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Abstract

Free-standing, foundationless jib cranes mounted directly on unreinforced slab -on-grade floors are
a common necessity in industrial settings for material handling purposes. Ensuring that existing
slabs can support a jib crane is critical, as industrial floors are subject to stringent serviceability
requirements. Sudden slab failure can result in dropped loads and the loss of life. The installation
of such cranes is typically based on rules of thumb, and no design standards or guidelines currently
exist. Slabs-on-grade are typically designed for vertical compressive forces stemming from vehicle
wheel loads or storage rack posts; however, a slabmounted crane transfers both compressive
forces and an overturning moment to the slab. In this study, a parametric analysis was conducted
by simulating finite element models to investigate the behaviour of unreinforced slab-on-grade
floors under foundationless, freestanding crane loads. Statistical methods were used to develop a
non-linear model capable of predicting th e capacity of such slabsln particular, for the range of
practical values considered in the study, it was found that the slab thickness, concrete strength, and
baseplate size were critical parameters greatly affecting the capacity of such slabsThis research
provides more confidence and safetywhen checking the installation and operation of such cran es
on plain slabs-on-grade.
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1.0 Introduction

1.1 Research Needs

In an industrial warehouse setting, floors are typically thin, jointed plain concrete slabs-on-grade
minimally reinforced specifically for temperature and shrinkage control and are supported laterally
by adjacent slabs or doweled connections and vertically by the soil it rests on.Cranes(i.e.,
overhead, gantry, bridge, jib, amongst others) are a common necessity in these settings as they &
used for material handling purposes to aid workers in the mobility of loads often beyond the
capability of human strength. In particular, foundationless jib cranes are cranes without any
supplementary poured concrete foundations and are instead mounted directly to the slab via post-
installed anchor bolts. Foundationless cranes of this nature boast flexibility in terms of the time
and cost required for installation or future relocation , making it a very attractive option for
warehouse owners. However,foundationless, slab-mounted cranes force the slab they are mounted
on to bear all of the self-weight and load of the crane in conjunction with the overturning moment
produced by the eccent r iTbisdombmationncgn pmducetatyeberadinga n e 6 s
stressesthat a thin, unreinforced slab may not be able to resist. The typical industry practice for
installing jib cranes involves adopting an upper bound of 8-kip-ft (approximately 10.8 kNm) for the
maximum allowable overturning moment tha t a slab can support The origins and validity of this
rule-of-thumb are unfortunately unclear, and its practical applications are questionable at bestas
established crane manufacturers (Gorbel, 2012; Spanco, 201§ regularly install foundationless jib -
cranes with load capacities licensed up to 16-kip-ft (approximately 21.6 kNm) based on their
minimum requirements : a minimum concrete strength of 3000 psi, subgrade bearing capacity of
2500 psf, and a sl ab t hi c kfouadat®onlesd crabed dre oftdd mouatede r
to pre-existing slabs-on-grade that may have unclear dimensions and material properties; it is
reasonable to assumethat the actual thickness of the slabvariesb e t we é 8 d0Adtgpigal
foundationless, slab-mounted jib crane is depicted in Figure 1.1

f’fD’i I i ]

Figure 1.1 Typical side view of a foundationless, freestanding jib crane
1



Contemporary methods for designing slabs-on-grade are closely linked to the design of airport and
highway pavements and are largely based on the Winkler spring modelfollowing the prevailing
efforts of Harald Westergaard, who, throughout much of the early 20 t century, provided rigorous
theoreti cal solutions for the maximum deflections and critical bending stresses of infinite and
semi-infinitely spanning slab -on-grade pavements subject to various vertical concentrated loadings
(Westergaard, 1929 . Whi |l e West er gaar dos presented forithe designafer e s p
highway, railroad, and airport runway pavements, his analyses and solutions have been
ubiquitously adopted for general applications of slabs-on-grade. His work has largely stood the test
of time and has been the subject matter d rigorous analysis and discussion over the past century
(loannides, 1989), and now serves as the basis for the three conventional design methodologies
accepted by the American Concrete Institute: 1) the Portland Cement Association (PCA) method, 2)
the Wir e Reinforcement Institute (WRI) method, and 3) the Corps of Engineers (COE) method
(McKinney et al., 2006). Notably, all three methods do not address the effects of any vertically
applied uplifting forces acting on the slab. A Winkler soil model by definit ion provides artificial
tensile stiffness to a slab,and as a result, isunsuitable for use when considering a slab-on-grade
subject to an overturning moment. A need therefore arises to develop guidelinesfor this type of
structural problem. This study aim s to address theseoverturning moments by substituting an
equivalent elastic soil model without any tensile support and establishing generalized equations
used to predict the maximum moment capacities for slab -on-grade problems of this nature.

