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Abstract  

Free-standing, foundationless jib cranes mounted directly on unreinforced slab -on-grade floors are 

a common necessity in industrial settings for material handling purposes. Ensuring that existing 

slabs can support a jib crane is critical, as industrial floors are subject to stringent serviceability 

requirements. Sudden slab failure can result in dropped loads and the loss of life. The installation 

of such cranes is typically based on rules of thumb, and no design standards or guidelines currently 

exist. Slabs-on-grade are typically designed for vertical compressive forces stemming from vehicle 

wheel loads or storage rack posts; however, a slab-mounted crane transfers both compressive 

forces and an overturning moment to the slab. In this study, a parametric analysis was conducted 

by simulating finite element models to investigate the behaviour of unreinforced slab-on-grade 

floors under foundationless , freestanding crane loads. Statistical methods were used to develop a 

non-linear model capable of predicting th e capacity of such slabs. In particular, for the range of 

practical values considered in the study, it was found that the slab thickness, concrete strength, and 

baseplate size were critical parameters greatly affecting the capacity of such slabs. This research 

provides more confidence and safety when checking the installation and operation of such cran es 

on plain slabs-on-grade.  
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1.0 Introduction  

1.1 Research Needs 

In an industrial warehouse setting, floors are typically thin,  jointed plain concrete slabs-on-grade 

minimally reinforced specifically for  temperature and shrinkage control and are supported laterally 

by adjacent slabs or doweled connections and vertically by the soil it rests on. Cranes (i.e., 

overhead, gantry, bridge, jib, amongst others) are a common necessity in these settings as they are 

used for material handling purposes to aid workers in the mobility of loads often beyond the 

capability of human strength. In particular, foundationless jib cranes are cranes without any 

supplementary poured concrete foundations and are instead mounted directly to the slab via post-

installed anchor bolts. Foundationless cranes of this nature boast flexibility in terms of the time 

and cost required for installation or future relocation , making it a very attractive option for 

warehouse owners. However, foundationless, slab-mounted cranes force the slab they are mounted 

on to bear all of the self-weight and load of the crane in conjunction  with the overturning moment 

produced by the eccentric loading of the craneôs arm. This combination can produce large bending 

stresses that a thin, unreinforced slab may not be able to resist. The typical industry practice for 

installing jib cranes involves adopting an upper bound of 8-kip -ft (approximately 10.8 kNm) for the 

maximum allowable overturning moment tha t a slab can support. The origins and validity of this 

rule-of-thumb are unfortunately unclear, and its practical applications are questionable at best as 

established crane manufacturers (Gorbel, 2012; Spanco, 2018) regularly  install foundationless jib -

cranes with load capacities licensed up to 16-kip -ft (approximately 21.6 kNm)  based on their 

minimum requirements : a minimum concrete strength of 3000 psi, subgrade bearing capacity of 

2500 psf, and a slab thickness of 6ôô. However, in practice, foundationless cranes are often mounted 

to pre-existing slabs-on-grade that may have unclear dimensions and material properties ; it is 

reasonable to assume that the actual thickness of the slab varies between 4ôô ï 8ôô. A typical 

foundationless, slab-mounted jib crane is depicted in Figure 1.1: 

 

Figure 1.1: Typical side view of a foundationless, freestanding jib crane 
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Contemporary methods for designing slabs-on-grade are closely linked to the design of airport and 

highway pavements and are largely based on the Winkler spring model following the prevailing 

efforts of Harald Westergaard, who, throughout much of the early 20 th century, provided rigorous 

theoreti cal solutions for the maximum deflections and critical bending stresses of infinite and 

semi-infinitely spanning slab -on-grade pavements subject to various vertical concentrated loadings 

(Westergaard, 1926). While Westergaardôs solutions were specifically presented for the design of 

highway, railroad, and airport runway pavements, his analyses and solutions have been 

ubiquitously adopted for general applications of slabs-on-grade. His work has largely stood the test 

of time and has been the subject matter of rigorous analysis and discussion over the past century 

