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Abstract

With the commercialization and maturity of the fifth-generation (5G) wireless net-
works, the next-generation wireless network (NGWN) is envisioned to provide seamless
connectivity for mobile user terminals (MUTS) and to support a wide range of new appli-
cations with stringent quality of service (QoS) requirements. In the NGWN, the network
architecture will be highly heterogeneous due to the integration of terrestrial networks,
satellite networks, and aerial networks formed by unmanned aerial vehicles (UAVs), and
the network environment becomes highly dynamic because of the mobility of MUTs and
the spatiotemporal variation of service demands. In order to provide high-quality ser-
vices in such dynamic and heterogeneous networks, flexible, fine-grained, and adaptive
network management will be essential. Recent advancements in deep learning (DL) and
digital twins (DTs) have made it possible to enable data-driven solutions to support net-
work management in the NGWN. DL methods can solve network management problems
by leveraging data instead of explicit mathematical models, and DTs can facilitate DL
methods by providing extensive data based on the full digital representations created for
individual MUTs. Data-driven solutions that integrates DL and DT can address compli-
cated network management problems and explore implicit network characteristics to adapt
to dynamic network environments in the NGWN. However, the design of data-driven net-
work management solutions in the NGWN meets several technical challenges: 1) how the
NGWN can be configured to support multiple services with different spatiotemporal ser-
vice demands while simultaneously satisfying their different QoS requirements; 2) how the
multi-dimensional network resources are proactively reserved to support MUT's with differ-
ent mobility patterns in a resource-efficient manner; and 3) how the heterogeneous NGWN
components, including base stations (BSs), satellites, and UAVs, jointly coordinate their
network resources to support dynamic service demands, etc. In this thesis, we develop
efficient data-driven network management strategies in two stages, i.e., long-term network
planning and real-time network operation, to address the above challenges in the NGWN.

Firstly, we investigate planning-stage network configuration to satisfy different service
requirements for communication services. We consider a two-tier network with one macro
BS and multiple small BSs, which supports communication services with different spa-
tiotemporal data traffic distributions. The objective is to maximize the energy efficiency
of BSs by jointly configuring downlink transmission power and communication coverage
for each BS. To achieve this objective, we first design a network planning scheme with
flexible binary slice zooming, dual time-scale planning, and grid-based network planning.
The scheme allows flexibility to differentiate the communication coverage and downlink
transmission power of the same BS for different services while improving the temporal
and spatial granularity of network planning. We formulate a combinatorial optimization
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problem in which communication coverage management and power control are mutually
dependent. To solve the problem, we propose a data-driven method with two steps: 1)
we propose an unsupervised-learning-assisted approach to determine the communication
coverage of BSs; and 2) we derive a closed-form solution for power control. Secondly, we
investigate planning-stage resource reservation for a compute-intensive service to support
MUTs with different mobility patterns. The MUTs can offload their computing tasks to
the computing servers deployed at the core networks, gateways, and BSs. Each computing
server requires both computing and storage resources to execute computing tasks. The
objective is to optimize long-term resource reservation by jointly minimizing the usage of
computing, storage, and communication resources and the cost from re-configuring resource
reservation. To this end, we develop a data-driven network planning scheme with two ele-
ments, i.e., multi-resource reservation and resource reservation re-configuration. First, DTs
are designed for collecting MUT status data, based on which MUTSs are grouped accord-
ing to their mobility patterns. Then, an optimization algorithm is proposed to customize
resource reservation for different groups to satisfy their different resource demands. Last,
a meta-learning-based approach is proposed to re-configure resource reservation for bal-
ancing the network resource usage and the re-configuration cost. Thirdly, we investigate
operation-stage computing resource allocation in a space-air-ground integrated network
(SAGIN). A UAV is deployed to fly around MUTs and collect their computing tasks, while
scheduling the collected computing tasks to be processed at the UAV locally or offloaded
to the nearby BSs or the remote satellite. The energy budget of the UAV, intermittent
connectivity between the UAV and BSs, and dynamic computing task arrival pose chal-
lenges in computing task scheduling. The objective is to design a real-time computing task
scheduling policy for minimizing the delay of computing task offloading and processing in
the SAGIN. To achieve the objective, we first formulate the on-line computing scheduling
in the dynamic network environment as a constrained Markov decision process. Then, we
develop a risk-sensitive reinforcement learning approach in which a risk value is used to
represent energy consumption that exceeds the budget. By balancing the risk value and
the reward from delay minimization, the UAV can explore the task scheduling policy to
minimize task offloading and processing delay while satisfying the UAV energy constraint.
Extensive simulation have been conducted to demonstrate that the proposed data-driven
network management approach for the NGWN can achieve flexible BS configuration for
multiple communication services, fine-grained multi-dimensional resource reservation for a
compute-intensive service, and adaptive computing resource allocation in the dynamic SA-
GIN. The schemes developed in the thesis are valuable to the data-driven network planning
and operation in the NGWN.
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Chapter 1

Introduction

While the fifth-generation (5G) wireless network has been able to support lots of applica-
tions, as a wide range of new applications continues to increase in number and popularity,
their stringent and various service requirements may surpass what the 5G networks can
provide. With the success of 5G, the communication and networking communities now an-
ticipate the next-generation wireless network (NGWN), with higher requirements for flex-
ibility, fine-granularity, and adaptability in support of high-quality services in an increas-
ingly dynamic and heterogeneous network environment. However, prevalent model-driven
network management paradigms do not fulfill the requirements in the NGWN due to the
limitations in addressing complicated network management problems and handling highly
dynamic network environments. To address the limitations, a new data-driven paradigm
is envisioned to enable intelligent network management in the NGWN. In this chapter, we
first provide an overview of the NGWN and network management, then elaborate on the
requirements of network management in the NGWN and introduce the potential of data-
driven network management. Finally, we present three key research issues investigated in
this thesis.

1.1 Overview

1.1.1 Overview of NGWNs

In the past several decades, wireless communications and networking have undergone a
dramatic evolution, with a new generation emerging every ten years or so. With the



commercialization and maturity of the fifth-generation (5G) wireless networks, the devel-
opment of the NGWN] i.e., 6G, has attracted a great deal of attention. Both academia
and industry have started discussing the vision, requirements, and driving technologies
for the implementation of the NGWN in 2030. The consensus among the discussions is
that the NGWN should provide anywhere and anytime connectivity and services to mo-
bile user terminals (MUTs) for supporting multifarious applications across every aspect of
human society [1-3]. The NGWN has the following three distinct features in contrast to
5G networks, in terms of applications, network architecture, and network environment.

e Disruptive New Applications — The increasing number of bandwidth-demanding
applications drives up the demand for the capacity of 5G networks. As the successor
to 5G, the NGWN is expected to support a wide range of new applications, such
as virtual reality (VR) / augmented reality (AR), industry 5.0, holographic commu-
nication, and advanced autonomous driving [3]. Such new applications have more
stringent service requirements, e.g., latency and data rate, than 5G applications, and
the quality of service (QoS) requirements could be diversified. The new applications,
e.g., compute-intensive applications, require additional network resources including
computing and storage resources, in addition to the conventional communication re-
source, [4]. Moreover, the number of MUTS is increasing exponentially. For example,
the report in [5] predicts that over 10% of companies will use VR/AR technology for
business operations, and the number of head-mounted VR/AR devices will reach a
minimum of 337 million by 2025. As a result, the explosion in the number of MUTsSs,
together with strict service requirements and multi-dimensional resource needs, will
pose significant challenges to network management for supporting these disruptive
new applications in the NGWN.

e Heterogeneous Network Architecture — The NGWN will integrate multiple
network components such as space, air, and ground networks, demonstrating a high
heterogeneity level [6]. In the 5G era, lots of remote, rural, and suburban areas still
lack a high-speed Internet connection. Around 3 billion people worldwide cannot
access the Internet or enjoy high-speed services [7]. To overcome this barrier and pro-
vide global-coverage and ubiquitous services, non-terrestrial networks are expected
to complement conventional terrestrial networks. In particular, leveraging plenty of
satellites to provide global connectivity in a cost-effective way will become a reality
due to the decreasing cost of constructing and launching satellites [8,9]. Meanwhile,
the flexible deployment of aerial networks based on unmanned aerial vehicles (UAVs)
can provide services in response to dynamic service demands and emergency situa-
tions, such as disaster relief or service congestion [10,11]. Consequently, the NGWN
is envisioned to integrate non-terrestrial networks, e.g., satellite networks and aerial



networks, with conventional terrestrial networks to provide seamless and flexible ser-
vices. However, due to the scalability, existing network management methods may
not handle such high heterogeneity [12].

e Highly Dynamic Network Environment — The network environment of NGWN
will be highly dynamic due to multiple factors. First, in the NGWN, the velocity
of some MUTs, e.g., aircrafts or high-speed trains, can be up to 500 km/hour [2].
Second, due to the random channel fading and unpredictable interference, wireless
channel conditions can be time-varying and location-dependent. Third, the data
traffic and service demands from MUTs in the NGWN have spatiotemporal varia-
tions. For example, the computation demand from MUTSs of a compute-intensive
application can change over time. As a result, providing reliable connections and
high-quality services for MUTs in highly dynamic network environment is difficult.

1.1.2 Overview of Network Management

In light of the three aforementioned features of the NGWN requiring advanced network
management, we provide an overview of network management and its different categories
in this subsection.

Network management refers to the process of configuring, monitoring, and maintaining
a network to ensure that the network runs smoothly and efficiently for providing reliable
and high-quality services to MUTs. Existing research has a relatively broad definition of
network management, yet there is a consensus that network management can be categorized
into two stages, i.e., planning stage and operation stage, according to their timescales [3,
13,14]. Network management in the planning stage and operation stage are referred to as
network planning and network operation, respectively. In particular, the planning period,
also called planning window, may last from minutes to hours, while the operation period,
called operation window, is measured in milliseconds or seconds [1]. Due to the dynamic
nature of network environments, the decisions of both the network planning and operation
need to be adjusted from time to time. The relation between network planning and network
operation can be summarized as “planning before operation” and illustrated as Fig. 1.1.
The different focuses of network planning and network operation are introduced below.

Network planning, i.e., planning-stage network management, aims to meet network
performance targets, e.g., network energy efficiency and resource utilization. To achieve
this goal, network planning can be further categorized into network configuration, i.e., co-
ordinate and configure the network infrastructure, and resource reservation, i.e., reserve
network resources proactively on network infrastructure [15]. We present the focus of net-
work planning from the following three perspectives in terms of the type of the supported
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Figure 1.1: The illustration of network planning and network operation.

services. 1) To support conventional communication services, existing works on network
planning mainly investigate radio access networks (RANs) configuration, including base
station (BS) deployment, BS communication coverage management, and downlink refer-
ence power control, as well as communication resource (e.g., frequency bandwidth) reser-
vation on BSs in RANs [16]. With the development of ultra-dense networks, a wide range
of BSs with different transmission power and communication coverage, such as macro BSs
and small BSs, are deployed in RAN, which complicates co-channel interference among
BSs. Configuring BSs and reserving communication resources in multi-tier RANs become
important in network planning. 2) With the rapid development of mobile edge computing
(MEC), multiple computing servers can be deployed at different network nodes such as
the core network, gateways, BSs, and other locations in the network, to support compute-
intensive services for executing computing tasks from MUTSs [17,18]. In the NGWN; con-
figuring computing servers or deploying service functions as well as proactive computing
and storage resource reservation are crucial in supporting compute-intensive services. 3)
To support multiple services with different service requirements, network slicing technique
is used in 5G networks. Multiple isolated virtual networks, i.e., network slices, can be cre-
ated on top of the physical network, and each virtual network is used to support at least
one service [19]. Each virtual network can be planned in the planning stage via placing
virtual network functions and reserving network resources to satisfy its QoS requirements
while supporting service differentiation with other virtual networks [20].

In contrast to network planning, network operation, i.e., operation-stage network man-
agement, targets delivering services to individual MUTs based on the well-planned network
for improving MUT satisfaction. We introduce the focus of network operation from the
following two perspectives in terms of the type of the supported services. 1) To support
communication services, existing works on network operation concentrate on associating
each individual MUT to a BS and determining the quantity of communication resource al-



located to the MUT in real time [21]. 2) Network operation for compute-intensive services
is more complicated than communication services due to the need for multi-dimensional
network resources. Offloading computing tasks from each MUT to one of the computing
servers deployed within networks should take into account not only communication between
the computing server and the MUT but also computing task execution at the computing
server [22]. In order to support compute-intensive services, offloading and scheduling com-
puting tasks, as well as computing resource allocation, in real time are mainly investigated
in the operation stage.

Evidently, both network planning and network operation play critical roles in improving
network performance and user satisfaction. However, the existing literature for conven-
tional networks pays much more attention to the operation stage [23,24], while only limited
works target the planning stage [14].

1.2 Network Management in NGWNs

Envisioned to support unprecedentedly diverse and new applications in increasingly hetero-
geneous and dynamic networks, the NGWN will require innovative network management
paradigms. In this section, we first introduce the network management requirements in
the NGWN and why conventional network management techniques cannot satisfy them.
Then, we summarize the limitations of the current network management paradigms.

1.2.1 Network Management Requirements in NGWNs

The network management requirements in the NGWN are put forward from the following
three aspects:

e Flexibility — As the NGWN should support a wide range of services with different
QoS requirements, it will require the advanced customization of network manage-
ment to support multifarious applications. In the 5G era, network slicing provides
the potential to create customized virtual networks on top of the physical networks
for different service types with various QoS requirements, which can achieve service
differentiation and satisfy service level agreement for each service [1]. Most of the ex-
isting network slicing techniques concentrate on core networks. While slicing in the
core network is essential, achieving QoS isolation and improving network resource
utilization in RAN are also necessary [13]. However, few investigations have been
conducted on slicing-based network management for RAN, especially in the planning



stage [25]. This is because mutually-dependent network configurations (e.g., BS cov-
erage and power) significantly complicate RAN slicing. Consequently, in the NGWN,
the advanced customization of network management for RANs is required to support
multifarious applications flexibly.

e Fine-granularity — Achieving fine-grained network planning to realize high utiliza-
tion of network resources in the NGWN is the second requirement. The QoS require-
ments of new applications in the NGWN are increasingly stringent, leading to the
growing demand of network resources in achieving QoS guarantee. To support a large
number of applications with stringent QoS requirements, improving network resource
utilization is imperative. Existing network planning approaches are coarse-grained,
which are mostly based on aggregated information of MUTSs, such as the number of
MUTs covered by a BS instead of the features of individual MUTSs, e.g., mobility
patterns [26]. The resulting estimation of service demands are inaccurate, which
may degrade network resource utilization. However, fine-grained network manage-
ment can yield high-dimensional network status, such as fine-grained spatiotemporal
service demands, in the optimization problem, which poses a challenge to existing
network management methods [3].

e Adaptivity — Network management in the NGWN should adapt to a highly dynamic
network environment. A few research works have paid efforts to address spatiotem-
poral network dynamics in 5G, but they may not suffice for the NGWN due to the
following two reasons. First, the main focus of 5G is to manage terrestrial networks.
With the integration of non-terrestrial networks and terrestrial networks, the high
mobility of satellites and UAVs results in a higher network dynamics in the NGWN
than that in 5G [6]. Second, the network architecture and the network resource in
the NGWN are multi-tier (e.g., space-air-ground integrated networks and multi-tier
computing servers) and multi-dimensional (e.g., computing, storage, and commu-
nication), respectively, which further challenge an adaptive network management
approach [18,27]. Evidently, network management for heterogeneous and dynamic
networks requires a radical shift in adaptivity.

1.2.2 Limitations of Model-driven Network Management

Recognizing the network management requirements in the NGWN, we further summarize
the limitations in the state-of-the-art paradigms to comprehend the necessity of new net-
work management paradigms. Until 5G, network management was primarily based on
model-driven or heuristic methods [3,28]. Optimization methods and game theory have



been widely adopted as mathematical tools for addressing network management problems.
While such model-driven methods have promoted the development of effective network
management in the past several decades, they may be insufficient for the NGWN for two
reasons. Firstly, the NGWN will become complex, leading to a large number of vari-
ables and complicated correlations among them. Identifying the correlation among lots
of variables while achieving low computation complexity poses a tremendous challenge for
existing model-driven methods [29]. Secondly, modeling the network dynamics accurately
and appropriately is challenging or even impossible for model-driven methods in an un-
certain and highly dynamic network environment. Even if an appropriate model is given,
convergence or equilibrium may not be guaranteed in a highly dynamic environment [1].
Consequently, we are reaching the point where network dynamics and heterogeneity, as
well as the QoS requirements that we expect from the communication system, will exceed
the capabilities of current model-driven network management paradigms.

1.3 Data-driven Network Management

The need for flexible, fine-grained, and adaptive network management motivates the use
of artificial intelligence (AI) technologies to empower NGWN [3,28]. The past decade has
witnessed rapid advancement in the research of machine learning (ML), one of the most
powerful Al tools. ML broadly refers to an algorithmic technology that endows a sys-
tem with the ability of leveraging extensive data instead of explicit mathematical models,
which supports a wide range of applications, such as computer vision and natural language
processing [30]. Traditional ML methods have been employed in the research field of com-
munication and networking. Lots of traditional ML-based methods, e.g., Bayesian learning,
decision-tree learning, and rule-based learning, have been developed for managing conven-
tional networks. Nevertheless, such traditional ML methods still rely on mathematical
models (e.g., Bayesian theory) and problem-specific assumptions, which limits their ability
to address complicated problems while making them problem-specific and inapplicable to
other problems [28].

Recent advancements in deep learning (DL) and digital twins (DTs) have made it
possible to shift from model-driven to data-driven network management. DL, as an inher-
ently data-driven ML approach, implements the learning process by elaborating the data
through deep neural networks (DNNs) [31]. In contrast to traditional ML methods, DL
methods do not require prior knowledge of mathematical models for designing DNNs, and
DNNSs can be generalized in different scenarios. Lots of research works have shown that DL
methods outperform transitional ML methods in different scenarios, e.g., object detection
and speech recognition, especially when a large amount of data is available [32]. Recently,
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DT techniques offer the potential to address the limitation of data-driven methods in their
high reliance on datasets. A DT can be characterized by a full digital representation of a
physical object or a process, which contains a large volume of data from the physical object
for advanced data analytics [33,34]. Integrating DL and DT paves the way to implement
data-driven methods in practice. Such data-driven methods have started attracting the
attention of the communication and networking community to employ data-driven net-
work management paradigms in the NGWN [1]. Although the investigation of data-driven
network management is still in its infancy, its potential to improve the flexibility, fine-
granularity, and adaptivity of network management is tremendous due to the following
reasons.

1)

Data-driven methods can provide close-to-optimal solutions for the network manage-
ment problems which are infeasible or too complicated for model-driven methods.
For example, as we mentioned in Section 1.2, the problem of network management,
e.g., the RAN slicing problem, could become complicated due to highly coupled vari-
ables when we aim to improve flexibility and fine-granularity. Data-driven methods
offer the potential to address this challenge from two aspects. First, deep supervised
learning is capable of approximating complicated functions [35]. A dataset consists
of historical network statuses and optimal network management decisions that are
obtained offline using brute force or a complex model-driven method. As long as
the labeled data are adequate, deep supervised learning can offline learn the map-
ping function from network status to the optimal network management decision and,
then, online infer the management decision with low computational complexity [36].
Furthermore, even if extensive labeled data are not available for training, deep un-
supervised learning, e.g., auto-encoder, can be used for feature extraction to explore
implicit network characteristics and reduce the network status dimensions [37]. The
flexibility and fine granularity of network management can therefore be improved as
a result of using data-driven methods.

By collecting and analyzing real-world data, data-driven methods are able to explore
network dynamics, which can help develop or fine-tune the policies for highly dy-
namic network environment. When the network environment changes too rapidly,
and the network dynamics are unknown a priori, choosing an appropriate model
for network management is infeasible. Deep reinforcement learning (DRL) can be
used to learn the network dynamics from historical data, including network status,
decision making, and network performance, and adjust the decision making adap-
tively according to the learned network dynamics online [38]. DRL algorithms can
be guaranteed to converge to the optimal policy when the network environment is
stationary [39]. Even if network environment are not stationary, DRL can still be
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used to adapt to the network environment in an online manner when the collected
historical data is adequate [40]. Thus, data-driven DRL methods are expected to
improve the adaptivity of network management in the NGWN.

3) DTs can be used for networking to provide a large volume data. To be specific, DTs
can be introduced to represent individual MUTs in the NGWN. Each DT consists of
data that describes the corresponding MUT, including the MUT’s mobility, service
demand, and QoS satisfaction, and functions for data processing and analysis [3].
Data contained in DTs can be used to predict MUT status, which can, in turn,
facilitate customized network management for highly diversified MUTs and enable
fine-grained network management. Moreover, DTs can acquire the necessary amount
of data to facilitate effective data-driven methods to enhance network performance.
Therefore, DTs for networking are envisioned to support fine-grained network man-
agement while empowering above DL methods in the NGWN.

1.4 Research Motivations and Contributions

Although data-driven methods provide possible solutions to improve flexibility, fine-granularity,
and adaptivity, the design of data-driven network management solutions in the NGWN still
meets several challenges. In this section, we first introduce the challenges of designing data-
driven network management solutions. Then, we outline three research efforts to address
the challenges.

1.4.1 Challenges of Data-driven Network Management in NGWN

Designing data-driven network management solutions in the NGWN still faces the following
challenges:

e QoS Guarantee — In the NGWN, network management should satisfy the QoS
requirements of various services while achieving service isolation, which brings a two-
fold challenge. First, different services have different QoS requirements, e.g., signal-
to-interference-and-noise ratio (SINR) requirements. Enabling customized network
configurations for multiple services while satisfying their different QoS requirements
is challenging since the network configuration supporting any service affects other
network configurations that are used to support other services. For example, the
communication for one service can interfere with the communication of other services.



Second, MUTs may have different mobility patterns, resulting in different network
resource usage. Customizing the resource management for MUTs based on their
different mobility patterns while satisfying their diverse QoS requirements remains
challenging. However, the design of data-driven network management solutions to
ensure QoS is not straightforward because the commonly used data-driven methods
are not able to provide closed-form solutions. It is necessary to explore the use of
data-driven network management to overcome the aforementioned challenges in the

NGWN.

Complex Decision Making — The decision variables of network management are
highly coupled with each other. From the perspective of resource management, the
NGWN should provide computing, storage, and communication resources for the
supported applications, yet managing multi-dimensional resources is coupled. For
example, a BS’s computing capacity determines how many computing tasks it can
handle and how much communication resource is required, and the storage capac-
ity of each BS affects the amount of communication resource used for downloading
context data from other servers [41,42]. From the perspective of network config-
uration, the decision variables of BS configuration are mutually dependent due to
the co-channel interference between BSs. The number of the dimension of decision
variables can be further increased when network slicing is utilized for each BS for
multiple applications. Data-driven methods are more suitable for solving complex
problems than model-driven methods, but we still need to investigate how to design
specific data-driven methods based on the specific coupling relations in the network
management problems.

Resource Constraints — While BSs will become resourceful in terms of not only
communication but also computing and storage in the NGWN, network resources
are still limited when there are a large number of connected MUTs with stringent
QoS requirements. First, leveraging limited network resources to satisfy multiple
strict QoS requirements simultaneously is challenging. Thus, designing a dedicated
mechanism to enable resource multiplexing or sharing for improving network effi-
ciency, e.g., resource utilization, is non-trivial. Second, leveraging UAVs or satellites
to provide services in the NGWN is energy-consuming, and UAVs and satellites
are mostly energy-constrained. Another challenge is improving service performance,
e.g., latency, without violating the energy budgets of UAVs or satellites. In most
cases, data-driven methods are used to address single-objective problems without
constraints, but they are less often used to address multi-objective problems or to
address single-objective problems with constraints. [43]. Therefore, satisfying re-
curse constraints in the design of data-driven network management solutions should
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be further studied.

¢ Dynamic Service Demands — Highly dynamic service demands, e.g., computing
task requests from MUTSs, bring a two-fold challenge. First, re-configuring networks
(e.g., adjusting resource reservation strategy) is required to adapt to the dynamic ser-
vice demands, but it could yield additional cost of network resource usage. Achiev-
ing adaptive network management while balancing the network performance and
the additional cost from network re-configuration is challenging. Second, to han-
dle dynamic service demands, making network management decisions should take
the upcoming service demands into account, which leads to a long-term sequential
decision-making problem. However, solving the problem with uncertain and dynamic
service demands is complicated. Multidimensionality of network resources and net-
work heterogeneity exacerbate the problem of handling dynamic service demands in
the NGWN. Even though data-driven methods are advantageous for accommodating
dynamic environments, when networks become complex, they still face challenges of
high computational complexity and slow convergence [29].

1.4.2 Research Problems and Contributions

While data-driven methods have advantages over conventional model-driven methods, this
does not mean conventional model-driven methods should be dismissed in the NGWN. The
data-driven methods should be used in synergy with conventional model-driven methods
and well-designed for network management. In this thesis, we focus on three research
problems in the NGWN and contribute to designing data-driven network management
solutions that can improve the network resource utilization and service performance.

1) We first investigate planning-stage RAN configuration to achieve QoS guarantee for
multiple communication services, as shown in Problem 1 in Fig 1.2. In the considered
scenario, all BSs in the RAN share the same radio spectrum to support communica-
tion services with different SINR requirements. With the network slicing technique,
a network slice is created for a communication service. Different network slices have
different spatiotemporal distributions of data traffic. Due to the co-channel inter-
ference among network slices, handling the dynamic spatiotemporal distributions of
data traffic for all network slices while fulfilling their SINR requirements is challeng-
ing. Our research objective is to maximize the energy efficiency of terrestrial BSs
by jointly configuring downlink transmission power and communication coverage for
each BS. To achieve this objective, we first design a network planning scheme with
three novel ideas, including flexible binary slice zooming, dual time-scale planning,
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Figure 1.2: The illustration of network management for the NGWN.

and grid-based network planning. The scheme introduces flexibility to differentiate
the communication coverage and downlink transmission power of the same BS for
different network slices while improving the temporal and spatial granularity of net-
work planning. With the proposed scheme, we formulate a combinatorial optimiza-
tion problem in which communication coverage management and power control are
mutually dependent. To solve the problem, we propose a hybrid data-model-driven
method with two steps. In the first step, we propose an unsupervised-learning-
assisted approach to determine the communication coverage of BSs; In the second
step, we derive a closed-form solution for power control. Simulation results demon-
strate that the proposed network planning scheme outperforms conventional planning
schemes in energy efficiency and approaches the optimal solution in performance.

We then investigate planning-stage resource reservation to support a compute-intensive
service with taking into account the mobility of MUTSs, as shown in Problem 2 in
Fig 1.2. In the considered scenario, mobile MUTs can offload their computing tasks
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to the computing servers deployed at the core networks, gateways, and BSs. Each
computing server requires both computing and storage resources to execute com-
puting tasks. The mutual dependency among different resources and the impact of
MUT mobility create challenges in proactive resource reservation. Through adap-
tively reserving adequate network resources for dynamic service demands, the re-
search objective is to minimize the usage of computing, storage, and communication
resources as well as the cost of re-configuring resource reservation. To this end, we
develop a hybrid data-model-driven network planning scheme with two elements, i.e.,
multi-resource reservation and resource reservation re-configuration. First, DTs are
designed for collecting MU'T status data, based on which MUTs are grouped accord-
ing to their mobility patterns. Second, an optimization algorithm is proposed to
customize resource reservation for different groups to satisfy their different resource
demands. Last, a meta-learning-based approach is developed to re-configure resource
reservation for balancing the network resource usage and the re-configuration cost.
Simulation results demonstrate that the proposed network planning scheme outper-
forms benchmark schemes by using less network resources and incurring lower re-
configuration costs.

