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Abstract

Advancement in Additive Manufacturing (AM) allows fabrication of complex geome-
tries. This provides the opportunity to think beyond hand-designed topologies. The main
goal of this dissertation is to build a Generative Design (GD) framework which generates
several optimal topologies. In this framework, Machine Learning (ML) accelerated pre-
dictive models in conjunction with a precise geometry representation for thermal design
automation are used to reach an effective design space exploration.

A size optimization algorithm is presented to optimize the geometry of Manifold-
microchannel heat exchanger with straight fins using genetic algorithm and a hybrid Com-
putational Fluid Dynamics (CFD) model. Challenges for process development pertinent to
this design configuration using AM are also introduced particularly in microchannel part
which can be addressed by efficient design methods.

Reinforcement Learning is a branch of machine learning with strong capabilities in
sequential decision making to maximize a reward. This decision making tool along with a
parametric approach for geometry representation are utilized for fin shape optimization in
heat exchanger design.

Machine learning models and neural networks provide predictive tools for a wide range
of applications. In this thesis, Convolutional Neural Networks (CNNs) are deployed to
successfully predict heat transfer and pressure drop of the geometries that can efficiently
explore the design space. A high level accuracy is seen in predicting direct CFD results
from shapes saved as images.

Online computing for optimization is complex and computationally expensive. The
pre-trained CNN models are used as an alternative for computational engine in GD. This
method drastically reduces the time required for one episode of reinforcement learning from
several minutes to few seconds.

The design space is expanded to multiple fin shape optimization using Multi-Agent
Proximal Policy Optimization (MAPPO) in which each shape is controlled in a decentral-
ized way while value learning is performed in a centralized way. We validate our method
using Multi-agent Particle-world Environment (MPE) for high dimensional action space.
It is shown that cooperative interaction of agents with a shared reward results in optimal
thermal design solutions with reduced pressure drop and enhanced heat transfer.

A robust generative thermal design framework is developed with which there is no need
for discretized design domain or derivation with respect to the domain settings. Proposed
method provides the tools and knowledge for efficient use of time, physical space and
computational resources particularly for microchannel heat exchanger design.
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Chapter 1

Introduction

Heat eXchangers (HXs) have wide applications such as car radiators, computer cooling,
Heating, Ventilation, and Air Conditioning (HVAC), recuperators for gas turbine engines,
aerospace, waste heat recovery, and fuel cell systems [1–3]. With the demand for more
effective use of energy, increased awareness about environmental issues and high cost of
energy carriers, effective heat exchanger design solutions have gained more attention.

Additive Manufacturing (AM) allows conversion of complex digital geometries to func-
tional real world objects beyond the capabilities of conventional manufacturing meth-
ods [4, 5]. Existing methods in engineering design, however, are not effective to fully
utilize the potential opportunities provided by AM. In many engineering practices, lim-
ited number of pre-defined design candidates are analyzed showing a gap between design
solutions and the flexibility and effectiveness provided by AM.

Generative Design (GD) is a design exploration process performed iteratively over var-
ious geometries followed by a performance evaluation [6]. There are several GD techniques
introduced recently including the ones that rely on traditional Topology Optimization
(TO), Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and
deep Reinforcement Learning (RL) [7, 8].

In many engineering problems such as thermal design, sufficient data are not available
to be used for methods that require an existing dataset (e.g. GANs and VAEs). Therefore,
most of the GD problems in engineering rely on TO. Several TO methods are used in me-
chanical and structural design among which density-based method known as SIMP (Solid
Isotropic Material with Penalization) and level set method are widely used for different
material minimization application.

1



TO and design automation generally require solving Partial Differential Equations
(PDEs). High fidelity simulation which is commonly used to solve PDEs is CPU-intensive,
particularly in presence of complex physics [9]. Since high fidelity simulation is not im-
portant during the concept design process, a high performance estimator can accelerate
the design process to a great extent [8, 10]. Deep Learning (DL) and neural networks
provide predictive models for a wide range of applications. Physics-Informed Neural Net-
work (PINN) and feedforward neural networks, for example, showed promising results as
surrogate models to predict results of computer simulation [11, 12]. DL can be used to
estimate the results of simulation from different geometries which provides accelerated
iterative process in GD.

Traditional TO methods are not practical for thermo-fluid applications since porous
medium approaches are used for solid distribution. In fluid flow and particularly heat
exchanger design, boundary conditions are significant parts of the simulation and it is
important to have distinguishable and precise boundaries [13–15]. Moreover, for several
applications such as those in biomedical engineering, working fluids (e.g. nanofluids) and
particular boundary conditions require clear boundaries for implementation [16–21]. A
convenient way of optimizing the design while keeping the boundaries distinguishable is to
use pixel or voxel-based optimization which requires high CPU time due to the curse of
dimensionality [22]. In thermofluid design, the direction to greater performance is aligned
with greater design freedom [23, 24]. Providing freedom in design is, however, computa-
tionally demanding and impose manufacturing challenges.

Reinforcement Learning (RL) is one of the basic components of Machine Learning
(ML). Many types of algorithms are introduced for classification, regression, clustering,
etc. RL, however, is a real time sequential decision making algorithm that can be applied
to numerous real-world applications. This powerful decision making tool has potential
applications in decision making for engineering design and heat transfer if proper setting
is provided.

There are several design representation including Signed Distance Functions (SDFs),
pixels and voxels, point clouds, graphs, mesh, grammars, and Boundary Representation
(BREP). Most of other geometry representations should be converted to BREP as the
native Computer-Aided Design (CAD) representation for fabrication. Working directly on
BREP is an advantage in simulation and manufacturing. BREP also facilitates bound-
ary condition implementation which is crucial for thermo-fluid structures where nonlinear
PDEs should be solved numerically. BREP also gained attention among researchers in
structural topology optimization [25,26].
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1.1 Research Objectives

Given the current state of generative design methods for thermal devices, and motivated
by the above rationale, the goal of the current dissertation is to develop a framework to
facilitate the design generation for heat transfer devices with fins.

As articulated above, there is a gap between what can be designed and what can be
manufactured. In this dissertation, an attempt is made to reduce the time and enhance
the performance of the design automation to close the aforementioned gap.

The speed of performance evaluation in engineering design is crucial for the search al-
gorithms. Accelerated physics prediction is achieved utilizing different supervised machine
learning algorithms to reduce the time required for one iteration in the design optimization.

The other objective of the current research is to use boundary representation which is
a native geometry representation for downstream tasks susch as manufacturing and simu-
lation software. Topological representation using parametric curve reduces the dimension
of the optimization problem without sacrificing the resolution of the shape or freedom to
change the design [27]. This representation provides exact geometrical definition regardless
of the size of discretization in numerical approach [28].

1.2 Thesis Overview

This thesis is structured in a way that each chapter provides input to the subsequent one,
and as such is organized as follows: Chapter 2 begins with the heat exchanger types and
design considerations including operating conditions and manufacturing techniques. This
chapter concludes with a review of recent study in TO and GD. Application of RL and
surrogate models are also discussed. Chapter 3 presents size optimization of a pre-defined
design configuration and process development using AM techniques. Chapter 4 introduces
a method for generative design using continuous solid-liquid interface for a single fin shape.
Chapter 5 looks at the possibility of predicting the outcome of the Computational Fluid
Dynamics (CFD) for heat transfer devices (e.g. heat transfer and pressure drop). A su-
pervised machine learning approach is used for the estimation of finite element simulation.
Chapter 6 extends the proposed framework for GD to the larger problem of multiple fin
shape design automation which uses chapter 5 as a computational engine and chapter 4 as a
search engine. In chapter 7, a general conclusion of the current work and recommendations
for future work are presented.
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Chapter 2

Recent Development in Heat
Exchanger Design

2.1 Introduction

This chapter provides a review of heat exchangers in terms of general design, manufacturing
techniques, and operating parameters for selected applications. This chapter provides
insights into challenges being encountered in the development of HXs, including material
selection, recent developments in conventional and generative design, and application areas
of HXs. A review on models that predict the outcome of CFD which can accelerate the
GD is also provided. Part of this chapter is based on a peer-reviewed article published in
”Frontiers in Heat and Mass Transfer” entitled ” Recent developments in high temperature
heat exchangers: A review ” [5].

Heat exchangers are subjected to unique material challenges such as creep, reduced
strength at high temperatures, oxidation of material, corrosion, and thermal shock. As a
result, expensive alloys that retain their strength at elevated temperatures are often the
material of choice. However, these alloys typically have low thermal conductivity, and
difficult manufacturability [29], and thus present their own challenges in heat exchanger
design and fabrication. Low strength at higher operating pressures means that the walls
must be thicker, requiring more material. Thick wall geometry makes the HXs made of
expensive alloys costly in most applications. One way to offset these costs is to develop
compact heat exchangers that have higher surface area to volume ratio and thus reduce
the amount of material needed. As a result, in the past couple of decades, there has been
increased interest in the development of compact and cost effective HXs [30]. Advanced
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manufacturing techniques, mainly Additive Manufacturing (AM) of metals, have recently
shown promising results in fabricating compact HXs with innovative heat transfer surface
designs [31].

2.2 Material Selection

Materials are key to the economic design of HXs. Materials are selected for an HX for
a particular application based on a combination of mechanical properties (e.g., strength,
creep resistance, fatigue), thermal properties (e.g., thermal expansion, thermal conductiv-
ity), chemical properties (e.g., oxidation, corrosion), manufacturability (e.g., machining,
joining), and overall cost. Material selection may also depend upon the heat exchanger
design itself. For example, applications such as those of the aerospace sector are more
sensitive to the overall weight and shape of HX than the cost of heat exchanger itself.
Most materials used at lower temperatures, such as steel, copper, and aluminum, lose their
thermo-mechanical properties at elevated temperatures. The maximum allowable stresses
of some high temperature material are shown in Fig. 2.1 and Fig. 2.2. As shown, most
of these materials lose strength at temperatures exceeding 550°C and particularly above
600°C.

Figure 2.1: Temperature ranges for heat exchanger materials (adapted from reference [32])
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Figure 2.2: Strengths of various iron- and nickel-based alloys showing that most of the
materials lose strength at higher temperatures (adapted from references [33] and [34])

2.2.1 Metals

Metals are the first choice materials for heat exchanger applications due to their excellent
thermomechanical properties as well as manufacturability. When the operating tempera-
tures rise beyond 600°C, the cost of materials increases exponentially due to steep decrease
in material strength. Metallic heat exchanger materials can be divided into iron-based al-
loys and nickel-based superalloys. Iron-based alloys such as SS316 and SS347 have good
mechanical properties up to 550°C and 600°C, respectively, but are limited in corrosion
resistance at high temperatures. Nickel-based alloys with chromium are both strong and
corrosion resistant at high temperatures. It should be noted, however, that the cost of
Ni-based alloys is about 3 to 10 times higher than iron-based alloys [34]. Hence, iron-based
alloys are preferred in applications up to 600°C in many recuperator designs, provided that
corrosion and creep do not present any issues.

Iron-based Alloys

Given their mechanical properties and resistance to corrosion, iron-based alloys such as the
AISI 600 series of superalloys should be considered as the first choice for moderately high
temperature applications [35]. For example, type 347 austenitic stainless steel is widely
used as material for recuperators that operate at temperatures up to 600°C [36,37]. How-
ever, severe corrosion may develop for type 347 austenitic stainless steel recuperators that
operate above 650°C [38]. At temperatures above 700°C, film instabilities cause oxidation,
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cracking with spallation, and Cr depletion. Furthermore, cracking can accelerate oxidation
by breaching the protective layer [36]. On the other hand, high temperature ferritic steels
can be used for environments with fusion and fission neutron irradiation up to tempera-
tures reaching 750°C. Ferritic steels also can be used for lead/bismuth, while silica bearing
steels can be used for sulfuric acid thermal decomposition [38]. Fig. 2.3 shows the tensile
strength of different steels for the range of temperatures shown. The tensile strength of
austenitic, martensitic and ferritic stainless steel is higher than that of low-carbon steels.
Although semi-austenitic steels show significantly high hot-strengths at low temperature,
they are not suitable for temperatures higher than 650°C [39].

Figure 2.3: Comparison of the hot-strength of stainless steels with low carbon alloyed
steels at high temperatures [40]

Nickel-based Superalloys

Nickel-based alloys exhibit better mechanical and corrosion resistance properties at higher
temperatures than iron-based materials. These materials can operate at temperatures
as high as 816℃. For example, selected Inconel alloys, which are a family of austenitic
nickel-chromium-based superalloys, are suitable for environments subjected to high pres-
sure, high temperature, and corrosion [41]. Heat treatment, such as annealing, of Inconel
and its chromium content make it more suitable for corrosive environments than iron-based
alloys [42]. In addition, while the molybdenum content of Inconel improves strength, its
aluminum content improves oxidation resistance, and similarly, the nickel content improves
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its corrosion resistance [43]. Other nickel-based alloys commonly used in the high temper-
ature applications are from the Haynes family.