(Ioannides, 1989), and now serves as the basis for the three conventional design methodologies 

accepted by the American Concrete Institute: 1) the Portland Cement Association (PCA) method, 2) 

the Wir e Reinforcement Institute (WRI) method, and 3) the Corps of Engineers (COE) method 

(McKinney et al., 2006 ). Notably, all three methods do not address the effects of any vertically 

applied uplifting forces acting on the slab . A Winkler soil model by definit ion provides artificial 

tensile stiffness to a slab, and as a result, is unsuitable for use when considering a slab-on-grade 

subject to an overturning moment. A need therefore arises to develop guidelines for this type of 

structural problem. This study aim s to address these overturning moments by substituting  an 

equivalent elastic soil model without any tensile support and establishing generalized equations 

used to predict the maximum moment capacities for slab -on-grade problems of this nature.  

1.2 Objectives 

The overarching aim of this research is to investigate the performance of industrial slab -on-grade 

floor s of various dimensions (length and thickness) and material properties ( concrete and subgrade 

strength)  mounted by cranes of various sizes (load capacity and load distribution).  The scope of 

this study is limited to freestanding, foundationless jib cranes with a maximum capacity of 1 -ton 

mounted to slab-on-grade floors minimally reinforced for crack control. Most design checks (i.e., 

allowable deflection, soil bearing, anchor-associated failure, one-way and two-way shear, and 

concrete) can be easily performed by existing guidelines. As the serviceability limit states govern 

over the ultimate limit states for warehouse floor applications, this study will only investigate the 

first cracking of the concrete caused by tensile stresses. 

The following objectives in this study have been outlined below: 

¶ Determine a relationship between the Winkler spring model and an elastic half-space model 

that removes the artificial tensile stiffness by relating the modulus of subgrade reaction to 

an equivalent modulus of elasticity.  

¶ Develop a simplified finite element ( FE) model in Abaqus representing the typical slab-soil 

system seen in industrial settings. The initial finite element model will be verified against 

existing analytical solutions for simple problems and previous finite element studies of the 

same form (Hu and Hartley,  1994; Silva et al., 2001; etc.). 
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¶ Conduct a parametric study on various slab-soil dimensions and material properties by 

automating the mass simulation of calibrated FE models through Python and Matlab. 

¶ Conduct a non-linear, multivariate statistical r egression on the data obtained from the 

parametric study to develop a mathematical model that can be used to adequately predict 

the moment capacity of any slab-soil system with dimensions and material  properties within 

the range of considered values. 

1.3 Thesis Organization  

This thesis is divided into 5 chapters. The information presented in each chapter has been 

summarized below: 

¶ Chapter 1 provides a brief overview on the research topic and provides insight on the 

motivations, goals, and objectives.  

¶ Chapter 2 provides a comprehensive literature review involving the contemporary methods 

for slabs-on-grade design presented by the American Concrete Institute, historical methods 

for idealiz ing soil mediums, and any existing analytical and numerical solutions for the 

problem of a slab-on-grade. 

¶ Chapter 3 provides the formulation of the FE model used in this study. In particular, the 

selection of the model parameters (slab length, slab thickness, specific concrete compressive 

strength, subgrade strength, baseplate radius, and vertical compressive force) and the upper 

and lower bounds for each variable are discussed. The model definition and verification and 

validation results are also provided. 

¶ Chapter 4 presents the numerical results associated with the data collection and analysis of 

the parametric study. The influence of each model parameter and the performance of the 

slab-on-grade with respects to changes in any parameter is discussed, and the non-linear 

multivariable regression model is validated. The final general equation is also presented.  

¶ Chapter 5 summarizes the findings in this study and provides recommendations for areas of 

future work.  

  



4 
 

2.0 Literature Review  

2.1 Design of Slabs-on-Grade 

In general, the contemporary design methods of slabs-on-grade in North America (including the 

Canadian Concrete Handbook, CSA A23) are largely detailed by three methods presented by 

American Concrete Institute (ACI 360R -06) and the United States Air Force Manual (TM -5-809) : 

1. the Portland Cement Association (PCA) method, 

2. the Wire Reinforcement Institute (WRI) method, and  

3. the Corps of Engineers (COE) method. 