Lastly, we investigate operation-stage computing resource allocation in a dynamic
space-air-ground integrated network (SAGIN), as shown in Problem 3 in Fig 1.2. In
the considered scenario, MUTs in remote areas need to offload their computing tasks
to computing servers, but terrestrial BSs provide limited communication coverage
for the MUTs. Since satellites can provide global coverage, and UAVs can provide
flexible service delivery, satellites and UAV can be used to complement the terrestrial
networks in the remote areas. A UAV is deployed to fly around MUTs and collect
their computing tasks, while scheduling the collected computing tasks to be processed
at the UAV locally or offloaded to the nearby terrestrial BSs or the remote satellite.
The energy budget of the UAV, intermittent connectivity between the UAV and
terrestrial BSs, and dynamic computing task arrival pose challenges in computing
task scheduling. Our objective is to design a computing task scheduling policy for
minimizing the delay of computing task offloading and processing in the SAGIN.
To achieve the objective, we first formulate the online computing scheduling in the
dynamic network environment as a constrained Markov decision process. Then, we
develop a risk-sensitive DRL approach in which a risk value is used to represent
energy consumption that exceeds the budget. By balancing the risk value and the
reward from delay minimization, the UAV can explore the task scheduling policy
to minimize task offloading and processing delay while satisfying the UAV energy
constraint. Simulation results show the proposed data-driven resource allocation
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approach reduces the delay of task offloading and processing while not exceeding the
UAV’s energy budget compared with conventional schemes.

1.5 Thesis Outline

The remainder of the thesis is organized as follows: In Chapter 2, we provide a compre-
hensive background and review of network management and the state-of-the-art network
planning and network operation technologies. In chapter 3, based on unsupervised learn-
ing, we design a flexible network configuration scheme in the planning stage to support
the customized communication coverage management and power control for different com-
munication services. In chapter 4, based on meta learning, we propose a fine-grained
and adaptive resource reservation scheme in the planning stage to support a computing-
intensive service with considering MUT mobility. In chapter 5, based on reinforcement
learning, we design an adaptive resource allocation scheme for a compute-intensive service
in highly dynamic space-air-ground integrated networks. Finally, we conclude the thesis
and discuss future works in Chapter 6.
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Chapter 2

Literature Review

This chapter aims to provide a comprehensive background and review of network manage-
ment and the state-of-the-art network management methods in the planning stage and the
operation stage.

2.1 Planning-stage Network Management

Academia and industry aim to design networks and adjust network configuration adap-
tively for reducing both capital expenditure (CAPEX) and operation expenditure (OPEX)
while satisfying dynamic service demands [14]. In the early stage, deploying network infras-
tructures and configuring communication networks are referred to as network management
in the planning stage, i.e., network planning. Network planning decisions are made once
when networks are constructed and no longer altered. The network planning decisions
are mostly offline and cannot adapt to the dynamic network environment. To deal with
the unpredicted network dynamics, the concept of network management in the planning
stage has been extended to online but “slow-reaction” network planning as communication
networks become complex and need to support the increasing number of network func-
tionalities. Therefore, in addition to offline network planning, online long-term network
configuration/adjustment (several tens of minutes to several hours) can also be considered
as network management in the planning stage nowadays [13]. The existing works con-
centrating on network planning mainly consist of three aspects: cellular planning, virtual
network (i.e., slice) configuration, and resource reservation [1].
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2.1.1 Cellular Planning

Cellular planning problem is a classical problem in network management. Most works
on cellular planning aim to determine the number of BSs and BS locations and provide
the essential planning parameters, e.g., BS coverage, users clustering, and BS radiation
patterns [16]. However, cellular planning problem is complex and non-scalable since lots
of variables affect the optimization of cellular planning, and the variables are coupled.
Just determining the location of BSs has been shown to be NP-hard [44]. To address
the complex cellular planning problem, existing works decompose the planning problem
into multiple subproblems and then focus on addressing a subproblem while considering
a certain number of planning parameters and network constraints. The existing works
are classified according to their investigated sub-problem in cellular network planning as
follows.

A. BS Deployment

Determining the number of BSs is investigated in several existing works [45-48]. The mini-
mum number of conventional BSs and the locations of these numbers are jointly determined
to satisfy the given data traffic demands in [45]. Authors in [46] find the near-optimal lo-
cations of the minimum number of BSs to be deployed in LTE while serving all users
and satisfying the constraints of BS resource capacity based on particle swarm optimiza-
tion. Guo et al. leverage Poisson point process to model the real deployment of BS and
adopt the outage probability as the metric to determine the number of BSs and their lo-
cations [47]. To minimize the overall power consumption of BSs, authors first optimize
the locations of BSs considering a fixed number of BSs and then identify the redundant
BSs and remove them while satisfying the uplink and downlink SINR requirements [48].
Moreover, lots of works pay attention to optimize the number of drone-based BSs or UAVs
for NGWN [49-51]. A low-complexity algorithm is proposed to minimize the number of
drone-based BSs while covering all given users [49]. The minimum number of drone-based
BSs and their 3-D locations are optimized to provide communication coverage to a set of
users with different SINR requirements [50]. In [51], the authors first divide the 3-D space
to be covered into octahedron shapes of equal dimensions. Then, the authors adopt a
statistical learning approach to build a statistical model on the user distribution, and use
the model is used to associate users to BSs to minimize the latency averaged on all users.

Given the fixed number of BSs or drone-based BSs, optimizing their locations is inves-
tigated in lots of existing works [52-54]. The overall communication coverage area of all
BSs are maximized by determining the latitude and longitude of all drone-based BSs based
on different algorithms in [44,52]. Considering not only the latitude and longitude of each
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drone-based BS but also the height of each drone-based BS, a 3-D drone-based BS deploy-
ment problem is investigated to maximize the number of users within the service coverage
areas given the fixed locations of users [53]. Considering two BSs with the fixed height, the
impact of minimum distance between two drone-based BSs on the overall communication
coverages areas of the two drone-based BSs is investigated in [54].

B. Planning Parameter Configuration

For relatively simple network scenario, the planning parameters of each BS, e.g., commu-
nication coverage area, uplink/downlink radiation patterns, and long-term power control,
can be set once and have no need to be altered again [55]. However, when communica-
tion networks become complex and heterogeneous while the network environment is highly
dynamic, fixed network configuration cannot adapt to dynamic network environment. In
contrast to that changing BS locations is mostly infeasible, planning parameters can be ad-
justed adaptively for network dynamics. As a result, planning parameter configuration can
be considered as configuring/reconfiguring the planning parameters of BSs over a long-term
period (e.g., several minutes to several hours). Some existing works investigate BS coverage
management in conventional wireless networks [56,57]. Generally, long-term user associ-
ation can be considered in BS coverage management in wireless networks. For example,
the default user association scheme in cellular networks maximizes signal-to-interference-
and-noise ratio (i.e., max-SINR scheme), which maximizes the probability of coverage and
minimizes the probability of outage. In [56], a user association scheme is proposed to
balance the data traffic load among BSs with fixed user locations. From the energy effi-
ciency perspective, authors in [13] present the necessity and importance of changing the
communication coverage of BSs by switching on/off BSs dynamically according to service
demands. In [57], a scheme of BS coverage management, named cell zooming, is proposed
to improve the energy efficiency of BSs. The coverage of any BS can be either zero or its
maximum geographical coverage, corresponding to turning the BS on or off.

Some existing works study long-term transmission power control in conventional one-
tier wireless networks [58,59]. Giovanni et al. optimize long-term transmission power
control to maximize the sum data rate of all users [58]. Specifically, the coverage area
of each BS is divided into three regions, and the transmission power of each region over
a long-term period is chosen from three power levels. The values of power levels are
determined based on the average number of users in the corresponding region over the
long-term period. In [59], considering frequency reuse and co-channel interference, the
authors investigate power control to adjust the radius of BS coverage for the purpose of load
balancing. The power control is determined based on a stochastic model of user location
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distribution over a long-term period. The planning parameter configuration problem is
also investigated in two-tier networks [60]. Given a certain number of pre-defined locations
within the networks, long-term transmission power control and frequency bandwidth are
jointly optimized for macro and small BSs to improve the number of locations where the
data rate is satisfied while satisfying the communication resource usage budget [60].

In addition, Wu et al. propose a cross-layer approach to jointly optimize the timesharing
in the medium access layer and the sum of max of flows assignment in the network layer
for minimizing aggregate congestion while minimizing power consumption [61].

C. Load Balancing

Load balancing is an important research objective in cellular planning, which aims to
associate the service demands to multiple BSs as even as possible for improving network
performance, e.g., latency [14]. Planning parameter configuration is a possible way to
achieve load balancing in the planning stage, but the technologies for load balancing in
the planning stage are different from those in the listed works. Lots of works focus on
configure planning parameters to balance the load among multiple BSs in homogeneous
communication networks [62]. Based on the gathered information on the communication
resource usage at each BS, the handover parameter of each BS can be customized to reduce
the number of overloaded cells [62]. To be specific, a customized threshold of resource usage
can be determined for each BS based on resource usage of all BSs, and users can handover
among BSs based on the determined thresholds. Furthermore, some works investigate load
balancing in heterogeneous networks [63,64]. The optimal cell re-selection offset for each
BS is investigated to determine the user association for the BS, which can support data
traffic load balancing between BSs with LTE heterogeneous networks [63]. To mitigate
co-channel interference among macro BSs and small BSs in LTE heterogeneous networks,
authors in [64] propose a distributed algorithm to mute certain subframes at macro BSs
while balancing the data traffic load among macro BSs and small BSs for improving users’
data rates.

2.1.2 Virtual Network Configuration

Network slicing technology has been proposed and leveraged for 5G networks to support
massive services with diversified service requirements [1]. Traditional communication net-
works, e.g., LTE, employ the one-size-fits-all approach for all services, regardless of their
different service requirements, while network slicing is to create multiple virtual networks,
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i.e., slice, on top of the physical (or substrate) networks [19]. Each virtual network is a com-
bination of virtual nodes and virtual links, and virtual nodes are interconnected through
virtual links, forming a virtual network topology [20]. Each virtual network can be man-
aged and configured in a highly flexible and customized way to support a service based
on its service requirement. As a result, many works focus on configuring virtual networks
in the planning stage. Similar to the aforementioned planning parameter configuration,
virtual networks can be configured /reconfigured dynamically. In this subsection, we first
introduce the background of network slicing in detailed and then survey the existing works
on virtual network configuration, i.e., slice configuration.

A. Network Slicing

Network slicing relies on the concept of network virtualization, which can be traced back
to the 1960s when the first operating system was developed by IBM [65-67]. This system
providing time-sharing and virtual memory to fifteen users simultaneously introduces a
breakthrough in computing. With the development of hardware and software, the idea
of virtualization was widely adopted for data centers by the early 80s [68]. This idea
aimed to form the vision of virtual systems spanning across computing platforms, network
resources, and storage devices by creating a virtual form of a physical entity through soft-
ware methods and processes [69]. This technology was gradually applied to networking for
connecting remote sites securely with controlled performance through the Internet. The
introduction of overlay networks in the late 80s that consist of nodes connected over log-
ical links forming a virtual network over a network composed of physical infrastructures
(i.e., underlay networks) can be seen as an early form of network slicing, combining het-
erogeneous resources over various administrative domains. Overlay networks provide QoS
guarantees in a service-oriented fashion. They are flexible in nature but not automated nor
programmable. By 2000, by allowing users to obtain isolated application-specific slices, the
first-generation platforms for verifying and evaluating new network protocols were estab-
lished based on overlay networks. A slice was defined as a unit component with allocated
resources such as computation capability on servers. However, such overlay platforms had
limitations in underlay network controls [69].

By 2010, with the advancement of Internet technologies, the virtualization of both
overlay networks and underlay networks are improved for core networks [70]. On the one
hand, cloud computing is proposed to provide advanced virtualization of resources. Not
only physical network infrastructure resources can be virtualized, i.e., infrastructure as a
service, but also online platforms and commonly-used computing services, i.e., platform as
a service and software as a service, can be virtualized to use and manage easily. On the
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other hand, software-defined networking (SDN) and network function virtualization (NFV)
technologies are proposed to enable flexible and programmable network management [71].
Specifically, SDN provides a separation between the network control and data planes, im-
proving the flexibility of network function management and efficiency of data transfer [72].
NFV allows various network functions to be virtualized, i.e., in virtual machines, and
moves the functions to different locations [73]. Based on such virtualization technologies,
network slicing can be enabled to improve service provisioning and resource utilization for
core networks via flexible resource sharing, dynamic network function instantiation, and
agile network management.

Due to the need for more flexibility and elasticity of networks for supporting diverse
services, the 3GPP has reshaped the core network in the 5G era completely and built several
specifications, e.g., network slice selection and network function sharing, to enable network
slicing through the creation of core network instances for different types of services [74].
To be specific, based on SDN and NFV technologies, network functions in conventional
networks such as LTE have been virtualized as different virtual network functions. Such
virtual network functions can be deployed, configured, migrated, and removed in a flexible
way to support a slice. The virtual network functions in 5G can be divided into two
groups. The first group comprises the virtual network functions handling basic services of
the communication networks, such as user reregistration and mobility management. The
second group includes the virtual network functions designed specifically for a slice, which
cannot be shared among multiple slices. As a result, each slice can be customized and
configured flexibly to support a service based on its service requirements, which brings
more flexibility, elasticity, and QoS assurance to the communication networks [75].

B. Virtual Network Configuration

Generally, communication networks consists of core networks and RAN. We introduce
existing works on virtual network configuration for core networks and RAN, respectively.

e (Core Networks —In the virtual network configuration for core networks, most existing
works focus on mapping virtual resources onto physical network infrastructure, re-
ferred to as the virtual network embedding problem. According to the type of virtual
resources, the virtual network embedding problem can be further classified as two
sub-problems wvirtual node mapping, where virtual resources at virtual nodes have
to be mapped onto physical network nodes, and virtual link mapping, where virtual
links connecting these virtual nodes have to be mapped to virtual paths connecting
the corresponding nodes on top of the physical network. Solving the virtual net-
work embedding problem is NP-hard [20]. Even if the virtual node mapping is given,
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mapping the virtual links to a physical network is still NP-hard. Therefore, virtual
network configuration is still challenging and needs to be further investigated.

Most existing works on virtual network configuration for core networks are sum-
marized as follows. Some works pay attention to virtual node mapping, such as
virtual network function placement. Authors in [76] design a demand-supply model
to quantify the data rate performance degradation due to the consolidation of virtual
network functions, and then place the functions on 5G core networks to maximize
the overall data rate of two different slices. Two different algorithms of virtual net-
work function placement are proposed for two objectives, i.e., path minimization and
session continuity in [77]. A virtual network function placement algorithm is devel-
oped for unicast and multicast services to maximize amortized throughput subject
to resource constraints on physical links and nodes [78]. Considering the end-to-end
link, including core networks and the RAN, a network function placement is devel-
oped for radio units, distributed units, centralized units, and 5G core to minimize
the power consumption while satisfying users’ QoS requirements [79]. Furthermore,
a few works focus on virtual link mapping, e.g., service or network function chain
placement. Considering user mobility, authors joint optimize user association and
network function chain placement to minimize end-to-end delay of users in 5G net-
works [80]. Qu et al. propose propose a delay-aware flow migration approach to
guarantee average delay isolation among multiple network slices within maximal tol-
erable service downtime [81]. Moreover, some existing works pay efforts on service
function chain placement [82]. Jang et al. investigate joint service function place-
ment and flow distribution to maximize the flow rate while minimizing the energy
consumption for multiple service function chains [83].

In addition to virtual network embedding problem, specific virtualization architec-
ture or detailed procedures to support network slicing are investigated. A holistic
network virtualization architecture based on Al is proposed to support user-centric
networking [3]. Several technical requirements regarding performance and manage-
ability to enable network slicing in the core networks are discussed in [75]. Authors
in [84] reshape the network functions into more granular functions to break down
the monolithic core network functions into more modular functions that constitute
a control plane service. In [85], the authors show how the modular functions could
be composed to build a control plane service tailored to a network slice. Some works
address the problem of network slice selection to associate a user with the appropri-
ate slice instance. In [86], the authors have defined the procedures to enable network
slice selection and discovery for individual users.

e Radio Access Networks — While the advantage of network slicing is common, and
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3GPP has completed specifications regarding network slicing for 5G core networks,
the realization of network slicing in RAN still poses multiple open issues. A few
works aim to design and realize RAN slicing in NGWN. In [87], lots of requirements
for RAN slicing are discussed regarding data traffic differentiation for different users
in the same slice, resource multiplexing among slices, and protection mechanisms
to reduce inter-slice effects. To fulfill such requirements, architecture, protocol, and
management for RAN slicing should be re-designed. For protocol design and slice
configuration, physical, link, and network protocol layers are designed to manage
radio resource allocation to users within the coverage of a BS while guaranteeing
slice-specific isolation and support customized resource management configurations
for users in different slices [88]. Different options of slice granularity and physical layer
and MAC layer configurations in RAN are proposed for different service types in [89].
As for network architecture, an Al-based network architecture is proposed to support
RAN slicing [1]. For the Cloud-RAN architecture, a novel network function placement
approach is proposed to support RAN slicing, which can enable service differentiation
in network function placement based on different service requirements [90]. To enable
network management for RAN slicing, a joint BS deployment and frequency spectrum
planning approach is proposed in [91] to satisfy data traffic demands for multiple slices
with different spatial traffic distributions. A K-means based approach is to cluster
users as a slice based on their mobility patterns, and configure radio resources on
different BSs to serve different slices [92].

A few existing works focus on designing resource management frameworks for RAN
slicing in different types of networks [25,93,94]. To support Internet of vehicles
services in vehicular networks, a dynamic RAN slicing framework is presented to
dynamically allocate radio spectrum and computing resource, and distribute compu-
tation workloads for multiple slices [94]. Ye et al. investigate a resource management
framework for a two-tier cellular network, which enables user association and band-
width reservation among BSs in the planning stage to satisfy differentiated service
requirements of slices [25]. In a practical network environment, an service provision-
ing approach framework is designed for slice association and resource allocation to
maximize bandwidth utilization while satisfying QoS requirements of users [93].

2.1.3 Resource reservation

Resource management, as a part of network management, plays an important role in im-
proving network performance in both conventional communication networks and NGWN [1].
In the early stage, resource management in the planning stage for conventional communi-
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cation networks, e.g., 3G and LTE, is referred to as determining the quantity of commu-
nication resource reserved for each BS proactively, e.g., determining the radio frequency
bandwidth of a BS. Similar to the extended concept of network planning, the concept of
resource management in the planning stage is extended to both offline and online long-term
resource reservation [13]. Note that the terminologies “resource provisioning” and “capac-
ity planning” adopted in some works are sometimes equivalent to “resource reservation”.
Generally, long-term resource reservation in the planning stage is based on aggregated in-
formation of users, such as the number of users covered by a BS, and focuses on network
performance, such as resource utilization over a relatively long time period, ranging from
several minutes to hours [95]. However, compared with resource management in the op-
eration stage, only few works pay attention to resource reservation in the planning stage.
Existing works on long-term resource reservation consists of three directions: centralized,
decentralized, and hybrid.

o (Centralized — Most works on resource reservation use a centralized controller to re-
serve network resources for different users or slices based on their service demands. To
support communication services in RAN, lots of resource reservation approaches are
proposed for different layers and wireless technologies. Resource reservation schemes
in both network and MAC layers are designed for IEEE 802.111 wireless technologies
to enable QoS assurance [96]. A semi-random back-off mechanism is proposed for
resource reservation for channel access in contention-based wireless local area net-
works [97]. Chang et al. group users based on their hand-off probability and enable
group-based bandwidth resource reservation to guarantee QoS for each group [98].
For network slicing, Bega et al. leverage a data-driven solution to predict the amount
of resources needed to accommodate future demands at each network slice and re-
serve resources for the slices based on prediction results [99]. A joint long-term
spectrum reservation and real-time radio resource allocation are investigated to im-
prove the network resource utilization while stratifying the service requirement of
each slice [100]. Reyhanian et al. jointly optimize communication resource reserva-
tion in RAN and core networks to satisfy uncertain user demands [101].

A few works pay attention to joint computing and communication resource reserva-
tion due to the increasing number of diversified computing services needed to be sup-
ported in communication, especially NGWN. Based on the aggregated computing de-
mands from all access points, a proactive computing resource reservation approach in
MEC is designed to minimize the delay of executing computing tasks [102] and max-
imizing resource utilization in computing task execution [103], respectively. Yin et
al. study edge server placement to minimize the network resource usage based on
statistical computing demands [104]. There are limited works on long-term resource

23



reservation in multi-tier computing [105,106]. Considering edge and cloud comput-
ing, Zhou et al. propose a computing resource reservation approach to minimize
network resource usage while satisfying different delay requirements of two applica-
tions [105]. For servers located at different tiers of space-ground integrated networks,
joint communication and computing resource reservation is studied to minimize the
long-term cost of delay requirement violation and network reconfiguration [106].

e Decentralized — Some works investigate decentralized resource reservation for user pri-
vacy and computation complexity [107,108]. In particular, each user can determine
and request the required network resources based on its individual objective and re-
quirements, and the network controller only determines whether the request succeeds
or not. Since the network controller does not require user information, e.g., users’ ob-
jectives and requirements to enable resource reservation, the decision-making would
be computationally inexpensive and not expose private information.

e Hybrid — One work investigates hybrid resource reservation [109]. Specifically, users
can provide partial information to the network controller for centralized resource
reservation. Then, users can perform their own resource allocation algorithm to select
the optimal amount of network resources without considering other users’ objectives
and requirements.

2.2 Operation-stage Network Management

While many works have investigated network management in the planning stage, far more
studies have put effort into the network management in the operation stage [22]. Gener-
ally, network management in the operation stage, i.e., network operation, is referred to as
providing consistent network services to individual users, and real-time resource allocation
is a key point in communication networks [110]. Specifically, resource allocation in the
operation stage relies on real-time information on individual users, such as user locations,
and targets real-time user satisfaction. Since compute-intensive applications are expected
to be supported in the NGWN as mentioned in Section 2.1, computing task offloading
and scheduling should be investigated for resource allocation in NGWN. Therefore, we
summarize existing works on radio resource allocation and computing task ofoading and
scheduling in this section.

24



2.2.1 Radio Resource Allocation

Most works studied the radio resource (e.g., frequency spectrum, transmission power and
resource blocks) allocation among different slices for cellular networks in the operation
stage. We summarize the existing works based on different network scenarios, i.e., homo-
geneous and heterogeneous networks.

e Homogeneous Networks — Resource allocation for homogeneous communication net-
works can be further classified into the cases with single BSs or multiple BSs. In a
homogeneous network, the same radio access technology, e.g., cellular or WiFi, are
applied for all BSs, and all BSs have the similar configuration, e.g., radio radiation
patterns. For the case with single BS, a radio resource allocation scheme is developed
to allocate RBs, which keeps track of the service contracts with the service providers
and also the fairness requirements between cell-center users and cell-edge users [111].
To enable efficient spectrum slicing in the RAN domain, the unique physical layer
configurations associated with each dedicated slice is investigated [112]. The au-
thors systematically derive the relationships among most of the key physical layer
parameters, including sub-carrier spacing, symbol duration, sampling rate, discrete
Fourier transform size and waveforms for different scenarios. For the case of one cell
comprising one slice for human type communications and one slice for machine type
communications, random access based procedure and radio resource allocation are in-
vestigated to guarantee respective delay and throughput requirements of users [113].
To achieve the overall revenue maximization of slices, Han et al. propose a new
stochastic model for network slicing that leverages on the multi-queuing system to
optimally design an admission control of on-demand network slices as well as to
orchestrate them once are accepted [114].

Moreover, some resource allocation algorithms focus on the case with multiple BSs.
To guarantee that the same (or similar in time/frequency) RBs are assigned to the
same slice owners when multiple BSs are close enough to interfere among themselves,
a NP-hard RAN slicing enforcement problem is formulated [115]. In this work, RBs
are orthogonally allocated to slices to reduce inter-slice interference and enable ad-
vanced communication techniques (e.g., Coordinated multi-point transmission) and
coordinated beamforming by maximizing the number of simultaneous transmissions
on different BSs. Considering slices’ loads may be spatially inhomogeneous and time
varying rather than statistically partitioning radio resources at each BS, Caballero et
al. provide an analysis of a distributed model for the radio resource sharing, the
share-constrained proportional allocation mechanism, to realize network slicing in
NGWNs [116]. Considering a criterion for resource allocation amongst slices, i.e.,
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weighted proportional fairness, a dynamic radio resource slicing scheme is proposed
to achieve desirable fairness across the network slices of the different tenants and
their associated users [117]. Meanwhile, the Pareto-optimality of user association to
BSs, the fair allocation of base stations’ resources, and the gains resulting from this
scheme are established in this work.

Heterogeneous Networks — In contrast to homogeneous networks, heterogeneous net-
works are more complex since multiple access points with different radio access tech-
nologies, e.g., LTE heterogeneous networks, can provide network services to the same
user [118]. Tseliou et al. propose a resources negotiation for network virtualization
algorithm, which is suitable for application in LTE heterogeneous networks consist-
ing of a Macro BS overlaid with multiple Small BSs [119]. The challenge of traffic
variations in geographical dimension is addressed by appropriately slicing radio re-
sources in terms of resource blocks and transferring them among multiple BSs. With
the objective that is how to efficiently allocate resources over both licensed and un-
licensed bands according to different QoS requirements of different services, two or
more slices are allowed to access each other’s licensed spectrum [120]. Specifically,
multiple slices can then aggregate their distributed licensed bands to support traffic
associated with the same type of service. Different slices can also negotiate and trade
their rights to access unlicensed bands according to the estimated value.

