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Abstract

Histopathology whole slide images (WSIs) contain a considerable amount of valuable
information required for diagnosis, prognosis, and treatment planning. These scans are the
product of a contemporary technology of high-precision digitizers that seemed to aid in the
clinical procedure. The availability of internet tools might improve treatment process in a
variety of ways, like remotely communicating opinions amongst pathologists. Due to the
significance of details in glass tissue slides, these images can be as big as 100, 000×200, 000
pixels and are often scanned in often three like red, green, and blue or luma component,
blue-difference, and red-difference. Furthermore, WSIs are often kept in pyramidal magni-
fication structures that include images of varying resolutions as well as clinical information.
At higher magnification levels of the pyramid, a much greater quantity of information is
stored. Although lower level magnification does not incorporate all information held at
higher levels, it may considerably aid the clinical evaluation by producing high-density
pixel information from lower resolution. The purpose of this research is to create a mecha-
nism capable of recovering information at high-resolution such as 20X magnification, from
lower-level magnifications such as 5X. This strategy reduces the amount of storage space
and bandwidth needed for image transfer. Having models to reproduce the 20X magni-
fication slides out of 5X magnification with high accuracy can considerably facilitate the
adoption of digital pathology. one of the barriers to going digital is the high cost of stor-
ing many gigapixel WSIs. Transferring histopathology slides to a remote location can be
facilitated by this method, while smaller size slides are easier for data sharing. Finally, in
digitizing glass slides, scanners may not always correctly focus on the tissue, resulting in
blurry portions negatively affecting diagnosis in certain cases. The same techniques may
overcome the optical hurdles of obtaining crisp images at high magnifications. The sug-
gested solutions would allow for the storing of digital slides in much smaller-scale versions
while maintaining the reproducibility of high-resolution images. On the other hand, storing
merely a lower magnification rather than the actual high magnification image and depend-
ing only on the software may not result in an adequate results. To improve the capabilities
of the suggested approach even further, it is advisable to save some portions of the original
high quality picture to guarantee a more accurate outcome. The second challenge that this
research is focusing on is identifying the areas that may need further attention in order
to store a part of them. The anomalous region of a slide is the piece that substantially
proposes the diagnosis when defining the concern of an essential disease. A strategy for
detecting this region is also explained here. To detect this area, a technique that can do
it unsupervised is appropriate since it reduces pathologists’ effort by not needing them to
provide accurate annotations for a certain kind of cancer before using the approach. This
thesis further relies on the unsupervised localization of an abnormal WSI region.
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Chapter 1

Introduction

The field of pathology is experiencing a paradigm change due to the widespread use of
Whole-Slide Image (WSI) in lieu of traditional light microscopy. Digital pathology is crit-
ical in modern clinical practice and is fast gaining acceptance as an essential tool in the
laboratory setting [1] [2]. The capacity to digitally visualize microscopic pathology features
opens up new avenues for pathology study. Processor improvements, quicker networks,
and more affordable storage have allowed pathologists to handle digital slide images more
quickly and adaptable than ever before. Additionally, remote primary diagnostic work,
teleconsultation, workload efficiency and balance, collaborations, central clinical trial eval-
uation, image analysis, virtual training, and innovative research are facilitated by access
to digital slides [3]. Over the past two decades, the invention and growth of whole-slide
imaging in digital pathology imaging have permitted the imaging and permanent storage of
whole slides at high resolution. The computer vision and artificial intelligence communities
have expanded the potential for computational pathology via WSI technology, including
deep learning methods [4]. Recent years have seen incredible advancements in computer-
aided approaches, owing primarily to deep learning. Numerous deep architectures have
been trained on large-scale datasets to uncover significant biological informatics insights
and perform outstanding image processing, and analysis tasks [5].

Scientists and pathologists benefit from the digital scans of tissue slides in considerably
high resolutions because of the details of the histologic features of biopsy samples. For
example, as very detailed information, the cells are a critically examined reference in
histopathology since their shape and distribution include vital information that may be
used to differentiate between conditions. Breast cancer, for example, is the most prevalent
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malignant tumor affecting females. Diagnosis of cancer is critical for effective treatments.
Classification of cell nuclei is critical in histopathology image analysis because many issues,
particularly malignancies, may be defined by their expression in cell nuclei. [6] For breast
cancer, historically, pathologists were required to manually extract cytological descriptions
of cells at high magnification (e.g., cell size, shape, distribution, and cellular spaces) from
histopathology images and then identify the cell nuclei using these human-specified criteria
[7]. Examining a large number of biopsy slides manually requires considerable effort and has
a poor degree of repeatability [8]. Additionally, since the attention lesion’s extent is often
tiny compared to the WSI, details become much more important. Certain crucial areas of
attention in a WSI may account for less than 1% of the image. Localization of lesions is
also a time-consuming process, even for experienced pathologists. While computer-assisted
approaches for quick processing have received much interest, the need for high-resolution
images that depict slides at high magnifications persists. [9].

During the past few years, microscopic images have been the focus of many researchers
in deep learning [10][11]. Overall, proposed approaches mainly concentrate on classifying
patches resulting from sliding a window in WSI [12]. Primarily, manual annotations are
used to create bounding boxes in WSIs and train a network to achieve the desired purpose.
In most cases, a classifier applies to a set of “patches” (selected sub-images) for training.
However, these perspectives come with limitations that require attention. To achieve this,
pathologists must create annotations via bounding boxes around regions of interest in
each WSI of the training set images. Pathology knowledge and expertise are vital for
aggregating patch classifications to develop a heuristic. In the proposed methods, a patch
is usually selected independent of neighbors or other parts of a WSI, which means possible
correlations may have been neglected.

For many diagnostic or prognostic applications, a high-resolution image is necessary to
resolve any of the abovementioned concerns. The ultimately sensitive and accurate process-
ing of high-quality scans comes at costs, increasing the treatment and medical exposures,
extra time, and staff and expert requirements. The proposition of digital solutions helps
with these issues and accelerates patient access to proper treatment.

Additionally, similar problems may exist in other disciplines. Theoretically, any gigantic
image may need a similar procedure to this study while keeping the properties of the
proposed technique. For instance, astronomical and civil engineering images may approach
the same size as histology pictures. In this thesis, however, histopathology slides were
evaluated to establish the applicability of this method’s dependability.

2



1.1 Problem Statement

This doctorate dissertation aims to design two methods for transforming histopathology
images, as well as a novel image storage framework. WSIs are often used at high magni-
fications in histopathology, such as 20X and 40X. While high-resolution images are nec-
essary for accurate clinical evaluation, the goal is to present an alternate framework that
provides comparable image quality where it is required while also delivering storage advan-
tages. To the best of the authors’ knowledge, this research introduces the first Compound
Magnification Framework (CMF) for tissue slides. A CMF is made up of two primary
components. The original slide at a lower magnification (and resolution), accompanied
by selected patches at the highest magnification necessary. A CMF is an alternative to
conventional WSI built from a WSI and may be used to construct a comparable WSI.

The first method addressed in this research is converting a CMF to a WSI, which is
the most accurate way of obtaining information. As a consequence of this transforma-
tion, a synthetic WSI is created that successfully delivers information comparable to the
original WSI. The term ”information” refers to the image’s perceptual data, represented
by pixel values. The correctness of the information is determined by several criteria that,
when combined, result in a proper diagnostic material. A reliable diagnostic material may
provide critical information to a medical professional and a computer-assisted analytical
approach. The problem is designing and implementing a technique for reconstructing a
detailed medical image from a CMF.

The second method is used to convert a WSI to a CMF. From a memory standpoint, a
CMF is substantially smaller than a WSI. The WSI is maintained at a decreased magnifi-
cation, along with a selection of patches, to form a CMF. Essentially, the transformation
denotes extracting WSI information from the perceptual data included in an image. In
contrast, some researchers contributed significantly to compression regardless of the clin-
ical relevance of information in a snap [13]. Perceptual information includes the shapes,
relative positions, textures, colors, and orientations of features (e.g., cells) in a WSI. Here,
we would choose a collection of patches that convey the most valuable information for
future use. The goal implies that this part’s primary objective is to handle the challenge
of selecting a subset of patches for storage at high magnification.

3



1.2 Motivation

Histopathology is the science of investigation of tissue specimens that traditionally em-
ploy light microscopy. High-resolution scanning and storing slides enable researchers to
transition to digital pathology due to technical improvements. Large pathology databases
facilitated digital pathology for various applications, including research and clinical useful-
ness. Additionally, digital pathology allows for the examination and comparison of tissue
samples with annotated digital images. Annotations are available for various data types,
ranging from segmentation, classification, and diagnosis to clinical data such as pathology
reports and molecular data. In many case scenarios, the diagnosis may improve by correlat-
ing comparable patients and retrieving similar images through “image search”. However,
several issues are slowing or even halting this progress.

Histopathology diagnosis is based on the information contained in tissue samples mounted
and fixed on glass slides and evaluated at various magnification levels. During a medical
process, it is typical for pathologists to repeatedly zoom in and out on different slide areas
to find certain diagnostic features. As a result, the digitized slides are often scanned at
an exceptionally high resolution that correlates to high magnification to achieve equivalent
performance in digital pathology. Computational pathology may then be performed on
this high-resolution imaging. The gigapixel scanned images are huge files, often in the SVS
format, necessitating more storage and transfer precautions. An SVS file is a Tiled TIFF
image that contains a high magnification image, an overview image, multiple smaller, scaled
copies of the scanned slide, and properties such as the slide name and scanner parameters.
A sample WSI in SVS format is shown in Figure 1.1.

Each scan generates a gigabyte-sized image; typically, multiple slides are accessible for
each patient. Every day, tens of thousands of people undergo biopsies. These variables
contribute to the development of massive archives that are difficult to access and evaluate
for research and clinical reasons. Hospitals and clinics may delete previous scans to make
room for new ones to address the storage issue. Instead of deleting older slides, another
approach is to maintain an alternative version and a mechanism that could reconstruct a
similar image comparable to the original version upon access without compromising data
accuracy.

Digital Scanners are a new generation of devices that automatically exploit the prin-
ciples of a light microscope inside a box; the microscope is no longer visible to the user.
Among the capabilities of digital scanners, resolution, and magnification are the factors
that cause inconsistencies in automated scans. For instance, various scan magnifications
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philips.DICOM_PIXEL_REPRESENTATION : 0
philips.DICOM_PIXEL_SPACING : "0.000243094" "0.000243094"
philips.DICOM_PLANAR_CONFIGURATION : 0
philips.DICOM_SAMPLES_PER_PIXEL : 3
philips.DICOM_SOFTWARE_VERSIONS : "4.0.3"

philips.PIM_DP_IMAGE_COLUMNS : 97792
philips.PIM_DP_IMAGE_ROWS : 221184
philips.PIM_DP_IMAGE_TYPE : WSI
philips.PIM_DP_SOURCE_FILE : %FILENAME%
philips.PIM_DP_UFS_INTERFACE_VERSION : 3.0
philips.UFS_IMAGE_PIXEL_TRANSFORMATION_METHOD : 0
tiff.ResolutionUnit : inch
tiff.Software : Philips DP v1.0

Image File Pages Properties

openslide.level-count : 10
openslide.level[0].downsample : 1
openslide.level[0].height : 221184
openslide.level[0].tile-height : 512
openslide.level[0].tile-width : 512
openslide.level[0].width : 97792

Figure 1.1: An illustration of a WSI in SVS format that includes: Left, images stored in
various levels; Right, scanner properties, image file specifications, and etc.
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may be inspected even in a large dataset. In a sensitive context like digital pathology, to
design an automatic method, data consistency is pivotal. While it would be ideal if all
data collection centers used similar digital devices with matching specifications, it is rec-
ognized that dataset collection variances are unavoidable. To maintain the magnification
consistency across all diagnostic cases, a technique capable of magnifying scans from lower
resolution would be the desired solution.

On the other hand, digital scanners are expensive and may not be accessible to all
pathologists worldwide. One of the primary reasons for the high cost of digitization
technologies is their high magnification scanning capacity. Although the availability of
lower-cost equipment may be possible, the resulting reduction in scanning resolution and
magnification would be detrimental. A practical tool to enhance the resolution at any
magnification of scanned slides by affordable devices facilitates the adoption of digital
pathology, hence the advancement of computational pathology.

Finally, the scans and scanners themselves are far from ideal. It has been noticed
that scanned slides are not extraordinarily precise at providing a high-quality image. This
issue is not rare since the optical devices of the scanner need to focus on the biopsy.
By measuring the depth of the tissue surface, digital scanners maintain correct focussing.
Focusing is error-prone due to issues like specks of dirt or stains on a slide and physical
limitations of optics. A digital tool to help this problem is benefiting from methods capable
of image enhancement.

All in all, some notions of compression and decompression of the scanned images may
help solve the abovementioned problems. This study mainly aims at designing a method
capable of down- and up-sampling ideas. The overall approach would help with storing
smaller images while capable of restoring high-resolution versions. The lower-resolution
images are magnifiable by the decompression method. Besides, blurry scans can also get
enhanced in a decompression manner based on other informative areas of the WSI.

1.3 Organization of the Thesis

This thesis is split into six chapters, one of which is an introduction. The second chapter
reviews the primary areas of literature relevant to the study done for this doctoral dis-
sertation. This would begin with examining the techniques used to up-sample pictures in
deep learning, including the problem formulation, the most frequently used network ar-
chitectures, performance measures for the network, and training loss functions. Following
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that, a description of the most commonly used image distance metrics is included, which
will be established in Chapter five. Chapter three discusses the proposed framework, the
tools required to implement it, and the resultant compression. Chapter four discusses the
technique of image transformation, which upsamples the images. Chapter five discusses
the issue of unsupervised localization, which is a necessary component of the second trans-
formation. Finally, Chapter six summarises the study’s findings, conclusions, and possible
future work.
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Chapter 2

Background and Literature Review

Digital pathology plays a critical part in contemporary clinical practice and is becoming
an increasingly necessary technology prerequisite in the scientific laboratory setting. The
examination of digitized slides for diagnostic reasons is referred to as digital pathology.
The digitized slides are scans of the physical slides that allow computer-based evaluation.
The section 2.1 provides an overview of the WSI analysis process.

