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Abstract

The Simplex method is the most popular algorithm for solving linear programs (LPs).
Geometrically, it moves from an initial vertex solution to an improving neighboring one,
selected according to a pivot rule. Despite decades of study, it is still not known whether
there exists a pivot rule that makes the Simplex method run in polynomial time.

Circuit-augmentation algorithms are generalizations of the Simplex method, where in
each step one is allowed to move along a fixed set of directions, called the circuits, that is
a superset of the edges of a polytope. The number of circuit augmentations has been of
interest as a proxy for the number of steps in the Simplex method, and the circuit-diameter
of polyhedra has been studied as a lower bound to the combinatorial diameter of polyhe-
dra. We show that in the circuit-augmentation framework the Greatest Improvement and
Dantzig pivot rules are NP-hard, even for 0/1 LPs. On the other hand, the Steepest De-
scent pivot rule can be carried out in polynomial time in the 0/1 setting, and the number
of circuit augmentations required to reach an optimal solution according to this rule is
strongly-polynomial for 0/1 LPs. We introduce a new rule in the circuit-augmentation
framework which we call Asymmetric Steepest Descent. We show both that it can be com-
puted in polynomial time and that it reaches an optimal solution of an LP in a polynomial
number of augmentations. It was not previously known that such a rule was possible. We
further show a weakly-polynomial bound on the circuit diameter of rational polyhedra.

We next show that the circuit-augmentation framework can be exploited to make novel
conclusions about the classical Simplex method itself: In particular, as a byproduct of our
circuit results, we prove that (i) computing the shortest (monotone) path to an optimal
solution on the 1-skeleton of a polytope is NP-hard, and hard to approximate within a factor
better than 2, and (ii) for 0/1-LPs (i.e., those whose vertex solutions are in {0,1}"), a
monotone path of strongly-polynomial length can be constructed using steepest improving
edges.

Inspired by this, we further examine the lengths of other monotone paths generated
by some local decision rules — which we call edge rules — including two modifications of
the classical Shadow Vertex pivot rule. We leverage the techniques we use for analyzing
edge rules to devise pivot rules for the Simplex method on 0/1-LPs that generate the
same monotone paths as their edge rule counterparts. In particular, this shows that there
exist pivot rules for the Simplex method on 0/1 LPs that reach an optimal solution by
performing only a polynomial number of non-degenerate pivots, answering an open question
in the literature.
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Chapter 1

Introduction

Linear Programs (LPs) are one of the most powerful mathematical tools for tackling op-
timization problems. While various algorithms have been proposed for solving LPs in the
past decades, probably the most popular method remains the Simplex method, introduced
by G. B. Dantzig in the 1940’s. In this thesis, we assume the input LP is given in the
general maximization format

max{ c'x : Az =b, De <d,x € R" }. (1.1)

for integer matrices A and D of sizes m 4 x n and mp X n respectively, and integer vectors
b, d, and c. Here the objective function is maximized over the polyhedron P = {x € R" :
Ax = b, Dx < d} of feasible solutions.

The Simplex method starts with an initial feasible basis of the LP, where informally a
basis is a minimal set of tight constraints that uniquely define a vertex solution. In each
step, it moves in an improving direction to an adjacent basis until an optimal solution
is found or unboundedness is detected. Two bases are adjacent if they can be obtained
from each other via a single exchange two tight constraints. The choice of which improving
direction to select is done according to some pivot rule. Geometrically, the Simplex method
with a given pivot rule generates a path from an initial vertex solution of an LP to an
optimal one by moving along the edges — i.e., the 1-dimensional faces of the underlying
polyhedron. We define the 1-skeleton of a polyhedron P to be the graph obtained by taking
the vertices and edges of P to be the vertices and edges of the graph. Then the Simplex
method generates a path on the 1-skeleton. Furthermore, this path is monotone — i.e., the
objective function of each vertex on this path is greater than that of the previous vertex.



Despite having been used and studied for more than 70 years, a longstanding open
question in the theory of optimization [92] states: is there a version of the Simplex method
(i.e., a choice of pivot rule) that can solve LPs in polynomial time? The question of finding
an efficient pivot rule is a fundamental difficulty in studying the Simplex method.

Due to the fact that it has proven to be exceedingly difficult to study the number of
pivots performed by the Simplex method, it is often studied by proxy. Given a polyhedron
P, the combinatorial diameter (or simply diameter) of P is the maximum length of a
shortest path between any two vertices on the 1-skeleton of P. Since the Simplex method
follows a path on the 1-skeleton of the feasible region P of an LP, the combinatorial diameter
is a lower bound on the number of pivots that the Simplex method must perform. In order
for there to exist a pivot rule that can solve LPs in polynomial time, it is necessary that
there at least exists a polynomial bound on the combinatorial diameter of polyhedra.