Compared with conventional communication networks, the NGWN are expected to
provide seamless anytime and anywhere connectivity through integrating space, air,
and ground network components. In particular, there are various initiatives to con-
struct satellites and launch thousands of low Earth orbit satellites. Benefiting from
global availability, satellite networks have the potential to supplement worldwide
seamless high-bandwidth Internet connectivity in a cost-effective way. Meanwhile,
the agility of aerial networks based on UAVs capacitates the flexible deployment
of UAV networks in response to dynamic service demands and emergency situa-
tions, such as disaster relief or service congestion. Thus, the SAGIN is envisioned
as a promising architecture to complement the terrestrial network for the NGWN.
Lots of works have paid attention to resource allocation in the SAGIN [12,121]. A
data-driven network control architecture is designed to enable resource allocation for
complex SAGIN environment [122]. Zhou et al propose adaptive access mode se-
lection for space-ground integrated networks based on the different communication
features of satellites and BSs [123]. For more complicated space-air-ground integrated
vehicular networks, network slicing and SDN technologies are leveraged to support
different QoS requirements of typical vehicular services via jointly proactive chancing
and communication resource allocation [12,121].
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2.2.2 Computing Task Offloading and Scheduling

With the development of MEC and caching techniques, computing and storage resources
are paid more attention. Several research works enable multi-dimensional resource alloca-
tion in the planning stage for supporting compute-intensive services. To develop a dynamic
network resource allocation approach based on semi-Markov decision process framework
which allows the network provider to jointly allocate computing, storage, and radio re-
sources to different slice requests in a real-time manner and maximize the long-term re-
ward under a number of available resources [124]. In this work, a deep reinforcement
learning-based solution is proposed to deal with the dynamics of slicing requests, e.g., un-
certain service time and resource demands. By forming a resource (including computation,
memory and bandwidth) allocation auction between the slices and the data centers in 5G
virtualized networks, Halabian et al. propose a distributed resource allocation approach
for a heterogeneous cloud infrastructure [125]. Liang et al. formulate a virtual resource
allocation and in-network caching strategy as an optimization problem, which maximizes
the utility of slices [126].

Most works on real-time resource allocation focus on computing task offloading and ser-
vice placement, among which many consider one-tier computing such as cloud computing or
MEC [127-130]. Based on the real-time computing task arrival of each user, decentralized
and centralized communication and computing resource allocation approaches are proposed
to minimize the delay of computing task offloading and execution in cloud computing and
MEC, respectively [127,128]. Service placement is studied in MEC based on the real-time
user location and the type of service required by each user to maximize the number of users
that can be severed under each edge server’s resource capacity [129,130]. To solve the joint
problem of partial offloading scheduling and resource allocation for mobile edge computing
systems with multiple independent tasks, a two-level alternation method is proposed based
on the Lagrangian dual decomposition [131]. To address the multi-user computation of-
floading problem for mobile-edge cloud computing in a multi-channel wireless interference
environment, a distributed computation offloading algorithm is proposed based on a Nash
equilibrium [132]. However, it is difficult for an optimization-based algorithm to adapt to
the dynamic task arrival scenario since a fixed task number is required. Considering the
stochastic task generation, Lyapunov optimization is leveraged in task scheduling schemes.
Besides, an asymptotically optimal scheduling scheme is also proposed with partial knowl-
edge in mobile edge computing scenarios by leveraging the Lyapunov drift [133]. In order to
minimize the delay due to both radio access and computation, a user-centric energy-aware
mobility management scheme is proposed based on Lyapunov functions, and multi-armed
bandit theories [134]. The Lyapunov-drift-based techniques can schedule tasks to keep the
task queue stable based on the current queue backlog. However, the optimality cannot be
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guaranteed since the information of future status (e.g., future task arrival) is lacking.

Some works focus on resource allocation for multi-tier computing [135-139]. Comput-
ing resources on fog nodes and the cloud server are allocated to users at different locations
to satisfy the delay requirements of their computing tasks [135]. Li et al. investigate a
service placement approach for cloud and edge computing to satisfy each user’s comput-
ing demands [136]. Given that the same type of computing tasks can share computing
results, Yu et al. study joint computing task offloading and service placement in multi-tier
computing to reduce the delay of executing computing tasks [137].

Only a few existing works focus on computing task offloading and task scheduling in
the SAGIN. A cost-effective scheme for joint service placement and routing is proposed
in [140]. To accommodate diverse services, resources of the satellite, aerial, and terrestrial
components have been sliced, and a hierarchical resource management scheme is proposed
to put available resources into a common and dynamic resource pool [12]. To meet the
emerging computation-intensive Internet of things (IoT) applications with diverse QoS
requirements, an air-ground integrated mobile edge network is presented to realize mobile
edge computing [141]. In [138], to address uncertain channel conditions in remote areas,
a DRL-based scheduling scheme is proposed for the virtual machine assignment and task
offloading in the SAGIN. However, accommodating [oT computing task scheduling in the
SAGIN still faces significant challenges since the computing task arrival from [oT devices is
highly dynamic and random, and the management for both communication and computing
resources is complicated.
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Chapter 3

Planning-stage Service Coverage and
Power Control for Network Slicing

In this chapter, we investigate planning-stage RAN configuration to achieve QoS guaran-
tee for multiple communication services. Based on network slicing technique, a network
slice can be created for a communication service on top of a physical network. In light
of the dynamic spatiotemporal distribution of data traffic for all network slices, as well
as the co-channel interference between them, it is difficult to meet the QoS requirements
for all network slices at the same time. Our research objective is to maximize the en-
ergy efficiency of terrestrial BSs by jointly configuring downlink transmission power and
communication coverage for each BS while fulfilling different SINR, requirements for com-
munication services. To achieve this objective, we first design a network planning scheme
with three novel ideas, including flexible binary slice zooming, dual time-scale planning,
and grid-based network planning. The scheme introduces flexibility to differentiate the
communication coverage and downlink transmission power of the same BS for different
network slices while improving the temporal and spatial granularity of network planning.
With the proposed scheme, we formulate a combinatorial optimization problem in which
communication coverage management and power control are mutually dependent. To solve
the problem, we propose a hybrid data-model-driven method with two steps. In the first
step, we propose an unsupervised-learning-assisted approach to determine the communica-
tion coverage of BSs; In the second step, we derive a closed-form solution for power control.
Simulation results demonstrate that the proposed network planning scheme outperforms
conventional planning schemes in energy efficiency and approaches the optimal solution in
performance.
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3.1 Background and Motivations

A major challenge for modern wireless networks is the accommodation of diverse services
with various performance requirements. In networks beyond 5G, i.e., the NGWN, the di-
versity of services is expected to escalate, and the performance requirements will become
more stringent [142]. To address this challenge, network slicing is proposed to support
multiple coexisting virtual networks on the same physical network infrastructure [1]. Each
virtual network is referred to a slice, corresponding to a specific service and possibly a
unique set of performance requirements. Network slicing allows for highly flexible net-
work management, as the creation, customization, adjustment, and annulment of slices are
driven by network service demands and carried out in software [143].

Slicing-based network management consists of two stages: planning stage on a large
time scale (e.g., several hours) and operation stage on a small time scale (e.g., several
milliseconds) [1,94,144]. A planning stage reserves network resources (such as radio, com-
puting, and storage resources) for slices based on a prediction of their service demands, and
determines the network configuration such as the service coverage (SC) and transmission
power of base stations (BSs) for the next planning period. The subsequent operation stage
schedules the reserved resources of a slice to individual MUTs according to the real-time
MUT locations and service demands. Therefore, the network management in the planning
stage requires long-term and network-level information and optimization, while the network
management in the operation stage requires real-time information of MUTs. Evidently,
the network management in both stages affects the performance of networks [94]. However,
the existing literature pays much more attention to the operation stage [23,145], while only
limited works target the planning stage [14]. This is partially due to the unique challenges
in the planning stage, including but not limited to the difficulties in obtaining network-wide
MUT information (e.g., MUT location distribution), handling spatiotemporal distribution
of data traffic, and determining mutually-dependent network configurations (e.g., coverage
and power). The above challenges must be addressed for all coexisting slices, and the result
should demonstrate network-level optimality.

As the NGWN become more hierarchical, heterogeneous, and dense, effective network
planning can play a major role in improving network resource utilization and service re-
quirement satisfaction [1]. Motivated by the importance of network planning, we investi-
gate the planning stage of slicing-based radio network management in this work. We con-
sider a two-tier network with one macro BS (MBS) and multiple small BSs (SBSs), which
supports multiple slices with different spatiotemporal data traffic distributions (DTDs) and
service requirements. The objective is to maximize the energy efficiency of the network,
by determining the downlink transmit power and SC of all BSs in the planning stage.
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To achieve this objective, we first propose schemes to facilitate network planning, which
provide an approach to control the temporal and spatial granularity of network planning.
The schemes allow us to flexibly adjust the downlink transmission power and SC of BSs
based on the spatiotemporal DTD of coexisting slices. With the proposed schemes, we
formulate an energy efficiency optimization problem with a large number of SC and trans-
mission power variables which are mutually dependent. To solve this problem, we adopt
a two-step approach: In the first step, we propose an unsupervised learning-assisted SC
search (ULSCS) algorithm to determine the SC of SBSs; In the second step, we derive a
closed-form solution for power control. The contributions of this chapter are two-fold:

e We propose several new schemes for network planning, including dual time-scale
planning, grid-based network planning, and flexible binary slice zooming. The first
two schemes enable fine-grained and adjustable network planning by exploiting the
temporal and spatial data traffic dynamics in the network, respectively. The third
scheme replaces conventional cell-based coverage management with slice-based cov-
erage and thus empowers planning with additional flexibility;

e To solve the planning problem for energy efficiency maximization, we devise an unsu-
pervised learning-assisted approach, which searches for the best solution by leveraging
the solutions of similar historical DTD instances. The performance of the proposed
approach is close to the global optimum given sufficient historical information.

The remainder of this chapter is organized as follows. Section 3.2 describes the system
model and the three proposed schemes. Section 3.3 presents the problem formulation.
Section 3.4 introduces the ULSCS algorithm. Section 3.5 presents the simulation results,
followed by the summary in Section 3.6.

3.2 System Model and Proposed Planning Schemes

In this section, we first introduce the networking scenario under consideration. Then,
we propose several schemes for slicing-based network management in the planning stage,
including dual time-scale planning, grid-based network planning, flexible binary slice zoom-
ing, and virtual slice separation.

3.2.1 System Model

Consider a wireless network with one MBS and M SBSs, as illustrated in Fig. 3.1. All
the BSs share the same radio spectrum [146]. There are N slices in the physical network,
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Figure 3.1: The network scenario.

corresponding respectively to N different services. Each service is accessible anywhere in
the network coverage, and thus each slice spans over the entire network. The MBS and
SBSs jointly provide each service across the network. The spatial coverage of a BS for a
given service is referred to as the service coverage (SC) of that BS for the corresponding
slice. The SC of any two different BSs do not overlap for any given slice. Therefore, for
any slice, each BS solely serves all the MUTs within its SC for that slice.

Generally, in the operation stage, both SC determination and downlink transmission
power control of BSs require MUT-level information, such as MUT location and data
traffic volume [147,148]. However, such MUT-level information is usually not available in
the planning stage. The aggregated data traffic volume for a service requested by MUT's
within a small area during a short time period, on the other hand, may be available
through prediction [99,149].) Adopting such an approach, SC determination and power
control remain challenging due to three reasons. First, in the spatial dimension, both
power control and SC determination depend on spatial DTD (i.e., the aggregated data
traffic volumes of all small areas within the network coverage during a time period) and
are correlated through interference among the BSs. An uneven spatial DTD can further

1A small area is relative to the geographical coverage of a BS. Considering that the network coverage
consists of multiple small areas, we further define the spatiotemporal DTD of a slice as the aggregated
data traffic volumes of all small areas in the network coverage during multiple short time periods. Thus,
we determine SC and transmission power of BSs in the planning stage according to spatiotemporal DTDs
of the slices.
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Figure 3.2: Grid-based network planning.

complicate the relation between SC determination and power control. Second, in the
temporal dimension, the aggregated data traffic volume of every small area constantly
changes among different short time periods, and determining the same power control for a
long-term period does not provide enough flexibility to adapt to such temporal variation.
Third, different slices can have different SINR requirements, and thus, two slices may
need different SC and transmission power settings. With the objective of maximizing
energy efficiency, enabling power control and SC determination for satisfying all SINR
requirements is complicated, while considering slice-specific DTD. To address the above
challenges, we propose SC determination and power control schemes in the planning stage,
as detailed in the following subsections.
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3.2.2 Grid-based Network Planning

The spatial DTD affects the decision of downlink transmission power control and SC deter-
mination. Specifically, due to the frequency reuse among BSs, the downlink transmission
of any BS interferes with the downlink transmission associated with other BSs. Since
each small area has different distances to all BSs, its location affects the interference from
other BSs. Meanwhile, the aggregated data traffic volume of each small area determines
the amount of its allocated radio spectrum and, thus, further affects the interference of
its associated BS to the downlink transmission associated with other BSs. Therefore, for
the same SINR requirement, we should differentiate the downlink transmission power for
different small areas according to their locations relative to the BSs, and their aggregated
data traffic volumes. For SC determination, adjusting the SC of any BS changes the as-
sociation of small areas and could further change the aggregated data traffic volume of
the BS. Consequently, the BS causes different interference to the downlink transmission
associated with other BSs. Therefore, we should determine both transmission power and
SC according to the spatial DTD.

To adapt to the spatial DTD, we propose grid-based network planning. Specifically,
the coverage area of the considered network is divided into small spatial areas, i.e., grids,
as shown in Fig. 3.2. We divide the whole coverage area of the network into I hexagon
grids with the same grid diameter . Without loss of generality, the locations of all the
BSs are at the centers of the corresponding grids. The value of grid diameter r determines
the network planning granularity in the spatial dimension. The temporal variation of the
aggregated data traffic volume in each grid for every slice is assumed to be known in
advance through prediction. The SC determination and transmission power allocation are
based on the spatial DTD over the grids. We define the SC radius of a BS for any slice
as the integer number of layers of grids covered by the BS for that slice. For example, as
shown in Fig. 3.2, the SC radius of SBS 1 is 3, and the SC radius of SBS 2 is 2. Each
BS individually allocates downlink transmission power for each grid within its SC, and
the allocated power for different grids can be different. The proposed grid-based network
planning has two advantages: First, it introduces flexibility to adapt to uneven spatial
DTD through grid-based SC determination; Second, it increases the granularity of power
control in the spatial dimension, which yields the potential for improving energy efficiency.

3.2.3 Dual Time-scale Planning

Aggregated data traffic volume of each grid varies temporally during each planning period.
On the one hand, if a maximum or average aggregated data traffic volume of every grid over
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each planning period is considered for planning-stage decisions (i.e., power control and SC
determination), such temporal variations of data traffic are ignored, leading to service under
or over-provisioning. On the other hand, frequent changing the planning-stage decisions to
follow temporal variations of data traffic may result in excessive overhead. Therefore, there
exists a trade-off between overhead and network performance, depending on the temporal
granularity of network planning. To achieve a proper trade-off, we propose dual time-scale
planning. We divide a planning period uniformly into 7" time intervals (7" > 1). In each
planning period, we determine the SC of all SBSs according to the predicted spatial DTDs
in all time intervals. In each time interval, based on the determined SC, we allocate the
downlink transmission power of all BSs for each individual grid based on the predicted
DTD in the time interval. The reason is two-fold. First, as the SC of BSs determines
MUT association in the operation stage, frequently adjusting the SC of BSs may frequently
change the association of MUTs among different BSs. Second, we can allocate the downlink
transmission power of BSs to the grids in the network coverage based on the specific SC of
BSs, while, to determine the SC of BSs, we should compare the performance of different
power allocations based on different SC. The complexity of determining the SC of BSs
is higher than that of allocating transmission power. In this way, we take the temporal
variations in a planning period into consideration without updating SC decisions.

3.2.4 Flexible Binary Slice Zooming

Conventional wireless networks cannot provide service differentiation. Generally, the same
BS coverage management and downlink transmission power control are conducted for serv-
ing all types of services, for example, cell-coverage based schemes, such as cell zoom-
ing [57,150]. However, To satisfy differentiated service requirements and adapt to slice-
specific spatiotemporal DTDs in the slicing-based network, differentiating SC and down-
link transmission power for slices is crucial for optimizing the overall network performance.
Based on the concept of cell zooming, we propose the idea of slice zooming. In specific,
the SC and allocated downlink transmission power of every SBS can be different for slices.
Compared to the cell-coverage based schemes for conventional networks, slice zooming
can provide better performance by introducing higher flexibility in SC management and
downlink transmission power control.

An example of slice zooming is shown in Fig. 3.3(a), two SBSs support three slices,
and each SBS uses different SC for the three slices. SBS 1 provides smaller SC for slice A,
and larger SC for slice B and slice C. As a result, there is a ring-shaped geographical area,
i.e., area R1 in the figure. Similarly, a ring-shaped geographical area circling SBS 2 also
exists. In such the ring-shaped area, some slices are served by an SBS, and other slices
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(b) Frequency band allocation in slice zooming.

Figure 3.3: Slice zooming.

are served by the MBS. Therefore, if the SBS and the MBS use the same frequency band
for different slices in such areas, the two BSs may significantly interfere with each other in
the ring-shaped area. To avoid such interference, we orthogonally allocate frequency bands
among the BSs in ring-shaped areas, with details given as follows:

e For serving different slices, each BS should use different frequency bands. For exam-
ple, in Fig. 3.3, SBS 1 should allocate different frequency bands for slices A, B, and
G

e In any ring-shaped area, the corresponding SBS and the MBS must use different
frequency bands for different slices. For example, in Fig. 3.3, the frequency band
for slice A in ring shaped area R1 used by the MBS should be different from the
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frequency bands for slices A, B, and C, used by SBS 1.

Following the above rules, for any slice, the frequency band allocated to the ring-shaped
area should be a portion of frequency bands allocated to the corresponding SBS for that
slice. In Fig. 3.3(b), we show an example of frequency band allocation corresponding to
the SC of the BSs in Fig. 3.3(a). The frequency bands that the MBS allocates to slice A
in ring-shaped area R1 must be a portion of the frequency bands that SBS 1 allocates to
slice A. Similarly, the frequency bands that the MBS allocates to slices B and C in ring-
shaped area R2 must be a portion of the frequency bands that SBS 2 allocates to slices B
and C. It can be seen that slice zooming introduces flexibility to provide different SC for
different slices but imposes extra constraints for frequency band allocation. The number
of constraints increases with the number of slices. For example, if the SC for slices can
be set arbitrarily, and an SBS has k different possible SC, the total number of constraints
may increase as many as k(k + 1)/2. Thus, slice zooming can result in high computation
complexity. To provide flexibility without creating excessive constraints, we propose the
idea of flexible binary slice zooming for SC management:

e For any slice, the SC radius of any SBS is not arbitrary but binary, i.e., either full or
reduced;

e For any SBS, the spatial area of the full SC is the same for all slices and constrained
by the maximum physical coverage of SBSs. Similarly, the spatial area of the reduced
SC is the same for all slices. As a result, the ring-shaped area circling an SBS for
any slice also has the same size;

e For different SBSs, the size of full SC can be different, depending on the DTD.
Similarly, the size of reduced SC for different SBSs can be different.

The case shown in Fig 3.3(a) is in fact the proposed flexible binary slice zooming scheme.
The size of the SC for slices B and C at SBS 2 is reduced and identical. The size of the
SC for slice A at SBS 2 is full. The flexible binary slice zooming strikes a balance between
flexibility and computation complexity.

3.2.5 Virtual Slice Separation

In the operation stage, downlink transmission power allocation to individual MUTs is based
on the interference from the downlink transmission of different BSs, which is determined by
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Figure 3.4: Virtual Slice Separation.

the MUTSs’ locations and real-time scheduled spectrum resource blocks (RBs). However,
due to the lack of individual MUT-level information in the planning stage, the model of
interference in the operation stage cannot be used directly in the planning stage. To address
this issue, we introduce the scheme of wvirtual slice separation. In specific, the number of
RBs allocated to each slice is determined in the planning stage, while, in the operation
stage, the specific sets of RBs are determined for serving individual MUTSs in different
slices according to the allocated number of RBs for slices. Accordingly, scheduling each
RB at any BS for any slice in the operation stage can enable flexible RB multiplexing and
improve RB utilization. This supports both orthogonal and non-orthogonal RB scheduling
among different BSs. In Fig. 3.4(a), The RBs allocated to slice A and slice B corresponds
to the virtual slice separation as shown in Fig. 3.4(b).

3.3 Problem Formulation

In this section, we give the problem formulation based on the system model and proposed
planning schemes.

Let indexes 1,2, - - - ; M and index 0 denote the SBSs and the MBS, respectively. Denote
the set of all BSs, the set of all slices, the set of all gird indexes, and the set of all time
intervals in a planning period by M = {0,1,2,--- ,m,--- M} N ={1,2,--- ,n,--- , N},
Z={12--,4,---,1}, and T = {1,2,--- ,t,---, T}, respectively. Denote the set of
grids within the SC of BS m for slice n by Z,,,. Let d,,; and d,,,, denote the distance
between BS m and grid i for slice n and the distance between BS m and m/, respectively.
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Meanwhile, we denote the SC radius of SBS m for slice n by L., € {1,2,- -+, Lyax }, where
Lnax is the maximum radius. The data traffic of slice n generated at grid i (i € Z,,,,) is
served by SBS m € M\{0} if d,,; < L, n. Otherwise, the data traffic of slice n generated
at grid ¢ (i € Zo,,) is served by the MBS.

According to the proposed flexible binary slice zooming, we use a binary indicator a,, ,
to indicate whether the SC of SBS m for slice n is full or reduced. Denote the radius of full
and reduced SC of SBS m by Lf and LI, respectively, where L{ L} € {1,2,--- Lya}-
For slice n, Ly, € {Lf,, L, }. The SC of SBS m for slice n can be written as:

Lfna A = 1;
Loy = ’ (3.1)
L., amn,=0.

Given the differentiated SC for different slices, we denote the set of grids in the ring-shaped
area circling SBS m but covered by the MBS for slice n by R,,,. Given slices n and n’
such that a,,, = 0 and a,,,, = 1, the data traffic in grid 7 for slice n is served by the
MBS, if grid i is in the ring-shaped area circling SBS m (i.e., i € Ry, m € M\{0}, and
Lm,n < dm,i < me/).

Denote the data traffic volume of slice n generated at grid ¢ during time interval ¢
by wfn We use n,, to represent the required RBs for the data traffic of slice n per unit
data traffic. As mentioned in section 3.2.5, the number of RBs allocated by the MBS to a
ring-shaped area for all slices should be no more than that allocated by the corresponding
SBS for all slices. The constraint can be written as the following inequality:

Z Z W} M < Z Z W} 1y Ym e M\{0}, t €T, (3.2)

nEN i€Rm,n neN i€lmn

where the left-hand side represents the number of RBs allocated to serve the grids within
the ring-shaped area circling SBS m for all slices, and the right-hand side is the number of
RBs allocated to all slices served by SBS m.

Frequency bands are reused among the BSs outside of the ring-shaped areas. For
example, in Fig 3.3, the frequency bands used by SBS 1 to serve slice A can be the same
as the frequency bands used by SBS 2 to serve slice A. We use b}, ;» ., to indicate whether

the downlink transmission to grid ¢ for slice n interferes with the downlink transmission to
grid ¢’ for slice n’ during time interval ¢, given by:

0, Vi€ ZLpn,i € Rty mm = 1, ar = 0;
0, Vi€ Runi' € Lnn:tmn = 1, = 0; (3.3)

1, otherwise.

bt

. -y 1 =
i,n,i’n
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With the flexibility of the RB assignment and multiplexing brought by virtual slice
separation, any RB may be used by any slice and at any BS. As a result, all RBs are used
about equally likely. Let C' denote the number of all RBs which can be allocated by each
BS. We define resource block utilization ratio as ¢7,,, which represents the number of RBs
allocated to grid ¢ for slice n during time interval ¢ over the total number of RBs at any
BS, as follows:

W
C )

Denote the planning-stage downlink transmission power at grid ¢ for serving slice n over
time interval ¢ by pj ,. Considering that the data traffic load and the allocated transmission
power may be different for different grids, we calculate the total transmission power of each
BS in the planning stage statistically [151]. Denote the total downlink transmission power
of BS m for slice n during time interval ¢ by P! calculated as follows:

m,n’

PL,=> 0.0, YmeMmneN. (3.5)

1€Lm,n

0;, = VieZI,neN. (3.4)

The total downlink transmission power of each BS must satisfy the following constraints:

for m = 0:
ST P, < QPR ORI S (3.6)
2 Fnn = e vm e M0},

where pyps and pgpg are the maximum downlink transmission power of the MBS and SBSs,
respectively.

Let use m;, € M to represent the index of BS which serves grid ¢ for slice n. Denote
the average downlink channel gain between BS m;, and grid ¢ over the duration of time
interval ¢ by hfn For any BS m;,, and grid ¢ such that d,,, i < Lyn, the SINR of the
channel for grid ¢ and slice n during time interval ¢ is given in the following equation:

t t
pimhi,n

t t t :
NO + Zm’e/\/t\{miyn} Zn’e/\/ Zi’eIm,’n/ bi,n,i/,n’Pm’,n’hm’,i’

Vin = (3.7)

Denote the energy consumption of BS m for serving slice n during time interval ¢ by
E!  which is given by:

m,n?

Vm e M,neN, (3.8)

m,n’

t  _ _pt
Em,n =7P

where 7 is the duration of a time interval. Denote the SINR requirement of slice n by ™.
The power control should satisfy the following SINR requirements of slices:

Ven = P, Vi€ Ly, (3.9)
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where p is a weight to flexibly scale the minimum required SINR level based on the feedback
from the operation stage.?

We then formulate a problem to determine the planning-stage SC of SBSs and down-
link transmission power of all BSs according to the given spatiotemporal DTD of all
slices. We maximize the energy efficiency of the BSs and satisfy the diverse SINR re-
quirements of slices. Let A, be the weight for the energy efficiency of slice n. Our ob-
jective is to maximize the weighted sum of energy efficiency of all slices. We first denote
p=1[pl, Pl ,p?N}T,Lf: (LS, L, - ,LE\AT,Lr: [LE,- L%, L5,
and a = [a11, * ,Qmm, " 5 Ap, N]T. The corresponding optimization problem can be for-
mulated as follows:

Pl:  max al e me Ly Vi (3.10a)
{pL¢.Lra} “=5 Doter 2omem Binn 2oter 2omem 2iet,,, Winlln

s.t. (3.2), (3.6), (3.9), (3.10b)

e > L2+ LY, Ym #£m/, m,m' € M\{0}, (3.10c)

amn €{0,1}, Yme M,n e N, (3.10d)

Pin >0, Vp, €R, (3.10e)

Loy > L2 > L >0, VL', LT € Z. (3.10f)

In problem P1, the optimization variables include power control through p and SC through
L¢, L,, and a. We maximize the energy efficiency of all BSs in (3.10a). Constraint (3.10c)
ensures that the SC of SBSs do not overlap. Problem P1 is a combinatorial optimization
problem, which is difficult to solve by conventional optimization methods [152]. First, a
large number of variables need to be determined. Specifically, there are N x I x T variables
for power control and N x M variables for SC determination.® Second, the power control
and SC determination are mutually dependent. To solve this problem, we propose an
unsupervised learning-assisted approach in the next section.

2The SINR in the planning stage, i.e., nyn is a reference value over the duration of a time interval, which
may not represent the exact SINR level in the operation stage. Thus, we allow a feedback mechanism to
change the SINR in the planning stage by adjusting the weight p based on real-time SINR in the operation
stage.