Images are not always of the best standard, and their resolution may be improved. The
image processing method known as image SR is an important family of image processing
techniques used in computer vision to increase the resolution of pictures. Image SR is a
technical term that refers to recovering High Resolution (HR) images from Low Resolution
(LR) ones. The application of deep learning algorithms has enabled remarkable break-
throughs in image super-resolution in recent years [14]. The purpose of this method is to
use perceptual information to recover pixel-level details about an image. This method,
however, is not limited to images. Numerous researchers have used SR to increase the
resolution of video for computer vision applications [15]. By and large, studies of image
SR seek to propose a solution from three perspectives. SR approaches such as supervised,
unsupervised, and domain-specific are all conceivable. The section 2.2.1 examines SR as
a component of this study. The SR examination should provide the groundwork for the
CMF to WSI transition process that we will undertake.

The study of SR is not restricted to images taken from nature or human beings on a
daily basis. Additionally, the researchers have adapted it to medical imaging. Researchers
may use publicly available datasets to train networks for SR tasks. However, the currently
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available SR datasets are seldom focused on histopathology. Due to a lack of substantial
SR datasets in histopathology, only a few investigations have been conducted. The section
4.1 summarises these studies and their findings about the use of SR methods in medical
imaging.

2.1 Histopathology Image Analysis

Digital pathology dates all the way back to the twentieth century, when specialized equip-
ment was employed to record information from a microscope [16]. Telepathology is a notion
that has existed for about 50 years. It involves sending microscope pictures between far-
away sites. However, it is only in the last decade that pathology has started practically
digitalizing, shifting from an analog to an electronic setting [17]. The term ”digital imag-
ing” refers to digitally capturing, storing, and presenting scenes. Compared to standard
digital imaging methods that process static pictures using cameras, whole slide imaging
is a more sophisticated and regularly used tool in modern pathology [18]. This approach
consists of two stages. To start, digitizing a whole glass histology or cytopathology slide
needs the use of a specialized scanner. Second, a virtual slide viewer displays the ac-
quired digital content. Although the scanning operation might be time-consuming with
the present technology, this approach can quickly visualize whole slides in high resolution.
A full slide image often contains billions of pixels and occupies between 200 MB to several
GB [19]. Since a WSI captures data on the whole tissue sample, the amount of a patient’s
data collected from a biopsy may reach TB during the course of therapy. The WSI makes
a substantial contribution to systematic image analysis by directing it toward microscopic
morphology [20].

The purpose of digital pathology analysis is to aid in determining the extent of cancer-
ization in tissue and in forecasting its prognosis. One of the critical endeavors in digital
pathology is exploring alternative ways to current procedures for histopathology image
analysis. The methods examine a surgical tissue or biopsy. Computer-Assisted Diagnosis
(CAD) of histopathology images is practical due to repetitive patterns that end in the
study of texture and automated recognition [21]. To achieve CAD, two phases of image
scan and process are combined with traditional histopathology. As a relatively new tech-
nology, whole-slide imaging allows assessing various techniques to analyze high-resolution
images. However, problems such as storage, certifying the image, labeling (annotations),
and scan quality are still in practice [22].
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Previously, scientists utilized conventional Machine Learning (ML) algorithms to eval-
uate tissue slides in digital pathology. These approaches include the following steps: The
first step is to acquire an image. This stage allows for the acquisition of a full glass slide in
bright field or fluorescent settings, at a magnification equivalent to that of a microscope,
using high-throughput, automated digital pathology scanners. The second is to use pre-
processing methods, which include several fundamental tasks such as color normalization
(staining) and illumination. Thirdly, morphological properties of structures such as nu-
clei and glands are detected and segmented. Fourth, feature extraction was tackled by
considering features at the object and relationship level in addition to global and window-
based multi-resolution features. Fifth is feature selection for improved generalization and
run-time efficiency, often paired with dimensionality reduction approaches. Finally, the
characteristics of an image allow for proper categorization [23]. However, deep learning
has shown state-of-the-art performance in various applications, including digital pathology
analysis. While traditional machine learning approaches often need explicit domain-specific
features to learn representations, deep learning techniques may do so without them. Deep
learning methods need less effort than typical machine learning techniques to extract fea-
tures [20].

With recent research advancements, Deep Learning (DL) methods as an alternative
could surpass traditional machine learning approaches. In the DL techniques, nonlinear
transformations are composited over the image pixels, which leads to a suitable abstract
representation for the learning process. Internal network parameters are randomly estab-
lished at the start and updated through error-backpropagation. In massive data sets, deep
learning may identify complicated structures. High amounts of training data typically
result in better performance. As a concern, magnification level plays a significant role
because of patterns; therefore, the selection of the region of interest and image or patch
size gain attention. The first step of applying DL to the WSI is data acquisition; the input
data (i.e., the patch of WSIs) is then augmented by rotations, scaling, flipping, and other
augmentation methods. A variety of DL methods are exercised at this stage. The nature
of the desired problem finally derives the solution, such as classification, segmentation, or
detection [24].

One of the substantial issues in both ML and DL methods is supervision. Researchers
extended the ideas to unsupervised learning methods in which samples may not be fully
labeled. Unsupervised learning includes the process of reconstructing an input based on
the original image. Afterward, it is used as the feed of a supervised method. Besides,
convolutional neural networks as a supervised learning method enhance attributes like
minimum pre-processing time, robustness to distortions, and variability of the pattern.
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Generally, the challenging tasks in CAD could be categorized into three groups. The
first group is detecting the region of interest in which the area can be very small. Classifi-
cation of images is the second group in which the architecture of patterns in tissue samples
is the basis. The third group refers to either localization or segmentation of particular
tissue structures. For instance, delineating a boundary around glands belongs to the third
group.

In summary, these findings provide a potential mechanism for workload reduction of
pathologists and sensible coordination. Complementary to the mentioned benefits, the
most satisfactory outcomes are delivered by DL methods and compelling viewpoints for
the future. The developments are very much the critical component in future attempts to
overcome at least three types of imperfections:

• The sensibility of models to the fine-tuning for particular sets

• The impact of observer variability on parameter adjustment of methods

• The lack of robustness of the methods which utilize images

This research is an attempt to delimitate the capability of improved interaction between
variant scanned images and pathologists. Also, creating methods that enable training from
weak or unlabelled data might provide a vital area for future research.

2.2 Image-to-Image Translation

Numerous problems in computer vision may be framed as image-to-image translation chal-
lenges, which imply converting an image from one domain to another when sufficient train-
ing data is available. The computer science field has already demonstrated effectiveness in
this direction, with Convolutional Neural Network (CNN) establishing themselves as the
de facto standard for various visual prediction tasks. While CNNs learn to minimize a loss
function that assesses the quality of results, a considerable amount of human labor is still
crucial to obtain effective losses [25]. Multiple topics employ the ”translation” problem,
including super-resolution [26], colorization [27], inpainting [28], style transfer [29], etc [30].
For example, image SR may be thought of as the problem of mapping a low-resolution im-
age to a similar high-resolution image, and colorization can be thought of as the problem
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of mapping a gray-scale image to a similar color image. The topic may be examined in
supervised and unsupervised learning situations. Supplied images from multiple sites are
matched in the supervised context. When the image translation problem is seen through
the perspective of probabilistic modeling, the major challenge is to uncover a shared distri-
bution of images across domains. In the unsupervised setting, the two sets include images
from two marginal distributions in two separate domains to infer the joint distribution from
the images. According to coupling theory, [31], an infinite number of joint distributions
may be generated from the specified marginal distributions. Consequently, deriving the
joint distribution from the marginal distributions is a highly ill-posed problem [26].

2.2.1 Single Image Super-Resolution (SISR)

Image super-resolution is a class of image-processing (/”translation”) techniques that aim
to retrieve a high-resolution image based on a lower-resolution image. Image SR has a his-
tory of advancement. During the subject’s early proposals, SR was one of the early ways to
increase digital consumer images, improve printer resolution, and convert PAL or NTSC
resolution video to HDTV quality video. As was the case with general resampling, SR
was a common technique carried out by technology such as digital cameras and computers
[32]. Over the last decade, deep learning has been used to tackle this image enhancement
challenge in computer vision. Image SR manifested itself in a variety of ways depending
on the application. Among the most important types, lightweight versions were produced
for usage on mobile devices and for rapid processing; [33] [34] for video improvement,
multi-frame approaches were provided;[35] and for scenes reference-based super-resolution
was presented [36]. However, for this study, single-image SR is the most relevant strategy
since the WSI are images, and the additional images required for the other approaches may
not always be available. Additionally, when quick techniques are used, accuracy is often
compromised to provide a more compact solution that can be implemented on smaller de-
vices, which is irrelevant for this thesis application [37]. The single image super-resolution
is a subcategory of image SR in which a network uses a single low-resolution image to
reconstruct its’ high-resolution mapping. The essence of the problem has been proven by
multiple real-world applications ,including, but not limited to, Medical Imaging [38] [39]
[40] [41] , and security [42] [43] [44]. In addition, image super-resolution improves the per-
formance of methods for other tasks [45] [46] [47]. SISR is a considerably challenging issue
which also is an ill-posed problem due to its problem definition. A single low-resolution
image can act as the respective lower-resolution image of multiple high-resolution images.
Conventional techniques to solve this started to emerge a few decades ago [48]. Among the
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classical methods, researchers introduced methods based on predictions [49], edges [50],
statistics [51], patches [52], and sparse representation [53].

Deep learning has primarily affected image SR. In this area, state-of-art results have
been achieved during the past five years. Specific benchmarks for this task are also de-
signed, which are briefly named in the section dataset. A researcher could attain leading
performances assessed by a vast range of metrics on the various SR benchmarks. Deep
networks that have been used to address this problem are from the very early CNN such
as SRCNN [26] to more recent ideas like Generative Adversarial Network (GAN), which
have been employed in SRGAN [54].

Deep learning SR networks have differences in aspects like the architecture of the net-
work [55] [56] [57], loss function [58] [59], and learning strategies [60] [61] that are discussed
in the following sections.

2.2.2 Problem formulation

The main goal of image SR is to find the most relevant HR image Ihr that corresponds
to a LR image Ilr. We assume that the LR image is an image of lh × lv pixels (where lh
and lv are the number of pixels in horizontal and vertical axis, respectively); therefore, LR
image consists of slr = lh × lv pixels and the shr = m × slr is the number of pixels of the
HR image Ihr. The integer parameter m is the factor that shows the increase in the image
size. Now, the degradation is defined as equation 2.1.

Ilr = D(Ihr; δ), (2.1)

Here D is the degradation function and δ corresponds to the related parameters (e.g. kernel
size, noise, scaling factor, etc.). The degradation function is assumed to be unknown in
many problems called blind SR; however, we can consider it known if the degradation is
digitally applied. The approximate higher resolution image Isr, which is called the SR
image of the low-resolution image, is then constructed equation 2.2.

Isr = F(Ilr; θ), (2.2)

Here F and θ correspond to the SR function and the approximation parameters, re-
spectively. The degradation model could be modeled by a down-sampling function applied
to the high-resolution image as equation 2.3.
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D(Ihr; δ) = (Ihr) ↓d, {d} ⊂ δ, (2.3)

where ↓d denotes the downsampling operation and {d} are the parameters of it. Many
downsampling methods are introduced in the litrature[62] [63]. Among these methods,
bicubic downsampling is commonly used in image SR applications, although other methods
are used to operate the downsampling. The bicubic upsampling method has been covered
in section 2.2.3. Generally, it is possible to model the downsampling as equation 2.4.

D(Ihr; δ) = (Ihr ⊗ k) ↓d +nζ , {k, d, ζ} ⊂ δ, (2.4)

Here Ihr ⊗ k denotes a kernel of k convolution with the high-resolution image to apply
a filter (e.g., blur) on the image. nζ is the gaussian noise added to the model with an
average of zero and the standard deviation of ζ. The model described by equation 2.4 has
been proven to have more relativity with real-world problems [64].

Finally, the image SR objective is formulated as equation 2.5.

θ̂ = argmin
θ

L(Isr, Ihr) + λΦ(θ), (2.5)

Here, L(Isr, Ihr) is the loss function which is measuring the difference between the
generated SR image and the ground truth high-resolution image. The regularization term is
formulated by Φ(θ), and λ is the trade-off parameter. The losses are usually a combination
of multiple functions.

2.2.3 Interpolation

Interpolation of the data is a part of either upsampling or downsampling. Here, the up-
sampling method has been briefly explored, while the downsampling can be analogously
described. In image resampling, the main aim is to predict pixel values based on the avail-
able data. However, this task has been conventionally investigated to introduce relatively
fast and easy methods. Some of these methods are the nearest neighbor, bilinear and bicu-
bic interpolations. These are aimed at constructing a smoother image. Images of these
methods are shown in Figure 2.1 [65].
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Figure 2.1: A TCGA brain patch of the size 256 × 256 pixels and the interpolation of its
down-sampled patch of the size 64 × 64 pixels; (a) original image and the down-sampled
image in top right, (b) nearest neighbor interpolation, (c) bilinear interpolation and (d)
bicubic interpolation

Bicubic Interpolation

The bicubic method takes 16-pixel values into account to compute the smoothest result.
On the other hand, a more basic method of bilinear would benefit from 4-pixel values. In
the bicubic method, a polynomial technique is used to enlarge the image. The surface of
the image function f is then formulated as equation 2.6.

f(x, y) =
3∑

i=0

3∑
j=0

cijx
iyj, (2.6)

where x and y are the pixel-wise location of the image points. In order to solve this
surface equation for additional points, the coefficient of cij are required; Besides, the
derivates fx, fy, fxy are computed as equation 2.7 2.7 2.9.

fx(x, y) =
3∑

i=1

3∑
j=0

i ∗ cijxi−1yj, (2.7)
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fy(x, y) =
3∑

i=0

3∑
j=1

j ∗ cijxiyj−1, (2.8)

fxy(x, y) =
3∑

i=1

3∑
j=1

i ∗ j ∗ cijxi−1yj−1. (2.9)

Now, having the corner points (0,0), (0,1), (1,0), and (1,1) in the above equations, the
problem is solved. The interpolation can be then simplified as the equation 2.10.

f(x, y) =
[
1 x x2 x3

] 
c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33



1
y
y2

y3

 . (2.10)

2.2.4 SR Deep Networks

During the past few years, SISR, like other areas, has significantly improved. These im-
provements were not possible without deep neural networks. Overall, the deep neural
networks for SR are categorized into four main types. The categories with samples of the
successful networks are discussed in section 2.2.5. Then the loss function and evaluation
metrics are given in sections 2.2.6 and 2.2.7, respectively.

2.2.5 Architectures

Researchers have proposed a range of network architectures. Although these networks
exhibit considerable distinctions, Wang et al. classified them into four categories [14]. The
general categorization of frameworks is given in Figure 2.2.