The most famous conjecture in this area is the Hirsch Conjecture which stated that the
diameter of a d-dimensional polyhedron with f facets is at most f—d. While this conjecture
has been disproved (first for unbounded polyhedra by Klee and Walkup in 1967 [6%], and

then for bounded ones by Francisco Santos much later in 2012 [$3]), it is still an open
question whether there exists some polynomial function that bounds the diameter. This
is referred to as the polynomial Hirsch Congecture (see e.g. [33]).

Although the study of the diameter is motivated in large part due to its ability to act as
a proxy for the performance of the Simplex method, there are significant gaps between these
two topics. First, the Simplex method does not follow an arbitrary path on the 1-skeleton,
but rather follows a monotone path. Given a polyhedron P and an objective function
c to be maximized, the monotone diameter of P is the maximum possible length of a
shortest monotone path from a vertex to a c-maximizer, where the maximum is taken over
all possible objective functions ¢ and all possible initial vertices. The monotone diameter
is also a lower bound on the number of pivots required by the Simplex method, and
the monotone diameter can be substantially larger than the combinatorial diameter. For
example, the monotone diameter of the Birkhoff polytope is n/2, while it’s combinatorial
diameter is only 2. However much the diameter is a relevant proxy for the behavior of the
Simplex method, the monotone diameter is a strictly more relevant one.

Second, the existence of a short (monotone) path between two vertices does not easily
translate to an instance of a polynomial pivot rule. While the monotone diameter tells
us the maximum length of a shortest monotone path, we show that computing a shortest
monotone path is NP-hard:

Theorem 1. Given an LP and an initial feasible solution, finding the shortest (monotone)
path to an optimal solution is NP-hard. Furthermore, unless P=NP, it 1s hard to approxi-



mate within a factor strictly better than two. This holds even when the feasible region is a
0/1 polytope.

This implies that for any efficiently-computable pivot rule, the Simplex method cannot be
guaranteed to reach an optimal solution via a minimum number of edge augmentations
(i.e., non-degenerate pivots), unless P=NP. Then even if there is a polynomial bound on
the monotone diameter, in order for the Simplex method to have any hope of having a
polynomial pivot rule, it must further be the case that polynomial-length monotone paths
can be generated in polynomial time.

Then to bridge this conceptual gap between the monotone diameter and the Simplex
method, we formalize the notion of so-called edge rules: An edge rule takes as input a
vertex solution of an LP and prescribes a way to choose an adjacent improving vertex
solution. This is in contrast to a pivot rule for the Simplex method, which takes as input a
basis of an LP and prescribes a way to choose an adjacent improving basis. Though related,
these concepts differ in the presence of degeneracy, wherein there may be exponentially
many adjacent vertices, and where the computational problem of selecting an improving
adjacent vertex is not (in general) any easier than solving the original LP itself. Although
both edge rules and pivot rules ultimately generate monotone paths on the 1-skeleton of
the underlying polyhedron, it is not clear how to construct a pivot rule which generates a
particular path if it needs to perform degenerate basis exchanges to do so. This suggests
the following question:

Question 1. Given an edge rule, can one define a pivot rule for the Simplex method that
always generates the same path as that edge rule?

In much of this thesis, we will investigate edge rules, pivot rules, and Question 1 in the
setting of 0/1-LPs. These are problems of the form max{c'x : * € P}, where P is a 0/1
polytope, i.e., its vertices have coordinates in {0,1}. A polynomial pivot rule is not even
known for 0/1-LPs. This state of affairs remains despite the fact that the diameter of a
0/1 polytope is bounded by the dimension of the polytope [71] (an obstacle for general
polytopes) and that 0/1-LPs arise frequently from combinatorial optimization problems.

It is known (see [30]) that paths of (strongly) polynomial length in a 0/1 polytope can
be constructed using any augmentation oracle that yields an improving adjacent vertex
in (strongly) polynomial time. However, results of this type do not give insights on the
performance of the Simplex method run over 0/1-LPs because (a) using an oracle in this
way may require modifying the original objective function, resulting in paths that are not
even monotone with respect to the original objective function (for this reason, they do not



even yield edge rules), and (b) as discussed above, in the presence of degeneracy a path of
polynomial length does not immediately translate into a sequence of basis exchanges.