3The number of combinations of SC of all SBSs for all slices is up to M2 (Lmax)?,
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3.4 Unsupervised Learning-assisted Solution Search

As mentioned in Section 3.2.3, planning-stage downlink transmission power control and
SC determination are mutually dependent, and finding appropriate SC is more challenging
than determining the power. Therefore, in this section, we propose a unsupervised learning-
assisted approach to solve problem P1 in two steps. In the first step, we design an iterative
algorithm based on unsupervised learning to determine the SC of SBSs. In the second
step, given the SC of all SBSs for all slices, we prove that the problem of power control is
convex and find the grid-based power control solution for each slice. Since the second step
is easier, we first present the closed-form power control solution and then find the SC.

3.4.1 Transmission Power Determination

As determining downlink transmission power of BSs is coupled by the inter-cell interference,
we cannot allocate power to the girds within the SC of any BS independently. Thus, given
the SC of all SBSs for all slices, i.e., L¢, L, a, we can rewrite the problem of power allocation
as follows:

An Zte?’ ZmGM Ziez wfn
P2: max : et (3.11a)
{p} neZN ZteT ZmeM Eﬁnn Zte?’ ZmEM Ziezm,n winn"
s.t. (3.6),(3.9), (3.10e). (3.11b)

The downlink transmission power of all BSs for each grid needs to be determined
for each time interval while the power control for different time intervals is indepen-
dent. Therefore, it is sufficient to solve Problem P2 for just one time interval. In any
time interval, the power control depends on slice-specific spatial DTDs. We first in-
troduce vector W = [w} .-+ wl, -+ w} ] to represent the spatial DTD across all
grids for slice n during time interval ¢t and define its corresponding diagonal matrix as
w;, = diag(w},,, - ,wf,, - ,w;,). Denote the spatiotemporal DTD of all slices in the

network by W = [W%, s, WE ,Wm € W, where W is the set of all possible spa-
tiotemporal DTDs. spatiotemporal

Theorem 1. The optimal power, i.e., pt = [pﬁ’l, Dk ,p‘}’N}T, during time interval
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t is given by:

_ . . . - —1 [~min a7 T
min ()t t min ()t t min ()t t N
YW M W T Wy o
t__ @t _ minﬂt t minﬂt t mlnﬂt minN
P =p P SepaW1 - Tn nn/Wn e NWN Tn Vo
min ()t t min ()t t min ()t t -
_P)/N QN71W1 e ny QN,n’Wn e P}/N QN,NWN_ ,y]l"{fllnNO
(3.12)
t _ 3 t t t
where ©° = diag(hf 1, -+, hi,, -+, hiy), and
t t t t t t ]
bl n,l n’h 1n 7 bl n,i’ n’hz o bl,n,[,n’hl,n’
t _ t t t
Qn,n’ - bz n,l,n’hl n bz n,i’ n’hz’ n’ bz n,I.n' hl n' . (313)
t t t t t
blnln’h bInz’n’hz’n’ bI,n,I,n’hl,n’_ IxI
Proof. See Appendix 6.2. O

3.4.2 Local Optimum SC Search

Using the closed-form power control solution, we propose a searching algorithm for deter-
mining the SC of each SBS iteratively, given in Algorithm 1. Denote the energy efficiency
of the network by ¢. We first define a vector Ly, = [Lyn1, -, Linn, - -+ » Lim n] to represent
the SC of SBS m for all slices. Define the set of all possible values of vector L,, as S,,,
which includes all possible combinations of the SC of SBS m for all slices. We introduce a
vector g = g1, ,Gm, " »gu|, where g,, is the maximum energy efficiency obtained by
searching the set S,, for the SC of SBS m given the SC of other SBSs. We initialize the
SC of all SBSs, i.e., L, L;, and a, and randomly select an SBS to start searching with
a nonzero value for g. Then, we iteratively search for the SC of every SBS (one SBS in
an iteration) for all slices and update the SC of any SBS for all slices if the new SC can
result in a higher energy efficiency while satisfying constraints (3.10c) and (3.10e). The
energy efficiency of all BSs either remains the same or increases after each update. The
search stops if the energy efficiency cannot be improved by updating the SC of any SBS.
Since the result of the LOSCS algorithm depends on the initial SC of SBSs, Algorithm 1
converges to a local optimum.
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Algorithm 1: Local Optimum SC Search (LOSCS)
1 Input: W
Initialize: ¢ = 0, Randomly set fJf, ﬁr, am,andg#0-e

2

3 while g # ¢ - e do

4 for j=1:|5,| do

5 f/fn, lAlfn, Qpm,n < Select the vector L,, with index j in the set S,,;

6 if constraints (3.10c) and (3.10e) are not satisfied then

7 ‘ Continue;

8 else

9 Obtain p according to Theorem 1;

10 qZ; + Calculate the energy efficiency of all BSs given W, L¢, L,, a, and
p;

11 if ¢ > ¢ then

13 L¢, L, a « ilf, I;r, a;

14 else

15 ‘ Continue;

16 end

17 end

18 end

19 m <— Randomly select the index of SBS, i.e., f, from the set F = {f : g5 # ¢};
20 end
21 Output: L, L,, a, and ¢

3.4.3 Unsupervised Learning-assisted SC Search

It is possible to find a better SC solution starting from a local optimum. For example,
simulated annealing [153] could be used to generate random solutions based on the given
local optimum. Then, the random solutions can be compared with the local optimum to
identify potential better solutions. However, such an approach may not always be effective
because it generates candidate solutions randomly [154]. We adopt a data-driven method
to find candidate SC solutions by leveraging historical data and refine the initial solution
based on the found candidate SC solutions. Specifically, the SC solutions obtained for
historical and similar DTD instances can be used as candidate SC solutions since similar
DTD instances may lead to the similar optimums of SC solutions.* Based on this idea,

4DTD instance is a realization of DTD.
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Figure 3.5: The architecture design of the convolutional neural network.

we propose a unsupervised learning-assisted SC search (ULSCS) algorithm including two
components, i.e., dimensionality reduction and recommendation.

A. Dimensionality Reduction

Since the data traffic in each grid is a continuous parameter, the probability that two
DTD instances are exactly the same is very low. Thus, we exploit similar DTD instances
to help generate potential solutions for comparison with local optimum solutions found
using Algorithm 1. As aforementioned, each DTD consists of three dimensions (temporal,
spatial, and slice), and each dimension may have a large set of variables. Consequently,
directly comparing DTD instances is impractical. Therefore, we first reduce the dimension-
ality of DTD and obtain a vector with the reduced dimension, named key features, which
still contains the most information of the DTD. For dimensionality reduction and feature
extraction, some model-driven approaches, e.g., principal component analysis, have been
investigated [155]. However, since DTD is high-dimensional in this problem, there is no
guarantee on the effectiveness and complexity of conventional model-driven approaches.
Therefore, we apply auto-encoder model, i.e., a deep unsupervised learning approach, to
extract the key features of each DTD instance. Fig. 3.5 shows the architecture design of the
proposed deep unsupervised learning based on a convolutional neural network, which in-
cludes three parts, i.e., data preprocessing, encoder, and decoder. The data preprocessing
part realizes the transformation of DTD between a grid-based format and a matrix format.
The encoder has several convolutional and pooling layers to reduce the dimensionality of
the preprocessed DTD and generate the corresponding key features. The decoder, with a
mirror architecture of the encoder, can reconstruct a DTD according to the key features.
Training the parameters of the neural network dose not require labeled dataset since the
auto-encoder approach can generate their own labels from the training data, i.e., DTD
instances. In the training phase, the goal is to let the input DTD instance be identical
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with the reconstructed DTD passing through the encoder and the decoder. Once the pa-
rameters of the convolutional neural network are well-trained, only the encoder function is
leveraged in Algorithm 2 to extract key features, while the decoder function is used only
in the training phase [37].

We denote the extracted key features by O € O, and then define two mapping func-
tions: 1) encoder function ¢ : W — O; and 2) decoder function ¢/ : O — W. We
leverage convolutional neural networks to approximate the two mapping functions, i.e.,
O = Y(W;9) and W' = ¢/(0;1'), parametrized by ¥ and v, respectively. The matrix
W’ represents a re-constructed DTD according to the key features. To accurately approxi-
mate the mapping functions, the optimal parameters of the convolutional neural networks,
denoted by ¥, and 1, are obtained from the following equation:

{0.,0,} = arg min F(W, W) = F(W,/(p(W;9); 9), (3.14)

where F(W, W’) is a loss function. Define the set of historical information entries as T,
including the data regarding D'TD instances, the corresponding SC solutions obtained by
the LOSCS algorithm, and the resulting values of energy efficiency. Let |Y| denote the
number of historical information entries. The data regarding DTD instances are used in
training the parameters of convolutional neural networks, i.e., ¢ and ¥'. The parameters ¥,
and ¥, can be obtained via the gradient descent method with the goal of minimizing the
difference between the DTD and reconstructed DTD [37].

B. Recommendation

At the beginning of each planning window, we calculate the similarity between the DTD
instance in the upcoming planning window, denoted by W, and a historical DTD instance
contained in set T, denoted by Wy, as follows:

¢(Wa; 19*) ’ 1/J<Wb; 79*) Oa : Ob

D(W,, W,) = _ , 3.15
(Wor Wo) = [0 W 0 [T (W 0]~ OO0 (3.15)

where O, = »(W,;1,) denotes the features of DTD instance W,, and O, = ©¥(Wy; 9.)
denotes the features of DTD instance Wy. A certain number of SC solutions, which the
corresponding DTD instances are the most similar, are selected as the potential candi-
date solutions for refining the obtained initial solution in the upcoming planning window.
The set of reference historical information entries including the selected DTD instances,
potential candidate solutions, and the resulting values of energy efficiency, is denoted by
T, € Y. The number of reference historical information entries is denoted by v.
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Algorithm 2: Unsupervised Learning-assisted SC Search (ULSCS)

1 Input: 9,, W,, T, and v

2 Calculate the similarity D between W, and historical DTD instances in T by (3.15);
3 Y, < Select v reference entries with most similar DTD from Y;

a ¢, L, L;, a < Execute Algorithm 1 given W, and random L¢, L,, and a;
5 for j=1:vdo

6 ¢, Li®, a’ <= Obtain from the j-th entry in Y,;

7 L, Ly, a < Li¢, Li®, a™;

8 ¢, Li, L, &’ < Execute Algorithm 1 given W, L¢, L,, and a;

9 if ¢’ > ¢ then

10 ‘ ¢, L¢, Ly, a < ¢/, Li, L, a’;

11 else

12 ‘ Continue;

13 end

14 end

15 Add W, ¢, L¢, L, and a to T;

[y
[=2]

Output: L¢, L, a, and ¢

Algorithm 2 presents the detailed procedures of leveraging historical information to
refine the initial solution obtained by Algorithm 1. Given a well-trained neural network
with parameter ¥, and the DTD instance W, in the upcoming planning window, we first
extract the key features and calculate the similarity between the DTD instance W, and
all historical DTD instances contained in the set of historical information entries, i.e., T
(Line 2). v reference historical information entries with the highest similarity are selected
(Line 3). For the DTD instance W, an initial solution, i.e., ¢, L¢, L, a, is obtained based
on Algorithm 1. In Line 5-14, we set the SC solution contained in each reference historical
information entry as the initial setting of SC in Algorithm 1 and run the algorithm to
find a refined solution. By comparing the performance of the refined solution with that
of the initial solution, we choose the coverage solution with the better performance as the
final solution. At the end of each planning window, data regarding the DTD instance,
the corresponding SC solutions, and the resulting energy efficiency can be added to the
set T. The iteration terminates when all SC solutions contained in the set T, have been
used as initial settings. The effectiveness of the proposed algorithm is expected to increase
with the number of historical information entries and the number of historical reference
information entries. Since the computation time of inferring deep neural networks is low,
the computation time of running Algorithm 2 mainly depends on running Algorithm 1 and
comparing the refined solution and the initial solution. As a result, the computation time
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Table 3.1: Simulation Parameters

Parameter ‘ Value ‘ Parameter ‘ Value
N 2 T 2
[y, 5] 120, 10] | [Ag, Ao [0.55, 0.45]
Hygs 8m Hgpg 4m
p 1 No -174dBm/Hz

of running Algorithm 2 is linear to the number of historical information entries and the
number of historical reference information entries, respectively.

3.5 Performance Evaluation

In this section, extensive simulation results are presented to demonstrate the performance
of the proposed schemes. We begin from introducing the simulation settings and benchmark
schemes. Then, we show the resulting simulation results.

3.5.1 Simulation Settings

The radius of the MBS’s SC is 1,500 m, and the maximum radius of SBSs’ SC is 800 m.
According to a propagation model in 3GPP standard [156], channel gain hf, between BS
m; ., and grid ¢ for slice n with distance d,,; (km) can be approximated as follows:

R (dB) = 40(1 — 4 x 107°H) log,q dy; — 181logyg H + 211ogy, fe + 80(dB),  (3.16)

where f. is the carrier frequency in MHz, and H represents the antenna height. For the
MBS and the SBSs, the antenna heights are denoted by Hygs and Hgsgg, respectively.
Other simulation parameters are listed in Table 3.1.

The implementation of the convolutional neural network in Fig. 3.5 is as follows. The
encoder contains 2 convolutional layers with 16 and 32 neurons, respectively. The kernel
size and stride is set as (3, 3) and 2 for both convolutional layers, respectively. Each
convolutional layer is followed by a pooling layer. ReLLU is used as the activation function
after each layer, and the cross-entropy is used as the loss function F. The dimension of
the key feature is 8. The architecture of the decoder is the reverse of that of the encoder.
We adopt the Adam optimizer to train neural networks. To evaluate the performance of
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the designed deep convolutional neural network, we select up to 8,000 DTD instances and
divide them into two data sets, i.e., a training data set with 7,800 instances and a test
data set with 200 instances.

The following two benchmark schemes are adopted:

o (lell-based power control: For each BS, the same transmission power is used for all
grids within its SC;

e (Cell zooming: For each SBS, its SC for different slices are the same.

3.5.2 Performance of Grid-based Power Control
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(a) Energy efficiency versus SC radius. (b) Average downlink transmission power versus SC
radius.

Figure 3.6: Comparison between the proposed grid-based power control and cell-based
power control.

In this subsection, we investigate the performance of the proposed grid-based power
control in a simple scenario with one MBS, one SBS, and one slice. In Fig. 3.6(a), we
compare the proposed grid-based power control and the cell-based power control. As shown
in this figure, the proposed grid-based power control achieves higher energy efficiency due
to its higher spatial granularity. By contrast, the cell-based power control cannot satisfy
the SINR constraint beyond a 300m SC radius of the SBS. Moreover, we compare the
transmission power of the two power control schemes in Fig. 3.6(b). For the grid-based
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Figure 3.7: The impact of spatial granularity on energy efficiency.

scheme, we average the BS transmission power of all girds. The figure shows that the
average transmission power of both the SBS and the MBS is higher with the cell-based
transmission power. The difference between the two schemes is significant when the SBS
SC radius is low.

Since the grid diameter r determines the network planning granularity in the spatial
dimension, we investigate the impact of r. Fig. 3.7 shows the energy efficiency given
different grid diameters. From this figure, we can make two observations. Firstly, for all
gird diameters, the energy efficiency increases when the SBS SC radius is smaller than
350m, and decreases when the SBS SC radius is larger than 350 m. Secondly, grid-based
power control with a smaller grid diameter leads to higher energy efficiency. As the grid
diameter decreases, the network is divided into more grids, and the power control can be
allocated with higher spatial granularity to suit the spatial DTD.

3.5.3 Performance of Flexible Binary Slice Zooming

In this subsection, we investigate the performance of the proposed flexible binary slice
zooming and compare it with that of the cell zooming scheme. As shown in Fig. 3.8, we
give an example of different DTDs of two slices. In Fig. 3.9(a), we compare the energy
efficiency of flexible binary slice zooming based on the grid-based power control with that
of two cell-based schemes averaged over 200 DTD instances. Two observations can be
made from this figure. Firstly, grid-based power control can achieve a better performance
compared to cell-based power control, and the performance gain increases with the number
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Figure 3.9: The performance of flexible binary slice zooming with different DTD instances.

of SBSs. Secondly, the proposed flexible binary slice zooming significantly improves the
energy efficiency compared to cell zooming. Moreover, the performance gap between flex-
ible binary slice zooming and cell zooming increases with the number of SBSs. Fig. 3.9(b)
shows the cumulative distribution function of the energy efficiency performance of all three
schemes from 200 different DTDs and 8 SBSs. We can see that the proposed flexible binary
slice zooming provides higher energy efficiency for most DTD instances. This is because
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Table 3.2: The Impact of Grid Diameter.

Grid Parameter (m) | 150 | 100 [ 75 | 50 [ 25
Energy Efficiency (bit/Hz/J) | 0.5756 | 0.6211 | 0.6532 | 0.6773 | 0.6891
Computation Time (Sec) 14.85 | 47.63 | 102.70 | 351.49 | 1782.32
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Figure 3.10: Energy Efficiency comparison between the LOSCS algorithm and the ULSCS
algorithm (averaged over 200 DTD instances).

that flexible binary slice zooming enables SC determination with higher granularity in the
slice dimension.

Next, we simulate the impact of grid diameter in the case of 8 SBSs, respectively.
Table. 3.2 shows the impact of the grid diameter on the network energy efficiency and the
computation time. As the grid diameter decreases, the network energy efficiency improves
in all cases. The improvement is significant when the grid diameter is large than 50 meters.
The computation time increases when the number of SBS increases and the grid diameter
decreases. This happens because the number of variables increases with the total number
of grids. The computation time of matrix operations and the number of iterations increases
with the number of variables. Therefore, to obtain an appropriate grid diameter for network
planning, we need to balance the energy efficiency and the computation time.
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Figure 3.11: Average energy efficiency performance improvement of the ULSCS algorithm
with different sizes of T and values of v, respectively.

3.5.4 Performance of the ULSCS Algorithm

In this subsection, we compare the performance of the proposed ULSCS algorithm and
the LOSCS algorithm and investigate the impact of the number of historical information
entries, i.e., the size of T, and reference historical information entries, i.e., the value of
v, respectively. We consider eight SBSs, one MBS, and two slices and adopt 200 DTD
instances to evaluate the performance. In Fig. 3.10, we can see that the performance of
the ULSCS algorithm is better than that of the LOSCS algorithm for most of the DTD
instances. Then, Fig. 3.11(a) shows the average energy efficiency of the ULSCS algorithm
given different numbers of historical information entries, i.e., different sizes of T, over the
200 DTD instances. In this figure, the performance gap between the ULSCS algorithm
and the LOSCS algorithm increases with the number of historical information entries.
In addition, the performance of the ULSCS algorithm is approximately the same as the
optimum global value. This is because more similar DTD instances and reference solutions
could be found with more historical information entries. Fig. 3.11(b) shows the impact of
the number of reference historical information entries, i.e., the value of v. The performance
gap between the ULSCS algorithm and the LOSCS algorithm increases with v, and the

ULSCS algorithm can approach the global optimum with sufficient reference historical
information entries.
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3.6 Summary

In this chapter, we have investigated a planning-stage SC determination and downlink
transmission power control for network slicing. The considered network features DTD
across the spatial, temporal, and slice dimensions, while each slice has a unique SINR
requirement. To achieve fine-grained planning, we have proposed the ideas of grid-based
network planning, dual time-scale planning, and flexible binary slice zooming. Following
these ideas, a network planning problem with the objective of energy efficiency maximiza-
tion is formulated. To solve this combinatorial problem with a large number of variables,
we have developed a novel unsupervised learning-assisted algorithm to determine the SC
and power control for all BSs. The proposed algorithm starts from an initial local op-
timum and searches for a better solution, and its performance can approach the global
optimum with sufficient historical information. The ideas and solutions developed in this
work provide insights for network planning problems in general.
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Chapter 4

Planning-stage Resource Reservation
for Multi-tier Computing

In this chapter, we investigate planning-stage resource reservation to support a compute-
intensive service with taking into account the mobility of MUT. As a promising computing
paradigm, multi-tier computing is expected to support a increasing number of computing
tasks for compute-intensive applications. MUTs can offload their computing tasks to the
computing servers deployed at different tiers of networks, i.e., the core networks, gate-
ways, and BSs. Each computing server requires communication, computing, and storage
resources to execute computing tasks. The mutual dependency among different resources
and the impact of MUT mobility create challenges in proactive resource reservation. Our
research objective is to minimize the usage of multi-network resources through adaptively
reserving adequate network resources for dynamic computing demands,. To this end, we
develop a hybrid data-model-driven network planning scheme with two elements, i.e., multi-
resource reservation and resource reservation re-configuration. First, DTs are designed for
collecting MUT status data, based on which MUT's are grouped according to their mobility
patterns. Second, an optimization algorithm is proposed to customize resource reservation
for different groups to satisfy their different resource demands. Last, a meta-learning-
based approach is developed to re-configure resource reservation for balancing the network
resource usage and the re-configuration cost. Simulation results demonstrate that the pro-
posed network planning scheme outperforms benchmark schemes by using less network
resources and incurring lower re-configuration costs.
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4.1 Background and Motivations

The NGWN are expected to support a wide range of compute-intensive applications [1].
A large portion of these applications are stateful, meaning that context data is required
to execute computing tasks [41,42]. For example, augmented reality applications require
volumetric media objects or holograms, as the context data, to process video segments
for MUTs. The prevalent mobile edge computing (MEC) paradigm provides a solution
to supporting computing applications with low offloading delay but has limitations in
supporting stateful applications [17]. Specifically, edge servers close to MUTs generally
have limited storage capacity to store all context data of stateful applications. Moreover,
even if the context data could be fully stored at an edge server, limited communication
coverage and a relatively small number of MUTSs served by the edge server would degrade
storage resource utilization.

To address the above limitations, both the industry and the academia have started
looking into the collaboration of servers [157,158]. Extending from MEC, multi-tier com-
puting integrates multiple servers deployed at the core network, gateways, access points,
and other locations in the network for executing computing tasks from MUTSs. Servers at
different tiers have diverse features in terms of resource capacity and service coverage [18].
Specifically, servers deployed at the core network and gateways have larger service coverage
and more abundant resources than servers deployed at access points. Through coordinat-
ing servers at different tiers, multi-tier computing can exploit different features of servers
to support computing applications, especially stateful ones, in the NGWN.

Network planning, as an important part of network management, can facilitate the
coordination of servers at different tiers. Network planning consists of resource reservation
and resource reservation re-configuration [1]. Resource reservation refers to proactively
reserving network resources for satisfying the upcoming resource demands from MUTs.
Resource reservation re-configuration refers to timely re-configuring resource reservation
decisions to adapt to time-varying resource demands and dynamic network environments.
Network planning for supporting stateful applications faces four challenges. First, com-
puting, storage, and communication resource reservation for stateful applications is tightly
coupled, yielding existing resource reservation solutions for supporting stateless applica-
tions inapplicable. Second, the requests for context data may vary across the network,
rendering both computing task assignment and storage resource reservation dependent on
specific servers and MUT mobility patterns. Third, information regarding individual MUT
status, e.g., MUT mobility, is unavailable at the time of network planning, yet such MUT-
level information can be useful for accurately calculating the amount of network resources
needed for supporting the applications [106]. Fourth, re-configuring computing and stor-
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age resource reservation for stateful applications in a dynamic network environment yields
additional costs from computing service interruption, which complicates resource reserva-
tion re-configuration [159]. Addressing the above challenges is important to accurate and
adaptive network planning for supporting stateful applications in the NGWN.

Recently, the digital twin paradigm has started attracting attention as a potential so-
lution to advancing network management for the NGWN [3]. The concept of digital twins
(DTs) originates from product life-cycle management in industry, where a DT is a syn-
chronized virtual replica of a physical object [33,34,160]. For the NGWN, DTs can be
introduced to represent individual MUTs. Each DT consists of a MUT data profile that de-
scribes the corresponding MUT, including the MUT’s mobility, service demands, and QoS
satisfaction, and DT functions for data acquisition, processing and analysis [3]. DTs bring
three benefits to network planning. First, historical data contained in DTs can be used to
predict MUT status in the upcoming time interval, which can, in turn, facilitate customized
resource reservation for highly diversified MUTs and enable fine-grained network planning.
Second, data indicating the performance of network planning can be collected based on
DTs, which can provide a foundation for resource reservation re-configuration in network
planning to adapt to a highly dynamic network environment. Third, DTs should acquire
extensive and well-organized data that can be used to explore and exploit hidden network
characteristics, thereby facilitating effective data-driven network planning approaches to
enhancing network performance. Due to the above benefits, DTs can be potentially de-

signed and exploited to improve the granularity, adaptivity, and intelligence of network
planning in the NGWN.

In this chapter, we design a network planning scheme for supporting stateful appli-
cations in the scenario of multi-tier computing. Our research objective is to find out the
minimum amount of network resources (including computing, storage, and communication)
needed for supporting the application and also balance the resource usage and the cost from
resource reservation re-configuration in a dynamic network environment. To achieve this
objective, we propose a DT-empowered network planning framework with the following
two elements: group-based multi-resource reservation and closed-loop resource reservation
re-configuration. First, we design DT's for individual MUT's to characterize their status and
group them based on their mobility patterns. We propose an algorithm based on matching
theory and particle swarm optimization to address the coupling relation among comput-
ing, storage, and communication in resource reservation. The proposed method enables
customized resource reservation for satisfying different resource demands of MUT groups
with different mobility patterns. Second, we develop a Meta-learning-based approach for
resource reservation re-configuration to cope with the dynamic network environment. The
main contributions of this chapter are the followings:
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e We propose a novel network planning framework to facilitate fine-grained resource
reservation based on MUT data contained in DTs;

e We address a challenging multi-resource reservation problem for supporting stateful
applications in multi-tier computing;

o We develop an automated closed-loop approach to re-configure resource reservation
in a dynamic network environment for balancing the network resource usage and the
cost from re-configuring resource reservation.

The remainder of this chapter is organized as follows. Section 4.2 describes the consid-
ered network scenario, the proposed DT-empowered framework, and system model. Sec-
tion 4.3 formulates the network planning problem for multi-tier computing. Sections 4.4
and 4.5 introduce the proposed solutions for resource reservation and resource reservation
re-configuration, respectively. Section 4.6 presents the simulation results, followed by the
summary in Section 4.7.

4.2 Network Scenario and System Model

In this section, we first introduce the considered network scenario of multi-tier comput-
ing. Then, we propose a DT-empowered network planning framework to support stateful
applications and present the corresponding system model.

4.2.1 Network Scenario

The considered scenario is shown in Fig. 4.1. Computing servers are deployed at different
locations, including: (i) base stations (BSs); (ii) network aggregation points (NAPs), such
as gateways; and (iii) the core network (CN) [17]. Each server can build one dedicated
virtual machine (VM) to execute computing tasks from MUTs for the stateful application.
The service coverage area of a server at a BS (S-BS) is the BS’s communication coverage.
The service coverage area of a server at a NAP (S-NAP) is the union of the communication
coverage of all the BSs connected to it. For example, S-NAP 1 connects to S-BS 1 and
S-BS 2, and the communication coverage area of S-NAP 1 consists of the two green cells
as shown in Fig. 4.1. The server at the CN (S-CN) can provide computing service to all
MUTs in the considered network. The service coverage areas of servers at the same tier of
the network do not overlap. MUTs generate computing tasks and offload their computing
tasks to a server when located in its service coverage area. We assume that the computing
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Figure 4.1: The considered scenario of multi-tier computing.

task generation at all MUT's corresponds to an identical statistical process due to the same
stateful application. The VM at the server then executes the offloaded computing tasks
and sends computing results back to the MUTs. Denote the S-CN by e*, and let £ and
E"aP denote the set of S-BSs and the set of S-NAPs, respectively. Let & = EPUEP U {e}
represent the set of all servers in the network. Denote the set of BSs by B = {1,2,---, B},
and let & C & denote the set of servers that include BS b € B in their service coverage
areas.