1.2 Objectives

The overarching aim of this research is to investigate the performance of industrial slab -on-grade
floor s of various dimensions (length and thickness) and material properties ( concrete and subgrade
strength) mounted by cranes of various sizes(load capacity andload distribution). The scope of
this study is limited to freestanding, foundationless jib cranes with a maximum capacity of 1 -ton
mounted to slab-on-grade floors minimally reinforced for crack control. Most design checks(i.e.,
allowable deflection, soil bearing, anchor-associated failure, oneway and two-way shear, and
concrete) can be easilyperformed by existing guidelines. As the serviceability limit states govern
over the ultimate limit states for warehouse floor applications, this study will only investigate the

first cracking of the concrete caused by tensile stresses.

The following objectives in this study have been outlined below:

1 Determine a relationship between the Winkler spring model and an elastic half-space model
that removes the artificial tensile stiffness by relating the modulus of subgrade reaction to
an equivalent modulus of elasticity.

1 Develop a simplified finite element (FE) model in Abaqus representing the typical slab-soill
system seen in industrial settings. The initial finite element model will be verified against
existing analytical solutions for simple problems and previous finite element studies of the
same form (Hu and Hartley, 1994; Silva et al., 2001; etc.).



T

1.3

Conduct a parametric study on various slab-soil dimensions and material properties by
automating the mass simulation of calibrated FE models through Python and Matlab.
Conduct a non-linear, multivariate statistical r egressionon the data obtained from the
parametric study to develop amathematical model that can be used to adequately predict
the moment capacity of any slab-soil system with dimensions and material properties within
the range of considered values

Thesis Organization

This thesis is divided into 5 chapters. The information presented in each chapter has been
summarized below:

T

Chapter 1 provides a brief overview on the research topicand provides insight on the
motivations, goals, and objectives.

Chapter 2 provides a comprehensive literature review involving the contemporary methods
for slabs-on-grade design presented by the American Concrete Institute,historical methods
for idealizing soil mediums, and any existing analytical and numerical solutions for the
problem of a slab-on-grade.

Chapter 3 provides the formulation of the FE model used in this study. In particular, the
selection of the model parameters (slab length, slab thickness, specific concrete compressive
strength, subgrade strength, baseplate radius, and verticalcompressive force) and the upper
and lower bounds for each variable are discussed. The model definition and verification and
validation results are also provided.

Chapter 4 presents the numerical results associated with the data collection and analysis of
the parametric study. The influence of each model parameterand the performance of the
slab-on-grade with respects to changes in any parametetis discussed, and te non-linear
multivariable regression model is validated. The final general equation is also presented.
Chapter 5 summarizes the findings in this study and provides recommendations for areas of
future work.



2.0 Literature Review

2.1 Design of Slabs-on-Grade

In general, the contemporary design methods of slabson-grade in North America (including the
Canadian Concrete Handbook, CSA A23)are largely detailed by three methods presented by
American Concrete Institute (ACI 360R -06) and the United States Air Force Manual (TM -5-809):

1. the Portland Cement Association (PCA) method,
2. the Wire Reinforcement Institute (WRI) method, and
3. the Corps of Engineers (COE) method.

All three methods are basedonanalyses | ar gely attributed to Westerg:
spanning slabsresting on Winkler -type foundations (citing works from 1923, 1925, and 1926) and
subject to wheel loads idealized as concentrated loads distributed over a small circular or dliptical
area. An important assumption that all three methods make (which conveniently allows for the use
of a Winkler foundation) is that a slab-on-grade remains in full , continuous contact with the
ground throughout the duration of its deformation (McKinney et al., 2006). This assumption
produces artificial tensile stiffness between the slab and the soil but is largely negligible for the vast
majority of slab -on-grade design applications involving vehicle wheel loads (forklifts and other
vehicles), concentrated, strip, and line loads produced by various warehouse equipment (i.e.,
storage posts and racks), and distributed loads (produced by pallets, etc.)in which the critical
deflections and bending stresses are overwhelmingly in the vertical, downwards drection and
found on the bottom surface of the slab.