One of the first networks for image super-resolution is entitled SRCNN, which Dong.
et al. introduced in 2014. The network they introduced enhanced the classical mapping
methods between the LR and HR images. Their success gained attention, and many
other networks were proposed ideas based on their initial proposal. Their network design
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(A) Pre-upsampling SR

Figure 2.2: Four general frameworks of deep neural networks used for image super resolu-
tion including; (a) Pre-upsampling SR (b) Post-upsampling SR (c) Progressive upsampling
SR (d) Iterative up-and-down Sampling SR; Grey boxes, SR blocks; Green boxes, upsam-
pling units; Orange boxes, downsampling units

could best fit the category (a) of Figure 2.2 where a CNN followed a pre-upsampling
to enhance the initial upsampling. Despite their success, these structures faced issues
like noise amplification. Later, researchers showed these networks’ considerably lengthy
operation time due to the higher dimensional computation framework comparing other
networks [26].

Post-upsampling networks then solve the computational expense problem. Researchers
benefitted from similar ideas; however, faster training and testing time. To name a few,
RCAN and SRGAN were among the networks that benefited from this framework. These
networks were successful enough to consider state-of-the-art results. Although RCAN
presented higher accuracy values in many studies, SRGAN presented more realistic images
by hallucinating the textures [66] [67].

The benefits of the framework (b) were outstanding; however, there were shortcomings.
The single-step up-sampling module made the training an arduous task when a higher
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magnification, like 4 or 8, was required. To help this issue, researchers that experienced
the high-quality results of progressive networks such as StyleGAN implemented similar ap-
proaches in the areas of SISR [68]. One of these networks that were upsampling iteratively
is ProSR which achieved relatively high-performance [61].

Finally, the last framework of iterative up-and-down sampling super-resolution was
investigated since even the framework (c) encountered some problems. For instance, the
learning strategies required to train them were complicated. In contrast, framework (d) ap-
plies back-projection refinement. To name a successful example, SRFBN fits this category
which benefits from feedback block and offers better representations [69].

2.2.6 Loss Functions

In deep learning, loss functions play a crucial role in guiding the model to optimize with
desired weights. In image super-resolution, the optimal outcome is a network that enables
a quality reconstruction; therefore, the loss functions are designed to help the training in
leading the network to reconstruct an image close to the HR image. Here we discuss three
of the loss functions which are used in many studies.

Reconstruction loss evaluates the correctness of picture production based on the dif-
ference in pixel values between the intended and created images. This loss would instruct
the network to create pictures with identical pixels. For example, produced picture colors
and histograms tend to be most comparable for images with more blurriness. This is be-
cause an edge that arrives just one pixel after where it was expected to occur results in a
significant loss value. As a result, the pixel value numbers are often averaged to achieve
lower loss values. On the contrary, perceptual loss influences the content of pictures. This
suggests that this loss function prioritizes the perception of similar shapes and structures
instead of pixel value equality. It implies that a pixel change in the appearance of an edge,
for example, may not significantly impact the loss value; nevertheless, if a shape of per-
ception system interest is absent, the loss value increases. Ultimately, the adversarial loss
causes two networks to compete against one another for superior outcomes. The generator
network would be steered toward more realistic-appearing pictures, but the discriminator
network would seek distinctions between genuine and created images. This loss should
result in the development of pictures that resemble the originals independent of pixel or
content comparison.
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Reconstruction Loss

Reconstruction loss or pixel loss indicates the similarity of the generated SR image and
the desired HR image. This is computed by L1-norm or L2-norm of the images differences
as equations 2.11 and 2.12.

Lrec.(IHR, ISR) =
1

v
||IHR − ISR||1, (2.11)

Lrec.(IHR, ISR) =
1

v
||IHR − ISR||2, (2.12)

where v = h × w × c is the volume which is the multiplication of height and weight and
number of channels. L1-norm showed better performance from sharpness in addition to
easier convergence. The sharper images emerge since the L2-norm penalizes the significant
deviation exceedingly while minor errors slightly.

Perceptual Loss

A perceptual loss, named content loss, evaluates the perceptual similarity of the generated
image with the HR image. This is done by comparing the semantic content of the images
using a pre-trained network (e.g., VGG16). Researchers computed the distance of the l-th
layer of the network like equation 2.13.

Lpercept.(IHR, ISR) =
1

v
||ϕ(l)(IHR)− ϕ(l)(ISR)||2, (2.13)

Where ϕ(l)(.) denotes the output of the l-th layer of the pre-trained network, in other
words, the perceptual loss guides the network based on the hierarchical image features of
a network that has been trained for a task (e.g., ImageNet classification) [70].

Adversial Loss

The application of GANs has reached the SR as well. GAN-based training generally consists
of two main networks: the generator and the discriminator. These two networks compete
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against each other for training purposes. Consequently, the adversarial loss is defined as
equations 2.14 and 2.15 for the generator and discriminator networks, respectively.

LGANG
(IHR;D) = −logD(ISR), (2.14)

LGAND
(IHR, ISR;D) = −logD(IHR)− log(1−D(ISR)), (2.15)

where D denotes the discriminator for a binary decision whether the image is real.

2.2.7 Reconstruction Quality Measurement

Deep networks can produce higher-quality images that seem identical to the original image
in image SR. However, since this mapping is the inverse of down-sampling, which results in
the loss of significant amounts of information, the resulting picture may not have identical
pixel values to the original. In pathology, one of the primary goals of these images is to
aid in the clinical evaluation of human experts. As a result, the most reliable method of
assessing the image quality is by human inspection [71]. Although human review ensures
dependability, most approaches are computational as the size of an image dataset increases.
These distinctions represent the apex of a method’s capacity. Among the most often
used measures, two metrics, including Peak Signal-to-Noise Ratio (PSNR) and Structure
Similarity Index Method (SSIM) in this field, are described in the following section for use
in the analysis of image SR.

2.3 Image-to-Image Distance

One of the primary objectives of image translation is to determine the method’s effective-
ness by comparing the produced image’s deviation to the original. This subject is often
referred to as Image Quality Assessment (IQA) in the literature [72]. This is not, however,
the only circumstance in which a distance may be favorable. The difference in image gener-
ation is a critical factor in determining the location of an object while doing unsupervised
detection. The following paragraph will cover several of the most often utilized approaches
for determining generational differences, which may help achieve the thesis’s objective.
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2.3.1 Peak signal-to-noise ratio (PSNR)

PSNR is used to calculate the ratio of the maximum possible signal intensity to the power
of the distorting noise that reduces the representational quality of the signal. The signal
represents the original image, while the noise denotes image generation errors experienced
by comparing the original image to the generated image. It is a frequently used metric
that compares the rate of maximum pixel values to the image’s mean squared error (MSE).
The PSNR ratio of two pictures is given in decibels. Because signals have a reasonably
high dynamic range, PSNR is often calculated as the decibel scale’s logarithm term. This
dynamic range is defined as the difference between the highest and least possible values,
which vary depending on the problem [73]. PSNR of the two images ISR and IHR is then
computed by equation 2.16.

PSNR = 10log10

(
L2

||IHR − ISR||22

)
, (2.16)

where L is the maximum pixel-value equal to 255. Despite the common use of this
metric, it does not reflect the human perception. [74]

2.3.2 Structure Similarity Index Method (SSIM)

The primary function of the human visual system is to identify visible structures. The
Universal Quality Index (UQI), or Wang–Bovik Index, was established in 2001 by Zhou
Wang and Alan Bovik [75]. This grew into the present version of SSIM. The Structural
Similarity Index Method is a technique that is based on perception. In this approach,
image degradation is seen as a change in the perception of structural information. This
metric comprises three main components: luminance, contrast, and structure. Luminance
refers to reducing the visibility of an image’s distortion section around the image’s edges.
Contrast, on the other hand, is a term that relates to the act of decreasing the effect of the
appearance of textural imperfections in a picture. The term structural information refers
to pixels that are strongly reliant on one another or that are spatially constrained. These
highly interconnected pixels offer crucial information to the image domain about visual
objects [76] [73]. SSIM metric determines the perceived quality of images and videos. It
makes a comparison between the original and reconstructed images. It is formulated as
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SSIM =
2µSRµHR + k1
µ2
SR + µ2

HR + k1
× σSR,HR + k2

σ2
SR + σ2

HR + k2
, (2.17)

where µSR and σSR are the mean and variance of the SR image, µHR and σHR are the
mean and variance of the HR image, and σSR,HR is the covariance between SR and HR
image. Finally, k1 and k2 are the relaxation constants.

SSIM is commonly used in different fields, like medical imaging. Researchers commonly
use this metric, despite its limitations [77]. It is practically used in various medical imaging
domains like Histopathology, CT scans, and MRI, and ultrasound [78] [79] [80].

Multi-Scale Structural Similarity Index Method (MS-SSIM)

The structural similarity image quality paradigm assumes that the human visual system
is highly specialized for acquiring structural information from scenes to approximate per-
ceived picture quality. Multi-Scale Structural Similarity Index Method (MS-SSIM) is a
multiscale structural similarity methodology that includes more viewing scenarios than
the previous single-scale method. An image synthesis technique is developed to calibrate
the relative importance of scales. The Multi-Scale Structural Similarity Index Method
(MS-SSIM) analyses a large number of structurally similar images at various image sizes.
MS-SSIM compares two images of the same size and resolution. When comparing two
images, changes in luminance, contrast, and structure are analyzed similarly to SSIM. It
may outperform SSIM on subjective image and video datasets, depending on the task [81].

2.3.3 Feature Similarity (FSIM)

Index of Feature Similarity The method maps the characteristics and compares the simi-
larity of two images. To further understand Feature Similarity Index Method (FSIM), we
must first define two conditions. They are as follows: Phase Congruency and Gradient
Magnitude. At the time, phase congruency was a novel approach for recognizing visual
characteristics. One of the essential properties of phase congruency is that it is insensitive
to picture light change. Furthermore, it is capable of detecting other interesting traits. It
focuses on the image’s characteristics in the frequency domain. Contrast does not affect
phase congruency [82].
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2.3.4 Gradient Magnitude Similarity Deviation (GMSD)

This metric was designed not just to provide high-quality prediction accuracy but also to
be computationally efficient. Because of the rising proliferation of high-volume visual data
on high-speed networks, metric efficiency is becoming more crucial. They provide Gradi-
ent Magnitude Similarity Deviation (GMSD), a novel, effective, and efficient IQA model.
Picture gradients are affected by image distortions, although various local structures of
a distorted image suffer varying degrees of deterioration. This prompted the researchers
to investigate the usage of a gradient-based local quality map with global variance for
overall picture quality prediction. They discovered that paired with a unique pooling ap-
proach, the pixel-wise gradient magnitude similarity between the reference and distorted
pictures may reliably predict perceptual image quality. The resultant GMSD algorithm
outperformed most earlier approaches in terms of prediction accuracy [83].

Multi-Scale Gradient Magnitude Similarity Deviation (MS-GMSD)

This measure builds on the work of GMSD by proposing a more efficient metric. First, a
unique similarity index was presented, allowing the masking value to be tuned to mimic the
human visual system more closely. The authors suggested a multi-scale GMSD technique
incorporating luminance distortion ratings at multiple scales. Furthermore, based on the
measure, they presented a method for quantifying chromatic aberrations in YIQ color
space. Multi-Scale Gradient Magnitude Similarity Deviation (MS-GMSD) is calculated by
combining luminance and chrominance scores [84].

2.3.5 Visual Saliency-based Index (VSI)

During the past decade, psychologists, neurobiologists, and computer scientists have ex-
tensively researched visual saliency to determine which picture portions will draw the
most attention from the human optical system. Intuitively, VS is similar to IQA in that
suprathreshold aberrations may significantly impact VS maps of pictures. With this in
mind, a solution was given that was a simple but very efficient complete reference IQA
approach using VS. VS has a dual purpose in the proposed IQA paradigm. First, VS is
employed as a feature for calculating the distorted image’s local quality map. Second, VS is
used as a weighting mechanism when pooling the quality score to indicate the significance
of a particular area. The suggested IQA index is referred to as a Visual Saliency-based
Index (VSI) [85].
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2.3.6 Mean Deviation Similarity Index (MDSI)

Researchers suggested a trustworthy whole reference IQA model based on gradient sim-
ilarity, chromaticity similarity, and deviation pooling. Considering the drawbacks of the
frequently used GS for modeling the human visual system (HVS), a new GS was devel-
oped using a fusion approach that was more likely to follow HVS. The suggested process
is a quick and easy way to compute the joint similarity map of two chromatic channels to
assess color changes. The recommended CS map was proven more efficient and produces
equivalent or higher quality predictions than a regularly used formulation in the literature.
Motivated by a previous article that employs standard deviation pooling, their study pre-
sented a universal formulation of the DP to calculate a final score from the suggested GS
and CS maps. This suggested DP formulation takes use of the Minkowski pooling as well
as a proposed power pooling [86].

2.3.7 Learned Perceptual Image Patch Similarity (LPIPS)

While assessing the visual closeness of two pictures is almost straightforward for humans,
the underlying mechanisms are regarded to be highly complicated. Despite this, the most
extensively used perceptual measures today, such as PSNR and SSIM, are simplistic, hol-
low functions that ignore a large number of subtleties in human perception. The deep
learning community recently discovered that characteristics of the VGG network trained
on ImageNet classification were beneficial as a training loss for visual synthesis. Learned
Perceptual Image Patch Similarity (LPIPS) metric may not be well-suited for use as a loss
function when training an network. This is despite the fact that it may be a practical
quantitative assessor closely correlating with the human impression of picture quality.

Researchers demonstrated that deep features trained on supervised, self-supervised, and
unsupervised goals explain low-level perceptual similarity remarkably effectively, exceeding
prior, widely-used measures [87].

2.3.8 Haar Perceptual Similarity Index

In most real cases, images and videos cannot be compressed or transported without intro-
ducing distortions that a human viewer would eventually notice. Most image and video
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restoration techniques, such as inpainting and denoising, aim to enhance the viewing expe-
rience for humans. Correctly anticipating a picture’s similarity to an undistorted reference
image, as viewed subjectively by a human viewer, may result in significant benefits in any
transmission, compression, or restoration approach.

In the following respects, Haar Perceptual Similarity Index (HaarPSI) outperforms
the previously discussed measures: It provides better correlations with human opinion
evaluations on massive benchmark datasets in almost every case. It is significantly more
effective and fast to compute than most other measures [88].
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Chapter 3

Compound Magnification Framework

The gigapixel images that are presented as WSIs are generally stored in SVS format.
These images contain valuable information in deep magnifications like 20X and 40X. Con-
sequently, this has resulted in scans with sizes even more enormous than 100, 000×200, 000
pixels. Here we propose a Compound Magnification Framework (CMF) as an alternative
to help with smaller size scans. Figure 3.1 shows a TCGA slide in the proposed CMF.