We focus on resource reservation to support stateful applications, which requires context
data for executing computing tasks. The application uses a fixed set of context data, and
the popularity of different data chunks in this set is different. Moreover, the popularity
of each data chunk can vary at different BSs across the network, i.e., the popularity of
context data chunks is location-dependent. Therefore, if a MUT moves into the coverage
of a different BS, its requests for context data may also change, creating a dependence of
its resource demand on its mobility. A MUT that connects to more BSs within a time
interval is considered to have higher mobility. MUTs with similar mobility patterns can
be grouped together in resource reservation due to their similar need for context data.

The time duration of interest is partitioned into K time intervals of length 7 (e.g., 5 to
10 minutes per time interval). Denote the set of time intervals by £ = {1,2,--- | K}. A
central controller in the CN maintains the DTs for MUTs and makes resource reservation
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Figure 4.2: The designed UDTs used for network planning.

decisions proactively for the stateful application at the beginning of each time interval. We
define vector ¢, to represent the mobility pattern of MUT d in time interval k € K, where
the bth element of ¢g ) represents the time duration in which MUT d is in the coverage of
BS b during the time interval. Table I lists the important symbols for easy reference.

4.2.2 DT-empowered Network Planning

In this subsection, we present the idea of DT-empowered network planning with our specific
design of DTs, which is a succession and development of the framework in [3]. A DT is
created for an individual MUT, called UDT, which consists of a MUT data profile and UDT
functions. As shown in Fig. 4.2, UDTs are located at the CN, and MUT data profiles are
maintained and updated by the central controller via UDT functions. Specifically, each
MUT data profile is a well-organized set of MUT data. In this work, the data attributes of
each UDT consist of the mobility of the corresponding MUT, including the MUT’s location
and velocity, as well as the information of each computing task from the MUT), including
context data requirement, input and output data size, computing workloads, and resource
demands. There are three UDT functions used to manage and analyze MUT data profiles
for network planning, as follows:
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e Data collection and storage function — MUT data required for network planning
are collected from individual MUTSs via BSs or offered by service providers. Data
regarding MUT mobility, e.g., MUT locations, can be uploaded by individual MUT's
periodically, as specified in 5G. Data regarding services, e.g., computing workloads
and required context data, can be obtained from service providers or computing
servers [17]. The collected MUT data are stored in the corresponding UDTs;

e Data processing function — At the beginning of time interval k, the mobility
patterns of each MUT in the past 7" time intervals, i.e., ¢pqu, VK’ € [k =T,k —1], are
obtained based on the MUT data in the corresponding UDT. Then, the historical
mobility patterns are used to predict the mobility pattern of each MUT, i.e., ¢4, in
the subsequent time interval. Other data prediction, e.g., spatial task distributions
and requested context data, based on historical data in UDTs is also conducted via
this function;

e MUT grouping function — We group MUTs based on their predicted mobility
patterns, i.e., {¢qx, Vd}, at the beginning of each time interval. MUTSs from the
same group have similar network resource demands for executing computing tasks
due to their similar mobility patterns, allowing for an accurate approximation of
resource demands for MUTs from each group. Based on MUT grouping, network
resources can be reserved accurately to achieve fine-grained network planning. !

The DT functions are used to manage and analyze MUT data profiles to empower net-
work planning. However, they do not make network planning decisions but only provide
information for network planning.

Based on UDTSs, we propose a novel network planning framework as shown in Fig. 4.3,
which includes two core elements: group-based resource reservation and closed-loop re-
source reservation re-configuration.

e Group-based resource reservation: Based on MUT grouping, we reserve storage
and computing resources accurately to satisfy the resource demands for UEs in each
group in the upcoming time interval. Denote the set of groups by N' = {1,2,--- , N}.
Let 2y, denote the number of computing tasks generated by the MUTs who are
associated with group n and are in the coverage of BS b during time interval k.
We refer to matrix xi = [z7,]wes as spatial task distribution of group n in time

Note that the mechanism of MUT grouping, as well as the data attributes used for grouping, can be
customized based on the data contained in UDTs in different network scenarios. The number of groups
depends on the trade-off between granularity and complexity.
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Figure 4.3: An illustration of DT-empowered network planning.

interval k. Since it is impossible to know the actual value of x}! at the beginning
of time interval k, x} is predicted based on historical data contained in UDTs. We
use superscript “~” e.g., I, to represent the predicted values of x. Given spatial
task distributions, we propose an algorithm to address the storage and computing
resource reservation problem with highly coupled variables. The detail of group-based
resource reservation is discussed in Section 4.4.

Closed-loop resource reservation re-configuration: Since spatial task distri-
butions may change across time intervals, re-configuring the reserved resources on
servers to adapt to dynamic computing demands is necessary but yields additional
cost from re-configuring resource reservation. We design a closed-loop approach to
re-configure resource reservation re-configuration for balancing the network resource
usage and the cost from re-configuring resource reservation, and the time line is
shown in Fig. 4.3(b). Specifically, at the beginning of each time interval, the central
controller identifies whether to re-configure resource reservation with a proposed al-
gorithm. If the resource reservation needs to be re-configured for the subsequent time
interval, the controller will make a new resource reservation decision; Otherwise, the
controller will keep using the resource reservation from the previous time interval. At
the end of each time interval, the data regarding network performance are collected
based on UDTs. The detail of closed-loop resource reservation re-configuration is
discussed in Section 4.5I.
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4.2.3 Computing Model

The overall load of computing tasks assigned to each server during a time interval affects
network resource reservation on the server. Denote the load of computing tasks generated
by MUTs from group n in the coverage of BS b and assigned to server e during time
interval k by f', ;. The relation between computing task assignment and spatial task
distribution is given by

D fien =T YWEBnEN kEK. (4.1)

e€&y

Let m{, denote the overall load of computing tasks generated by MUTSs from group n and
assigned to server e during time interval k,

mly =Y frop Ve€EneN kek, (4.2)

beB.

where B, denotes the set of BSs within the service coverage of server e. In Eq. (4.2), the
fine granularity of computing task assignment, reflected through f', ;, helps determine the
computing load at each server accurately.

Since we consider one specific stateful application, the computing tasks for this appli-
cation are assumed to have (approximately) the same input data size (in bits), computing
workload (in CPU cycles per bit), and result data size (in bits).? Let «, 3, and 7 denote
the average input data size, the average computing workload, and the average result data
size, respectively. Each server can reserve a certain amount of computing resource (in
CPU cycles per second) for VMs to execute computing tasks. Let ¢, denote the amount
of computing resource of server e reserved for group n during time interval k, and define
Cp = [Cg,k]Vees,ne ~ as the computing resource reservation decision in time interval k. For
time interval k, the computing resource reservation should satisfy the following constraint:

d gy <C, VeeE keK, (4.3)
neN

where C, denotes the maximum computing resource at server e that can be utilized for the
stateful application. We assume that the computing resources on the S-CN, i.e., e = e,
is sufficient for executing all computing tasks. The time that server e takes for executing

2The proposed framework can be straightforwardly extended to handle the case of computing tasks with
different input data sizes, computing workloads, and result data sizes by leveraging DTs to collect such
information for each computing task. The problem-solving approach (including the proposed algorithms)
remains applicable in such a case.
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the computing tasks assigned to it from group n during time interval £ should satisfy the
following requirement:

m?, af

—ebT <P Yee Ene N keK, (4.4)
Ce,k

where 7P denotes the maximum tolerable computation time.> Due to (4.4), computing re-

source reservation and computing task assignment for each server are mutually dependent.

Let €, represent the overall computing resource usage for executing all computing
tasks assigned to server e in time interval k, which is computing load-dependent. Based
on [161,162], we adopt a linear model of computing resource usage as follows:

€p=> cmly, Ve & keK, (4.5)
neN

where €¢ is the computing resource usage for executing each computing task at server e.

4.2.4 Storage Model & Remote Access

Different from stateless applications, the execution of a computing task for stateful appli-
cations requires the corresponding context data. If the context data is not in the storage of
the server, the server should download the context data from a remote server, thereby yield-
ing additional communication resource usage. We model the storage and the additional
communication resource usage for the stateful application in this subsection.

Denote the amount of the reserved storage resource (in bits) of server e during time
interval k and the storage capacity (in bits) of server e by g., and G, respectively. The
value of g should satisfy the following constraint:

Ger < G, Ye e E\{e},ne Nk e K. (4.6)

We assume that the storage resources on the S-CN; i.e.; e = €™, is sufficient for storing
all context data. Define g = [ge,k}veeg\{ecn} as the storage resource reservation decision for
all S-NAPs and S-BSs in time interval k. Based on the model of storage resource usage

3We do not consider queuing delay in the planning stage because we do not assume a particular
computing task arrival pattern. For modeling the queueing delay, the task arrival pattern must be known a
priori. However, such a pattern is usually unavailable in practice, while assuming a particular arrival
pattern can oversimplify the scenario.
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in [163], the resource usage for reserving storage resource at server e in time interval k,
s .
denoted by €, is given by

ok = EeJeis VEEE Kk EK, (4.7)

where €} represents the per bit resource usage for reserving storage resource at server e.

Let Z = {1,2,--- , I} represent the set of all chunks of context data in the library for
the stateful application, where I denotes the number of chunks in the set Z. All chunks of
context data for the stateful application have the same data structure and thus identical
data size (in bits), denoted by L. Executing each computing task requires one chunk of
context data in the set Z [164]. Denote the request ratio of chunk ¢ in the coverage of BS b
in time interval & by pé’ is 1-€., the load of computing tasks requesting chunk ¢ € Z over the
load of all computing tasks generated in the coverage of BS b in time interval k. The value
of pak may be different in the coverage of different BSs and may vary across different time
intervals. Let py = [pé’k]weg,ig denote the chunk request ratio profile in time interval k,
which can be obtained via prediction based on historical data contained in UDTs [165].

The overall data volume of all chunks may be much larger than the storage capacities of
S-BSs and S-NAPs. Each S-BS and S-NAP can only store some chunks of context data for
executing computing tasks prior to the beginning of each time interval. The S-CN stores
all chunks of context data. Let Z. ;, C Z denote the set of chunks stored at server e in time
interval k. Given the amount of reserved storage resource on server e, i.e., g, the number
of chunks in set Z.  is |Z. x| = |g./L] where |-| represents the floor function.

Since our focus is storage resource reservation, we follow the hierarchical storage policy
in [166,167] to determine the set of stored chunks on each S-BS and S-NAP, i.e., Z, j, based
on the effective request ratio of chunks. Define the effective request ratio of chunk ¢ for
executing the computing tasks assigned to server e in time interval k as qé s 1.€., the load
of computing tasks requesting chunk ¢ € Z over the load of all computing tasks generated
in the service coverage of server e in time interval k. In multi-tier computing, the stored
chunks on S-NAPs and the S-CN may not be requested for computing task executing when
the chunks are stored on S-BSs for the sake of reducing communication resource usage. As
a result, the effective request ratio of a chunk for an S-NAP depends on not only the chunk
request ratio profile, i.e., pg, but also the set of chunks stored on S-BSs and computing
task assignment, which is difficult to determine.

For simplicity, we make two following assumptions to estimate the effective request
ratio for each S-NAP. First, S-BS e located at BS b stores |Z. | chunks with largest pj ;.
Second, given set Z.; for any S-BS, the computing tasks requesting a chunk stored on
the S-BS are assigned to the S-BS as much as possible when not violating the computing
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resource capacity of the S-BS [167]. Based on the two assumptions, the value of qé’k for
an S-BS equals to the request ratio of chunk ¢ in the coverage of the corresponding BS in
time interval k, i.e., pj ,; The value of ¢ ; (g, px) for an S-NAP can be estimated given gy,
and pg, which is detailed in Appendix 6.2. Each S-BS and S-NAP sorts the chunks in a
non-increasing order based on the effective request ratio, i.e., qzjk(gk, pr), and stores the
most requested |Z, x| chunks.

When the chunk required for executing a computing task is not found in the storage of
an S-BS, the S-BS will first attempt to download the chunk of context data from the S-NAP
covering it and resort to the S-CN in the case that the S-NAP does not have the chunk of
context data either. When the chunk required for executing a computing task is not found
in the storage of an S-NAP, the server will download the context data from the S-CN.
For any server, accessing another server remotely and downloading context data from the
remote server yields additional communication resource usage, referred to as remote access
of context data [168].

Denote the data volume (in bits) of remotely accessing context data for each computing
task by L™, the value of which may be different from the value of L due to headers used
by transmission protocols. Let fgf ezk denote the number of computing tasks that require
chunk 7 and are generated by group n in the coverage of BS b and assigned to server e during
time interval k. The relation between f;', , defined in Eq. (4.1) and f;’ elk is fiter = 2oz [y, ;k
Define the computing task assignment in time interval k as f;, = | fg" ’eik]%egyeegme N €T, -
For S-BS e, the communication resource usage for downloading context data from S-NAP ¢’

covering S-BS e for executing computing tasks from group n during time interval k is given
by:

(%

, |
ek = L€YY it

1€Le kML & beBe

o™ YT Y Ve e £

iEIe,k:UZE/,k beBe

(4.8)

where coefficients £ and £ represent the communication resource usage for downloading
per bit context data to S-BS e from S-NAP ¢’ and the S-CN, i.e., e™, respectively. In
Eq. (4.8), the first term represents the communication resource usage for server e to access
the context data remotely from server e’ at the NAP, and the second term represents the
communication resource usage for server e to access the context data remotely from S-
CN e, For S-NAP e, the communication resource usage for downloading context data
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from the S-CN during time interval k is as follows:

nek Lrefe Z Z bek’ Ve € gﬂap (49)

1€Ie,k beB.

where £ denotes the communication resource usage for downloading per bit context data

to S-NAP e from the S-CN, i.e., e™

4.2.5 Communication Model

Generally, communication resource usage for uploading the input data and downloading
the result of a computing task involves two parts: (i) the resource usage for the wireless
communication between the MUT and the connected BS; and (ii) the resource usage for
the wired communication between the BS and a server. In the considered scenario, each
MUT is associated with only one BS. Regardless of which computer server deployed in the
multi-tier network is selected for executing the computing task, the resource consumption
for the wireless communication between the associated BS and the MUT for uploading
input data and downloading computing results is a constant. As a result, the wireless
communication does not affect the solution of the resource reservation problem. Since
S-BS and BSs are co-located, there is no additional communication resource usage if any
computing task is processed at an S-BS.

Denote the maximum communication resource usage of server e € £"P U {e™} for
uploading input data and downloading result data by V"P and V4" respectively. Let 7.
denote the coefficient representing the communication resource usage for uploading and
downloading per bit data between BS b and server e. The communication resource usage
for uploading input data and downloading computing results between server e and BS b
during time interval k are given by:

vE e =ome Y > fi, Ve e E\{e™}be B k€K, (4.10)
neN €T
and
VI = e Y fiy Ve € EN{e™} b€ Bek € K, (4.11)
neN €T
respectively.
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4.3 Problem Formulation

We formulate the problem of planning-stage resource reservation for multi-tier computing
to support stateful applications in this section. We aim to find out the minimum amount of
network resources needed for supporting the application while balancing the resource usage
and the cost from re-configuring resource reservation in the presence of network dynamics.

Let ry = [cg, 8k, fr] denote the resource reservation decision, including computing re-
source reservation, storage resource reservation, and computing task assignment, in time
interval k. Variable r; is determined at the beginning of time interval k. Given ry, the
overall network resource usage in time interval k, denoted by A (ry), can be obtained
based on Egs. (4.5), (4.7), (4.10), and (4.11), as follows:

Ap(re) =D wlel +w'e  + w (VS5 + v55), (4.12)
ecl

where v5% = 3,5 (U, + v, and w®, w®, and w® are the weights of the computing,
storage, and communication resource usage, respectively. Since the spatial task distribution
may vary across time intervals, even if a resource reservation decision can minimize instan-
taneous resource usage in Eq. (4.12) in time interval k, the same decision may not minimize
the overall network resource usage in the subsequent time intervals. Re-configuration is
required for the resource reservation to adapt to the dynamic spatial task distribution,
while re-configuring resource reservation yields additional cost, e.g., the cost from vertical
scaling of VM [159]. Denote by OY the cost from re-configuring resource reservation.

Let a; € {0,1} indicate whether the resource reservation in time interval k should be
re-configured or not, which is determined at the beginning of time interval k. If ax = 0, the
controller should make new resource reservation decision for time interval k; Otherwise,
the controller should keep using the resource resource from time interval £k — 1. Define
Xy = [fﬁk]%egme A as spatial task distributions of groups, referred to as group-based spatial
task distribution. Let function ry = (X, px), representing that the resource reservation
decision is made according to the group-based spatial task distribution and the chunk
request profile in time interval k. The value of 7, resource reservation in time interval k,
evolves as follows:

r, = (1 — ak)lﬂ(f(k, pk) + arri—1, Vk € K. (413)

Given the value of ay, the cost from re-configuring resource reservation in time interval k,
denoted by o}, is as follows:

o) = (1 —a,)0", Vk € K. (4.14)
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The problem of minimizing the long-term network resource usage and the cost from
re-configuring resource reservation over K time intervals, is formulated as follows:

Ak(rk) + )\0};

P0: min - (4.15a)
aR keke ZbEB ZHEN Ib,k

s.t. (4.3), (4.4), (4.6) (4.15b)
d P <V Vee ENE® kK, (4.15¢)

beBe
D ur < VI Ve e E\E™ k€K, (4.15d)

beBe
o <Vt neN kek, (4.15¢)

ecf
Ay eRY, VeeEneN kek, (4.15f)
ger ERT, Vee E\{e™},ne N,k e K, (4.15¢)
L EN, VbeBeeEneN keK, (4.15h)
ap € {0,1}, Vk € K, (4.151)

where V' denotes the maximum communication resource usage of remote access for one
computing task, a = [ar|vkex, R = [rk)vkex, and A is the weight balancing the network
resource usage and the cost from re-configuring resource reservation. R represents the set
of positive real numbers, and N represents the set of natural numbers. Constraint (4.15¢)
limits the communication resource usage of remote access averaged over all computing
tasks from each group to be less than V°. The solution of (4.15) provide a lower bound
on the resources needed to support the stateful application, taking into account the re-
source reservation re-configuration cost in network planning. If the network resources are
sufficient, more resources can be reserved for the application for better service quality. In
addition, in a practical network supporting multiple applications, statistical multiplexing
among resources reserved for different applications can be implemented for high resource
utilization.

Solving Problem PO is challenging due to the following two reasons: (i) For each time
interval, determining the value of ry is a mix-integer optimization problem, and the vari-
ables of f; and g are mutually dependent; (ii) determining the value of a; is a sequential
decision making problem, and the decision at any time interval affects the subsequent de-
cisions. To solve Problem PO, we decouple it into two problems. We propose algorithms
for resource reservation in each time interval, which are presented in Section 4.4, and a
learning-based approach for re-configuring resource reservation over multiple time intervals,
which is presented in Section 4.5.
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4.4 Group-based Resource Reservation

In this section, we design an algorithm to enable group-based resource reservation in each
time interval.

When a5 = 1, the controller keeps using the resource reservation decision from time
interval k — 1. For when a;, = 0, we formulate the group-based multi-resource reservation
problem in time interval k, given the predicted spatial task distributions xy, as follows:

min An(ry)
v D beB DneN Lok (4.16)
t. (4.3), (4.4), (4.6), (4.15¢-h).

Problem P1 is a combinatorial optimization problem, and variables f; and g are still
coupled. We first address computing task assignment, i.e., fi, and computing resource
reservation, i.e., c, given a storage resource reservation decision, i.e., gi. Then, we lever-
age particle swarm optimization to find the solution of storage resource reservation. The
solution of (4.16) corresponds to group-specific resource reservation, and the total amount
resources to be reserved for all groups can be calculated accordingly. The reserved resources
can be multiplexed among different groups.

4.4.1 Computing Task Assignment and Computing
Resource Reservation

Since multiple computing tasks can be assigned to the same server, assigning computing
tasks to servers is many-to-one matching. We first transform the many-to-one matching
into a one-to-one matching. Specifically, we create several virtual servers to represent each
physical server. Denote the number of virtual servers for S-NAP or S-BS e by N,. The value
of N, is the maximum number of computing tasks that can be assigned to server e while
not violating the constraints of resource usage, i.e., constraints (4.3), (4.15¢), and (4.15d).
The number of virtual servers for physical server e is given by:

N, =
Vdown

mln{ TPC J LZB 1) J LZ downJ} lf € 6 gnap (417)
|51, 1f ecEb

where || represents the floor function. For an S-NAP, i.e., e € £"P the value of N, in
Eq. (4.17) is the minimum value among the maximum number of computing tasks that can
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TPCe

af

. up . .

ie., \-ZVTJ’ and the maximum number of computing tasks that can be downloaded,
Be “b,e,k

be executed, i.e., | |, the maximum number of computing tasks that can be uploaded,

Vedown
number of computing tasks that can be executed, i.e., LTZ%J We let the number of the
corresponding virtual servers for the S-CN in time interval k be Y, s> -y, i.e., the
load of all computing tasks in time interval k, to guarantee that all computing tasks can
be processed. Each virtual server is assigned at most one computing task, and assigning

computing tasks to virtual servers becomes one-to-one matching.

ie, | |; and for an S-BS, i.e., e € £, the value of N, in Eq. (4.17) is the maximum

Given the amount of storage resource reserved on S-BSs and S-NAPs, the sets of stored
context data chunks, i.e., Z.x, on all S-BSs and S-NAPs are determined based on the hi-
erarchal storage policy described in Section 4.2. Denote by D,:L;k the network resource
usage, including resource usage from computing, uplink communication, downlink com-
munication, and remote access, for executing a computing task that requests chunk 7 and
is generated by a MUT from group n in the coverage of BS b during time interval & at
server e. The calculation of Dgezk consists of two parts. The first part is the resource
usage from computing, uplink communication, and downlink communication, which is
not related to the sets of stored chunks, while the second part is the communication re-
source usage from remote access, which depends on the sets of stored chunks. Denote by
Wy = w4+ w®(a + 7). the sum of resource usage from computing, uplink communi-
cation, and downlink communication used to execute a computing task generated in the
coverage of BS b at server e. According to the communication resource usage for remote
access, the calculation of ngg . 1s categorized into the following four cases:

bek —
Wie +woLrece | if e € EP ¢/ € £ i € T,y N Tur g;
Whe +w°Le¢™ if e € €%, ¢/ € P i € T, ULy (4.18)

Whe +we L™ if e € EMP i & Ty
W, otherwise.

In Eq. (4.18), if chunk i is not stored on S-BS e but stored on S-NAP ¢/, ie., i € Z, N
Z. ), the communication resource usage for S-BS e to remotely access S-NAP ¢’ for one
computing task is wOLreﬁjl; If chunk 7 is not stored on S-BS e or S-NAP ¢/, ie., i €
Ze UZe, the communication resource usage for S-BS e to remotely access the S-CN for
one computing task is w°L*¢¢; If chunk i is not stored on S-NAP e, i.e., i € L.}, the
communication resource usage for S-NAP e to remotely access the S-CN for one computing
task is w® L€ ; Otherwise, chunk i is stored on server e, and no communication resource
is used for remote access.
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Algorithm 3: MCLA Algorithm

1 Input: L7, Vu e U
Initialization: U, U™ =U, T, j = 0;
while |7] =0 do

2

3

4 | J=J+1

5 for u € U™ do

6 Select the first computing task in preference list £7}"" as the proposal from

virtual server u;

7 Remove the selected computing task from preference list L3777

8 end
Adopt the dynamic programming in [169] to select proposals from the new
proposals in iteration j and adjust the matched proposals in iteration j — 1 for
minimizing the objective function in (4.19) while satisfying constraint (4.15e).

10 Remove the matched virtual servers from U™°;

11 Add the unmatched virtual servers to U"°t;

12 Remove the matched computing tasks from 7 based on the matching result in
iteration j;

13 end

14 T, + z;;

15 Output: f,

Denote the set of virtual servers and the set of computing tasks by U and T, respectively.
Given computing task t € T and virtual server u € U, we can determine the corresponding
values of (n,i,b) of the computing task and physical server e. Let D,(cu’t) represent the
sum of computing and communication resource usage for executing computing task ¢ at
virtual server u in time interval k, which can be calculated via Eq. (4.18) based on the
corresponding values of (n,,b) and physical server e. We introduce variable z,(cu’t) € {0,1}
to indicate whether to assign computing task ¢ to virtual server u in time interval £ or not

and define z;, = [Z£1L7t)]VuEM,tET- If computing task ¢ is assigned to virtual server u, z,(cu’t) =1;

Otherwise, zliu’t) = 0. Finding the solution of f; in Problem P1 can be transformed into
finding the solution of z, as follows:

P2: Hzlin Z Z D]gu,t)zlgu,t)

ueU teT
s.t. (4.15e),

2" e {0,1}, Vk e K.

(4.19)
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We propose a matching-based computing task assignment (MCLA) algorithm to select a
virtual server for each computing task, as shown in Algorithm 3.

server

We construct the preference list L3777 for virtual server v in time interval k, which is a
vector containing the indexes of all computing tasks that can be assigned to virtual server u
in time interval k, sorted by the value of D,g"’t in a non-decreasing order. In each iteration,
the controller checks the current preference list for each virtual server and selects the first
computing task in the preference list as the proposal from the virtual server. After that, the
selected computing task is removed from the virtual server’s preference list. The controller
selects a proposal for each computing task to minimize the objective function in Problem P2
while satisfying constraint (4.15¢), which is a 0-1 Knapsack problem. Let 4" C U denote
the set of virtual servers that are not yet matched. A dynamic programming approach
in [169] is adopted to adjust the matching result, i.e., selecting proposals for virtual servers
in the set U™ and adjusting the matched proposals for virtual servers in the set U \ U™
for minimizing the objective function in Problem P2 while satisfying constraint (4.15e).
Then, set U™" is updated accordingly after each iteration. A computing task should be
re-proposed for each virtual server in the set U™ in the next iteration. The matching
process terminates when all computing tasks in the set 7 are successfully matched. Based
on the matching result, i.e., z;, we can determine the computing task assignment decision,
i.e., fk

Given fi, the numbers of computing tasks assigned to the servers, i.e., my, are de-
termined based on Eq. (4.2). Then, computing resource reservation in time interval & is
determined according to Eq. (4.3), which is:

TP

The time complexity of Algorithm 3 depends on the number of iterations of the outer
loop for matching (Lines 5 - 13) and the time complexity of solving the knapsack prob-
lems in each iteration (Line 9). For the outer loop, the time complexity of solving the
matching problem is O(ZXy), where Z = . N and X}, = >\ > .5 7p, denote the
number of all virtual servers and the number of all computing tasks in time interval k,
respectively [170]. In each iteration, we should solve a knapsack problem to satisfy con-
straint (4.15e) for every group. The time complexity of the adopted dynamic programming
approach for group n is O(V,°X}!), where X! = >, s a7, denotes the number of all com-
puting tasks from group n in time interval k [169]. Therefore, the time complexity of
Algorithm 1is O(ZXy Y, Ve XP).
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4.4.2 Storage Resource Reservation

Determining the amount of storage resources reserved on S-NAPs and S-BSs is a combi-
natorial optimization problem. Therefore, finding the globally optimal solution is chal-
lenging [171]. Evolutionary heuristics, specifically particle swarm optimization (PSO), is
leveraged to achieve the local optima of the problem. Based on PSO, we propose a re-
source reservation (RR) algorithm to solve Problem P1. In the proposed RR algorithm,
we leverage a number of particles, referred to as the particle swarm, where the position of
each particle corresponds to the solution of storage resource reservation, i.e., gr. In each
iteration, each particle moves within the solution space while adjusting its position and
speed dynamically based on [171]. After repeating such an iteration multiple times, the
positions of all particles can converge to the same position, which is the found solution of
storage resource reservation [172]. Given the storage resource reservation, the values of fj,
and c; can be determined based on Section 4.4.1.

