a|B|+ (2a+ 1)|ŜW |+ (a+ 1)|SAW\ŜW |+ a|SAN(W )|. (6.7)

We also know that each node v ∈ A∪Ã, has exactly one hit node in its closed neighbourhood,
that is, |SA ∩N [v]| = 1.

Also note that |A| = |ŜW |, |Ã| = |SAN(W )|, for each v ∈ W we have SA ∩ N [v] =

(SAW ∪ SAN(W )) ∩N [v] and W is the disjoint union of A, Ã, B and SAW .
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Putting these observations together, we get the total amount the dual variables “pay”
for is

∑
v∈W |SA ∩N [v]|, which satisfies the following chain of inequalities.∑

v∈W |SA ∩N [v]|
=

∑
v∈B |N(v) ∩ SA|+∑q∈SAW

(|N(q) ∩ SA|+ 1) +
∑

q∈A(|N(q) ∩ SA|+ 1)

+
∑

q∈Ã(|N(q) ∩ SA|+ 1)

=
∑

v∈B |N(v) ∩ SA|+∑q∈SAW
(|N(q) ∩ SA|+ 1) + |A|+ |Ã|.

From (6.7), this is at most

a|B|+ (2a+ 1)|ŜW |+ (a+ 1)|SAW\ŜW |+ a|SAN(W )|+ |A|+ |Ã|.

Noting that |A| = |ŜW | and |Ã| = |SAN(W )|, the previous line is at most the following.

a|B|+ (2a+ 2)(|ŜW |) + (a+ 1)|SAW\ŜW |+ (a+ 1)|Ã|
≤ a|B|+ (a+ 1)(|ŜW |+ |A|) + (a+ 1)|SAW\ŜW |+ (a+ 1)|Ã|
≤ (a+ 1)|W |.

Since the set of incremented dual variables is {yv : v ∈ W}, by Theorem 1, this shows our
algorithm is an (a+ 1)-approximation.
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Chapter 7

Open Problems

In this chapter we identify a number of questions related to ECT and more generally graph
transversals that we could not resolve in this thesis. These questions provide potential
research topics for future research in graph transversals.

Question 1. Can we improve the approximation ratio of 47/7 for ECT in planar graphs?

One immediate idea is to use the concept of 3 pockets in [8].

Suppose that we replaced the step of finding a minimal pocket H of GS
2 with finding a

minimal pocket or 3-pocket of GS
2 and we were always able to find a 2

3
-quasi-perfect tiling of

H. Then one could use a strengthening of Theorem 4 with a bound of
∑

M∈R |M∩S| ≤ 2.4|R|
to get Equation (7.1).

∑
M∈M

|M ∩ S3| ≤ (
∑
M∈Fall

|M ∩ S3|) ≤ 2.4|Fall| ≤ 7.2|M| (7.1)

A slightly tighter analysis would yield a 31/5-approximation.

However this immediate idea does not work because we show in Figure 7.1 that 3-pockets
do not always have 2

3
-quasi-perfect tilings.

Another method is to look at where the analysis is not quite tight. For instance, when
we estimate

∑
M∈M |M ∩ S3| using

∑
M∈MFaces

|M ∩ S3| in Equation (4.9) we get equality
only if for each even cycle of M, its faces do not share any hit nodes. It may be the case
that we cannot obtain any α-quasi-perfect tiling for any α > 2/3 (see Figure 7.1). However,
we may need our pocket H to have a certain structure for equality to hold. We do not know
if Theorem 4 is tight for our choice of A, S3, and R on any instance where we cannot obtain
an α-quasi-perfect tiling for any α > 2/3. We also estimated

∑
v∈S a

C
v as |C ∩ S3|+ 1 for all

even faces C. However, we have
∑

v∈S a
C
v ≤ |C ∩ S3| unless C contains a twin edge. Thus

we can obtain a better approximation if most of our even faces do not contain twin edges.
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Figure 7.1: On the left, a 3-pocket is shown in green. One can check that the 3-pocket has
no 2

3
-quasi-perfect tiling. On the right is shown a graph consisting of a tessellation of the

plane with twice as many triangles as dodecagons. None of the triangles are adjacent, so a
maximum tiling covers only the even dodecagons.

Our 47/7-approximation can only be tight if all previously mentioned parts of the ap-
proximation can be tight simultaneously. Thus looking at whether they can all be tight
simultaneously could lead to improvements.

A different approach is to use the so-called “extended sparsity inequalities” of Fiorini
et al. [24]. A diamond is a subdivision of the graph formed by 3 parallel edges. Fiorini
et al. [24] showed that the “natural LP” for diamond transversal has an integrality gap
of θ(log n). They obtain a 9-approximation algorithm for diamond transversal by adding
extended sparsity inequalities [24]. Note that if a set of vertices is an even cycle transversal,
then it is a diamond transversal. Thus for any even cycle transversal S, the characteristic
vector 1S also satisfy the extended sparsity inequalities. One naturally wonders how well
can we approximate ECT in planar graphs using the LP of Fiorini et al. [24] with their
extended sparsity inequalities?