The following sections will briefly summarize each of the design guidelines listed above.

2.1.1 PCA Design Method

PCA offersdesign guidelines to establish the thickness of a slabon-grade limited to the case of a
slab-on-grade loaded near the center and away from its edgesThe design charts and tables
provided by PCAare limited to considering single- or double axle- vehicular wheel loads,
concentrated loads, and uniform loads and assumes that the critical tensile stresses develop on the
bottom surface of the slab centrally under the load.

The PCA design method has been loosely summarized below by considering the case of a slain-
grade subject to acentral single-axle wheel load. It is assumed that the concrete material
properties, subgrade material properties, and loading conditions are all known and predetermined.

The factor of safety must first be established. Typical values are recommended as varying between
1.77 2 but may otherwise be left to the judgement of the engineer (Packard, 1996).

The working stress of concrete may then be determined:
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hal (2.1
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in which WSis the concrete working stress, MR is the modulus of rupture of concrete, and SFis the
factory of safety.

The slab stress per 1000 |b (4448 N) of load is then determined:

W'Y
(3% [} EE— . 2.2
YY(‘xéh)'Q"in 2.2
in which SSis the slab stress per 1000 Ibs. The design chart inFigure 2.1is then used to determine
the required slab thickness based onSS,wheel spacing, effective contact area, and subgrade

strength.
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Figure 2.1: PCA design charti design slab thicknessdetermined by wheel spacing, effective contact
area, and subgrade strength McKinney et al., 2006)

A horizontal line is first drawn towards the right from the known axle load stress until it intersects
with the curve associated with the effective contact aea. A vertical line from this intersection is
drawn downwards until it intersects with the curve associated with the wheel spacing. Finally, a
horizontal line is then drawn towards the right from this intersection until it intersects with the
curve assocated with the slab thickness and subgrade strength.



After determining the initial concrete slab thickness, Figure 2.2 canbe used to check if the actual
contact area is sufficient; else, the procedure should be restarted but using the new effective contact
area:
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Figure 2.2: PCA design charti effective load contact area based on slab thicknessNicKinney et al.,
2006)

A vertical line is first drawn upwards starting from the known load contact area until it intersects
with the curve associated with the determined initial slab thickness. A horizontal line can then be
drawn to the left to determine the effective contact area

This design procedure may be followed for any of the loading cases considered and isearly

identical. For a comprehensive, detailed guide on the PCA design method, the reader is suggested

to examine O6Ba-6&f goMdkbnne@étallb2006) and O6SIlI ab Thickness
I ndustri al Concrete Floors on Graded6é (Packard, 19

2.1.2 WRI Design Method

Like the PCA method, WRI offers design guidelines limited to the case of a slab-on-grade subject to
a central load away from any edges.The design charts provided by WRI are limited to single-axle
vehicular wheel loads, though concentrated loads may be considered by determining an equivalent
or representative wheel load. In the case of a wheel load, it is assumed that the critical stresses
develop on the bottom surface of the slab. WRI also provides design charts for the case of
uniformly distributed loads on either or both sides of an aisle (i.e., the pedestrian floorspace
between two storageracks). In the case of this uniform loading pattern, it is assumed that the
critical stresses develop on the top surface of tre slab(McKinney et al., 2006) .
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The WRI design method has been loosely summarized below by considering the case of a slabn-
grade subject to acentral single-axle wheel load. It is assumed that the concrete material
properties, subgrade material properti es, and loading conditions are all known and predetermined.