The detailed procedures of the RR algorithm are introduced in Algorithm 4. Since
the RR algorithm applies to any time interval, we omit subscript “k” in the rest of this
subsection. We define the the solution space of the storage resource reservation problem as
F, where the possible solution of fi, i.e., particles’ positions, should satisfy constraint (4.6).
Denote the set of particles and the position of particle y in the [ th iteration by ) and gg),
respectively. Let g, and g* denote the best position of particle y and the best position
among all particles’ positions, i.e., the particle swarm’s best position, up to the [ th itera-
tion, respectively. Accordingly, let Agl), Ay, and A* denote the value of A in Problem P1
given position gi,l), g,, and g*, respectively. Based on [172], the speed of particle y € ) in

the [ th iteration, denoted by sg,l), evolves as follows:

st = sl + G (8, —glY)

sy (4.21)
+aps (85— gy V),

where parameter ¢ is the weight for each particle to keep its speed from the previous
iteration. Parameters ¢; and ¢, are cognitive and social coefficients for learning from
each particle’s own best position and the particle swarm’s best position up to the current
iteration, respectively, and both are positive random variables for exploring the solution
space [172]. The position of particle y, i.e., gz(f), in the [ th iteration is given by:

gl =gl 450, (4.22)

If a particle moves out of the solution space, the particle is replaced by a new particle with
a random position in the solution space F. In this way, the positions of all particles are
guaranteed to satisfy constraint (4.6).
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Algorithm 4: RR Algorithm

1 Input: ¢, ¢, &, @1, o, [

2 Initialization: [ =0, s =0, g\’ € F, vy € Y

3 f;o),Vy € YV < Calculate by Algorithm 3 given gzgo);

4 Ay,Vy € Y < Calculate by (4.12) given cz(,o), gz(,o), and féo);
58, Vyel g ey

6 A* min{Ay,Vy € y};

7 g% < g, where y = argmin, {Ay,Vy € y};
8 while [ < [™* do

9 for y € Y do

10 if constraint (4.6) is not satisfied then

11 ‘ gg,l) <+ Select a position in F randomly;

12 end

13 f;l) < Calculate by Algorithm 3 given gl(,l);

14 Ag) + Calculate by Eq. (4.12) given cz(,l)7 gl(,l)7 and fél);
15 if Ag(/l) < Ay then

16 ‘ g, Ay — gél), Ag(j);

17 end

18 if AY < A* then

19 ‘ g* A* g?(f), Ag,l);

20 end

21 sg(ﬁl),gz(fﬂ) < Update by Eqs. (4.21) and (4.22), respectively;
22 end

23 end

24 f* c* < Calculate by Algorithm 3 and Eq. (4.20) given g*, respectively;
25 Qutput: g*, f* c*, A*

Algorithm 4 shows the detail of the proposed RR algorithm. Denote the maximum
number of iteration by [™**. Line 2 initializes all particles with the positions in the solution

space F. Line 3 to Line 4 obtain the value of A in Problem P1, i.e., Ay, given the position

of particle y, i.e., gz(f). Line 5 to Line 7 find the best solution among all particles based

on the value of A,. Line 10 to Line 21 update the position of each particle based on
Egs. (4.21) and (4.22) in each iteration. The outputs of the RR algorithm include the
solution of Problem P1, i.e., g*, f*, and c*, and the value of A*.
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4.5 Meta Learning based Resource Reservation Re-
configuration

In the preceding section, we solve the network resource reservation problem for one time
interval. In this section, we determine the value of a = [ag]ykex to re-configure resource
reservation decisions among K time intervals.

We formulate the sub-problem of resource reservation re-configuration based on Prob-
lem PO, as follows:

Ak(rk) + )\OZ

P3: min - (4.23a)

a kek ZbEB ZREN xb,k’
s.t. (4.151). (4.23b)
We define k* as the time interval when the latest resource reservation was re-configured
up to time interval k. In time interval &*, ap» =0, a; =1 for j € [k* +1,--- ,k — 1] and

k* < k. The relation between k£ and k* is given by:

k* = ’ ’ 4.24
{ k*, otherwise. (424)

Problem P3 is a sequential decision making problem, which can be solved by reinforcement
learning (RL) based methods [103]. However, RL-based methods cannot be applied directly
to solve Problem P3. Resource reservation re-configuration is owing to the difference of
network status, i.e., spatial task distributions and chunk request ratio profiles in this work,
in different time intervals. Identifying the difference between network status can potentially
improve the learning efficiency of RL-based methods.

We propose a Meta-learning-based resource reservation re-configuration (MetaR3) ap-
proach to solve Problem P3, as given in Algorithm 5. At the end of each time interval,
data regarding spatial task distributions, chunk request ratio profiles, indicator a; and the
network performance are collected and stored based on UDTs. Meta learning is adopted
to capture the similarity between network status in two time intervals £ and k*, and the
policy of resource reservation decision re-configuration is learned based on the captured
similarity by using RL. Based on the learned policy of resource reservation decision re-
configuration, the value of a; can be determined. If ap = 0, resource reservation decision
is re-configured at the beginning of time interval k.

Two components are underlying the proposed MetaR?® approach: (i) capturing the
similarity between network status during two different time intervals, and (ii) re-configuring
resource reservation in a closed-loop manner, which are presented in the following two
subsections, respectively.
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Figure 4.4: The proposed MetaR? approach.

4.5.1 Similarity Capture

Denote the network status in time interval k by hy, = [xy, px]. The value of hy, is unavailable
at the beginning of time interval k. Therefore, we use the data regarding spatial task
distributions and chunk request ratio profiles in past 7' time intervals contained in UDT's
as the features of the network status in time interval k, denoted by Hy, = [hy_r,--- , hi_1].
Based on Hj, the value of a is determined. If a; = 0, H, can be used to predict the
network status, i.e., hy, for making resource reservation decision. Define the similarity
between the network status in different time intervals k and &’ as o(Hy, Hy/).

We leverage Meta learning with siamese neural networks to approximate the value of
o(Hy, Hy) [173], as illustrated in Fig. 4.4. Let § and 6 denote the parameters of the whole
siamese neural networks and the parameters of the siamese neural networks without the
output layer, respectively. The inputs of the siamese neural networks are the features of
network status, i.e., Hy and Hy. The siamese neural networks have two outputs, i.e.,
the output of the whole siamese neural network and the output of the penultimate layer.
The output of the whole siamese neural network represents the value of similarity, denoted
by o(Hyg, Hy; ), and the output of the penultimate layer represents the latent factors of
similarity, denoted by 6 (Hy, Hy: 6).

Training siamese neural networks should be based on labeled data. Define o(Hy, Hy/) €
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{0,1} as a label of the features of network status in two time intervals k and £, given by:

1, if Ak (I‘k) — Ak(rk/) > )\OV;

4.25
0, otherwise. ( )

o(Hy, Hy) = {

In Eq. (4.25), Ag(ry) denotes the network resource usage in time interval k if the
resource reservation is re-configured, i.e., ap = 0. Ag(ry) denotes the network resource
usage in time interval k if the resource reservation is not re-configured, i.e., a; = 1, and the
resource reservation decision from time interval k" is used, i.e., rp. If Ap(rg) — Ag(ry) >
AOY, the network status in two time interval k and k' are considered to be “similar”;
Otherwise, the network status in the two time intervals are considered to be “not similar”.
The features of the network status in any two time intervals and the corresponding value
of o(Hg, Hy) are referred to as a labeled data entry. The goal of training the siamese
neural networks is to let o(Hy, Hy; 6) approximate label o(Hy, Hy/) by using extensive
labeled data entries. The parameters of the siamese neural networks, i.e., 8, are obtained
by minimizing the following loss function via gradient descent [173]:

0* = argmin o(Hy, Hy) log (o(Hy, Hyr; 0)) +
0} (4.26)
(1 — o(Hy, Hy))log (1 — o(Hg, Hy50)) .

The approximated value of similarity, i.e., o(Hy, Hy; 0), can indicate whether the fea-
tures of network status in two time intervals are similar or not. However, its information
on how much a difference between network status is insufficient for re-configuring resource
reservation.? Therefore, we use the latent factors of similarity, i.e., 6(Hy, Hy; é), to deter-
mine the value of ay.

4.5.2 Closed-loop Resource Reservation Re-configuration

We leverage deep Q learning with deep neural networks, named Q networks, to determine
the value of a; given the latent factors of similarity. The state and action in time interval &
are o (Hy, Hy; é) and ay, respectively. For simplicity, let 64 denote 6(Hy, Hy-; é) in the rest
of this section. Define a Q-value function to represent the discounted long-term resource

usage and cost of making decision a in state 6y, given by:

Ak + /\O\I;
ZbGB ZnEN il?,k ‘

4The output layer in the siamese neural networks is used for training the siamese neural networks.

Q(ok, ar) =Y _ p" (4.27)
k=1
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Algorithm 5: MetaR?® Approach

1 Input: p
Initialization: 6, 6, ¥, k*, Hy, &,
for k=1,--- , K do

~

2
3

4 oy < Obtain 6(Hy, Hy; 0);

5 ar < Determine by Eq. (4.28);

6 | rj < Determine by Eq. (4.13);

7 Ak(rg), 0k+1 < Implement ry for time interval k;

8 0, 0, ¥ « Train parameters via Eqs. (4.26) and (4.29);
9 k* « Update by Eq. (4.24);

10 end

11 Output: a

where p € (0,1) is the discount factor. In state 6y, ax can be determined based on the
Q-values as follows:

ap = arg max Q(dy,a), Vk € K. (4.28)
ac{0,1}
The @Q network with parameter ¥ is used to approximate the Q-value function for learning

the policy of resource reservation re-configuration. The parameters ¢ of the QQ networks
are obtained by minimizing the following loss function via gradient descent [40]:

A]C —I— )\OV
¥* =argmin k — + pmax Q(Gp11,a; )
) | D bess 2nen Tok a (4.29)

— Q61 ar; )|,

We summarize the workflow of the MetaR? approach in Algorithm 5. Line 4 to Line 5
determine a; at the beginning of time interval £ based on the predicted network status
obtained from UDTs. Given ay, Line 6 to Line 7 determine and implement the resource
reservation decision. At the end of the time interval, data regarding network performance,
actual spatial task distributions, and chunk request ratio profiles are collected and stored
in UDTs. Given the stored historical data, the siamese neural networks and Q networks
can be trained to adapt to dynamic spatial task distribution and chunk request ratio profile
in a closed-loop manner.
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4.6 Performance Evaluation

4.6.1 Simulation Settings

The simulated multi-tier network consists of 1 S-CN, 2 S-NAPs, and 4 to 10 S-BSs. In the
network, there are 600 MUTs with different trajectories within the networks. Based on the
average time within the coverage of each BS for each MUT, these MUTSs are grouped into
2 to 4 groups. The input data size, computing workload, and the size of computing results
of each computing task are set to 2 MB, 4 Megacycles/s, and 15MB, respectively [138].
The network resource usage and the resource capacity of servers at the same tier can be
different. The average network resource usage, average resource capacity of servers, and
other parameters are listed in Table 4.1.

Table 4.1: Simulation Parameters

Parameter ‘ Value ‘ Parameter ‘ Value
Gbs, Gmap 0.9, 2 Gigacycles/s Cbs, Ccmap | (.75, 1.5GB
&P g 135%107%,2.5%107° o 6+ 107"

Ehss Enap:en 1, 1,1 I 20

Ehss Enap:Cen 0.8, 0.5, 1 L 0.15GB
NP pn 5%x1079, 9% 1077 TP 0.5s

w®, we, w° 0.5%1077, 1,1 A 12

For the siamese neural networks illustrated in Fig. 4.4, we use 3 fully connected layers
with (64, 64, 32) neurons as a embedding layer. The features of network status Hy and Hy/
are fed to two embedding layers separately, each with the same structure. The merging
layer merges the outputs of the two embedding layers based on Euclidean distance, followed
by the penultimate layer with 16 neurons and the output layer with 1 neuron. For the Q
networks, we adopt 4 fully connected layers with 128, 512, 128, 32 neurons, respectively.
We adopt the RMSprop optimizer and the Adam optimizer for training the siamese neural
networks and the Q networks, respectively.

4.6.2 Performance of Group-based Resource Reservation
The convergence performance of the proposed RR algorithm for group-based resource reser-

vation is shown in Fig. 4.5. Given the same spatial task distribution and configuration of
all servers, we conduct the simulation with 2, 8, and 32 particles for 30 iterations. The
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Figure 4.5: Convergence performance of the proposed RR algorithm.

proposed algorithm converges after 10, 14, and 16 iterations, respectively. With more par-
ticles, the algorithm achieves better performance at the cost of computation complexity.

Fig. 4.6(a) and Fig. 4.6(b) compare the network resource usage per computing task,
versus the load of computing tasks, of the proposed RR algorithm and the benchmark
algorithms. We adopt four benchmark algorithms: (1) BS-first, which assigns computing
tasks to S-BSs and reserves storage and computing resources on S-BSs first as much as
possible, then on S-NAPs, and last on the S-CN. (2) NAP-first, which assigns computing
tasks to S-NAPs and reserves storage and computing resources on S-NAPs first as much as
possible, then on S-BSs, and last on the S-CN. (3) EA, which assigns computing tasks and
reserves storage and computing resources on S-BS, S-NAP, and S-CN with equal priority.
(4) BF, which is a brute force algorithm to find the global optimum. We have the three
following observations. First, for both even and uneven task distribution, the network
resource usage per computing task of the RR algorithm is close to the global optimum and
much lower compared to the benchmark algorithms (expect the BF algorithm). Second,
the network resource usage per computing task decreases as the load of computing tasks
generated in the network increases. This is because the storage resource usage per task
decreases as the load of computing tasks requesting the same stored chunk increases. Third,
the performance gap between the RR algorithm and the benchmark algorithms (expect the
BF algorithm) under uneven spatial task distribution is larger than under even spatial task
distribution. With uneven spatial task distribution, the optimal resource reservation may
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Figure 4.6: Network resource usage per computing task under even and uneven spatial
task distributions.

be different for servers at the same tier. The RR algorithm can differentiate resource
reservation decisions for different servers at the same tier using group-based spatial task
distribution.

Figures 4.7(a) and 4.7(b) show the network resource usage per computing task versus
the number of BSs and the number of groups in different scenarios. Specifically, the het-
erogeneous scenario means that the network resource usage for executing a computing task
and resource capacity of servers at the same tier are different. The homogeneous scenario
means that the network resource usage for executing a computing task and resource capac-
ity of servers at the same tier are identical. The scheme labeled as “1 Group (w/o UDTs)”
represents resource reservation without UDTs, and the schemes labeled as “n Groups (w/
UDTs)” represent the proposed RR algorithm with n groups. We have the following two
observations. First, group-based resource reservation with UDTs outperforms resource
reservation without UDTs in both homogeneous and heterogeneous scenarios. Without
UDTs, group-based spatial task distribution are unknown for resource reservation and
computing task assignment. As a result, schemes without UDTs should reserve more re-
sources to satisfy constraint (4.15e), i.e., each group’s communication resource usage for
remote access. With more groups, the group-based resource reservation can achieve bet-
ter performance at the cost of computation complexity and data management for UDTs.
Second, the curve with diamond markers represents the performance gap between 4-group
based resource reservation with UDTs (“4 Group (w/ UDTs)”) and resource reservation

82



™)
[S]
o
foN

al
(3]

s s
B | Group (w/o UDTs) = B | Group (wio UDTs)| s E
. |E=02 Groups (w/ UDTs) losg [E12 Groups (w/ UDTs) T g
% 2 |EE4 Groups W/ UDTs)] — 7y Z | | EE4Groups (w/ UDTs) o
2 043 5 z
5% 32 B g
B 1033 g1 =
16 ;o 2
o 1.0 5]
O ] O o~
% 0'22 g =
S14) o2 2 8
I . % ~ g
= =
1.2 0 = =
4 6 8 10 A 4 6 8 10 A
Number of BSs Number of BSs
(a) Heterogeneous settings. (b) Homogeneous settings.

Figure 4.7: Network resource usage per computing task in heterogeneous and homogeneous
scenarios.

without UDTs (“1 Group (w/o UDTs)”). In both homogeneous and heterogeneous sce-
narios, the effectiveness of group-based resource reservation increases with the number of
BSs.

4.6.3 Performance of Resource Reservation Re-configuration

We create a training dataset that includes spatial task distributions in 80 time intervals.
Conducting the simulation for all 80 spatial task distributions in the training dataset is
referred to as one episode. We conduct 10 simulations on the dataset, and each simulation
includes 220 episodes. In Fig. 4.8(a), the smooth solid line is the average result over
10 simulations, while the spikes in the background represent the corresponding variance.
Fig. 4.8(a) shows that the proposed MetaR?* algorithm can converge and find a policy of
resource reservation re-configuration given a fixed network environment.

In Fig. 4.8(b), we compare the convergence performance of the MetaR® approach with
that of a deep Q Learning (DQN) based algorithm, labeled as “DQN”. In DQN;, the group-
based spatial task distribution is used as the state to determine the value of a;. We create
two datasets with different spatial task distributions. Omne training dataset is used to
train the neural networks in advance, and one evaluation dataset is used to evaluate the
convergence performance of MetaR?. The evaluation dataset reveals network status from
unknown network environments. Note that MetaR? keeps training the siamese neural
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Figure 4.8: Performance of MetaR? in the weighted sum of network resource usage and
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networks and the Q networks in unknown network environment due to the closed-loop
re-configuration of resource reservation. We observe that MetaR? achieves lower network
resource usage and lower cost from re-configuring resource reservation per computing task,
and also converges in fewer episodes in unknown network environment compared with the
DQN algorithm. This is because MetaR? captures the similarity of network status, instead
of learning the variation of network status, to determine a; even though the current network
status is unknown.

Figure 4.8(c) shows the performance in the weighted sum of the network resource us-
age and the cost from re-configuring resource reservation per computing task versus the
average difference in the load of computing tasks in adjacent two time intervals. When the
average difference in the load of computing tasks in adjacent two time intervals increases,
spatial task distribution changes faster. The benchmark algorithm, labeled as “Myopic”,
determines whether to re-configure resource reservation or not in each time interval with-
out considering the long-term impact. We observe that the performance gaps between
MetaR? and “DQN” and “Myopic” algorithms increase with the average difference in the
load of computing tasks in adjacent two time intervals since the similarity capture features
of MetaR? can reduce the state space for finding a good policy of resource reservation
re-configuration in dynamic network environments, which improves learning efficiency.

In Fig. 4.9, we compare the performance of the proposed MetaR? algorithm with that of
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two popular RL algorithms, i.e., deep deterministic policy gradient (DDPG)-based (labeled
as “DDPG” ) and DQN-based algorithms in different network environments [103, 174].
Specifically, we conduct simulations of the three algorithms with different numbers of
BSs and average the resource usage and cost per computing task over three independent
simulations. We can observe that the proposed MetaR? algorithm outperforms the DDPG-
and DQN-based algorithms. This is because both DDPG- and DQN-based algorithms
use network status as states. When the network status has a large dimensionality and
network environments are highly dynamic, finding the optimal resource reservation re-
configuration policy is challenging for the DDPG and DQN-based algorithms. In contrast,
the proposed MetaR? algorithm can capture the similarity of network status in consecutive
time intervals. Since the similarity is low-dimensional, using similarities as states has
advantage on finding a proper policy of resource reservation re-configuration, particularly
in complicated network environments. Therefore, the proposed MetaR? algorithm achieves
better network performance than DDPG- and DQN-based algorithms.

4.7 Summary

In this chapter, we have designed DT-empowered network planning for supporting state-
ful applications in multi-tier computing and proposed two approaches to enable group-
based multi-resource reservation and closed-loop resource reservation re-configuration. Our
study focuses on minimizing the long-term network resource usage and the cost from
re-configuring resource reservation. The results have demonstrates that DT-empowered
network planning can support MUTs with diverse characteristics and adapt to dynamic
network environments. In addition, the Meta-learning-based approach can exploit data
contained in DTs to facilitate closed-loop network planning. Overall, we have demon-
strated the essential role that DTs can play in network planning for the NGWN.
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Chapter 5

Operation-stage Computing Task
Scheduling in SAGIN

In this chapter, We investigate operation-stage computing resource allocation in the hetero-
geneous space-air-ground integrated networks (SAGIN). In remote areas, terrestrial BS has
limited communication coverage for providing computing service for all MUTs. Satellites
can provide global coverage, but satellite communication has a long propagation delay. An
unnamed aerial vehicle (UAV) is deployed to fly around MUTs and collect their computing
tasks, while scheduling the collected computing tasks to be processed at the UAV locally
or offloaded to the nearby terrestrial BSs or the remote satellite. The energy budget of
the UAV, intermittent connectivity between the UAV and terrestrial BSs, and dynamic
computing task arrival pose challenges in computing task scheduling. Our research objec-
tive is to design a computing task scheduling policy for minimizing the delay of computing
task offloading and processing in SAGIN. To achieve the objective, we first formulate the
online computing scheduling in the dynamic network environment as a constrained Markov
decision process. Then, we develop a risk-sensitive DRL approach in which a risk value
is used to represent energy consumption that exceeds the budget. By balancing the risk
value and the reward from delay minimization, the UAV can explore the task scheduling
policy to minimize task offloading and processing delay while satisfying the UAV energy
constraint. Simulation results show the proposed data-driven resource allocation approach
reduces the delay of task offloading and processing while not exceeding the UAV’s energy
budget compared with conventional schemes.
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5.1 Background and Motivations

Equipped with advanced embedded monitoring and data collection technologies, MUTs,
such as high definition cameras, object detectors, and meteorological sensors, play vital
roles in a myriad of applications and services [175]. Specifically, MUTs can be deployed
to monitor and sense the environment, offering new opportunities for industrial automa-
tion, intelligent transportation management, etc. There are two typical applications of
delay-oriented computing services: intelligent urban transportation management and au-
tomated surface mining in suburban areas. For intelligent transportation management,
on-board cameras and road-side sensors can reliably detect incidents, such as traffic signal
violations, stopped vehicles, and on-road pedestrians. By leveraging deep learning-based
image processing techniques, vehicle and pedestrian behaviors can be predicted to prevent
potential traffic accidents in advance [1]. Rapidly processing the collected image can save
more time in reacting to the complicated transportation scenarios, which enhances the
road safety by preventing the transportation emergency. For automated surface mining, a
large number of cameras and visual sensors are deployed in the active areas of the drill rigs
to assess rock composition and collect environment information (e.g., humidity and tem-
perature). The analytics results of input image/video from these MUTs can help achieve
automated drilling control [4]. In this case, lower delay of image/video analytic can enable
more accurate automated surface mining control. Generally, such computing services are
delay-oriented which should be processed rapidly to adapt to highly dynamic input.

To support the aforementioned services, ubiquitous delay-oriented computing tasks be-
come prevailing on MUTs, resulting in a surging demand for computing capability [176].
Due to the limited computing capability of MUTSs, executing these delay-oriented tasks
locally, such as on-camera image/video processing, can inflict unacceptable service delay
and be detrimental to the service lifespan of MUTs [177]. Edge computing has been pro-
posed as a de-facto paradigm to support compute-intensive computing services. Within
this paradigm, MUTSs can offload computing tasks to nearby terrestrial base stations (BSs),
which can not only reduce the latency of task execution, but also save the power consump-
tion of MUTs [178]. However, purely relying on offloading to terrestrial BSs is hard to
guarantee the performance of computing service robustly. On the one hand, the MUTs
are usually power constrained, which cannot support long-distance transmission for task
offloading, especially when the BSs are sparsely deployed or unavailable nearby (e.g., auto-
mated mining applications) [138]. On the other hand, the physical computing resources on
BSs are scarce and somewhat insufficient, but the MUTSs’ computing tasks arrive dynam-
ically with possible bursty conditions (e.g., intelligent transportation applications), which
can result in computing resource shortage and deteriorate delay performance [179] [180].
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As a remedy to these limitations, satellites and unmanned aerial vehicles (UAVs) are
considered as promising complements to enhance the terrestrial network. For satellites,
many research and industrial efforts have been devoted to the commercialization of the
low earth orbit (LEO) satellite constellation, such as SpaceX and OneWeb [8], which can
provide ubiquitous services with acceptable propagation delay (e.g., about 6.44 ms) [9,181].
For UAVs with flexible deployment and agile management, they have been widely utilized
in military and civil applications to provide on-demand communication and computing re-
sources [10]. Besides, the 3rd Generation Partnership Project (3GPP) is also investigating
on non-terrestrial networks and specifying novel architectures to complement terrestrial
cellular networks [181]. Since satellite, UAV, and BS can complement each other, the in-
tegration of them, namely the space-air-ground integrated network (SAGIN), is proposed
as a promising network architecture for the NGWN to serve the a large number of MUTSs
with delay-oriented service requirements [138], [121].

In this chapter, considering the low transmit power and short-distance communication
range of MUTs, we propose a delay-orientated task scheduling (DOTS) scheme in SAGIN
to process computing tasks in real time. We adopt a UAV (installed with dedicated MUT
communication interface such as LoRa and NB-IoT [182], [183]) as the “flying scheduler”
to communicate with MUTs and collect their computing tasks. As the UAV can move
sufficiently close to MUTs, the distance between MUTs and the UAV can be significantly
reduced, which not only saves the MUTSs’ power consumption and prolongs the service
lifespan, but also guarantees the transmission reliability [6]. Then, the UAV makes task
scheduling decisions in real time, i.e., processing locally, offloading to a nearby BS or the
remote LEO satellite constellation.! Particularly, the UAV needs to offload tasks as soon
as possible when it serves an excessive number of computing tasks, due to the limited
computing capability [27]. In addition, the UAV should make decisions in real time to
keep the pace of dynamic link conditions and computing task arrival. Therefore, how to
obtain an efficient scheduling policy of processing computing tasks at appropriate SGAIN
components is a crucial issue, which is quite challenging due to the following three reasons.
First, with a large number of MUTs, task arrivals are dynamic and may be bursty, and even
unknown a priori, which poses a real-time requirement for the scheduling policy. Second,
UAV, BSs, and LEO satellites have differentiated features in terms of communication and
computing capability. As a result, the scheduling policy should select appropriate SAGIN
components for task processing in accordance with their features. Third, in the scheduling
policy, both the current energy consumption and the energy reservation for future arrived
tasks should be considered. The UAV needs to comply with the UAV energy capacity by
making sequential task scheduling decisions.

