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Abstract 

Free-standing, foundationless jib cranes mounted directly on unreinforced slab-on-grade floors are 

a common necessity in industrial settings for material handling purposes. Ensuring that existing 

slabs can support a jib crane is critical, as industrial floors are subject to stringent serviceability 

requirements. Sudden slab failure can result in dropped loads and the loss of life. The installation 

of such cranes is typically based on rules of thumb, and no design standards or guidelines currently 

exist. Slabs-on-grade are typically designed for vertical compressive forces stemming from vehicle 

wheel loads or storage rack posts; however, a slab-mounted crane transfers both compressive 

forces and an overturning moment to the slab. In this study, a parametric analysis was conducted 

by simulating finite element models to investigate the behaviour of unreinforced slab-on-grade 

floors under foundationless, freestanding crane loads. Statistical methods were used to develop a 

non-linear model capable of predicting the capacity of such slabs. In particular, for the range of 

practical values considered in the study, it was found that the slab thickness, concrete strength, and 

baseplate size were critical parameters greatly affecting the capacity of such slabs. This research 

provides more confidence and safety when checking the installation and operation of such cranes 

on plain slabs-on-grade.  
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1.0 Introduction 

1.1 Research Needs 

In an industrial warehouse setting, floors are typically thin, jointed plain concrete slabs-on-grade 

minimally reinforced specifically for temperature and shrinkage control and are supported laterally 

by adjacent slabs or doweled connections and vertically by the soil it rests on. Cranes (i.e., 

overhead, gantry, bridge, jib, amongst others) are a common necessity in these settings as they are 

used for material handling purposes to aid workers in the mobility of loads often beyond the 

capability of human strength. In particular, foundationless jib cranes are cranes without any 

supplementary poured concrete foundations and are instead mounted directly to the slab via post-

installed anchor bolts. Foundationless cranes of this nature boast flexibility in terms of the time 

and cost required for installation or future relocation, making it a very attractive option for 

warehouse owners. However, foundationless, slab-mounted cranes force the slab they are mounted 

on to bear all of the self-weight and load of the crane in conjunction with the overturning moment 

produced by the eccentric loading of the crane’s arm. This combination can produce large bending 

stresses that a thin, unreinforced slab may not be able to resist. The typical industry practice for 

installing jib cranes involves adopting an upper bound of 8-kip-ft (approximately 10.8 kNm) for the 

maximum allowable overturning moment that a slab can support. The origins and validity of this 

rule-of-thumb are unfortunately unclear, and its practical applications are questionable at best as 

established crane manufacturers (Gorbel, 2012; Spanco, 2018) regularly install foundationless jib-

cranes with load capacities licensed up to 16-kip-ft (approximately 21.6 kNm) based on their 

minimum requirements: a minimum concrete strength of 3000 psi, subgrade bearing capacity of 

2500 psf, and a slab thickness of 6’’. However, in practice, foundationless cranes are often mounted 

to pre-existing slabs-on-grade that may have unclear dimensions and material properties; it is 

reasonable to assume that the actual thickness of the slab varies between 4’’ – 8’’. A typical 

foundationless, slab-mounted jib crane is depicted in Figure 1.1: 

 

Figure 1.1: Typical side view of a foundationless, freestanding jib crane 



2 
 

Contemporary methods for designing slabs-on-grade are closely linked to the design of airport and 

highway pavements and are largely based on the Winkler spring model following the prevailing 

efforts of Harald Westergaard, who, throughout much of the early 20th century, provided rigorous 

theoretical solutions for the maximum deflections and critical bending stresses of infinite and 

semi-infinitely spanning slab-on-grade pavements subject to various vertical concentrated loadings 

(Westergaard, 1926). While Westergaard’s solutions were specifically presented for the design of 

highway, railroad, and airport runway pavements, his analyses and solutions have been 

ubiquitously adopted for general applications of slabs-on-grade. His work has largely stood the test 

of time and has been the subject matter of rigorous analysis and discussion over the past century 

(Ioannides, 1989), and now serves as the basis for the three conventional design methodologies 

accepted by the American Concrete Institute: 1) the Portland Cement Association (PCA) method, 2) 

the Wire Reinforcement Institute (WRI) method, and 3) the Corps of Engineers (COE) method 

(McKinney et al., 2006). Notably, all three methods do not address the effects of any vertically 

applied uplifting forces acting on the slab. A Winkler soil model by definition provides artificial 

tensile stiffness to a slab, and as a result, is unsuitable for use when considering a slab-on-grade 

subject to an overturning moment. A need therefore arises to develop guidelines for this type of 

structural problem. This study aims to address these overturning moments by substituting an 

equivalent elastic soil model without any tensile support and establishing generalized equations 

used to predict the maximum moment capacities for slab-on-grade problems of this nature.  

1.2 Objectives 

The overarching aim of this research is to investigate the performance of industrial slab-on-grade 

floors of various dimensions (length and thickness) and material properties (concrete and subgrade 

strength) mounted by cranes of various sizes (load capacity and load distribution). The scope of 

this study is limited to freestanding, foundationless jib cranes with a maximum capacity of 1-ton 

mounted to slab-on-grade floors minimally reinforced for crack control. Most design checks (i.e., 

allowable deflection, soil bearing, anchor-associated failure, one-way and two-way shear, and 

concrete) can be easily performed by existing guidelines. As the serviceability limit states govern 

over the ultimate limit states for warehouse floor applications, this study will only investigate the 

first cracking of the concrete caused by tensile stresses. 

The following objectives in this study have been outlined below: 

• Determine a relationship between the Winkler spring model and an elastic half-space model 

that removes the artificial tensile stiffness by relating the modulus of subgrade reaction to 

an equivalent modulus of elasticity.  

• Develop a simplified finite element (FE) model in Abaqus representing the typical slab-soil 

system seen in industrial settings. The initial finite element model will be verified against 

existing analytical solutions for simple problems and previous finite element studies of the 

same form (Hu and Hartley, 1994; Silva et al., 2001; etc.). 
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• Conduct a parametric study on various slab-soil dimensions and material properties by 

automating the mass simulation of calibrated FE models through Python and Matlab. 

• Conduct a non-linear, multivariate statistical regression on the data obtained from the 

parametric study to develop a mathematical model that can be used to adequately predict 

the moment capacity of any slab-soil system with dimensions and material properties within 

the range of considered values. 

1.3 Thesis Organization 

This thesis is divided into 5 chapters. The information presented in each chapter has been 

summarized below: 

• Chapter 1 provides a brief overview on the research topic and provides insight on the 

motivations, goals, and objectives.  

• Chapter 2 provides a comprehensive literature review involving the contemporary methods 

for slabs-on-grade design presented by the American Concrete Institute, historical methods 

for idealizing soil mediums, and any existing analytical and numerical solutions for the 

problem of a slab-on-grade. 

• Chapter 3 provides the formulation of the FE model used in this study. In particular, the 

selection of the model parameters (slab length, slab thickness, specific concrete compressive 

strength, subgrade strength, baseplate radius, and vertical compressive force) and the upper 

and lower bounds for each variable are discussed. The model definition and verification and 

validation results are also provided. 

• Chapter 4 presents the numerical results associated with the data collection and analysis of 

the parametric study. The influence of each model parameter and the performance of the 

slab-on-grade with respects to changes in any parameter is discussed, and the non-linear 

multivariable regression model is validated. The final general equation is also presented.  

• Chapter 5 summarizes the findings in this study and provides recommendations for areas of 

future work.  
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2.0 Literature Review 

2.1 Design of Slabs-on-Grade 

In general, the contemporary design methods of slabs-on-grade in North America (including the 

Canadian Concrete Handbook, CSA A23) are largely detailed by three methods presented by 

American Concrete Institute (ACI 360R-06) and the United States Air Force Manual (TM-5-809): 

1. the Portland Cement Association (PCA) method, 

2. the Wire Reinforcement Institute (WRI) method, and 

3. the Corps of Engineers (COE) method. 

All three methods are based on analyses largely attributed to Westergaard’s work on infinitely 

spanning slabs resting on Winkler-type foundations (citing works from 1923, 1925, and 1926) and 

subject to wheel loads idealized as concentrated loads distributed over a small circular or elliptical 

area. An important assumption that all three methods make (which conveniently allows for the use 

of a Winkler foundation) is that a slab-on-grade remains in full, continuous contact with the 

ground throughout the duration of its deformation (McKinney et al., 2006). This assumption 

produces artificial tensile stiffness between the slab and the soil but is largely negligible for the vast 

majority of slab-on-grade design applications involving vehicle wheel loads (forklifts and other 

vehicles), concentrated, strip, and line loads produced by various warehouse equipment (i.e., 

storage posts and racks), and distributed loads (produced by pallets, etc.) in which the critical 

deflections and bending stresses are overwhelmingly in the vertical, downwards direction and 

found on the bottom surface of the slab.  

The following sections will briefly summarize each of the design guidelines listed above. 

2.1.1 PCA Design Method 

PCA offers design guidelines to establish the thickness of a slab-on-grade limited to the case of a 

slab-on-grade loaded near the center and away from its edges. The design charts and tables 

provided by PCA are limited to considering single- or double axle- vehicular wheel loads, 

concentrated loads, and uniform loads and assumes that the critical tensile stresses develop on the 

bottom surface of the slab centrally under the load.  

The PCA design method has been loosely summarized below by considering the case of a slab-on-

grade subject to a central single-axle wheel load. It is assumed that the concrete material 

properties, subgrade material properties, and loading conditions are all known and predetermined.  

The factor of safety must first be established. Typical values are recommended as varying between 

1.7 – 2 but may otherwise be left to the judgement of the engineer (Packard, 1996). 

The working stress of concrete may then be determined: 
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𝑊𝑆 =

𝑀𝑅

𝑆𝐹
 (2.1) 

 
in which WS is the concrete working stress, MR is the modulus of rupture of concrete, and SF is the 

factory of safety. 

The slab stress per 1000 lb (4448 N) of load is then determined: 

 
𝑆𝑆 =

𝑊𝑆

𝑙𝑜𝑎𝑑, 𝑘𝑖𝑝𝑠
 (2.2) 

 
in which SS is the slab stress per 1000 lbs. The design chart in Figure 2.1 is then used to determine 

the required slab thickness based on SS, wheel spacing, effective contact area, and subgrade 

strength. 

 

Figure 2.1: PCA design chart – design slab thickness determined by wheel spacing, effective contact 

area, and subgrade strength (McKinney et al., 2006) 

A horizontal line is first drawn towards the right from the known axle load stress until it intersects 

with the curve associated with the effective contact area. A vertical line from this intersection is 

drawn downwards until it intersects with the curve associated with the wheel spacing. Finally, a 

horizontal line is then drawn towards the right from this intersection until it intersects with the 

curve associated with the slab thickness and subgrade strength. 
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After determining the initial concrete slab thickness, Figure 2.2 can be used to check if the actual 

contact area is sufficient; else, the procedure should be restarted but using the new effective contact 

area: 

 

Figure 2.2: PCA design chart – effective load contact area based on slab thickness (McKinney et al., 

2006) 

A vertical line is first drawn upwards starting from the known load contact area until it intersects 

with the curve associated with the determined initial slab thickness. A horizontal line can then be 

drawn to the left to determine the effective contact area. 

This design procedure may be followed for any of the loading cases considered and is nearly 

identical. For a comprehensive, detailed guide on the PCA design method, the reader is suggested 

to examine ‘Design of Slabs-on-Ground’ (McKinney et al., 2006) and ‘Slab Thickness Design for 

Industrial Concrete Floors on Grade’ (Packard, 1996).  

2.1.2 WRI Design Method 

Like the PCA method, WRI offers design guidelines limited to the case of a slab-on-grade subject to 

a central load away from any edges. The design charts provided by WRI are limited to single-axle 

vehicular wheel loads, though concentrated loads may be considered by determining an equivalent 

or representative wheel load. In the case of a wheel load, it is assumed that the critical stresses 

develop on the bottom surface of the slab. WRI also provides design charts for the case of 

uniformly distributed loads on either or both sides of an aisle (i.e., the pedestrian floorspace 

between two storage racks). In the case of this uniform loading pattern, it is assumed that the 

critical stresses develop on the top surface of the slab (McKinney et al., 2006).  
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The WRI design method has been loosely summarized below by considering the case of a slab-on-

grade subject to a central single-axle wheel load. It is assumed that the concrete material 

properties, subgrade material properties, and loading conditions are all known and predetermined.  

An initial trial thickness, H, is arbitrarily assigned. The design chart in Figure 2.3 is used to 

determine to relative stiffness parameter between the slab and the subgrade, D/k: 

 

Figure 2.3: WRI design chart – relative stiffness parameter determined by the subgrade strength 

and trial slab thickness (McKinney et al., 2006) 

A horizontal line is drawn from the intersection of the trial slab thickness and modulus of elasticity 

of concrete towards the right until it intersects with the curve associated with the known subgrade 

strength. From there, a vertical line can be drawn downwards to find the relative stiffness 

parameter. 

Next, the diameter of the equivalent contact area based on the actual wheel contact area should be 

determined: 
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𝑑𝑒𝑞𝑢𝑖𝑣. = √
4(𝜋𝑟2)

𝜋
 (2.3) 

 
in which r is the radius of the actual wheel contact area. The diameter of the equivalent contact 

area, wheel spacing, and the relative stiffness parameter obtained from Figure 2.3 may then be 

used in Figure 2.4 to determine the basic moment induced by the wheel and the additional moment 

induced by a wheel spaced further out: 

 

Figure 2.4: WRI design chart – basic moment and additional moment determined by the diameter 

of the equivalent contact area and wheel spacing, respectively (McKinney et al., 2006) 

A line is first drawn vertically upwards from the known equivalent loaded diameter until it 

intersects with the known relative stiffness. A horizontal line can then be drawn to the left to find 

the unit moment.  

Finally, using the calculated moment and the allowable tensile stress, Figure 2.5 may be used to 

determine the required slab thickness.  
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Figure 2.5: WRI design chart – design slab thickness determined by the maximum moment and 

allowable tensile stress (McKinney, et al., 2002) 

A line is first drawn horizontally towards the right from the known combined slab bending moment 

until it intersects with the known allowable tensile stress. A line can then be drawn vertically to 

determine the slab thickness. 

If the required thickness differs substantially from the initially assumed thickness, the design 

procedure should be restarted with the determined thickness as the new initial trial thickness 

(McKinney, 2002). 

For a comprehensive, detailed guide on the WRI design method, the reader is suggested to examine 

‘Design of Slabs-on-Ground’ (McKinney et al., 2006) and ‘Design of Slab-on-Ground Foundations’ 

(Snowden, 1981).  

2.1.3 COE Design Method 

While the PCA and WRI methods are used for the case of interior loading, the COE design method 

is intended for slabs-on-grade loaded directly at an edge or a joint and aims to limit the tensile 

stresses at the bottom of said joint. COE provides design charts limited solely to single- and double-

axle vehicular wheel loads and do not consider concentrated, uniform, or strip loads. In particular, 

the determination of size and load of considered wheels are dependent on the classification of a 

vehicle design index. Therefore, an exact slab thickness required for a particular wheel load cannot 

be determined, and instead, a general slab thickness may be obtained for each class of wheel loads.  
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The COE design method has been loosely summarized by considering the case of a slab-on-grade 

subject to a single-axle wheel load applied at an edge. It is assumed that the concrete material 

properties, subgrade material properties, and loading conditions are all known and predetermined.  

First, a given wheel loading must be classified based on a nominal capacity determined by Figure 

2.6:  

 

Figure 2.6: COE design chart – vehicle design index (McKinney et al., 2006) 

The design index category controls the various loading conditions applicable to the slab. Once this 

is established, the Figure 2.7 may be used to determine the required thickness:  

 

Figure 2.7: COE design chart – required slab thickness determined by design index, subgrade 

strength, and flexural strength, (McKinney et al., 2006) 

A line is first drawn horizontally to the right from the known flexural strength until it intersects 

with the known subgrade strength. A line is then drawn vertically downwards until it intersects 
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with the known design index. Lastly, a line is then drawn horizontally to the right to find the 

required thickness. 

For a comprehensive, detailed guide on the COE design method, the reader is suggested to examine 

‘Design of Slabs-on-Ground’ (McKinney et al., 2006). 

2.2 Idealized Linear Elastic Soil Models 

One of the differences that the design of slabs-on-grade have over conventional slab design (i.e., 

typical one-way or two-way spanning slabs supported by beams, columns, or walls) is that slabs-

on-grade are continuously supported on its bottom face by the subgrade over which it rests on. 

Therefore, the behaviour of the slab is dependent on the behaviour of the subgrade, which is 

difficult to accurately characterize. The characterization of a subgrade’s behavior under loading 

requires a complete stress-strain relationship of the soil; however, this proves highly challenging as 

soil can be best described as a nonlinear, irreversible, time-dependent, and anisotropic and 

inhomogeneous material (Ioannides, 1984; U.S. Army, 1987; Lukanen, 2005; amongst others). 

Moreover, the behaviour of soil differs when tested in-situ versus in the lab, and its various 

material properties can be influenced by a variety of external factors, including the soil depth, 

moisture content, loaded region, and temperature (Bowles, 2001; McKinney et al., 2006; AASHTO 

SCDOT, 2019; amongst others). In lieu of a comprehensive geotechnical investigation, researchers 

and engineers have historically modelled soil mediums using one of two simplified approaches. 

One such idealization is the Winkler spring model, which represents the soil medium as an 

infinitely spanning array of linear elastic and independently acting springs. The model can be 

characterized by a single spring constant called the modulus of subgrade reaction, k, with units of 

pressure per length (e.g., kPa/mm, psi/in). By definition, the springs act independently with 

respect to one another, and as a result, any particular spring (or any specific point in the soil 

medium) deflects solely due to an externally applied pressure acting on that spring (Winkler, 1867; 

McKinney et al., 2006). 

The other common idealization is the Boussinesq elastic half-space, which represents the soil 

medium as an infinitely spanning, linear elastic, isotropic and homogeneous elastic block. The 

model therefore can be accurately characterized by a modulus of elasticity, E, and Poisson’s ratio, 

u. In the half-space model, the soil acts like any typical elastic body, and as a result accounts for the 

effects of continuity (i.e., a point in the body will deform to some degree if a pressure is applied to 

another point in the body) (Boussinesq, 1885; Ioannides, 1984).  

Historically, the Boussinesq half-space has been considered to be mathematically complex and 

shared one of the main problems of the Winkler spring model of having only a single characterizing 

parameter (E and k, respectively, with u being negligible in most cases) (Selvadurai, 1979; 

Ioannides, 1984; Bowles, 2001). The actual behaviour of in-situ soil is generally expected to lie 

somewhere between the Winkler model and the Boussinesq model, as shown in Figure 2.8:  
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(a) (b) (c) 

 
Figure 2.8: Soil behaviour of a (a) Winkler spring model, (b) realistic, in-situ soil, (c) Boussinesq 

elastic half-space 

The Winkler model from Figure 2.8 (a) has no deflection outside of the loaded region. Conversely, 

the Boussinesq model from Figure 2.8 (c) yields deflection everywhere, including outside of the 

loaded region. Realistic, in-situ soil, as shown in Figure 2.8 (b), is expected to have limited, rapidly 

decreasing deflection outside of the loaded region.  

2.2.1 Winkler Spring Model 

Proposed by Emil Winkler (1835 – 1888), the Winkler spring model idealizes the subgrade as an 

infinitely spanning array of tightly spaced and independently acting linear elastic springs. Each 

spring is assumed to have a linear pressure-deflection relationship (Winkler, 1867; McKinney et al., 

2002), and can therefore be described with the following equation: 

 𝑝 = 𝑘𝑤 (2.4) 

 
where p is the vertical contact pressure acting as some point on the surface of the soil, w is the 

vertical deflection in the soil below that point, and k is a proportionality factor characterizing the 

subgrade material known as the modulus of subgrade reaction. The modulus of subgrade reaction 

is expressed as a load intensity per unit length of displacement and is the sole characterizing 

parameter of the Winkler model. Figure 2.9 shows the behaviour of a Winkler soil subject to an 

arbitrary load: 

 

Figure 2.9: Winkler soil subject to arbitrary distributed load 

Because each spring acts independently of one another, shear discontinuity between individual 

springs is present (Ioannides, 1987). This means that any point in the soil will only deform due a 

pressure applied at that specific point; this introduces a discontinuity of deflections and stresses at 

the edges of the loaded regions, and as a result, the deflections in the soil caused by a pressure do 
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not spread in the transverse direction. The simplicity of the Winkler model means that its use is 

easily extended to contact problems. For instance, consider the case of a beam resting on a Winkler 

elastic foundation. Traditional Euler-Bernoulli beam theory describes the behaviour of an elastic 

beam as:  

 
𝐸𝐼

𝑑4∆

𝑑𝑥4
= 𝑤 (2.5) 

 
in which EI is the flexural rigidity of the beam and w is the applied load. When supported by 

independently acting springs, the differential equation describing the behaviour of the elastic beam 

then becomes: 

 
𝐸𝐼

𝑑4∆

𝑑𝑥4
+ 𝑘∆= 𝑤 (2.6) 

 
in which k is the modulus of subgrade reaction and the other variables are as previously defined. 

The displacement response for any particular loading combination has an analytical solution 

determined by considering the boundary conditions of the beam but is not presented here in this 

study for conciseness. The closed form deflection is well-documented in readings by Hetenyi 

(1946), Selvadurai (1979), amongst others.  

The determination of an appropriate value for the modulus of subgrade reaction also proves to be a 

challenge and is one of the main limitations of the Winkler model (Straughan, 1990; Vallabhan et 

al., 1991). Firstly, the definition of the modulus of subgrade reaction means it assumes that the soil 

has a linear relationship between pressure and deflection. However, realistic, in-situ soil does not 

behave as such, and in general, the relationship can be expected to be nonlinear (McKinney et al., 

2006; Lukanen, 2005). Because the actual relationship is highly nonlinear, two values of idealized 

subgrade moduli may be very different. This idea is shown in Figure 2.10:  
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Figure 2.10: Applied bearing load versus observed deflection, from McKinney et al. (2006) 

Here, the solid black line, ks, represents the relationship between the soil deflection and applied 

load of a theoretical field test. The dotted black line, k1, represents an idealized linear relationship 

for the modulus of subgrade reaction when a linear function is simply fitted equally to the 

measured data. The double dotted black line, k2, represents an idealized linear relationship when 

the function is weighted more heavily towards the initial portion of the curve for smaller applied 

loads. It can be seen that the two linear idealizations present two drastically different slopes for the 

modulus of subgrade reaction.  

It is important to highlight that the modulus of subgrade reaction is a fictious property of soil and 

that the value is variable dependent on the testing mechanism, such as the size of load, shape of 

load, depth considered, consolidation of soil, repeated testing versus non-repeated testing, and the 

other properties of soil, such as the moisture content or temperature, amongst others (Selvadurai, 

1979; Lukanen; 2002, FHWA, 2006; amongst others). As a result, even the empirical measured 

relationship between the deflection of soil and externally applied load will change with changes to 

any of the variables listed (Selvadurai, 1979; Dalogulu and Vallabhan, 2000; Lukanen, 2005; 

McKinney et al., 2006). General tests conducted to establish a representative modulus of subgrade 

reaction include the plate loading test, pressure meter test, consolidation test, and triaxial test, 

amongst others (Westergaard, 1923; Terzaghi, 1955; Recordon, 1957; Weissman and White, 1961; 

Teng, 1962; Nielson, 1963, 1969; Bowles, 2001). 

Several researchers have developed empirical relationships for the modulus of subgrade reaction 

based on soil properties or soil type. Biot (1937) presented an empirical equation for the modulus 

of subgrade reaction by calibrating the maximum bending moments in a beam resting on a Winkler 

foundation to that of a beam resting on an elastic half-space (Biot 1937, Daloglu et al. 2000, 
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Selvadurai 1979), and as a result is dependent on both the elastic properties of the soil medium and 

the beam: 

 
𝑘 =  

0.95𝐸𝑠

(1 − 𝑣𝑠
2)

 [
𝐵4𝐸𝑠

(1 − 𝑣𝑠
2)𝐸𝐼

]

0.108

 (2.7) 

 
in which B is the width of the beam, EI is the flexural rigidity of the beam, vs is Poisson’s ratio of 

the soil, and Es is the modulus of elasticity of the soil. Notably, Biot assumed that the modulus of 

subgrade reaction is determined for a beam, and therefore, his equation is largely incompatible 

when considering slabs or beams with very large widths.  

Terzaghi (1955) concluded that the modulus of subgrade reaction was dependent on the width of a 

footing or a plate, so long as the applied load was half the ultimate bearing stress of the soil and the 

footing or plate could be assumed as rigid (Terzaghi, 1955; Selvadurai, 1979). He presented the 

following equation for a rectangular plate of any width B: 

 
𝑘 = 𝑘1 [

𝐵 + 0.305

2𝐵
]
2

 (2.8) 

 
in which k1 is the modulus of subgrade reaction determined through an empirical test using a plate 

with a width of 0.305 m (Terzaghi, 1955). Teng (1955) later expanded on Terzaghi’s work and 

concluded that the modulus of subgrade reaction was additionally dependent on the depth at which 

testing was conducted at (as the confining stress is assumed to increase with increases in depth), 

modifying Terzaghi’s equation to: 

 
𝑘 = 𝑘1 [

𝐵 + 0.305

2𝐵
]
2

[1 + 2
𝐷

𝐵
] ≤ 2𝑘1 [

𝐵 + 0.305

2𝐵
]
2

 (2.9) 

 
in which the variables are the same as before and D is the depth at testing. Teng (1955) and 

Terzaghi’s (1955) equations are, of course, limited by the requirement of empirical load testing data 

to determine k1, but are more suitable for general applications of plates and slabs. 