2.2.2 Ceramics

Although metals have advantages such as manufacturability, strength, ductility and weld-
ability, their use in HXs is limited at very high temperatures. Ceramic materials, however,
have excellent temperature resistance as well as corrosion resistance, making them the
material of choice for HXs. Heat exchangers made out of ceramic materials have higher
temperature capability, good corrosion and creep resistance, and low material cost, but
low pressure containment capability compared to metal heat exchangers [44]. Ceramics
have crystalline or partly crystalline structures and are produced from essentially inor-
ganic, non-metallic substances. These materials are solidified from molten mass by cooling
and are typically post-processed by heating. They can be divided into two types: 1)
monolithic and 2) ceramic matrix composites (CMCs). Monolithic ceramic materials have
a single constituent such as silicon carbide, silicon nitride, zirconia, or alumina, and are
brittle and have low tension strength. Except silicon carbide and silicon nitride, other
ceramics are prone to thermal shock due to large thermal gradients. This causes HXs
made of these materials to suffer from lack of reliability [45]. Although ceramics have
good thermo-mechanical properties, manufacturability, fabrication and mechanical joining
remains a concern for their use in heat exchanger applications. Manufacturing of the pri-
mary component involves processes such as powder sintering and dry pressing. Unlike the
metallic components, though, the ceramic components are limited in the type of primary
shapes that can be formed economically. Further, joining of these primary components
is a challenge, as mechanically joining these components is not reliable due to the brittle
nature of the material. Many ceramic heat exchanger designs thus use the block struc-
ture of primary components, which are further machined and are bonded together inside
an oven [46, 47]. However, in recent years, some newer bonding techniques, such as laser
welding, have shown promise for joining ceramic components [48]. Given their advantage
of working at high temperatures and the general push to achieve higher thermal efficien-
cies, further developmental efforts are expected in the near future. Monolithic ceramic
materials are brittle and cannot withstand pressure. Except for silicon carbide and silicon
nitride, ceramics cannot resist large thermal gradients. Monolithic ceramics thus suffer
from lack of reliability [45]. To address this problem, ceramic matrix composites (CMCs)
were developed to improve the thermal shock resistance, hardness, and high temperature
stability [49].
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2.3 Types of Conventional Heat Exchangers

As discussed previously, the cost of HX increases exponentially as the operating tem-
perature increases, particularly above 600°C, mainly due to the material cost as well as
manufacturing cost of the superalloy and ceramic heat exchangers. Higher pressure appli-
cations such as those encountered in the power cycles complicates the issue even further.
The majority of conventional heat exchanger designs used in low temperature applications
prove to be uneconomical at high operating temperatures. The high cost of exchangers in
power plant applications such as supercritical CO2 Brayton cycles is a major stumbling
block to making the cycle economical [34]. As a result, newer designs of heat exchang-
ers that utilize the materials more efficiently, namely higher surface area to volume ratio
designs, are being developed [34, 42]. These designs typically use microchannels as well
as fin geometries to accomplish the higher area. An added advantage of smaller channel
sizes is that the heat transfer in such miniature geometries is much higher [50, 51]. Ad-
vances in manufacturing processes, such as 3D printing, have helped engineers to fabricate
designs which are difficult to fabricate otherwise [52,53]. The present section reviews var-
ious heat exchanger types and designs including the conventional designs utilized in high
temperature applications.

2.3.1 Plate-fin Heat Exchangers (PFHXs)

Plate-fin heat exchangers (PFHXs) are one of the most commonly utilized HXs for diverse
industrial sectors. They are used mainly for gas-to-gas heat transfer applications. The
main components of a PFHX, including side bars, fins, and parting sheets, are shown in
Fig. 2.4. The fins are usually fabricated using a stamping process and are brazed together
with the base plates. A brazed PFHX can withstand a maximum pressure of 90 bar,
while diffusion bonded PFHXs can be used under pressures up to 200 bar [34]. The fins
in PFHXs can be easily rearranged, which allows the PFHXs to operate in any of the
cross-flow, counter-flow, or cross-counter-flow configurations. The main applications for
PFHXs at high temperatures are gas turbine and power plants for hot gas heat recovery.
Generally, PFHXs have a good heat transfer area to volume ratio and hence can be compact
and economical for high-temperature applications [34].
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Figure 2.4: Illustration of main components of PFHX

2.3.2 Plate-and-frame Heat Exchangers

Plate-and-frame heat exchangers are often used to transfer heat between two liquids or two
gases. The fluid-separating plates of these heat exchangers are typically manufactured by
compression processing of a thin metal sheet, and come in several patterns such as wavy,
chevron, washboard, herringbone, cross-corrugated, cross-undulated, or cross-wavy [54,55].
Two such heat transfer plates are then stacked to produce a single cell. This process is
repeated to manufacture the required number of cells. The structural strength of the core
is achieved through the connection of the end plates once all the cells are stacked, as shown
in Fig. 2.5 [56]. For high pressure applications, the plates can be welded or brazed together
to ensure operation up to 200 bar pressure and 815°C temperature [57]. Two layouts are
typically used for plate-and-frame heat exchangers in recuperators in microturbine systems:
1) rectangular designs, which are installed behind the rotating machinery, and 2) annular
designs, which are wrapped around the turbine [58].
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Figure 2.5: Plate-and-frame heat exchanger structure concept

2.3.3 Shell-and-tube Heat Exchangers

Shell-and-tube heat exchangers (Fig. 2.6) are the most common type used in industry.
The tube diameters vary from 0.625” to 1.5” ( 16 mm to 38 mm) in conventional heat
exchangers. These heat exchangers have very low surface area to volume ratio and hence
are generally not economical for high-temperature and high-pressure applications. Chordia
et al. [34], however, developed a shell-and-tube heat exchanger with a large number of tubes
of diameter close to 1 mm to achieve small wall thickness and very high surface area to
volume ratio. Since the channels are on the order of millimeters or less, the heat exchanger
benefits from the high heat transfer. Since this type of heat exchanger can handle more
severe conditions and higher pressures and temperatures, it can be used in gas turbine
systems if there is no space limitation.
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Figure 2.6: Shell-and-tube heat exchanger structure concept

2.4 HX Fabrication Using Advanced Manufacturing

Techniques

Processing, machining, welding and brazing of superalloys is difficult due to their higher
toughness, low thermal conductivity, tendency to crack during welding, or the unavailabil-
ity of suitable brazing materials [59]. Specialized equipment and highly trained operators
are often needed for processing such materials. However, new developments in advanced
manufacturing techniques such as 3D printing can address the challenges faced by con-
ventional manufacturing. This section discusses HXs fabricated using various advanced
manufacturing techniques such as additive manufacturing and photo-chemical etching pro-
cesses.

2.4.1 Additive Manufacturing

Additive manufacturing (AM), also known as 3D printing, emerged nearly three decades
ago and was initially used mainly for quick prototyping and production of specialized
parts. However, due to its high degree of freedom, especially for fabrication of complex
parts, there has been significant development of industrial-scale 3D printers since then. 3D
printers now can print various metals, ceramics, and other tough-to-machine materials. As
a result, AM has evolved from prototyping purposes to production of complex parts used
in industries such as aerospace, biomedical, oil and gas. There are three major metal-based
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AM techniques: selective laser melting (SLM), direct metal laser sintering (DMLS), and
electron beam melting (EBM). SLM and DMLS printers usually consist of two platforms.
The first platform is a powder dispenser platform that houses the metal powder. The
second platform is the build platform on which the 3D structure is built. After a layer
of the 3D structure is built, the powder dispenser platform rises while the build platform
lowers, so a new layer of powder can be distributed on top of the existing layer. A re-coater
arm is used to uniformly distribute the metal powder, as shown in Fig. 2.7. In the case of
DMLS, the metal powder is sintered using a laser just below its melting temperature. For
the case of SLM, the powder is completely melted. Lenses focus the laser beam while a
scanning mirror controls the beam or spot location based on a slicing of the 3D structure
CAD file. The process is repeated until the entire 3D structure is built. The EBM process
is similar to that of SLM. The major difference is that an electron beam is used instead of a
laser to melt the powder. Due to the use of the high-power electron beam, parts fabricated
using EBM will have better mechanical strength than parts fabricated using the SLM or
DMLS process.

Figure 2.7: DMLS/SLM concept [60]

Laminated object manufacturing (LOM) is another AM technique capable of fabricating
metal heat exchangers. In the LOM process, a 3D structure is built layer by layer by cutting
a sheet of material using a laser, as shown in Fig. 2.8. A heated roller bonds the build part
in the current layer onto the previous layer. The process is repeated until the entire 3D
structure is built. Compared to DMLS and SLM, the LOM process is simpler and cheaper.

13



In addition, LOM can be used to fabricate ceramic heat exchangers. However, the finish
quality and accuracy of LOM are not as good as DMLS or SLM.

Figure 2.8: LOM process [61]

Additive manufacturing can help fabricate the complex and compact geometries of HXs
which are otherwise almost impossible to fabricate. Several superalloys such as Inconel 718
and Inconel 625 are compatible with AM. It also allows fabrication of the heat exchanger
as a single component, which eliminates the need to weld or braze different parts. There
have been several successful attempts to fabricate HXs using AM, as summarized below.

Manifold-microchannel Heat Exchangers

The manifold-microchannel heat exchanger (M2HX) is a novel design that takes advantage
of the high heat transfer rates of microchannels without the associated high pressure drops
by reducing the flow length through the microchannel. However, a consequence of the
short flow lengths is that the assumption of negligible spreading in the fluid-separating
wall (base plate) may no longer be valid, and conventional heat exchanger correlations
cannot be used to compute heat exchanger effectiveness. In the limiting case of extremely
short flow lengths, spreading dominates, and a constant base plate temperature can be
assumed. This is the approach taken by previous authors to determine heat exchanger
effectiveness for a cross-flow M2HX currently under development for enhanced gas-to-gas
heat transfer applications. In a manifold-microchannel heat exchanger, a manifold is placed
on top of microchannels, as shown in Fig. 2.9. The inlet gas is then distributed into the
microchannels through the manifold and travels a short length in each microchannel before
it is guided out. The main advantages of the manifold-microchannel are, first, that the
pressure drop in the manifold-microchannel heat exchanger can be reduced by a factor
of the square of the number of divisions, due to the simultaneous reduction in both flow
length and flow rate [62]. Thus, for a given pressure drop, the manifold-microchannels allow
smaller hydraulic diameters than would be possible with straight microchannels, resulting
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in higher heat transfer coefficients and reduced mass/volume ratio. Second, heat transfer
coefficient is improved due to the short microchannel flow length, which causes thermally
developing flow, which has higher heat transfer performance than fully developed flow.
Third, the small fin size (< 0.3 mm in width) allows for very high heat transfer surface
area per volume ratio (1000 to 2000 m2/m3), which renders the manifold-microchannel
heat exchangers more compact than most state-of-the-art heat exchangers. Finally, using
the multi-pass manifold configuration as shown in Fig. 2.9, the effectiveness of M2HX can
be increased by minimizing heat spreading in the wall separating the fluid streams.

(a)

(b)

Figure 2.9: Manifold-microchannel concept: (a) isometric view; (b) top view

It is challenging to fabricate manifold-microchannel heat exchanger structures using
conventional fabrication techniques, as they consist of multiple manifold and microchannel
layers stacked together. Due to the small size of the microchannels, improper brazing or
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welding between the manifold and microchannels can cause clogging in the microchannels
resulting from a wicking effect. Metal additive manufacturing processes such as DMLS or
SLM can be used to avoid this problem, as they fabricate parts layer by layer, allowing the
manifold-microchannel to be fabricated as a single component and significantly simplifying
the fabrication process. Many studies have been reported in the literature that discuss the
superior performance of this technology compared to conventional technologies in various
applications [63,64]. In those works, 50 percent or higher heat transfer was reported for the
same pressure drop when compared to state-of-the-art fins such as wavy fins, louver fins,
and plain plate fins. A recent work at the Advanced Heat Exchangers and Process Intensi-
fication laboratory at the University of Maryland [31] shows that a manifold-microchannel
heat exchanger fabricated using Inconel 718 can achieve 30 percent less weight for the same
heat transfer and pressure drop performance compared to several commercially available
PFHXs for pre-cooling applications at 600°C for aircraft applications, as shown in Fig.
2.10.

Figure 2.10: Performance comparison between M2HX with plate-fin heat exchanger
(PFHX) [65]

Multi-furcating Heat Exchangers

Another type of 3D printed HX was developed by Gerstler and Erno [53] from General
Electric Global Research. They successfully fabricated multi-furcating heat exchangers
using SLM for fuel-cooled oil cooler applications as shown in Fig. 2.11. The heat exchanger
surfaces were fabricated using four different materials: aluminum, titanium alloy (Ti64),
cobalt chrome, and Inconel 718. The test results showed that the heat exchangers met the
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pressure drop and heat transfer design requirement with 66% lower weight and 50% lower
volume than the conventional heat exchangers.

Figure 2.11: Multi-furcating heat exchanger [53]

2.4.2 Printed Circuit Heat Exchangers using Photo-chemical Etch-
ing

Photo-chemical etching is a fabrication process that utilizes a photoresist and etchants to
machine away a certain area of a metal plate. The process was initially developed for
fabrication of printed circuit boards. However, due to its ability to etch various metals,
including titanium, nickel superalloy, and copper superalloy, and its high accuracy, the
process has been used to fabricate printed circuit heat exchangers. The etching process is
shown in Fig. 2.12.
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Figure 2.12: Photo-chemical etching process (adopted from reference [66])

First, a photoresist layer is deposited on the metal surface. Then, the photoresist is
exposed to UV light via a photo-tool. Afterward, the exposed metal is dissolved via an
etching process to form semi-circular channels with typical channel width of 0.5-2 mm [66].
Lastly, the photoresist is removed using a solution like alkaline. If the photo-tool specifies
the area that needs to be dissolved by the UV light, the process is called positive-working
photoresist. If the photo-tool specifies the area that is left, the process is called negative-
working photoresist.
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Figure 2.13: Printed circuit heat exchanger [67]

2.4.3 Ceramic Heat Exchangers

As discussed in the materials section, ceramic materials can be used for much higher
temperatures than their metallic counterparts. Several different types of ceramic heat
exchangers have been fabricated and tested, including ceramic PFHXs, plate and frame
heat exchangers, and ceramic shell-and-tube heat exchangers [1,68–70]. Some of these heat
exchangers can operate up to a peak temperature of 1370°C [68]. Slip casting, tape casting,
throwing, injection molding, and dry pressing are the common processes for fabrication of
ceramic heat transfer surfaces. For example, injection molding was used by Fedarzoni et
al. [69] to fabricate a plate-and-frame heat exchanger out of alumina with channel size of 0.5
mm x 0.5 mm. Similarly, shape molding [70] has been used to fabricate a plate-and-frame
heat exchanger; slip casting has been used to fabricate a finned ceramic shell heat exchanger
[71]; and a combination of stereolithography and additive manufacturing technique with
injection molding has been used to fabricate a plate-and-frame heat exchanger [1], all with
features sizes as small as 250 microns.

Bonding of ceramic heat exchangers can be categorized into two categories: non-
monolithic bond (non-permanent) and monolithic bond (permanent). A non-monolithic
bond is a non-permanent bond whose structure can be easily de-bonded. Mechanical joints
and seals are examples of non-monolithic bonds. A damaged heat exchanger fabricated
using a non-permanent bond can be easily fixed by replacing the broken component. How-
ever, the bond is much weaker than monolithic bonds. Therefore, non-monolithic bonds
are not suitable for high pressure heat exchanger applications. In addition, CTE mismatch
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is a problem for non-monolithic bonding between two different materials. On the other
hand, a monolithic bond is a permanent bond whose structure cannot be de-bonded later.
Monolithic bonds offer a stronger bond compared to non-monolithic bonds. Several ex-
amples of monolithic bonding techniques include polymer infiltration and pyrolysis (PIP),
tape bonding, firing, and laser brazing. PIP is the most common technique for bonding
ceramic heat exchangers. The process involves deposition of low viscosity polymer be-
tween ceramic structures followed by pyrolysis. The pyrolysis is usually performed in an
oxygen-free environment at temperatures of 800-1300°C. This process has been success-
ful in bonding ceramic heat exchangers [70, 72]. These bonds were reported to tolerate
pressure difference up to 9 MPa. Another technique for ceramic bonding is tape bonding.
The process involves the use of sheets and ceramic powder as an interlayer bonding agent
between the ceramic plates. Tape bonding is expected to provide a joint stronger than
PIP. However, the process requires processing temperatures higher than PIP, which causes
extensive creep on the heat exchanger. Lewinsohn et al. [73] showed that a heat exchanger
fabricated using tape bonding had a higher shear strength than the one fabricated using
PIP.