Degeneracy is indeed a very crucial challenge in the analysis of the Simplex method.
Given a general LP, one can often assume that the LP is non-degenerate by, for example,
applying perturbation techniques. However, 0/1 polytopes are often highly degenerate
and when working with 0/1-LPs, perturbation changes P into a polytope that is no longer
0/1. Thus, perturbation cannot be performed without loss of generality to understand
the behavior of the Simplex for the original 0/1-LP. Degeneracy might make the Simplex
method cycle and hence not terminate [93]. There are several pivot rules that can avoid
cycling [93, 92, 72, 91]. However, none of these pivot rules guarantee a polynomial bound
on the number of degenerate basis exchanges, and they might even require an exponential
number of pivots before moving to a different vertex (this phenomenon is called stalling).
While cycling may be avoided easily, resolving stalling in polynomial time is as hard as
solving the general problem of finding a polynomial pivot rule for the Simplex method (see
e.g., [73]). This observation holds even for 0/1-LPs. A first stepping stone in resolving
this problem is finding a pivot rule which at least guarantees a polynomial number of
non-degenerate pivots. Hence, the following natural question arises as stated for instance
in [69]:

Question 2. Is there a pivot rule for the Simplex method that guarantees a (strongly)
polynomial number of non-degenerate pivots on 0/1-LPs?

One of the results of this thesis is to give a complete affirmative answer to this question
by simultaneously investigating Question 1. We present three efficiently computable edge
rules which generate paths of polynomial length in 0/1-LPs. We call these rules the Steepest
Edge, Slim Shadow, and Ordered Shadow rules (We note here that, for the sake of brevity,
we may at times refer to an edge rule as simply a rule if it is clear from context that we
are referring to an edge rule). Then we show that there exist pivot rules for 0/1-LPs which
generate the same paths:

Theorem 2. On any 0/1-LP of the form (1.1), the Simplex method with a True Steepest
Edge pivot rule reaches an optimal solution by performing a strongly polynomial number of
non-degenerate pivots. Furthermore, it generates the same monotone path as the Steepest
Edge rule.

Theorem 3. On any 0/1-LP of the form (1.1), the Simplex method with the Slim Shadow
pivot rule reaches an optimal solution by performing no more than n non-degenerate pivots.
Furthermore, it generates the same monotone path as the Slim Shadow rule.



Theorem 4. On any 0/1-LP of the form (1.1) whose feasible region has dimension d,
the Ordered Shadow pivot rule reaches an optimal solution by performing no more than d
non-degenerate pivots. Furthermore, it generates the same monotone path as the Ordered

Shadow rule.

The methods we used to arrive at these results are of independent interest: they came as
a consequence of thinking about a much more general family of algorithms that includes the
Simplex method. Clircuit-augmentation algorithms are extensions of the Simplex method
where we have many more choices of improving directions available at each step — more
than just the edges of the polyhedron. Many of our results, like e.g. Theorem 1, are valid
in this more general family of algorithms which we now introduce to the reader.

Given a polyhedron, its circuits are all potential edges that can arise by translating
some of the inequalities in its description (i.e., by varying the right hand side). Circuits are
important not just in the development of linear optimization [13, 80], but also they appear
very naturally in other areas of application where polyhedra need to be decomposed [70].
Formally:

Definition 1 (See [58]). Given a polyhedron of the form P = {x € R": Ax = b, Dz < d},

a non-zero vector g € R"™ is a circuit if

(i) g € ker(A), and
(i) supp(Dg) is an inclusion-wise minimal set in the collection

{supp(Dy) : y € ker(A),y # 0}.

Here ker(Z) denotes the kernel of the matrix Z and supp(z) denotes the support of the
vector z. As we will see later, from a geometric perspective the circuits can capture the
extreme rays of a cone containing any improving direction, and allow one to represent any
augmentation as a sum of at most n circuit-augmentations. To represent the circuits with
a finite set, we can normalize them in various ways. Following [19, 25, 37, 19], we denote
by C(A, D) the (finite) set of circuits with co-prime integer components.

Given an initial feasible point of an LP, a circuit-augmentation algorithm at each it-
eration moves as far as possible along an improving circuit-direction while maintaining
feasibility. This is done until an optimal solution is found (or unboundedness is detected).
Circuits and circuit-augmentation algorithms have appeared in several papers and books on
linear and integer optimization (see [14, 15, 17, 19, 25, 23, 36, 37, 54, 61, 63, 75, 80, 88, 18]
and the many references therein). In particular, the authors of [37] considered linear
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programs in equality form and analyzed in detail three circuit-pivot rules that guarantee
notable bounds on the number of steps performed by a circuit-augmentation algorithm to
reach an optimal solution.