Lenczner (1962) developed an equation relating the modulus of subgrade reaction to both the 

modulus of elasticity of the soil, the soil depth, and the width of the footing or plate: 

 
𝑘 =

2𝐸𝑠

𝑏 log (1 +
2𝐻
𝑏 )

 (2.10) 

 
in which b is the width of the footing or plate, H is the depth of the soil, and Es is the modulus of 

elasticity of the soil. 

Many other researchers have developed similar equations to the ones presented in this section. In 

general, equations developed by research are dependent on the elastic properties of the soil (i.e., 

the modulus of elasticity and/or Poisson’s ratio) and dimensions of the structure resting on the 
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soil. Occasionally, some researchers introduced the effects of depth. Table 2.1 provides an overview 

on the efforts of many such researchers: 

Table 2.1: Summary of empirical equations determining the modulus of subgrade reaction 

Researcher Equation Intended Use Equation 

Biot (1937) 
𝑘 =  

0.95𝐸𝑠

(1 − 𝑣𝑠
2)

 [
𝐵4𝐸𝑠

(1 − 𝑣𝑠
2)𝐸𝐼

]

0.108

 
Beams (2.7) 

Galin (1943) 
𝑘 =

𝜋𝐸𝑠

2𝑏(1 − 𝑣𝑠
2) log (

𝑙
𝑏
)

 
Beams (2.8) 

Terzaghi (1955) 
𝑘 = 𝑘1 [

𝐵 + 0.305

2𝐵
]
2

 
Plates (2.11) 

Vesic (1961) 

𝑘 =  
0.65𝐸𝑠

(1 − 𝑣𝑠
2)

√
𝐵4𝐸𝑠

𝐸𝐼

12

 

Beams (2.12) 

Teng (1962) 
𝑘 = 𝑘1 [

𝐵 + 0.305

2𝐵
]
2

[1 + 2
𝐷

𝐵
] 

Plates (2.7) 

Lenczner (1962) 
𝑘 =

2𝐸𝑠

𝑏 log (1 +
2𝐻
𝑏 )

 
Plates (2.10) 

Meyerhof (1965) 
𝑘 =  

𝐸𝑠

𝐵(1 − 𝑣𝑠
2)

 
Plates (2.13) 

Vlasov and Leontiev 

(1966) 
𝑘 =

𝐸𝑠

𝐻(1 + 𝑣𝑠)(1 − 2𝑣𝑠)
 

N/A (2.14) 

Reti (1967) 

𝑘 =
2.15

ℎ
√

𝐸𝑠
4

𝐸𝑏

3

 

Beam (2.15) 

Horvath (1983) 
𝑘 =  

𝐸𝑠

𝐻
 

N/A (2.16) 

Bowles (2001) 
𝑘 =

𝐸𝑠

𝐵(1 − 𝑣𝑠
2)(𝑚𝐼𝑠𝐼𝑓)

 
Plates (2.17) 

 
Figures 2.11 to 2.14 provide a visual comparison of the modulus of subgrade reactions obtained 

from the equations presented in Table 2.1. Figures 2.11 and 2.12 present relationships between the 

modulus of subgrade reaction and the modulus of elasticity for various equations. Figures 2.13 and 

2.14 present relationships between the modulus of subgrade reaction and the width of the beam or 

plate. 
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Figure 2.11: Empirical equations of the modulus of subgrade reaction with the modulus of elasticity 

of soil as the dependent variable for beams; vb = 0.2, vs = 0.3, Eb = 26,000 MPa, h = 150 mm, L = 

6,000 mm, and H = 10,000 mm 

 

Figure 2.12: Empirical equations of the modulus of subgrade reaction with the modulus of elasticity 

of soil as the dependent variable for plates; vb = 0.2, vs = 0.3, Eb = 26,000 MPa, h = 150 mm, L = 

6,000 mm, and H = 10,000 mm 

Figure 2.11 and 2.12 provides comparisons of modulus of subgrade reaction versus the modulus of 

elasticity of the soil for various equations intended for the usage of beams or plates. It is clear that 

there is a large variance in the modulus of subgrade reaction especially when considering higher 

values of the modulus of elasticity (and consequently, for high-value subgrade reaction moduli). In 
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particular, it can be noted that all of the equations seen here adopt a linear relationship between 

the modulus of subgrade reaction and modulus of elasticity. 

 

Figure 2.13: Empirical equations of the modulus of subgrade reaction with the depth of soil as the 

dependent variable for beams; vb = 0.2, vs = 0.3, Eb = 26,000 MPa, h = 150 mm, H = 10,000 mm, 

and Es = 100 MPa 

Figure 2.13 provides a comparison of the modulus of subgrade reaction versus the beam width for 

various equations. Immediately, it can be noted that Galin (1943), Horvath (1983), and Vlasov 

(1967) do not consider the effects of the beam width on the modulus of subgrade reaction. It can be 

seen that the modulus of subgrade reaction increases with increases to the beam width.  

 

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500M
o

d
u

lu
s 

o
f 

S
u

b
g

ra
d

e 
R

ea
ct

io
n

 (
p

si
/i

n
.)

Beam Width (mm)

Biot (1937) Galin (1943) Vesic (1961)

Vlasov (1967) Horvath (1983)



19 
 

 

Figure 2.14: Empirical equations of the modulus of subgrade reaction with the depth of soil as the 

dependent variable for plates; vb = 0.2, vs = 0.3, Eb = 26,000 MPa, h = 150 mm, H = 10,000 mm, 

and Es = 100 MPa 

Figure 2.14 provides a comparison of the modulus of subgrade reaction versus the plate width for 

various equations. Immediately, it can be noted that Vlasov (1966) and Horvath (1983) do not 

consider the effects of the plate width on the modulus of subgrade reaction. Contrastingly to the 

case of the beam, increasing the plate width rapidly decreases the modulus of subgrade reaction.  

Researchers have also attempted to link a range of modulus of subgrade reaction values to the type 

or classification of a particular soil (i.e., silts, sands, clays, etc.).  

Terzaghi (1955) provides a suggested range of modulus of subgrade reaction values for clayey soils 

based on the relative density of soil particles, consistency, and approximate moisture content: 
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Table 2.2: Typical values off modulus of subgrade reaction (N/m3 ×10-3) (Terzaghi, 1955; 

Selvadurai, 1979) 

Granular soils 

 Relative density 

 Loose Medium Dense 

Dry or moist sand 6.25 – 18.7 18.7 – 93.6 93.6 – 312.0 

Submerged sand 7.8 25.0 97.0 

Over consolidated clays 

 Consistency 

 Stiff Very stiff Hard 

Unconsolidated clays 96 – 192 192 – 384 384 

Consolidated clays 1.5 1.5 – 7.8 

 
Terzaghi’s (1955) suggested ranges were based off of experimental plate loading tests with plates of 

width 0.305 m (Selvadurai, 1987). It is clear that the range of proposed values are only useful in 

providing a general estimation of the modulus of subgrade reaction values for a particular soil type. 

For instance, a dense, dry sand has a suggested range of 93,000 to 312,000 kN/m3, with no further 

recommendations for selecting within this range.  
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Gurbuz and Avci (2018) provides a summary from various researchers (from Terzaghi, 1955; 

Zeevaert, 1983; Baldouf, 1988; Dorken and Dehne, 1995; Ersoy, 1995; Bowles, 2001; Das et al., 

2007; and Uzuner, 2011) and categories the range of modulus of subgrade reaction values based on 

type (gravels, sands, clays), density, and moisture content and have been obtained by various plate 

load tests:  

Table 2.3: Typical values of modulus of subgrade reaction (N/m3 ×10-3), compiled from various 

researchers (Gurbuz and Avci, 2018) 

Soil Type Range of k 

Loose sand 4.8 – 20 

Medium to dense sand 9.6 – 100 

Dense sand 50 – 320.1 

Clayey medium-dense sand 32 – 80 

Silty medium-dense sand 24 – 48 

Dry loose sand 8 – 25 

Dry medium sand 25 – 125 

Dry dense sand 125 – 375 

Moist loose sand 10 – 15 

Moist medium-dense sand 35 – 40 

Moist dense sand 130 – 150 

Sandy gravel 200 – 250 

Dense sandy gravel 100 – 150 

Soft clay 5 – 10 

Plastic clay 5 – 10 

Stiff clay 15 

Very stiff clay > 96 

Rock > 2000 

 
Like Terzaghi’s (1955) recommendations, the summary compiled by Gurbuz and Avci (2018) 

showcases a large range of modulus of subgrade reaction values for each type of soil. When 

considering the case of a dry, dense sand, Gurbuz and Avci (2018) suggests a range of values 

between 125,000 – 375,000 kN/m3. 
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McKinney et al. (2006) provides a summary for approximating the modulus of subgrade reaction 

against a particular soil type based on an ASTM, AASHTO, or FAA soil classification system in the 

form of a logarithmic chart:  

 

Figure 2.15: Approximate interrelationships of soil classifications and bearing values (McKinney et 

al., 2006) 

The equivalent modulus of subgrade reaction for each type of soil classification is based on the 

California bearing ratio for each soil type. In the case of a sandy soil, the ACI guidelines suggest a 

value between 200 – 400 psi/in. (approximately 56,000 – 125,000 kN/m3).  

It is clear from this section that the value of the modulus of subgrade reaction for any particular 

soil type or configuration of soil is a controversial and contested parameter. Researchers (Galin, 

1943; Terzaghi, 1955; etc.) have come up with several equations of various forms dependent on 

various variables (size of plate, depth of subgrade, modulus of elasticity, etc.) to establish a 
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representative, linear modulus of subgrade reaction, yet for a particular soil configuration, may 

produce a large disparity between determined values, as shown previously in Figures 2.11 through 

2.14. Researchers (Terzaghi, 1955; McKinney et al., 2006; etc.) have likewise recommended ranges 

of values for the modulus of subgrade reaction based on the classification or type (i.e., sands versus 

clays) of soil. These ranges tend to be very large for any particular soil type, and the upper bound of 

any soil type may be up to three times the lower bound, as evidenced in Tables 2.2, 2.3, and Figure 

2.15. While in general this makes sense – as a given soil type may vary greatly with respects to 

density, stiffness, moisture content (i.e., plasticity), etc. – this is simply a testament to how variable 

the modulus of subgrade reaction is and reiterates that a particular soil medium or configuration of 

soil does not have a single modulus of subgrade reaction value that perfectly captures its behaviour. 

Recall that the modulus of subgrade reaction itself is simply a linear representation or idealization 

of the actual nonlinear behaviour of the soil and is largely affected by the type and method of 

testing completed. 

Despite the difficulty in obtaining a representative value for the modulus of subgrade reaction, it is 

widely accepted for practical applications that an approximate value of k provides reasonable 

confidence in the behaviour of a slab-soil system, as changes in k result in minor changes in the 

critical stresses (Westergaard, 1926; Ioannides, 1987, Lukanen, 2005). The impacts of k on a slab-

soil system will be investigated and discussed further on in this study. Westergaard (1926) in 

particular suggests that increases to the modulus of subgrade reaction of up to four times only 

causes minor changes in the important stresses of the slab, and therefore, an approximate value of 

the modulus of subgrade reaction should be sufficient in due regards to critical stresses. This is 

specifically in regard to the maximum principal stresses under a loaded region; here, the minor 

changes mentioned by Westergaard may be differences of up to 20%. Contrastingly, the deflection 

of a slab resting on a Winkler soil is greatly affected by changes to the modulus of subgrade 

reaction (Lukanen, 2005, McKinney at al., 2006).  

With such a variety of methods and recommendations for the modulus of subgrade reaction, it 

becomes instructive to discuss some of the typical values of the modulus of subgrade reaction often 

used in literature and in practical design applications. Westergaard (1926), whose work is 

considered the pioneering analysis for slabs-on-grade design, considers a range of modulus of 

subgrade reactions between 50 to 200 psi/in. to be fairly typical. Contemporary slab-on-grade 

design methods summarized in Section 2.1 also considers practical values for the modulus of 

subgrade reaction. In particular, the PCA design methodology considers values between 50 to 200 

psi/in. (like Westergaard) to be typical, while the WRI design method and COE design method 

considers values between 20 to 1000 and 25 to 500 psi/in. to be typical, respectively (Packard, 

1966; McKinney et al., 2006; Ioannides et al., 2006).  

In foundation and footing design, the bearing value of the soil is often provided or required by code 

or design and analysis guidelines – see Canadian Handbook Annex D (Adebar et al., 2017). For 

practical applications, these values often fall between 2000 to 3000 psf (Council of American 

Building Officials, 1995); similarly, the minimum bearing strength of soil required by 

contemporary crane manufacturers is 2500 – 3000 psf (Gorbel, 2012; Spanco, 2018). Using the 
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log-table provided by McKinney et al. (2006), an equivalent range of modulus of subgrade reaction 

values can be determined to be approximately 150 to 200 psi/in. 

2.2.2 Boussinesq Elastic Half-Space 

Named after the French physicist Joseph Boussinesq (1842 – 1929), the Boussinesq elastic half-

space idealizes the subgrade as an infinitely spanning, linear elastic, isotropic, and homogenous 

solid body (Ioannides, 1984). Its name (Boussinesq half-space) is often used in the literature to 

describe a solid elastic body (i.e., terms such as “elastic solid”, “elastic continuum”, “elastic body”, 

etc.) and in this text will simply be shortened to “elastic half-space”. 

The soil is represented by a continuous body, and unlike the Winkler spring model, will consider 

the effects of shear throughout the soil. An elastic half-space loaded by an arbitrarily defined 

distributed force deflects under the loaded region as well as away from the loaded region; the 

response at any point within the soil is influenced by any applied loading directly above the point 

and, to some extent, the applied loading at neighbouring points. This is depicted in Figure 2.16: 

 

Figure 2.16: Boussinesq half-space subject to an arbitrary distributed load 

Boussinesq (1885) in particular provides the following equation to determine the deflection at a 

point in the soil due to a concentrated force acting at the top of the soil: 

 
𝑤(𝑟, 𝑧) =

𝑄

4𝜋𝐺𝑠√𝑟2 + 𝑧2
[2(1 − 𝑣𝑠) +

𝑧2

𝑟2 + 𝑧2
] (2.18) 

 
where Q is the concentrated force, z is the vertical depth, and r is the horizontal distance 

(Selvadurai, 1979). 

The elastic half-space model is considered to be a more realistic interpretation of typical in-situ 

soils, as soils often possess cohesion, and therefore should be expected to transmit forces 

transversely. A load applied at a particular point on the surface of the soil should then cause a 

degree of deflection elsewhere on that body. Notably, some experimental studies have shown the 

deflection elsewhere in in-situ soil tend to be of less significance than of those predicted by the 

Boussinesq half-space (Ioannides, 1984). However, due to the continuous nature of the elastic body 

and the use of traditional three-dimensional continuum mechanics, significant mathematical 
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complexities often develop when considering contact problems involving the half-space (Ioannides, 

1984; Lukanen, 2005), and the analytical solutions these problems are often unobtainable in a 

simple closed form (Selvadurai, 1979). This can be illustrated by considering the case of a beam 

resting on an elastic half-space. While the elastic behaviour of the beam itself is given by equation 

2.5 presented in Section 2.2.1, the response of the beam resting on a half-space is given by: 

 
𝐸𝐼

𝑑4∆

𝑑𝑥4
+ 𝑞̅(𝑥) = 𝑤 (2.19) 

 
in which 𝑞̅(x) is the average contact stress of the beam.  

Selvadurai (1979) provides a relationship between the deflection and the average contact stress: 

 
𝑤(𝑥) =

(1 − 𝑣𝑠)

2𝜋2𝐺𝑠

∫ ∫
𝑞̅(𝜉)𝑑𝑦𝑑𝜉

√(
𝑏2

4 − 𝑦2)((𝑥 − 𝜉)2 − 𝑦2)

𝑏/2

−𝑏/2

𝑙/2

−𝑙/2

 (2.20) 

 
in which Gs is the shear modulus of the soil. 

Solving this equation, and by extension the general response of the beam in equation 2.19, typically 

involves complicated mathematical approximations, and therefore is typically avoided in lieu of the 

simpler Winkler model (Selvadurai, 1979; Ioannides, 1984, Lukanen, 2005).  

The elastic half-space also requires determining its elastic parameters. However, the two 

parameters that define an elastic body, its elastic modulus, E, and Poisson’s ratio, u, are largely up 

for debate when considering a soil medium. While the modulus of elasticity is in fact a natural, 

intrinsic property of any elastic body and may be empirically determined via laboratory 

experiments, the variable nature of soil properties (i.e., the confining stress, void ratio, level of 

consolidation, moisture content, etc.) means that a single elastic modulus is likely incapable of 

characterizing a large body of soil with a high degree of confidence. As a result, it can be expected 

that the moduli of elasticity determined through laboratory or field testing for several samples of 

soils of same soil medium are likely to be different (Bowles, 2001; Selvadurai, 1979).  Therefore, the 

elastic half-space model simply provides an idealized linear representation (through the modulus 

of elasticity) of a non-linear system and relies on the assumption that the particular soil medium is 

homogeneous and isotropic.    

Historically, the modulus of elasticity for a given soil medium is determined by empirical equations 

related to field testing data obtained from unconfined, triaxial, or oedometric compression tests 

(Selvadurai, 1979), or by assigning a range of elastic moduli to a particular type of soil or soil 

classification system (i.e., UCSC, AASHTO, FAA). 

Selvadurai (1979) offers an empirical equation based on oedometer readings: 

 𝐸𝑠 = 𝐸𝑜𝑒𝑑

(1 + 𝑣𝑠)(1 − 2𝑣𝑠)

(1 − 𝑣𝑠)
 (2.21) 
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in which Eeod is the oedometric stiffness modulus determined through an oedometer compression 

test and vs is the Poisson’s ratio of the soil. In particular, equation 2.21 is appropriate only for 

unsaturated soils, or for saturated soils with a Poisson’s ratio of < 0.5.  

Bowles (2001) offers empirical equations based on field testing data of standard penetration (SPT) 

and cone penetration tests (CPT): 

Table 2.4: Modulus of elasticity (kPa) of soil determined via SPT and CPT, from Bowles (2001) 

Soil Type SPT CPT 

Sand (normally consolidated) 𝐸 = 500(𝑁 + 15) 𝐸 = 8000√𝑞𝑐 

Sand (saturated) 𝐸 = 250(𝑁 + 15) 𝐸 = 𝐹𝑞𝑐,  

Where F = 3.5 or 7 based on a 

void ratio of 1.0 or 0.6, 

respectively. 

Sand (over consolidated) 𝐸 = (2600 𝑡𝑜 2900)𝑁  

Gravelly sand 𝐸 = 1200(𝑁 + 6)  

Clayey sand 𝐸 = 320(𝑁 + 15) 𝐸 = (3 𝑡𝑜 6)𝑞𝑐 

Silts, sandy silt, or clayey silt 𝐸 = 300(𝑁 + 6) 𝐸 = (1 𝑡𝑜 2)𝑞𝑐 

Soft clay or clayey silt  𝐸 = (3 𝑡𝑜 8)𝑞𝑐 

 
In Table 2.4, qc represents the cone penetration resistance and is a measure of the CPT. N refers to 

the blow count and is a measure of the SPT. Bowles recommends SPTs and CPTs over other 

laboratory-based testing methods (such as unconfined compression tests and triaxial tests) as they 

tend to be less prone to sample disturbance. Other empirical equations correlated to test data may 

be found in readings by Bowles (2001), Kulhawy et al. (1990), and others, and have been omitted in 

this study for conciseness.  

Notably, empirical equations offered by researchers for the modulus of elasticity is much more 

focused on the correlations to test data (whether it be field testing or laboratory testing) compared 

to the modulus of subgrade reaction, which is dependent on the size of testing done and various 

other soil parameters (such as the depth). 
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In lieu of empirical test data, Bowles (2001) presents a range of typical values for sands, silts, and 

clays dependent on the stress history, water content, density, and age of deposit: 

Table 2.5: Typical values for the modulus of elasticity of soil, from Bowles (2001) 

Soil Modulus of Elasiticty (MPa) 

Clay  

       Very soft 2 – 15 

       Soft 5 – 25 

       Medium 15 – 50 

       Hard 50 – 100 

       Sandy 25 – 250 

Glacial till  

       Loose 10 – 150 

       Dense 150 – 720 

       Very dense 500 – 1440 

Loess 15 – 60 

Sand  

       Silty 5 – 20 

       Loose 10 – 25 

       Dense 50 – 81 

Sand and gravel  

       Loose 50 – 150 

       Dense 100 – 200 

Shale 150 – 5000 

Silt 2 – 20 

 
Table 2.5 is the result of summarizing the moduli of elasticity obtained from various empirical field 

tests for various soil types. In particular, Bowles notes that the range of values for any particular 

soil type are, in general, too large to consider using an averaged value. For instance, the range of 

moduli of elasticity for very dense glacial till ranges between 500 – 1440 MPa. Using an average 

value of 970 MPa would be misrepresentative when considering the applications of design.  
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The American AASHTO LRFD specifications (2019) provides values for the modulus of elasticity of 

soil based on the density and type of soil. The range of moduli of elasticity were obtained from 

various laboratory testing methods (i.e., unconfined, confined, undrained, drained, etc.) methods 

for various soil types. Values have been converted to metric (MPa) for clarity. 

Table 2.6: Typical values for the modulus of elasticity of soil, from AASHTO (2019) 

Soil Modulus of Elasticity (MPa) 

Clay  

       Soft, sensitive 2.4 – 14.4 

       Medium stiff to stiff 14.4 – 48 

       Very stiff 48 – 96  

       Silt 2 – 19.1 

Fine sand  

       Loose 7.6 – 11.5 

       Medium-dense 11.5 – 19.1 

       Dense 19.1 – 29 

Sand  

       Loose 9.6 – 29 

       Medium-dense 29 – 48 

       Dense 48 – 76.6 

Gravel  

       Loose 28 – 76.6 

       Medium-dense 76.6 – 96 

       Dense 96 – 190  

 
In general, the range of values presented by the AASHTO (2019) is in good agreement with the 

values suggested by Bowles (2001).  

From this section, it can largely be seen that the modulus of elasticity for a particular type of soil 

may have a broad range of values. In particular, because the modulus of elasticity is affected by a 

variety of factors, including the moisture content, consolidation ratio, degree of confinement, level 

of soil disturbance, etc., determining the actual modulus of elasticity for a given soil is difficult and 

requires in-situ testing. For the purposes of design, engineers tend to use personal judgement when 

establishing a representative modulus of elasticity (Bowles, 2001; AASHTO, 2019).  

2.2.3 Multi-Parameter Soil Models 

The Winkler spring model and Boussinesq half-space can be considered to be the two simplest 

linear elastic idealizations of soil mediums. The behaviour of both models can be characterized by a 

single parameter (either the modulus of subgrade reaction or the modulus of elasticity, 

respectively). The major difference separating the Winkler model from the elastic half-space model 

is the discontinuity present in the Winkler model that ultimately causes it to appear more 
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unrealistic than its half-space counterpart. Various researchers have proposed alternative 

formulations for the idealization of soil mediums to retain the simplicity of the Winkler model 

while attempting to provide continuity between springs. These models are typically coined multi-

parameter continuum models and often combine elements of the Winkler spring model with elastic 

continuum elements. While these models will not be rigorously discussed in this study, a brief 

overview of the more well-known models have been included for completeness.  

Filonenko-Borodich (1945) attempted to improve on the Winkler spring model by coupling the top 

of the Winkler springs with a stretched elastic membrane laterally held in tension. Filonenko-

Borodich’s model can be described by equation 2.22 and reduces to the Winkler model when the 

tensile force is set to 0: 

 𝑝 = 𝑘𝑤 − 𝑇∇2𝑤 (2.22) 

 
in which T is a laterally acting tensile force on the elastic membrane, p is the pressure acting at a 

point, w is the deflection at that point, and ∇ is the Laplace operator (Selvadurai, 1979). 

 

Figure 2.17: Two-parameter model presented by Filonenko-Borodich (1945) with an additional 

elastic membrane under tension 

Pasternak (1954) attempted to address the lack of shear continuity within a Winkler spring model 

by introducing a shear layer attached to the top of the Winkler springs. In this case, the shear layer 

acts only in shear (i.e., if the shear parameter is set to 0, Pasternak’s model reduces to the Winkler 

model). Pasternak’s model was presented as follows: 

 𝑝 = 𝑘𝑤 − 𝐺𝐻∇2𝑤 (2.23) 

 
in which G is the shear modulus of the shear layer, H is the thickness of the shear layer, and the 

other variables as previously defined (Selvadurai, 1979). 

 

Figure 2.18: Two-parameter model presented by Pasternak with an additional shear layer 

Many more such modified- or adjusted-Winkler models exist, such as other 2-parameter models 

developed by Straughn (1990), Vallabhan et al. (1991), Tanahashi (2007), or 3-parameters 
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developed by Kerr (1964), Vlasov and Leontiev (1966), but are not summarized in this text and are 

listed only for completeness.  

2.3 Analysis of Plates on Linear Elastic Soils 

Historically, the analysis of structural elements (beams, footings, foundations, slabs, etc.) resting 

on soil mediums have been conducted through an idealization of the soil medium (through a 

Winkler subgrade or a solid continuum) and the structural element (Bernoulli-Euler beam theory, 

classical thin plate theory, or thick plate theory) (Selvadurai, 1979).  

This section discusses analytical solutions that have been developed for a plate loaded with a 

concentrated load at its center resting atop an elastic foundation. These analytical solutions were 

used to validate the finite element models developed in this study. 