Note that the UAV can be installed with two communication interfaces, one for cellular BSs and the
other for the LEO satellite constellation in SAGIN [184].
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To tackle the above challenges, we formulate the online scheduling problem as a con-
strained Markov decision process (CMDP) to minimize the time-averaged task processing
delay while taking the UAV energy capacity (consumed by communication and computing)
into consideration. Inspired by the advantage of reinforcement learning (RL) methods in
tackling the uncertainty and dynamics, we design a novel deep risk sensitive RL algorithm
to deal with the formulated CMDP problem. The core idea is to define a risk function to
capture whether the UAV energy capacity constraint is violated. Thus, satisfying the con-
straint is transformed into minimizing the risk. Afterward, we replace the typical Q-value
function by the sum of two Q-value functions. The former Q-value function evaluates the
long-term delay for different state-action pairs, and the latter accounts for the long-term
risk. Based on the designed Q-value function, the scheduling policy can be learned by
leveraging RL methods. Meanwhile, instead of constructing a space-costly Q-value table
caused by the high dimensional state representation, we leverage parameterized deep neural
networks (DNNs) to approximate the Q-value function. In addition, we add a filter layer
after fully connected layers to exclude unavailable actions at different states. Extensive
simulations are conducted, which show that the proposed deep RL-based DOTS scheme
can achieve a lower time-average task processing delay while satisfying the UAV energy
capacity constraint compared to that of benchmark schemes. The main contributions of
this chapter are three-fold:

e We propose a computing task scheduling scheme named DOTS for delay-oriented
computing services in SAGIN, where a UAV flies along a trajectory to collect com-
puting tasks and make real-time scheduling decisions.

e We formulate an integer non-linear optimization problem with uncertainty to min-
imize the time-averaged task processing delay under the UAV energy capacity con-
straint. As the UAV location and task backlog evolve in an ergodic way, we refor-
mulate the online computing task scheduling problem as a CMDP.

e We design a novel deep risk-sensitive RL algorithm to address the CMDP problem,
where a risk function is defined to indicate whether the UAV energy consumption

violates the constraint. Besides, we leverage DNNs to implement the proposed deep
RL-based algorithm in the DOTS scheme.

The remainder of this chapter is organized as follows. The SAGIN architecture and
computing task scheduling models are described in Section 5.2. The problem formulation
is provided In Section 5.3. The designed DOTS scheme to make the online scheduling
decision is presented in Section 5.4. Section 5.5 presents the simulation results of DOTS,
followed by the summary in Section 5.6.
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Figure 5.1: The network model.

5.2 System Model

In this section, we first introduce the proposed DOTS scheme in SAGIN architecture,
and then describe the computing, communication, and energy consumption models for
computing task offloading.

5.2.1 The SAGIN Architecture and the DOTS Scheme

As shown in Fig. 5.1, the UAV flies along a trajectory to collect delay-oriented computing
tasks from MUTSs.?2 As the rotary-wing UAV can hover in the air, and fly with a low
height sufficiently close to MUTs, we adopt the rotary-wing UAV to collect the computing
tasks [186]. Taking the computing functionality of the UAV [10], BSs [132], and LEO
satellites [138] into account in the SAGIN, the UAV can schedule computing tasks on
three different destination network components, i.e., processing tasks on the UAV locally,
offloading to the nearby BS, or offloading the LEO satellite constellation. Let indexes
1,2,..., N, and 0 denote the LEO satellite constellation and the BSs, respectively. Then,

2The UAV trajectory is assumed to be planned in advance since the UAV trajectory design has been
well studied in many previous works [185, 186].
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the set of the network components that computing tasks can be offloaded to (i.e., N BSs
and the LEO satellite constellation) is denoted by N = {0,1,2,..., N}. Due to the UAV’s
limited on-board battery capacity, the computing capability at the UAV is limited [10].
The UAV cannot process all computing tasks alone, and thus some computing tasks can be
offloaded to BSs or the LEO satellite constellation. BSs and the LEO satellite constellation
have different characteristics. The BS has high computing capacity, while its coverage
area is limited. The LEO satellite constellation can always cover the area and act as a
complementary offloading solution for terrestrial networks, while the propagation delay of
the UAV-satellite link cannot be neglected. Therefore, computing tasks should be scheduled
appropriately to different destination network components in SAGIN to reduce the service
delay.

We adopt the discrete epoch-based system with an equal time duration of 7 in each
epoch. In epoch ¢, the location of the deployed UAV is denoted by l;. As the UAV flies along
the trajectory, the set of available offloading destination network components also varies
at different locations, which is denoted by £; C AN. Supposing that multiple computing
tasks can be offloaded from the UAV in each epoch, only one offloading destination (i.e., a
BS or the satellite) can be chosen. In summary, the UAV collects and schedules computing
computing tasks according to the following steps in each epoch:

1) The UAV collects tasks from MUTSs and locally processes their tasks within the
computing queue. The collected tasks that have not been processed or offloaded will
wait in the computing queue at the UAV.

2) The UAV can offload a certain number of computing tasks from the computing queue
to a BS or the satellite. The offloaded tasks that have not been forwarded will wait
in the forwarding queue at the UAV.

3) Newly arrived tasks from MUTs are stored in the computing queue at the UAV. Once
the computing queue is full, newly arrived tasks will be dropped.

4) The UAV flies to the next location along the predefined trajectory, and continues to
collect computing tasks.

As shown in Fig. 5.2, an exemplary work flow of the DOTS scheme in SAGIN is illustrated.
In epoch 1, four tasks are collected, one of which is processed locally at the UAV, and three
of which are offloaded to BS and moved into the forwarding queue. In epoch 2, the UAV
cannot move new tasks into the forwarding queue due to the uncompleted task forwarding.
Only one task is processed locally at the UAV, and all tasks in the forwarding queue
are transmitted. In epoch 3, two tasks are offloaded to the satellite and moved into the
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Figure 5.2: The illustration of the DOTS scheme in SAGIN, where different colors of tasks are
used to distinguish the collection in different epochs.

forwarding queue. In epoch 4, all tasks can only be executed locally at the UAV. The
details of the scheme are introduced in the following subsections.

5.2.2 Computing Model

In general, we adopt a tuple (¢,7) to model a computing task [138]. Here, ¢ represents
the input data size (in bits) of a computing task, and v (in central processing unit (CPU)
cycles per bit) indicates the computing workload of the task, i.e., how many CPU cycles
are required to process one bit input data.® Note that task uploading is the key point of
scheduling policy at the UAV in the considered scenario, and the downloading of the com-
puting result can be ignored in this work.? For instance, MUTs upload images for analysis

3In practice, the computing workload is measured via conducting the same computing task with the
same software of experimental platform in multiple times [187].

4Generally, the results of computing tasks cannot be immediately fed back to MUTs by the same
UAV due to the mobility. In practical system, many UAVs can be deployed along different pre-defined
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and download text messages as the output, and the uploaded data size is much larger than
that of downloaded data [176]. As the UAV can offload tasks to either the nearby BS or
the remote LEO satellite, or execute tasks locally, the corresponding computing delay is
analyzed in the next.

A. Task Offloading

Denote the task offloading decision by «; in epoch t, i.e., the offloading destination network
components in epoch t. The UAV offloads the tasks to the satellite when a; = 0, or offloads
tasks to BS n when oy = n,Vn # 0. Denote by £, < ™ 3, € N the number of offloaded
tasks in epoch ¢, where S™* is the maximal number of tasks that can be forwarded by the
UAV in each epoch. Meanwhile, due to the occupation of the communication interface,
we assume that new tasks cannot be forwarded if the offloading process of the last task
is not completed. Let binary variable F; indicate whether collected computing tasks on
the UAV can be offloaded or not. Fig. 5.2 illustrates an example of the task forwarding.
When F; = 0, the UAV can offload tasks in epoch ¢ since the channel is not occupied
(i.e., ap € Ly, By < ™). F, = 1 represents that the UAV cannot offload new tasks since
a certain number of tasks are waiting to be transmitted in the forwarding queue (i.e.,
a,=—1,6,=0).

Denote by the computing capabilities (in CPU cycles per second) of BS n and the
satellite by f,,,n # 0 and fy, respectively. The computing delay of all 3; tasks at offloading
destination network component n is given by:

d1((¥taﬁt) = @

where f,, represents the computing capability of offloading destination network component
.

e € 'Cta (5].)

B. Local Processing

Since the computing capability of the UAV is limited, the collected tasks may not be
processed locally or offloaded completely at the UAV within an epoch. We assume that
the remaining tasks wait to be scheduled in the computing queue at the UAV. As a result,
the delay of processing task locally at UAV includes two parts, i.e., local computing delay

trajectories, and the result of computing tasks can be relayed via UAV-UAV links [188]. Therefore, MUTs
can receive results as long as they are covered by UAVs.
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and queuing delay. To model the computing queue, we first denote the unaccomplished
task backlog at the beginning of epoch ¢ by H; € [0, p], where p is the maximum length
of the computing queue. Then, given unaccomplished task backlog H; and the number of
offloaded tasks ;, the number of queuing tasks O, in epoch ¢ within the computing queue

is given by:
JuT

Ot max {Ht L Qﬁfy 515, O} s (52)
where fy is the computing capability (in CPU cycles per second) of the UAV, and | fu7/¢7|
is the greatest integer less than the number of tasks executed by the UAV in epoch t. Given
the number of newly collected tasks M; from the MUTs, the unaccomplished task backlog
H,; 1 can be updated at the end of epoch t as follows:

Ht+1 = min {Ot + Mt7 10} y (53)

where min{-} is the function to return the smallest value. Then, the delay of local task
execution at the UAV can be calculated as the following equation:

min | [ 25 ], H;  py
do(au, ;) = { ¢ 3 } + 0,7, (5.4)

where min{ L%J:Ht}¢7/ fu is the local computing delay within each epoch, and O,7 is
the queuing delay of all O, tasks waiting in the computing queue.

5.2.3 Communication Model

We suppose two communication interfaces are equipped in this work [189], i.e., one for LEO
satellites, and the other for BSs. Each of them uses different spectrum bands, which leads
to no interference between BSs and the satellite [190]. In the following, the transmission
delay of offloading tasks to the satellite and the BSs are discussed in detail.’

A. Offload to Satellite

Currently, the wireless communications between an LEO satellite and terrestrial users are
enabled by Ka or Ku frequency band, the channel condition of which is mainly impacted

5Considering the flexibility of the UAV, it can fly sufficiently close to the MUTs such that the condition
of UAV-MUT links is Line-of-sight (LoS). Since the LoS communications can achieve high data rate [10,
191], the transmission delay of UAV-MUT links is neglected.
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by the communication distance and the rain attenuation (rain fading) [190]. Supposing
the meteorological environment remains stationary during the computing task collection,
the channel gain of the UAV-satellite link is mainly determined by the distance between
the UAV and the satellite. Generally, the moving distance of the UAV (e.g., the maximum
flight distance of the UAV is about 2km) is much shorter than the altitude of the satellite
(e.g., the LEO satellites are with an altitude of 200 km to 2,000 km), which results in the
negligible variation of the distance between the UAV and the satellite. Therefore, the
channel gain h of the UAV-satellite link can be assumed to be the same with the location
of UAV. Then, the data rate of the UAV-satellite link in epoch ¢ denoted by r,, is given
by:

Ps - |hf?
To, = Wslog, (1—1— Sgl | ), a; =0, (5.5)
S

where Wy is the channel bandwidth of the UAV-satellite link, Ps is the transmission power
of UAV-satellite link, and o2 indicates the power of noise. Due to the long distance between
the LEO satellite and the UAV, the propagation delay cannot be ignored, which is denoted
by ds. Thus, given offloading decision a; and offloaded task number (;, transmission delay
of offloading tasks to the satellite can be calculated as following equation:

dy(an ) = 20 L ds, ey =0, (5.6)

Ot

B. Offload to BS

Denote by K,,,a; # 0 the duration that UAV will stay in the coverage of BS n since
epoch t. As the UAV needs to guarantee that the forwarding process of all 5; tasks can be
completed before the UAV flies out of the BS’s coverage, the number of forwarded tasks
B; satisfies the following constraint:

t+k
arg mkin <Z To, T 2 5t¢> < K., o €La#0, (5.7)
i=t

which means that the transmission time of (3; tasks is shorter than the duration that the
UAV stays in the BS’s coverage. Notice that duration K,, can be known a priori for the
deployed UAV as it depends on the BSs’ location and the UAV trajectory [138].

Given the pathloss of the UAV-BS link PL, data rate r,, of the UAV-BS n link can be
calculated as

Pg- 100
Tay = WB 10g2 (]. -+ B—210> s (e 7é O, (58)
ag

B
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where W5 indicates the channel bandwidth of UAV-BS link, Pg represents the transmission
power of from the UAV to a BS, and o3 indicates the power of the background noise. Denote
by d3 the transmission delay of offloading tasks to the BS, which is given by:

dg(@t,ﬁt) = @, o € Et,at 7é 0, (59)

Qg

where a; and [3; represent offloading destination and offloaded task number, respectively.

5.2.4 Energy Consumption Model

Generally, UAV energy consumption includes propulsion energy, communication-related
energy, and computing-related energy. Since UAV propulsion energy is mainly depends
on different trajectories and aircraft parameters, it can be considered as a constant in our
work [186]. Thus, we aim to guarantee the remaining components of energy consumption,
i.e., computing-related and communication-related energy, do not exceed the UAV energy
capacity. Denote by e, the communication-related energy caused by the transmission of
tasks, which can be calculated as follows:

PSd4(at7 5t)a ap =0

5.10
Pgdy(au, Br), oaw € Ly, 00 #0. ( )

60(%&@&) = {

Meanwhile, processing computing task on the UAV also consumes energy, which depends
on the computing workload of the computing task and the computing capability of the
UAV. Denoted by e; the computing-related energy, which can be expressed as follows:

e, ;) = min {H ¢y, for} - € (fo)?, (5.11)

where ¢ indicates the effective switched capacitance determined by the chip architec-
ture [138]. Denote by E; the cumulative energy consumption in epoch t. Given the
communication-related and computing-related energy consumption, the cumulative energy
consumption can be calculated as the following equation:

Ey = Ei 1+ eo(ou, Br) + e, Br). (5.12)

The cumulative energy consumption can be leveraged to evaluate whether the UAV satisfies
the energy capacity or not.
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5.3 Problem Formulation

We aim to minimize the long-term delay of all computing tasks while satisfying the UAV
energy consumption constraint. The total delay of all tasks in epoch ¢ can be calculated
as follows:

( I Lyt aHt ¢
ﬁthrmm{LmJ } Lror+ 2 gy a=0

p,={ 1= o fo e (5.13)
S Ju Ty

where both the computing delay and the transmission delay are included. Let @ = {oy, Vt}
and B = {5, Vt} denote the set of task offloading decisions and the number of offloaded
tasks in each epoch, respectively. As link availability and task arrival are highly dynamic,
we concentrate on minimizing the time-averaged delay of all tasks. The delay minimization
problem can be formulated as follows:

1 T
P1: min Tlggof;Dt (5.14a)
s.t. (5.7), (5.14b)
1 T
Jim ; leo (s, B) + ex(aw, )] < e, (5.14c)
ap < N,ay € Ly, (5.14d)
Br < Bmax, Bt € N, (5.14e)

where (5.14a) is the objective that minimizes the time-average delay of all collected tasks
over T epochs, and (5.14b) limits the offloading destinations and the number of offloading
tasks. (5.14c) restricts the time-averaged energy consumption of the UAV where ¢ is
the UAV energy capacity. (5.14d) and (5.14e) constrain task offloading decisions and the
numbers of offloaded tasks, respectively. Problem P1 is an integer nonlinear optimization
problem with unknown number of newly collected tasks in each epoch, which is difficult
to solve. Considering the UAV location and the backlog of unaccomplished task in the
computing queue evolve in an ergodic way, we adopt the stationary decision to address
this problem, which is time-invariant and only depends on the current system status.
Therefore, the problem can be reformulated as a Markov decision process (MDP) for a
stationary decision which is the optimal in the ergodic system [39].
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We define a tuple M := (S, A, P,C,II) to model the MDP, which is a sequential
decision-making process. Specifically, S represents the set of states. A is the set of actions.
P =5 x A xS — Ris set of state transition probabilities. C' := S x A — R indicates
the cost function. IT is the policy that is a decision rule mapping from a state s € S to an
action @ € A. Meanwhile, C'(s, @) is defined as the cost when the system stays in state s
with adopting action a. For the aforementioned problem, the states, actions, and cost in
an MDP model are formulated as follows:

e State — In epoch ¢, a tuple denoted by s, = (I;, F;, Hy, Ey), s, € S is used to describe
the system state, where l;, F;, H;, E; represent UAV location, the number of offloaded
tasks in the forwarding queue, the unaccomplished task backlog in the computing
queue and the cumulative energy consumption, respectively;

e Action — An action is made based on the current state, and the decision is denoted
by a tuple a; = (ay, 5¢),a; € A in epoch t, where «; is used to indicate offloading
destination, and 3; denotes the number of the offloaded tasks;

e Cost — Considering an intuitive policy that the UAV does not offload tasks and keep
the queue full, and almost all newly arrived tasks will be dropped. In such case,
although the cost (delay) can be minimized, an excessive number of dropped tasks
lead to practical infeasibility. To minimize the cost while avoiding the excessive task
dropping, a penalty A; is introduced as follows:

At = Amax (Mt + Ot — P, 0) s (515)

where max (M; + O; — p,0) represents the excessive number of the newly collected
tasks will be dropped, and A is a constant penalty weight. With the objective of
minimizing long-term delay of all computing tasks, the cost function can be defined
as C(sy,a;) = Dy + Ay, where A, is the penalty to avoid excessive drop of computing
tasks;

e Policy — Denote by 7 the stationary policy, which means that state s; is assigned
with action a; and this action will be chosen whenever the system stays in this state.

Therefore, MDP based delay-oriented tasks scheduling problem can be formulated as
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follows:

A
L. 1
P2: min lim E T ;Ct(st,at)

77] (5.16a)

T—o0
s.t. (5.14b), (5.14d), (5.14e) (5.16b)
: By
el <
jlgrgoE T Tr] <e, (5.16¢)

where (5.16a) represents the expected average cost and expected energy consumption.
Problem P1 is transformed into problem P2 to find the optimal policy 7 with respect to
a cost Cy(s;,a;) for choosing action a at state s, which minimizes the expected average
cost. Above problem P2 is a CMDP problem, which is a typical MDP problem with
additional constraints. Solving such a CMDP problem with uncertainty is challenging.
On the one hand, typical MDP problems are well-investigated, which can be solved by
iterative methods by finding a deterministic policy, such as the policy iteration and the
value iteration. However, these methods for MDP cannot cope with the CMDP problem
since constraints and the objective cannot be optimized simultaneously. On the other hand,
although CMDP problems with the known transition probability can be solved simply via
a linear programming method, the linear programming method cannot address the CMDP
problem with uncertainty, since transition probability P(H,;.1|H;) is unknown due to the
uncertainty of the arrived task number.

5.4 Deep Risk-sensitive RL Algorithm

In this section, we first introduce the preliminary of RL methods. Afterward, by tailor-
ing the typical RL methods, we propose the deep risk-sensitive RL algorithm to address
problem P2. Finally, we present the details of DNN-based implementation of the proposed
algorithm.

5.4.1 Preliminary

In problem P2, since the objective is to find policy 7 that chooses appropriate actions at
different states to minimize the long-term cost (delay), which consists of the immediate cost
(generated in the current epoch) and the future cost (generated in the following epochs)
for each state-action pair. Because the future cost is related to both the current scheduling
action and the actions in the following epochs, it is challenging to model the relationship
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between the current action and the future cost, particularly in the case with unknown
state transition probability. Therefore, the discounted cost model is designed to balance
the immediate cost and the future cost for each state-action pair, which is calculated as
Yoo s'C(se, ar) [39]. Note that the discount factor, denoted by ¢ € [0, 1] is to prevent the
long-term cost from going to negative infinity.

Then, to measure the long-term cost starting from state s under policy =, a value
function is defined to determine the value of expected long-term discounted cost when the
system is at state s. Denote by Vi (s) the value function, which is given by:

Va(s) =E |> <'C(sy ar)|m, s9=s]| . (5.17)

t=0

Based on Eq. (5.17), a Q-value function is defined to further evaluate state-action pairs,
which is denoted by Qr (s, a;). Such the Q-value function measures the expected long-
term discounted cost that the system may get from being at state s, following policy m
and choosing action a, which is given by:

Qw(Sm a't) = O(St, at) + Z §P(5t+1|3t7 at)vﬂ-(st+1)- (5'18)

St+1

With the objective of the cost minimization, we choose the minimum Q-value as the optimal
Q-value, which is denoted by Q% (s,a) = min, Q(s, a).

Generally, due to the unknown state transition probability, the basic idea behind model-
free RL methods is temporal difference (TD) learning, i.e., the current approximation of
Q-value function (which might not be accurate) can be leveraged to update the estimated
value for the following states [40]. The mechanism of the RL methods allows the UAV to
iteratively update and approximate the Q-value function and then choose actions based
on the approximated Q-value function. Therefore, RL methods can learn online and in-
teract with the environment simultaneously, which is suitable for the considered case with
unknown task arrival. Denote by a* = argming,ca Qr(S¢, a;) the greedy action which
acquires the optimal Q-value. The Q-value can be updated based on the following TD
backup equation:

Qr(s1,ar) = Qr(sy,ar) +1[C(81,a1) + Qr(S141,a")], (5.19)

where the learning rate denoted by 7 is to determine how much newly acquired cost should
be accepted to adjust the evaluation of QQ-value function. Note that 0 < n < 1 is a
constant value in the learning process. The convergence of such RL methods based on
Q-value iteration has been proved, i.e., the Q-values converge to the optimal Q-values [39].
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Conventional RL methods update Q-values based on a Q-value table, i.e., all state-
action pairs are listed in a table, and each pair is updated iteratively and independently.
However, tabular methods require a large memory to store all state-action pairs, which
increases exponentially with the state and action space [40]. Due to the curse of dimen-
sionality in the considered scenario (e.g., a large number of UAV locations, the large size
of the computing queue backlog), conventional tabular RL methods cannot be applied
practically. To deal with the aforementioned problem, instead of tabular methods, DNN
is adopted to approximate Q-value function. Let 9 be the parameters of DNN, which in-
cludes neural network weights and biases. Denote by Q(s;, a;; ) the DNN-based Q-value
function, which is updated by minimizing the following loss function:

L(Y) = |C (81, ar) + sQn(St+1, a*;0) — Qn(ss, ap; 9)|?, (5.20)

where L(?) is named as the TD error. Similar to tabular RL methods, DNN-based RL
methods can also allow the UAV to iteratively update the DNN-based Q-value function
and then choose actions based on the approximated DNN-based Q-value function in an
online manner.

5.4.2 Deep Risk-Sensitive RL Algorithm

In problem P2, apart from the objective of cost minimization, there is an extra constraint of
energy capacity that needs to be satisfied. However, since the energy consumption is not a
component of the cost function, conventional RL methods mentioned above cannot satisfy
the constraint in problem P2. Therefore, we propose a deep risk-sensitive RL algorithm to
deal with the CMDP problem. Specifically, in addition to the cost function, an extra risk
function is defined to capture whether the UAV energy consumption in the current epoch
violates the UAV energy capacity constraint, and then a corresponding Q-value function is
defined to evaluate the value of risk. Therefore, the algorithm has two Q-value functions,
i.e., one Q-value function to evaluate the cost and the other Q-value function to evaluate
the risk. Afterward, the proposed deep risk-sensitive RL algorithm updates two different
Q-value functions independently and chooses the action based on the sum of two Q-value
functions.

Define the set of error states as @ C S. An error state s; € @ represents the energy
consumption of the UAV in epoch ¢ exceeds the UAV energy capacity, i.e., E; > et. Then,
to measure how much consumed energy that exceeds the UAV energy capacity when the
system is at state s choosing action a, we denote the risk function by R(s;, a;), which is
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given by:
|Ey —et|, ifs €@

5.21
0, otherwise. ( )

R(s;,a;) = {
The value of risk that are at a non-error state is zero, and the value of risk at an error state
is equivalent to the exceeding part of the energy consumption. Consequently, if the current
state of the system is an error state, the following states will also be error states with the
increased value of risk. To satisfy the UAV energy capacity constraint in problem P2, the
value of risk at each state should be zero. Thus, we transform the goal that keeps the
energy consumption below the energy capacity into the goal that minimize the risk. Note
that the risk minimization is not equivalent to energy consumption minimization since the
energy consumption minimization is not the objective of this problem.

Similar to the aforementioned cost minimization, the risk minimization can be achieved
by using another Q-value function, which is operated separately. Based on the discounted
risk, we define the expected long-term discounted risk as the value function Vi (s) of state
s under policy 7r, which is given by:

Ve(s)=E Zg‘tR(st, a;)|m, so=s|, (5.22)

t=0

where ¢ is the discount factor for the discounted risk. Then, to measure the expected long-
term discounted risk that the UAV may get from being at state s, following policy 7 and
choosing action a, the corresponding Q-value function, Qr (s, a;), is defined as follows:

Qw(st, a;) = R(s;, a;) + pr(3t+1|3t, at)vﬂ'(st—i-l)- (5.23)

St+1

Based on the TD learning, the Q-value function of risk can also be estimated based on the
following equation:

Qr(s1,ar) = Qn(sy,a1) + 7 [R(St> a;) + SQr(St41, C_l*)] , (5.24)

where greedy action @* = argming,c 4 Q- (8, a;) is adopted to acquire the optimal Q-value,
and 7 is the learning rate for the risk minimization. As a* and a* are two different greedy
actions based on different goals, i.e., cost minimization and risk minimization, the chosen
actions may not be the same at each state. However, only one action can be selected when
each state is reached. Thus, we need to design a new Q-value function to combine two
goals. which is given by:

Q% (81, a1) = Qr(81,ar) + 0Qr (51, @), (5.25)
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where ¢ is a weight parameter to balance two different goals. If § is fixed, Q° forms a
standard Q-value function of state-action pair with respect to the new reward C' + JR,
which is same as the Q-value function in typical RL methods [192] [193]. Specifically,
when § = 0, Q° = @, the minimization of the weighted sum of the cost and the risk leads
to the optimal policy for cost minimization, which is same as the cost minimization without
constraints. When ¢ tends to infinity, the minimization of the weighted sum of the cost and
the risk leads to the optimal policy for the risk minimization. As the adaption of § provides
a method to find the space of feasible polices, § can be adjusted to produce the optimal
policy to minimize the cost while satisfying the constraint. Therefore, there exists the
optimal deterministic policy for the designed new Q-value function, and the convergence
of proposed deep risk-sensitive RL algorithm can be guaranteed if discount factors ¢ and ¢
are equivalent [40].