Given a feasible point € P, the proposed circuit-pivot rules are as follows:

(i) Greatest Improvement circuit-pivot rule: select a circuit g € C(A, D) that maximizes
the objective improvement ¢T(ag), among all circuits g and a € Ry such that
x+ag € P.

(ii) Dantzig circuit-pivot rule: select a circuit g € C(A, D) that maximizes ¢Tg, among
all circuits g such that  + g € P for some ¢ > 0.

(iii) Steepest Descent circuit-pivot rule: select a circuit g € C(A, D) that maximizes ﬁ,
among all circuits g such that  + g € P for some ¢ > 0.

Note that these circuit-pivot rules are direct extensions of three famous pivot rules
proposed for the Simplex method. Unfortunately, the Simplex method with these pivot
rules can require an exponential number of edge steps before reaching an optimal solution
[57, 62, 67]. When all circuits are considered as possible directions to move, much better
bounds can be given. Most notably, the Greatest Improvement circuit-pivot rule guarantees
a polynomial bound on the number of steps performed by a circuit-augmentation algorithm
on LPs in equality form (see [37, 61, 75] and references therein), a result which we extend
to general LPs of the form (1.1). However, the set of circuits in general can have an
exponential cardinality, and therefore selecting the best circuit according to the previously
mentioned rules is not an easy optimization problem. The authors of [37] leave as an
open question the complexity of computing each of the above rules. We investigate this
question, as well as the question of how approximate solutions to these circuit-pivot rules
can be used to design or analyze circuit-augmentation algorithms.

First we settle the computational complexity of the circuit-pivot rules (i) and (ii).

Theorem 5. The Greatest Improvement and Dantzig circuit-pivot rules are NP-hard.

We prove this theorem by showing that computing a circuit, according to both the Greatest
Improvement and the Dantzig circuit-pivot rule, is already hard to do when P is a 0/1
polytope. In particular, we focus on the case when P is the matching polytope of a bipartite
graph. We characterize the circuits of the more general fractional matching polytope, i.e.,
the polytope given by the standard LP-relaxation for the matching problem on general
graphs. This builds on the known graphical characterization of adjacency given in [82, 7].

6



Then, we construct a reduction from the NP-hard Hamiltonian path problem. The heart
of the reduction yields the following interesting corollary.

Corollary 1. Given a feasible vertex solution of the bipartite matching polytope and an
objective function, it 1.s NP-hard to decide whether there is a neighbor vertex that is optimal.

With the above corollary, the hardness result stated in Theorem 1 can be easily derived.
Even more, combining this corollary with the characterization of circuits for the fractional
matching polytope, we can show that the hardness result of Theorem 1 holds more gen-
erally for circuit-paths, i.e., paths constructed by a circuit-augmentation algorithm (see
Section 3.1 for related results).

We next make a very useful observation: Any polynomial time y-approximation al-
gorithm for the Greatest Improvement circuit-pivot rule optimization problems yields an
increase of at most a multiplicative y-factor on the running time of the corresponding
circuit-augmentation algorithm — this follows from an extension of the analysis given by
[37]. This simple observation turns out to be quite useful, and it plays a key role in our
subsequent results. We therefore formally state its main implication in the next lemma.

Lemma 1. Consider an LP in the general form (1.1). Denote by § the mazimum absolute
value of the determinant of any n X n submatrix of (g). Let @y be an nitial feasible
solution, and let v > 1. Using a y-approximate Greatest Improvement circuit-pivot rule,
we can reach an optimal solution x* of (1.1) with (’)(n7 log (5 c’(x* —mo))) augmentations.
Furthermore, if all vertices of the feasible region have integer coordinates, we can reach an
optimal solution with (’)(nfy log (cT(w* — aco))) augmentations.

We are able to leverage Lemma 1 to give a new bound on the number of Steepest Descent
augmentations required to solve an LP whose feasible region is bounded. In particular,
we show that in this setting, a Steepest Descent augmentation is an approximate Greatest
Improvement augmentation

Theorem 6. Consider the LP max{c'x : x € P} of the form (1.1) where P is bounded.
Let wy denote the minimum I1-norm distance from any vertexr v € P to any facet F' of P
such that v ¢ F. Let My be the maximum 1-norm distance between any pair of vertices of
P. Using a Steepest Descent circuit-pivot rule, a circuit-augmentation algorithm reaches
an optimal solution x* from any initial feasible solution xy, performing at most

0 (M% log (5 ¢™(@* — zco))>

w1

augmentations.