Ceramic heat exchangers have also been fabricated using AM. Ross et al. [74] attempted
to fabricate a compact 4 cubic inch ceramic heat exchanger out of zirconia-toughened mul-
lite (ZTM) using the LOM process. Initial delamination of the layers during the fabrication
was eliminated by decreasing the binder burnout rate and adding a tape cleaning step. The
heat exchanger was successfully tested at 700°C. Larger dimensions, however, were a chal-
lenge to fabricate due to the cracks caused by the defects. In another work by Alm et
al. [1], a ceramic heat exchanger was fabricated using a combination of AM techniques
(stereolithography) and injection molding. Additive manufacturing was used to create the
injection molding mold. The use of AM allowed fabrication of the molds with feature size
as small as 0.25 mm, which showed the promise of AM in ceramic HX manufacturing.

2.5 Generative Design for Heat Exchangers

Advances in 3D printing provide the opportunity to fabricate complex geometries which are
too challenging using conventional manufacturing methods [5, 75–78]. Normally, limited
number of manufacturable geometries as shown in previous sections are considered for
the design purpose. Generative Design (GD) is a generative engine which can close the
gap between flexibility provided by AM and computational design. There are several
data-driven GD techniques which use a pre-existing dataset which might not be useful for
many engineering design. Therefore, shape and Topology Optimization (TO) receive more
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attention as mathematical methods that optimize geometry. TO has been used for decades
in a wide range of industrial applications from structural to biomechanics applications [79,
80]. Generally, design optimization can be performed using size, and shape and topology
optimization as shown in Fig. 2.14. Several methods have been used for TO such as
density based, phase field, and shape derivative methods [13]. The density-based topology
optimization procedure is the most popular method in structural optimization. Thermo-
fluid design is more challenging than structural topology optimization since Navier-Stokes
and convection-diffusion equations cause nonlinearity in the design problem. Particular
challenges regarding boundary conditions also should be considered in heat exchanger
design optimization which require a clear boundary definition [15].

(a)

(b)

Figure 2.14: Design schematics for (a): Size optimization , (b): Shape and topology
optimization [81,82]
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Pixel-based design space exploration can keep a clear boundary, but this method suffers
from the curse of dimensionality. Recently, Florian et al [83] used null space and gradient
methods to maintain clear shape boundaries during the shape optimization. The results
presented are promising, but require further improvement in terms of constraint implemen-
tation. The state-of-the-art methods in heat transfer shape optimization rely on adjoint
method which computes the derivative of the objective with respect to design variables
to specify the direction of the search algorithm which could be trapped in local optimal
solutions [84, 85].

2.5.1 Reinforcement Learning for Generative Design

Deep RL has been proven to be a powerful tool for robotics, navigation, and stock trad-
ing. Application of RL in shape and topology optimization was also studied by few recent
studies. Deep RL was successfully implemented for modeling 3D shapes [86] as well as
structural TO [87] of a cantilever with elementally discretized domain. Conventional tab-
ular RL are only effective for the decision-making problems in which state-action pairs can
be approximated and stored in arrays. While it is not hard to store all possible states
and actions in memory, it is almost impossible for the RL agent to iterate over all possible
states and actions to find optimal solution for a specific problem. A Deep Neural Network
(DNN) acts as an approximator and estimates the values of states or state-actions. In other
words, DNNs are predictors used in modern RL as an alternative to the tables to estimate
the value functions or a policy. This method is useful particularly when the design space
suffers from the curse of dimensionality. Aerodynamic shape optimization using degenerate
deep RL was performed which shows an agent can optimize aerodynamic shapes without
any prior knowledge of the final shape. Application of deep RL in a degenerate form to
control heat transfer by changing position of the air supply position is demonstrated which
has a wide application in indoor thermal comfort [88]. Controlling Natural convection in
limited 2D square and fixed Prandtl number was successfully performed using RL [89].
Rabault et al [90] also used parallel CFD environments for active flow control. Applica-
tion of RL in shape and topology optimization of heat transfer devices, however, remains
intact. For heat exchanger design automation and more generally the mechanical design
application, CFD solver is the limiting factor for the speed of execution because of the
CPU-intensive simulation environment [91–95]. For the case of the CFD simulation, par-
ticularly shape optimization with the curved surfaces, we always deal with nonlinear data
for which classical machine learning fail in practical implementation. In the next section,
accelerated methods are discussed that can provide more data for policy learning in RL
and engineering design.
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2.5.2 Accelerated Computation for Iterative Engineering Design

As it was mentioned, engineering design often require Finite Element Analysis (FEA) or
CFD to assess the performance of the output design which is a restricting factor of using
RL in GD [96]. These numerical approaches are computationally expensive and require
human expertise [7]. Gaussian process regression also known as Kriging metamodel in CFD
community was conventionally used as a geostatistical estimator of the CFD computation
to accelerate design automation [97,98]. Modern ML, however, opened a new pass toward
surrogate modeling. Convolutional Neural Network (CNN) is a class of DL which has
gained popularity in recent years with numerous applications in computer vision, radiology,
and most recently in CFD and design community [99–104]. CNN can recognize features in
variable 2D shapes which makes it an appropriate model to predict simulation results of
different physical shapes [8,96]. CNN also benefits from parameter sharing which leads to
smaller number of trainable parameters compared to Fully Connected (FC) Layers [105].
Guo et al. [106] suggested CNN surrogate model to predict steady state laminar velocity
profile generated using Lattice Boltzmann Method (LBM). They used CNN operating on
Signed Distance Functions (SDFs) sampled on a 2D grid. Several research studies have
been carried out to accelerate time-dependent CFD simulation [107–109]. Accelerated CFD
models using CNN were introduced for turbulent flow prediction without the presence of
boundaries which results in faster simulation even with fine grids [110]. These models have
wide applications in fluid flow prediction particularly in weather forecast that there is no
complex boundary condition or complex topology. Google Deepmind reported a model
for velocity and pressure prediction of two dimensional fluid flow of a cylinder with 1-2
orders of magnitude faster computation than the finite element solver [111]. Continuous
convolutions are used for Lagrangian fluid simulation without the presence of morphing
shapes [112].

U-Net architecture was used as a tool to reconstruct the CFD results of cylinder
flow [113,114]. Regular CNN was also used for pressure prediction in flow around a cylin-
der [115]. CNNs were applied to two dimensional velocity field estimation of blood flow
in artificial lungs using a dataset with the size of 5000 cases [116]. Generation of high
fidelity velocity field from low fidelity data was studied using GANs [117]. A data-driven
model based on FC layers for drag prediction of rectangular obstacle with different aspect
ratios representing building geometry was reported with as low as 3.17% error in predic-
tion [118]. Graph Neural Network has also shown promising results as a fluid dynamics
surrogate model in predicting next-step velocity profile for time-dependent flow [119–121].
The effort in time-dependent accelerated CFD is to minimize error accumulation that
occurs during timesteps of the estimation [110,122]. Error accumulation in next-step pre-
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diction particularly in turbulent flow causes distortion from ground truth values after few
timesteps. Han et al. [122] used pivotal nodes to summarize information of graphs acquired
from mesh representation into a latent vector and predicted the next-step velocity using FC
layers. The information is then decoded through the pivotal nodes. This method reduced
error accumulation and computational cost associated with transient physics prediction.

In design optimization process, time-averaged properties are favorable [100, 123, 124].
Viquerat et al. [8] used VGG network for drag prediction of the shapes generated using
bezier curve at low Reynolds and steady state condition. Zhou and Ooka used FC layers
to predict CFD results for fixed cubic geometry for indoor air flow application [125]. They
used parameters of the physics as the input of the neural network and velocity and tem-
perature tensors as the output. They reported less than 12% error for thermal distribution
prediction. Neural Network in FC form was also used for drag coefficient prediction of
multiple shapes representing cars [126]. Inter-vehicular distance was used as the input of
the model to predict drag coefficient.

2.6 Conclusion

In this chapter, a review on heat exchanger design and manufacturing was presented start-
ing from traditional to generative designs. Recent studies in RL and surrogate models in
engineering design were also discussed.
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Chapter 3

Heat Exchanger Size Optimization
and Process Development

3.1 Introduction

This chapter presents the usage of genetic algorithm for the size optimization of Manifold-
Microchannel Heat Exchangers (MMHXs) which was introduced in chapter 2. Manufactur-
ing and process development for size optimized novel MMHX is introduced. Direct Metal
Laser Sintering (DMLS) is used to fabricate compact MMHXs. Compared to the state-of-
the-art heat exchangers, MMHXs have been proven to yield superior performances [63,64].
However, fabrication of manifold-microchannel heat exchangers using conventional fabri-
cation methods is a challenge due to their complex geometry. Additive manufacturing
processes, like DMLS, allow fabricating the MMHX as a single component, which signifi-
cantly simplify its production process. Part of this chapter is base on IEEE ITherm Con-
ference paper entitled ”Additive manufacturing of compact manifold-microchannel heat
exchangers utilizing direct metal laser sintering” [75].

3.2 Manifold-Microchannel Heat Exchanger

The MMHX is a novel heat exchanger design that can enhance heat transfer and re-
duce pressure drop, compared to state-of–the-art HXs. Manifold-microchannel geometry
is composed of a manifold on top of array of microchannels for better flow distribution,
and shorter flow in the microchannels, as shown in Fig. 3.1. The short flow length can
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significantly reduce the pressure drop and enhance the heat transfer by forcing the flow
in the developing region. A more detailed description of MMHX is presented by Ohadi et
al. [64].

Figure 3.1: Manifold-microchannel design schematic

Fig. 3.1 shows the design schematic of the fabricated MMHX, with straight fin and
straight manifolds. Previous works fabricated MMHX with inclined fins and inclined man-
ifolds due to fabrication limitations, as reported in [65]. In this work, the manufacturing
process has been improved using a different building orientation, to allow fabrication of
straight fins and manifolds.

3.3 MMHX Size Optimization

In order to fully utilize the performance potential of MMHXs, a design space is considered
for exploration using genetic algorithm and a Fluent CFD solver. The design space is
shown in Fig. 3.2. Heat transfer and pressure drop inside manifolds were calculated using
an approximation method introduced and validated by multiple studies [62,127]. The detail
description of the method can be found in Ref. [60]. Single microchannel CFD results were
computed using Fluent commercial software. The height, width, and length of the channel
and manifold along with the mesh generation were controlled by changing the position of
the points in MATLAB. The constructed geometry and mesh file were feed to the Fluent
software for CFD results in microchannel part. The size optimization framework is shown
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in Fig. 3.3. The objective of the size optimization is to maximize the heat transfer so that
the overall effectiveness of the heat exchanger is above 90% while the pressure drop remains
lower than 30% of the system pressure. The Kriging metamodel toolbox in MATLAB is
used for the metamodel creation [128]. The metamodel prediction is validated by the
actual values from CFD and hybrid method as shown in Fig. 3.3. Once this single cell
is optimized, the overall heat transfer and pressure drop will be computed based on the
number of single cell used in the design.

Figure 3.2: Schematics of the design domain for MMHX size optimization
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Figure 3.3: MMHX size optimization framework

Since the majority of the mass, space, and pressure drop is specified to manifold, small
fins (0.1-0.2 mm) and channels (0.2-0.3 mm) are required to reach the target heat transfer.
Therefore, three different 3D printing machines were used to study the effect of geometries
and printing parameters, such as laser power, powder size, and layer thickness, on the fins
and channel size of the fabricated microchannel heat exchangers. A comprehensive study
has been performed to achieve fin thickness as small as 0.110 mm.

The minimum base thickness, which separates the hot and cold streams, plays an
important role. The base thickness needs to withstand the designed pressure, thus ideally
increasing its thickness. However, the thinner the base, the more reduction in mass is
achieved, without affecting the thermal performance. Base thickness study is a crucial
optimization problem sice it balances the need to withstand high pressure and lower cost.
In the current work, multiple MMHX coupons were fabricated with different fin thicknesses
to determine the smallest fins that AM can successfully fabricate. A similar approach was
applied for the pressure test coupons. The lessons learned were used to fabricate a 3”×3”
×3” size and a 4” x 4” x 4” MMHXs with straight fins and straight manifolds. Pressure
containment tests were also performed to evaluate the minimum base thickness that can
hold the designed pressure. A 3”×3” ×3” size microchannel heat exchangers was then
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successfully fabricated with straight fins of 0.133 mm out of Maraging Steel, and a 4”×4”
×4” size microchannel heat exchangers was successfully fabricated with fin size of 0.22mm
out of Inconel 718.