As shown in Figure 3.1, a CMF contains two crucial sets of information. One is the low-
resolution image with a 5X magnification here corresponding to the whole area of the slide.
This low-resolution image is a 4X down-sampling of the original WSI at 20X. Besides, two
are a set of high-resolution patches presented as 20X magnification patches. The patches
are the same size tiles of the original slide at high resolution. CMF is generated based on a
WSI, and synthetic WSI generation is based on the CMF. The detailed problem definition
of transformations between CMF and WSI is given in the next section.

3.1 Problem Definition

The spatially constrained CMF refers to a low-magnification whole slide image in addition
to several patches. The generation of this framework is done through a procedure that we
call ”Spatially constrained compression.” Based on this procedure, a WSI is turned into
a CMF. The CMFs are meant to represent a smaller size of their WSI while capable of
reconstruction. Figure 3.2 shows an overview of the compression method.
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Figure 3.1: A TCGA slide in Compound Magnification Framework (CMF) representing
the slide in 5X magnification (low-resolution image) and five 20X magnification patches
(high-resolution patches). The 5x image can be upsampled to 20X when needed for visual
inspection. The 20X patches depict relevant diagnostic histology, hence preserved in orig-
inal resolution.
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Figure 3.2: A TCGA slide in Compound Magnification Framework (CMF) representing
the slide in 5X magnification (low-resolution image) and five 20X magnification patches
(high-resolution patches)
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As shown in Figure 3.2, the compression route transforms a WSI into a CMF. In
this procedure, two parts are considered. First, the WSI is presented in the hierarchy
of magnifications. In this hierarchy, the 5X magnification is fully available in the CMF.
However, the high-resolution level of the slide is mainly dropped other than a few patches.
The patches are selected based on the result of a clustering method. The clustering method
applies to the patches extracted from the original slide at a low magnification level. Lower
magnification patches are equal to smaller size patches that result in faster processing for
patch selection. The selection of patches at low magnification is important due to the
extremely high number of patches in a slide.

On the other hand, the opposite procedure is named “Super-resolution decompression”.
This task refers to the problem of reconstruction of a synthetic WSI based on the CMF.
Figure 3.3 gives an overview of the process.

As shown in Figure 3.3, the super-resolution decompression is responsible for creating
a synthetic WSI based on a CMF. This procedure is done with the help of an SR deep
network where the available information in the CMF is utilized to generate the synthetic
WSI. The goal is to create a synthetic WSI as much as possible close to the original WSI.

3.2 Spatially Constrained Compression

Construction of a CMF is done through a procedure that we named ”spatially constrained
compression”. The high-resolution slide is downsampled to the lower resolution. In ad-
dition, several patches are extracted at high resolution. The patches, in addition to the
low-resolution slide, are called the CMF. This structure is beneficial because of two main
reasons. While the reconstruction of the synthetic WSI out of a CMF could be done based
on single-image super-resolution, having the original high-resolution patches would help en-
sure the availability of accurate information as a reference. The references can be helpful
for assessments, including medical doctor diagnosis, computer-assisted diagnosis, and com-
puter assessment of methods. Second, the benefit of having original high-resolution patches
includes the possibility of practicing more complex techniques. These complex methods
include but are not limited to reference-based super-resolution. In a reference-based super-
resolution method, the network input is at least two images of the lower-resolution and
high-resolution. Besides, it is worth noting that the more enhanced process may benefit
from multiple references to retrieve the best high-resolution image.
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Figure 3.3: A TCGA slide in Compound Magnification Framework (CMF) representing
the slide in 5X magnification (low-resolution image) and five 20X magnification patches
(high-resolution patches)
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As previously discussed, the WSIs are gigapixel images. This means that a large number
of patches have resulted from tiling. However, a selection of these patches should be stored.
A proper selection should contain images that can be used most in the following step of
reconstruction. As discussed, this optimal selection is then dependent on the problem
goals. We assume that a good reconstruction assures the other problem needs, such as
diagnosis accuracy. Consequently, the stored patches should represent a comprehensive
sampling of tissue texture used to help the super-resolution network. Among the methods
to select relatively similar texture patches, color-based and feature-based patching have
been experimented.

3.2.1 Preliminary Approaches

Although clustering is an unsupervised technique, the assessment of the outcomes could be
compared to the labeled data. The TCGA dataset offers labels at the WSI level, while the
labels at the patch level are required. In this part, we benefit from the Human Colorectal
Cancer dataset to experiment at patch level [89]. The following section includes the dataset
description, followed by two clustering method sections based on color and deep features.

Colorectal Cancer (CRC) Dataset

This is a collection of 107,000 non-overlapping picture patches extracted from hematoxylin
and eosin (H&E) stained histological images of human colorectal cancer (CRC) and nor-
mal tissue. All images are 224x224 pixels (px) @ 0.5 microns per pixel (MPP). Using Ma-
cenko’s approach, each picture is color-normalized. Adipose (ADI), backgrounds (BACK),
debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon
mucosa (NORM), cancer-associated stroma (STR), and colorectal adenocarcinoma epithe-
lium (TUM) are the tissue classes presented in this dataset. Figure 3.5 (a) depicts several
examples of the images.

These images were taken manually from N=86 H&E stained human cancer tissue slides
from formalin-fixed paraffin-embedded (FFPE) samples obtained from the NCT Biobank
(National Center for Tumor Diseases, Heidelberg, Germany) and the UMM pathology
archive (University Medical Center Mannheim, Mannheim, Germany). Tissue samples
comprised CRC original tumor slides and CRC liver metastasis tumor tissue; normal tissue
classes were supplemented with non-tumorous sections from gastrectomy specimens to
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improve variety. A portion of the dataset consists of one hundred thousand images that
were used to train the networks. For the validation, a collection of 7180 image patches
from N=50 patients with colorectal cancer is also employed.

Color histogram

Color-based patch selection is an intuitive method that has been previously experimented
with in a method; namely, mosaic creation [90]. It has been evident that this method is
among the fastest ways to extract features of images. Figure 3.4 image shows a sample of
how this procedure is done in our experiment.

Figure 3.4: High resolution patch selection using WSI color histogram clustering in low
resolution; the lower resolution slide is fisrt tiled, then color histograms are computed and
centroids of clustering are selected

In this Figure, a WSI is first tiled into same-size small images, then the color features
representing the image’s histogram are extracted. These features are then clustered based
on k-means clustering. It is worth noting that the same randomness value should be used
in other parts of the problem to avoid differences in results. Finally, the patches respective
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of the cluster centroids are used. The least distant patches to the centroids are used in this
problem. However, if more than one patch has a similar minimum distance, randomly, one
is chosen.

Deep Clustering with Convolutional Autoencoders (DCEC)

The implemented clustering technique comes from a DCEC network [91]. This is helpful
since it is reasonably shallow to operate relatively fast and offers excellent accuracy. The
network architecture is modified to Figure 3.5 (c), where the input and output of the
autoencoder are shown in green and blue boxes, respectively. The yellow box does the
clustering, which uses a feature vector of 10 elements. The feature vector is produced by
dense extraction of the flattening of the four convolutional layers.

The network is trained by the CRC training dataset, which has been split into two
parts of training and validation data. The validation part takes 20% of the data. The
final network is selected based on the evaluation of the validation loss. Where the autoen-
coder loss is borrowed from DCEC and the clustering loss is borrowed from the study of
Unsupervised deep embedding for clustering analysis[91] [92].

The confusion matrix of the results of the trained network is shown in 3.5. (b). The
results are based on the test dataset, which is identified as validation in the CRC dataset.

3.3 Summary

The compound magnification framework is made up of three fundamental elements. The
first is the framework that was developed and presented in this study. In addition, a super-
resolution network for creating high-resolution pictures has been trained, and the results
are given in Chapter 4. The patch selection approach is the third. Two techniques based
on color and deep characteristics were presented for ideally rapid selection. However, these
approaches need an expert’s time and only give basic information about a slide. In order
to better handle this issue, an unsupervised unhealthy area detector is included in Chapter
5.
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Figure 3.5: Clustering by deep features; (a) Sample images from CRC dataset used for
training, (b) Confusion matrix of clustering based on the deep features of images, (c) The
DCEC network architecture which has been trained to extract features (green area is the
input, blue area is the decoder output used for training, yellow area shows the deep features
used for clustering)
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Chapter 4

Super-Resolution Reconstruction

This study suggests using an SR-Deep network in order to rebuild a (synthetic) WSI
from a CMF. This chapter describes the use of image SR to histopathology pictures from
numerous vantage points, including training and testing. Initially, the history of SR and
medical imaging is presented. The dataset used for this investigation is then described.
The networks, training, and other outcomes are then offered.

4.1 Background

Medical imaging contains a vast number of image modalities for diagnostic and treatment-
panning purposes. To name a few, MRI, fMRI, and PET are among the important ones.
Researchers initially investigated classical SR methods on these modalities and contributed
to the advancement of the field. Radiology images are usually small (mainly megapixel and
not gigapixel sizes) and hence easier to process [93]. However, with the emergence of deep
learning, in addition to better results, more complex structures and data like pathology
images are being processed.

4.1.1 Super-resolution in Histopathologhy

Among the earliest super-resolution in histopathology studies was a paper published by
L. Mukherjee et al. in 2018. Their study introduced a deep framework for reconstructing
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HR images in the pathology field. This was important since the data in pathology does
not contain high-level features in comparison to natural images. Their results showed
promising outcomes, which they suggested as a comparative counterpart to the expensive
scanners [94]. Later, they investigated a recurrent network to enhance the quality by a
multi-resolution approach. Lately, Bin Li et al. proposed a framework that benefits from
the hierarchical structure of the WSIs and achieved the best results among others. Their
practice showed that downsampling could act as a training data solution for these deep
networks. The studies were examined against Tissue microarray (TMA) datasets and a
two-site whole tissue section dataset [95].

4.2 Dataset Preparation

In deep learning, the dataset is the essential material for training a network, and super-
resolution is no exception. Super-resolution deep networks are trained in various methods,
from supervised to unsupervised training. The supervised methods require the LR and HR
paired images as the training material [60]. These images are usually synthetic pairs based
on standard down-sampling methods. During the past few years, researchers have intro-
duced and investigated many SR datasets. Some of the most frequently used SR datasets
are presented in section 4.2.1. These datasets are helpful since a considerable number of
successful networks are trained based on these images. In addition, transfer learning as
a general method of training enhancement of deep networks requires understanding the
initial data. Furthermore, looking at the considerations about previously created datasets
is essential to create a convenient dataset of super-resolution in pathology.

Histopathology images are presented in WSIs. These images are much larger than
images in other areas like face recognition and autonomous driving. WSIs, as gigapixel
images, contain valuable information in high resolution. However, due to computational
limitations, a complete WSI cannot be processed by conventional graphical processing
units. These images are usually split into patches to enable efficient processing. In order
to create a dataset, we have first investigated the largest publicly available histopathology
dataset in section 4.2.2. Having a relatively complete source of WSIs, the creation of an
SR dataset for histopathology is described in section 4.2.3.

The generated dataset enables the investigation of two sides of this problem. First, the
compression path, which includes the clustering experiments, is described. Second, the
image super-resolution steps for reconstruction are given. Finally, section 4.6 concludes
the chapter.
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4.2.1 Publicly available SR data-sets

During the past few years, improvements in deep learning required more data, and as
a result variety of datasets have been introduced. Datasets offer images with different
properties like source domain, quality, and resolution in the image SR domain. SR datasets
contain HR images, while some include the paired LR images too. The LR pairs are, in
most cases, extracted by a bicubic interpolation with anti-aliasing. Some of the most
famous datasets are in Table 4.1.

Table 4.1: Super-Resolution Famous Datasets and Data Overview

Dataset #images Avg. Resolution Img. Format Img. Category

BSDS300 [96] 300 (435, 367) JPG animal, people, plant, building/landscape, food, etc.
BSDS500 [96] 500 (432, 370) JPG animal, people, plant, building/landscape, food, etc.
DIV2K [97] 1000 (1972, 1437) PNG environment, flora, fauna, handmade object, people, scenery, etc.

General100 [98] 100 (435; 381) BMP animal, people, plant, daily necessity, food, texture, etc.
L20 [99] 20 (3843, 2870) PNG animal, building, landscape, people, plant, etc.

Manga109 [100] 109 (826, 1169) PNG manga volume
PIRM [101] 200 (617, 482) PNG environments, flora, natural scenery, objects, people, etc.
Set5 [102] 5 (313, 336) PNG baby, bird, butterfly, head, woman
Set14 [103] 14 (492, 446) PNG humans, animals, insects, flowers, vegetables, comic, slides, etc.

Urban100 [104] 100 (984, 797) PNG architecture, city, structure, urban, etc.

The image datasets cover a range of image sizes, while the number of images provided
does not exceed 1000 images. In some studies, to have a more comprehensive range of
images and better training results, in addition to image augmentation as a general en-
hancement method, these datasets are combined for training purposes. For instance, the
datasets Set5 and Set14, which are primarily used for test/validation, are usually combined.

Although the datasets in Table 4.1 are widely used, as described, the images provided
by these datasets do not cover the medical imaging and histopathology area.

4.2.2 Publicly available Histopathology data

WSIs are the scanned histopathology slides. The Cancer Genome Atlas (TCGA) is the
most enormous publicly available dataset of scanned slides and reports. This dataset
(available at https://www.cancer.gov/tcga) allows researchers to not only experiment and
propose new methods but also compare their results efficiently. The TCGA contains over
20,000 primary cancer in addition to the normal samples for 33 cancer types and started
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this mission in 2006. The generated data by TCGA is now over 2.5 petabytes and spans
genomic, epigenomic, transcriptomic, and proteomic data [105].

TCGA repository (i.e., Genomic Data Commons, GDC) contains 11,007 cases and
30,072 SVS files of the slides. The WSIs of this repository span 26 organs (primary sites)
with 32 cancer subtypes. The subtypes are abbreviated by a few letters in the reposi-
tory, and the same structure is used in this document. Complete subtype names and the
distribution of the number of patients in each category are explained in table 4.2. The
demographic information attached to each scan includes ”Morphology”, ”Primary Diagno-
sis”, ”Tissue or Organ of origin”, ”Patient Age at the time of Diagnosis”, ”Tumor Stage”,
”Age”, ”Gender”, ”Race” and ”Ethnicity” and some other information like the patients
current status (e.g., dead or alive).