2.3.1 Plates on Winkler Soils 

Hertz (1884) first presented a solution for an infinite plate subject to a concentrated load resting on 

a deformable fluid (Stradler, 1971; Selvadurai, 1979). He found that the deflection profile, w(r), 

could be described in the form of an infinite series: 

 
𝑤(𝑟) =

𝑃𝑎2

2𝜋𝛾
[
(𝑟𝑎)2

4
ln(𝑟𝑎) −

(𝑟𝑎)6

2304
(ln(𝑟𝑎) −

5

6
) + ⋯

+
𝜋

4
(1 −

(𝑟𝑎)4

64
+

(𝑟𝑎)8

147456
− ⋯) + ⋯] 

(2.24) 

 
in which w(r) is the deflection at a point r away from the loaded point, P is the concentrated force, 

𝛾 is the unit weight of the fluid, and a is a length parameter given by: 

 𝑎 = √
12(1 − 𝑣𝑏

2)𝛾

𝐸𝑏ℎ
3

4

 (2.25) 

 
in which vb is the Poisson’s ratio of the plate, Eb is the modulus of elasticity of the plate, and h is the 

thickness of the plate. Owing to the fact that the behaviour of a dense fluid is very similar to that of 

a Winkler spring model (Selvadurai, 1979), a clean substitution can be made between the unit 

weight of the fluid, 𝛾, and the modulus of subgrade reaction of a theoretical soil, k. 

The maximum deflection under the load obtained by Hertz is: 

 𝑤(0) =
𝑎2𝑃

8𝛾
 (2.26) 

 
Wyman (1950) arrived at nearly the same solution as Hertz (1884) by using superposition for loads 

of an infinite plate subject to a concentrated load resting on a deformable fluid (again with unit 

weight). He presents a succinct form of Hertz’ solution in the form of Kelvin’s function of order 

zero: 
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 𝑤(𝑟) =  −
𝑃𝑙2

2𝜋𝐷
𝑘𝑒𝑖(𝑟 𝑙⁄ ) (2.27) 

 
in which w(r) is the deflection at a point r away from the loaded point, P is the concentrated force, 

D is the flexural rigidity of the plate, kei is the imaginary Kelvin function of order zero, and l is a 

length parameter given by:  

 𝑙 = √
𝐷

𝛾

4

 (2.28) 

 
in which the variables are as previously defined. Notably, this length parameter is identical to the 

length parameter given by Hertz (1884), but simply inverted.   

The imaginary Kelvin function of order zero (the imaginary portion of the modified Bessel function 

of the second kind), kei0, can be expressed as the infinite summation series:  

 𝑘𝑒𝑖(𝑥) = − ln (
𝑥

2
) 𝑏𝑒𝑖(𝑥) −

𝜋

4
𝑏𝑒𝑟(𝑥) + ∑ (−1)𝑘

𝜓(2𝑘 + 2)

[(2𝑘 + 1)!]2

∞

𝑘=0
(
𝑥2

4
)

2𝑘+1

 (2.29) 

 
in which bei0(x) and ber0(x) are the imaginary and real parts of the fifth order Bessel function of 

the first kind, respectively, and 𝜓 is the digamma function. 

The Digamma function, 𝜓, can be defined as the logarithmic derivative of the Gamma function: 

 𝜓(𝑥) =
𝑑

𝑑𝑥
ln(Γ(𝑥)) ≅ ln(𝑥) −

1

2𝑥
 (2.30) 

 
The imaginary and real parts of the fifth order Bessel function of the first kind, bei(x) and ber(x), 

respectively, can be expressed as an infinite summation series: 

 𝑏𝑒𝑖(𝑥) = ∑ (−1)𝑘
1

[(2𝑘 + 1)!]2

∞

𝑘=0
(
𝑥

2
)

4𝑘+2

 (2.31) 

 𝑏𝑒𝑟(𝑥) = 1 + ∑ (−1)𝑘
1

[(2𝑘)!]2

∞

𝑘=1
(
𝑥

2
)

4𝑘

 (2.32) 

 
in which the variables are as previously defined. 

While kei(x), bei(x), and ber(x) are infinite series, taking an arbitrary value k’ as the upper limit of 

the infinite series expansion may result in dubious results, especially when considering large 

arguments of (x). As a result, it becomes worth investigating the relationship between the output, 

the input argument (x), and the value of the upper limit taken, k’. In order for the succeeding term 

in the infinite summation series to yield a sufficiently negligible (i.e.; converging) value, an 

expression can be obtained as follows (using ber(x) as an example):  

 (−1)𝑘′
1

[(2𝑘′ + 2))!]2
(
𝑥

2
)

4𝑘′+4

≤ 10−𝑛 (2.33) 



32 
 

 
in which k’ is the upper limit considered in the infinite summation series and n is an arbitrary value 

that will yield a sufficiently negligible value, and yielding the following expression: 

 𝑘′ ≥
𝑥

4
𝑒1+𝑦 −

5

4
 (2.34) 

 
in which y is expressed as follows: 

 𝑦 =  
1

𝑒𝑥
ln (

10𝑛

256𝜋
𝑥7) (2.35) 

 
As the input argument (x) increases in magnitude, the upper limit, k’, also increases. Therefore, for 

small arguments of (x) (i.e.; x < 15), only a small upper limit is required.  

Notably, the imaginary portion of Kelvin’s function is a rapidly converging oscillatory function. As a 

result, it is expected that plates resting on a Winkler spring model will produce a limited amount of 

vertical deflection specifically away from the loaded region. 

The maximum deflection under the load obtained by Wyman is: 

 𝑤(0) =
𝑃

8𝛾𝑙2
 (2.36) 

 
In particular, Wyman’s equation reduces to the exact same form as Hertz’ (1884) equation; both 

equations for the maximum deflection under the concentrated load reduce to: 

 𝑤(0) =
𝑃

8√𝛾𝐷
 (2.37) 

 
Using Hertz and Wyman’s equations, the deflection profile for an infinite plate subject to a 

concentrated load resting on a Winkler soil may be produced:  
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Figure 2.19: Deflection profile for an infinite plate resting on a Winkler medium subject to a 

concentrated load, produced by Hertz’s (1884) and Wyman’s (1950) equations 

Here, Figure 2.19 compares the dimensionless coefficient of deflection to the coefficient of distance 

from the center. Both Hertz’s (1884) and Wyman’s (1950) equations are effectively identical. 

Reissner (1955) expanded on the application of loads and presented a solution for an infinite plate 

subject to a circular load resting on a Winkler soil. He presented the deflection profile in the form 

of Bessel and Kelvin functions: 

 𝑤(𝑟) = {
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𝑎
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𝑟

𝑙
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 (2.38) 

 
in which w(r) is the deflection at a point r away from the loaded point, p0 is the stress intensity, a is 

the radius of the loaded region, l is the length parameter presented by Wyman (1950), k is the 

modulus of subgrade reaction, and ker, kei, ber, and bei are the real and imaginary Kelvin 

functions of the zeroth order.  

The Kelvin functions kei (imaginary portion of the modified Bessel function of the second kind), 

ber and bei (real and imaginary portion of the Bessel function of the first kind) have been defined 

in the previous section. The Kelvin function ker (real portion of the modified Bessel function of the 

second kind) can be expressed as the following infinite summation series:  

 𝑘𝑒𝑟(𝑥) = − ln (
𝑥

2
) 𝑏𝑒𝑟(𝑥) +

𝜋

4
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∞
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𝑥2

4
)

2𝑘

 (2.39) 

 
in which 𝜓 is the Digamma function defined in the previous section. 

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 1 2 3 4 5 6

C
o

ef
fi

ci
en

t 
o

f 
d

ef
le

ct
io

n
 w

(x
)D

/(
P

l2
)

Coefficient of distance from center (x/l)



34 
 

The derivatives of the Kelvin functions can be expressed as follows: 

 𝑘𝑒𝑟′(𝑥) =
1

√2
[𝑘𝑒𝑟1(𝑥) + 𝑘𝑒𝑖1(𝑥)] (2.40) 

 𝑘𝑒𝑖′(𝑥) = −
1

√2
[𝑘𝑒𝑟1(𝑥) − 𝑘𝑒𝑖1(𝑥)] (2.41) 
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in which ker1, kei1, ber1, and bei1 are the Kelvin functions of the first order.  

The real and imaginary Kelvin functions of the nth order, kern, kein, bern, and bein, can be expressed 

as the following infinite summation series: 
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in which Γ is the Gamma function. 

The Gamma function, Γ, can be expressed as the following: 

 Γ(x) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0

 (2.48) 

 
in which e is Euler’s number. 

The maximum deflection under the load at r = 0 reduces to the following:  
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 𝑤(0) =
𝑝0

𝑘
(1 +

𝑐

𝑙
𝑘𝑒𝑟′ (

𝑎

𝑙
)) (2.49) 

 
in which all variables are as previously defined. 

For various radii of loaded regions, Reissner’s equations provide the following deflection profiles: 

 

Figure 2.20: Deflection profiles for an infinite plate resting on a Winkler medium subject to a load 

distributed over various radii, produced by Reissner’s (1955) equations 

Here, Figure 2.20 compares the dimensionless coefficient of deflection to the coefficient of distance 

from the center for various areas over which the load is distributed over, notated as having a radius 

of a/l. Notably, Ressiner’s equation for a load distributed over a small area (in which a/l ≤ 0.2) 

produces a deflection profile effectively identical to that of Hertz’s (1884) and Wyman’s (1950) 

equation for a concentrated load. In particular, it can be seen that the area over which the load is 

distributed over predominantly affects the maximum deflection under the load.  

Westergaard (1926) introduced analytical solutions for the deflection profiles and the critical 

stresses for a slab-on-grade subject to a concentrated load resting on a Winkler soil. While his work 

was predominantly written for highway pavements and airport runways, his work later became the 

basis for contemporary slab-on-grade design (McKinney et al., 2006). Although Westergaard did 

not provide his derived closed-form analytical solutions, he did provide deflection profiles in the 

slab graphically as a function of the load, P, the modulus of subgrade reaction, k, and a length 

parameter l that he terms the radius of relative stiffness. 
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Figure 2.21: Deflection profile for an infinite plate resting on a Winkler medium subject to a 

concentrated load (Westergarad, 1926) 

Figure 2.21 compares the dimensionless coefficient of deflection to the coefficient of distance from 

the center. It can be seen that the maximum deflection under the load is in agreement with the 

results obtained by Hertz (1884), Wyman (1950), and Reissner (1955). 

Westergaard denotes the length parameter, 𝑙, as the radius of relative stiffness, or proportionality 

factor between the stiffness of the slab to the stiffness of the denoted by equation 2.50 

(Westergaard, 1926):  

 𝑙 =  √
𝐸ℎ3

12(1 − 𝜇2)𝑘

4

 (2.50) 

 
where E is the elastic modulus of the concrete slab, u is Poisson’s ratio of concrete, h is the 

thickness of the slab, and k is the modulus of subgrade reaction. Notably, this length parameter 

falls in line with those presented by Hertz (1884), Wyman (1950), and Reissner (1955). 

Additionally, the deflection profile presented in Figure 2.21 is effectively identical to those 

produced from Hertz’s, Wyman’s, and Reissner’s concentrated load equations.  

Westergaard’s solutions are distinguished through the use of the ‘ordinary theory’ and ‘special 

theory’. The ordinary theory of elasticity for beams is simply Euler-Bernoulli beam bending theory 

(Westergaard, 1926). In terms of slabs (plate theory), the ordinary theory is effectively classical 

plate theory, or Kirchhoff-Love plate theory following the assumptions that plane and 

perpendicular sections to the neutral mid-surface remain plane and perpendicular in bending.  

Westergaard’s ‘special theory’ involves abandoning the plane cross-section theory and instead 

considers the deformations due to vertical stresses (Westergaard, 1926). The ‘special theory’ is used 

specifically when the area over which a concentrated load is distributed is very small and when the 

local effects around the load are of concern. Westergaard suggests that the critical stress under 
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such a load can be found using the ‘ordinary theory’ if an equivalent radius expressed in terms of 

the actual radius and thickness of the slab are used. He notes that as the area over which the 

concentrated load is distributed increases, the difference in calculated critical stress between the 

‘ordinary’ and ‘special theory’ converges towards unity. In particular, this is effectively correcting 

for the effects of a highly concentrated load by using thick plate theory over the conventional 

ordinary thin plate theory (Westergaard, 1926; Selvadurai, 1979). Concepts of establishing an 

equivalent area over which a highly concentrated load acts based on thick plate theory are well-

defined by Roark (1938), Holl (1938), Selvadurai (1979), Packard (1996), and McKinney et al. 

(2006) specifically for highly concentrated loadings. Figure 2.22 shows this relationship:  

 

Figure 2.22: Equivalent radius versus the actual radius of contact for a highly concentrated loading 

condition, (Westergaard, 1926) 

Westergaard (1926) suggests that the equivalent radius, b, need only replace the actual radius, a, of 

a highly concentrated load when the actual radius is less than approximately 1.5 times the thickness 

of the slab.  

While Westergaard does not provide a stress profile like he did with deflections, he does provide 

equations solving for the critical stress under a concentrated load. For the ‘ordinary theory’, he 

provides the following equation: 

 𝜎𝑖 =
3(1 + 𝑣)𝑃

2𝜋ℎ2
[ln (

𝑙

𝑎
) + 0.6159] (2.51) 

 
in which v is the Poisson’s ratio of the slab, P is the concentrated load, h is the slab’s thickness, l is 

the radius of relative stiffness, and a is the radius of the loaded area. 
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If the loaded area is sufficiently small as defined by 𝑎 < 1.724ℎ, then the ‘special theory’ should be 

considered by substituting the radius a with the equivalent radius: 

 𝑏 =  √1.6𝑎2 + ℎ2 − 0.675ℎ (2.52) 

 
One particular point of interest is that Westergaard considers that an approximate value of the 

modulus of subgrade reaction to be sufficient for the determination of the critical stresses in a slab 

(Westergaard, 1926). In particular, Westergaard states that an increase in the modulus of subgrade 

reaction from 50 psi/in. to 200 psi/in. (i.e., a 300% increase) caused the maximum stress to 

decrease by roughly 15 – 20% based on the considered thickness of slab (between 6 – 12’’) and 

radius over which the load was distributed (0 – 8’’). Figure 2.23 shows the change in stress as a 

function of the modulus of subgrade reaction:  

 

Figure 2.23: Effect of the modulus of subgrade reaction on the maximum stress for an infinite plate 

resting on a Winkler medium subject to a concentrated load, produced by Westergaard’s (1926) 

equations; h = 150 mm, Eb = 26,000 MPa, P = 10 kN, a = 150 mm 

It can be seen from Figure 2.23 that the critical stress decreases depreciatingly with respects to 

subsequent increases in the modulus of subgrade reaction. In this particular example, increasing 

the modulus of subgrade reaction from 50 psi/in. to 200 psi/in. (like in Westergaard’s statement) 

results in a decrease of about 12% of the critical stress. As a percentage, a 50% increase in the 

modulus of subgrade reaction results in approximately 5% decrease in the critical stress. For typical 

values of the modulus of subgrade reaction, Westergaard’s assumption of a representative modulus 

of subgrade reaction value is reasonable. Notably, Westergaard does not make any mention to the 

effect of the modulus of subgrade reaction on the deflections of the slab (mostly because the 

controlling factor in most slab-on-grade design are dominated by the critical stresses and not 
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deflections). However, it should be noted that the deflections are more sensitive to changes to the 

modulus of subgrade reaction, and is shown in the Figure 2.24: 

 

Figure 2.24: Effect of the modulus of subgrade reaction on the maximum deflection for an infinite 

plate resting on a Winkler medium subject to a concentrated load, produced by Westergaard’s 

(1926) equations; h = 150 mm, Eb = 26,000 MPa, P = 10 kN, a = 150 mm 

As a percentage, a 50% increase in the modulus of subgrade reaction results in approximately 20% 

decrease in the maximum deflection. As a result, it can be seen that more care should be taken 

when approximating a modulus of subgrade reaction when the deflections are of major concern. 

Of note for both the stresses and the deflection are the magnitude of values used for the modulus of 

subgrade reaction. In particular, modulus of subgrade values less than approximately 100 psi/in. 

are very sensitive, and small changes result in larger changes in the critical stresses and deflections. 

Westergaard (1943) introduced much of the derivations involved with establishing his 1926 

equations for stresses. He introduced a correction for if the loaded area was larger than a typically 

assumed highly concentrated loading condition (Westergaard, 1943). So long as the concentrated 

load remains concentrated and distributed over a circular area with radius no greater than the 

radius of relative stiffness, Westergaard provides the following equation for the critical stress: 

 𝜎𝑖 =
3(1 + 𝜇)𝑃

2𝜋ℎ2
[ln (

𝑙

𝑎
) + 0.6159 +

𝜋

32
(
𝑎

𝑙
)

2

] (2.53) 

 
in which v is the Poisson’s ratio of the slab, P is the concentrated load, h is the slab’s thickness, l is 

the radius of relative stiffness, and a is the radius of the loaded area. 

Notably, the additional correction factor can actually be used regardless of if one would consider a 

loaded area to be too large to be rated as small, so long as the radius remains less than the radius of 

relative stiffness. This is true because the correction factor trends towards zero as the radius over 

which a load is distributed decreases. As long as the actual radius is less than one-fourth of the 
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radius of relative stiffness, Westergaard suggests ignoring this correction factor for practical 

applications (Westergaard, 1943). 

Westergaard (1948) introduced modifications to his equations if the considered concentrated load 

was not distributed over a circle but instead an ellipse (Westergaard, 1948). This was done in an 

attempt to provide a more realistic distribution of force when considering loads produced by 

wheels. This time, Westergaard’s critical stress equations provided values up until the edge of the 

loaded region. The equations are provided: 

 

𝑧 =  
𝑃

8𝑘𝑙2
[1 −

𝑎2 + 𝑏2 + 4𝑥2 + 4𝑦2

16𝜋𝑙2
ln(

𝐸ℎ3

𝑘 (
𝑎 + 𝑏

2 )
4) −

𝑎2 + 4𝑎𝑏 + 𝑏2

16𝜋𝑙2

+
(𝑎 − 𝑏)(𝑥2 − 𝑦2)

2𝜋𝑙2(𝑎 + 𝑏)
] 

(2.54) 

 

𝜎𝑥

𝜎𝑦
} =

3(1 + 𝜇)𝑃

8𝜋ℎ2
[ln(

𝐸ℎ3

𝑘 (
𝑎 + 𝑏

2 )
4) ∓ 2

𝑎 − 𝑏

𝑎 + 𝑏
] 

 

(2.55) 

 
in which a and b are the short and long lengths of the ellipse, x and y are the considered distances 

in the short and long directions, respectively, and all other variables are defined as before.  

Strangely, while one would assume that considering an ellipse with equal radii in both directions 

would produce the same results as his 1926 equations, this is not entirely true (but for most 

practical applications is not of great concern). Reducing both of the above equations when taking a 

= b yields the following simplified equations for maximum deflection and stress under the load at x 

= y = 0: 

 𝑧 =  
𝑃

8𝑘𝑙2
[1 −

𝑎2

8𝜋𝑙2
(ln (

𝐸ℎ3

𝑘𝑎4
) + 3)] 

 

(2.36) 

 𝜎𝑖 =
3(1 + 𝜇)𝑃

2𝜋ℎ2
[ln (

𝑙

𝑎
) −

1

4
ln(12(1 − 𝜇2))] 

 
(2.57) 

 
It is worth mentioning that Westergaard’s original 1926 equations for deflections do not consider 

the loaded region over which the concentrated load is distributed, and it is assumed that any load 

provided must be sufficiently concentrated (hence the introduction of his corrective term in 1943). 

Comparing curve deflections between Reissner (1955) and Westergaard indicates that this area 

should roughly be a/l ≤ 0.2 to be considered a concentrated load. 

Ioannides et al. (1985) published a reexamination of Westergaard’s solutions and succinctly 

summarizes all, if any, of the changes to the empirical equations. Ioannides et al. provides what 
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they consider to be the updated equations for the maximum load of an infinite slab on a Winkler 

medium subjected to a concentrated load: 

 𝑧 =  
𝑃

8𝑘𝑙2
[1 +

1

2𝜋
[ln (

𝑎

2𝑙
) + 𝛾 − 1.25] (

𝑎

𝑙
)

2

] 

 

(2.58) 

 𝜎𝑖 =
3(1 + 𝜇)𝑃

2𝜋ℎ2
[ln (

2𝑙

𝑎
) + 0.5 − 𝛾] +

3(1 + 𝜇)𝑃

64ℎ2
[(

𝑎

𝑙
)

2

] 

 

(2.59) 

Like Westergaard’s 1948 equation, Ioannides et al. (1985) provided a deflection that is influenced 

by the loaded area.  

The latter term in the critical stress equation is additional stress used to account for the effects of 

the loaded area (Ioannides et al., 1985) and refers to the correction factor introduced by 

Westergaard in 1948, and when factored into the main equation yields the same term. Ioannides et 

al. (1985) replaces the original constant of 0.6159 with a function expressed in terms of Euler’s 

constant and instead now yields a constant of 0.61593… which is sufficiently accurate. Notably, 

when Poisson’s ratio is taken at 0.15 (as Westergaard does in his original 1926 paper), the natural 

log function returns -0.615537… which, for all intents and purposes, is sufficiently close to the 

constant of 0.6159 he originally uses. So long as the Poisson’s ratio of concrete considered remains 

in the generally accepted range (0.1 to 0.2), Ioannides et al.’s (1985) updated equations produce 

identical maximum deflections and critical stresses as Westergaard’s 1948 and 1943 equations, 

respectively, for all practical applications.  

A comparison of the critical values (maximum deflections and stresses under a concentrated load) 

between various researchers has been presented in Figures 2.26 through 2.27. In general, the 

equations presented in this section can be loosely described as follows: equations for deflections 

that consider a highly concentrated loading, such as those from Hertz (1884), Wyman (1950), and 

Westergaard (1926), equations for deflections that are influenced by the area of the loaded region, 

such as those from Reissner (1955), Westergaard (1948), and Ioannides et al. (1985), and equations 

for maximum stress, such as those from Westergaard (1926), Westergaard (1943), Westergaard 

(1948), and Ioannides et al. (1985). 
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Figure 2.26: Comparison of deflection profiles for an infinite plate resting on a Winkler medium 

subject to a concentrated load 

Clearly, the results obtained by Hertz, Wyman, Westergaard, and Reissner are effectively identical 

when considering a highly concentrated load. Notably, Reissner’s equations predict very slightly 

less deflection directly under the loaded region, which suggests that the ratio of the loaded region 

to the radius of relative stiffness should be slightly less than 0.2 to be considered as a concentrated 

load. For practical applications, this makes no meaningful difference. 

 

Figure 2.27: Comparison of the maximum deflection for an infinite plate resting on a Winkler 

medium subject to a concentrated load distributed over a variable area 
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From Figure 2.27, it becomes clear that the area over which the load is distributed over plays an 

important role in determining the maximum deflection. When one does not consider these effects 

(such as Westergaard’s 1926 equations), then it should be ensured that the radius over which the 

load is distributed is relatively small (i.e., the ratio of the loaded region to the radius of relative 

stiffness should be slightly less than 0.2). 

 

Figure 2.28: Comparison of the maximum stress for an infinite plate resting on a Winkler medium 

subject to a concentrated load distributed over a variable area (note that the y-axis begins at 0.48 

MPa for clarity); h = 150 mm, Eb = 26,000 MPa, P = 10 kN, a = 150 mm) 

It can be seen that Westergaard’s (1926) original equations overpredicts the maximum stress for all 

values of the modulus of subgrade reaction, and this is more apparent with larger values of k.  

2.3.2 Plates on Elastic Half-Space Soils 

The problem of a plate subject to a concentrated load resting on an elastic half-space is well-known 

to be governed by the indefinite Fourier-Bessel integro-differential equation and was first provided 

by Biot (1935): 

 𝑤(𝑟) =
𝑃𝑎2

2𝜋𝐷
∫

𝜉𝐽0(𝜉
𝑟
𝑎)

𝜉4 + Δ

∞

0

𝑑𝜉 (2.60) 

 
in which delta is a random parameter and a is a length parameter (akin to Westergaard’s radius of 

relative stiffness). The length parameter, a, can be expressed as follows: 
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 𝑎 = √
𝐷(1 − 𝑣𝑠)

𝐺𝑠

3

 (2.61) 

 
Hogg (1938) presented an approximate solution for an infinite plate subject to a concentrated 

resting on an isotropic elastic block. He found that the deflection profile, w(r), could be 

represented as an infinite summation series:  

 

𝑤(𝑟) =
𝑃𝑎2

2𝜋𝐷
∑ (−1)𝑚

∞

𝑚=0

[
 
 
 
 (

𝑏
2)

6𝑚+2

(ln (
𝑏
2) − Φ(3𝑚 + 2))

[(3𝑚 + 1)!]2
+

2𝜋

√27
2

(
𝑏
2)

6𝑚

[(3𝑚)!]2

−
2𝜋

√27
2

(
𝑏
2)

6𝑚+4

[(3𝑚 + 2)!]2
+

𝜋

2

(
𝑏
2)

6𝑚+5

[Γ(3𝑚 + 3.5)]2

]
 
 
 
 

 

(2.62) 

 
in which b = r/a, Γ is the Gamma function expressed in equation 2.48, and Φ is a finite summation 

series. 

Hogg’s self-defined function, Φ, can be expressed as follows: 

 Φ(r + 1) = −𝐶𝐸 + ∑
1

𝑛

𝑟

𝑛=1
 (2.63) 

 
in which CE is Euler’s constant (0.577 …).  