The authors of [37] gave bounds on the number of steps taken by such a circuit-
augmentation algorithm for LPs in equality form. Later, Borgwardt and Viss [25] extended
these results to LPs in general form, however we note that they extend the definition of
the Steepest Descent circuit-pivot rule to general form LPs in a way that differs from the
definition used here. In particular, they define the rule to choose the circuit that maximizes
c’g/||Dg||; rather than c"g/||g||1, as we do here. Note that these definitions coincide for
LPs in standard equality form. The bounds given by [37] and [25] both depend on the
size of the set of circuits (when they are normalized so as to make this set finite) and the
number of different values the objective function takes on that set. However, such bounds
are a bit opaque, and often difficult to analyze.

Instead, in Theorem 6 we get another type of bound of independent application. Our
bound is more comparable to that obtained with the Greatest Improvement circuit-pivot
rule, since it depends more explicitly on the input description of the LP. On the other
hand, the version of Steepest Descent considered in [25] can be computed in polynomial
time (by solving an auxiliary LP), whereas for the definition considered here, we are only
able to do so in the special case of 0/1-LPs, as we will discuss later. We also note that,
except in special cases, none of the bounds known for the number of Steepest Descent
augmentations necessary to solve an LP are polynomial.

Considered together, Theorems 5 and 6 and the results of [37] and [25] suggest the
following natural question:

Question 3. Does there exist a circuit-pivot rule that is both computable in polynomial
time and can solve an LP with only a polynomial number of augmentations?

We provide an affirmative answer by proposing a new rule inspired by the work of
Schultz and Weismantel [35] which we call the Asymmetric Steepest Descent (ASD) circuit-
pivot rule. In Theorems 11 and 12, we show that this circuit-pivot rule satisfies both
criteria. To do this, we show that an ASD circuit augmentation is a mLB—apprOXimate
Greatest Improvement augmentation, and then we leverage the technique of [25] to show

that it can be computed in polynomial time.

It must be noted that both the result of Borgwardt and Viss [25] regarding Steepest
Descent and our results regarding ASD compute circuits by solving an auxiliary LP, and
therefore the polynomiality of their run-time assumes that one already has access to an
efficient LP solver (e.g. the ellipsoid method). To the extent that these results are therefore
not practical for developing LP solvers, they should still be interpreted as valuable compu-
tational complexity results establishing that it is not always NP-Hard to optimize over the
(exponentially large) set of circuits, nor is the possibility of an efficient LP solver based

8



on circuit-augmentation categorically hopeless. That said, we note that in follow-up work
to [25], the authors explore the possibility that the auxiliary LP they use is substantially
easier to solve in practice than the original LP, and achieve some promising computational
results [23]. Tt is an open question whether something similar can be achieved without
assuming the use of an efficient LP solver. We note that very recently, the authors of [35]
explored a similar concept to analyze circuit-augmentation algorithms and the circuit di-
ameter for LPs and polyhedra in equality form.

Finally, we consider the consequences of Lemma 1 on the circuit diameter. First, as
an easy consequence, we get a polynomial bound on the circuit diameter of any rational
polyhedron, which to the best of our knowledge was not observed before. We recall that, as
usual, the encoding length of a rational number 2 is defined as [log(p+1)]+ [log(g+1)]+1.

Theorem 7. There exists a polynomial function f(m,a) that bounds above the circuit
diameter of any rational polyhedron P = {x € R" : Ax = b, Dx < d} withm =mys+mp
row constraints and mazimum encoding length among the coefficients in its description
equal to a.

Note that this was not quite yet implied by the work of [37] as their results were only stated
and proved for polyhedra expressed in equality form. We note that their results require an
explicit extension to general form LPs, because in the setting of circuits, changing descrip-
tions of a polyhedron or LP can dramatically change the set of circuits. In particular, it is
known that putting an LP into standard equality form can introduce exponentially many
new circuits (see [25, 19]).

Second, we consider the special case of k-lattice polytopes, i.e., those whose vertices are
contained in the set {0,...,k}". We prove the following:

Theorem 8. The circuit diameter of a k-lattice polytope is at most on the order of

poly(n)log(kn).

Asymptotically, this is a better function of the parameter £ than the best known bounds on
the combinatorial diameter of k-lattice polytopes which are linear in both n and k [10, 41].