Question 2. How well can other graph transversal problems be approximated?

We give the following example. For c ∈ Z, a c-pumpkin model is a graph containing 2
vertices with c parallel edges as a minor [35]. A natural idea is to find a set of pumpkins
to increment that are “small” similarly to how we found an even cycle with few pieces in
Lemma 3. We believe this idea may be possible for certain small c.

One naturally considers graph transversal problems in directed graphs.

Question 3. How well can we approximate directed even cycles in planar graphs?

Question 4. Can we improve the 2.4-approximation of [8] for DFVS in planar graphs?

To explain our ideas on Question 4, we explain first how the approach in [8] works, and
then why a natural generalization doesn’t work.

The work in [8] extends the work of [29] which gives a simple primal-dual 3-approximation
by iteratively incrementing the face-minimal cycles. The tight case only happens when the
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graph contains a proper subgraph U such that U contains a cycle and U has at most 2
nodes that have outside neighbours. That is, U is a pocket. They propose a new algorithm
that increases all face-minimal cycles in a pocket. This algorithm achieves an approximation
factor of 18/7. Reference [8] improves this algorithm by noting that the pocket oracle of [29]
is only tight when there is a proper subgraph containing at least 3 cycles for which at most
3 vertices have outside neighbours. They call this subgraph a 3-pocket.

We generalize this idea with the following definition.

Definition 19. For p ≥ 3 and r ≥ 0, a (p, r)-pocket for a planar graph G(V; E) and a cycle
collection C is a set U ⊂ V such that:
1. The set U contains at most p nodes with neighbours outside U. (We call these contact
nodes.)
2. The induced subgraph GS[U ] has at least r faces in C.

Given graph G, a collection of cycles C of G and S ⊂ V (G), define the residual graph GS

as the subgraph of G\S induced by those vertices which belong to a cycle of C not containing
a node of S. It can be shown that if at any time during the algorithm of [8], the residual
graph does not contain a (q, r) pocket for any q, r ≥ 0 with q ≤ p and 6r

2q+r−2
≥ 6p+6

3p+1
,

then the algorithm of [8] is a 6p+6
3p+1

-approximation. The proof proceeds similarly to the proof
of Proposition 1 and makes stronger assumptions on nS and dS in Equation 3.1. Berman
and Yarolesev [8] deals with 3-pockets by incrementing all the face-minimal cycles within a
3-pocket. This strategy does not work for 4-pockets.

Consider the instance in Figure 7.2. Here each black vertex has cost equal to the number
of A and B faces incident to the vertex, each green vertex has cost equal to the number of A
and B faces incident to the vertex plus ε and each yellow vertex has cost ε. The set of cycles
to hit is all the A,B and F faces. Here a 4-pocket algorithm would start by incrementing
all the A,B faces, select the non-gray parts and return the black vertices of cost 17. This is
worse than 2.4 times the green and yellow vertices, which form a solution of cost 7 + 11ε.

Recall that in the introduction we mentioned how bidimensionality and divide and con-
quer techniques were used to give approximation algorithms for graph transversal problems
[12–14, 26, 27]. Another approach for improving the 2.4-approximation algorithm of [8] for
DFVS in planar graphs would be to combine bidimensionality/kernels/divide and conquer
techniques [12–14, 26, 27] with the primal-dual algorithm of [8].

We will in the following give some partial ideas about using a variation of local search
[41, 53] that achieves a constant approximation for DFVS on planar graphs. Recall in the
introduction we defined local search as the following. We are given a graph G = (V,E) and
positive integer c. Initialize S := V . For each A ⊂ S of size at most c, set B ⊂ V of size at
most |A| − 1, if (S\A) ∪B is a feasible FVS replace S with (S\A) ∪B. We call this a c-opt
move. If not c-opt moves are possible, return S.

Reference [41] shows that the local search algorithm achieves a PTAS for undirected FVS
in planar and H-minor free graphs for any fixed graphH. We construct the following example
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Figure 7.2: Here the set of cycles C that we need to hit are the A,B and F faces. The black
vertices have cost equal to the number of A and B faces incident to the vertex, the green
vertices have cost equal to the number of A and B faces incident to the vertex plus ε and
the yellow vertices on the F faces have cost ε. Here a 4-pocket algorithm would select the
non-gray parts and return the black vertices of cost 17, which is worse than 2.4 times the
cost of the green and yellow vertices which form a solution of cost 7 + 11ε (ε is small).

showing the local search algorithm does not achieve any constant factor approximation for
DFVS on planar graphs:

Define our graph G to be a (4(c+1)+1)×K grid. V (G) := {hi,j : i ∈ [4(c+1)+1] j ∈
[K]}, E(G) = {(hi,j, hi+1,j) : i ∈ [4(c + 1) + 1] j ∈ [K]} ∪ {(hi,j, hi,j+1) : i odd) j ≤
K − 1}∪ {(hi,j, hi,j−1) : i even j ≥ 2)}∪ {(h4(c+1),j, h1,j) : j ∈ [c+ 1]} (see Figure 7.3i)).