The maximum deflection directly under the load at r = 0 reduces to the following: 

 𝑤(0) = 0.1925
𝑃𝑎2

𝐷
 (2.64) 

 
Hogg also presents the contact stress at the loaded region: 

 𝑞(0) =
√3

9

𝑃

𝑎2
 (2.65) 
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Figure 2.29: Deflection profiles for an infinite plate resting on an elastic half-space subject to a 

concentrated load, produced by Hogg’s (1938) equations 

Notably, Hogg’s approximated predictions are useful only when considering points within or 

nearby the loaded region (r/a ≤ 2), as the predicted deflections deteriorate rapidly beyond this 

point (Selvadurai, 1979). This can be seen from Figure 2.29; beyond r/a > 3, Hogg’s approximation 

begins to predict uplift deflections. 

Gorbunov-Posadov (1940, 1959) and Gorbunov-Posadov and Serebrjanyi (1961) presented 

graphical results from his application of a double power series method (Selvadurai, 1979). In 

particular, Gorbunov-Posadov assumed that a plate could be assumed to be rigid if the relative 

stiffness parameter, Kg, which was a measure of the stiffness between the plate and the subgrade, 

satisfied the following inequality: 

 𝐾𝑔 =
12𝜋(1 − 𝑣𝑏

2)

(1 − 𝑣𝑠
2)

(
𝐸𝑠

𝐸𝑏

) (
𝑙

ℎ
)

2

(
𝑏

ℎ
) ≤

8

√𝑙
𝑏

 (2.66) 

 
in which vb and vs are the Poisson’s ratio for the plate and the soil, respectively, Es and Eb are the 

modulus of elasticity for the soil and the plate, respectively, h is the plate thickness, and l and b are 

the lateral dimensions of the plate.  

For a typical plate and soil, Gorbunov-Posadov provides the following deflection profile: 
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Figure 2.31: Deflection profile for an infinite plate resting on an elastic half-space subject to a 

concentrated load, produced by tables provided by Gorbunov-Posadov (1959) and Selvadurai 

(1979) 

Unlike Hogg’s (1938) approximation, Gorbunov-Posadov predicts continued downwards deflection 

away from the loaded region even beyond r/a > 2.  

Cheung and Zienkiewicz (1965) presented the distribution of contact stresses using numerical 

methods of finite differences for plates subject to concentrated or uniform loading:  

 𝑞(𝑥) = 𝑞̅
𝑃0

𝐿2
 (2.67) 

 
in which L is the length of the finite plate, P0 is the concentrated load, and 𝑞̅ is a dimensionless 

coefficient determined using Figure 2.32:  
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Figure 2.32: Contact stress profiles for a plate resting on an elastic half-space subject to a 

concentrated load (Cheung and Zienkiewicz, 1965; Selvadurai, 1979) 

Here, 𝛾̅∗ is a relative stiffness parameter between the plate and the subgrade, determined as: 

 𝛾̅∗ = 180𝜋
𝐸𝑠

𝐸𝑏
(
𝑎0

ℎ
)

3

 (2.68) 

 
in which ao is one-sixth of the length of the plate.  

When the plate is very stiff (i.e., almost rigid), Cheung and Zienkiewicz (1965) predict almost no 

contact stress except near the edges. Conversely when the plate is very flexible, they predict 

significant contact stress directly under the loaded region at the center of the plate. 

Selvadurai (1979) presented, using a Gauss-Legendre quadrature approximation, a more accurate 

approximation of Biot’s (1935) indefinite integral. He presents the following solution for the 

deflection profile:  
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Figure 2.32: Deflection profiles for an infinite plate on an elastic foundation subject to a 

concentrated load, produced by Selvadurai’s (1979) numerical approximations 

Unlike Hogg’s (1938) approximation, Selvadurai predicts continued downwards deflection away 

from the loaded region even beyond r/a > 2.  

Hu and Hartley (1994) and later Silva et al. (2001) explored the use of finite element methods to 

numerically compute the deflections and contact stresses of a plate subject to concentrated or 

uniform loading on an elastic half-space. They presented the deflection profiles and contact stress 

profiles as follows: 

 
𝑤(𝑟) = 𝑤̅

0.913(1 − 𝑣𝑠
2)𝑃0

2𝑎𝐸𝑠

 

 

(2.69) 

 𝑞(𝑟) =
𝑃0𝑞̅

4𝑎2
 (2.70) 

 
in which a is the length of half the finite plate, P0 is the concentrated load, Es is the modulus of 

elasticity of the soil, vs is the Poisson’s ratio of the soil, and 𝑤̅ is a dimensionless deflection 

coefficient and 𝑞̅ is a dimensionless contact stress coefficient determined by Figure 2.33: 
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(a) (b) 

 
Figure 2.33: (a) Deflection profile and (b) Stress profiles for a finite plate on an elastic half-space 

subject to a concentrated load for various relative stiffnesses (Hu and Hartley, 1994) 

Here, 𝛾 is a relative stiffness parameter between the plate and the subgrade, determined as: 

 𝛾 =
𝜋𝐸𝑠𝑎

3

𝐷(1 − 𝑣𝑠
2)

 (2.71) 

 
in which D is the flexural rigidity of the plate and the other variables are as previously defined. 

When the relative stiffness is very low (𝛾 < 8), the plate can be considered as rigid. A rigid plate is 

expected to deflect uniformly (as the plate itself no longer deflects), and in agreement with the 

results presented by Cheung and Zienkiewicz (1965), exhibits larger contact stresses near the edges 

of the plate.  

A comparison of the deflection profiles and contact stress profiles established for the case of a plate 

resting on an elastic half-space subject to a concentrated load as determined by various researchers 

using various methods (numerical approximation, finite element methods, power series methods, 

etc.) is provided in Figures 2.34 and 2.35: 
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Figure 2.34: Comparison of the deflection profiles for a plate resting on an elastic half-space 

subject to a concentrated load; (h = 165 mm, Eb = 34,000 MPa, Es = 100 MPa, P = 10 kN, L = B = 

10,000 mm, 𝛾 = 3016) 

In Figure 2.34, a is the length parameter presented by Biot (1935) and associated with a ratio of 

stiffness between the subgrade and an infinite plate. It particular, it should be noted that Hogg’s 

(1938), Gorbunov-Posadov’s (1959), and Selvadurai’s (1979) deflection profiles are based on a plate 

of infinite length, while Hu and Hartley’s (1994) are based on a plate of finite length, hence the 

disparity in deflection created by uplift at the end of Hu and Hartley’s curve. Additionally, as stated 

previously, Hogg’s (1938) equations are reasonable only when considering areas near the loaded 

region (i.e., for x/a < 2). It can be seen from Gorbunov-Posadov (1959) and Selvadurai (1979) that 

an infinite plate is expected to deflect continuoulsy along its centerline length when subject to a 

concentrated load, even far away from the loaded region. In fact, the deflection only reaches a 

negligible value (i.e., a deflection that is less than 1% of the maximum deflection) at 100a.  
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Figure 2.35: Comparison of the contact stress profiles for plates resting on an elastic half-space 

subject to a concentrated load; h = 250 mm, Eb = 40,000 MPa, Es = 200 MPa, P = 10 kN, L = B = 

6,000 mm, 𝛾 = 301, 𝛾̅∗ = 2.35 

In Figure 2.35, a is the length parameter presented by Biot (1935) and associated with a ratio of 

stiffness between the subgrade and an infinite plate. It particular, it should be noted that 

Gorbunov-Posadov’s (1959) contact stress profiles are based on a plate of infinite length, while 

Cheung and Zienkiewicz’s (1965) and Hu and Hartley’s (1994) are based on a plate of finite length. 

In general, all three researcher’s equations were in good agreement. In particular, Gorbunov-

Posadov (1959) predicted slightly more stress directly under the load, but in general this does not 

have a significant impact on practical applications.  

2.3.3 Relationship Between Characterizing Parameters 

At this point it is instructive to compare the deflections and stresses determined between a plate 

resting on a Winkler spring model against that of a plate resting on an isotropic half-space. 

While clearly the two models are sufficiently dissimilar that a perfect correlation between 

deflection profiles and stresses (and by extension, their independent system characterizing 

parameters k and Es) does not exist, a representative relationship between the modulus of subgrade 

reaction and the elastic constants of a half-space can still be formed by either considering one of 

the several empirically determined equations for the modulus of subgrade reaction or by 

calibrating the analytical solutions for the critical values in the plate. 

This section will present the latter method by calibrating the various analytical solutions associated 

with a plate resting on a Winkler spring model to that of a plate resting on an isotropic elastic half-

space. Here, it should again be noted that a change in the modulus of subgrade reaction has 

significantly greater effects on the deflections of a plate compared to the maximum stresses (see 
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Figures 2.23 and 2.24). Therefore, it is more important to calibrate the analytical solutions for 

deflections (as the critical stresses will only be minorly affected). 

By equating the maximum deflection directly under the loaded region of a plate resting on a 

Winkler model (i.e., obtained from Westergaard (1926), Hertz (1884), Wyman (1950), Reissner 

(1955), etc.) to that of a plate resting on an elastic half-space (i.e., obtained from Hogg (1938), 

Gorbunov-Posadov (1959), etc.), the following relationship may be produced:  

 𝑘 =
2500

5929

𝐷𝐺4/3

(𝐷(1 − 𝑣𝑠))
4/3

 (2.72) 

 
in which k is the modulus of subgrade reaction, D is the flexural rigidity of the plate, G is the shear 

modulus of the soil, and vs is the Poisson’s ratio of the soil. By considering the flexural rigidity of 

the plate as a constant, direct relationships between k and Es can be determined:  

 𝑘 = 𝐸4/3
1

𝐷1/3

2500

5929

1

2√2
3

1

(1 − 𝑣𝑠
2)4/3

 (2.73) 

 𝐸𝑠 = 2𝑘3/4𝐷1/4
5929

250√154
(1 − 𝑣𝑠

2) (2.74) 

 
This relationship has been plotted in Figure 2.36: 

 
Figure 2.36: Modulus of elasticity versus the coefficient of the modulus of subgrade reaction when 

calibrated for maximum deflection 

It can be seen that the relationship between the modulus of elasticity and modulus of subgrade 

reaction is nonlinear when the flexural rigidity of the plate is taken as a constant value.  

For practical applications, consider the following cases of arbitrarily assigned values plotted in 

Figure 2.37: 
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Figure 2.37: Modulus of elasticity versus modulus of subgrade reaction when calibrated for 

maximum deflection for various values of flexural rigidity, D; D1 = 2,000 kNm, D2 = 10,000 kNm, 

D3 = 18,000 kNm  

Again, it is noted that the modulus of elasticity shares a nonlinear relationship with the modulus of 

subgrade reaction. Figure 2.37 also showcases the effects of the flexural rigidity of the plate. In 

particular, it can be seen that linear increases in the flexural rigidity (through any combination of 

thickness and elastic modulus) yields depreciatingly decreasing results between the modulus of 

elasticity and modulus of subgrade reaction. 

As the purpose of this relationship is to determine an equivalent modulus of elasticity, it is useful to 

now note the effects of the modulus of subgrade reaction, slab depth, and slab strength on the 

equivalent modulus of elasticity in the above calibrated relationships. Immediately, it is expected 

that the equivalent elastic modulus is most sensitive to the assigned modulus of subgrade reaction 

and depth of slab compared to the compressive strength of concrete (simply by considering the 

mathematical form presented in equation 2.73 and 2.74).  
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Figure 2.38: Effect of compressive strength on the equivalent modulus of elasticity 

Here, with respects to any value of k and h, doubling the compressive strength increases the 

equivalent elastic modulus by 5 – 10% (i.e., diminishing increases of E with respects to f’c).  

 

Figure 2.39: Effect of the slab depth or modulus of subgrade reaction on the equivalent modulus of 

elasticity 

Here, with respects to any value of f’c, doubling k or h (while holding the other static) increases the 

equivalent elastic modulus by 68% (constant increase with respects to k or h). Therefore, it is clear 

that changes in the modulus of subgrade reaction or slab depth have an equally impactful effect on 

the equivalent modulus of elasticity, while changes to the compressive strength are, by and large, 

negligible.  
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Figure 2.40 shows the deflection profiles for a plate subject to a concentrated load resting on a 

Winkler soil and elastic half-space when calibrated for maximum deflection: 

 

Figure 2.40: Comparison of deflection profiles between an infinite plate resting on a Winkler 

medium or elastic half-space and subject to a concentrated load when calibrated for the maximum 

deflection 

Figure 2.40 shows that the plate resting on the elastic half-space will deflect more away from the 

loaded region when compared to the plate resting on the Winkler soil. In particular, it can also be 

seen that the plate resting on the Winkler soil also experiences a very brief moment of uplift. In 

actuality, due to the mathematical nature of the equation for the response of a plate resting on a 

Winkler soil, the plate is expected to oscillate between deflecting upwards and downwards away 

from the loaded region (Selvadurai, 1979). For practical applications, this is largely negligible. It is 

important to note that the x-axis provided in Figure 2.40 is shared between the two deflection 

profiles and is read as the ratio of considered distance, r, to the respective length parameter, a, or l, 

of the elastic half-space and Winkler model (i.e., the x-axis is composed of normalized, 

dimensionless values). Consider a case with arbitrarily assigned values; the equivalent deflection 

profiles are provided in Figure 2.41: 
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Figure 2.41: Comparison of deflection profiles between an infinite plate resting on a Winkler 

medium or elastic half-space and subject to a concentrated load when calibrated for the maximum 

deflection; note that the length parameters, l and a, are 635 and 531 mm, respectively; P = 10 kN, k 

= 150 psi/in., h = 150 mm, Eb = 26,625 MPa, Es,equiv. ≈ 100 MPa 

Again, it can still be noted that the plate resting in a Winkler medium deflects significantly less 

when considering points away from the loaded region when compared against the plate resting on 

an elastic half-space. Unlike in Figure 2.40, the x-axis in Figure 2.41 has been depicted in terms of 

length. It can be seen that the disparity in deflection away from the loaded region is not as large as 

compared to Figure 2.40.  

2.4 Summary of Background 

The contemporary design of slabs-on-grade are provided by the American Concrete Institute and 

summarizes methods produced by the Portland Cement Association, Wire Reinforcement Institute, 

and the Corps of Engineers (McKinney et al., 2006). Each method requires the loading conditions 

and slab and soil material properties in order to establish the design slab thickness through various 

design charts and design tables. All three design methods are largely based on the analysis 

provided by H. Westergaard for infinitely spanning slabs resting on Winkler-type soils and subject 

to various concentrated loads. As a result of the simplification of the soil as a Winkler spring 

foundation, the slab is assumed to have continuous contact with the subgrade throughout its 

deformation. While this is satisfactory for the design of roads and pavement slabs, in which 

stresses produced by discontinuity between the slab and the soil due to effects such as slab curling 

are minimized, freestanding, foundationless cranes impose tensile, uplifting forces bearing directly 

onto the slab-on-grade. The assumption of a Winkler model (and therefore the assumption of 

continuous contact) for this type of loading condition dramatically overstates the tensile resistance 

provided to the slab from the subgrade. Notably, modern design methods for slabs-on-grade do not 
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consider any type of uplifting effects, and only considers compressive forces (e.g., concentrated, 

strip loads, and uniformly distributed loads).   

Historically, researchers have simplified the subgrade in structure-soil interaction problems to that 

of a Winkler spring model or a Boussinesq half-space model. While both models are linear 

interpretations of an ultimately non-linear medium, the Boussinesq half-space model idealizes the 

subgrade as an elastic block characterized by the modulus of elasticity, while the Winkler spring 

model idealizes the subgrade as a series of springs characterized by the modulus of subgrade 

reaction. The values of either parameter are typically determined via in-situ or laboratory soil 

testing through methods including cone penetration tests, standard penetration tests, 

consolidation tests, etc., but have also been approximated based on the soil classification (i.e., from 

soil classification systems such as the USCS, AASHTO, etc.) of the subgrade medium.  

For slabs resting on Winkler soil mediums, Hertz (1884), Wyman (1950), Reissner (1955), and 

Westergaard (1926, 1943, 1948) produced analytical solutions for the deflections and critical 

stresses due to a concentrated load. In particular, Hertz and Wyman provided the initial profiles of 

slab deflection, Reissner investigated the effects of the distributed area of the concentrated loads, 

and Westergaard produced the critical tensile stresses at the bottom surface under the 

concentrated load. For slabs resting on a Boussinesq elastic half-space medium, Biot (1935), Hogg 

(1938), Gorbunov-Posadov (1940, 1959, 1961), Cheung and Zienkiewicz (1965), Selvadurai (1979), 

and Hu and Hartley (1994) were all responsible for contributing to the development of deflection 

profiles and contact stress profiles. In particular, Biot and Hogg presented the initial deflection 

profiles close to the loaded region, Gorbunov-Posadov and Selvadurai expanded the deflection 

profile to significant distances away from the loaded region, and Cheung and Zienkiewicz and Hu 

and Hartley provided deflection profiles and stress profiles for finite slabs of systems with various 

stiffness. 

The mains gaps in literature have been identified as follows: 

• Modern methods of slab-on-grade design are based on road and pavement design and do 

not consider any uplifting forces imposed on the slab. 

• In these methods, the soil is idealized as a Winkler soil, and a continuous contact is assumed 

between the slab and the soil. Therefore, the soil overstates the tensile resistance provided 

to the slab. 

• In general, designers familiar with contemporary slab-on-grade design are familiar with the 

modulus of subgrade reaction of a given soil medium, but not the modulus of elasticity of 

the same soil medium. Moreover, in practical applications, the modulus of elasticity of soil 

must be determined through typically unavailable geotechnical investigations of in-situ soil.  

• Limited analysis of slabs-on-grade of finite length are available in literature. 

In this study, slabs-on-grade supporting combined compressive and overturning moments are 

investigated. The characterizing parameter of the Winkler model – the modulus of subgrade 

reaction – is linked to the modulus of elasticity, which is the characterizing parameter of another 
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simplified soil model that accounts for uplifting forces acting on a slab. An extensive parametric 

study investigates the effects of various slab-soil properties and loading conditions on the moment 

capacity of a slab-on-grade.  
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3.0 Representative Model (Finite Element Formulation) 

This section discusses the assumptions made and the process taken in modelling a finite element 

representation of a freestanding jib-crane mounted directly to a partition of unreinforced concrete 

slab resting atop a soil medium. The finite element model was created in the finite element 

software Abaqus, a standard commercial software for the application of finite element analysis 

(MathWorks, 2012). The representative model was broken down into several components, 

including the soil block, the slab, the baseplate, and the crane structure composed of a mast and 

stiffeners. Figure 3.1 shows a real, slab-mounted, foundationless jib crane, and Figure 3.2 shows 

the modelled FE model: 

 

Figure 3.1: Real slab-mounted jib crane (Gorbel, 2012) 

 

Jib span 

Hub 
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Figure 3.2: Representative finite element model 

In Figure 3.2, the soil is modelled as the green block (extents not shown for clarity), the concrete 

slab is modelled as the blue part, the baseplate is modelled as the red circular part, and the base of 

the crane is modelled as the brown part.  

3.1 Model Parameters 

For various compressive loading cases, the methods presented by the American Concrete Institute 

(PCA, WRI, and COE) consider the compressive loading, area over which the load is distributed, 

subgrade strength, concrete strength, and slab thickness as prominent variables. In this study, the 

overturning moment and length of slab will also be included as variables to be considered. In 

particular, all but the overturning moment will be considered as independent variables while the 

overturning moment will be considered the dependent output variable to be investigated. The goal 

will be to establish the nominal moment capacity of any particular slab-soil configuration and 

material properties.  

3.1.1 Overturning Moment 

The overturning moment acting on the slab is the dependent output parameter investigated in this 

study and can be defined as the load carried by the crane multiplied by the lever arm (length of its 

jib). Typical, freestanding jib cranes have maximum load capacities ranging between 600 – 4500 

N, with typical jib lengths ranging between 2400 – 4800 mm. Including the weight of the jib beam, 

typical overturning moments range between 2 – 25 kNm (Gorbel, 2012; Spanco, 2018). Table 3.1 

shows some of the maximum moments licensed for jib cranes by the crane manufacturing company 

Gorbel: 

 

 

Subgrade 

Slab 
Baseplate 

Bottom of 

jib crane 
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Table 3.1: Maximum moment associated with jib cranes, from Gorbel (2012) 

Load Hub Span Mf Mf 

lbs. ft. ft. lbs.-ft kNm 

150 8 8 1200 1.63 

150 8 10 1500 2.03 

150 10 16 2400 3.25 

150 12 16 2400 3.25 

250 8 8 2000 2.71 

250 12 10 2500 3.39 

250 8 16 4000 5.42 

250 12 14 3500 4.75 

250 10 16 4000 5.42 

250 12 16 4000 5.42 

500 8 8 4000 5.42 

500 10 14 7000 9.49 

500 10 16 8000 10.85 

500 12 16 8000 10.85 

1000 8 8 8000 10.85 

1000 10 8 8000 10.85 

1000 10 14 14000 18.98 

1000 12 16 16000 21.69 

 
In Table 3.1, the load refers to the maximum capacity that the jib crane is licensed to carry. The hub 

refers to the vertical height of the crane, while the span refers to the maximum lateral distance that 

the load can be from the center of the hub. 

3.1.2 Slab Thickness 

The minimum slab thickness required by crane manufacturers is 150 mm (Gorbel, 2012; Spanco, 

2018). However, the actual thickness of a particular warehouse floor can be considered to be largely 

unknown due to a variety of factors during construction (e.g., unevenness of the subgrade, uneven 

concrete pouring, etc.). In this study, a uniform thickness within a range (100 – 200 mm) was 

considered to capture a wider variety of thickness effects. 

3.1.3 Concrete Specified Strength 

The minimum specific strength of concrete required by crane manufacturers is 3000 psi (i.e., 

approximately 20 MPa) (Gorbel, 2012; Spanco, 2018). Typical values of concrete strength have 

been considered and range between 20 – 60 MPa for minimum strength and high strength 

concrete, respectively. 

3.1.4 Slab Length 

In this study, the length of slab refers to the distance between opposing joints of a slab-on-grade. 

For conservativeness, it is further assumed that slab joints (dowels, partially continuous 
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connections, etc.) provide zero load carrying or load transfer capabilities, and that any particular 

partition of slab is discontinuous and free at its edges. In particular, a partition of slab is assumed 

to be able to freely deflect vertically and rotate at its edges. The joint spacing recommended by the 

American Concrete Institute is based on the thickness of the slab and the compressive strength of 

concrete, summarized in Figure 3.3: 

 

Figure 3.3: Recommended joint spacing based on slab thickness and concrete strength (McKinney 

et al., 2006) 

The crane manufacturer Spanco requires a minimum 120 square-foot area, or an approximate 

square area with side lengths of 3400 mm on which a crane may be installed upon (Spanco, 2018). 

The crane manufacturer Gorbel requires that the crane to be installed a minimum of 1200 mm 

from any wall or joint (Gorbel, 2012). As the range of slab thicknesses previously identified lies 

between 4’’ – 8’’, and the range of concrete compressive strengths may be either low or high 

strength, the range of slab lengths considered in this study, based on Figure 3.2 and the 

requirements listed by Gorbel and Spanco, range between 12.5’ – 20’ (approximately 3700 – 6000 

mm).   

3.1.5 Soil Capacity 

The minimum soil bearing capacity required by crane manufacturers is 2500 psf (Gorbel, 2012; 

Spanco, 2018), or a modulus of subgrade reaction of approximately 175 psi/in (McKineny et al., 

2006). As the strength of the soil is difficult to characterize and approximated at best, a range of 

subgrade strengths (bearing capacities between 2000 – 3000 psf, or moduli of subgrade reaction 

between 130 – 230 pci) were considered. The equivalent modulus of subgrade reaction based on 
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the required bearing capacity values were determined via Figure 2.15 provided by the American 

Concrete Institute. 

3.1.6 Vertical Compressive Force 

The vertical compressive force can be defined as a combination of the crane’s self-weight and the 

load carried by the jib. Typical, freestanding jib cranes have total compressive loads ranging 

between 2000 – 11000 N (Gorbel, 2012). Table 3.2 shows some of the maximum compressive force 

licensed for jib cranes by the crane manufacturing company Gorbel: 

Table 3.2: Maximum compressive force associated with jib cranes, from Gorbel (2012) 

Load Hub Span Pf Pf 

lbs. ft. ft. lbs. kN 

150 8 8 540 2.40 

150 8 10 561 2.50 

150 10 8 577 2.57 

150 12 14 780 3.47 

150 10 16 784 3.49 

150 12 16 829 3.69 

250 8 8 711 3.16 

250 10 16 956 4.25 

250 12 16 1141 5.08 

500 8 8 1018 4.53 

500 10 8 1063 4.73 

500 12 14 1546 6.88 

500 10 16 1547 6.88 

500 12 16 1809 8.05 

1000 8 8 1631 7.26 

1000 10 8 1698 7.55 

1000 8 10 1702 7.57 

1000 8 16 2271 10.10 

1000 10 16 2300 10.23 

1000 12 14 2350 10.45 

1000 12 16 2450 10.90 

 
In Table 3.2, the load refers to the maximum capacity that the jib crane is licensed to carry. The 

hub refers to the vertical height of the crane, while the span refers to the maximum lateral distance 

that the load can be from the center of the hub. The total vertical load includes both the maximum 

capacity of the crane and its self-weight. 