All three methods are based on analyses largely attributed to Westergaardôs work on infinitely 

spanning slabs resting on Winkler -type foundations (citing works from 1923, 1925, and 1926) and 

subject to wheel loads idealized as concentrated loads distributed over a small circular or elliptical 

area. An important assumption that all three methods make (which conveniently allows for the use 

of a Winkler foundation) is that a slab-on-grade remains in full , continuous contact with the 

ground throughout the duration of its deformation (McKi nney et al., 2006). This assumption 

produces artificial tensile stiffness between the slab and the soil but is largely negligible for the vast 

majority of slab -on-grade design applications involving vehicle wheel loads (forklifts and other 

vehicles), concentrated, strip, and line loads produced by various warehouse equipment (i.e., 

storage posts and racks), and distributed loads (produced by pallets, etc.) in which the critical 

deflections and bending stresses are overwhelmingly in the vertical, downwards direction and 

found on the bottom surface of the slab.  

The following sections will briefly summarize each of the design guidelines listed above. 

2.1.1 PCA Design Method  

PCA offers design guidelines to establish the thickness of a slab-on-grade limited to the case of a 

slab-on-grade loaded near the center and away from its edges. The design charts and tables 

provided by PCA are limited to considering  single- or double axle- vehicular wheel loads, 

concentrated loads, and uniform loads  and assumes that the critical tensile stresses develop on the 

bottom surface of the slab centrally under the load.  

The PCA design method has been loosely summarized below by considering the case of a slab-on-

grade subject to a central single-axle wheel load. It is assumed that the concrete material 

properties, subgrade material properties, and loading conditions are all known and predetermined.  

The factor of safety must first be established. Typical values are recommended as varying between 

1.7 ï 2 but may otherwise be left to the judgement of the engineer (Packard, 1996). 

The working stress of concrete may then be determined: 
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in which WS is the concrete working stress, MR is the modulus of rupture of concrete, and SF is the 

factory of safety. 

The slab stress per 1000 lb (4448 N) of load is then determined: 
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in which SS is the slab stress per 1000 lbs. The design chart in Figure 2.1 is then used to determine 

the required slab thickness based on SS, wheel spacing, effective contact area, and subgrade 

strength. 

 

Figure 2.1: PCA design chart ï design slab thickness determined by wheel spacing, effective contact 

area, and subgrade strength (McKinney et al., 2006 ) 

A horizontal line is first drawn towards the right from the known axle load  stress until it intersects 

with the curve associated with the effective contact area. A vertical line from this intersection is 

drawn downwards until it intersects with the curve associated with the wheel spacing. Finally, a 

horizontal line is then drawn towards the right from this intersection until it intersects with the 

curve associated with the slab thickness and subgrade strength. 
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After determining the initial concrete slab thickness, Figure 2.2 can be used to check if the actual 

contact area is sufficient; else, the procedure should be restarted but using the new effective contact 

area: 

 

Figure 2.2: PCA design chart ï effective load contact area based on slab thickness (McKinney et al., 

2006) 

A vertical line is first drawn upwards starting from the known load contact area until it intersects 

with the curve associated with the determined initial slab thickness. A horizontal line can then be 

drawn to the left to determine the effective contact area. 

This design procedure may be followed for any of the loading cases considered and is nearly 

identical. For a comprehensive, detailed guide on the PCA design method, the reader is suggested 

to examine óDesign of Slabs-on-Groundô (McKinney et al., 2006) and óSlab Thickness Design for 

Industrial Concrete Floors on Gradeô (Packard, 1996).  

2.1.2 WRI Design Method  

Like the PCA method, WRI offers design guidelines limited to the case of a slab-on-grade subject to 

a central load away from any edges. The design charts provided by WRI are limited to  single-axle 

vehicular wheel loads, though concentrated loads may be considered by determining an equivalent 

or representative wheel load. In the case of a wheel load, it is assumed that the critical stresses 

develop on the bottom surface of the slab. WRI also provides design charts for the case of 

uniformly distributed loads on either or both sides of an aisle (i.e., the pedestrian floorspace 

between two storage racks). In the case of this uniform loading pattern,  it is assumed that the 

critical stresses develop on the top surface of the slab (McKinney et al., 2006) .  
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The WRI design method has been loosely summarized below by considering the case of a slab-on-

grade subject to a central single-axle wheel load. It is assumed that the concrete material 

properties, subgrade material properti es, and loading conditions are all known and predetermined.  