4.2.3 Creation of a data-set

In this section, the creation of a dataset of histopathological slides is described. The dataset
includes patches, and the labels of the patches are the information attached to the WSIs.
This dataset is created to help research in the area of digital pathology. The scanned slides
of the TCGA repository include frozen section biopsy WSIs. A frozen section (cryosection)
is a laboratory technique that helps to get microscopic analysis of a specimen rapidly. The
fast diagnosis is beneficial for the management of the patient during an operation. However,
frozen sections are not usually high-quality due to their procedure. These lower-quality
slides were dropped to avoid confusion during deep network training sessions.

To assign labels to the images, the information provided by the repository is used. The
beneficial information is decided to be the primary diagnosis and the section site (/tis-
sue/organ of origin). These two labels are presented under the ”Diagnoses / Treatments”
of the slides. Although other information is also available for further diagnosis, we have
decided to use the before-mentioned labels. Finally, some slides did not include the re-
quired information to create the image labels; these also were dropped. In addition, the
classes with a number of WSIs less than 20 were also eliminated. This has been done due
to the fact that this low number of images may not result in a comprehensive assessment.
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4.2.4 Data-set for histopathology SR

To create a dataset for histopathology SR, some considerations to eliminate the appearance
of undesired data. We have first removed the background patches to minimize the artifact
since these do not contain valuable information for training. This task has been done and
evaluated previously in another study. Second, the slides are cropped into the same size
tiles. The tiles are at the size of 640×640, 320×320, 160×160, 80×80, and 16×16 pixels
in three channels of RGB at 40X, 20X, 10X, 5X, and 1X magnification levels. Figure 4.1
provides one sample per cancer subtype.

4.3 Super-resolution reconstruction

4.3.1 Networks

In the reconstruction path, the lower resolution patches are used, and a deep network
that is trained for single image super-resolution generates the patches for synthetic WSI.
In order to better find a network that can adequately enhance the images, six networks
are trained. First, we benefit from the Deep Back-Projection Networks (DBPN). The
network benefits from iterative up- and down-sampling layers, which are called stages.
The stages include an error feedback mechanism for projection errors. The network can
learn multiple content information by its up-and-down-sampling layers [106]. Residual
Dense Networks (RDN) are then trained, which exploit the hierarchical features from all
the convolutional layers [107]. The third is a very deep residual channel attention network,
RCAN, that benefits from residual in residual blocks in a post-upsampling structure [66].
Fourth is a Feedback Network for Image Super-Resolution (SRFBN) that focuses more on
feedback mechanism because the human vision system follows a similar method [69]. Fifth
is Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR), which
is proposed in addition to the multi-scale deep super-resolution system [60]. Finally, a
network that we use to do the super-resolution is among the Enhanced Super-Resolution
Generative Adversarial Networks (ESRGAN). This network architecture has achieved some
state-of-the-art results in addition to providing a high perceptual index [108].
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Figure 4.1: Patches of the created SR dataset in nine TCGA cancer subtypes
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4.3.2 Training

In order to train the network, the training patches of the extracted SR dataset are used. To
achieve the best results, the relativistic discriminator is used for adversarial training. The
discriminator classifies the images as not only fake or real but also relatively compares the
extent of fake and real images, which enhances the learning procedure. The networks are
all trained for at least 100 epochs. The optimal weights selection is based on the validation
accuracy and loss. The training was done on a Tesla V100 32 GB GPU.

4.4 Human Assessment

One of the most practical ways to assess synthetic images’ usefulness is to evaluate the
results of the human rates. This type of assessment has been previously experimented
with in similar fields in addition to retinal images [71] [109]. The goal is to assess the
classification accuracy of field experts (pathologists) to ensure the images’ suitability fur-
ther, though images may show promising aspects from computational assessment metrics.
Additionally, the practice of assessing the quality of the images generated is also exercised
in literature [110]. Although asking the question of quality preference may seem like an
option, it suffers from observer bias which may adversely affect the results. In other words,
asking a participant to assess if they can identify the SR image vs. the HR image does
not reveal meaningful information. This issue is due to the differences in the quality of
the images, though the SR images may still be a viable alternative. Therefore, rather than
a straightforward question of identifying the HR image, the questionnaire is designed to
assess the practicality of images based on the comparison.

Breast cancer-focused human assessment studies have been conducted to evaluate the
applicability of SR in histopathology. For the pathologist inspection and categorization of
synthetic pictures, I developed two Google Forms questionnaires. A comprehensive eval-
uation by board-certified pathologists was done to determine the quality of these images.
Three pathologists specializing in breast cancer have filled out the forms for this evaluation.
The standard approach for breast cancer identification entails accurate WSIs assessment;
however, in this work, patches were offered to make the task implementable. As a result,
it was not anticipated that the accuracy of the evaluations would be comparable to that of
WSI assessments, given the vastly different amount of information accessible to specialists.
Even though SR pictures are obtained from a lower-quality source, it was predicted that
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the degree of assessment accuracy would be comparable between SR and HR images. The
ESRGAN network with 4X magnification generates the SR images in this part.

4.4.1 Diagnostic dataset

The Breast Cancer Histopathological Image Classification (BreakHis) dataset was utilized
to evaluate the diagnostic accuracy of the human evaluation [111]. The dataset consists
of 9,109 microscopic pictures of breast tumor tissue obtained from 82 individuals at four
magnification levels. The primary categories of the BreaKHis dataset are benign and
malignant tumors. There would be a total of 1,820 pictures at 400X magnification, of
which 588 are malignant, and 1,232 are benign. The images are 700x460 pixels in size,
3-channel RGB with 8-bit depth per channel, and PNG format.

4.4.2 Questionnaires

First, a diagnostic test was conducted where pathologists were asked to classify images
into eight categories. Figure 4.7 shows screenshots of two pages of this test. The cate-
gories (types) included were Breast tumors, benign and malignant, where each had four
subtypes. The questions included four distinct histological categories of benign breast tu-
mors: adenosis (A), fibroadenoma (F), phyllodes tumor (PT), and tubular adenoma (TA);
and four malignant breast tumors: carcinoma (DC), lobular carcinoma (LC), mucinous
carcinoma (MC), and papillary carcinoma (PC). Each participant evaluated 64 images, of
which half were SR and the other half were HR. There was an equal share of classes among
the images.

Second, we assessed the image quality preference of field specialists by presenting them
with 50 pairs of images, each consisting of the original image and the SR image. Figure 4.8
shows screenshots of two pages of this test. In order to reduce the possibility of bias, the
poll developers did not review the images. The arrangement of the images was undisclosed
to the experts. To prevent participant bias toward any of the picture categories, the images
were arranged in random order (e.g., HR and SR). The outcomes are shown in Table 4.4.

The diagnostic findings reveal that there is no significant difference between the usage of
SR and HR images. This is owing to the greater accuracy or kappa score of the evaluation
diagnosis in 6 instances with HR pictures vs. 6 cases involving SR images. As shown in
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Table 4.4, assessing SR pictures, participant three received higher diagnostic score values.
Participant two obtained higher diagnostic scores for HR pictures. However, participant
one had slightly better findings (e.g., 3.1% higher malignancy detection accuracy) for type
and subtype identification in SR and HR visuals, respectively.

Although this may be a question of personal opinion, the image quality preference
findings show that specialists generally prefer SR images. According to the data, just
one pathologist (e.g., two) favored the HR images, and even in this instance, the expert
prioritized or was unable to identify substantial differences in 46% of the images. One
participant regarded 64% of the imagegraphs to be reasonably comparable, although, in
34% of the instances, they preferred the SR images. Ultimately, the second pathologist
deemed 68% of SR images to be preferable, while the rest of the images were without
discernible distinctions.

4.5 Analysis of results

The results are assessed from multiple perspectives. First, we provide the quantitative
comparison of trained network results for image generation based on PSNR and SSIM
in Table 4.3. This table compares different sites and subtypes against each other in this
table. The comparison shows the details and complexity of the images in each category.
The minimum and maximum reported values of the 4X bicubic upsampling of the low-
resolution images are shown in red and green, respectively. It is evident that Brain/GBM
has the lowest SSIM, which could be interpreted as the highest structural loss. In contrast,
the Endocrine/THCA offers the highest SSIM value. On the other hand, the lowest and
highest PSNR values were observed in Testis/TGCT and Liver CHOL. These values show
the extent of details lost in the interpolation.

Another comparison is also provided in Table 4.3. In this table, the highest values with
respect to the subtype are reported in blue. Two networks, DBPN and RCAN, mostly
achieved the best results. The DBPN network is superior to others in 15 subtypes, while
RCAN is also superior in 15 subtypes. If one network outperforms the other for one
measure (SSIM or PSNR), both are mentioned in blue.

The qualitative comparison of the generated images shown in Figures 4.4, 4.5, and 4.4.
A randomly selected patch per site is shown in which another randomly selected window
has been taken into focus. The window has been compared from eight approaches, includ-
ing the high-resolution, low-resolution, and six networks generation. The low-resolution
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image shows the bicubic interpolation of the 4X downsampled image. Network inputs
were the low-resolution image, while the ideal outcome was a high-resolution image gen-
eration. The PSNR and SSIM of the images are also written below them, in which the
reference for measurement is the high-resolution image. Taking a look at the images, the
ESRGAN-generated images look most like the high-resolution image. It seems that adver-
sarial training helps more acceptable reconstruction based on previously visited patterns.
Finally, to take a more comprehensive look at the results generated by ESRGAN as the
best perceptual generation and RCAN as the best PSNR-based generation, the distribu-
tion of the results is presented in Figures 4.3, and 4.2, respectively. The distribution of the
results is very similar, while the values are better in RCAN.

As shown in the figures, the network is capable of mapping the LR images to a reason-
able HR image which seems to include many details. This has been achieved due to the
usage of generative adversarial networks.

4.6 Summary

Ultimately, the architecture for compound magnification includes three essential phases.
This chapter discusses the path of regenerating the synthetic WSI, which contains several
HR patches and a majority of SR patches. Multiple SR-network architectures have been
quantitatively and qualitatively evaluated and reported. The images created by deep SR
were evaluated based on professional human evaluation. In the last test, the quality of
the pictures from the standpoint of pathologists specializing in the same field of WSIs was
evaluated, revealing a remarkable correlation with HR imagegraphs. In order to guarantee
that the use of SR pictures does not impact a diagnostic procedure, another human evalu-
ation test comparing the diagnostic accuracy of SR and HR images has been done. All of
the findings indicate that SR pictures obtained at four times magnification may effectively
replace HR images.
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Table 4.2: The TCGA codes (in alphabetical order) of all 32 primary diagnoses and corre-
sponding number of evidently diagnosed patients in the dataset

Code Primary Diagnosis # Patients

ACC Adrenocortical Carcinoma 86
BLCA Bladder Urothelial Carcinoma 410
BRCA Breast Invasive Carcinoma 1097
CESC Cervical Squamous Cell Carcinoma and Endocervical Adenoc. 304
CHOL Cholangiocarcinoma 51
COAD Colon Adenocarcinoma 459
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 48
ESCA Esophageal Carcinoma 185
GBM Glioblastoma Multiforme 604
HNSC Head and Neck Squamous Cell Carcinoma 473
KICH Kidney Chromophobe 112
KIRC Kidney Renal Clear Cell Carcinoma 537
KIRP Kidney Renal Papillary Cell Carcinoma 290
LGG Brain Lower Grade Glioma 513
LIHC Liver Hepatocellular Carcinoma 376
LUAD Lung Adenocarcinoma 522
LUSC Lung Squamous Cell Carcinoma 504
MESO Mesothelioma 86
OV Ovarian Serous Cystadenocarcinoma 590
PAAD Pancreatic Adenocarcinoma 185
PCPG Pheochromocytoma and Paraganglioma 179
PRAD Prostate Adenocarcinoma 499
READ Rectum Adenocarcinoma 170
SARC Sarcoma 261
SKCM Skin Cutaneous Melanoma 469
STAD Stomach Adenocarcinoma 442
TGCT Testicular Germ Cell Tumors 150
THCA Thyroid Carcinoma 507
THYM Thymoma 124
UCEC Uterine Corpus Endometrial Carcinoma 558
UCS Uterine Carcinosarcoma 57
UVM Uveal Melanoma 80
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Table 4.3: Accuracy of image reconstruction using six networks trained on TCGA dataset;
the PSNR/SSIM numbers are shown where the bold blue numbers are best reconstructions
across networks, bold red and green are the worst and best bicubic reconstruction among
data categories, respectively.

Data categorization Accuracy (PSNR/SSIM)
Site Subtype Bicubic DBPN RDN RCAN SRFBN EDSR ESRGAN

Brain
GBM (23.46/0.57) (24.64/0.66) (24.44/0.66) (24.44/0.66) (23.68/0.62) (23.99/0.63) (22.43/0.57)
LGG (23.50/0.58) (24.68/0.67) (24.50/0.67) (24.50/0.67) (23.69/0.63) (24.02/0.64) (22.35/0.58)

Endocrine
ACC (22.30/0.59) (23.52/0.68) (18.68/0.43) (23.55/0.69) (22.64/0.65) (22.81/0.64) (21.85/0.63)
PCPG (22.17/0.59) (23.42/0.68) (18.39/0.41) (23.52/0.70) (22.47/0.65) (22.65/0.64) (21.73/0.63)
THCA (24.30/0.67) (25.78/0.75) (19.02/0.39) (25.96/0.76) (25.12/0.73) (24.75/0.70) (24.21/0.72)

Gastro.

COAD (23.56/0.62) (24.92/0.71) (18.80/0.40) (24.90/0.72) (24.14/0.69) (24.00/0.67) (23.26/0.67)
ESCA (23.52/0.65) (25.17/0.74) (18.83/0.42) (25.17/0.75) (24.14/0.71) (24.13/0.70) (23.46/0.70)
READ (23.38/0.59) (24.61/0.68) (19.13/0.38) (24.66/0.69) (23.97/0.66) (23.82/0.64) (23.00/0.63)
STAD (23.07/0.64) (24.56/0.73) (18.22/0.41) (24.56/0.74) (23.68/0.70) (23.61/0.69) (22.98/0.68)

Gynaeco.
CESC (22.75/0.62) (24.26/0.71) (18.13/0.40) (24.31/0.72) (23.45/0.69) (23.22/0.66) (22.56/0.66)
OV (23.25/0.59) (24.45/0.67) (19.22/0.40) (24.53/0.69) (23.90/0.66) (23.75/0.64) (23.11/0.64)
UCS (23.02/0.62) (24.48/0.71) (18.43/0.41) (24.50/0.72) (23.68/0.69) (23.44/0.66) (22.63/0.67)

Liver,
panc.