3.4 Fabrication Orientation

In order to successfully print MMHXs using DMLS, fins’ angle with respect to the build
plate should not be less than 45°. Otherwise, support structure will need to be added. Since
support removal from the interior structure of MMHXs is not possible, fins should be placed
in more than 45° angle. A cross flow MMHX consists of fins in both the hot and cold sides,
which are perpendicular to each other as shown in Fig. 3.1. Therefore, for successful
fabrication, the MMHX should be fabricated at 45 degree angle with respect to the build
plate as shown in Fig. 3.4. In this orientation, fins in both sides will be fabricated at 45°
angle. Additionally, in order to anchor the HX to the build plate, support structures should
be placed between the plate and the interface of the MMHX, that is faced downwards, as
shown in Fig. 3.4.
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(a)

(b)

(c)

Figure 3.4: Build orientation: (a) Complete View (b) Cross-section view – Cold-side fins
(c) Cross-section view – Hot-side manifold
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3.5 Fin Thickness Study

In order to evaluate the capability of AM to fabricate MMHX with small fin size, multiple
coupons with different fin thicknesses and channel sizes were fabricated using different 3D
printer machines. These coupons were fabricated in the same orientation as the full scale
MMHX (see Fig. 3.4), to be representative of the final HX. A schematic drawing of the
fabricated coupon and its printing orientation are shown in Fig. 3.5. The coupon consists
of fins with three different sizes: 0.100 mm, 0.125 mm, and 0.150 mm. They are separated
by a thick wall for convenience of measurement. Fin spacing is considered to be constant
and equal to 0.260 mm, thus the channel width varies between 0.110 mm, 0.135mm, and
0.160 mm for section with fin thickness of 0.150 mm, 0.125 mm, and 0.100 mm respectively.
Multiple coupons with the same design and orientation as shown in Fig. 3.5 were fabricated
using ProX DMP 200, ProX DMP 300, and EOSINT M 290 3D printer. Table 3.1 lists the
material used for each print, the maximum printer build size and the layer thickness. Fig.
3.6 shows the fabricated fin thickness compared to the design fin thickness, for different
3D printer machines.
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(a)

(b)

Figure 3.5: (a) Build orientation for fin thickness study coupon and (b) image of the
printed coupon for fin thickness study

32



Figure 3.6: Printed fin thickness versus design fin thickness for different 3D printer
machines

Table 3.1: Printers details including material used, maximum build size and layer thickness

Printer Model Material Printer build size [inch3] Layer thickness [µm]
ProX 200 Maraging Steel 5.51× 5.51× 4.92 30

ProX 300 (Inc625) Inconel 625 9.84× 9.84× 13 40
ProX 300 (Inc718) Maraging Steel 9.84× 9.84× 13 40
EOS M290 (40µm) Inconel 718 9.85× 9.85× 12.8 40
EOS M290 (20µm) Inconel 625 9.85× 9.85× 12.8 20

Fig. 3.6 shows that ProX 200 machine has the best concurrence between the design
fin size and actual fin size. This result can be understood by checking the information
reported in Table 1. First, Maraging Steel is easier to be worked with, due to lower tensile
stress properties and thermal resistance to high temperature when compared to superalloy.
Second, the printer has a smaller build volume, meaning the distance between the laser and
the build plate is smaller compared to the other printers. This allows a higher resolution
in the printing feature. Third, the layer thickness is smaller than the conventional 40 µm.
The printer was used as an initial test because it is located at the University of Maryland,
College Park (MD) and it is easily accessible for the authors of this work. Despite these
promising results, Maraging Steel is not suitable for high temperature applications which
require superalloy materials. Maraging Steel, in fact, has a maximum service temperature
of 400°C, while Inconel 625 and 718 can withstand up to 900°C [19]. On the other hand,
the need for a bigger printer to accommodate bigger HX (considering the build orientation
negatively affects the build size requirement) led to exploiting other machines and different
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materials. ProX 300 machine has been investigated in two different configurations. ProX
300 (Inc625) showed a small deviation from the fin design values for 0.100 and 0.150 mm,
but a significant deviation for 0.125 mm. The lack of consistency in the printer can become
an issue when printing bigger part. On the contrary, ProX 300 (Inc718) showed a more
consistent trend, but the deviation from the desired values has to be carefully taken in
consideration during the design stage: knowing that the printed part will be bigger than
the CAD file, the features need to be designed smaller to mitigate the deviation. A similar
trend was also shown by EOS M290 (40µm).

3.6 Layer Thickness Effect on Fin Size

As shown in Fig. 3.6 when comparing EOS M290 (40µm) with EOS M290 (20µm), a signif-
icant improvement in the fin thickness can be obtained when reducing the layer thickness.
Changing the layer thickness of Inconel 625 from 40 to 20 µm allows to get feature size
deviating only 20 µm, which is the particle size itself. Both powder sizes show consis-
tency in the trend, making EOS M290 a more robust machine, which requires smaller layer
thickness to get the same results in terms of fin resolution. The drawbacks of reducing the
powder size are longer printing time (double, if halving the powder size) and higher cost,
due to more expensive powder and longer printing time. Smaller powder size has therefore
to be selected only in those cases where resolution and consistency are needed to their
maximum capabilities.

3.7 Laser Power Effect on Fin Size

Printing parameters can be adjusted by machine operator and can significantly affect the
quality of the printed parts [129]. Laser power is a crucial factor that affects the fabrication
quality of the parts, printed using DMLS. The effect of laser power on the fins’ size was
investigated through printing multiple single manifold-microchannel coupons using Marag-
ing Steel for the PROX 200 at University of Maryland, College Park, as shown in Fig. 3.7.
Six coupons were fabricated with three different fin sizes and two different laser power
settings, as shown in Fig. 3.7.
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(a)

(b)

Figure 3.7: (a) CAD model of a single manifold-microchannel , and (b) Picture of single
manifold-microchannel fabricated at different laser power

Table 3.2: Effect of laser power on the fin size (sizes in µm)

Design fin thickness 300 W laser
power

225 W laser power

100 133 115
125 156 131
150 188 157

Table 3.2 shows design fin thickness and fabricated fin thickness which were fabricated
using 300 and 225 W laser power setting in ProX 200 machine. It can be concluded that
smaller fins size can be fabricated using smaller laser power. This is due to the fact that,
the higher the laser power, the larger the melting pool, and the more difficult it is to
fabricate fine features. Fig. 3.8 shows the microscopic image of the fins of 115 µm size.
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Figure 3.8: Microscopic image of the fins with 115 µm thickness

3.8 Base Thickness Study

Another important design limitation is the minimum base thickness that is required to
withstand the pressure. Ideally, the smaller the base, the better results the HX can provide,
both in terms of thermal performance and mass reduction. Reducing the base thickness,
in fact, allows to minimize the thermal resistance due to the conductive term. At the
same time, a reduction in the base requirements positively affect the total mass of the HX.
However, there are some limitations faced when using AM. In fact, the part is obtained
by sintering metal powder into a single structure. During this process some impurities can
be trapped in the structure and porosity can affect the product quality. This may result
in a final component that withstand pressure requirements differently, or less than the
component fabricated conventionally from bulk material. In order to study this behavior,
a series of coupon with different base thicknesses were printed, as shown in Fig. 3.9.
Each coupon consists of a chamber and a pipe connection through which it is possible to
connect the coupon to the pressurized system. The fittings were machined to guarantee
perfect sealing during the pressure containment test. The printers selected for this study
were the ones giving the most consistent results during the fin thickness study: ProX 300
(Inc718) and EOS M290 (20µm). Each machine printed three coupons, of chamber walls
of respectively 300, 350 and 400 µm, as reported on each coupon (see Fig. 3.9).
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Figure 3.9: Pressure check coupon sets. Front line set: ProX 300 (Inc718), back line set:
EOS M290 (20µm)

Layer thickness effect on base thickness size High temperature HXs for airplane ap-
plications generally operate under 50 psia (339 kPa) pressure. For this reason, the six
coupons were pressurized under the design condition, using nitrogen as test medium. The
test results are shown in Table 3.3.

Table 3.3: Results of pressure containment check coupons

Design base thickness ProX 300
(Inc718)

EOS M290 (20µm)

300 µm Small leakage No leakage
350 µm No leakage No leakage
400 µm No leakage No leakage

As reported in Table 3.3, EOS M290 (20µm) proved the capability of printing three pres-
sure tight coupons, demonstrating dense structures for the three selected base thicknesses.
ProX 300 (Inc718) failed in the smallest base thickness selected. As expected, moving from
40 to 20 µm layer thickness proved to give better results. The requirement to lower the
layer thickness to obtain leak proof HXs, varies based on the pressure selected. For the
current study, the selected pressure of 50 psia (339 kPa) necessitated moving from 40 to
20 µm layer thickness, when printing base thickness smaller than 350 µm. A direct mea-
surement of the base thickness is not possible without cutting the coupons. The “indirect”
method used to validate the printed base thickness was based on the volume check of the
coupons. The volume of the coupons was measured using Archimede’s principle through
a precision dynamometer. The liquid used for these measurements was ethyl-alcohol 200
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proof. Having a lower surface tension than water, ethyl-alcohol 200 proof becomes a better
choice, making sure that air microbubbles do not attach to the internal parts, thus com-
promising the results. The volume calculated was then compared to the design volume.
For both printers, the deviation from design to actual volumes was in the order of 2-3%,
which falls under the uncertainty of the measurements (in the order of 3%). By this, the
results obtained for the coupons are considered as similar to the actual dimensions.

3.9 MMHX Units Fabrication

MMHX fabrication was performed through multiple steps from small heat exchanger units
to a larger scale HX. Fig. 3.10 shows three MMHXs fabricated out of Maraging Steel using
ProX 200, and one MMHX fabricated out of Inconel 625, using ProX 300 (Inc718). In
order to fabricate a 3” x 3” x 3” size MMHX, which is the maximum build size capability
of ProX 200, multiple coupons were fabricated from small to larger size. To investigate
whether the heat exchanger was leak free, a 1” x 1” x 1” MMHX was fabricated and leak
tightness was proven through a leakage test, based on pressurizing the HX with air. Based
on this promising result, two larger MMHXs with the size of 2” x 2” x 2” and 3” x 3” x
3”were fabricated.
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(b)

(c) (d)

Figure 3.10: Image of the (a) 1”×1”×1”, (b) 2”×2”×2”, (c) 3”×3”×3” MMHX unit
fabricated out of Maraging Steel, and 4”×4”×4” MMHX fabricated out of Inconel 625

In order to investigate the quality of the fabricated MMHX, the 2” x 2” x 2” MMHX
was cut. The cut section image of the is shown in Fig. 3.11. By analyzing the cross section
view, it can be seen that the fins are successfully fabricated without clogging or defects.
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Figure 3.11: Cut view of 2” x 2” x 2” MMHX (Fig. 3.5(b))

Based on the knowledge learned from the fin thickness study, the fins were designed at
0.100 mm. The fin size of the three Maraging Steel MMHXs were measured to be between
0.110 and 0.130 mm, which is consistent with the results of the fin thickness study. This
successful fabrication of straight fin and straight manifold MMHX, with fin size as small
as 110 µm, can significantly enhance the performance of the MMHX. ProX 300 (Inc718)
machine was used to fabricate the 4” x 4” x 4” MMHX. In order to fabricate this MMHX
with a minimum fin thickness, the designed fin thickness was set at 0.100 mm. The actual
fin thickness of the 4” x 4” x 4” MMHX fabricated using ProX 300 (Inc718) was then shown
to be 0.220 mm. All of the fabricated MMHXs have been tested to prove leak tightness
under the designed pressure, confirming also the base thickness results.

3.10 Conclusion

A size optimization framework along with the process development of metallic MMHXs
were introduced. With the use of genetic algorithm and a hybrid CFD model, as well
as DMLS fabrication method, MMHXs were optimized and fabricated for a target design
performance. In order to achieve high performance for the MMHX, the fin needs to be
fabricated as thin as possible. The base also needs to be fabricated as thin as possible
to have no leakage. A study was performed to determine the smallest fins size that can
be fabricated using DMLS. Multiple coupons with different fins sizes were printed using
multiple printers with different printer parameters. The results show that fins as small
as 0.110 mm can be fabricated using the ProX 200. ProX 300 and EOS M290 machines
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are less accurate in printing small fins, but can accommodate bigger HXs. Reducing the
layer thickness and laser power can improve the fabrication quality. The superior results
are also reflected in the leak-proof minimum base thickness. For 50 psi (339 kPa), a base
thickness of 300 µm proved to be leak-proof. Based on the knowledge acquired from the
coupons study, multiple MMHXs were fabricated starting from smaller size of 1”x 1” x 1”
up to a 4” x 4” x 4” HX. Leak tightness of the MMHXs have been proven through leakage
test under design pressure.
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Chapter 4

BREP-based Generative Thermal
Design Utilizing Single-Agent Deep
Reinforcement Learning

This chapter presents a parametric approach for heat exchanger shape optimization utiliz-
ing deep RL and BREP. It is shown that continuous geometric representation of the fluid
and solid domain facilitates the implementation of boundary conditions and design space
exploration in contrast to traditional TO. The proposed framework consists of a Deep
Neural Network (DNN), and a CFD solver with an automatic body-fitted mesh generation
to solve a single fin shape optimization. The learning is performed using Proximal Policy
Optimization (PPO) in combination with a CFD environment in FEniCS. The RL agent
successfully explores the design space and maximizes heat transfer and minimizes pressure
drop for geometric design with as low as 12 degrees of freedom represented by composite
Bézier curves. Higher degree of freedom results in higher reward of the agent. This method
alleviates the curse of dimensionality compared to voxel and pixel-based optimization of
coupled thermal fluid-structure. Results show the manufacturability and efficiency of the
output of the presented framework. Over 30 percent improvement in overall heat trans-
fer while lowering the pressure drop by more than 60 percent compared to the rectangle
reference geometry is achieved. Part of this chapter is based on a peer-reviewed article pub-
lished in ”International Journal of Heat and Mass Transfer” entitled ”Deep reinforcement
learning for heat exchanger shape optimization” [130].
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4.1 Introduction

In this chapter, a new approach for generative design of heat exchangers using deep RL
and parallel computing is proposed. Parallel training is a useful tool that can be used in
conjunction with an on-policy algorithm called PPO. Introduced workflow is designed to
perform CFD in multiple parallel environments. BREP-based geometry is used to reduce
the dimension of the problem with reducing the design parameters to a number of control
points that construct the geometry. This method provides continuous solid-fluid interface
to support shapes beyond Euclidean geometries on which boundary condition could be
applied. It is shown that an autonomous agent controlled by the developed algorithm
observes the CFD environment defined in FEniCS, an open-source software, and provides
actions to optimize the geometry of the fin. Parallel computing has been used for simulation
to provide the data required for PPO algorithm. Utilizing the proposed methodology
presented in this chapter enables the moving surfaces in BREP to be the main optimization
variable. The mathematical precise definition of the surfaces controlled by points makes the
output geometry an ideal design for manufacturing purpose particularly in microchannel
design. In density-based methods such as SIMP method or Navier-Stokes/Brinkman model,
however, the computational domain is considered a porous media without a clear interface
representation of the solid and fluid-structure. The free form nature of density-based
methods, impose manufacturing challenges particularly in heat exchanger applications.
Parametric optimization in combination with reinforcement learning alleviates undesirable
shapes considering penalties for certain area of the design space. Recent advancement in
Learning from BREP provides effective function approximation which can accelerate the
optimization [131].

4.2 Methodology

The focus of this chapter is to present a model for conjugate heat transfer of laminar incom-
pressible fluid in a constraint heat exchanger. The design space is a two dimensional space
D = Ωf ∪Ωs ⊂ R2 occupied by a solid, and an incompressible fluid. The solid component
Ωs consists of composite Bézier curves controlled by moving control points which causes
incremental changes in the fluid domain Ωf . Defining geometry using BREP facilitiates
mathematical implementation of moving boundary conditions during incremental changes
in the computational domain.