1.1 Organization of This Thesis

We start in Chapter 3 by investigating questions related to circuits. As discussed previously,
this is in part because the results we obtain in the circuit setting form the foundation for
much of the work we do later on.



In Section 3.1, we establish the hardness of the Greatest Improvement and Dantzig
circuit pivot rules. In Section 3.2 we further explore circuit-augmentation algorithms by
extending the results of [37] in addition to establishing new results. We then use our
results to analyze the Steepest Descent circuit-pivot rule. In Section 3.3, we introduce and
analyze the ASD circuit-pivot rule and show that it can be computed in polynomial time.
In Section 3.4 we consider the implications of our results on the circuit diameter.

In Chapter 4, we introduce four edge rules for 0/1-LPs and analyze the lengths of the
paths they generate. In Section 4.1, we show that at a vertex solution of a 0/1-LP, a
Steepest Descent circuit is in fact an edge. We therefore define the Steepest Edge rule for
0/1-LPs, and — by leveraging our results about the Steepest Descent circuit-pivot rule —
we show that it generates a path of polynomial length and that it can be computed in
polynomial time. In Section 4.2 we likewise show that at a vertex solution of a 0/1-LP in
SEF, an ASD circuit is an edge. We therefore define the ASD rule for 0/1-LPs in SEF, and
show that it generates a path of polynomial length. In Section 4.3, we introduce two edge
rules for 0/1-LPs, the Slim Shadow and Ordered Shadow rules, which are modifications of
the classical Shadow Vertex pivot rule. We show that they generate paths of length n and
d, respectively, where d is the dimension of the underlying polyhedron.

Finally, in Chapter 5, we extend the edge rules given in Chapter 4 to pivot rules which
each generate the same path as their respective edge rule counterparts. In Section 5.1 we do
so for the Steepest Edge rule, in Section 5.2 we do so for the ASD rule, and in Section 5.3
we do so for the Slim Shadow and Ordered Shadow rules. The results of Sections 5.1
and 5.3 answer Question 2. In Section 5.4, we explore connections between our proposed
pivot rules and classical algorithms in combinatorial optimization.

All work in this thesis is joint work with Laura Sanita. The results of Sections 3.1, 3.2, 3.4,
and 4.1 are also joint work with Jestis De Loera, and those of Sections 3.1, 3.2, and 4.1
appear in [38]. The results of Sections 4.3, 5.1, 5.3, and 5.4 are also joint work with Alex
Black and Jests De Loera, and appear in [12].
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Chapter 2

Preliminaries

Given a vector z € R™, we will use the notation z(i) to denote the i*" component of z,
and given a subset X of [n] we will use the notation z(X) to denote the restriction of z to
the components indexed by X. We further let supp(z) = {7 € [n] : 2(i) # 0} denote the
support of z. Given a matrix Z € R™*" we will use the notation Z; to denote the i*" row
of Z, and given a subset X of [m] we will use the notation Zy to denote the submatrix of
Z obtained by taking only the rows indexed by X. Given a matrix Z, we let ker(Z) denote
its kernel.

As stated in Chapter 1, we consider LPs in the general form (1.1)

max{ c'x : Az =b, Dr <d, z € R" }

for integer matrices A and D of sizes m 4 x n and mp X n respectively, and integer vectors
b, d, and c. In all parts of this thesis, we make the assumptions that (i) the matrix A
has full row-rank, which can be made without loss of generality by removing redundant
equalities, and that (ii) the matrix (g) has rank n, to ensure that the feasible region is
pointed. In particular chapters, we may make further assumptions, and we will state these
later in this section as well as at the beginning of the appropriate chapter. We allow for the
possibility that m 4 is equal to 0, corresponding to the case where the LP has no equality
constraints (If mp is equal to 0, then the assumption that (g) has rank n would imply
that the feasible region has just one solution, so we do not consider that case). Here the
objective function is maximized over the polyhedron P = {& € R" : Az = b, Dx < d} of
feasible solutions. Given such an LP or polyhedron, we denote by § the maximum absolute
value of the determinant of any n x n submatrix of (g) (the notation ¢ will only be used
in circumstances where the matrix it describes is clear from context).
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Given an extreme point @’ of P, we define the feasible cone at ' to be the set of
all directions z such that @’ + ez € P for some € > 0. That is, it is the set C(a') =
{z€R": Az =0, Dz < 0} where D denotes row submatrix of D given by the indices of
the inequalities of Dx < d that are tight at ’. The extreme rays of the feasible cone at
x’ correspond to the edge-directions at x’.