Now let the local solution B be {h2(c+1)+1,j : j ∈ [K]}. One can see that an optimal
solution is {h4(c+1)+1,j : j ∈ [c + 1]}. It can be shown that no local search on c vertices
can decrease the local solution. So the local solution B of size K cannot be improved even
though the optimal solution has size c. Since K can be an arbitrary positive integers this
shows local search does not achieve any constant approximation.

Can we alter the local search method to achieve any constant approximation? For in-
stance, we could define a c-flow move to select up to c vertices u1, u2, .., ul and up to c vertices
v1, v2, .., vt such that no ui-vj paths exist in G\B where B is our local solution. Let B′ be
the nodes of B that lie on some ui − vj path. We replace B′ by a minimum set of vertices
B′′ disconnecting all ui from vj and add up to c vertices to B′′ to fix the solution if it is not
feasible.

Suppose that we had a local solution L that could not be improved by c-opt moves.
Let D1, D2, . . . D3 be the disjoint directed acyclic graphs (DAGs) of G\S. Consider δ(Di)
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The grid is K wide  and 4(c+1)+1 high (so higher than shown here)

c of the top 
nodes of our 
grid go to the 
bottom here 

c=3

h_{1,1} h_{1,2} h_{1,K}

h_{4(c+1),K}

h_{4(c+1,1}

(i)

The grid is K wide  and 4(c+1)+1 high (so higher than shown here)

c of the top 
nodes of our 
grid go to the 
bottom here 

c=3

h_{1,1} h_{1,2} h_{1,K}

h_{4(c+1),K}

h_{4(c+1,1}

a1 a2 a3 a4 a5 aKaK-2 aK-1aK-3aK-4aK-5

bK-5 bK-4 bK-3 bK-2 bK-1 bKb1 b2 b3 b4 b5

(ii)

Figure 7.3: A counterexample to local search for DFVS.

in the dual of G which is a cycle Ci. Let us direct Ci arbitrarily, and for consecutive
edges e1, e2 in Ci, let e1 = {l1, t1} and e2 = {l2, t2} in G with li ∈ L. We will call l1, l2
consecutive with respect to Di. Let us define a band with respect to Di as a series of vertices
{a1, a2, . . . ak} such that for 1 ≤ j ≤ k − 1, aj and aj+1 are consecutive vertices in Di. For
X ⊂ V define the in neighbours as Nin(X) = {y ∈ V : yx ∈ G} and the out neighbours as
Nout(X) = {y ∈ V : xy ∈ G}. We now define a c-band opt move as follows. Take a set
S = ∪cj=1Sj ⊂ L where each Sj is a band and compute directed min vertex cuts Y from S to
Nin(S)\L and Z from Nout(S)\L to S. That is, Y (resp. Z) is a min cost set of nodes such
that there is no dipath from S to Nin(S)\L (resp. Nout(S)\L to S). If either |Z| or |Y | is
smaller than |S|, replace L with L′ := (L\S) ∪ Z.

Does a local search algorithm with the addition of the above methods achieve any constant
approximation? Consider the example in Figure 7.3(ii). The graph D1 = G\L, where L is
the local solution indicated by the red nodes, is a DAG. The edges δ(D1) are displayed in
dark blue in Figure 7.3(i). δ(D1) forms a cycle depicted in light blue in the dual graph. So
in Figure 7.3(ii), the edges b1a1, b2a2, ..., bKaK are consecutive. So L = {a1, a2, .., aK} form
a band. Nin(L)\L = {b1, b2, .., bK} and a minimum vertex cut Y from L to {b1, b2, .., bK} is
the set of green striped nodes. |Y | has smaller size than L so the c-band opt move would
replace L with Y . This example gives us hope that a modification of local search may be
useful for DFVS.

For our final question, we need some definitions first. A 0-torus is a sphere (in 3 dimen-
sional space). For g ≥ 1, a g-torus is obtained from a (g − 1)-torus Q and a torus U by
removing a ball from both Q and U and “gluing” Q and U on this ball. A graph G has genus
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g if g is the smallest integer for which G has an embedding on the g-torus. By bounded
genus graphs we mean fix some g ≥ 0 and consider the graphs of genus at most g. DVFS and
ECT have constant factor approximation algorithms in planar graphs [8, 30]. One naturally
asks whether this can be generalized to a larger class of graphs.

Question 5. How well can DFVS or ECT be approximated (in polynomial-time) in bounded
genus graphs?
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[57] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms,
6(2):32:1–32:8, 2010.

[58] Wouter Cames van Batenburg, Tony Huyn, Gwenaël Joret, and Jean-Florent Raymond.
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