3.1.7 Baseplate Dimensions 

The size of baseplates and masts are reflective of the maximum capacity and arm length they are 

licensed to carry. In particular, baseplate dimensions are of importance because they govern the 

area over which vertical forces are transferred into the slab as a bearing pressure. In this study, it is 
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assumed that the mast of a crane is equivalent to a solid or HSS column, and therefore the crane 

superstructure can be likened to that of a column-baseplate system. In this manner, it can be 

assumed that for any particular size of baseplate, the diameter of a circular mast has no significant 

effect on the load that the concrete bears; while the axial force is distributed from the column end 

to the column baseplate in direct bearing, the baseplate is assumed to distribute the axial force to 

the concrete as a uniform bearing pressure (Thornton et al., 2011). Therefore, an assumption can 

be made that the concrete bearing pressure is affected solely by the size of the baseplate.  

In general, crane manufacturers have their own discrete dimensions used for any particular crane 

specification. In this study, Gorbel’s WSJ360 foundationless, freestanding cranes have been 

investigated (Gorbel, 2012). The baseplates used include a square plate of length 15’’ (i.e., 

approximately 375 mm) and various hexagonal plates with vertex-to-vertex diameters ranging from 

30 – 36’’ (i.e., approximately 750 – 900 mm), shown in Figure 3.4: 

 

Figure 3.4: Sample of baseplates (Gorbel, 2012) 

To simplify and remain consistent, all baseplates in this study were modelled as equivalent circular 

baseplates with an equivalent area. Equivalent circular baseplate diameters considered in this 

study ranged between 18 – 36’’, or approximately 450 – 900 mm, shown in Figure 3.5:  

 
Figure 3.5: Equivalent circular baseplate for hexagonal and square baseplates 

For consistency, the diameter of the circular mast used in this study was approximately 35% of the 

diameter of an equivalent circular baseplate. Six stiffeners were also provided.  
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3.2 Material Properties 

All materials used in the finite element model (concrete, steel, and soil) were assumed to be 

perfectly linear elastic as the serviceability limit state governs the design of the slab. The stress-

strain relationships of steel and soil were not of particular interest as it was assumed that the 

critical failing mechanism of the system would be the concrete in tensile failure. Failure of the steel 

anchors and soil are out of the scope of this study, though they can be easily checked by readily 

available design aids, including A23.3-14 Annex D and Section 9 of the Canadian Concrete 

Handbook, respectively, for anchorage analysis and soil bearing capacity effects (Adebar et al, 

2017). Buckling of the steel baseplate, stiffeners, and mast of the crane were outside of the scope of 

this study and not expected to occur.   

3.2.1 Concrete 

The stress-strain relationship of concrete was assumed to be linear-elastic up until the first 

cracking in either compression or tension and defined by its specific compressive strength. The 

modulus of elasticity was determined by the compressive strength through the use of clause 8.6.2.2 

in the Canadian Concrete Handbook (Adebar et al, 2017): 

 𝐸𝑐 = (3300√𝑓′
𝑐
+ 6900) (

𝛾𝑐

2300
)
1.5

 (3.1) 

 
in which 𝛾𝑐 is the unit weight of concrete and assumed to be 2400 kg/m3 and f’c is the specific 

compressive strength of concrete.  

In this study, compressive failure was assumed to be the least critical failure mode and as a result 

was not considered. 

In tension, failure was assumed to occur whenever the maximum principal stresses observed 

exceeded the tensile yield stress defined by the concrete’s modulus of rupture. The modulus of 

rupture was determined through clause 8.6.4 in the Canadian Concrete Handbook (Adebar et al, 

2017): 

 𝑓𝑟 = 0.6𝛾√𝑓′𝑐 (3.2) 

 
where 𝛾 is the modification factor for concrete density and assumed to be 1 (Adebar et al, 2017).  

This failure mode is based on the maximum principal stress theory of failure and was selected in 

this study as plain, unreinforced concrete exhibits brittle behaviour in tension, shear stresses 

developed in the slab were assumed to have negligible impact, and because the concrete was 

assumed to be isotropic.  

The stress-strain relationship for concrete in tension used in this study is shown in Figure 3.6: 
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Figure 3.6: Stress-strain curve of concrete in tension 

In Abaqus, concrete was defined using a modulus of elasticity (variable, dependent on assigned 

specific compressive strength) and a typical Poisson’s ratio of 0.2 (Adebar et al., 2017).  

3.2.2 Steel 

In Abaqus, steel was defined using a typical modulus of elasticity of 200,000 MPa and Poisson’s 

ratio of 0.2 (Wong et al., 2015). 

3.2.3 Soil 

In Abaqus, soil was defined using a modulus of elasticity (variable, dependent on assigned specific 

modulus of subgrade reaction). It was assumed that a Poisson’s ratio of 0.2 was an adequate 

representative value for most soil types (Selvadurai, 1979).  

3.3 Finite Element Model Definition 

3.3.1 Pseudo-Infinite Elastic Half-Space Soil 

The soil medium was idealized as an isotropic, homogeneous, linear-elastic half-space that spans 

infinitely in the lateral and downward directions and can be characterized by a modulus of 

elasticity and Poisson’s ratio. The conscious decision to model the subgrade as an elastic half-space 

over a Winkler spring model is explained in detail in previous sections of this work.   

The half-space was modelled using 8-node linear solid hexahedral elements with reduced 

integration (C3D8R) and enhanced hourglass control. The soil was expected to take on a very 

simple geometry in the form of a rectangular prism or cube, and therefore, hexahedral (brick) 

elements were selected over tetrahedral (triangular) elements (which are more appropriate for 

complex geometries with curves, acute angles, and the like). Linear elements were selected over 

quadratic elements as the subgrade was deep enough such that a sufficient number of elements 

could be provided in the thickness (Abaqus recommends a minimum of four elements in the 

thickness of any body in flexure) (Abaqus, 2012). Additionally, the mesh density of the subgrade 
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primarily impacted the convergence of deflections rather than stresses; the stresses developed in 

the soil was not part of the scope of this study, and a simply defined subgrade was considered 

sufficient. While it should be noted that a variety of element types could be feasibly used with the 

same degree of accuracy (such as linear brick elements with full integration, linear incompatible 

elements, quadratic elements with full or reduced integration, any of the tetrahedral elements, 

etc.), the selected element type (C3D8R) was considered the most appropriate fit. As the subgrade 

is expected to behave as if it spanned infinitely, modelling the subgrade as a cylinder was also 

considered, but was ultimately found to not have any significant impact on reducing the total 

number of required elements. 

An infinitely spanning subgrade cannot be feasibly or practically modelled; in this case, a subgrade 

with finite dimensions that behaves as if it were infinitely spanning (i.e., the response of the finite 

subgrade is in good agreement with the theoretical response of an infinite subgrade) is required. In 

particular, the modelled finite subgrade must behave infinitely when supporting a slab of any 

particular size loaded by a concentrated force and its own self-weight. This can be achieved by 

either making use of Abaqus’ solid infinite elements (CIN3D8, amongst others) or by selecting 

adequate subgrade dimensions and boundary conditions that facilitate convergence of deflections 

and stresses. The latter method was selected due to simplicity in the modelling and simulation 

process. 

Figures 3.7 and 3.8 show the convergence of the maximum deflection and stress observed in the 

soil for various subgrade dimensions and boundary conditions. 

 

Figure 3.7: Maximum deflection observed in a slab resting on various soil depths, soil lengths (L1 = 

20,000 mm, L2 = 40,000 mm, L3 = 80,000 mm), and soil boundary conditions (bc1 and bc2 refers 

to either free or pinned boundary conditions, respectively prescribed to the subgrade’s lateral 

faces) 

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15
0 10000 20000 30000 40000 50000 60000 70000 80000

D
ef

le
ct

io
n

 (
m

m
)

Soil Depth (mm)

bc1,L1 bc1,L2 bc1,L3 bc2,L1 bc2,L2 bc2,L3



68 
 

 

Figure 3.8: Maximum stress observed in a slab resting on various soil depths, soil lengths (L1 = 

20,000 mm), and soil boundary conditions (bc1 and bc2 refers to either free or pinned boundary 

conditions, respectively prescribed to the subgrade’s lateral faces) 

In these tests, two types of boundary conditions (bc1 = free, bc2 = pinned) were considered at the 

lateral faces of the subgrade. The bottom of the subgrade was always considered pinned. Five 

different subgrade depths (5 m, 10 m, 20 m, 40 m, and 80 m) and three different subgrade lengths 

(20 m, 40 m, 80 m) were considered in order to illustrate the effects of convergence. Solid lines 

represent soils bounded laterally by free conditions while dotted lines represent soil bounded by 

pinned conditions. Note that the boundary conditions are applied at the face of the soil – in this 

manner, a pin condition is equivalent to a fixed condition in the sense that rotation has been 

constrained. This is due to the definition of a three-dimensional solid element in Abaqus (nodes of 

these elements cannot rotate) (Abaqus, 2012). For clarity, if a pinned end with the ability to rotate 

is desired, as is the case for a simply supported plate, then the pinned end condition must be 

applied to an edge or one-dimensional line of nodes rather than a face or two-dimensional set of 

nodes. It is clear that both a sufficient subgrade depth and subgrade length is required for 

convergence. In particular, it can be seen that an unbounded subgrade approaches convergence 

from, and a bounded subgrade with pinned sides approaches convergence from above with respects 

to subsequent increases in length and depth. It is expected that continuing to increase both the 

subgrade depth and length to approach an infinite subgrade will yield results somewhere in-

between the bounded and unbounded subgrades.  

Considering a subgrade with dimensions larger than 40 m begins to create prohibitive 

computational times. As a result, a laterally pinned subgrade (ux = uy = uz = 0) with a length of 40 

m and depth of 20 m was considered. The bottom face of the subgrade was also pinned (ux = uy = uz 

= 0). The deflections for a subgrade with these dimensions were within 6% of the ‘converged’ 

values for a subgrade with dimensions of 80 m x 80 m x 80 m and was considered adequate for the 
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purposes of this study. Asides from the case of an unbounded subgrade with a length of 20m, the 

stresses observed in the slab yielded insignificant changes with changes to the subgrade 

dimensions or lateral boundary conditions. 

Figure 3.9 shows the selected dimensions and boundary conditions used to model the soil: 

 

Figure 3.9: Boundary conditions of elastic half-space, 2D side view 

Figures 3.10 to 3.12 depict the three-dimensional view, top-down view, and side view of the elastic 

half-space and meshing pattern used:  

 

Figure 3.10: Mesh of elastic half-space, 3D view 
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Figure 3.11: Mesh of elastic half-space, 2D side view 

 
Figure 3.12: Mesh of elastic half-space, 2D top-down view 

It can be seen that a highly varied mesh pattern was employed in the subgrade. In general, the 

meshing philosophy was as follows: 1) use a fine mesh density in areas of concern (i.e., regions of 

contact between the slab and subgrade and areas in which deflections and stresses were of 

importance) in order to achieve simulation convergence and accuracy of results, and 2) use a coarse 

mesh density in areas not of concern in order to reduce the total number of elements and 

computational time and effort. 

In the thickness, element sizes varied linearly from 1000 mm at the bottom to 100 mm at the top 

surface. A square partition with a side length of 7000 mm (greater than the maximum considered 

slab length) was created at the center of the subgrade. This area was meshed more densely than 

other areas because it was an area of concern and an area of contact. Within this partition, the 

element size varied linearly between 500 at the corners to 200 at the center.   
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It was assumed that settlement and consolidation of the soil due to its self-weight and the weight of 

any pre-existing structures had already taken place, and therefore no weight was assigned to the 

soil. 

3.3.2 Two-Way Concrete Slab 

The concrete slab is idealized as an isotropic, homogenous, linear-elastic concrete plate that can be 

characterized by a modulus of elasticity and Poisson’s ratio. The slab was modelled using 

conventional 4-node linear quadrilateral shell elements (S4R) with reduced integration. Shell 

elements were selected over solid elements (of any type; i.e., linear or quadratic hexahedral or 

tetrahedral solids) because the considered thicknesses of the slab (ranging between 100 – 200 mm) 

were significantly smaller than the considered lengths of the slab (ranging between 3800 – 6000 

mm) and because shell elements perform significantly better than their solid counterparts in 

bending-dominated problems such as this one when the effects of shear deformation can be 

considered negligible.  

In bending-dominated problems, three-dimensional linear elements may suffer from hourglassing 

effects or shear locking, which either causes over- or under-prediction, respectively, of deflections 

and/or stresses. While these phenomena can be addressed, solutions typically involve increasing 

the number of solid elements in the thickness (Abaqus recommends a minimum of 4 linear 

elements in the thickness for bending-dominated problems) or by selecting more complex and 

computationally heavy elements (such as three-dimensional quadratic elements) (Abaqus, 2012).  

Consider the simplified case of a plate fixed on all four sides subject to a concentrated load 

distributed over a small radius at midspan (8b. in Table 11.4 of Roark’s Stress and Strain 

Handbook). Figure 3.13 and 3.14 shows the maximum deflections and stresses observed in a finite 

element model of the problem using a varying number of total elements compared the analytical 

solution provided by Roark (Young and Budynas, 2002). 
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Figure 3.13: Number of elements versus the maximum observed deflection for a clamped plate 

subject to a concentrated load distributed over a small central circle 

 
Figure 3.14: Number of elements versus the maximum observed stress for a clamped plate subject 

to a concentrated load distributed over a small central circle 

As expected, there is a minimum number of three-dimensional elements (<15,000) is required to 

converge to the analytical stresses. An inordinate number of three-dimensional linear (50,416) or 

quadratic (25,208) elements are required to converge to within 5% of the analytical stresses. 

Conversely, with the same top-down mesh used as the three-dimensional solids, shell elements 
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readily converge to the analytical solution for both deflections and stresses. Notably, increasing the 

number of three-dimensional elements to obtain accuracy within 5% becomes prohibitive in regard 

to computational time. For instance, providing 16 quadratic elements in the thickness resulted in a 

30-minute simulation time (for clarity, 8 quadratic elements resulted in several minutes of 

simulation time). When considering that the example problem tested is very simple (one part, one 

distributed load, no contact interfaces, basic boundary conditions, etc.), the use of shell elements 

for the slab when considering the slab-soil system as a whole became attractive.  

Additionally, three-dimensional solid elements uniquely suffer from numerical singularity issues 

(areas of stress concentrations that increase with increasing mesh density) that often arise from the 

application of highly concentrated loading patterns and from bodies in contact. While typical 

solutions for singularities involve ignoring them (if possible), it is expected that stress singularities 

will build up in areas of concern (specifically, at the top surface of the slab in contact with the 

crane, with singularities induced by tensile forces produced by the embedded anchor bolts). 

Therefore, to consider stresses in both the top and the bottom of the slab, shell elements were 

selected. 

Figure 3.15 shows a top-down view of the mesh used. Figure 3.16 shows a close-up view of the 

slab’s expected contact interface with the crane. 

 

Figure 3.15: Mesh of slab, 2D top-down view 



74 
 

 

Figure 3.16: Mesh of slab interior partition, 2D top-down view 

It can be seen that, like the subgrade, a highly variable mesh pattern was employed akin to the 

subgrade. Again, a fine mesh density was provided to areas of concern, while a coarser mesh was 

used in areas not of concern. Element sizes of 400 mm were provided along the sides of the slab. A 

circular partition with a radius equal to the radius of the modelled baseplate was created in the area 

of the slab and was used as an area of contact between the slab and the crane. This area was 

meshed significantly more dense than other areas because it was the most critical (an area of 

concern and an area of contact). The circular partition itself is composed of three parts: an outer 

ring, a very dense inner ring, and the interior circle. In general, the outer rings required the densest 

mesh composition, because it was expected that critical stresses would build up in the circular 

embedded bolt pattern and the edges of the baseplate. The exterior ring was meshed with elements 

sized 30 mm x 10 mm, while the inner ring was meshed with elements sized 30 mm x 5 mm. The 

interior circle was meshed with elements sized 30 mm. This contact interface between the slab and 

the crane is discussed in further detail in Section 3.3.4. 

Any existing joints were assumed to be cracked and provide no additional load transfer or support; 

therefore, the sides of the slab were assumed to be free (the slab is supported solely by the 

subgrade). Vertical deflection and all rotations at the edges were unrestrained, but lateral 

displacement restraints (ux = uy = 0) were provided at the edges to prevent instability in the event 

of any lateral sliding effects. 

The slab’s self-weight is important as it acts as a dominant counterbalance to the induced 

overturning moment. The self-weight was assumed to be 2400 kg/m3 and was applied as a 

distributed body force volumetrically throughout the slab.  

Figure 3.17 shows the boundary conditions and loading of the slab: 
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Figure 3.17: Loading and boundary conditions of concrete slab, 2D side view 

While the slab diagram in Figure 3.17 appears unstable as its edges are restrained only by 

vertically-free pinned roller supports, in reality, the slab will also be supported continuoulsy along 

its bottom face by the subgrade. 

3.3.3 Crane Superstructure 

The crane, stiffeners, and baseplate have been idealized as isotropic, homogenous, and linear 

elastic steel solid component that can be adequately characterized by a modulus of elasticity and 

Poisson’s ratio. In particular, it should be noted that only the bottom portion of the crane’s mast 

was modelled, as modelling additional portions of the crane was not necessary and would only 

increase the required number of elements.  

All three components were modelled using three-dimensional 8-node linear solid hexahedral 

elements with reduced integration (C3D8R) and enhanced hourglass control. The model geometry 

was not complex enough to warrant the use of tetrahedral elements. Linear elements were selected 

over quadratic elements as the superstructure was not of particular importance (mesh density is 

required solely for adequate transfer of forces and for contact), and a sufficient number of linear 

elements was provided in the thickness of all three components. Again, like the subgrade, a 

multitude of varying element types could have been used to adequately model the crane 

superstructure (i.e., such as the use of shell elements for the stiffeners and plate), but the use of 

linear elements was found to be the simplest when defining contact interactions between each 

individual component. All components were provided a simple tie constraint between one another. 

The tie constraint effectively acts as a welded connection.  

The modelled mast height was 500 mm. The baseplate diameter was variable. The mast diameter 

was always taken as roughly 35% of the baseplate diameter. Figures 3.18 and 3.19 showcase the 

mesh of the mast and baseplate. 
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Figure 3.18: Mesh of mast, stiffeners, and baseplate, 3D view 

 

Figure 3.19: Mesh of baseplate, 2D top-down view 

A fairly typical mesh pattern was employed for the modelled mast and stiffener. The mast and 

stiffener were meshed with elements of size 25 mm. The baseplate was meshed using the same 

pattern as the interior circular partition of the slab. This was done for adequate load transfer and 

simulation convergence at the contact interface. The exterior ring was meshed with elements sized 

30 mm x 10 mm, while the inner ring was meshed with elements sized 30 mm x 5 mm. The interior 

circle was meshed with elements sized 30 mm.  

The crane stability is achieved through a contact interface with the slab discussed later in Section 

3.3.4. To prevent lateral slipping, lateral restraints (ux = uy = 0) were applied on a single edge of the 
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baseplate; in this manner, by applying the restraint to one edge, the baseplate was still free to 

rotate about the x- and y-axis.  

Both the axial load and overturning moment was applied to a reference point (marked “RFP” in 

Figure 3.20) that coupled the entire top surface of the modelled mast. Figure 3.20 additionally 

shows another view of the boundary conditions and loading conditions: 

 

Figure 3.20: Loading and boundary conditions of crane superstructure, 2D side view 

3.3.4 Contact Interaction 

In Abaqus, contact interactions define how two or more bodies behave when in contact (Abaqus, 

2012). Two regions with contact interfaces are identified in this study: one between the slab and the 

soil, and one between the baseplate and the slab. 

3.3.4.1 Slab-Soil Interface 

In order to avoid artificial stiffness in tension, a separation-based, hard contact interaction was 

defined between the slab and the soil that allows the slab to lift up off the soil given large uplifting 

forces. This contact was defined throughout the entirety of the bottom of the slab and the top 

portion of the partitioned subgrade.  

3.3.4.2 Baseplate-Slab Interface 

In reality, a foundationless jib-crane is mounted to a slab-on-grade via post-installed adhesive 

chemical anchors attached to a baseplate. After installation, the adhesive chemical bonds to both 

the steel anchor and the concrete it is embedded in, providing a chemical bond and frictional force 

when loaded in tension. To simplify and avoid modelling detailed bolt-to-concrete connections, the 

interface between the baseplate and the slab was modelled as a circular ring using a tied 

connection. The ring has a width equal to that of the diameter of the anchor bolts, and the ring’s 

center-to-center diameter is equivalent to the center-to-center diameter of the group of anchor 
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bolts. The remaining portions of the contact interface between the baseplate and the slab was 

defined using a typical hard, separation-allowed interaction. Figure 3.21 shows the partitions used 

in defining contact: 

 

Figure 3.21: Contact partition definition between baseplate and slab 

Here, the forces experienced by the anchor bolts are distributed to the partitioned ring. Notably, it 

is still expected that stress will congregate around the locations of the actual anchor bolts on the 

ring, as the initial transfer of forces from the crane to the baseplate is through the mast and 

stiffeners of the crane. For simplicity, it is assumed that the stiffeners are aligned with the locations 

of the anchor bolts (in reality, the anchor bolts are slightly offset from the stiffeners). Figure 3.22 

visualizes this effect:  

  
(a) (b) 

 
Figure 3.22: Top-down view of (a) the slab, baseplate, and mast and stiffeners, and (b) maximum 

principal stress concentrations in contact partition between baseplate and slab 
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Figure 3.22 (b) was produced by applying a concentrated tensile force at the top of the mast. The 

baseplate is tied to the slab along the entirety of the partitioned ring, but as some of the force 

transfer is distributed from the mast to the baseplate through the stiffeners, stress concentrations 

appear around the locations of the stiffeners on the partitioned ring.  

Figures 3.23 and 3.24 show the contact interface and the meshing used at the contact interface. 

 

Figure 3.23: Contact interface between baseplate and slab, 3D view; marked by the red arrow 

 

Figure 3.24: Mesh of contact interface between baseplate and slab, 2D top-down view; area marked 

as (1) is the outer edge of the baseplate; area marked as (2) is the inner circular ring 

In particular, the two regions that are meshed finely (notated as (1) and (2) on Figure 3.24) are the 

outer edge of the baseplate and the circular ring described earlier in this section that ties the 

baseplate to the slab. The meshing pattern for this circular section is identical on both the slab and 

the baseplate to ensure adequate transfer and simulation convergence. In the outer ring defining 

the outer edge of the baseplate, an element size of 30 mm x 10 mm was provided. In the dense 

inner ring defining the tied connection between the baseplate and the slab, an element size of 30 

mm by 5 mm was provided. The interior circle was meshed with an element size of 30 mm. 

It was assumed that this idealization adequately represented the transfer of loads from the bolts to 

the concrete slab; again, for bolt-associated failure checks, the reader is directed to the various 

readily available design aids and software.  

 

1 

2 
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3.4 Verification & Validation 

This section discusses the tests completed and methods used to verify and validate the finite 

element model. For verification, a local mesh refinement study was completed to show convergence 

of deflections and stresses in the critical regions. For validation, a simplified model consisting of 

the subgrade supporting a slab subject to a concentrated load distributed over a small, central area 

is compared against existing analytical and numerical solutions.  

3.4.1 Mesh Refinement 

Local mesh refinement is required to ensure that a given mesh is sufficiently dense at areas of 

concern in order to achieve convergence of stresses and deflections. Additionally, mesh refinement 

is also important for checking for the presence of any stress concentrations. In this finite element 

model, the mesh areas of concern are as follows: 

1. Thickness of the baseplate, 

2. Baseplate mesh at contact interface with slab, 

3. Slab mesh at contact interface 

4. Slab mesh immediately adjacent to contact interface between the baseplate and slab, 

5. Subgrade mesh at contact interface with slab, and 

6. Thickness of the subgrade. 

The model was simulated several times with varying element densities at the areas of concern. 

Figures 3.25 to 3.27 depict the observed maximum stresses and deflections in the slab based on 

refinement of mesh densities to the baseplate, slab, and subgrade: 

 

Figure 3.25: Number of elements used in the slab versus the observed maximum stress and 

deflection in the slab 
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Figure 3.26 shows that increasing the number of elements in the slab beyond 2500 resulted in 

negligible change in the critical stresses and deflections.  

 

Figure 3.26: Number of elements used in the soil versus the observed (a) maximum stress, and (b) 

maximum deflection in the slab 

Figure 3.27 shows that increasing the number of elements in the subgrade beyond 5000 resulted in 

negligible change in the critical stresses and deflections. 

 

Figure 3.27: Number of elements used in the baseplate versus the observed maximum stress and 

deflection in the slab 

Figure 3.27 shows that any particular number of elements used in the baseplate were appropriate 

when considering the critical stresses and deflections.  

It can be seen that the stresses and deflections in the critical regions converges rapidly with 

increases to the number of elements in the critical regions. It can be immediately seen that there 

are no stress singularities present (i.e., stresses do not continuoulsy increase with continued 

increases in the number of elements in local areas). In particular, it was found that the critical 

stresses and deflections were most sensitive to the mesh densities provided in the slab and the 

subgrade. The mesh density of the baseplate was found to not have a particular effect on the critical 
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stresses on the slab (note, however, that this is true only as the areas of concern are in the slab; 

should the areas of concern be in the baseplate, the baseplate element density should be refined). 

At each area of concern, a sufficient element density was provided to achieve convergence. 

Adequacy of convergence was assumed when subsequent doubling of the total number of elements 

yielded less than 1% change in the stress or deflections observed in these regions. 

3.4.2 Comparison to Solutions on a Winkler Model 

For validation, a simplified finite element model consisting of the subgrade supporting either a 

finite- or infinitely spanning slab subject to a concentrated load distributed over a small, central 

area is compared against Westergaard’s (1926) analytical solutions and results obtained by a 

jointed plain concrete pavement analysis tool, EverFE (Davids et al., 2003). 