CHOL (24.70/0.66) (26.30/0.74) (19.97/0.41) (26.19/0.74) (25.45/0.71) (25.30/0.70) (24.52/0.69)
LIHC (22.86/0.60) (24.26/0.69) (18.22/0.38) (24.25/0.70) (23.45/0.66) (23.29/0.64) (22.54/0.63)
PAAD (24.03/0.61) (25.47/0.70) (19.36/0.39) (25.34/0.70) (23.45/0.66) (24.60/0.66) (23.54/0.65)

Melono.
SKCM (22.67/0.66) (24.56/0.76) (17.78/0.42) (24.68/0.77) (23.67/0.73) (23.21/0.70) (22.83/0.72)
UVM (24.32/0.58) (25.39/0.66) (19.97/0.38) (25.36/0.67) (24.68/0.64) (24.75/0.63) (23.77/0.62)

Prostate,
testis

PRAD (23.90/0.59) (25.15/0.68) (19.42/0.38) (25.08/0.69) (24.41/0.66) (24.34/0.64) (23.42/0.63)
TGCT (21.46/0.61) (23.02/0.72) (17.64/0.44) (23.04/0.73) (22.00/0.68) (22.00/0.66) (21.35/0.67)

Pulmonary
LUAD (23.25/0.63) (24.78/0.72) (18.37/0.39) (23.04/0.73) (23.93/0.69) (23.77/0.67) (22.99/0.67)
LUSC (23.12/0.62) (24.57/0.71) (18.42/0.40) (24.48/0.71) (23.67/0.68) (23.62/0.67) (22.81/0.66)
MESO (22.49/0.61) (24.01/0.71) (18.59/0.43) (23.97/0.72) (23.05/0.68) (23.09/0.67) (22.31/0.66)

Urinary
tact

BLCA (22.58/0.60) (24.02/0.70) (18.42/0.40) (23.98/0.71) (23.11/0.67) (23.10/0.65) (22.32/0.65)
KIRC (24.45/0.65) (25.96/0.73) (19.29/0.39) (25.93/0.74) (25.09/0.70) (25.02/0.69) (24.24/0.69)
KIRP (22.56/0.59) (23.99/0.69) (18.03/0.37) (24.09/0.71) (23.14/0.66) (23.04/0.64) (22.43/0.65)
KICH (23.79/0.64) (25.18/0.72) (18.37/0.38) (25.22/0.73) (24.47/0.70) (24.12/0.67) (23.54/0.69)
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(a) Brain (b) Endocrine (c) Gastric

(d) Gynecologic (e) Liver and pancreas (f) Melanocytic

(g) Prostate and testis (h) Pulmonary (i) Urinary tract

Figure 4.3: The image reconstruction accuracy (PSNR and SSIM) distrubition of the
RCAN network of the 26 TCGA subtypes categorized in the nine biopsy sites
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Figure 4.2: The image reconstruction accuracy (PSNR and SSIM) distrubition of the
RCAN network of the 26 TCGA subtypes categorized in the nine biopsy sites
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(a) Brain (b) Endocrine (c) Gastric

(d) Gynecologic (e) Liver and pancreas (f) Melanocytic

(g) Prostate and testis (h) Pulmonary (i) Urinary tract

Figure 4.4: The image reconstruction accuracy (PSNR and SSIM) distrubition of the
ESRGAN network of the 26 TCGA subtypes categorized in the nine biopsy sites
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Figure 4.3: The image reconstruction accuracy (PSNR and SSIM) distrubition of the
ESRGAN network of the 26 TCGA subtypes categorized in the nine biopsy sites
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Figure 4.5: Qualitative results comparison of the six networks and the high- and low-
resolution images; The low resolution is fed to network to generate images and The big
image on left shows the span box
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Figure 4.4: Qualitative results comparison of the six networks and the high- and low-
resolution images; The low resolution is fed to network to generate images and The big
image on left shows the span box
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Figure 4.6: Qualitative results comparison of the six networks and the high- and low-
resolution images; The low resolution is fed to network to generate images and The big
image on left shows the span box
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Figure 4.5: Qualitative results comparison of the six networks and the high- and low-
resolution images; The low resolution is fed to network to generate images and The big
image on left shows the span box
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Figure 4.7: Qualitative results comparison of the six networks and the high- and low-
resolution images; The low resolution is fed to network to generate images and The big
image on left shows the span box
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Figure 4.6: Qualitative results comparison of the six networks and the high- and low-
resolution images; The low resolution is fed to network to generate images and The big
image on left shows the span box

51



Figure 4.7: Google-form questionnaire for diagnostic tests; left: overview of the form page,
right: options available for selection on the form
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Figure 4.8: Two pages of the Google-form questionnaire for quality comparisons tests
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Diagnostic classification assessment results

SR Patch HR Patch

Accuracy Kappa Accuracy Kappa

Pathologist 1

Type 78.1 0.56 75.0 0.50

Subtype 15.6 0.04 21.9 0.11

Pathologist 2

Type 78.1 0.56 71.9 0.44

Subtype 31.2 0.21 18.7 0.07

Pathologist 3

Type 71.9 0.44 81.3 0.62

Subtype 25.0 0.14 34.4 0.25

Average

Type 76.0 0.52 76.0 0.52

Subtype 24.0 0.13 25.0 0.14

Quality preference results distribution(%)

Strong SR Slight SR No Distinc. Slight HR Strong HR

Pathologist 1 4.0 30.0 64.0 6.0 0.0

Pathologist 2 6.0 26.0 14.0 48.0 6.0

Pathologist 3 4.0 64.0 32.0 0.0 0.0

Average

4.7 40.0 36.7 18.0 2.0

Table 4.4: Human assessment of SR vs. HR pathology patches; Type defines the Benign or
Malignancy; Subtype is the eight categories of BreakHis dataset used for diagnosis purpose
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Chapter 5

Unsupervised WSI Patch Selection

5.1 Objective

Deep learning techniques have been used to evaluate gigapixel histopathology images. One
issue is that images can be millions of pixels in size, but the region that acquires the most
attention is frequently a rather small portion of the image. The region of importance
is the section that is primarily concerned with diagnosing the patient. For instance, de-
tecting a cancerous Whole Slide Image (WSI) may be based primarily on identifying a
relatively tiny metastasis area. Frequently, annotations for these regions are unavailable.
The purpose of this study is to use an unsupervised deep learning approach to identify
these regions. To learn the repetitive pattern, a generative model was trained on a set of
healthy WSIs. Following that, similar patterns are discovered by comparing the trained
network-generated image to the original image. Figure 5.1 depicts the flowchart of the
suggested method in general. Assuming we are dealing with a database of WSIs, each
WSI undergoes Otsu thresholding to create the tissue region area. It would be carried
out at a low magnification to facilitate this procedure since the specifics have no immense
effect. Based on the tissue area, the WSI is then divided into tiles termed patches. Each
patch is subsequently subjected to a calculating distribution procedure. The patch is first
downsampled and then regenerated to the same size by the SR network. The SR and HR
patches may then undergo post-processing. Lastly, the similarity or distance between these
images is determined. After computing the distances between each patch, a distribution
of the distance between each tile’s SR and HR pictures is created. Based on the resulting
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distribution, a number (determined by the framework use case) of the most distant (or
least similar) patches would be chosen.

This research focuses on a patch-selection system that stores a set of high-resolution
patches for future usage. Although the area corresponding to primary diagnosis increases
significance in this issue, additional patches may also be beneficial. The restoration proce-
dure may benefit from the high-quality patches that are kept in the framework. Therefore,
another class of patches worth keeping are those that are technically difficult to regenerate.

Lastly, while developing a system for processing all the spots on a slide, the processing
time may cause challenges. This is crucial because, in order to process a WSI with 100,000
x 100,000 pixels and 256 x 256-pixel patches, the approach may need to process up to
160,000 patches per WSI. Therefore, recommending a procedure that can be completed in
a fair amount of time gets relevant.

5.2 Introduction

Digital pathology is a relatively new and rapidly growing area of medical imaging. In digital
pathology, whole-slide scanners are used to capture high-resolution images of glass slides
containing tissue specimens. The rising digitization of WSIs enables machine learning-
based advancements in detecting, visualising, and segmenting lesions, which can ultimately
reduces medical experts’ workloads [90] [112] [113] . Nevertheless, supervised machine
learning requires precisely labeled datasets, which is commonly difficult or impossible to
gather, or at the very least time-consuming and thus expensive. As a result, methods that
require only partially labeled data (semi-supervised methods) or none at all (unsupervised
methods) are now used more frequently [114] [115] .

Our research will focus on the detection of micro- and macrometastases in digitized
lymph node images. This is a highly relevant subject since these are related to breast
cancer diagnosis; metastases to lymph nodes occur in the majority of cancer types (e.g.,
breast, colon, prostate). Small glands called lymph glands or nodes filter lymph, the fluid
that circulates throughout the lymphatic system. Breast cancer spreads most frequently
via the lymph nodes in the underarm. The involvement of lymph nodes in metastatic
breast cancer is a significant prognostic factor. The prognosis is worse when cancer has
spread to the lymph nodes. Meanwhile, the diagnostic procedure used by pathologists is
laborious, time-consuming, and prone to misinterpretation [116] .
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Figure 5.1: General overview of the patch selection method

Automated lymph node metastasis detection has the potential to significantly assist
pathologists and reduce their workload. The field has made advances in recent years toward
ambitious ideals with significant potential diagnostic impact: Automated assessment of
WSIs for the purpose of detecting and grading cancer, assessing prognosis, and identifying
metastases [117] .

For numerous decades, anomaly detection has been a thriving but active study subject
in a variety of research groups. There are still certain complicated and unique problems
that demand advanced approaches. Deep learning-enabled anomaly detection, or deep
anomaly detection, has emerged as a major trend in recent years. The efficacy of such
approaches is particularly visible in areas where the anomalies are well-characterized (and
maybe limited to a small set), and there is an abundance of labeled data [118] . In addition
to detecting visual abnormalities, we often need to identify the image’s actual anomalous
region. Obtaining such comprehensive labels for the purpose of learning supervised models
is a time-consuming and, in many circumstances, impractical procedure. While there is
a wealth of data accessible in the biomedical area, it is often significantly more compli-
cated and diverse. Typically, such data may be annotated only by qualified biomedical
professionals, precluding large-scale crowdsourcing operations [119] .

In this study, we present a novel high-resolution image-to-image translation-based
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method for unsupervised detection of cancerous regions in histology images that outper-
forms existing GAN-based unsupervised approaches in that domain for the purpose of
patch-selection.

5.3 Background

5.3.1 Unsupervised Detection of Visual Anomalies

Point anomaly identification is the task of finding a single outlier in a large dataset. Most
anomaly detection methods can identify point abnormalities. Anomaly detection comes in
three varieties: supervised, semi-supervised, and unsupervised. Detecting anomalies with
supervision is like classifying a skewed dataset. Semi-supervised attempts to train a model
on a single class of data, usually healthy, and then apply it to both healthy and diseased
data. Without labels, unsupervised anomaly detection uses both normal and anomalous
data and just the dataset’s intrinsic properties (via distances or densities) [3]. Semi-
supervised and unsupervised anomaly detection (UAD) are often used interchangeably in
anomaly detection.

5.3.2 Image-to-Image Translation

Image-to-Image (I2I) translation aims to discover a mapping between an input image and
an output image that spans multiple domains. In the supervised setting, paired correlating
images from different domains (e.g., low-resolution version of the same image) are available
for learning the mapping, and conditional GANs [16] are used to understand the mapping.
Without supervision, only two independent sets of images from the source and target do-
mains are available, with no paired examples (e.g., grayscale-color of different images).
Cycle consistency loss, as presented by CycleGANs [120], is a constraint that is frequently
used for such inherently ill-posed problems. CycleGANs [120] compel original image recon-
struction when mapping the source image to the target domain and back, thereby capturing
the target domain’s unique characteristics and determining how to transfer them to the
source domain while preserving the source domain’s image characteristics.

Because an I2I job is tasked with learning the mappings between distinct picture do-
mains, how these mappings are represented in order to get the desired outcomes is directly
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tied to the generative models. The generative model [121] [122] [123] assumes that data
is generated by a particular distribution defined by two parameters (i.e., a Gaussian dis-
tribution) or non-parametric variants (each instance contributes to the distribution inde-
pendently), and it uses specific algorithms to approximate that underlying distribution.
This strategy allows the generative model to produce data rather than only differentiate
between existing data (classification). For example, deep generative models have shown
significant performance gains when making predictions, estimating missing data, compress-
ing datasets, and producing invisible data. In an I2I task, a generative model may simulate
the target domain’s distribution by providing convincing ”fake” data, typically translated
pictures that look to be taken from the target domain’s distribution.

5.3.3 Unsupervised Learning in Medical Imaging

The diagnosis of tumor metastases is critical for the treatment of breast cancer patients.
Numerous CNN-based algorithms achieve good performance in object detection/segmentation.
However, for two reasons, metastasis identification in hematoxylin and eosin (H&E) stained
whole-slide images (WSI) remains hard. (1) The image’s resolution is very high. (2) a
deficiency in labeled training data. Most of the time, full-slide images are kept in a multi-
resolution structure with several downsampled tiles. Without compression, it is impossible
to store the whole picture in memory. Additionally, categorizing images for pathologists
is time-consuming and costly. This writing aims to examine the difficulty of recognizing
breast cancer metastases at the patch level in pathological images. To be more exact,
we offer an unsupervised patch classifier that operates on slide labels rather than precise
annotations.

5.4 Method

To address the challenge of unsupervised unhealthy area detection, as recommended by
the literature, it is possible to train an I2I that produces images that distinguish between
healthy (patterns/structures observed) and unhealthy (not observed) areas. This signifies
that the recommended strategy consists of two essential components. First, there is an
I2I that is responsible for altering images, and second, there is a measuring system that
recognizes the changes that have become apparent. The following sections discuss the
viable options, reasons to choose each component, and the structure of the final method.
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5.4.1 I2I Translation

The goal of I2I is to translate pictures from one domain to another while maintaining
their content representations. I2I has gained considerable attention and advancement in
recent years due to its broad applicability to various computer vision and image processing
challenges, including image synthesis, segmentation, style transfer, restoration, and posture
estimation.

Although the techniques of many of the previously-mentioned forms might be modified
to match the application that is the subject of this thesis, I have selected image SR as a
viable solution. In theory, a trained SR network that can upsample low-resolution images
to high-resolution can create the differences. Technically, if a network is trained on a
collection of images, it is expected that its performance may decline when the domain
changes, despite the fact that it may perform well on images from the same domain. If we
suppose that an SR network is trained to upsample pictures (patches) of healthy WSIs, then
we may argue that if this network is subjected to unhealthy patches, the resulting images
may have anomalies. The presence or absence of abnormalities may therefore determine
whether a patch (or a tiny area) is healthy or unhealthy (like metastasis in this study).