An initial trial thickness, H , is arbitrarily assigned. The design chart in Figure 2.3 is used to 

determine to relative stiffness parameter between the slab and the subgrade, D/k : 

 

Figure 2.3: WRI design chart ï relative stiffness parameter determined by the subgrade strength 

and trial slab thickness (McKinney et al., 2006 ) 

A horizontal line  is drawn from the intersection of the trial slab thickness and modulus of elasticity 

of concrete towards the right until it intersects with the curve associated with the known subgrade 

strength. From there, a vertical line can be drawn downwards to find the relative stiffness 

parameter. 

Next, the diameter of the equivalent contact area based on the actual wheel contact area should be 

determined:  
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in which r  is the radius of the actual wheel contact area. The diameter of the equivalent contact 

area, wheel spacing, and the relative stiffness parameter obtained from Figure 2.3 may then be 

used in Figure 2.4 to determine the basic moment induced by the wheel and the additional moment 

induced by a wheel spaced further out: 

 

Figure 2.4: WRI design chart ï basic moment and additional moment determined by the diameter 

of the equivalent contact area and wheel spacing, respectively (McKinney et al., 2006 ) 

A line is first drawn vertically upwards from the known equivalent loaded diameter until it 

intersects with the known relative stiffness . A horizontal line can then be drawn to the left to find 

the unit moment.  

Finally, using the calculated moment and the allowable tensile stress, Figure 2.5 may be used to 

determine the required slab thickness.  
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Figure 2.5: WRI design chart ï design slab thickness determined by the maximum moment and 

allowable tensile stress (McKinney, et al., 2002)  

A line is first drawn horizontally towards the right from the known combined slab bending moment 

until it intersects with the known allowable tensile stress. A line can then be drawn vertically to 

determine the slab thickness. 

If the required thickness dif fers substantially from the initially assumed thickness, the design 

procedure should be restarted with the determined thickness as the new initial trial thickness 

(McKinney, 2002).  

For a comprehensive, detailed guide on the WRI design method, the reader is suggested to examine 

óDesign of Slabs-on-Groundô (McKinney et al., 2006 ) and óDesign of Slab-on-Ground Foundationsô 

(Snowden, 1981).  

2.1.3 COE Design Method  

While the PCA and WRI methods are used for the case of interior loading, the COE design method 

is intended for slabs-on-grade loaded directly at an edge or a joint and aims to limit the tensile 

stresses at the bottom of said joint. COE provides design charts limited solely  to single- and double-

axle vehicular wheel loads and do not consider concentrated, uniform, or strip loads. In particular, 

the determination of size and load of considered wheels are dependent on the classification of a 

vehicle design index. Therefore, an exact slab thickness required for a particular wheel load cannot 

be determined, and instead, a general slab thickness may be obtained for each class of wheel loads.  
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The COE design method has been loosely summarized by considering the case of a slab-on-grade 

subject to a single-axle wheel load applied at an edge. It is assumed that the concrete material 

properties, subgrade material properties, and loading conditions are all known and predetermined.  

First, a given wheel loading must be classified based on a nominal capacity determined by Figure 

2.6:  

 

Figure 2.6: COE design chart ï vehicle design index (McKinney et al., 2006 ) 

The design index category controls the various loading conditions applicable to the slab. Once this 

is established, the Figure 2.7 may be used to determine the required thickness:  

 

Figure 2.7: COE design chart ï required slab thickness determined by design index, subgrade 

strength, and flexural strength , (McKinney et al., 2006 ) 

A line is first drawn horizontally to the right from the known flexural strength until it intersects 

with the known  subgrade strength. A line is then drawn vertically downwards until it intersects 






















































































































































































































































































