In particular, a slab of depth 150 mm with lengths of either 6,000 or 16,000 mm were considered. 

Two lengths were considered in order to examine differences between a ‘finite’ and a so-called 

‘infinite’ slab. A concentrated load of 10 kN was applied over a square 300 mm x 300 mm area. For 

the modulus of subgrade reaction was taken as 150 psi/in. and an equivalent elastic modulus of 

approximately 110 MPa was used in the Abaqus model. 

 

Figure 3.28: Comparison of the deflection profiles for a plate resting on an elastic half-space with 

an equivalent modulus of elasticity to a concentrated load distributed over a small square area 

versus the analytical solutions on a Winkler medium; (i): finite plate with L = 6,000 mm, and (ii): 

pseudo-infinite plate with L = 16,000 mm 

In general, Westergaard’s (1926) solutions pair well with the solution predicted by EverFE. In 

particular, EverFE predicts slightly greater uplift away from the loaded region. This is because 

while Westergaard considers an infinitely spanning slab, EverFE considers a finite slab. Compared 

to the equivalent elastic half-space models, Westergaard’s (1926) solutions yield effectively the 

same results derived in Section 2.3; the deflections under the load are equivalent, and the half-

space models predict more deflection away from the loaded region as a result of shear stress 
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continuity in the soil. The case of the finite plate resting on the elastic half-space predicted slightly 

more deflection directly under the loaded region, and considerable uplift at the end of the plate. It 

was found that this uplift was greater than that of the uplift predicted by EverFE; this again was 

expected as the Winkler springs used in EverFE’s solutions continue to provide support even in 

tension. The results obtained from this comparison were expected. 

 

Figure 3.29: Comparison of the stress profiles for a plate resting on an elastic half-space an 

equivalent modulus of elasticity to a concentrated load distributed over a small square area versus 

the analytical solutions on a Winkler medium; (i): finite plate with L = 6,000 mm, and (ii): pseudo-

infinite plate with L = 16,000 mm 

In general, Westergaard’s (1926) solutions matched with the solutions predicted by EverFE. 

EverFE predicted slightly lower stresses directly under the loaded region. Compared to the Abaqus 

models, the solutions using the Winkler model predicted approximately 15% greater stresses. 

Negligible difference was observed between the finite and pseudo-infinite plate. Figure 3.30 shows 

an additional comparison of maximum stresses under the loaded region when considering different 

values for the modulus off subgrade reaction: 
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Figure 3.30: Comparison of the maximum stress for a plate resting on an elastic half-space an 

equivalent modulus of elasticity subject to a concentrated load distributed over a small circular 

area versus the analytical solutions on a Winkler medium; (i): finite plate with L = 6,000 mm, and 

(ii): pseudo-infinite plate with L = 16,000 mm 

As before, it is evident that Westergaard (1926) predicts the greatest overall stress compared to 

EverFE and the Abaqus elastic half-space models, and negligible difference between the finite and 

pseudo-infinite plate was observed. In general, for all values of the modulus of subgrade reaction, 

the Abaqus elastic half-space models predicted approximately 10-15% less stress than 

Westergaard’s (1926) solutions. Notably, the variation in critical stress for the elastic half-space 

models match Westergaard’s (1926) initial assumptions of the effects of the modulus of subgrade 

reaction. In the particular slab-system defined in Figure 3.27, increasing the modulus of subgrade 

reaction from 50 psi/in. to 200 psi/in. resulted in a decrease from ~0.55 MPa to ~0.48 MPa. 

3.4.3 Comparison to Analytical Solutions on a Half-Space 

For validation, a simplified finite element model consisting of the subgrade supporting either a 

finite- or infinitely spanning slab subject to a concentrated load distributed over a small, central 

area is compared against Selvadurai’s (1979) and Gorbunov-Posadov’s (1959) analytical solutions 

and Hu and Hartley’s (1994) numerical solutions.  

For the infinite case, several slab-soil systems of varying dimensional configurations were 

simulated. This was completed in order to show the effects of more closely emulating infinite slab-

soil conditions. A load of 10 kN was distributed over an increasingly smaller circular area, starting 

with a radius of 150 mm. Figure 3.31 shows the comparison of deflection curves obtained from 

Abaqus against the analytical solution presented by Selvadurai (1979):  
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Figure 3.31: Comparison of the deflection profiles for a very long, ‘pseudo’-infinite plate resting on 

an elastic half-space versus the analytical solutions developed by Selvadurai (1979); (i): H = 5,000 

mm, L = 12,000 mm, r = 150 mm, (ii): H = 10,000 mm, L = 16,000 mm, r = 150 mm, (iii): H = 

40,000 mm, L = 26,000 mm, r = 25 mm 

Here, H is the subgrade depth, L is the slab length, and r is the radius over which the load is 

distributed over. As the slab-soil system trends towards emulating infinite slab and soil conditions 

(i.e., slab length, subgrade length, and subgrade depth → ∞ and the area over which the 

concentrated load is distributed over → 0), the deflection curves produced by the system begins to 

closely match those presented by the analytical solution. Obtaining deflection curves for slab-soil 

dimensions longer than the ones presented in Figure 3.31 becomes prohibitive in terms of 

computational effort and have been omitted. As the slab-soil system approaches infinite conditions, 

it is expected that the observed deflections will meet the analytical solution presented by Selvadurai 

(1979).  

Figure 3.32 shows the contact stresses for the case of a very long plate resting on a deep and wide 

subgrade: 
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Figure 3.32: Comparison of the contact stress for a very long, ‘pseudo’-infinite plate resting on an 

elastic half-space versus the analytical solutions developed by Gorbunov-Posadov (1959); H = 

40,000 mm, L = 26,000 mm, r = 25 mm 

It was found that the contact stresses did not vary much with changes to the slab-soil dimensions, 

so long as the dimensions were of reasonably sufficient length and depth. 

For the finite case, dimensions and material properties were taken by matching the relative 

stiffness parameter outlined by Gorbonuv-Posadov (1959), γ, to the same values used in the 

numerical study presented by Hu and Hartley (1994). For instance, for γ = 3016, the following 

values were used: Es = 260 MPa, Eb = 26000 MPa, h = 150 mm, and L = 6000 mm. It should be 

noted that this is not the only combination of slab-soil parameters that achieves this relative 

stiffness value. A concentrated load of 10 kN was distributed over a circular area with a radius of 

150 mm. Figures 3.33 and 3.34 present these results: 
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Figure 3.33: Comparison of the deflection profiles for a finite plate resting on an elastic half-space 

versus the analytical solutions developed by Hu and Hartley (1994) 

For various values of the relative stiffness parameter, γ, the Abaqus elastic half-space models 

showed very good agreement with Hu and Hartley’s (1994) numerical results. There are some slight 

discrepancies that can be seen specifically for slab-soils with higher relative stiffness values, but 

these can largely be attributed to the visual approximation of the values presented by Hu and 

Hartley. 

 

Figure 3.34: Comparison of the contact stress for a finite plate resting on an elastic half-space 

versus the analytical solutions developed by Hu and Hartley (1994); γ = 301 
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As before, the finite element model with a finite slab matched very well against the numerical 

studies presented by Hu and Hartley (1994) and Silva et al. (2001). As before, any discrepancies 

noted can be attributed to visual approximation of the values presented by the authors.  
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4.0 Data Collection & Analysis 

This section details the methodology and procedure used to collect and analyze the results obtained 

from the finite element model developed in the previous section. 

4.1 Methodology 

The procedure for data collection involved a large-scale parametric study requiring the mass 

simulation of finite element models at varying variable values. Within each parameter’s considered 

range of values, a minimum of 3 data points were taken: the upper bound, lower bound, and a 

value in-between. It was assumed that 3 data points per variable were sufficient in identifying the 

mathematical relationship between the parameters and the dependent variable. As contemporary 

slab-on-grade design methods are thickness design methods (i.e., the required thickness of the slab 

is the critical dependent variable), it was expected that the slab depth would be a critical parameter, 

and therefore 5 data points were taken (the upper bound, lower bound, and 3 values in-between).  

An Abaqus finite element model can be defined in terms of an input (.inp) file detailing the nodal 

and element construction, material properties, model interactions, loading properties, and more. 

As the input file can be read as a plain text (.txt) file, the mass simulation of these FE models 

involved editing a text file with the predetermined variable values and running the models 

sequentially. This was completed using a Matlab script. Once finished running, an Abaqus model 

stores the results (i.e., of deflections, stresses, and other user-desired outputs) in an output 

database (.odb) file. The database file cannot be read as a typical text file, and as a result, a Python 

script was required to scrape the maximum principal stresses observed in the slab. In particular, it 

was important to extract the stresses in both the top and bottom of the slab, as the location of the 

critical stress (i.e., on top of bottom of the slab) was unknown.  

It was expected that a linear change in the applied moment or compressive load would result in a 

linear increase in the observed maximum principal stress as the concrete was defined as a perfectly 

linear-elastic material. As a result, every model was simulated twice using two exploratory 

moments in order to develop a linear relationship between the load and the stress. The actual 

moment required for cracking of the slab would then be linearly interpolated or extrapolated using 

the exploratory moments and observed stresses as known values. Figure 4.1 depicts this process: 
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Figure 4.1: Linear interpolation to determine the applied moment required for cracking (the x-axis 

starts at 2 MPa and the y-axis starts at 10 kNm for clarity); fr = 2.68 MPa 

Here, the particular model is first simulated with an initial exploratory moment of ~12 kNm, with 

an observed maximum stress of ~2.45 MPa. The model was simulated again with a second 

exploratory moment of ~14 kNm, yielding an observed maximum stress of ~2.85 MPa. With these 

four values known alongside the modulus of rupture of the concrete (~2.68 MPa), it becomes trivial 

to apply linear interpolation and determine that the required cracking moment was ~13.2 kNm. A 

check can be completed by simulating the model once more at this cracking moment. It was found 

that the observed maximum stress at the linear interpolated cracking moment was ~2.69 MPa, well 

within the reasonable bounds of error.  

Figures 4.2 to 4.7 shows an example of the model output of a centrally loaded slab visualized in 

Abaqus. Arbitrary model parameters were assigned.  

 

Figure 4.2: Deflection of a centrally loaded slab, 3D view 
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Figure 4.2 showcases the vertical deflection distribution of a centrally loaded slab. The area marked 

in blue indicates downwards deflection. The areas marked in red (such as the vast majority of the 

half space) indicates negligible deflection. A side view of the slab deflection is provided in Figure 

4.3: 

 

Figure 4.3: Deflection of a centrally loaded slab, 2D side view 

Here, the soil has been removed for clarity. While it can be seen that the slab experienced some 

upwards deflection (area marked in red), this could be considered deflection local to the slab. The 

actual deflection of the slab when considering the soil was overall downwards.  

 

Figure 4.4: Maximum principal stress on top surface of slab, 3D view 

In Figure 4.4 the soil, crane, and baseplate have been removed for clarity. The maximum principal 

stress on the top surface of the slab occurs on the uplifting component of the overturning moment. 

In particular, the area of maximum stress is found in the inner ring partition (defined in Section 

3.3) where the slab is tied to the baseplate. The stress propagates out from this location. In 

particular, there are two more pockets of stress concentrations on the inner ring. This is shown 

more clearly in Figure 4.5: 
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Figure 4.5: Maximum principal stress on top surface of slab, 2D top-down view 

The area contoured in red is the maximum principal stress observed in the top surface of the slab 

as discussed in the previous figure. The two areas marked within the drawn red circles are 

secondary areas of slightly larger principal stresses (compared to the remainder of the circular ring 

partition) and exist at the ends of the stiffener flanges, as discussed in Section 3.3. 

 

Figure 4.6: Maximum principal stress on bottom surface of slab, 3D view 
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In Figure 4.6 above, the soil, crane, and baseplate have been removed for clarity. The maximum 

principal stress on the bottom surface of the slab occurs on the downwards component of the 

overturning moment at the edge of the baseplate. Figure 4.7 depicts a top-down view of the critical 

location: 

 

Figure 4.6: Maximum principal stress on bottom surface of slab, 2D top-down view 

Here, it is clear that the maximum principal stress on the bottom surface of the slab appears at the 

location of the edge of the baseplate in contact with the slab.  

4.2 Results 

The relationships of the critical model parameters and the moment capacity of a slab with a 

centrally loaded crane obtained from the parametric study have been summarized below. 

Additionally, the effects of any particular model parameter on the relationship between any other 

model parameter and the moment capacity of the slab are examined. In general, discussion on the 

results obtained for loading cases near the edge or corner of the slab have been omitted from this 

section for conciseness, as it was found that their results were sufficiently similar to that of a slab 

loaded at its center. Figures for edge and corner loading cases may be found in Appendix A and B, 

respectively. 

It becomes instructive to note that the model parameters considered in this study are not 

completely independent variables; while the value of each parameter is independent of one 

another, the relationship (i.e., the rate of change) between a particular parameter and the moment 

capacity of the slab is affected by changes to other parameters. Figures 4.7 to 4.12 first summarizes 

the effects of each of the model parameters acting independently. All other independent variables 

were held at constant values arbitrarily selected to illustrate the effects of the considered variable.  
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Figure 4.7: Slab depth versus moment capacity of a centrally loaded slab; L = 6,000 mm, r = 450 

mm, P = 10 kN, k = 180 psi/in., f’c = 40 MPa 

Here, it can be seen that increasing the slab thickness increases the moment capacity. For this 

particular configuration of system dimensions and material properties, it can also be noted that 

increasing the slab thickness decreases the ratio of bottom to top stress. This means that while the 

slab is thin, the critical portion of the slab is on the bottom surface. As the slab gets thicker, the 

critical portion of the slab flips to the top surface. Notably, after the critical portion begins to occur 

on the top surface of the slab, subsequent increases to the slab depth only minimally affects this 

ratio (i.e., for all intents and purposes, the top and bottom stress are approximately equal.). 

 

Figure 4.8: Concrete compressive strength versus moment capacity of a centrally loaded slab; L = 

6,000 mm, r = 450 mm, P = 10 kN, k = 130 psi/in., h = 120 mm 
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Here, it can be seen that increasing the concrete compressive strength increases the moment 

capacity of the slab. For this particular configuration of system dimensions and material properties, 

it can also be noted that increasing the compressive strength decreases the ratio of bottom to top 

stress. It can be expected that further increases to the compressive strength may eventually cause 

the critical portion of the slab to be on the top surface.  

 

Figure 4.9: Baseplate radius versus moment capacity of a centrally loaded slab; L = 4,500 mm, P = 

10 kN, k = 180 psi/in., f’c = 20 MPa, h = 100 mm 

Here, it can be seen that increase the baseplate radius increases the moment capacity of the slab. 

For this particular configuration of system dimensions and material properties, it can also be noted 

that increasing the baseplate radius also decreases the ratio of bottom to top stress. This is 

expected, because the effects of vertical forces are more pronounced when distributed over a 

smaller area (hence the bottom surface is critical). Therefore, in general, as the area over which the 

load is distributed increases, the ratio of bottom to top stress will decrease.  
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Figure 4.10: Compressive force versus moment capacity of a centrally loaded slab; L = 6,000 mm, r 

= 387 mm, k = 130 psi/in., f’c = 40 MPa, h = 100 mm 

Here, it can be seen that for this particular configuration of system dimensions and material 

properties, increasing the compressive force beyond 2 kN decreases the moment capacity of the 

slab and increases the ratio of bottom to top stress. Contrastingly, reducing the compressive force 

beyond 2 kN also decreases the moment capacity of the slab and decreases the ratio of bottom to 

top stress. This maximum at approximately 2 kN is expected; when a large compressive force is 

exerted on the slab, the critical area will be located on the bottom surface of the slab, and therefore 

will not require as much moment to produce rupture. So long as the critical area is located on the 

bottom surface, increasing the compressive force will decrease the moment capacity and vice versa, 

up until the aforementioned maximum. At the maximum, the stress experienced on the bottom and 

top surface of the slab reaches unity, and subsequent decreases to the compressive force will cause 

the top surface to become stress critical. When the top surface of the slab is the critical location, 

decreasing the compressive force also decreases the moment capacity, as the counterbalancing 

force to this moment is effectively removed. For clarity, Figure 4.10 above showcases the effects of 

the compressive force beyond the range of values considered in this study.  
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Figure 4.11: Slab length strength versus moment capacity of a centrally loaded slab; r = 450 mm, P 

= 10 kN, k = 130 psi/in., f’c = 60 MPa, h = 140 mm 

Here, it can be seen that increase the slab length increases the moment capacity of the slab, up to a 

point. For this particular configuration of system dimensions and material properties, subsequent 

increases to the slab length increases the moment capacity depreciatingly as the ratio of bottom to 

top stress approaches unity from above. In this case, this occurs at approximately L = 3700 mm. 

This is expected as further increases or decreases to the slab length multiplicatively increases or 

decreases the total volume of the slab, respectively, and consequently affects the amount of self-

weight of the slab acting as a counterbalance to the overturning moment. For smaller slabs there is 

effectively no counterbalancing force, and therefore the overturning moment produces a critical 

stress on the bottom surface of the slab. For the purposes of this study, the slab length appears to 

have no real impact on the moment capacity of the slab, as the minimum considered slab length is 

3700 mm. For clarity, Figure 4.11 above showcases the effects of the slab length beyond the range 

of values considered in this study. 
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Figure 4.12: Modulus of subgrade reaction versus moment capacity of a centrally loaded slab; L = 

6,000 mm, r = 387 mm, P = 10 kN, f’c = 20 mm, h = 100 mm 

Here, it can be seen that increasing the modulus of subgrade reaction increases the moment 

capacity of the slab. Additionally, for this configuration of system dimensions and material 

properties, increasing the modulus of subgrade reaction decreases the ratio of bottom to top stress. 

Changes in the modulus of subgrade reaction follows the expectations outlined by Westergaard 

(1926) and others. As stated before, changes to the modulus of subgrade reaction begins to have 

increasingly pronounced effects for increasingly small values. Therefore, so long as the modulus of 

subgrade reaction remains above a particular value, it can be expected that the modulus of 

subgrade reaction has insignificant effects on the moment capacity, such as in this study where the 

minimum considered modulus of subgrade reaction value is 130 psi/in. For clarity, Figure 4.12 

above showcases the effects of the modulus of subgrade reaction beyond the range of values 

considered in this study. 

It should be noted that parameters not being directly considered (i.e., not in the x-axis) are not held 

constant if one were to compare Figures 4.7 through 4.12. This is because the constant parameter 

values were selected in order to produce a significant change in the relationship between the 

considered parameter and moment capacity and/or ratio of stresses. If the constant parameter 

values were held constant between figures, then several parameters would appear to have a 

completely negligible relationship with the moment capacity. Despite carefully selecting the 

constant parameter values, it is clear that are f’c, d, and h are critical parameters (i.e., changes to 

the values of these parameters have the greatest impact on the moment capacity of the slab). 

Conversely, the less critical parameters are L, P, and k. In general, for the vast majority of cases, 

changes to these values negligibly impact the moment capacity of the slab. For a few specific cases 

(such as in the cases for smaller baseplates installed on highly flexible slab-soil systems that 

realistically should not have cranes installed on them), there is slightly more impact on changes to 

the values of less critical parameters. 
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Additionally, critical parameters have a non-negligible effect on the relationship between other 

critical parameters and the moment capacity, whereas they merely have a translational effect on 

the relationship between less critical parameters and the moment capacity. Contrastingly, less 

critical parameters do not affect the relationship on other parameters in any meaningful capacity. 

The effects of a particular parameter on the relationship of other parameters and the moment 

capacity have been summarized below. 

4.2.1 Effects of f’c and r on h versus the moment capacity 

The effects of various combinations of the compressive strength and the baseplate radius on the 

relationship between the slab depth and the moment capacity are summarized below. In each 

figure, L = 4,500 mm, P = 10 kN, and k = 180 psi/in.  

 

Figure 4.13: Effects of compressive strength and baseplate radius on the slab depth versus the 

moment capacity for a centrally loaded slab; f’c,1 = 20 MPa, f’c,2 = 60 MPa, r1 = 225 mm, r2 = 387 

mm 

When considering slabs of low compressive strength (notated by a solid black line), the rate of 

change between the slab depth and the moment capacity is lower than for slabs of high 

compressive strength (notated by a dashed black line). In particular, it can be noted that the effect 

of changing from a slab with a low compressive strength to one with a high compressive strength is 

more pronounced when considering larger baseplates (notated by white circles) compared to 

smaller ones (notated by black circles). 
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Figure 4.14: Effects of compressive strength and baseplate radius on the slab depth versus the ratio 

of bottom to top stress for a centrally loaded slab; f’c,1 = 20 MPa, f’c,2 = 60 MPa, r1 = 225 mm, r2 = 

387 mm 

It can be seen here that there are more pronounced differences between large baseplates (notated 

by white circles) and smaller baseplates (notated black circles) when considering different 

compressive strengths. For slabs of low compressive strength (notated by a solid black line), the 

change in baseplate size noticeably affects the ratio of bottom to top stress, specifically for thin 

slabs. This effect peters out as the slab thickness increases. For slabs of high compressive strength 

(notated by a dashed black line), the baseplate size appears to offer no significant change. 

Therefore, it is expected that the baseplate size affects the slab more when it is flexible (i.e., low 

compressive strength and thin) than when it is stiff. For all combinations of f’c and r, increasing the 

slab depth causes the ratio between the bottom and top stress to decrease until the slab becomes 

stress critical on the top surface. 

4.2.2 Effects of h and r on f’c versus the moment capacity 

The effects of various combinations of the slab depth and the baseplate radius on the relationship 

between the compressive strength and the moment capacity are summarized below. In each figure, 

L = 4,500 mm, P = 10 kN, and k = 180 psi/in.  
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Figure 4.15: Effects of slab depth and baseplate radius on the compressive strength versus moment 

capacity for a centrally loaded slab; h1 = 100 mm, h2 = 200 mm, r1 = 225 mm, r2 = 387 mm 

It can be seen that the concrete depth plays a significant role in the relationship between the 

compressive strength and the moment capacity. Changing from a thin slab (notated by a solid black 

line) to a thick slab (notated by a dashed black line) drastically increases both the initial starting 

capacity as well as the rate of change. Additionally, the effects of a larger baseplate (notated by 

white circles) are more pronounced at a thicker slab depth than at a thinner one. 

 

Figure 4.16: Effects of slab depth and baseplate radius on the compressive strength versus the ratio 

of bottom to top stress for a centrally loaded slab; h1 = 100 mm, h2 = 200 mm, r1 = 225 mm, r2 = 

387 mm 
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As before, it is clear that the slab depth plays a larger role on the ratio of bottom to top stresses 

than the baseplate radius. For thin slabs (notated by a solid black line), increasing the baseplate 

radius decreases the ratio of bottom to top stress. Conversely, there is no noticeable effect on 

changing the baseplate radius at thicker slabs (notated by a dashed black line). For all 

combinations of h and r, increasing the compressive strength causes the ratio between the bottom 

and top stress to decrease until the slab becomes stress critical on the top surface. 

4.2.3 Effects of h and f’c on r versus the moment capacity 

The effects of various combinations of the slab depth and the compressive strength on the 

relationship between the baseplate radius and the moment capacity are summarized below. In each 

figure, L = 4,500 mm, P = 10 kN, and k = 180 psi/in.  

 

Figure 4.17: Effects of slab depth and compressive strength on the baseplate radius versus moment 

capacity for a centrally loaded slab; h1 = 100 mm, h2 = 200 mm, f’c,1 = 20 MPa, f’c,2 = 60 MPa 

It can be seen that increasing the baseplate radius rapidly increases the moment capacity of the 

slab. The effects are more pronounced for thicker slabs (notated by a solid black line) than thinner 

slabs (notated by a dashed black line), regardless of the concrete compressive strength. 

Consequently, increasing the compressive strength from a low value (notated by black circles) to a 

high value (notated by white circles) produces significantly greater effects for thicker slabs.  
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Figure 4.18: Effects of slab depth and compressive strength on the baseplate radius versus the ratio 

of bottom to top stress for a centrally loaded slab; h1 = 100 mm, h2 = 200 mm, f’c,1 = 20 MPa, f’c,2 = 

60 MPa 

Overall, increasing the baseplate radius reduces the ratio of bottom to top stress. However, it can 

be seen that there is little to no change in the ratio of bottom to top stress for most combinations of 

the compressive strength and slab depth. The exception is for very flexible slabs with a thin 

thickness (notated by a solid black line) and a low compressive strength (notated by black circles). 

Notably, very flexible slabs tend to be stress critical on the bottom surface and only shows signs of 

becoming critical on the top surface after large increases to the baseplate radius. Contrastingly, stiff 

slabs are stress critical on the top surface of the slab and remains critical on the top surface. 

4.2.4 Effects of the f’c, h, and r on P versus the moment capacity 

The effects of various combinations of the slab depth, compressive strength, and baseplate radius 

and on the compressive force versus the moment capacity are summarized below. In the following, 

L = 4,500 mm and k = 180 psi/in.  
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Figure 4.19: Compressive force versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 225 mm, h = 100 mm, f’c = 20 MPa 

For a small baseplate and thin slab of low compressive strength, increasing the compressive force 

rapidly increases the ratio of bottom to top stress and decreases the moment capacity. Notably, 

these effects only occur beyond approximately P = 2 kN. As stated before, it is expected that once 

the ratio of bottom to top stress approaches unity from above, decreasing the compressive force 

will also decrease the moment capacity but also decrease the ratio of bottom to top stress.  