The usage of image SR signifies that the approach enables a network that is adept at
estimating the details of a healthy WSI to attempt to upsample all pictures. Therefore,
if it sees cells at a modest magnification, for instance, it believes they are healthy and
generates an image with detailed healthy cells. This argument seems logical since this
procedure may be viewed as a pathologist’s standard practice. In a clinical evaluation, the
pathologist continuously zooms in and out of a slide to discover abnormalities. This may
be interpreted as a technique in which a clinician has a general understanding of how a
healthy area should look but detects a problem upon seeing unusual structures and forms
in high magnifications.

In other words, we assume the existence of healthy patches in one domain and unhealthy
patches in another. The network is trained on images from the first domain before being
supplied with images from any domain. Finally, the generated images should vary from
their respective source images. There are several factors to consider while developing a
meaningful solution. These factors include the patch parameters (e.g., size, level), network
topology, and SR magnification, which will be explored in further detail below. Evaluating
differences of image generation are detailed in section 5.4.2.

To implement the I2I, here we use the Structure-Preserving Super Resolution with Gra-
dient Guidance (SPSR) network architecture. The network benefits from two branches:
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SR and Gradient. The SR branch helps with a general upsampling problem which uses
ESRGAN architecture, while the gradient branch uses RRDB blocks and focuses on struc-
tures in reconstruction, which is helpful since the images are going to be compared, and
the appearance of similar patterns is the best leading factor. The benefits of gradient
guidance further help with the reconstruction of the edges. The network is trained using
perceptual, pixel, and adversarial loss for SR image in addition to pixel and adversarial
loss for SR gradient and pixel loss of gradient image generated by the gradient branch. The
discriminator is based on a VGG-like network and training is done using ADAM optimizer
[124].

5.4.2 Measurement System

According to the suggested technique, each tile would result in two pictures. The first is
the original picture extracted from the WSI, while the second is the SR, upsampled version
of the downsampled tile. In other words, the first picture is the original, and the second is
the trained SR network’s impression of the original image if it only had access to a lower
degree of magnification. According to the logic, the created picture should ideally resemble
the original image in which we have a healthy patch. In contrast, the images may display
differences if the patch comes from a metastatic location. To determine whether or not
there is a difference between these images, we need to utilize some measures to evaluate
their similarity. The pertinent measures and the selection rationale are detailed below.

The PSNR value embodies the principle of image comparison in its most basic form.
Technically, if we subtract the pixel values of the two images (i.e., SR image error), the
resultant numbers should represent the pictures’ fundamental resemblance. However, this
statistic does not take picture content into account. In order to better compare the sub-
stance of images, measures that are more conceptual may be beneficial.

A perception-based model, SSIM, is employed as an additional measure for content
evaluation. The human vision system (HVS) operates conceptually to comprehend a pic-
ture based mostly on its low-level features. This has been implemented as an additional
statistic of FSIM that could be useful here. Regarding the idea of machine vision, there are
measures depending on the machine’s comprehension of the picture. This can also work
by using LPIPS. Additionally, wavelet transformation has been used to develop measures
based on human perception. This is referred to as HaarPSI, which is used here. The
images of histopathology include information such as cell edges. Therefore, gradient-based
similarity may disclose more information and possible distinctions. GMSD has been used
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for this objective. An additional measure that incorporates gradients, chromaticity sim-
ilarity (CS), and deviation pooling (DP) might be advantageous. Thus, MDSI has been
implemented. VSI, as a Visual Saliency-Induced Index, is also used. Finally, in the field of
histopathology, images, magnification, and level are crucial factors. The Multi-Scale ver-
sion of SSIM and GMSD are also examined to determine their influence on the suggested
technique.

5.5 Materials

In order to apply the concept offered in this study, the materials indicated in this part are
used. These resources consist of the datasets, processing units, and computer frameworks
addressed in sections 5.5.1, 5.5.2, and 5.5.2 , respectively.

5.5.1 Histopathology Dataset

We utilize the publicly available CAMELYON16 dataset, which was prepared from data
gathered at Netherlands medical centers. The WSI files are provided in TIFF format. At
the lesion level, annotations are provided as XML files. Each annotation was meticulously
prepared under the supervision of pathologists. The data set contains 400 sentinel lymph
node WSIs from two distinct datasets at Radboud University Medical Center in Nijmegen,
Netherlands, and University Medical Center Utrecht in Utrecht, Netherlands [125].

The original dataset is divided into two parts: the first contains 170 WSIs of lymph
nodes (100 normal and 70 with metastases), and the second includes 100 WSIs (including
60 normal slides and 40 slides containing metastases). In this work, I utilize just the first
100 WSIs for training and the remainder of the dataset (60 normal slides and 110 slides
with metastases) for evaluation and testing.

To enable visualization of the images, WSIs are often saved in a multi-resolution pyra-
mid format. Within image files, multiple downsampled copies of the original image are
stored. Each image in the pyramid is kept as a series of tiles in order to facilitate the
retrieval of image subregions. Reading these images using conventional image tools or
libraries is a challenge since these tools are typically designed for images that can be un-
compressed and stored in RAM. This is accomplished using OpenSlide, a C library that
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provides a simple interface for reading and writing WSI files in a variety of different for-
mats (code available at https://openslide.org). Moreover, ASAP is used to enable the use of
annotations. It is a free and open source platform for presenting, annotating, and automat-
ing the analysis of whole-slide histopathology image annotations (source code available at
https://github.com/computationalpathologygroup/ASAP).

5.5.2 Processing Units

Multiple devices and setups were utilized to conduct experiments. Two Nvidia Tesla V100
GPUs with 32 GB of memory each were employed during the training phase, where the
CPU and memory were 32 cores and around 80 GBs, respectively. However, testing and
validation benefitted from a more common processing configuration consisting of an Nvidia-
2080 Super GPU and a ten-core Intel 9900X CPU paired with 32 GBs of RAM.

5.5.3 Frameworks

OpenSlide is the WSI research framework. To parse the annotations, a method was de-
veloped from scratch that utilizes xmlTree to read XML files and PIL image to display
them. PyTorch is the deep learning framework used for the training and execution of SR
networks in this study. This was picked because of its versatility for evaluating a variety
of techniques. The measuring system is based on the PIQA framework, which is based
on PyTorch since it offers all the necessary tools for this study, and the Tensor datatype
may save processing time. There have been numerous more frameworks to implement the
remaining project details, which the reader may request access to.

5.6 Results and Discussions

This part details the outcomes of applying the recommended strategy to the mentioned
dataset. This thesis argues that enlarging images exposes their normal or abnormal qual-
ities. However, the first trials undertaken did not provide the intended results. A sample
distribution result of implementing an ESRGAN network with 4X and 16X upsampling and
comparing PSNR and SSIM of images is shown in Figure 5.2. Figures 5.2, subfigures a and
b demonstrate that while the network was trained on upsampling the healthy patches, in
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practice, the metastasis patches are also upsampled with a comparable degree of precision,
resulting in significant overlap of the distributions. This has occurred owing to the fact
that, despite knowing that healthy patches and unhealthy patches are not identical, the
information provided by four times upsampling may be correlated. Similar difficulties are
observed when upsampling 16 times in subfigures c and d; nonetheless, the PSNR distribu-
tions displayed a small degree of disparity. In addition, the SSIM comparison demonstrates
a moderate degree of disentanglement. Two peaks unrelated to the desired diagnostic em-
phasis are observed in both the positive and negative distributions. However, the trials
have shown that findings may improve as magnification rises. Experiments on a subset of
deliberately chosen, strongly opposed pictures have been done to confirm that the proposed
solution is indeed a viable one. This is accomplished by evaluating the concept of mag-
nification using a bicubic technique and monitoring the changes using standard statistics
such as the mean, median, and standard deviation.

According to the first section of the results, the distributions of pictures with positive or
negative labels were more dispersed as the degree of magnification increased. This would
indicate that boosting the magnification to its maximum setting may provide better results.
However, given that the picture patch size is assumed to be 256 by 256 pixels, the input
image to the network should get smaller as the magnification level rises. For example, at
4X, 8X, and 16X, the width and height of the input picture will be 64, 32, and 16 pixels,
respectively. In technical terms, this indicates that a rise in magnification corresponds to a
network that receives substantially less information at the input, finally preventing it from
creating any meaningful information at the output. After careful evaluation of the images,
overtraining or incapability of network was also viewed at 16X, rendering it useless. The
images in Figure 5.3 depicts instances of 16X magnification. Instead of upsampling patches
and generating meaningful information, the network discovered the appearance of tissue
patches and used a coloring-like technique on them. This issue could be interpreted as
the incapability of the network in upsampling 16 times which is not reasonably expected
considering the number of unknown pixels in the process. This has not been doable since
the network is supposed to find 256-pixel values instead of each pixel, which is extremely
hard.

5.6.1 Magnification Selection

The correlation between greater magnification and improved disentanglement has been
examined in order to quantify the effect of increasing magnification more precisely. The
patches are extracted at the most significant attainable magnification (i.e., 40X) since
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(a) PSNR comparison of 4X magnification (b) SSIM comparison of 4X magnification

(c) PSNR comparison of 16X magnification (d) SSIM comparison of 16X magnification

Figure 5.2: Initial distribution experiments results on 4X, and 16X magnification with
PSNR, and SSIM

literature suggests this is the most informative. Since we are using an SR technique,
the input picture should be a downsampled replica of the original patch. Multiple levels
of downsampling and, subsequently, upsampling may be performed by the method. For
instance, the patch may be downsampled/upsampled 4, 8, or 16 times. As a preliminary
evaluation, the pictures must depict distinctions between the approach’s most fundamental
version, the bicubic method. Here the distance differences and instances of patches in the
normal vs. metastasis are shown.
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H
R

LR
SR

Figure 5.3: HR, LR, and SR Patches with magnification of 16X

5.6.2 Gradient Calculation Application

One of the characteristics that might aid in discovering an abnormal region is the patch’s
edges. In order to detect edges, gradients of images are used to both guide the super-
resolution network in which the Structure-Preserving Super Resolution with Gradient
Guidance (SPSR) network has been employed, and additionally, instead of computing the
image distances, the distances of images gradients are calculated when comparing images.
Figure 5.7 has been provided to evaluate the use of gradient computation. As demonstrated
in the images, the cells that seem to be associated with metastases are more eradicated
by SR reconstruction, but the healthy patch exhibits less of the same impact. In addition,
gradient computation, which computes the differences between two X and Y directions,
has been supplied to amplify the SR network’s impact. This impact has the potential to
enhance the method’s capacity to select a more specific and sensitive location.

5.6.3 Distance Distributions

On the basis of the data obtained so far, it is clear that a greater magnification might better
separate the distribution. In addition, gradients may improve networks’ outputs in terms
of cell borders and other possible edges. However, the concept of gradient comparison may
need more evaluation. In addition, unlike the supervised technique, the images utilized
in this method are not initially normalized. Image stain normalization is well recognized
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(a) Median of Dist. (b) Mean of Dist.

(c) Standard deviation of Dist. (d) ROC Curve at 4X

(e) Visualization of differences at 4X

Figure 5.4: Visualization of differences distribution assessment for 4X magnification

67



(a) Median of Dist. (b) Mean of Dist.

(c) Standard deviation of Dist. (d) ROC Curve at 8X

(e) Visualization of differences at 8X

Figure 5.5: Visualization of differences distribution assessment for 8X magnification
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(a) Median of Dist. (b) Mean of Dist.

(c) Standard deviation of Dist. (d) ROC Curve at 16X

(e) Visualization of differences at 16X

Figure 5.6: Visualization of differences distribution assessment for 16X magnification
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Figure 5.7: Gradient calculation visual inspection for normal vs. metastasis patch

as one of the uses of generative adversarial training models. During training, the SR-
network learns a mapping between the pictures it observes. This indicates that if the
tested images are not in a highly comparable domain, they may be mapped to the known
zone that the network observed in the training phase. This might occur on the hues of
the images or, in other words, staining. To further guarantee that this problem does not
reduce the procedure’s efficiency, the resultant images can be simply matched using the
histogram. This is allowed since the approach provides access to the original patches,
and a histogram match would not compromise the method’s generalizability. Based on
the scenarios discussed, the system has been evaluated under four distinct settings. The
specifications derive from the option’s feasibility for gradient and/or histogram matching.

Having trained the image SR network for eight times magnification, the next step is
to test the similarity/distance measurement’s ability to detect any differentiating distri-
butions. At this point, distance distributions must be computed. Each picture is being
downsampled, and the SR version is created for this purpose. The images are compared
under the four cases mentioned earlier. Comparison is also implemented using the ten sim-
ilarity/distance measures given. Having obtained all patch comparison data, the distance
distribution is next displayed to evaluate the method’s applicability. Their graphs are
shown in the Figures 5.8, 5.10, 5.9, and 5.11. Each figure depicts the distance distribution
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under one of the four scenarios.

The approach requires that the distribution exhibit two local maxima corresponding
to the positive and negative labels. Ideally, the peaks should be separated, and the two
distributions of normal versus metastatic should be correctly divided. Nonetheless, this is
not often the case in all the experiments. Here, not all of the figures exhibit two locally
distinct maximums. This is used as a hint for limiting the number of measures in this
approach.

Figure 5.8 demonstrates the ten measures used to calculate the distance or similarity
between the original HR patch (image) and the SR-generated version. The majority of
the figures have only one distinct maximum. For instance, even though the SSIM distri-
bution seems to be the sum of two distributions, it is unclear where each distribution lies.
Although the distributions may exhibit a Gaussian distribution, this theory has not been
implemented since there is no supporting literature or research. In addition, a minor peak
is noticed in the PSNR distribution, which is shown in subfigure a, which may indicate a
correlation with the unhealthy zone. However, this cannot be the case since the little peak
appears at greater PSNR levels. Higher PSNR values suggest a greater signal-to-noise ra-
tio, or, in other words, that the associated patches have been upsampled more effectively.
This peak cannot thus represent the unhealthy area. Only four of the ten distributions
have two distinct maximums. FSIM, MS-SSIM, VSI, and LPIPS are these. Finally, these
four have been deployed on a WSI for visual observation of the outcomes in Figure 5.13.
The sample WSI and its Otsu threshold defining the tissue region are shown in Figure
5.12.