43



4.2.1 BREP-based Geometry

Curves can be defined as implicit, explicit, or parametric. Here, the focus is on parametric
expression of curves which is mostly used in computer graphics and geometric modeling.
Composite Bézier curves are parametric curves initially used for designing body of cars
and later in Computer Aided Design (CAD) and Robotics [132]. A composite Bézier curve
is a piecewise Bézier curve where the initial and final points are joined together to form a
continuous geometry. These curves have also been used in image manipulation and Gen-
erative Adversarial Network (GAN) for design space exploration [133]. In this chapter,
geometries are defined utilizing the composite Bézier curve because its mathematical def-
inition facilitates the implementation of iterative process and defining b-spline kernels for
future consideration of Geometric Deep Learning. The key component that makes com-
posite Bézier curves well-suited for shape optimization is the continuous derivative on the
curve which is extremely useful for Neumann boundary condition implementation. The
original Bézier curve with a set of control points Pi with n+1 parameters are defined as
following:

α(u) =
n∑
i=0

PiBi,n(u);u ∈ [0, 1] (4.1)

where Bi,n(u) is the i ’th function of degree n defined by Bernstein polynomials

Bi,n(u) =

(
n

i

)
ni(1− u)n−i; i = 0, .., n (4.2)

4.2.2 CFD Environment

A CFD environment is created for the design space which is shown in Fig. 4.1. Internal
square shows the design space in which the agent receives a reward where the rectangle
space is the total design space. The ratio of the spaces are shown in Fig. 4.1. The
environment is written utilizing FEniCS open source software all in python [134]. FEniCS
is based on the Finite Element Method(FEM) used to solve the governing equations 4.3
and 4.5 given bellow. Boddy-fitted mesh generation of the geometry is performed in GMSH
[135]. The robustness of these packages have been demonstrated by several studies [136,
137].

Eq.4.3 and Eq. 4.5 formulate the incompressible Navier-Stokes equation, and convection-
diffusion equations (effects of gravity on momentum is considered to be negligible)
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(a) (b)

Figure 4.1: Setting of design space exploration (a): Rewarded design space represented by
boundary Γ, (b): Total design space



ρ∂u
∂t

+ ρ((u · ∇)u)−∇(σf (u, p)) = 0 in Ωf

∇ · u = 0 in Ωf

u = u0 on Ωf,in

σf (u, p) · n = 0 on Ωf,out

u = 0 on Γ

(4.3)

Where σf (u, p) is considered as Newtonian fluid:

σf (u, p) = 2νe(u)− pI, e(u) =
1

2
(∇u +∇uT ) (4.4)

In which I is the identity matrix and p ≡ p(Ωf ) is the pressure.

ρcp
∂T
∂t

+ ρcp(u · ∇T )−∇ · (kf∇T ) = 0 in Ωf

T = Tin on Ωf,in

T = T0 on Ωf,t=0

Tf = Ts on Γ

−kf ∂Tf∂n = −ks ∂Ts∂n on Γ

(4.5)

Where u is the velocity field, and T is the temperature,

Traditionally, Finite Volume Method (FVM) was used more frequently for CFD compu-
tation; Traditional FEM without standardization struggled to solve CFD problems due to
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the nonlinearity of the convection term which makes the problem unsymmetrical. How-
ever, recently, FEM has widely been used in both academia and commercial software
packages because of the geometric flexibility of the method and advancement in computer
hardware [138, 139]. In this study, we use FEM to solve discretized Navier–Stokes and
convection-diffusion equations along with BDF2 time scheme for Navier–Stokes equations
and BDF1 time scheme for convection-diffusion equation. The numerical timestep is con-
sidered according to convergence condition by Courant–Friedrichs–Lewy. The weak form
of equations are given in A.1

Periodic boundary condition is implemented in the vertical direction. Dirichlet boundary
for the fluid variables u = u0 = 1m/s is considered for the inlet flow as well as Neumann
boundary for the fluid variables σf (u, p) · n = 0 at the outlet. Isothermal boundary for
the inlet temperature and solid-fluid interface is considered Tin = 27 °C , Ts = 177 °C,
respectively.

Heat transfer and pressure drop across the domain are computed by Eq. 4.6 and Eq. 4.7.
Final time of the computation is considered to be twice the value of the number of timesteps
required for convergence based on the Courant–Friedrichs–Lewy condition. Average values
are obtained from Eq. 4.6 and Eq. 4.7 between the inlet and outlet boundaries specified
in Fig. 4.1 over the final half of the computation.

Q(Ωf ,u, T ) =

∫
∂Ωf

ρcpTu · n dy (4.6)

DP (Ωf , p) =

∫
∂Ωf∩∂Ωf,in

p dy −
∫
∂Ωf∩∂Ωf,out

p dy (4.7)

4.2.3 Deep Reinforcement Learning

RL is a sub-field of ML used for sequential decision making processes. In RL, an agent
interacting with an environment, learns the optimal policy used for optimal decisions over
time. Deep RL uses DNN as a predictor for high dimensional action space. Thermal shape
optimization problem is a complex task, and tabular methods of Reinforcement learning are
not effective in predicting the heat transfer and fluid properties. A Deep Neural Network
representation of the physics of the CFD environment is required due to the stochastic
nature of the design space [140]. Several algorithms have been widely used for interaction
of Neural Network with RL agent such as Deep Q-Network (DQN) in which Q-value updates
are a relation between the predicted and target values derived from the Bellman equation
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[141]. Several methods also have been developed for policy gradient updates such as the
vanilla policy gradient methods, Trust Region Policy Optimization (TRPO) and Advantage
actor-critic (A2C) methods [142]. DQN works well on discrete action spaces; however, it
is not a powerful tool for complex continuous problems. Vanilla policy gradient methods
exhibit poor robustness; TRPO is complicated to implement particularly when dealing with
complicated numerical simulations with the chance of failed meshing or equation solving. In
this study, Proximal Policy Optimization (PPO) Algorithm is used with improved stability
of the stochastic policy updates during training and parallel environment implementation.
PPO use a clipping ratio to alternate between sampling data through interaction with
the environment, and optimizing a surrogate objective function using stochastic gradient
ascent [143]. In this study, we use three fully connected hidden layer with ReLU activation
function written in Tensorflow. Hyperparameter values are given in A.2 to facilitate the
reproducibility of the Results.

4.2.4 Policy Gradient Methods

Policy gradient methods use gradient estimator as the form of Eq. 4.8 in combination with
gradient ascent 4.9.

∇θJ(πθ) = E
τ∼πθ

T∑
t=0

∇θ log πθ(at|st)Aπθ(st, at) (4.8)

Where πθ denote a policy with parameters θ, and J(πθ) denote the expected finite-horizon
undiscounted return of the policy. The gradient of J(πθ), τ is a trajectory and Aπθ is the
advantage function for the current policy. at ∈ A and st ∈ S are action and state from
action and state space A and S shown in Fig. 4.2.

Gradient ascent updates the policy parameters θ according to Eq. 4.9

θk+1 = θk + α∇θJ(πθk) (4.9)

Where α is a learning rate and k ∈ {0, 1, 2, ...} are the update numbers.

The primary challenge in policy gradient method is the high variance observed in Eq.
4.8. As it can bee seen in Eq. 4.9, high variance of the gradient can damage the learning
process particularly in presence of potential occasional divergence in computation environ-
ment. There are two options of constraining learning rate (α) which makes the learning
process slow or constraining the policy gradient. TRPO is introduced as a substitute to
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line search for optimal point [144]. This method defines a trust region ( δ ) based on
the new and old policy so that the policy update is constrained inside the trust region.
The objective function in TRPO (LTRPO) is defined according to Eq. 4.10 subjected to a
constraint defined by KL-divergence (DKL ) between new and old policy via Eq. 4.11.

LTRPO =
πθ(at|st)
πθk(at|st)

Aπθk (st, at) (4.10)

D̄KL(θ||θk) = E
s∼πθk

[DKL (πθ(·|s)||πθk(·|s))] ≤ δ (4.11)

As it can bee seen, the KL-divergence impose additional computation burden on the opti-
mization. The implementation of the TRPO is also complicated.

4.2.5 Proximal Policy Optimization

Several different algorithm exist for deep RL implementation among which PPO provides
a robust and uncomplicated framework for parallel training. There are two primary pol-
icy updates methods using PPO known as PPO-Penalty and PPO-Clip. In the present
study, we use PPO-Clip policy updates which remains stable in case of mesh failure since
remeshing process are prone to failure. PPO-Clip updates policies via Eq. 4.12 [143].

θk+1 = arg max
θ

E
s,a∼πθk

[L(st, at, θk, θ)] (4.12)

Where L is according to the Eq. 4.13

L(st, at, θk, θ) = min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), clip

(
πθ(at|st)
πθk(at|st)

, 1− ε, 1 + ε

)
Aπθk (st, at)

)
(4.13)

Where ε is a hyperparameter controlling the correlation between new and old policy con-
sidered to be 0.2 in this study, and advantage Aπθk (st, at) is according to Eq. 4.14

Aπθk (st, at) = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1 (4.14)

Where t is the timestep and T is the final time.
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δt = rt + γV (st+1)− V (st) (4.15)

Where V (st) is the estimated value function and rt is the reward.

An ideal fin is expected to cause maximum heat transfer and minimum pressure. The
agent is supposed to find an optimal policy that can maximize the discounted cumulative
reward. In this chapter, reward of the agent is calculated according to Eq. 4.16. We also
provide the results based on the reward using Webb and Eckert’s method according to Eq.
4.17 [145].

rt =
Q

Dp
(4.16)

rtWebb
=

Q

Dp1/3
(4.17)

The reward is computed numerically with FEM in CFD environment written in FEniCS.
Reward shaping is a technique used to construct the reward function that can provide a bet-
ter convergence for our learning process [146]. In CFD, particularly, the interaction between
the agent and the environment is expensive due to the fact that solving the Navier-Stocks,
convection-diffusion equations, and other governing equations require extensive processing
power and memory. Advancement in technology, Graphic Processing Units(GPUs), and
cloud computing has facilitated the computer simulation. However, CFD simulations are
still expensive and mostly rely on CPU and memory to save cell information rather than
GPU. Therefore, receiving proper reward based on the understanding of the environment
can speed up the learning [147]. The value of the reward can be multiplied by a constant
number based on the physics of the design domain. In this study, the reward was multiplied
by a small number in order to achieve convergence since the pressure drop value was small
compared to heat transfer.

The action taken by the agent is changing the position of the control point represented
in Eq. 4.1. The PPO assumes a large trajectory is obtained from the CFD environment
through sub-iterations. One epoch is one forward pass and one backward pass of all training
data and the PPO does several epochs over training batch during training. The level steps
of the execution can be found in algorithm 1.

DNN design in this study includes one input layer and three consecutive hidden layers of
size 256 each, and one output layer. The classic rectified linear unit (ReLU) function is
used as an activation function applied to hidden layers. The reward function, presented in
the Eq. 4.16 and Eq. 4.17 guides the network toward lower cost and higher performance
in design.
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Algorithm 1

Input: Initial control points, initial policy parameters θ0,
For K=0,1,..., episode

Solve Eq. 4.3 and Eq.4.5 using weak form of the equations (given in appendix)
by running policy πk = π(θk)

Collect a set of trajectories Dk = τi
Compute reward using Eq. 4.16 or Eq. 4.17
Update the policy by maximizing the PPO-Clip Objective with Adam optimizer:

θk+1 = argmaxθ
1

|Dk|T
∑
τ∈Dk

T∑
t=0

L(st, at, θk, θ)

Update the control points based on the new policy
End for

Figure 4.2: Deep RL workflow with parallel CFD environments
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Figure 4.3: Geometric control applied to the design domain

4.2.6 Parallel Computing

Parallel environments run the FEM numerical solution in different CPU cores. Fig. 4.2
shows the workflow configuration. The same random seed is used for all parallel environ-
ments so that shape deformations would stay close. In other words, a single agent learns
new policy from a batch of data acquired from parallel CFD computation (i.e. heat transfer
and pressure drop). Batch size of 50 sample process is used in this workflow.

4.3 Results and Discussion

The results show that starting from a reference rectangle fin shape which is frequently
used in HVAC devices, the agent is able to increase heat transfer and reduce pressure drop
through a proper trajectory. Shape evolution over 500 episodes of training is shown in
Fig. 4.4. At the beginning of the training, the agent explores wider range of the design
space beyond the domain specified in Fig. 4.1 with the expectation of receiving reward
by increasing heat transfer area; however, proper learning is obtained by the agent since
reward penalization is considered based on the distance of the control points from the
specified design space according to Fig. 4.3. The reward is reduced by the percentage of
the distance from the desired action space, e.g. (|y| − H

8
)/H

8
× rt in y direction. The same

penalization method is applied for x direction. It can be inferred from the shape evolution
over the training episodes that the agent is on the pass to increase the heat transfer surface
while reducing the frontal area that causes pressure drop.
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Figure 4.4: Shape evolution for the case starting from rectangle for 15 DOF at Re = 100,
Pr = 0.05

To consider the effect of starting shape on the optimized geometry, we studied a circular
shape as the starting point. Shape evolution for the case with circle as the initial geometry
is shown in Fig. 4.5. Immediately after initial point, the agent tries some random shapes;
Fig. 4.5 shows that the agent’s understanding of the environment is not limited to the initial
shape. Optimized shapes from Fig. 4.4 and Fig. 4.5 are similar in terms of performance
and geometry.
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Figure 4.5: Shape evolution for the case starting from circle for 15 DOF at Re = 100, Pr
= 0.05

An interesting observation is that similar to Mekki et al. [22], the optimized geometries
are asymmetric; this might be due to agent’s understanding to expose the surface to the
stream with higher temperature gradient while not to impose pressure drop on both sides
of the shape. Mekki et al. [22] reported 45 % improvement in performance mostly due
to increase in heat transfer while pressure drop increased in their case. Our framework
reduces the pressure drop by 60 percent while increasing the heat transfer rate by more
than 30 percent.