 

Figure 4.20: Compressive force versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 225 mm, h = 100 mm, f’c = 60 MPa 
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For a small baseplate and thin slab of high compressive strength, increasing or decreasing the 

compressive force beyond P = 6 kN decreases the moment capacity of the slab and increases or 

decreases the ratio of bottom to top stress, respectively. Again, it can be noted that the same theory 

is occurring, and the maximum moment capacity occurs when the ratio of bottom to top stress 

approaches unity.  

 

Figure 4.21: Compressive force versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 225 mm, h = 200 mm, f’c = 20 MPa 

For a small baseplate on a thick slab of low compressive strength, increasing the compressive force 

increases the maximum moment as the ratio of bottom to top stress approaches unity from below. 

It is expected that at some point beyond P = 10 kN, subsequent increases to the compressive force 

will reduce the moment capacity instead as the ratio of bottom to top stress exceeds unity.  
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Figure 4.22: Compressive force versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 225 mm, h = 200 mm, f’c = 60 MPa 

For a small baseplate on a thick slab of high compressive strength, increasing the compressive force 

increases the maximum moment as the ratio of bottom to top stress approaches unity from below. 

Like the figure before it, the maximum moment the slab can experience likely occurs at a point 

beyond P = 10 kN. 

 

Figure 4.23: Compressive force versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 450 mm, h = 100 mm, f’c = 20 MPa 

For a large baseplate on a thin slab of low compressive strength, increasing the compressive force 

decreases the moment capacity and increases the ratio of bottom to top stress. It can be expected 
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that the maximum moment occurs somewhere prior to P = 2 kN, when the ratio of stresses reaches 

unity from above. 

 

Figure 4.24: Compressive force versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 450 mm, h = 100 mm, f’c = 60 MPa 

For a large baseplate on a thin slab of high compressive strength, increasing the compressive force 

decreases the moment capacity and increases the ratio of bottom to top stress. The projection of the 

ratio of bottom to top stress provides reasonable indication that the maximum moment capacity 

occurs at an uplifting tensile force acting on the slab (i.e., at some value P < 0 kN). 

 

Figure 4.25: Compressive force versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 450 mm, h = 200 mm, f’c = 20 MPa 
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For a large baseplate on a thick slab of low compressive strength, increasing the compressive force 

increases the moment capacity and increases the ratio of bottom to top stress. The maximum 

moment occurs somewhere between P = 6 kN to 10 kN, and it can be expected that the moment 

capacity will slowly begin to decrease beyond P = 10 kN. It should be noted that for such a thick 

slab with a large area over which the load is distributed, changes to the compressive force have very 

little impact on the slab’s moment capacity.  

 

Figure 4.26: Compressive force versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 450 mm, h = 200 mm, f’c = 60 MPa 

For a large baseplate on a thick slab of high compressive strength, increasing the compressive force 

increases the moment capacity and the ratio of bottom to top stress. Notably, the compressive force 

produces miniscule changes in the ratio of bottom to top stress, indicating that the maximum 

moment capacity is likely significantly beyond P = 10 kN. 

The figures displayed in this section explains a lot of the behaviour that the compressive force has 

on the moment capacity of a slab-soil system. For any slab-soil system, there exists a particular 

compressive force that denotes the maximum moment capacity of the slab. This occurs when the 

ratio of bottom to top stress reaches unity. For flexible slabs that are largely dominated by critical 

stresses appearing on the bottom surface of the slab, subsequent increases to the compressive force 

merely increases the stresses at the critical location, therefore decreasing the moment capacity 

while increasing the ratio of bottom to top stress. Decreasing the compressive force contrastingly 

increases the moment capacity and decreases the ratio of bottom to top stress until unity, beyond 

which any subsequent decreases to the compressive force will decrease the moment capacity as the 

critical portion of the slab flips to the top surface of the slab. For stiffer slabs and for larger areas of 

distributed loads, larger changes in the compressive force are needed to establish the maximum 

moment capacity, as the rate of change in the moment capacity and ratio of bottom to top stress 

with respects to any subsequent change to the compressive force becomes very small. In general, if 
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the ratio of bottom to top stress is less than unity, increases to the compressive force increases the 

moment capacity and ratio until unity. If the ratio of bottom to top stress is greater than unity, then 

the maximum moment capacity for the system has already been reached and subsequent increases 

to the compressive force decreases both the moment capacity and ratio of bottom to top stress. 

For the range of compressive forces considered in this study (P = 2 to 10 kN), the compressive force 

plays a role in affecting the moment capacity of the slab for flexible slabs or for smaller baseplates 

resting on moderately stiff slabs. For all other combinations of baseplate, slab depth, and 

compressive strength, the compressive force had only minor impacts on the moment capacity of 

the slab. 

4.2.5 Effects of the f’c, h, and r on k versus the moment capacity 

The effects of various combinations of the slab depth, compressive strength, and baseplate radius 

and on the modulus of subgrade reaction versus the moment capacity are summarized below. In 

the following, L = 4,500 mm and P = 10 kN. 

 

Figure 4.27: Modulus of subgrade reaction versus the moment capacity and ratio of bottom to top 

stress for a centrally loaded slab; r = 225 mm, h = 100 mm, f’c = 20 MPa 

For a small baseplate on a thin slab of low compressive strength, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio of bottom to top stress. 

Increasing from the lower bound to the upper bound of the modulus of subgrade reaction here 

results in approximately 5% increased in the moment capacity. While this change is not negligible, 

it is largely insignificant. 
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Figure 4.28: Modulus of subgrade reaction versus the moment capacity and ratio of bottom to top 

stress for a centrally loaded slab; r = 225 mm, h = 100 mm, f’c = 60 MPa 

For a small baseplate on a thin slab of high compressive strength, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio of bottom to top stress.  

 

Figure 4.29: Modulus of subgrade reaction versus the moment capacity and ratio of bottom to top 

stress for a centrally loaded slab; r = 225 mm, h = 200 mm, f’c = 20 MPa 

For a small baseplate on a thick slab of low compressive strength, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio of bottom to top stress.  
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Figure 4.30: Modulus of subgrade reaction versus the moment capacity and ratio of bottom to top 

stress for a centrally loaded slab; r = 225 mm, h = 200 mm, f’c = 60 MPa 

For a small baseplate on a thick slab of high compressive strength, increasing the modulus of 

subgrade reaction decreases the moment capacity and decreases the ratio of bottom to top stress. 

This indicates a very similar effect to that of the compressive forces: increasing the modulus of 

subgrade reaction increases the moment capacity and the ratio of bottom to top stress from the 

bottom until unity, after which subsequent increases begins to decrease both the moment capacity 

and ratio of bottom to stress.  

 

Figure 4.31: Modulus of subgrade reaction versus the moment capacity and ratio of bottom to top 

stress for a centrally loaded slab; r = 450 mm, h = 100 mm, f’c = 20 MPa 
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For a large baseplate on a thin slab of low compressive strength, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio of bottom to top stress. 

Notably, the increase and decrease of the moment capacity and ratio of bottom to top stress, 

respectively, is slower than when the baseplate is small.  

 

Figure 4.32: Modulus of subgrade reaction versus the moment capacity and ratio of bottom to top 

stress for a centrally loaded slab; r = 450 mm, h = 100 mm, f’c = 60 MPa 

For a large baseplate on a thin slab of high compressive strength, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio of bottom to top stress. 

 

Figure 4.33: Modulus of subgrade reaction versus the moment capacity and ratio of bottom to top 

stress for a centrally loaded slab; r = 450 mm, h = 200 mm, f’c = 20 MPa 
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For a large baseplate on a thick slab of low compressive strength, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio of bottom to top stress. 

 

Figure 4.34: Modulus of subgrade reaction versus the moment capacity and ratio of bottom to top 

stress for a centrally loaded slab; r = 450 mm, h = 200 mm, f’c = 60 MPa 

For a large baseplate on a thick slab of high compressive strength, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio of bottom to top stress. 

Both effects are miniscule and effectively zero. It is expected that the modulus of subgrade reaction 

must change dramatically to show any noticeable change in the moment capacity for this particular 

configuration. 

The figures displayed in this section explains a lot of the behaviour that the modulus of subgrade 

reaction has on the moment capacity of a slab-soil system. There exists a specific modulus of 

subgrade reaction for every system that denotes the maximum moment capacity of the slab. This 

occurs when the ratio of bottom to top stress reaches unity. Like the compressive force, the effects 

of the modulus of subgrade reaction are most pronounced when considering flexible slabs of all 

baseplate sizes. For flexible slabs, increases to the modulus of subgrade reaction increase the 

moment capacity and decreases the ratio of bottom to top stress in the slab. For stiff slabs, changes 

in the modulus of subgrade reaction tend to have minimal impact on the moment capacity of the 

slab. In general, if the ratio of bottom to top stress is greater than unity, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio until unity. If the ratio of 

bottom to top stress is less than unity, then the maximum moment capacity for the system has 

already been reached and subsequent increases to the modulus of subgrade reaction decreases both 

the moment capacity and ratio of bottom to top stress. 

For the range of modulus of subgrade reaction values considered in this study (L = 130 to 230 

psi/in.), the modulus of subgrade reaction plays only a minor role in affecting the moment capacity 
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of the slab, specifically for flexible or moderately flexible slabs. For all other combinations of 

baseplate, slab depth, and compressive strength, the modulus of subgrade reaction had effectively 

no impact on the moment capacity of the slab. 

4.2.6 Effects of the f’c, h, and r on L versus the moment capacity 

The effects of various combinations of the slab depth, compressive strength, and baseplate radius 

and on the slab length versus the moment capacity are summarized below. In the following, k = 180 

psi/in. and P = 10 kN. 

 

Figure 4.35: Slab length versus the moment capacity and ratio of bottom to top stress for a centrally 

loaded slab; r = 225 mm, h = 100 mm, f’c = 20 MPa 

For a small baseplate on a thin slab of low compressive strength, increasing the slab length 

increases the moment capacity and decreases the ratio of bottom to top stress. Changes to these 

values are miniscule, and the critical area is on the bottom surface of the slab.  
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Figure 4.36: Slab length versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 225 mm, h = 200 mm, f’c = 60 MPa 

For a small baseplate on a thick slab of high compressive strength, increasing the slab length 

decreases the moment capacity and decreases the ratio of bottom to top stress. The critical area is 

on the top surface of the slab.  

Other combinations of the slab depth and compressive strength for a small baseplate have been 

omitted for conciseness, as the results obtained are very similar to the figures depicted above. 

 

Figure 4.37: Slab length versus the moment capacity and ratio of bottom to top stress for a centrally 

loaded slab; r = 450 mm, h = 100 mm, f’c = 20 MPa 
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For a large baseplate on a thin slab of low compressive strength, increasing the modulus of 

subgrade reaction increases the moment capacity and decreases the ratio of bottom to top stress. 

Changes to these values are, again, miniscule.  

 

Figure 4.38: Slab length versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 450 mm, h = 200 mm, f’c = 60 MPa 

For a large baseplate on a thick slab of high compressive strength, increasing the slab length until 

approximately L = 4500 mm rapidly increases the moment capacity and decreases the ratio of 

bottom to top stress until unity. Past unity, increases to the slab length only slighlty increases the 

moment capacity and decreases the ratio of bottom to top stress. The critical section remains on 

the bottom surface of the slab. Figure 4.38 appears to be an anomaly, or an outlier, given the 

previous plots. Figures 4.39 and 4.30 showcase additional effects of the slabs at other combinations 

of slab stiffness and baseplate radius: 
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Figure 4.39: Slab length versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 450 mm, h = 180 mm, f’c = 40 MPa 

For a large baseplate on a moderately thick slab of moderate compressive strength, increasing the 

slab length until approximately L = 4500 mm increases the moment capacity and decreases the 

ratio of bottom to top stress until unity. Again, beyond unity, subsequent increases in the slab 

length results in miniscule decreases in the moment capacity and ratio of bottom to top stress. 

Notably, this increase and decrease are of lesser significance compared to the highly stiff slab 

shown in the previous figure.  

 

Figure 4.40: Slab length versus the moment capacity and ratio of bottom to top stress for a 

centrally loaded slab; r = 387 mm, h = 200 mm, f’c = 60 MPa 
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For a moderately sized baseplate on a thick slab of high compressive strength, increasing the slab 

length until approximately L = 4500 mm decreases the moment capacity and ratio of bottom to top 

stress. For this combination, the ratio of bottom to top stress is already under unity, and thus the 

critical section of the slab is on the top surface.  

The figures displayed in this section explains a lot of the behaviour that the slab length has on the 

moment capacity of a slab-soil system. Like P and k, there exists a specific length for every system 

that denotes the maximum moment capacity of the slab. This occurs when the ratio of bottom to 

top stress reaches unity. For flexible slabs (i.e., combinations of thin slabs and low compressive 

strengths) of all baseplate sizes, the critical stress is overwhelmingly on the bottom surface of the 

slab, and subsequent increases to the slab length only marginally increases the moment capacity 

and decreases the ratio of bottom to top stress (i.e., the additional counterweight introduced by the 

additional area is negligible), For stiff slabs, the maximum moment capacity and stress unity is 

reached rapidly (i.e., L < 4500 mm), after which, subsequent increases to the slab length simply 

decreases the moment capacity and ratio of bottom to top stress at a very slow rate. In general, if 

the ratio of bottom to top stress is greater than unity, increasing the slab length increases the 

moment capacity and decreases the ratio until unity. If the ratio of bottom to top stress is less than 

unity, then the maximum moment capacity for the system has already been reached and 

subsequent increases to the slab length decreases both the moment capacity and ratio of bottom to 

top stress.  

For the range of slab lengths considered in this study (L = 3700 to 6000 mm), the slab length plays 

a small role in affecting the moment capacity of the slab. In particular, the effects of the slab length 

are seen specifically for large baseplates resting on stiff slabs. For all other combinations of 

baseplate, slab depth, and compressive strength, the slab length had effectively no impact on the 

moment capacity of the slab.  

4.2.7 Summary of Results 

It is clear from the figures presented in this section that there were critical and less critical 

parameters out of the considered model parameters. In particular, the specific compressive 

strength of concrete, the thickness of the slab, and the radius of the baseplate were identified as the 

parameters with the most impact on the moment capacity of the slab. The modulus of subgrade 

reaction, the length of the slab, and the compressive force induced by self-weight of the crane were 

largely unimpactful in the scope of this study.  

In general, increasing the effective stiffness of the slab (by increasing the value of any high-

performance parameter) increased the total moment capacity of the slab and reduced the ratio of 

bottom to top stress. When a slab was very flexible, the critical area of the slab appeared on the 

bottom surface. As it became stiffer, the critical area eventually flipped to the top surface; when this 

occurred, the moment capacity continued to increase with subsequent increases to the stiffness. 

In general, the behaviour of low-performance parameters could be evaluated by considering the 

ratio of bottom to top stress. Increasing the values of the modulus of subgrade reaction and slab 
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length increased the moment capacity of the slab and decreased the ratio of bottom to top stress 

until unity, where the moment capacity reached maximum. Beyond unity, increases to the 

parameter values decreased both the moment capacity and ratio of bottom to top stress. For the 

compressive force, the reverse was true, and increasing the compressive force increased the 

moment capacity and ratio of bottom to top stress until unity, after which subsequent increases 

decreased the moment capacity but continued to increase the ratio of bottom to top stress. 

4.3 Data Analysis 

It is clear that at least some of the considered parameters have a non-linear relationship with the 

required moment for slab cracking. Therefore, a multivariate non-linear regression model will be 

required in order to develop a relationship between each of the parameters and the dependent 

variable. It should be noted that each of the independent variables considered are expected to be 

correlated with one another, rather than being true independent variables. This means that the rate 

of change in the dependent variable with respects to a change in any particular independent 

variable may be affected by any change in any other independent variable, as outlined in Section 

4.2. 

In non-linear regression, it is important to provide an initial functional form of the expected 

general equation. While many such non-linear forms exist (sinusoidal functions, power functions, 

exponential functions, etc.), a polynomial function was selected as the functional form of the 

regression model due to the correlated multivariate nature of the problem and the ease-of-use of 

creating polynomial forms. It is important when considering polynomial functions to not allow 

over-representation or over-fitting (i.e., fitting the equation perfectly to every data point); this is a 

common in higher order polynomial functions and occurs when the model begins to capture noise 

instead of trends in a particular dataset. In general, as the equation is to be used to predict values 

within a particular range of considered values rather than outside of the range, overfitting is not of 

significant concern.  

As illustrated in the figures provided in Section 4.2, a polynomial form of order 2 appears sufficient 

to capture the underlying trends for each parameter without capturing any noise carried in-

between. This is the case because the relationship between each parameter and the dependent 

variable exhibits a clear parabolic trend and/or at most a single vertex within the considered range 

of values. The assumption of a second-order polynomial form holds true so long as the equation is 

used with predictor values selected within the range of considered values used for fitting (i.e., the 

considered range of values for the slab length is between 3700 to 6000 mm; the fitted equation 

would not be appropriate for predicting the moment capacity of a slab of length 2000 or 9000 

mm). Figure 4.41 and 4.42 showcases this idea: 
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Figure 4.41: Quadratic trendline added to the relationship between slab depth and the moment 

capacity of a centrally loaded slab 

 

Figure 4.42: Quadratic trendline added to the relationship between the compressive force and the 

moment capacity of a centrally loaded slab 

Equation 4.1 shows the basic form of the univariate quadratic polynomial: 

 𝑦(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (4.1) 

 
in which a, b, and c are arbitrary constants to be determined via the regression model.  

A multivariate quadratic polynomial with no correlation between independent variables may take 

the following form: 

 𝑦(𝑥1, 𝑥2) = 𝑎𝑥1
2 + 𝑏𝑥2

2 + 𝑐𝑥1 + 𝑑𝑥2 + 𝑒 (4.2) 
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Notably, when x2 is taken as a static, constant value, the equation reduces to the form of the 

univariate quadratic polynomial presented in equation 4.1. 

In the case of a correlated multivariate quadratic polynomial, additional correlation terms must be 

introduced between the independent variables. Consider the following: 

 𝑦(𝑥1, 𝑥2) = 𝑎𝑥1
2 + 𝑏𝑥2

2 + 𝑐𝑥1𝑥2 + 𝑑𝑥1 + 𝑒𝑥2 + 𝑓 (4.3) 

 
The third term in the polynomial, cx1x2, is the correlation term that relates the two independent 

variables together. Again, when any independent variable is taken as a static, constant value, the 

equation reduces to the form of the univariate quadratic polynomial.  

The general form of the correlated multivariate quadratic polynomial with n-number of 

independent variables used as the initial functional form of the regression model is as follows:  

 

𝑦(𝑥1, 𝑥2, … , 𝑥𝑛)

= ∑ (𝐴𝑖𝑥𝑖
2 + 𝐵𝑖𝑥𝑖)

𝑛

𝑖=1
+ ∑ ∑ 𝐶𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

+ ∑ (1 − 𝛿𝑖𝑗)𝐷𝑖𝑗𝑥𝑖
2𝑛

𝑖,𝑗=1
𝑥𝑗 + ∑ ∑ ∑ 𝐸𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=𝑖+1

𝑛−2

𝑖=1

+ 𝐹𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 + 𝐺 

(4.4) 

 
in which the A, B, C, D, E, F, and G are matrices of constants to be determined via the regression 

model. Included in this equation are the basic uncorrelated multivariate quadratic forms (Axi
2 + Bxi 

+ G) and also four types of correlation terms (Cxixj, Dxi
2xj, Exixjxk, and Fx1x2x3x4x5x6). In particular, 

it should be noted that this polynomial as a whole is not-quadratic; however, for any one particular 

independent variable, the highest power in any monomial is to the order of two, meaning that the 

equation is quadratic in each independent variable (i.e., the plots presented earlier in this section 

will retain a quadratic trendline rather than a higher-order trendline). When all but one of the 

independent variables are held as static, constant values, the above general equation reduces once 

again to the case of the general univariate quadratic polynomial.  

For the purpose of data analysis, the considered range of values in this study were normalized to 

allow for a more accurate regression. All variables considered were normalized by rescaling the 

considered ranges to a unitless range of [0, 1], with the unitless value zero corresponding to the 

lower bound and one corresponding to the upper bound of the considered ranges.  

The data analysis was completed by making use of Matlab’s built-in lsqcurvefit function and by 

using a k-fold cross validation methodology. Matlab’s lsqcurvefit determines the coefficients for a 

user-defined initial functional form that best fits the data set completed in a least-squares sense 

(MathWorks, 2012). The cross-validation method was used to reduce the likelihood of overfitting. 

The vast amount of data samples available makes a k-fold partition more attractive and easier to 

achieve good results with. The fit of the model was checked by considering the root mean squared 

error (RMSE), normalized root mean squared error (NRMSE), and by visual interpretation.  
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The procedure involved with repeated k-fold cross validation is as follows: 

1. Arbitrarily and randomly distribute the sample set into k-partitions (folds) of equal size; 

2. Arbitrarily and randomly assign 1 fold as the testing data set and the other folds as the 

training data sets; 

3. Simulate the regression model on the training data set; 

4. Use the fitted model to predict the testing data set; 

5. Repeat steps 2 – 4, each time changing the fold used as the testing data. 

For each iteration, the root mean squared error (in kNm) and the normalized root mean squared 

error was calculated and recorded. Table 4.1 summarizes the results obtained from the cross 

validation: 

Table 4.1: Summary of 10-fold cross validation 

 Training Data Testing Data 

Fold RMSE NRMSE RMSE NRMSE 

Iteration kNm -- kNm -- 

1 0.57447 0.00659 0.70402 0.00852 

2 0.58079 0.00666 0.66104 0.00781 

3 0.58670 0.00673 0.59725 0.00766 

4 0.58100 0.00667 0.64597 0.00749 

5 0.58370 0.00670 0.62984 0.00763 

6 0.58462 0.00671 0.61265 0.00703 

7 0.60050 0.00689 0.45136 0.00526 

8 0.58707 0.00674 0.59773 0.00700 

9 0.57861 0.00664 0.67042 0.00771 

10 0.58392 0.00670 0.62093 0.00737 

Average 0.58414 0.00670 0.61912 0.00735 

 
In general, the model obtained from any of the training folds was a good predictor for the test folds. 

The maximum RMSE and NRMSE observed in the testing folds were 0.7 kNm and 0.0085, 

respectively. The numerical results are summarized graphically in Figures 4.43 and 4.44: 

 



123 
 

 

Figure 4.43: Normalized root mean squared errors for 10-fold cross validation 

 

Figure 4.44: Root mean squared errors for 10-fold cross validation 

Table 4.1 and Figures 4.43 and 4.44 indicate that the predictor model has good agreement with the 

actual expected results. The average root mean squared error observed was 0.58 kNm and 0.61 

kNm for the training folds and testing folds, respectively. Since the actual range of expected 

moment was between approximately 6 – 90 kNm, this allowed for confidence in the model. 

Additionally, the average normalized root mean squared error observed was 0.067 and 0.007 for 

the training folds and testing folds, respectively. Again, because the normalized root mean squared 

errors were both very small (<< 1) and have little difference in-between the training and testing 

data, the predictor model was expected to be appropriate. Therefore, the coefficients for the general 

equation determined by fold iteration 4 was arbitrarily selected.  
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The general equation for a centrally loaded slab obtained from the multivariate nonlinear 

regression is presented: 

 

𝑀𝑎𝑙𝑙𝑜𝑤(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)

= ∑ (𝐴𝑖𝑥𝑖
2 + 𝐵𝑖𝑥𝑖)

6

𝑖=1
+ ∑ ∑ 𝐶𝑖𝑗𝑥𝑖𝑥𝑗

6

𝑗=𝑖+1

5

𝑖=1

+ ∑ (1 − 𝛿𝑖𝑗)𝐷𝑖𝑗𝑥𝑖
26

𝑖,𝑗=1
𝑥𝑗 + ∑ ∑ ∑ 𝐸𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

6

𝑘=𝑗+1

5

𝑗=𝑖+1

4

𝑖=1

+ 𝐹𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 + 𝐺 

(4.5) 

 
in which Mallow is the unfactored maximum allowable moment for the slab-soil configuration and 

x1, x2, x3, x4, x5, and x6 are the model parameters corresponding respectively to l, the length of the 

slab, P, the vertical compressive force, k, the modulus of subgrade reaction, f’c, the specific 

compressive strength of concrete, h, the depth of the slab, and r, the radius of the baseplate. Note 

that the order of the variables in equation 4.5 are important, as they correspond to a particular 

value in the matrices of coefficients. A, B, C, D, E, F and G are matrices of constants determined by 

the regression model and given by: 

𝐴 = [ 0.04168 0.02953 −0.0215 −0.00159 0.00754 0.07561] 

𝐵 = [ −0.03094 0.05616 0.00321 −0.00127 0.04325 0.14564] 

𝐶 =

[
 
 
 
 
 

0 −0.02081 0.01689 −0.00058 0.00751 0.0137
0 0 0.00229 0.00283 0.10572 0.11779
0 0 0 0.01009 0.0143 0.02387
0 0 0 0 −0.0001 0.00912
0 0 0 0 0 0.19212
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝐷 =

[
 
 
 
 
 

0 −0.03469 −0.01556 0.00143 −0.02744 −0.02222
0.04249 0 −0.01508 0.00508 −0.02415 0.04417

−0.00619 0.00389 0 0.00247 0.0085 0.00564
0.00133 −0.00254 −0.00262 0 0.00213 0.00195
0.00712 −0.04488 −0.01055 0.00227 0 −0.0828

−0.00875 0.10362 −0.00634 −0.00941 0.03886 0 ]
 
 
 
 
 

 

𝐸1,𝑗,𝑘 =

[
 
 
 
 
 

0 0 0 0 0 0
0 0 0.0114 −0.00184 0.02205 0.01593
0 0 0 −0.00114 0.00243 0.01591
0 0 0 0 −0.00025 −0.00442
0 0 0 0 0 0.00824
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝐸2,𝑗,𝑘 =

[
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.00434 0.0019 0.00611
0 0 0 0 −0.00258 0.00018
0 0 0 0 0 0.14974
0 0 0 0 0 0 ]
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𝐸3,𝑗,𝑘 =

[
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −0.00632 −0.0034
0 0 0 0 0 0.00268
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝐸4,𝑗,𝑘 =

[
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −0.00684
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝐹 = 0.00254 

𝐺 = 0.0156 

Similar equations for the edge and corner loading cases may be found in Appendix A and B, 

respectively.  