Let z!,..., 2" be generators of the extreme rays of the feasible cone at . Then for
each 7 € [t], there exists a unique extreme point &’ of P which is adjacent to &’ in P such
that z' = a(x’ — ') for some positive scalar «. In this circumstance, we say that (z’ — x)
is an edge-direction at x’. We therefore say that any generator z° of an extreme ray of
C(x') corresponds to an edge-direction at x’ in P.

We let N.(2’) denote the set of c-improving neighbors (i.e., adjacent vertices) of &’ for
a vertex &’ of P.
c'g
won . _ ‘ lalls
among all edge-directions at ' in P. We make special note of the fact that “steepness”

here is measured with respect to the 1-norm instead of the usual 2-norm used in [50] and
elsewhere. This will hold true throughout this entire thesis in all instances where steepness
is measured.

An edge-direction g at @’ in P is called a steepest edge-direction if it maximizes

The extreme points of P and the one-dimensional faces form the graph of the polytope
P, also called the 1-skeleton of P.

An edge rule is a process which, given an LP of the form (1.1) with feasible region P and
a vertex x of P, prescribes a way for choosing a c-improving edge-direction at . Given an
initial vertex ', an edge rule generates a c-monotone path from x° to an optimal solution,
where the path is obtained by taking the edges chosen by the edge rule. We say that an
edge rule is computable in polynomial time on an LP (P) if, for and all possible starting
vertices %, at each vertex on the path generated by the rule, the problem of computing
the edge chosen by the rule can be solved in polynomial time. We say that an edge rule is
computable in polynomial time on a family of LPs if it is computable in polynomial time
on all members of that family.

In this thesis, we will consider edge rules which are computable in polynomial time for
the family of 0/1-LPs. Recall that for the sake of brevity, we may at times refer to an edge
rule as simply a rule if it is clear from context that we are referring to an edge rule.

For some of our results, we will rely next on the following result of Frank and Tardos [51]:

Lemma 2 ([71]). Let ¢ € R" be a rational vector, and « be a positive integer. Define
N = (n+1)12" 4+ 1. Then one can compute an integral vector ¢ € Z" satisfying:

12



n3 nrn(n
(a) €/loo < 2 N2

(b) Consider any rational LP of the form max{ c'@ : Al < b, x € R" }, where the
encoding length of any entry of A’ is at most «v. Then, x € R™ is an optimal solution
to that LP if and only if it is an optimal solution to max{ cTx : Az <b', x € R" }.

2.1 The Simplex Method

We start by noting that in all cases where we consider applying the Simplex method to
an LP (i.e., the contents of Chapter 5), it will be under the assumption that the feasible
region of this LP is a 0/1 polytope. Then in Chapter 5, we will assume without loss of
generality that the set of inequalities contains * > 0. We will now justify a geometric
framework through which we may define a pivot rule. For the purpose of explaining this
geometric framework, we will give a brief review of the Simplex method here in the typical
language of tableaux manipulation, which is how the it is implemented in practice. For
general background on the Simplex method and its implementation, see [3, 81, 93].

Suppose that we are given a 0/1-LP of the form (1.1). We have to start by putting
our LP into standard equality form. Since we will only consider applications to 0/1-LPs,
it suffices to add slack variables, as all original variables already satisfy non-negativity by
assumption. Then after we add slack variables we get an LP of the form

max{cTx: Ae=b, x>0 zcR"” },

where A’ € Z™>*" ¢ € Z", b € Z™. We remark here that we do not require that the
added slack variables always take on 0/1 values at vertices. Though we put the LP into
equality form for the purposes of executing the Simplex method, the results in this thesis
will only rely on the fact that the original LP is 0/1.

Since we assumed earlier that the equality matrix A of our original LP has full row-
rank, we have that A’ has full row-rank m’. A basis B is a subset of [n/] (the column
indices of the matrix A’) of size m’ such that the columns of A" indexed by B are linearly
independent. For the purposes of this description, we will use the notation A’[ g to denote
the submatrix of A’ obtained by taking only the columns indexed by B, and likewise we
will use the notation Af; to denote the 4™ column of A’. Though this notation is non-
standard, outside of this explanation and Subsection 5.1.1, we will not need to reuse this
notation. Given a basis B, assume that it is an ordered set and let B(j) be the j-th element
of the set. The variables with indices in B are also referred to as basic variables, and the

13



variables with indices in N := {1,...,n'} \ B are referred to as the nonbasic variables. A
basis B is uniquely associated with a basic solution ' defined as follows: x/(B) = AEE?b’
and '(N) = 0. If ' > 0, then it is called a basic feasible solution, and the corresponding
basis is called a feasible basis.