Reference design and an arbitrary shape design are shown in Figs. 4.6 and 4.7, respectively.
Body-fitted mesh generation used in the iterative training process is seen in Fig. 4.7. It
can be seen that how mesh around the corners and boundaries are adapted to provide a
robust numerical approach. Since the number of mesh is changing in each episode through
adapted body-fitted mesh, mesh-independency could not be performed using number of
meshes. Instead, we use a clipping method between number of meshes and mesh size on
the curve constructed between points. This clipping method limits the mesh size to remain
smaller than L/200, and number of meshes between points to remain higher than 15 cells.
This method results in number of unstructured grid between 10000 to 18000 based on
the number of control points chosen for optimization and constructed geometry in each
iteration. Fig. 4.8 shows the dimensionless temperature, T+( Ts−T

Ts−Tin ), at the outflow using
different number of meshes for the reference shape with five control points. This figure
shows that with minimum number of 15 meshes between control points, consistent results
can be obtained.
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Figure 4.6: Meshed domain showing the reference geometry

Figure 4.7: Body-fitted mesh variation during the learning process

Fig. 4.9 shows rewards for each single iteration along with the moving averaged value of 20
neighboring data points for the case of the shape with 15 Degree Of Freedom at Reynolds
number equal to 100 and Prandtl number equal to 0.05.
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Figure 4.8: Averaged dimensionless temperature profile at the outlet at Re = 100, Pr =
0.05
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Figure 4.9: Learning curve (instant and moving average) for shape with 15 DOF at Re =
100, Pr = 0.05

Fig. 4.10 shows the moving average reward for different DOF. It can bee seen that
providing the setting with higher DOF, increases the reward of the RL algorithm since
the agent is able to explore more variation in shape and receive more rewards. Higher
reward is equivalent to reduced cost of the pumping power and improved performance
which is desired for many HVAC devices. However, higher DOF is accompanied by higher
computational cost particularly when extended to 3D space.
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Figure 4.10: Learning curve comparison for shapes with 12, and 15 DOF at Re = 100, Pr
= 0.05

Fig. 4.11 shows the learning curve at RE = 100 and Pr = 0.7. It can be seen in Fig.
4.11 that the reward value is pertinent to the fluid flow properties like Pr and RE number
since the reward values are different from Fig. 4.9. According to Eq. 4.16, the value of
the reward is computed by heat transfer and pressure drop that can change by Prandtl
number. Topologies reach a performance plateau based on the degree of freedom given to
the shapes. It can bee seen that in case of 12 DOF, 200 episodes of training is required for
the moving-averaged solution to reach the plateau while for 15 DOF it takes close to 300
episodes of training.

Fig. 4.12 shows the dimensionless heat transfer and pressure drop with respect to the
reference geometry for shapes over 500 episodes in two different parallel CFD environment
explained in parallel computing section. This results is related to the shapes with 15 DOF
at RE = 100 and Pr = 0.05. As the same random seed is used in the different environments,
shapes and performances stay close. One of the optimized shapes with higher reward value,
an airfoil-like shape, and reference shape are shown in the Fig.4.12. It can bee seen that
the airfoil-like shape which is a common shape in HVAC heat exchangers is among the
well-performing shapes; however, the best performing shapes in Fig. 4.12 have 35 % less
pressure drop compared to airfoil-like shape as well as higher heat transfer rate. Fig.
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4.13 also shows temperature distribution for one of the best performing designs and the
reference geometry.

Figure 4.11: Learning curve comparison for shapes with 12, and 15 DOF at Re = 100, Pr
= 0.7
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Figure 4.12: Dimensionless heat transfer and pressure drop with respect to the reference
geometry for 15 DOF at RE = 100 and Pr = 0.05
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(a)

(b)

Figure 4.13: Temperature distribution for (a): The reference geometry, (b): One of the
best performing shapes

Fig. 4.14 illustrates the reward history along with the pressure drop and heat transfer
for RE = 100 and Pr = 0.05. It can be inferred that the agent receives higher reward
by decreasing the pressure drop compared to increasing the heat transfer according to the
reward definition. This, however, could change based on the application. We provide the
results using the reward function based on Eq. 4.17 [145]. Fig. 4.15 shows the reward
history during the shape optimization using Webb and Eckert reward definition. Definition
of the reward function using Webb and Eckert’s method results in larger shapes with higher
pressure drop. The rational exponent for pressure drop in the reward function reduces the
effect of pressure drop on the shape optimization. Some of the well-performing shapes
along with one of the initial shapes are shown in Fig. 4.15.
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Figure 4.14: Reward history as a function of pressure drop and heat transfer ( colorbar
shows the episode number )
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Figure 4.15: Learning curve according to the reward from Webb and Eckert ( Eq. 4.17)
for shapes with 15 DOF at Re = 100, Pr = 0.05

4.4 Conclusion

In this chapter, a deep reinforcement learning approach for thermal shape optimization us-
ing BREP was introduced. A parametric geometry represented by composite Bézier curve
was used for design space exploration to reduce the dimensionality of the thermofluid shape
optimization problem. Parallel computing architecture was implemented for CFD solver
to provide data for the learning. An interacting framework which consists of parallel heat
transfer simulation and deep RL was presented. Starting from a rectangle reference geom-
etry, the reinforcement learning agent is able to reduce the pressure drop by 60 percent
while increasing the heat transfer by more than 30 percent without any enforcement. The
rectangle geometry was presented as a reference while the framework can work without
any initial geometry. The robustness of the presented algorithm was demonstrated in dif-
ferent Reynolds and Prandtl numbers. The proposed framework keeps a neat boundary
using BREP throughout the optimization. Maintaining a clear boundary provides higher
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flexibility in terms of implementing boundary conditions and using different working fluid.
Increasing the degree of freedom in the presented deep RL workflow results in higher com-
putational cost which makes 3D exploration expensive. However, with the rapid progress
in deep learning, methods such as geometric deep learning could speed up the optimization
process empowering function approximator in deep RL algorithm.
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Chapter 5

Convolutional Neural Network for
CFD Results Prediction of BREP
Topologies

In this chapter, surrogate models are presented for heat transfer and pressure drop predic-
tion of complex geometries generated using composite Bézier curve. It can be inferred from
chapter 4 that the limiting factor in thermal design space exploration is CFD computa-
tion. In this chapter, Convolutional Neural Networks (CNNs) are used to predict the CFD
results directly from topologies saved as images. These predictive models can be directly
applied to design space exploration algorithms as a substitute to the CFD solver. This
chapter is based on some parts of the article which is submitted to ” ”International Journal
of Heat and Mass Transfer” entitled” Convolutional surrogate and degrees of freedom in
thermal design”.

5.1 Introduction

Previous studies were performed on prediction of velocity, pressure, and drag coefficient
for constant geometries. In some cases, few geometrical parameters such as aspect ratio
were considered. Details on recent studies are discussed in chapter 2, section 2.5.2. In
this chapter, modern optimized CNN architectures are used for direct heat transfer and
pressure drop estimation of morphable shapes in contrast to previous studies performed
on constant geometries. This study focuses on heat transfer and pressure drop prediction
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directly from images without the need for mesh representation. Xception model along
with a network optimized CNN are used in this study. By applying these models, the time
required for domain heat transfer and pressure drop computation for varied morphable
topologies can be reduced to few seconds.

5.2 Methodology

The focus of this chapter is to develop a predictor for the design space used in chapter 4.
Here, a summarized information about the domain is provided. The problem remains a
conjugate heat transfer with laminar incompressible fluid in a constraint heat exchanger.
The design space is a two dimensional space D = Ωf ∪ Ωs ⊂ R2 occupied by a solid, and
an incompressible fluid.

5.3 High Fidelity Simulation

A CFD solver is created for the physics shown in Fig. 5.1. Incompressible Navier-Stokes
equation, and convection-diffusion equation are solved using FEniCS. For further details,
please refer to chapter 4, section 4.2.2. Parallel computing using 16 cores and 32 threads
is used for high fidelity simulation in FEniCS.

Figure 5.1: CFD domain for data generation
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5.4 CNN models

Several CNN architectures have been proposed in the past few years [148, 149]. These
architectures range from regular CNNs stacked together to develop very deep layers all
the way to more complex engineered architecture after google presented inception network
[150]. Most of them are competitive in benchmark image classification problems [151].
Their performances in real world predictive tasks are, however, apart from the benchmark
datasets [152, 153]. Xception network along with a custom network optimized model are
deployed in this study. Xception architecture consists of a modified version of depthwise
separable convolution introduced in Inception model to work in a series of operation to
improve utilization of computing power [154]. For further details please refer to the original
reference [148].

5.4.1 Dataset Generation

Geometries are generated using mathematical method explained in chapter 4, section 4.2.1,
which provide 2D space for Eulerian simulation. Mesh generation is based on adaptive
method and heuristics. The fluid properties are controlled by Reynolds and Prandtl number
which considered to be 100 and 0.7, respectively. Since flow is time-dependent, time-
averaged numerical result is considered for a long period of time over the third part of the
computation. Temperature profile for some of the shapes at one of the final time instances
are shown in Fig. 5.2. 4000 shapes using 4 and 5 control points are generated and saved as
images. The size and resolution of the images are considered to be constant with a single
channel, and 506 × 506 pixels. CFD results are saved and labeled accordingly. 70% of the
data are used for training and the remainder for cross-validation and test purpose.
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Figure 5.2: Temperature profile of some random shapes in the dataset

5.4.2 Experimental Setup

All experiments were conducted on a single AMD Ryzen workstation. The workstation was
equipped with Ubuntu 20.04 LTS, 16-Core Processor 3.40 GHz CPU, 32.0 GB RAM, and
one NVIDIA GeForce RTX 3080 Graphics Processing Unit (GPU). Python 3.8.9, CUDA
10.1, TensorFlow, and Keras are used for deep learning implementation.

5.5 Results and Discussion

5.5.1 Hyperparameter Optimization

Hyperparameter tuning in DL models is often performed using either grid search or random
search [155]. In this study, random search is used for number of feature extraction layers
(3 < feature extraction layers < 10), number of filters in each layer (8 < number of filters
< 96), and number of FC layers (2 < FC layers < 5) . After few experiments with kernel
size for the convolution operators, it is found that changes in accuracy and convergence
between 3 × 3 and 5 × 5 kernel size are negligible since the location of information is
in the center of the image. For efficient use of computational resources, 3 × 3 kernel
size for convolutional layers and 2 × 2 kernel size for maxpooling layers are used. The
schematics of the CNN architecture used for direct heat transfer prediction is shown in Fig
5.3. It contains of six successive feature extraction layers with two convolutional layers

67



and one max pooling layer in each of them. Some of the hyperparameters of the model are
shown in Appendix A.3 . Total number of trainable parameters for the proposed model
is 1,160,305. Architecture of the optimized network is shown in AppendixA.4. Xception
model consists of more than 17 million parameters. Hyperparameter values for Xception
model are considered to be the same as those explained in the original article with the
exception of those shown in Appendix A.5 [148]. Batch size for Xception is considered to
be 256 while batch size of 128 leads to the best performance in regular CNN. Training time
for heat transfer prediction using regular CNN and Xception network on our experimental
setup are 45 minutes and 135 minutes, respectively. The same method and architecture
is used for pressure drop considering the output neuron as pressure drop value. Training
for pressure drop estimation takes almost one hour for regular CNN and an average of 170
minutes for Xception model.

Figure 5.3: CNN architecture for heat transfer prediction

5.5.2 Error Behavior

Root Mean Squared Error (RMSE), Mean Square Error (MSE), and Mean Absolute Error
(MAE) are used frequently in the literature for loss function definition to evaluate the
quality of a machine learning model during training [122]. In this study, MSE is used as
given in Eq. 5.1 to train the models [122]. In this equation, ŷi is the predicted value, and
yi is the ground truth value from high fidelity simulation. N is the number of data points
in the batch sample.
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MSE(yi, ŷi) =
ΣN
i=1(yi − ŷi)2

N
(5.1)

MSE values for each epoch of training and validation of optimized CNN model and
Xception model are shown in Fig. 5.4, and Fig. 5.5, respectively. As it can be seen in
these figures, Xception model has lower final MSE value.

Figure 5.4: MSE value as a function of epoch during the training of optimized CNN
architecture for heat transfer prediction

Figure 5.5: MSE value as a function of epoch during the training of Xception model for
heat transfer prediction
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5.6 Prediction Performance

Here, the performance of surrogate models are analyzed using R2 value also known as
coefficient of determination which is computed by Eq. 5.2.

R2 = 1− Σi(yi − ŷi)2

Σi(yi − y)2 (5.2)

where y is the baseline prediction which is considered to be the mean of actual values.

MAE is also used to evaluate the model accuracy according to Eq. 5.3

MAE(yi, ŷi) =
ΣN
i=1(yi − ŷi)

N
(5.3)

In order to better visualize the estimated values, confidence interval and residual plots
are also used. Fig. 5.6 and Fig. 5.7 show the predicted and ground truth values for heat
transfer using optimized CNN model, and Xception model, respectively. On each plot, 150
data points of the same shapes in the test dataset are used to avoid clutter. 99 percent
confidence intervals are also plotted in Fig. 5.6 and Fig. 5.7 which are barely visible. This
shows high accuracy in prediction. The trained model generalizes well beyond the training
dataset as can be seen from the predicted values from the test dataset.

Figure 5.6: Predicted and ground truth heat transfer using optimized CNN model
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Figure 5.7: Predicted and ground truth heat transfer using Xception network

Fig. 5.8 and Fig. 5.9 show the residual plot for heat transfer estimation models.
Residual is defined as a difference between the predicted and actual values in the test
dataset. Distribution of the residuals and data are also shown on the right hand side and
top of the plot, respectively. One important observation from residual plot is that shapes
with smaller heat transfer have higher deviation from the actual values. Higher prediction
errors are associated with smaller heat transfer values which are pertinent to smaller shapes.
This might be addressed by choosing the norm based on the shape area and normalizing
the input data based on the shape area computed using Green’s theorem [156]. However,
area normalization was not performed since the accuracy of the models are within a great
range. This normalization can be applied for higher complexity physics problems.
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Figure 5.8: Residual plot for heat transfer estimation using optimized CNN model

Figure 5.9: Residual plot for heat transfer estimation using Xception network

Table 5.1 shows the statistical summary for both heat transfer estimation models. As
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it can be seen from the table, both models provide high accuracy prediction with Xception
network having slightly higher performance. The coefficient of determination value is close
to one and very hard to achieve in regression models. The order of the errors are small
particularly for concept design optimization where exact values are not crucial for the
design process.

Table 5.1: Statistical results summary of the heat transfer surrogate models for a single
morphable shape

Model R2 MAE
CNN 0.997 0.022

Xception 0.998 0.019

Fig 5.10 shows the predicted and ground truth values for pressure drop estimation using
optimized CNN for 200 data points. Fig. 5.11 shows the estimated values for Xception
network. It can be seen that predicted heat transfer values are closer to the identity line
compared to pressure drop values for both models. This is because of the data distribution
of the pressure values. Even though the same shapes are used for training the models,
CFD results distribution for heat transfer values are more compact than pressure drop
values. The fact that heat transfer and pressure drop can be predicted directly from
the BREP saved as images with a small dataset provides more attention to the machine
learning-accelerated solutions for thermo-fluid structures with nonlinearity [157].