4.3.1 Visual comparison of model fit 

While the RMSE and NRMSE presented in the previous section provides a good indicator of how 

the model performs, it is nonetheless worthwhile to compare predicted moment capacities versus 

the actual moment capacities visually. Figures 4.45 and 4.46 compares the predicted moment 

capacities to the actual values for various arbitrarily selected points: 

 

Figure 4.45: Slab depth versus moment capacity; L = 4,500 mm, P = 2 kN, k = 180 psi/in., f’c = 60 

MPa, r = 387 mm 
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Figure 4.46: Concrete compressive strength versus moment capacity; L = 3,700 mm, P = 2 kN, k = 

130 psi/in., r = 450 mm, h = 200 mm 

As expected, the actual predicted values are in good agreement with the actual results. The percent 

errors are notated as individual data points because there is no correlation between the error and 

the considered independent variable. It can be seen that both flexible slab-soil systems and stiff 

slab-soil systems can experience a variance in the percent of error. From Figures 4.45 and 4.46, it 

can be seen that the error between the moment capacity predicted by the regression equation and 

the actual moment capacity can vary by up to 3%.   

4.4 Example of Analysis Tool 

The general equation has been packaged into a simple Microsoft Excel spreadsheet. The 

spreadsheet is composed of three portions: a user-defined input section where the input 

parameters are defined, an array of hidden cells containing the background calculations of the 

general equation, and finally an output section displaying the predicted moment capacity of the 

slab-on-grade. The use of the spreadsheet has been loosely summarized by considering the 

installation of a Gorbel WSJ360-250-12-12 workstation jib crane at the center of a warehouse slab-

on-grade floor. Figure 4.47 and 4.48 showcases the dimensions and specifications for a Gorbel 

workstation jib crane: 
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Figure 4.47: WSJ360 Free Standing Work Station Jib (Gorbel, 2012) 

 

Figure 4.48: Specifications for WSJ360 Free Standing Work Station Jib from Gorbel Brochure 

(Gorbel, 2012) 

From Figure 4.48, a Gorbel WSJ360-250-12-12 workstation jib crane has a self-weight (excluding 

any loads) of 650 lbs and a maximum capacity of 250 lbs at a maximum lateral span of 12 ft. This 

corresponds to a total maximum self-weight of approximately 4.01 kN and an overturning moment 

of 4.07 kNm. The required baseplate radius for this crane is specified at approximately 387 mm. 

The slab and subgrade properties have been arbitrarily selected for this example as follows: the slab 
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length, L = 5000 mm, the slab depth, h = 136 mm, the concrete strength, f’c = 25 MPa, and the 

subgrade strength, k = 200 psi/in.  

The established slab-soil properties and loading configuration are then inputted into the 

spreadsheet in the user-defined input section, as shown in Figure 4.49:  

 

Figure 4.49: User-defined input section of analysis tool 

The initial parameters are inputted under the “Magnitude” column and are subsequently 

normalized under the “Norm.” column. If the normalized value of a particular parameter is less 

than zero or greater than one, a warning is issued under the column marked as “Status”. This 

indicates that the input value is outside of the range of values considered in the study, and 

therefore the spreadsheet would not be able to accurately predict the cracking moment. In this 

case, all of the inputted values are within the range of values considered, and therefore are all 

acceptable.  

The spreadsheet handles all of the background calculations associated with equation 4.5 in a set of 

protected and hidden cells, as shown in Figure 4.50: 
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Figure 4.50: Calculation cells of analysis tool 

Figure 4.50 depicts a sample of the calculation cells. Finally, the spreadsheet sums all of the 

calculated monomials to establish a normalized cracking moment. De-normalizing consequently 

produces the moment capacity of the slab: 

 

Figure 4.51: Output section of analysis tool 

For the example shown in this section, the moment capacity predicted by the analysis tool is 23.45 

kNm, which is signifincalty greater than the actual moment induced on the slab by the eccentric 

loading of 4.07 kNm. This indicates that the configuration of the slab-on-grade is more than 

capable of safely handling the installation and operation of the WSJ360-250-12-12 workstation jib 

crane at the center of a slab-on-grade. 

For completeness, the slab-soil properties and loading conditions were simulated in Abaqus. The 

actual moment that causes the maximum principal stress to exceed the modulus of rupture of the 

concrete for this configuration was found to be approximately 23.95 kNm, which is within 2% of 

the predicted moment capacity.  

Readers are advised to contact the author to obtain the spreadsheet.  
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5.0 Conclusions 

5.1 General Remarks 

In this study, a general equation used to predict the moment capacity for plain, unreinforced 

concrete slabs subject to combined axial and overturning moments induced by foundationless jib 

cranes was developed via a nonlinear regression model and the mass simulation of finite element 

models in Abaqus. Three loading cases (central, near the edge, and near the corner) and six 

correlated parameters (radius of baseplate, slab thickness, specific compressive strength of 

concrete, modulus of subgrade reaction, compressive force, and slab length) were considered. The 

range of considered values for each parameter was selected based on the minimum requirements 

outlined by commercial crane manufacturing companies. The subgrade model was presented as a 

simplified elastic half-space based on an equivalent Winkler model and modulus of subgrade 

reaction. 

The following conclusions were drawn from the results obtained in this study: 

• In general, when the maximum principal stress is of primary concern, the use of an 

equivalent modulus of elasticity in place of the modulus of subgrade reaction determined by 

equating the analytical solutions for a long plate subject to a concentrated load resting on an 

elastic half-space or a Winkler model produces sufficiently equivalent results, especially 

under the loaded region. In particular, when calibrated for deflections, the maximum 

principal stress observed in the slab resting on an equivalent elastic half-space was only 10 – 

15% less than that observed stress when resting on the actual Winkler model.  

• The moment capacity of the slab was found to be, in general, significantly higher when 

loaded centrally compared to near the edge or corner. This is mostly due to the reduced 

volume of slab producing a counter-balancing effect on the applied moment, resulting in 

larger stresses developing in the bottom surface of the slab. 

• For all loading cases, the area over which a load is distributed, the specific compressive 

strength of concrete, and the thickness of the slab were critical parameters in controlling the 

maximum moment capacity of the slab. Increasing the values of any of these parameters 

also directly increased the moment capacity. Within the range of considered values, these 

parameters can be considered the most critical. 

• For all loading cases, the compressive force had a limited impact on the moment capacity of 

the slab for values within the considered range. In particular, flexible slabs were more prone 

to impactful changes in the moment capacity with respects to changes to the compressive 

force compared to stiffer slabs. In most cases, the compressive force would need to be 

significantly higher than the upper bound considered in this study to have a pronounced 

and significant affect. 

• For all loading cases, the length of the slab had a limited impact on the moment capacity of 

the slab. In general, the minimum slab length used in the study of L = 3700 mm was 
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sufficiently long enough to produce insignificant changes with subsequent increases to the 

length. In particular, for slabs of high rigidity or for slabs loaded near the edge or the corner, 

the length of slab required to be sufficiently long increased to approximately L = 5000 mm. 

As long as the length of slab is sufficiently long, further increases to the length yield 

negligible impact on the moment capacity. 

• For all loading cases, the modulus of subgrade reaction had a negligible impact on the 

moment capacity of the slab, especially within the range of considered values. The effects of 

the modulus of subgrade reaction were found to be slightly more pronounced for flexible 

slabs. An approximate value of the modulus of subgrade reaction is sufficient in capturing 

the critical moment capacity of a slab system. This falls in line with the conclusions 

developed by Westergaard (1926). 

• The general, non-linear equation developed by the regression model predicts the moment 

capacity of a slab mounted with a jib crane with a mean squared error of 0.58 kNm; 

therefore, the general equation provides a good prediction when the values of the model 

parameter fall within the bounds of the range of considered values. The model is not 

developed with the intent to capture forecasting for values outside of the considered range. 

• In regard to practical applications of crane installation, this study showed that the general 

rule of thumb of adopting an upper bound of 8 kip-ft (approximately 10.6 kNm) as the 

maximum allowable overturning moment is misguided. Crane manufacturers will often 

install cranes licensed at larger capacities (up to 21.6 kNm of overturning moment) or install 

cranes on slab-soil configurations with dimensions and/or properties lower than the 

specified requirements. The moment capacities of slabs in the latter category may be as low 

as 6.5 kNm. While the rule-of-thumb may often be ‘good enough’ for typical installations, 

the analytical tool produced from this study provides an additional layer of safety for 

checking cranes of larger capacity mounted to less-than-satisfactory slab-soil 

configurations.  

• In regard to practical applications of crane installation, the analytical tool developed in this 

study is recommended to be used in conjunction with other slab-on-grade design checks, 

including one- and two-way shear, compressive bearing of concrete, compressive bearing of 

soil, allowable slab deflection, and anchor-associated failure, all of which are readily 

available and accessible.  

5.2 Future Work 

The scope of the work completed in this study specifically captures the maximum principal stresses 

observed in the top and bottom surface of the slab. It is recommended to additionally consider the 

effects of the outlined parameters on the maximum upwards and downwards deflections. For 

instance, it is expected that the deflections of the slab are more sensitive to changes in the modulus 

of subgrade reaction, as identified in earlier sections.  

Furthermore, the work completed in this study was specifically concerned with slab failure defined 

by an observed maximum principal stress exceeding the modulus of rupture. Post-cracking 
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behavior was considered outside the scope of this study. Therefore, it is also recommended to 

investigate the cracking patterns and post-linear elastic behavior of the slab.  

The parametric study was completed with discrete loading cases (i.e., center, near the edge, near 

the corner). As a result, a general equation was produced for each case. It is recommended to 

simulate the finite element models further at several other locations between the center, edge, and 

corner cases. In this fashion, the distance between the center of the loaded region and the center of 

the slab may be considered as another model parameter, negating the need for additional, 

independent equations. Along this line of thought are the baseplate sizes considered in this study. 

It would be beneficial to the regression model to consider at least one additional baseplate size (r = 

300 mm) to complement the considered radii values.  

Lastly, the general equation was developed in the form of a multivariate correlated second order 

polynomial function. While the performance is sufficiently accurate for predictor values within the 

range of considered values, the functional form is inefficient and was originally selected due to ease 

of use. It is recommended that, if replicated, future equations be developed using spline analysis or 

Weibull survival regression modelling techniques. 
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Appendix A – Edge Loading Case 

The relationships of the critical model parameters and the moment capacity of a slab with an edge 

loaded crane obtained from the parametric study have been summarized below. Additionally, 

figures showcasing the effects of any particular model parameter on the relationship between any 

other model parameter and the moment capacity of the slab are provided.  

Table A.1: Coefficients for general equation, edge loaded case 

xijk Value 

A1 0.03565 

A2 -0.1176 

A3 -0.0366 

A4 -0.0006 

A5 -0.0042 

A6 0.06856 

B1 -0.017 

B2 0.20156 

B3 0.00901 

B4 -0.0052 

B5 0.0755 

B6 0.21126 

C12 -0.2844 

C13 0.01254 

C14 0.00288 

C15 0.02331 

C16 0.06488 

C23 0.00529 

C24 0.00775 

C25 0.02652 

C26 0.0456 

C34 0.01626 

C35 0.0109 

C36 0.00545 

C45 0.00339 

C46 0.00704 
 

xijk Value 

C56 0.16294 

E123 -0.0219 

E124 0.00299 

E125 0.06179 

E126 0.12046 

E134 -0.0051 

E135 -0.0094 

E136 -0.0208 

E145 -0.0017 

E146 -0.0008 

E156 0.0088 

E234 -0.0024 

E235 0.00913 

E236 -0.0105 

E245 -0.0079 

E246 -0.0052 

E256 0.09747 

E345 -0.0064 

E346 -0.0048 

E356 -0.0088 

E456 -0.0073 

D12 -0.019 

D13 0.00285 

D14 -0.0025 

D15 -0.0557 

D16 -0.1227 
 

xijk Value 

D21 0.28364 

D23 0.01894 

D24 -0.0009 

D25 -0.008 

D26 0.02547 

D31 0.00678 

D32 0.00872 

D34 0.00041 

D35 0.01214 

D36 0.0267 

D41 0.00015 

D42 -0.0007 

D43 -0.0023 

D45 0.0014 

D46 6.6E-05 

D51 0.00028 

D52 -0.0278 

D53 -0.0099 

D54 0.0023 

D56 -0.067 

D61 0.00236 

D62 0.11191 

D63 -0.0059 

D64 -0.0002 

D65 0.08994 

F 0.02014 

G 0.00755 
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Figure A.1: Effects of compressive strength and baseplate radius on the slab depth versus the 

moment capacity for an edge loaded slab; f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, r = 225 mm, 

P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure A.2: Effects of compressive strength and baseplate radius on the slab depth versus the 

moment capacity for an edge loaded slab; f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, r = 225 mm, 

P = 10 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure A.3: Effects of compressive strength and baseplate radius on the slab depth versus the ratio 

of bottom to top stress for an edge loaded slab; f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, r = 225 

mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure A.4: Effects of compressive strength and baseplate radius on the slab depth versus the ratio 

of bottom to top stress for an edge loaded slab; f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, r = 387 

mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure A.5: Effects of slab depth and baseplate radius on the compressive strength versus moment 

capacity for an edge loaded slab; h1 = 100 mm, h2 = 125 mm, h3 = 150 mm, h4 = 175 mm r = 225 

mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure A.6: Effects of slab depth and baseplate radius on the compressive strength versus moment 

capacity for an edge loaded slab; h1 = 100 mm, h2 = 125 mm, h3 = 150 mm, h4 = 175 mm r = 387 

mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure A.7: Effects of slab depth and baseplate radius on the compressive strength versus ratio of 

bottom to top stress for an edge loaded slab; h1 = 100 mm, h2 = 125 mm, h3 = 150 mm, h4 = 175 mm 

r = 225 mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure A.8: Effects of slab depth and baseplate radius on the compressive strength versus ratio of 

bottom to top stress for an edge loaded slab; h1 = 100 mm, h2 = 125 mm, h3 = 150 mm, h4 = 175 mm 

r = 387 mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure A.9: Effects of slab depth and compressive strength on the baseplate radius versus moment 

capacity for an edge loaded slab; h = 100 mm, f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, P = 10 

kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure A.10: Effects of slab depth and compressive strength on the baseplate radius versus moment 

capacity for an edge loaded slab; h = 200 mm, f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, P = 10 

kN, L = 4500 mm, and k = 180 psi/in. 
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Figure A.11: Effects of slab depth and compressive strength on the baseplate radius versus ratio of 

bottom to top stress for an edge loaded slab; h = 100 mm, f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 

MPa, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure A.12: Effects of slab depth and compressive strength on the baseplate radius versus ratio of 

bottom to top stress for an edge loaded slab; h = 200 mm, f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 

MPa, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure A.13: Compressive force versus the moment capacity for an edge loaded slab; r = 225 mm, h 

= 100 mm, f’c = 20 MPa, L = 4500 mm, and k = 180 psi/in. 

 

Figure A.14: Compressive force versus the moment capacity for an edge loaded slab; r = 225 mm, h 

= 200 mm, f’c = 60 MPa, L = 4500 mm, and k = 180 psi/in. 
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Figure A.15: Compressive force versus the moment capacity for an edge loaded slab; r = 450 mm, h 

= 100 mm, f’c = 20 MPa, L = 4500 mm, and k = 180 psi/in. 

 

Figure A.16: Compressive force versus the moment capacity for an edge loaded slab; r = 450 mm, h 

= 200 mm, f’c = 60 MPa, L = 4500 mm, and k = 180 psi/in. 
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Figure A.17: Modulus of subgrade reaction versus the moment for an edge loaded slab; r = 225 mm, 

h = 100 mm, f’c = 20 MPa, L = 4500 mm, and P = 10 kN 

 

Figure A.18: Modulus of subgrade reaction versus the moment for an edge loaded slab; r = 225 

mm, h = 200 mm, f’c = 60 MPa, L = 4500 mm, and P = 10 kN 
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Figure A.19: Modulus of subgrade reaction versus the moment capacity for an edge loaded slab; r = 

450 mm, h = 100 mm, f’c = 20 MPa, L = 4500 mm, and P = 10 kN 

 

Figure A.20: Modulus of subgrade reaction versus the moment capacity for an edge loaded slab; r = 

450 mm, h = 200 mm, f’c = 60 MPa, L = 4500 mm, and P = 10 kN 
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Figure A.21: Length versus the moment capacity for an edge loaded slab; r = 225 mm, h = 100 mm, 

f’c = 20 MPa, P = 10 kN, and k = 180 psi/in. 

 

Figure A.22: Length versus the moment capacity for an edge loaded slab; r = 225 mm, h = 200 mm, 

f’c = 60 MPa, P = 10 kN, and k = 180 psi/in. 
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Figure A.23: Length versus the moment capacity for an edge loaded slab; r = 450 mm, h = 100 mm, 

f’c = 20 MPa, P = 10 kN, and k = 180 psi/in. 

 

Figure A.24: Length versus the moment capacity for an edge loaded slab; r = 450 mm, h = 200 

mm, f’c = 60 MPa, P = 10 kN, and k = 180 psi/in. 
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Appendix B – Corner Loading Case 

The relationships of the critical model parameters and the moment capacity of a slab with a corner 

loaded crane obtained from the parametric study have been summarized below. Additionally, 

figures showcasing the effects of any particular model parameter on the relationship between any 

other model parameter and the moment capacity of the slab are provided. 

Table B.1: Coefficients for general equation, corner loaded case 

nijk Value 

A1 0.0063 

A2 -0.0048 

A3 -0.0121 

A4 -0.0021 

A5 -0.0291 

A6 0.09131 

B1 -0.0077 

B2 0.0784 

B3 -0.023 

B4 0.00285 

B5 0.10378 

B6 0.24306 

C12 -0.0016 

C13 0.01665 

C14 -0.0013 

C15 0.00227 

C16 0.00687 

C23 0.10416 

C24 -0.0027 

C25 0.00244 

C26 0.09411 

C34 0.01147 

C35 0.03416 

C36 0.02096 

C45 -0.0053 

C46 -0.0012 
 

nijk Value 

C56 0.1263 

E123 -0.0015 

E124 0.00062 

E125 0.00258 

E126 0.00257 

E134 0.00102 

E135 -0.0017 

E136 -0.0041 

E145 2.6E-05 

E146 -0.0008 

E156 0.00287 

E234 -0.0014 

E235 -0.0095 

E236 -0.0141 

E245 1E-05 

E246 -0.0043 

E256 0.13556 

E345 -0.0061 

E346 -0.008 

E356 -0.0224 

E456 -0.0008 

D12 -0.0027 

D13 0.00213 

D14 0.00058 

D15 -0.0062 

D16 -0.0111 
 

xijk Value 

D21 0.00458 

D23 -0.0405 

D24 0.00121 

D25 -0.0151 

D26 -0.0446 

D31 -0.0124 

D32 -0.0063 

D34 0.00301 

D35 0.00899 

D36 0.01718 

D41 0.00012 

D42 0.001 

D43 -0.0021 

D45 0.00188 

D46 0.00166 

D51 0.00167 

D52 0.00529 

D53 -0.0127 

D54 0.00275 

D56 -0.0592 

D61 0.00473 

D62 0.12197 

D63 -0.0111 

D64 0.00297 

D65 0.13586 

F -0.0029 

G 0.02211 
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Figure B.1: Effects of compressive strength and baseplate radius on the slab depth versus the 

moment capacity for a corner loaded slab; f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, r = 225 mm, 

P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure B.2: Effects of compressive strength and baseplate radius on the slab depth versus the 

moment capacity for a corner loaded slab; f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, r = 387 mm, 

P = 10 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure B.3: Effects of compressive strength and baseplate radius on the slab depth versus the ratio 

of bottom to top stress for a corner loaded slab; f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, r = 225 

mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure B.4: Effects of compressive strength and baseplate radius on the slab depth versus the ratio 

of bottom to top stress for a corner loaded slab; f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, r = 387 

mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure B.5: Effects of slab depth and baseplate radius on the compressive strength versus moment 

capacity for a corner loaded slab; h1 = 100 mm, h2 = 125 mm, h3 = 150 mm, h4 = 175 mm r = 225 

mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure B.6: Effects of slab depth and baseplate radius on the compressive strength versus moment 

capacity for a corner loaded slab; h1 = 100 mm, h2 = 125 mm, h3 = 150 mm, h4 = 175 mm r = 387 

mm, P = 2 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure B.7: Effects of slab depth and baseplate radius on the compressive strength versus ratio of 

bottom to top stress for a corner loaded slab; h1 = 100 mm, h2 = 125 mm, h3 = 150 mm, h4 = 175 

mm r = 225 mm, P = 10 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure B.8: Effects of slab depth and baseplate radius on the compressive strength versus ratio of 

bottom to top stress for a corner loaded slab; h1 = 100 mm, h2 = 125 mm, h3 = 150 mm, h4 = 175 

mm r = 387 mm, P = 2 kN, L = 4500 mm, and k = 180 psi/in. 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

20 25 30 35 40 45 50 55 60

R
a

ti
o

 o
f 

B
o

tt
o

m
 t

o
 T

o
p

 S
tr

es
s

Compressive strength (MPa)

h1 h2 h3 h4

0

0.5

1

1.5

2

2.5

20 25 30 35 40 45 50 55 60

R
a

ti
o

 o
f 

B
o

tt
o

m
 t

o
 T

o
p

 S
tr

es
s

Compressive strength (MPa)

h1 h2 h3 h4



157 
 

 

Figure B.9: Effects of slab depth and compressive strength on the baseplate radius versus moment 

capacity for a corner slab; h = 100 mm, f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, P = 2 kN, L = 

4500 mm, and k = 180 psi/in. 

 

Figure B.10: Effects of slab depth and compressive strength on the baseplate radius versus moment 

capacity for a corner loaded slab; h = 200 mm, f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 MPa, P = 2 

kN, L = 4500 mm, and k = 180 psi/in. 
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Figure B.11: Effects of slab depth and compressive strength on the baseplate radius versus ratio of 

bottom to top stress for a corner loaded slab; h = 100 mm, f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 

MPa, P = 2 kN, L = 4500 mm, and k = 180 psi/in. 

 

Figure B.12: Effects of slab depth and compressive strength on the baseplate radius versus ratio of 

bottom to top stress for a corner loaded slab; h = 200 mm, f’c,1 = 20 MPa, f’c,2 = 40 MPa, f’c,3 = 60 

MPa, P = 2 kN, L = 4500 mm, and k = 180 psi/in. 
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Figure B.13: Compressive force versus the moment capacity for a corner loaded slab; r = 225 mm, h 

= 100 mm, f’c = 20 MPa, L = 4500 mm, and k = 180 psi/in. 

 

Figure B.14: Compressive force versus the moment capacity for a corner loaded slab; r = 225 mm, h 

= 200 mm, f’c = 60 MPa, L = 4500 mm, and k = 180 psi/in. 
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Figure B.15: Compressive force versus the moment capacity for a corner loaded slab; r = 450 mm, h 

= 100 mm, f’c = 20 MPa, L = 4500 mm, and k = 180 psi/in. 

 

Figure B.16: Compressive force versus the moment capacity for a corner loaded slab; r = 450 mm, h 

= 200 mm, f’c = 60 MPa, L = 4500 mm, and k = 180 psi/in. 
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Figure B.17: Modulus of subgrade reaction versus the moment for a corner loaded slab; r = 225 

mm, h = 100 mm, f’c = 20 MPa, L = 4500 mm, and P = 10 kN 

 

Figure B.18: Modulus of subgrade reaction versus the moment for a corner loaded slab; r = 225 

mm, h = 200 mm, f’c = 60 MPa, L = 4500 mm, and P = 10 kN 
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Figure B.19: Modulus of subgrade reaction versus the moment capacity for a corner loaded slab; r = 

450 mm, h = 100 mm, f’c = 20 MPa, L = 4500 mm, and P = 10 kN 

 

Figure B.20: Modulus of subgrade reaction versus the moment capacity for a corner loaded slab; r 

= 450 mm, h = 200 mm, f’c = 60 MPa, L = 4500 mm, and P = 10 kN 
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Figure B.21: Length versus the moment capacity for a corner loaded slab; r = 225 mm, h = 100 mm, 

f’c = 20 MPa, P = 10 kN, and k = 180 psi/in. 

 

Figure B.22: Length versus the moment capacity for a corner loaded slab; r = 225 mm, h = 200 

mm, f’c = 60 MPa, P = 10 kN, and k = 180 psi/in. 
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Figure B.23: Length versus the moment capacity for a corner loaded slab; r = 387 mm, h = 100 

mm, f’c = 20 MPa, P = 10 kN, and k = 180 psi/in. 

 

Figure B.24: Length versus the moment capacity for a corner loaded slab; r = 387 mm, h = 200 

mm, f’c = 60 MPa, P = 10 kN, and k = 180 psi/in. 
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