Due to the curse of dimensionality, we adopt DNN to approximate the Q-value func-
tion of risk as the approximation of the DNN-based Q-value function of cost. Denote by
Qx(8:,a;) the DNN-based Q-value function of risk, where 9 is the parameter of the corre-
sponding neural network. The update of DNN-based Q-value function of risk is the same
as that of Q-value function of cost in Eq. (5.20). As shown in Algorithm 1, we propose a
two-cycle algorithm to minimize the cost while minimizing the risk, i.e., learn the appropri-
ate parameters of DNNs in the inner cycle, and search the appropriate weight parameter to
balance two goals in the outer cycle. The former is shown from line 4 to line 20, and each
inner cycle is named as an iteration. In one iteration, the DNN parameters of Q(s¢, a;; )
and Q(s;, a;; V) are updated separately and iteratively. The searching in the outer cycle
is shown from line 3 to line 21. Each outer cycle is named as an episode. In each outer
cycle, the optimal weight parameter ¢ is updated according to the energy consumption,
which is shown from line 16 to line 20. Based on whether the energy consumption in the
current episode satisfies the constraint, weight parameter 0 is increased or decreased with
a fixed step size denoted by A. The partial detail of Algorithm 1 is introduced in the next
subsection.

5.4.3 DNN-based Implementation

Instead of constructing space-costly Q-tables in conventional RL methods, we implement
the proposed algorithm by approximating the Q-value function via DNNs. However, di-
rectly replacing the Q-table by a DNN model meets several challenges, e.g., unavailable
actions at each state cannot be deleted simply by DNNs due to the “black-box” characteris-
tic of DNN. Therefore, we should design the DNN model to fit the proposed algorithm, the
details of which are introduced as follows. As shown in Fig. 5.3, four significant modules
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Algorithm 6: Deep Risk-Sensitive RL Algorithm

1
2
3
4

o N o O

10

11

12
13
14
15
16
17
18
19
20

Initialize: ¢, replay memory D; 9, ¢, ¥, ¥'; state sq; step size A; J;
for k=1,2,3,--- K do
fort=1,2,3,---,T do
Choose a;: select a random action with probability €, or select
arg main [Q(st,a;9) + 6Q(st, a;9)] with probability 1 — ¢;
Perform action a; and observe cost C}, risk R; and next state s;;1;
Store transition (s;, as, Cy, Ry, $¢41) in D;
Sample random mini-batch of transitions (s;,a;,C;,R;,8;4+1) from D:;
Set y; = Cj + ¢ min(Q'(8;41,a’;9));
Set g; = R; + cmin(Q'(sj11, a’;9"));
Perform a gradient descent step on E(s; a;,0;.r;.s;20)~0(D)[(4j — Q(8}, aj; 9))?]
with respect to v;
Perform a gradient descent step on Es, a,.c;.8,.5,.0)~v(0) [0 — Q(8;,a5:0))?]
with respect to ¥;
Set ¢ = ¥, and ¥ = ¥;
end
if ZZ > ¢ then
‘ 0+ 0+ A;
else
\ 0« 0—A;
end
end

Output: DNN models with parameters ¥ and 1, and weight parameter &

are introduced, i.e., DNN replacement, filter layer design, experience replay, and e-greedy

selection.

A.

For a more stable training, we adopt two DNNs to estimate a Q-value function, i.e., one
for a target network and the other for a prediction network. The target network has the
same DNN architecture as the prediction network but with frozen parameters. For every
certain number of iterations, the parameters from the prediction network are copied to
the target network, and this procedure is called DNN replacement. Since the TD error

DNN Replacement
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Figure 5.3: An overview of the deep RL-based DOTS scheme.

is used as the loss function in DNN backpropagation to approximate Q-value function by
DNNs, the backpropagation requires the output gradient of DNN with respect to weights
for input epoch ¢, and this gradient needs to be saved until we have the new TD error
at epoch t + 1. Thus, there always exists a predicted value for epoch t + 1 when we
compute gradient at epoch t. If we use the same DNN to calculate the predicted value (e.g.,
Q= (8¢, ar; 7)) and the target value (e.g., C(ss, at) +<Qr (8141, a*;v)), the DNN can become
destabilized in the feedback loops between the target value and the predicted value [40].
Considering cost minimization and risk minimization are independent, we leverage two
DNNSs to approximate Q-value function of cost, and another two DNNs to estimate Q-
value function of risk, which are shown in Fig. 5.3.

B. Filter Layer Design

We adopt a filter layer to exclude the outputs of unavailable actions. In the considered
problem, the available action set at different states is different. For example, the UAV
can only offload tasks to the nearby BSs, and thus available action set £; changes with
the location of UAV [;. However, since the output size of a fully connected layer in DNN
is fixed, the number of Q-value outputs from DNN cannot be changed according to the
various number of actions in the available set. As a result, the unavailable actions are
included in the DNN-based approximation of QQ-value, which is incorrect. Furthermore,
constraint (5.7) needs to be guaranteed and requires the various available action set at
different states. Thus, we adopt a binary coding in the filter layer, which can select
available action depending on the current state. Then, to exclude unavailable actions, the
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Q-value of these actions can be increased (i.e., add a constant to the original Q-value,
which is a hyper-parameter depending on the magnitude of Q-values). These actions are
excluded since only the minimal Q-value is selected to feed into the loss function. As shown
in Fig. 5.3, a filter layer is added to help the target network exclude invalid actions and
output real Q-values.

C. Experience Replay

Considering the high correlation between continuous states in this scenario (e.g., camulative
energy consumption Fj is highly correlated with F;,; due to the accumulative sum), DNN
can be easily over-fitting if high correlation data is fed. Furthermore, the DNN is required
to not only learn from current interaction with the environment but also a more varied
array of past experiences (e.g., past task arrival pattern). To this end, experience replay is
utilized to store experiences including state transitions, costs, risks, and actions, which are
necessary to perform the proposed deep risk-sensitive RL. As shown in Fig. 5.3, the replay
memory, denoted by D, is used to store experience, and mini-batches of experiences are fed
to train DNNs. In Algorithm 1, mini-batches of experience (s;,a;,Cj, R;,s;+1) ~ U(D)
are uniformly draw at random from the replay memory to update DNNs. This technique
has the following merits: 1) reducing the correlation among experiences in updating DNNs,
2) reusing the previous state transitions to avoid catastrophic forgetting, and 3) increasing
learning efficiency with mini-batches and learning stability:.

D. e-Greedy Selection

To learn how to react to all possible states in the environment, it must be exposed to as
many as possible states. The UAV needs to explore different energy consumption and the
number of tasks in the buffer. However, the UAV needs to exploit the exposed experiences
to learn a decent task scheduling policy, which conflicts the experience exploration. Thus,
the proposed learning policy should deal with such an exploration and exploitation trade-
off. To deal with this problem, the e-greedy selection approach is leveraged to balance the
trade-off. The UAV selects the action based on approximated Q-value function most of
the time, but occasionally chooses the action randomly. In the realization of Algorithm 1,
parameter € is an adjustable parameter which determines the probability of taking a random
action, rather than the action based on the Q-value function.

107



5.5 Performance Evaluation

In this section, extensive simulations are carried out to evaluate the proposed deep RL-
based DOTS scheme. Specifically, we first elaborate on the simulation settings, and bench-
mark strategies. Afterward, the overall performance evaluation of the proposed scheme is
conducted.

5.5.1 Simulation Settings

In the experiments, locations of MUTs follow a uniform distribution [138]. The computing
task arrival is set to follow a Poisson distribution with arrival rate p, which is unknown
a priori for the UAV. Referring to well-studied UAV trajectory design algorithm [186], a
UAV is dispatched. The UAV flies along with main areas of MUTSs, which can be more
effective to accommodate the computing service demand. The UAV trajectory is generated
by the VISSIM which is a simulation tool in transportation research [121]. The altitude
of the UAV is set to 10m, and the size of computing queue p is set to 20. Additionally,
by adopting the pathloss (in dB) model of UAV communication in [138], the pathloss of
UAV-BS links is given by:

6g—0

PL (x,0) =10A0log (z) + By (0 — b)) et + o, (5.26)

where x represents the distance between the UAV and a BS, and 6 is the corresponding
vertical angle. Both x and 6 can be obtained based on UAV location [; and the BS
location. Due to the mobility of the deployed UAV, z and # vary over different locations.
Parameters A, 6y, By, Co and 1o in Eq. (5.26) are configured as 3.04, -3.61, -23.29, 4.14,
and 20.7, respectively [138]. Meanwhile, the LEO satellite connection is always available
for the UAV. The Weibull-based channel model is adopted to model the rain attenuation
of UAV-satellite links [194]. Other simulation parameters are listed in Table 5.1.
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Table 5.1: Simulation Parameters

Parameter ‘ Value ‘ Parameter ‘ Value
N 5 fu 1 Gigacycle/s
) 5MB fo 5 Gigacycle/s
v 25cycles/bit | fn,,m #0 | 10Gigacycle/s
Wy 3 MHz No -174dBm/Hz
Wy 2 MHz Pg 1.6 W
P 5W £ 1072
ds 6.44 ms [rmax 7

The proposed DNN-based scheme is implemented via Python 3.7 and Tensorflow open-
source machine learning library. The training of DNNs is conducted with a NVDIA 1660 Ti
GPU. The DNN of cost minimization includes four fully-connected hidden layers with (256,
128, 128, 64) neurons, and the DNN of risk minimization includes four fully-connected
hidden layers with (512, 256, 128, 128) neurons, respectively. ReLU function is adopted
as the activation function to realize nonlinear approximation after the fully connected
layers. Additionally, L2 regularization is used to reduce the possibility of DNN over-
fitting. Meanwhile, Adam optimizer is adopted in the DNN training. In each episode, the
behavior policy during training is e-greedy with € increases linearly from 0 to 0.9995 over
35,000 iterations.

Benchmark schemes adopted in this computing task scheduling problem are introduced
below:

e Random probabilistic configuration (RPC) — In this scheme, the random policy
is adopted, which means that actions are selected randomly in different states. All
available actions are selected with the same probability;

e Sampling-based probabilistic configuration (SPC) — In this scheme, the prob-
ability of available actions on each state is fixed. Based on a large number of historical
sampling experiments, the probability of different actions is configured to meet the
UAV energy capacity.
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Figure 5.4: Convergence performance of the proposed deep RL-based DOTS scheme in one
episode.

5.5.2 Simulation Results

We show the simulation results of our proposed algorithm from two parts. Firstly, we
evaluate the convergence performance of the proposed deep RL-based DOTS scheme. Sec-
ondly, we compare the performance of the proposed deep RL-based DOTS scheme with
other benchmark schemes.

A. Convergence Performance

The convergence performance of the two-cycle structure of the proposed algorithm is shown
in this subsection, i.e., the convergence performance of the inner cycle in Fig. 5.4 and that
of the outer cycle in Fig. 5.5.

Fig. 5.4(a) shows the convergence performance of the delay and the energy consump-
tion in the inner cycle (in one episode), respectively, where the orange line is the moving
average results of the previous 100 iterations. It can be seen that the delay converges after
16,000 iterations, when UAV energy capacity ¢ is set to 55 Joule. However, the conver-
gence trends of delay and energy consumption vary differently due to the differentiated
functions of the cost and the risk. Specifically, the delay performance gradually decreases
and converges after around 16,000 iterations, while the energy consumption performance
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Figure 5.5: Convergence performance of the proposed deep RL-based DOTS scheme.

exhibits a turning point at around the 11,000 th iteration. Compared to the simple policy
of minimizing the risk, e.g., the UAV can offload fewer tasks to reduce energy consumption
intuitively, the policy of minimizing the cost is related to both the task arrival and the
policy of minimizing the risk. As a result, as shown in Fig. 5.4(b), from iteration 0 to
iteration 11,000, the policy of minimizing the risk has been well learned, while the learning
process of cost minimization is still ongoing as shown in Fig. 5.4(a). After 16,000 iterations,
the policy of delay minimization is learned while the energy consumption is approximately
equivalent to the UAV energy capacity.

The convergence performance of delay and energy consumption in the outer cycle are
shown in Fig. 5.5(a) and Fig. 5.5(b), respectively. To evaluate the convergence performance
of the proposed DOTS scheme, we adopt different values of the UAV energy capacity, i.e.,
50 Joule, 55 Joule, and 60 Joule. It can be seen that the average delay and average energy
consumption converge after 70 episodes, where one episode consists of 35,000 iterations.
Both the average delay and the average energy consumption oscillate at the beginning
of the learning process due to the inaccurate weight parameter §, which takes time to
approach to the optimal weight parameter. In Fig. 5.5(a), we can observe that the average
delay of the learned policy decreases as the increase of the UAV energy capacity of the
UAV, which happens since more energy can be consumed by the UAV to offload more
tasks to either the BS or the satellite. In Fig. 5.5(b), the impact of energy consumption is
shown on different energy consumption capacities. As expected, the energy consumption
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Figure 5.6: Cumulative distribution functions (CDFs) of delay and energy consumption.

of different cases is approximately equivalent to the pre-set energy consumption capacities.
Therefore, based on aforementioned convergence performance, the DOTS scheme can work
well in scenarios with different energy consumption capacities.

B. Performance Comparison

To compare DOTS with benchmark schemes, we plot cumulative distribution functions
(CDFs) of delay and energy consumption in Fig. 5.6(a) and Fig. 5.6(b), respectively. Note
that average delay and energy consumption are calculated for the period that UAV flies
back to the same destination along the same trajectory. Considering the dynamics of
task arrival, we show the delay and energy consumption performance over 1,000 flights.
We can see that DOTS is able to enhance the performance that the delay in 90 % flights
which is below 9 seconds. Meanwhile, 60 % flights satisfy energy capacity of € = 55 Joule.
The RPC scheme cannot guarantee the UAV energy capacity constraint. Although the
SPC scheme can satisfy the energy capacity, the delay of most flights is longer than 8.5
seconds. Therefore, the proposed DOTS scheme can work efficiently in different task arrival
scenarios.

Figures 5.7(a) and 5.7(b) show the delay and energy consumption performance under
DOTS, RPC, and SPC schemes, where the energy capacity is set to ¢ = 55Joule. In
the simulation, we set the probability of offloading tasks in the SPC scheme to satisfy
energy capacity 55 Joule. It can be seen that the DOTS scheme and the SPC scheme are
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Figure 5.7: Performance of delay and energy consumption.

able to guarantee the UAV energy capacity constraint. However, the delay performance of
the SPC scheme is worse than DOTS before 40 episodes, and the RPC scheme is always
worse than the DOTS scheme. At the beginning of the learning process, the delay can be
minimized, but the UAV energy capacity is exceeded. Due to the un-tuned weight o at
the beginning of the learning process, the goal of the policy is to minimize the cost. With
the learning episode increasing, the policy of risk minimization can be found. Therefore,
after 60 episodes, the delay-minimized policy is learned without exceeding the UAV energy
capacity. Compared with the other two schemes, the proposed scheme has the lowest
time-averaged task processing delay when the optimal policy has been learned.

Figure 5.8 shows the offloading proportion under different policies with ¢ = 55 Joule.
The action proportion of SPC and RPC schemes is similar, as both of them are based
on probabilistic selection. However, RPC cannot guarantee the UAV energy capacity
constraint. Although the SPC scheme can bound the energy consumption, SPC selects
actions based on the historical experience, and thus it cannot learn to schedule proper
number of tasks in different scenarios according to the future information. Particularly,
the SPC scheme and the RPC scheme may offload the tasks at inappropriate states (e.g.,
low data rate), in which task offloading to other BSs or satellite should be suppressed and
wait for more appropriate states (e.g., high data rate). Unlike the benchmark schemes, the
proposed DOTS scheme can make the UAV offload a certain number of tasks to BSs when
they are covered by BS, and offload to the satellite when it is out of the BS coverage. As
offloading tasks to the satellite is an important complementary solution for offloading tasks

113



I
o

I To satellite
— |EETo BS
[JUAV processing

Proportion
s o o o
(3] (O8] ESS ()}

o

RPC SPC DOTS

Figure 5.8: Offloading proportion under different policies for e = 55 Joule.

to BSs, it effectively reduces the queuing delay when the UAV is out of the BS coverage.
Therefore, the RL-based DOTS scheme can schedule the optimal number of tasks to BS
or satellite according to the learned knowledge, such as the task arrival pattern.

5.6 Summary

In this chapter, we have proposed a novel computing task scheduling scheme named DOTS
in SAGIN, where a UAV is dispatched to collect tasks from MUTs and then make online
scheduling decisions to process the tasks. Considering the limited UAV energy capacity
and the dynamics of task arrival, we have formulated the online scheduling problem as a
CMDP. With the objective of minimizing the long-term average delay without violating
the constraint, we have designed the deep risk-sensitive RL algorithm to make online
task scheduling decisions. Extensive simulation results have demonstrated that the deep
RL-based DOTS scheme can significantly reduce the delay of processing computing tasks
while satisfying the UAV energy capacity constraint. The proposed scheme can provide
low-latency computing services and extend the service lifespan for a large number of MUT's
with limited power supply.
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Chapter 6

Conclusions and Future Works

In this chapter, we summarize the main results and contributions of this thesis and present
our future research directions.

6.1 Main Research Contributions

In this thesis, we have investigated data-driven network management for the NGWN. In
specific, three data-driven schemes have been designed to facilitate network management
in the planning and operation stages for different services in the NGWN. First, an un-
supervised learning-assisted scheme has been designed to enable planning-stage service
coverage and power control for different communication services. Then, a meta learning-
based scheme has been designed to enable planning-stage resource reservation for a stateful
compute-intensive service. Last, a reinforcement learning-based scheme has been designed
to enable operation-stage computing task scheduling for a compute-intensive service in
SAGIN. The main contributions of this thesis are summarized as follows.

1. A planning-stage service coverage and power control scheme has been proposed with
three novel designs, including flexible binary slice zooming, dual time-scale planning,
and grid-based network planning. The scheme introduces flexibility to differentiate
the service coverage and downlink transmission power of the same BS for differ-
ent network slices while improving the temporal and spatial granularity of network
planning. With the proposed scheme, we develop an unsupervised learning-assisted
method to solve the complicated network planning problem in two steps. In the first
step, we derive the optimal solution of power control based on optimization theory
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and design a heuristic algorithm to obtain initial solutions of service coverage. In
the second step, we adopt unsupervised learning to find similar historical solutions
and use the historical solution to refine the initial solutions obtained by the model-
driven algorithm. The work provides a flexible and fine-grained solutions for multiple
communication services while satisfying their different QoS requirements.

. A planning-stage resource reservation scheme has been proposed with two elements
consisting of multi-resource reservation and resource reservation re-configuration. We
group MUT's based on their mobility patterns and enable group-based resource reser-
vation, and develop an automated closed-loop approach to re-configure resource reser-
vation in a dynamic network environment for balancing the network resource usage
and the cost from re-configuring resource reservation. With the proposed scheme,
we design a meta-learning-based method to solve the complex optimization problem.
We decouple the problem into three subproblems and adopt the matching theory,
particle swarm optimization, and meta learning to solve them. The work provides a
data-driven framework to facilitate fine-grained resource reservation based on data
contained in DTs and intelligent resource reservation re-configuration to adapt to
dynamic spatial-temporal service demands for supporting stateful compute-intensive
applications.

. An operation-stage computing task scheduling scheme has been proposed for compute-
intensive services in SAGIN. Considering the energy budget of UAV, we formulate the
online computing scheduling in the dynamic network environment as a constrained
Markov decision process. Then, we develop a risk-sensitive reinforcement learning
approach in which a risk value is used to represent energy consumption that exceeds
the energy budget. By balancing the risk value and the reward from delay mini-
mization, we can explore the task scheduling policy to minimize task offloading and
processing delay while satisfying the UAV energy constraint. With this scheme, the
computing resources from different network components, i.e., terrestrial BSs, UAVs,
and satellites, are coordinated efficiently and adaptively to improve service perfor-
mance.

In summary, this thesis has investigated data-driven network management for the
NGWN. Based on the advantages of addressing complicated network management prob-
lems and adapting to highly dynamic and complex network environments, we leverage
data-driven methods to complement conventional model-driven network management. All
the three research issues in the thesis have concentrated on the design of data-driven net-
work management solutions to improve flexibility, fine-granularity, and adaptivity. The
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proposed schemes and theoretical analysis can provide valuable guidelines for implement-
ing data-driven network management in the NGWN.

6.2 Future Works

For the future research, there are some interesting and promising research directions listed
as follows:

1. User-centric Network Management — Individual MUTs may have different re-
quirements, e.g., Quality-of-Experience (QoE). For example, for Metaverse and im-
mersive AR/VR applications, different MUTs have diverse hardware, heterogeneous
connections, and different immersive scenarios. As a result, optimal service provi-
sion depends on individual MUTSs, such as their social connection, hardware, and
network conditions. To this end, differentiation and customization for MUTSs can be
important for many applications in the future. However, existing network manage-
ment schemes are mostly from the perspective of service, i.e., service-centric, which
have limited flexibility to incorporate MUT-level differentiation and customization.
The main reasons can be summarized from two aspects. First, MUT-level network
management necessitates a customized MUT data profile to collect and manage data
characterizing MUTs (e.g., QoE performance) and the situation of MUTSs (e.g., loca-
tion and activity). However, the systematic design of creating and maintaining such
MUT data profile lacks in existing network management schemes. Second, even if
extensive MUT data can be provided easily, utilizing such MUT data to customize
network management and service provision is still not straightforward. For exam-
ple, user-level network planning is fine-grained for improving resource utilization but
results in extreme overhead from control and signaling. Making the right trade-offs
in different circumstances for each MUT is challenging. While user-centric network
management has benefits for both MUTs and networks, the system design of user-
centric network management calls for further investigation.

2. Network Management for AI Services — With the rapid development of Al
in different research areas, Al can function as a service, namely Al services. De-
signing and optimizing network management schemes to facilitate Al services, also
summarized as “Networking for AI” become a hot topic. In contrast to conventional
services, Al services have the following two features. First, Al services have unique
performance metrics, e.g., accuracy and convergence rate, in addition to conventional
performance metrics for networking and communication. Such unique performance
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of Al services mainly depends on the provided data. However, conventional works
on network management do not focus on data management that is used for improv-
ing service performance. Data could be envisioned as a type of network resource
in network management. Second, different Al algorithms can be adopted for the
same Al service. For example, Al algorithms with different types of DNNs can be
used for object detection, which results in multiple options in network management
for AI services. Since different options may yield different network resource usage,
including computing and storage, choosing an appropriate Al algorithm for each Al
service is required. The resulting network management for Al services becomes more
complicated than conventional compute-intensive services. Due to the distinct fea-
tures of Al services, some innovative designs of network management are important
for supporting Al services.
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Appendices

Appendix A

Proof of Theorem 1

For Vit € T, we use ¢' to represent the energy efficiency of all BSs during time interval ¢.
For simplicity, we define

G= D, D b nEN, (1)

MEM I€Lm n

and

t ZmGM Ziezm,n wf:n

X =
" ZmGM Zie:[m,n w’f,n””’

The energy efficiency of all BSs during time interval ¢ is given by:

o =Y Mt )

neN §n

neN. (2)

The Hessian matrix of the energy efficiency ¢’ can be written as the following block matrix:

Al 0

a2¢t o
V2 = 7 = Al , 4
apgc,yaptw’,y’ .

- 4 INXIN

where block Af n € N is given by:
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If constraint (3.10e) is satisfied, ¢! is positive. In this case, the first-order leading principal

22 x5 T2(6%
minor of the Hessian matrix, i.e., % is nonnegative. Meanwhile, except for the

first-order leading principal minor of the Hessian matrix, all leading principal minors is 0.
As a result, the Hessian matrix is positive semidefinite when constraint (3.10e) is satisfied.
Thus, when Vp;, > 0, the function ¢" is convex.

The function ¢’ increases with the decrease of allocated transmission power for all grids,
while the allocated transmission power for all grids should satisfy the SINR constraints
in Eq. (3.9). Consequently, due to the convexity of the function ¢, the power control
solution must exist on the boundary of the feasible domain. Thus, the optimal power
control solution should satisfy Eq. (3.9) with equality, i.e.,

pﬁ nhf n min
0+Zm€M\{m1n}ZneNZzeI 1ot DGt T ml i/

Define ©" = diag(hi,,--- ,hj

’Ln’...’

hin) and €, in Eq. (3.13). Denote by p' =

[Phgs P,k N}T the downlink transmission power of all BSs for all girds during
time interval ¢t . Then we can rewrite Eq. (6) into a matrix format, as follows:

t t
©"-p'=p
[ . min ()t t min ()t t min ()t t ] [~ min A7 ]
M Q1,1W1 N Ql,n’wn N Q1,NWN 1 No
mln t min ()¢ t mm t t min
Q 1W1  Tn Qn,n’wn Q NWN Pt T No ’
,yminﬂt Wt . ,ymith Wt . minﬂt Wt minN
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(7)

Therefore, the closed-form optimal power during time interval ¢ can be derived as Eq. (3.12).
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Appendix B

Effective Request Ratio for S-NAPs

For S-BS e located at BS b, S-BS e sorts |Z. x| chunks with largest values of pj,, in time
interval k. Let Jéy ;, denote the order of chunk ¢ among the chunks with largest values of pak

Jt . .

in set Z. 1, and denote by Ie(k * C Z i, the set of J¢; chunks with largest values of pj, ;. We
assume that the computing tasks requesting any chunk in 7. ;, are assigned to the S-BS as
much as possible while not violating the communication and computing resource capacities.
Given different values of g.; for S-BS e, the load of computing tasks assigned to S-BS e
may be different. For S-BS e co-located with BS b, the overall load of computing tasks

Je i ~ (i ; .
requiring any chunk in set Ii lj’k) is given by > i D f,();c where xl()L = Dhr Dnen Toi 18

’ i€, ’ ’ ’ ’
the load of computing tasks requiring chunk ¢ in the coverage of BS b in time interval k.

The load of computing tasks that request chunk ¢ € 7. in the coverage of BS b and are
not assigned to S-BS e in time interval k, denoted by Pj,,, is as follows:

Pbi,e,k: -
0, if 7Y < M,
2o Tk S ®)

: ~(4) ~ (1) .
1min {zb,k7 ZiEI(Ji’e’k) xb,k - Me s otherwise.
e,k

where M, = L%J is the maximum load of computing tasks that can be assigned to S-

BS e with satisfying the computing capacity. In Eq. (8), if S-BS e has sufficient computing

resource for executing all computing tasks requiring chunk 7, i.e., > i) iﬁ < M., no
e,k’

computing task requiring chunk ¢ needs to be assigned to an S-NAP or the S-CN; Otherwise,

a certain load of computing tasks requiring chunk ¢ cannot be processed at S-BS e, which

should be assigned to an S-NAP or the S-CN.

The overall load of computing tasks that request chunk ¢ and are not assigned to any
S-BS e within the service coverage of S-NAP ¢’ in time interval k is given by >, .5 Py, .-
The effective request ratio of chunk i for S-NAP €’ in time interval k is as follows:

q/L . ZbEBel Plie’k
/7k - ~
‘ ZbeBe/ 2N Ty,

S-NAP ¢’ stores |Zo x| chunks with the largest values of ¢, .

,VieZ de& kek. (9)
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