Figure 5.10: Predicted and ground truth pressure drop using optimized CNN model (99
percent confidence interval is also plotted)
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Figure 5.11: Predicted and ground truth pressure drop using Xception network (99 percent
confidence interval is also plotted)

Fig. 5.12 and Fig. 5.13 show the residual for pressure drop using CNN and Xception
network, respectively. Residual plot for optimized regular CNN shows very small bias in
predicting pressure drop. The histogram is far from being right-skewed, but the peak dis-
tribution is not exactly at zero line. Small overestimation can be observed in the prediction
which can be accumulated over the test set and cause larger MAE. Table 5.2 shows the
statistical summary for the pressure drop prediction. As it was mentioned, CNN model
has a larger MAE. From the residual plot and MAE, it can be inferred that Xception works
better for both pressure drop and heat transfer prediction.
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Figure 5.12: Residual plot for pressure drop estimation using optimized CNN model

Figure 5.13: Residual plot for pressure drop estimation using Xception network
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Table 5.2: Statistical results summary of the pressure drop surrogate models for a single
morphable shape

Model R2 MAE
CNN 0.999 0.0378

Xception 0.999 0.023

Table 5.3 shows the average time required for the CNN models and CFD solver. Regular
CNN provides faster computation compared to other methods. CFD solver occasionally
fails because of the failure in mesh adaptation during the shape morphing in presence of
sharp edges or acute angles. DL-based computation does not require mesh generation and
provides more robust algorithm. High fidelity simulation has higher standard deviation in
terms of computing time since variation of the shape causes change in number of meshes
which leads to change in computation time.

Table 5.3: Computation time for different computing methods

Model Average prediction time
CNN 0.42 seconds

Xception 2.03 seconds
High fidelity simulation 45 minutes

5.7 Conclusion

In this chapter, modern convolutional neural networks were utilized to predict heat transfer
and pressure drop of single shapes generated using composite Bézier curve without expen-
sive CFD computation. An optimized CNN network using regular convolutions as well as
an Xception model were deployed to predict heat transfer and pressure drop values. Xcep-
tion network showed more accurate prediction compared to regular CNN. Time-averaged
CFD results were predicted directly from images of the geometries without using mesh
representation.
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Chapter 6

Generative Thermal Design Through
Multi-Agent Cooperative
Environment

In this chapter, the design space of the thermal design is expanded to multiple shape
optimization through multi-agent reinforcement learning. A generative thermal design
solution is presented using cooperative multi-agent environment. First, surrogate models
based on Xception network are trained to predict the CFD results of multiple fins inside the
design space, similar to what was performed in chapter 5. The accuracy of the surrogate
models are reported and are compared to the case with single fin shape. The pre-trained
surrogate models are converted to an environment for the MARL framework. The learning
is performed in a centralized way while actions are made in a decentralized way to tackle
the instability of the problem. Part of this chapter is based on a paper that is accepted
at Thirty-ninth International Conference on Machine Learning for Computational Design
entitled ” Generative Thermal Design Through Broundary Representation and Multi-Agent
Cooperative Environment”.

6.1 Introduction

In previous chapters, we showed the need for design automation and demonstrated how
thermal problems are different from mechanical designs. GANs generate new designs from
an existing dataset utilizing a generator and a discriminator which are usually Deep Neural
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Networks (DNNs). The objective function of GANs should be differentiable to utilize
gradient-based optimization while RL works as a semi-supervised ML algorithm and the
reward of a deep RL can be defined based on the design requirements [158]. However, RL
needs experience from the search domain. This was the main motivation of the previous
chapter in which the possibility of using a surrogate model was assessed.

In this work, we utilize a surrogate model based on modern Convolutional Neural
Network (CNN) to estimate the CFD results directly from geometries which is then used
as a computational engine for the RL environment. This was previously used for other
optimization algorithms in aerodynamics problems. Baque et al. [159] used CNNs as
a surrogate model for CFD of aerodynamic shapes in conjunction with gradient-based
optimization in which the objective function should be differentiable with respect to the
shape parameters. Mark C. Messner assessed the accuracy of a CNN surrogate model for
predicting mechanical properties which was then used for topology optimization [160].

Several high dimensional action space problem were solved using deep RL in multi-agent
framework with a huge computational resources [161]. In MARL framework, convergence
is more critical than the single-agent RL. Most of the multi-agent RL problems are solved
using off-policy RL such as Q-learning since On-policy RL was known to be less sample
efficient [162]. However, new research show effectiveness of on-policy MARL [163]. The
information transferred during training and execution between the agents, policy and value
function is crucial to convergence [164]. MARL can be performed either in a centralized
or decentralized way. Decentralized learning method optimizes the agents independently
and agents do not have access to the reward or policy of the collaborators or competitors.
This causes instability in learning since the environment changes as a consequence of the
actions of other agents. Centralized learning is simply an extension of single-agent RL and
a single policy is learned for a collection of actions and states with one reward value.

Each of these methods show instability in complex tasks. Recent studies used Cen-
tralized Training and Decentralized Execution (CTDE) to bridge the chasm in complex
continuous tasks [163, 165]. In this chapter, we use the same method to address the non-
convergence in action space.

6.2 Methodology

The design space is a two dimensional space D = Ωf ∪Ωs ⊂ R2 occupied by solids and an
incompressible fluid for Eulerian simulation similar to those in chapter 4 and chapter 5.
The solid components Ωs, however, consist of multiple composite Bézier curves constructing
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multiple fin geometries in the fluid domain Ωf . The BREP design space is shown in Fig.
6.1 in conjunction with the discrete space used in conventional TO.

(a)

(b)

Figure 6.1: Setting of design space exploration for (a) discrete space, and (b) BREP space

6.2.1 High Fidelity Environment

High fidelity simulation engine is the same as what was mentioned in chapter 4. Here,
mesh heuristic for multiple shape inside the domain is presented. five sets of geometries
are considered which are randomly sampled among the shapes constructed during primary
running of the framework. The same clipping method described in chapter 4 is used
for MARL framework. However, with the increase in the number of shapes, minimum
mesh size is set to be L/150, and number of meshes between points remain higher than 12.
Minimum number of meshes are decreased compared to the single-agent framework; in case
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of single shape, the meshes were constructed between the shape with small meshes and
boundaries of the domain with larger cells. In MARL framework, meshes are constructed
between multiple shapes with small cells on their boundaries which result in high number
of meshes. Fig 6.2 shows the meshes constructed in a selected geometry. Implementation
of this method results in number of grids between 22,000 and 30,000 which depend on
the size and shape of the geometries. Figure 6.3 shows the mesh heuristics based on the
minimum cell numbers between the points. It can be seen that after considering minimum
of 12 cells between the points, amounts of heat transfer remain consistent.

Figure 6.2: Body-fitted mesh resolution of a selected geometry in multi-agent framework
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Figure 6.3: Dimensionless heat transfer for five random geometry settings with different
meshing sizes at Re = 10 and Pr = 0.7

6.2.2 Surrogate Model Environment

An increase in number of shapes and control points results in larger action space which
requires more iteration for policy learning. Therefore, a surrogate model is required to
enhance the speed of learning. In chapter 5, a surrogate model for a single shape was
provided. Here, an Xception network [148] is trained as a surrogate model to predict
heat transfer and pressure drop directly from the generated multishape geometries. This
selection is based on the superiority of the Xception network that was seen in chapter 5 for
the case with single shape. 34,000 images generated using four and five control points along
with their CFD results are used for training the surrogate model. The size and resolution
of the images are considered to be constant with a single channel, and 506 × 506 pixels.

6.2.3 Multi-Agent Reinforcement Learning

In chapter 4, we used PPO as a single agent RL algorithm for shape optimization of a
single fin. Here, we use Multi-Agent PPO (MAPPO) which shares the same algorithm as
the single-agent PPO. CTDE is used with homogeneous agents utilizing parameter sharing.
The agents learn from the state gathered from all the agents and act independently based on
their own state observation. Input value function becomes important since more accuracy
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in value function can reduce the variance in policy updates. In MAPPO used in the
current study, value function receives global state on top of the state observation for each
agent. Fig. 6.4 shows the MAPPO framework used in this research. In order to study the
difference between the centralized and decentralized learning, a multi-agent benchmark
environment is considered. Particle-world environment (MPE) with multiple agents is
experimented with a decentralized execution and both case of centralized and decentralized
learning. Please refer to Lowe et al. [166] for further details about the MPE environment.
Benchmark MARL is implemented in PyTorch while GD framework is implemented using
Tensorflow.

Figure 6.4: Multi-agent framework for multiple shape optimization

Each agent is responsible for the geometry of one single shape taking action ai using
shared policy πθ with parameters θ. The heat transfer domain is a combination of geome-
tries produced by actions A = (a1, ..., an) in which n is the number of agents. Each shape
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is allowed to occupy a rectangle with the size of H/4 and L/3. Therefore, all agents act in
the same environment with the same action space.

6.3 Experiments

All experiments were conducted on a single workstation equipped with Ubuntu 20.04 LTS,
16-Core Processor 3.40 GHz CPU, 32.0 GB RAM, and one GeForce RTX 3080 Graphics
Processing Units (GPUs). Python 3.8.9, TensorFlow, PyTorch, Keras, and Tensorforce are
used for ML implementation, as well as multiprocessing to leverage multiple processors for
parallel computing.

6.3.1 Experiments for Model Accuracy

Temperature profile for a collection of random geometries from the dataset that is used
for training the Xception network is shown in Fig. 6.5. Unity-based normalization is used
since heat transfer values for five shapes can go above 1000 watts.

Figure 6.5: A collection of random shapes in the dataset which is used for training the
surrogate model of the physics for the case with multiple shapes inside the domain

First, the performance of the surrogate model is shown here. Fig. 6.6 shows the residual
for heat transfer test dataset with the size of 200 images. Comparing the surrogate model
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performance to the ones presented in chapter 5, it can be inferred that by increasing
the number of shapes and consequently DOF, accuracy of the machine learning model
decreases. Challenges to improve the ML model for higher accuracy remains open for ML
community and competitions. Our takeaway from the error behavior is that increasing
design freedom is associated with sacrificing accuracy in prediction. Higher DOF in design
requires larger dataset for training the surrogate model. The model shows a reasonable
performance with R2 values of 0.968 and MAE of 0.032. Residual plot shows that overall
bias of the model can be considered very little to none. Normal distribution of the residual
with a center at almost zero residual shows the high accuracy of the model. The distribution
of the data on top of the chart in Fig. 6.6 shows that the center of the distribution is around
the Q/Qb value of 1.3 which is associated with minimum residual as well. This provides
high accuracy around this point which will be discussed in MARL results. In general,
the model overestimates the larger values of heat transfer and underestimates the smaller
values. However, order of errors are small and can be considered as an accurate model. Fig
6.7 shows predicted and ground truth values with 99 percent confidence interval around
the identity line. As can be seen, the model can be used for heat transfer prediction with
high confidence.

Figure 6.6: Residual plot of heat transfer prediction for multiple fin shapes
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Figure 6.7: Predicted and ground truth heat transfer for multiple shape surrogate environ-
ment (99 percent confidence interval is also plotted around the identity line)

Xception network is also used for pressure drop prediction with minimum hyperparame-
ter search and without any specific changes. Further details are provided in Appendix A.6.
Fig 6.8 shows the residual plot for Xception network trained for pressure drop prediction.
Residual plot for pressure drop shows almost a normal distribution centered around zero
value which indicates the model is fitted properly. Coefficient of determination is reported
to be 0.98. Higher distribution is seen between the Dp/Dpb of 0.6 and 0.8 which is due
to fact that some portion of the data are collected during the primary attempts to use
the MARL framework without a surrogate model. Residual values are close to zero in
this region which is valuable to use the trained model as an estimator engine in the RL
algorithm. MAE value of 0.033 is reported which is close to the heat transfer prediction
value.
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Figure 6.8: Residual plot of pressure drop values for multiple shape surrogate model

Fig. 6.9 shows estimated values of pressure drop and actual values computed using
high fidelity simulation. The red line shows the identity line with 99 percent confidence
interval around the line. Less confidence around the higher values of pressure drop are
seen. However, 99 percent confidence is of great value for design automation tasks.

Figure 6.9: Predicted and ground truth values of pressure drop with 99 percent confidence
interval for multiple shape estimation using Xception network
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6.3.2 Experiments for Multi-agent Generative Design

In MARL method, the action of each agent is to change the position of the points pertinent
to the assigned shape. High dimension of the multi-agent framework makes it crucial to
select the input to value function optimally.

First, we present the results for the MPE as a primary assessment of the CTDE per-
formance for high dimensional environment. Two cooperative MPE scenarios are exper-
imented. In these environments, the collective reward incentivizes collaboration between
the agents. The results for simple reference MPE with two agents and three landmarks,
and simple spread MPE are presented. As it can be seen in Fig. 6.10, centralized learning
provides higher reward and faster convergence in simple reference MPE benchmark envi-
ronment. Fig. 6.11 shows the learning curve for simple spread scenario with five agents and
five landmarks which demonstrates a clear outperformance of the CTDE method for high
number of agents. Simple spread MPEs with lower number of agents show less difference
in performance using different value learning methods. However, increasing the number
of agents and landmarks shows that centralized value learning outperforms the fully inde-
pendent method. This shows centralized learning while executing in a decentralized way
provides better convergence for high dimensional environments. Hyperparameters used for
the simple reference and simple spread MPE are available at A.7 and A.8, respectively.