Figure 5.10 demonstrates the ten measures used to calculate the distance or similarity
between the gradient of the original patch (image) and the gradient of the SR-generated
version. The same argument as the previous case applies here. Only two of the ten
distributions have two distinct maximums. SSIM and MS-SSIM are these. In addition,
these two have been deployed on a WSI for visual observation of the outcomes in Figure
5.13.

Figure 5.9 demonstrates the ten measures used to calculate the distance or similarity
between the original patch (image) and the histogram-matched SR-generated version. The
same argument as the previous case applies here. Only five of the ten distributions have
two distinct maximums. FSIM, LPIPS, MDSI, MS-SSIM, and VSI are these. In addition,
these two have been deployed on a WSI for visual observation of the outcomes in Figure
5.13.
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Figure 5.11 demonstrates the ten measures used to calculate the distance or similarity
between the gradient of the original patch (image) and the gradient of the histogram
matched SR-generated version. The same argument as the previous case applies here.
Only two of the ten distributions have two distinct maximums. MS-SSIM and SSIM are
these. In addition, these two have been deployed on a WSI for visual observation of the
outcomes in Figure 5.16.

5.6.4 Annotation Results

In the end, adopting the provided technique reveals the area that may need the most
attention. In our situations, this zone is preferably the Metastases region. The outcomes
of the tests are shown in the Figures 5.17 and 5.18.

The method’s precision must be evaluated to assess the effect and applicability of the
recommended idea. The approach generates a distribution that, ideally, reflects two dis-
tinct distributions representing the normal and anomalous portions of a WSI. Due to the
fact that tests have shown that these two distributions are not fully separate, it is likely
that some of the patches will be misclassified depending on the chosen threshold. In order
to leave the door open for any threshold selection, or selection of the number of patches,
this research evaluates the method’s overall performance. A receiver operating charac-
teristic curve, or ROC curve, is recommended for this purpose because it is a graphical
representation of the diagnostic capability of a binary classifier system when its discrimi-
nation threshold is altered. The ROC curve is derived by graphing the true positive rate
vs. the false positive rate at different threshold levels. The true-positive ratio is known as
sensitivity, recall, and detection probability. The false-positive rate, commonly known as
the likelihood of false alarm, is equal to (1 specificity). The Area Under the Receiver Oper-
ating Characteristic curve (AUROC) is then determined in order to evaluate the method’s
general utility. The bigger the area, the more beneficial the test; AUROC is used to com-
pare the utility of tests. Final results are provided in the Table 5.1. The use of the metric
LPIPS was avoided because the distributions indicated that no significant difference was
observed. Moreover, because this perceptual metric is based on the features extracted from
a deep classifier network, the processing time tends to increase, which is contrary to the
purpose of this study. As demonstrated by the findings, the optimal choice is 8X upsam-
pling and downsampling using the MS-SSIM as the distance measurement. As we get to
16X, the findings for MS-SSIM indicate a significant decline in value. This is because,
as previously shown, the network acquired a coloring capacity rather than a significant
upsampling. In order to guarantee that the inability or lack of a decent reconstruction was

72



not a result of the network’s insufficient capacity, 16X magnification has been implemented
by two 4X successive networks and is labeled as 16X ext. Nonetheless, and findings do
not demonstrate a successful area identification, which may be construed as an inability to
magnify 16X. SSIM and MS-SSIM had the highest performance at 4X and 8X magnifica-
tion, as was previously established based on distribution observations. In addition, while
comparing the MS-SSIM data for 4X and 8X, the fact that a greater magnification level
might disclose superior findings was evident.

Table 5.1: Patch-Selection, AUROC of Metastasis region detection results

M PSNR SSIM MS-SSIM FSIM GMSD MS-GMSD HaarPSI MDSI VSI
4X 0.522 0.751 0.787 0.666 0.428 0.436 0.683 0.484 0.721
8X 0.604 0.766 0.808 0.622 0.649 0.636 0.577 0.601 0.702
16X 0.684 0.268 0.358 0.373 0.587 0.601 0.583 0.662 0.669
16X ext. 0.673 0.379 0.384 0.276 0.728 0.729 0.287 0.677 0.349

5.7 Summary and Conclusion

This section focused on recommending a process for selecting patches. As explained, this
approach has restrictions that make its design difficult. The conditions stem from the
lack of available data annotations. Given that not all cancer types and subtypes are
annotated, access to annotation should not be regarded as a baseline. Nevertheless, it is
well established that if a slide is malignant, the area that shows this acquires heightened
significance. In addition, while annotations are rare and difficult to obtain, generic slide
labels are widely accessible. This culminated in the strategy recommended in this chapter.
Figure 5.19 illustrates the summary of the proposed method depicted applying on a WSI.

The technique shown here uses the publicly accessible labels of images in the datasets
to offer a meaningful annotation for the patch selection that may eventually approach the
accuracy of supervised approaches.
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(a) PSNR distribution (b) SSIM distribution (c) FSIM distribution

(d) MS-SSIM distribution (e) GMSD distribution (f) MS-GMSD distribution

(g) VSI distribution (h) MDSI distribution (i) HaarPSI distribution

(j) LPIPS distribution

Figure 5.8: Data distribution visualization of the ten difference/similarity measures for 8X
magnification comparing the HR patch to the SR patch
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(a) PSNR distribution (b) SSIM distribution (c) FSIM distribution

(d) MS-SSIM distribution (e) GMSD distribution (f) MS-GMSD distribution

(g) VSI distribution (h) MDSI distribution (i) HaarPSI distribution

(j) LPIPS distribution

Figure 5.9: Data distribution visualization of the ten difference/similarity measures for 8X
magnification comparing the HR patch to the SR patch histogram matched to the HR
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(a) PSNR distribution (b) SSIM distribution (c) FSIM distribution

(d) MS-SSIM distribution (e) GMSD distribution (f) MS-GMSD distribution

(g) VSI distribution (h) MDSI distribution (i) HaarPSI distribution

(j) LPIPS distribution

Figure 5.10: Data distribution visualization of the ten difference/similarity measures for
8X magnification comparing the gradient of HR patch to the gradient of SR patch
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(a) PSNR distribution (b) SSIM distribution (c) FSIM distribution

(d) MS-SSIM distribution (e) GMSD distribution (f) MS-GMSD distribution

(g) VSI distribution (h) MDSI distribution (i) HaarPSI distribution

(j) LPIPS distribution

Figure 5.11: Data distribution visualization of the ten difference/similarity measures for 8X
magnification comparing the gradient of HR patch to the gradient of SR patch histogram
matched to the HR patch
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(a) WSI (b) Otsu Threshold (c) WSI Ground Truth (Blue)

Figure 5.12: Visualization of WSI, Otsu Thresholding of the tissue region, and the metas-
tasis region shown in blue
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(a) FSIM (b) LPIPS

(c) MS-SSIM (d) VSI

Figure 5.13: Visualization of FSIM, LPIPS, MS-SSIM, and VSI measure on the WSI
comparing the original patch to the SR generated patch
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(a) SSIM (b) MS-SSIM

Figure 5.14: Visualization of FSIM, LPIPS, MS-SSIM, and VSI measure on the WSI
comparing the original patch to the SR generated patch
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(a) FSIM (b) LPIPS

(c) MDSI (d) MS-SSIM (e) VSI

Figure 5.15: Visualization of FSIM, LPIPS, MS-SSIM, and VSI measure on the WSI
comparing the original patch to the histogram matching SR generated patch
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(a) MS-SSIM (b) SSIM

Figure 5.16: Visualization of MS-SSIM, and SSIM measure on the WSI comparing the
original patch to the histogram matching SR generated patch
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(a) GT overlay on WSI (b) Pred. overlay on WSI (c) Prediction

Figure 5.17: Visualization of differences distribution assessment for 16X magnification
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(a) GT overlay on WSI (b) Pred. overlay on WSI (c) Prediction

Figure 5.18: Visualization of differences distribution assessment for 16X magnification
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Figure 5.19: Proposed method for patch selection of a WSI
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Chapter 6

Summary and Remarks

6.1 Summary

The field of digital histopathology relies heavily on the invaluable past experiences that
specialists in the field have accumulated while treating patients. These experiences, i.e.,
evidently diagnosed cases, may help specialists develop more effective treatment strategies
and analyses. The glass slides are the gold standard for diagnosis and prognosis in the field
of pathology. However, due to the enormous number of patients and numerous slides for
each patient, this information is expanding at an almost exponential rate.

Currently, digital pathology aims to improve the treatment process by using cutting-
edge computer approaches for faster and more accurate diagnosis. Many of the approaches,
in fact, depend on digital slides. This has resulted in extensive WSI archives, a process
that is accepted in the post-pandemic world. During the past few years, research on deep
networks in the area of super-resolution has gained considerable attention. Among the
most critical applications of these deep networks is medical imaging. A few researchers
have recently started working on similar problems. This thesis gives a framework to aid
in the efficient storage of these images. Technically, this framework saves a drastically
reduced version of the original WSI. In addition, it offers a way to restore a comparable
version of the original WSI from the smaller version.

In summary, this thesis contains three significant assertions. A reduced version format
has been offered initially. This version includes the downsampled version of the original
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WSI as well as a set of patches at the original quality and resolution. Second, it provides
Super-Resolution to restore the original WSI from the suggested reduced version. In order
to guarantee a meaningful implementation, it has also been proposed that by storing the
original patch set, the final rebuilt picture may provide the expert with more confidence.
Ultimately, the set of chosen patches is decided, which is offered as a patch selection
method.

6.2 Remarks

To summarise the findings of this study, they may be divided into three categories. First,
this research is aimed at designing a reliable compound magnification framework (CMF)
that creates a new file format for the enhancement of digital pathology. CMF is a file
format that combines a low-resolution slide with selected high-resolution patches. Within
this framework, large WSI files are stored in much smaller sizes, enabling the storage of
more slides and, consequently, fewer expenses for hospitals and more research data for
physicians. CMF provides high-resolution images that could be further used as references
to enhance the LR-HR mapping. The structure of the tissues has similarities that can play
a significant part in this area. Besides, two methods for transforming CMF to WSI and
wise-verse were advised. Second, The applications of generative models in this area can
enhance the accessibility of affordable medical diagnoses to everyone in the world due to the
adoption of digital pathology. Experiments with the super-resolution in the reconstruction
path have established a baseline to generate synthetic WSIs. The created synthetic WSIs
are trustworthy from numerous angles. These include computer measurement from PSNR
and SSIM viewpoints, qualitative evaluation, human assessment by field specialists for
the quality of the synthetic pictures, and, most crucially, the synthetic images’ diagnostic
capacity. Overall, the findings indicate that the synthetic pictures generated using SR
deep neural networks are reliable replacements for the original image. In addition, the
evaluation revealed disparities in the particulars of the various tissue organ slides. This
information may then be used to make choices about storage, patch selection, etc. Third,
the potential patch selection methods were also assessed. The current techniques are aimed
to perform as fast as possible. The reason behind this selection is that the hospitals, as
the primary collector of WSIs, may not always be equipped with high-performance storage
devices and fast computers (e.g., small clinics and community hospitals). On the basis
of the proposed framework, there is a possibility for potential future adjustment. The
fact that a collection of patches are kept at a high resolution may facilitate several future
research projects relevant to pictures stored using the framework. Under the assumption
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that the suggested framework is implemented, the patch selection approach provides the
following advantages:

• Unsupervised selection: The patch selection should be applicable to a variety of
tissue types. However, not all tissue types are extensively annotated, and even if they
are for a given dataset, it is uncertain if a domain change would result in relevant
consequences. Changes in the scanner or image source (i.e., hospital) may suffice to
signal a domain shift.

• Content aware selection: The selection of patches is a crucial component of this
strategy. The procedure that picks patches should base its decision on the patch’s
content. This has been accomplished by directing the selection procedure toward
anomalous or abnormal regions since they are the most diagnostically valuable loca-
tions.

• Edges importance: The edges amplify crucial information, such as the cell bound-
aries. The suggested technique would benefit from gradients to identify these edges
and choose patches depending on their area. In addition, gradients have guided the
SR generation procedure for patch selection to enhance the existing edge presenta-
tions further.

• Benefiting from the inaccuracies: Moving from supervised to unsupervised tech-
niques, it is evident that, due to the quick shift in the amount of information utilized
for training, the output accuracy levels would often not be comparable. In the sug-
gested method, however, we benefit from the lower accuracy in the sense that if a
patch is picked from beyond the abnormality zone, it is due to a lack of precision
during the upsampling, which is a salient signal of the significance of keeping that
patch.

• Speed: The evaluation of WSIs, in terms of assessing all patches on a slide, is a
highly costly method that needs either extremely fast processors (which are expen-
sive) or lengthy waiting periods until the findings are available. Nonetheless, given
the framework offered by various computer optimizations, the approach is capable of
analyzing large WSIs at the highest magnification (i.e., 40X) within a realistic period
of minutes, dependant on the size of the tissue area.

On the other hand, another set of methods that are proposed in the literature focuses
on lossy compression (and decompression) of images. Although these methods may offer
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more storage savings comparing the provided solution, there still is a problem where the
images that are stored lose their original specifications. In the solution provided here, the
stored data is the original form, which could offer outstanding reliability for the future
use-case. In other words, the method provided here only removes the sets of pieces of
information that could be reliably restored.

6.3 Future research

The author feels that this discovery may pave a new thriving venue in digital pathology.
To create a production-level framework, however, there are suggestions that might further
improve the process:

• Super-Resolution: The proposed upsampling technique depends mostly on a single
patch to obtain the higher resolution version. However, WSI contains a vast quantity
of information, such as the position, surrounding patch information, and diagnostic
reports, that might be utilized to enhance the approach.

• Patch Selection: The suggested patch selection method examines WSI abnormali-
ties with more specificity in an effort to emulate the regeneration process. Although
this is very significant, the author argues that further study is necessary to deter-
mine which patches are really essential. If an expert is asked to identify a subset of
patches, his rationale and response may still be ambiguous.

Another viable approach is to store a summary or a feature vector of dropped images to
be used in a reconstruction process. This can also be experimented with using reference-
based SR approaches where the reference may be a vector created during the compression
procedure. Potentially this solution could be combined with a lossy compression solution
where the constraints are the usage of the downsampled image and the summary, which
can act as a leading key for reconstruction. Finally, the author experimented with discrim-
inator networks for the patch selection method, though the results did not provide helpful
information. It is reasoned that despite its failure, it still seems to be a better solution
than the provided solution. Potential changes for discriminator training can result in bet-
ter accuracy. For instance, the gradient calculation could be entered into the discriminator
network input.
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