An initial trial thickness, H, is arbitrarily assigned. The design chartin Figure 2.3 is used to
determine to relative stiffness parameter between the slab and the subgrade,D/k :

Concrete Modulus )
110% psi =
RO
. E = 3000 ksi
UK s
6¢
13 9
5T Example:
11 Siab Thickness = 7.5 in,
Concrete £, = 35 x 108
k=130
i E
E 10
i,

D/ = 34x 108

Figure 2.3: WRI design chart T relative stiffness parameter determined by the subgrade strength
and trial slab thickness (McKinney et al., 2006)

A horizontal line is drawn from the intersection of the trial slab thickness and modulus of elasticity
of concrete towards the right until it intersects with the curve associated with the known subgrade
strength. From there, a vertical line can be drawn downwards to find the relative stiffness
parameter.

Next, the diameter of the equivalent contact area based onthe actual wheel contact area should be
determined:



Q 5 ! (2.3)

in which r is the radius of the actual wheel contact area. The diameter of the equivalent contact
area, wheel spacing, and the relative stiffness parameter obtained from Figure 2.3 may then be
used in Figure 2.4 to determine the basic moment induced by the wheel and the additional moment
induced by a wheel spaced further out:

Add M=16 inch pounds/inch/kip
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Figure 2.4: WRI design chart i basic moment and additional moment determined by the diameter
of the equivalent contact area and wheel spacing, respectivel\{McKinney et al., 2006)

A line is first drawn vertically upwards from the known equivalent loaded diameter until it
intersects with the known relative stiffness . A horizontal line can then be drawn to the left to find
the unit moment.

Finally, using the calculated moment and the allowable tensile stress, Figure 2.5 may be used to
determine the required slab thickness.
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Figure 2.5: WRI design chart 7 design slab thickness determined by the maximum moment and
allowable tensile stress(McKinney, et al., 2002)

A line is first drawn horizontally towards the right from the known combined slab bending moment
until it intersects with the known allowable tensile stress A line can then be drawn vertically to
determine the slab thickness.

If the required thickness dif fers substantially from the initially assumed thickness, the design
procedure should be restarted with the determined thickness as the new initial trial thickness
(McKinney, 2002).

For a comprehensive, detailed guide on the WRI design method, the readeris suggested to examine
6Desi gn-oo6Gr &U Midkdnney etal.,, 2006)and o6 Desi-gvGromfunll Floundat i
(Snowden, 1981).

2.1.3 COE Design Method

While the PCA and WRI methods are used for the case of interior loading, the COE design method
is intended for slabs-on-grade loaded directly at an edge or a jointand aims to limit the tensile
stressesat the bottom of said joint. COE provides design chartslimited solely to single- and double-
axle vehicular wheel loads and d not consider concentrated, uniform, or strip loads. In particular,
the determination of size and load of considered wheels are dependent on the classification of a
vehicle designindex. Therefore, an exact slab thickness required for a particular wheel load cannot
be determined, and instead, a general slab thickness may be obtained for each class of wheel load
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The COE design method has been loosely summarizedby considering the case of a slabon-grade
subject to a single-axle wheel load applied at an edgelt is assumed that the concrete material
properties, subgrade material properties, and loading conditions are all known and predetermined

First, a given wheel loading must be classified based on a nominal capacitydetermined by Figure

2.6:
Category I I 111 Y A% VI

Capacity, Ib 4000 6000 10,000 16,000 20,000 52,000
Design axle load, 1b 10,000 15,000 25,000 36,000 43,000 120,000
No. of tires 4 4 6 6 6 6
Type of tire Solid Solid Pneumatic Pneumatic Pneumatic Pneumatic
Tire contact area, in.> 27.0 36.1 62.5 100 119 316
Effect contact pressure, psi 125 208 100 90 90 95
Tire width, in. 6 7 8 9 9 16
Wheel spacing, in. 31 33 11.52.11 13.58.13 135813 20.79.20
Aisle width, in. 90 90) 132 144 144 192
Spacing between dual wheel tires, in. — — 3 4 4 4

Figure 2.6: COE design charti vehicle design index (McKinney et al., 2006)

The design index category controls the various loading conditions applicable to the slab. Once this

is established, the Figure 2.7 may be used to determine the required thickness:

Figure 2.7: COE design charti required slab thickness determined by design index, subgrade
strength, and flexural strength , (McKinney et al., 2006)

A line is first drawn horizontally to the right from the known flexural strength until it intersects
with the known subgrade strength. A line is then drawn vertically downwards until it intersects
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