Figure 6.10: Reward history during training the simple reference MPE
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Figure 6.11: Reward history during training the simple spread MPE

Different methods for passing the state vector to the value function of the MARL
framework for GD was experimented. In case of value function receiving a global state
observation of the points, better preliminary learning is observed in GD framework. De-
centralized learning does not provide convergence in GD framework. This might be due
to the fact that our state observation vector is not a high dimensional state such as those
in pixel dimension of images. The state observation is a numpy array with the same size
as the DOF and action vector. Value function is crucial in convergence when the state
and action space both are increased in the same time. Therefore, multiple timesteps is
considered in each episode to benefit from value learning while our reward can be obtained
in each timestep. Parallel training is used to run the surrogate environment with 16 par-
allel environments and a batch size of 40. Hyperparameters for MAPPO can be found in
appendix A.9. Reward is the desired output which is heat transfer divided to cost which
is pressure drop. An ideal array of fins fin is expected to cause maximum heat transfer
and minimum pressure drop. The reward function is considered to be calculated the same
as single-agent framework using Webb and Eckert according to Eq. 6.1 which is an ob-
jective widely used in heat transfer community. The agents find optimal policies that can
maximize the discounted cumulative reward. The reward function, presented in the Eq.
6.1 guides the network toward the pressure drop reduction and heat transfer enhancement
through changing the boundaries of each shape separately.
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rt =
Q

Dp1/3
(6.1)

Fig. 6.12 shows the shape evolution of multiple shapes during the learning process of
the MARL framework at Re = 10, and Pr = 0.7. It can be seen starting from a reference
geometry, agents find the policy to optimize the shapes. However, agents fail to establish
symmetry in geometry while the physics of the problem is symmetric since each agent
acts independently. It is important to mention that the shapes in Fig. 6.12 are selected
intentionally with the highest symmetry in the shapes. Most of the well-performing design
solutions lack the symmetry in solution.

Figure 6.12: Shape evolution during the learning process in multi-agent framework

Fig. 6.13 shows the reward history during the training of the MARL framework. Both
instantaneous and moving averaged rewards are shown in the figure. In chapter 4, it was
seen that the reward of the single shape with 15 DOF reaches a plateau after less than 300
episodes of training. MARL framework with five agents has a large action space. However,
after less than 2000 episodes and almost two hours of training, well-performing design
with increased performance are generated. It is important to mentioned that, parallel
environments are used in this study. Therefore, experience seen by the agent is larger than
the episode in Fig 6.13.
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Figure 6.13: Instantaneous and moving averaged reward during training of the MARL
framework

Fig. 6.14 and Fig. 6.15 show temperature profile for one of the well-performing designs
and reference design, respectively.

Figure 6.14: Temperature profile for one of the well-performing designs in case of multi-
agent framework
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Figure 6.15: Temperature profile for the reference geometry in MARL method

Fig 6.16 shows the dimensionless heat transfer and pressure drop with respect to the
reference geometry for Pareto front design solutions. It can be seen that even for low
Reynolds number and large Prandtl number (Re = 10, P r = 0.7) which results in less heat
transfer, over 25 percent increase in heat transfer and 25 percent reduction in pressure drop
are seen in well-performing designs. This results prove the effectiveness and robustness of
the developed framework for heat exchanger design automation.

Figure 6.16: Dimensionless heat transfer and pressure drop with respect to the reference
geometry for the best performing designs in MARL framework

Considering that the efficiency of fins in engineering application is high [167], two
dimensional framework developed assuming constant temperature is a practical implemen-
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tation. There might be a special research need for expanding the current framework to
three dimensions for which the action and state space are the same as 2D case. The Open
CASCADE library inside the FEniCs provides a convenient extrusion of the geometry by
adding a dimension in the third coordinate for each fin. Three dimensional implementation
can add one degree of freedom for the height of each fin. 3D simulation requires higher
computation time for one iteration of learning and surrogate-assisted RL is necessary for
achieving high performance design.

6.4 Conclusion

In this chapter, multi-agent deep reinforcement learning was used to generate multiple
optimized fin shapes directly from boundary representation. Centralized training and
decentralized execution (CTDE) was used to train reinforcement learning agents for the
large continuous action space of up to four control points for each shape. An Xception
network was used as a surrogate model to provide accelerated iterative process for agents.
Utilizing accelerated experience of the agents from the surrogate model, multiple shapes
with enhanced performance were generated.
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Chapter 7

Summary, Conclusion and Future
Work

7.1 Summary and Conclusion

This dissertation was developed to address the growing need in computational design meth-
ods for microscale thermal devices.

Genetic algorithm along with commercial software were used for heat exchanger size
optimization which do not provide an efficient use of both time and space. This often
resulted in manufacturing challenges imposed by inefficient use of design space.

A deep reinforcement learning approach which uses parallel environments for heat trans-
fer computation was proposed for the optimization of fin shape. An existing problem in
micro-scale thermal shape and topology optimization was addressed by introducing bound-
ary representation approach that provides clear boundary condition throughout the opti-
mization process. The introduced method requires high fidelity simulation in each episode
of training. High fidelity computation is a CPU-intensive task which requires enormous
memory space to save computation in each node during the simulation. Occasional failed
computation is expected when running for multiple different geometries. Final optimiza-
tion result is not affected by the failed computation, but the robustness of the framework
is.

Modern convolutional neural networks were utilized to predict heat transfer and pres-
sure drop of the shapes generated using composite Bézier curve without expensive CFD
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computation. Time-averaged CFD results were predicted directly from images of the ge-
ometries without using mesh representations. This provides a reduction in time required
for heat transfer and pressure drop computation from several minutes to less than two
seconds. An optimized CNN network using regular convolutions as well as an Xception
model were deployed to predict the CFD results with high level of accuracy. Xception
network provided more robust prediction compared to regular CNN which then used for
larger problem.

The design space was expanded to multiple shape optimization through multi-agent
reinforcement learning. Proximal policy optimization was used for multi-agent framework
in which each agent takes action to optimize a specified fin shape. These agents work
cooperatively with other agents toward maximizing a shared reward by changing the control
points of composite Bézier curves. In order to provide accelerated experience for agents,
pre-trained Xception networks were used in an environment to predict heat transfer and
pressure drop of the generated geometries in few seconds. These developments resulted in
a framework for generative thermal design using cooperative environment and continuous
geometric representation of the fluid and solid domain. It was shown that the developed
multi-agent framework can learn the policy for design strategy using multi-objective reward
without the need for shape derivation or differentiable objective function. A Centralized
Training Decentralized Execution (CTDE) method was utilized to tackle the instability in
learning of the multiple agent and high dimensional design space. The effectiveness of this
method for high dimensional space was also proved using benchmark multi-agent particle
world environment.

The superiority of the proposed method in low dimensional state and action space as
well as the feasibility of the framework for large action space were demonstrated. The
extension of the method remains for future research to explore the performance of the
proposed method in real world engineering design which is provided in the next section.

7.2 Limitations and Future Work

Several research opportunities are opened based on the findings and limitations of the
current research. Bellow, the main avenues are described.
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7.2.1 Utilization of Transfer Learning to Minimize the Need for
High Fidelity Simulation

Current study showed that using surrogate models provided by convolutional networks
can accelerated iterative process in generative design. However, the supervised learning
provided in this study requires a large labeled dataset which is not an efficient way to
develop a surrogate model. A comprehensive study is required for using advanced transfer
learning methods to fully utilize the available archive data toward a reliable surrogate
model that can be used with high accuracy in design automation process. Topology-aware
graph neural network which uses a graph to structure the data for the geometry is a viable
option for developing a sample-efficient surrogate model. In this method, instead of the
images with high dimensional pixels, the topology of the fins can be stored in graphs saving
the information of the entire geometry. These graphs can be used for a neural network
surrogate model.

7.2.2 Action Masking and Sample Efficiency in Design Automa-
tion

Action masking was used in discrete action spaces in order to avoid invalid actions. In heat
transfer simulation, eliminating actions that are computationally demanding would save
optimization time. There is no solid report on sample efficiency of action masking in real
world continuous task such as the one implemented in this study. Sample efficiency is the
key to the effectiveness of the design automation. In this research work, only preliminary
investigation was performed on the effect of state observation on the learning of multi-agent
framework. A comprehensive study on a combination of state observation as an input for
value function is another immediate avenue of research.

7.2.3 Bridging the Gap Between Virtual Simulation and Real
World Manufacturing

In chapter 3, a method that was developed by previous researchers was used for a real
world design automation and manufacturing challenge. From chapter 4 to the end of
this contribution, a new method addressing the existing problems in design automation
was developed. It would be a great opportunity for a hands-on researcher to utilize this
method for an industry-level development with specified target performance. In case three
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dimensional framework is required for particular boundary conditions or working fluids,
e.g. slip flow, details for extrusion in Open CASCADE is explained in chapter 6.
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Appendix A

A.1 Weak Form of Convection-diffusion Equation

In this section, we present our numerical approach for solving Eq. 4.3 and Eq. 4.5. In
order to sove the PDEs we need to discretize space and time. Here, we present the procedure
for convection diffusion equation; the same approach is valid for Navies-stoks equation
except for time discretization which we use BDF2 to enhance the stability and convergence
during shape variation (please refer to Erik Burman for further information [170]).

To solve equations in finite element method characterized by a variational formulation,
weak form of equations discretized in the domain space is required. The weak form of
equations is abtained by defining a space of test functions; each term of the PDE are
multiplied by any arbitrary function as a member of this space.

We multiply Eq. A.1 to an arbitrary function v ∈ V , :

∂T

∂t
= ∇ · (kf∇T )− ρcp(u · ∇T ) (A.1)

V =
{
v(x)|x ∈ Ω, v(x) ∈ H1(Ω), and v(x) = 0 on Γ

}
(A.2)

In which the H1 denotes the Sobolev space of the domain Ω, which is a space of functions
whose derivatives are square-integrable functions in Ω. The solution of the PDE belongs
to a trial function space, which is similarly defined as:

St =

{
T (x, t)|x ∈ Ω, t > 0, T (x, t) ∈ H1(Ω), and

∂T

∂n
= 0 on Γ

}
(A.3)
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∂T

∂t
v = ∇ · (kf∇T ) v − ρcp(u · ∇T )v (A.4)

Integrating over the whole domain yields:∫
Ω

∂T

∂t
vdω =

∫
Ω

∇ · (kf∇T )vdω −
∫

Ω

ρcp(u · ∇T )vdω (A.5)

The diffusion term can be split using the integration by parts technique∫
Ω

∇ · (kf∇T )vdω =

∫
Ω

∇ · [v(kf∇T )]dω −
∫

Ω

(∇v) · (kf∇T )dω (A.6)

Where the second term can be converted to a surface integral on the domain boundary by
applying the Green’s divergence theory:∫

Ω

∇ · [v(kf∇T )]dω =

∫
Γ

kfv
∂T

∂n
dγ = 0 (A.7)

Applying BDF1 scheme for temporal discretization:

∂T

∂t
=
T − T n

∆t
(A.8)

Where T n denotes the value of the temperature in the previous time step.∫
Ω

T − T n

∆t
vdω = −

∫
Ω

kf∇T · ∇vdω −
∫

Ω

ρcp(u · ∇T )vdω (A.9)

Re-ordering the equation A.9, we solve for equation A.10.∫
Ω

Tvdω +

∫
Ω

∆tkf∇T · ∇vdω +

∫
Ω

∆tρcp(u · ∇T )vdω =

∫
Ω

T nvdω (A.10)

115



A.2 Hyperparameters for Single-agent PPO

In this section, we provide parameters and hyperparameters of the deep Rl framework to
facilitate the Reproducibility.

Table A.1: PPO hyperparameters used for shape optimization framework

Hyperparameter Value
Learning rate 1− 2.5× 10−3

Hidden layers 3
Connection Dense

Clipping ratio ε 0.2
Nodes hidden layers 256

Activation function hidden layers ReLU
Activation function output layer Linear

Optimizer Adam
Adam stepsize 1× 10−3

Discount factor γ 0.99
GAE parameter (λ) 0.95

Batch size (N) 50
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A.3 Hyperparameters for Optimized Regular CNN

In table A.2, we provide hyperparameters of the optimized regular CNN to facilitate the
reproducibility.

Table A.2: Hyperparameter Values for Optimized Regular CNN

Hyperparameter Value
Learning rate 1× 10−3

Decay 5× 10−3

Number of Convolution layers 11
Number of MaxPooling layers 5

Number of FC layers 2
Activation function hidden layers ReLU
Activation function output layer Linear

Optimizer Adam
Batch size (N) 128
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A.4 Optimized CNN Architecture

In this section, we show the architecture of the optimized CNN used for the case with a
single shape. The input image size is downscaled version of the original image by a factor
of two with the size of 253 × 253 pixels. Activation functions for convolutional layers and
the fully connected layer are ReLU and the output neuron is using linear function.

Figure A.1: Optimized CNN architecture
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A.5 Hyperparameters for Xception Network used for

Single Shape

In table A.3, some of the hyperparameters of the Xception model used for single fin shape
are provided. Other hyperparameters are used the same as those in the original article [148].

Table A.3: Hyperparameters used for Xception network used for single shape

Hyperparameter Value
Learning rate 1× 10−3

Optimizer SGD
Batch size (N) 256
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A.6 Hyperparameters for Xception Network used for

MARL

In table A.4, some of the hyperparameters of the Xception model used for multiple fin
shapes are provided. No specific changes were made to the original architecture [148].

Table A.4: Hyperparameters used for Xception network in MARL

Hyperparameter Value
Learning rate 0.0001

Optimizer Adam (β1 = 0.5, β2 = .997)
Batch size (N) 256

120



A.7 Hyperparameters for Multi-agent simple refer-

ence MPE

In this section, some of the hyperparameters of multi-agent RL used for simple reference
particle-world environment (MPE) are provided.

Table A.5: Hyperparameters for MAPPO used for simple reference MPE

Hyperparameter Value
Learning rate 7× 10−4

Hidden layers 3
Connection Recurrent

Number of agents 2
Number of landmarks 3

Epoch 15
Likelihood ratio clipping ε 0.2

Activation function hidden layers ReLU
Discount factor γ 0.99

GAE parameter (λ) 0.95
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A.8 Hyperparameters for Multi-agent simple spread

MPE

Here, some of the hyperparameters of simple spread MPE are provided.

Table A.6: Hyperparameters for simple spread MPE

Hyperparameter Value
Learning rate 5× 10−4

Hidden layers 3
Connection Recurrent

Number of agents 5
Number of landmarks 5

Epoch 10
Likelihood ratio clipping ε 0.2

Activation function hidden layers ReLU
Discount factor γ 0.99

GAE parameter (λ) 0.95
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A.9 Hyperparameters for Multi-agent Generative De-

sign

In this section, some of the parameters and hyperparameters of the multi-agent GD frame-
work are provided.

Table A.7: Hyperparameters for MAPPO used for optimization of multiple shapes

Hyperparameter Value
Learning rate 5− 9× 10−4

Hidden layers 3
Connection Dense

Number of agents 5
Likelihood ratio clipping ε 0.2

Nodes hidden layers 512
Activation function hidden layers ReLU

Baseline optimizer Adam
Optimizer learning rate 1× 10−3

Discount factor γ 0.99
Subsampling fraction 0.2

Batch size (N) 40
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