The Simplex method can be described compactly as follows; see, e.g., [, 841, 93] for a
more detailed treatment.

e Start with any feasible basis B be and repeat the following steps:

1. Compute the reduced costs for the nonbasic variables
¢(N)T =c(N)T —c(B) A Alyy-

If ¢(N) < 0 the basis is optimal: the algorithm terminates. Otherwise, choose
j : €(3) > 0. The particular choice of j depends on the pivot rule used. The
variable associated with column j is the entering variable.

2. Compute u = AE]lA’[ i If u < 0, the optimal cost is unbounded: the algorithm
terminates.

3. Else, some component of u is positive. Compute the ratio test:

7= min (M) . (2.1)

i€[m/] :u(i)>0 ’LL(Z)

4. Let ¢ be such that r* = wlz(fé(f)). If there is a tie, the particular choice of /¢
depends on the pivot rule used. The variable associated with ¢ is the leaving
variable. Form a new basis replacing B(¢) with j. This step is called a pivot.

Go back to 1.

At a high level, the Simplex method moves between feasible bases, and requires a pivot
rule, which given a basis, decides which adjacent basis to move to (in particular, how to
choose the entering variable and the leaving variable at each step).

Each of the Simplex method’s basis exchanges corresponds geometrically to a pivot
direction in which to move from the current basic feasible solution . Formally, note
that at Step 1 of the algorithm, each index j € N yields a pivot direction z’/ defined as
Z/(B) = Afg]lAfj], Z/(j) = 1, and 2/(i) = 0 for all i € N\ {j}. The Simplex method
selects a pivot direction which is improving with respect to the objective function.
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If moving (by a non-zero amount) in a pivot direction g from @’ maintains feasibility,
we call this a non-degenerate pivot. That is, a non-degenerate pivot has the property that
x’ 4 £g is feasible for some € > 0. In this case, our new basis yields a new basic feasible
solution y’, where &’ and ¥y’ are adjacent in the feasible region — that is, contained in a
common edge. If instead, moving in this direction from @’ would wviolate feasibility, we call
this a degenerate pivot. A degenerate pivot has the property that @’ + g is not feasible
for any € > 0. In this case, though the basis changes, the new basic feasible solution still
corresponds to the extreme point x’.

We can now describe our geometric framework. Given a feasible basis B of our LP
in standard equality form, let &’ be the basic feasible solution associated to B, and x”
be the corresponding vertex of P (i.e., the vector obtained from @’ by removing the slack

variables). With a slight abuse of terminology, we say that x” is the vertex of P associated
to B.

The basic feasible solution @’ is identified by m’ + | N| linearly independent constraints
of the equality form LP that are tight at x’: namely, the constraints A’ = b’ plus the
non-negativity constraints for the nonbasic variables. Let N C N be the set of indices for
the nonbasic variables that are original variables for P (i.e., non-slack variables). We can
naturally associate n tight constraints of our original LP that identify x” as follows: we
consider (i) the equalities Ax = b, plus (ii) the non-negativity constraints x(j) > 0 for
j € N, plus (iii) the subset of inequalities associated to each nonbasic slack variable. It is
easy to see that these constraints are linearly independent. Let D” be the submatrix of D
induced by the rows of the tight inequality constraints (ii) and (iii). We define the basic
cone associated to B as

C(B)y={z€R": Az=0,D"2<0}.

One observes that given a feasible basis B and its corresponding basic feasible solution a’,
the available pivot directions at @’ project to the extreme rays of C(B).

Clearly, the basic cone associated to B contains the feasible cone at ", i.e., C(B) 2
C(2"), as the system defining C(B) is a relaxation of the system defining C(x”). A generator
z of an extreme ray of C(B) is the projection of the pivot direction given by a non-
degenerate basis exchange if and only if Z also generates an extreme ray of C(x”). That
is, z is the projection of a non-degenerate pivot direction at @’ given by the basis B if and
only if Z also corresponds to an edge-direction at &” in P. Given this, we can partially
define a pivot rule in terms of the original LP (i.e., the LP before it was put into standard
equality form) by explaining which extreme ray of C(B) to choose as a pivot direction. In
particular, this corresponds to the choice of the variable entering the basis. When it is
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clear from context that a vertex x” is a vertex solution of P corresponding to some feasible
basis B, we may informally refer to C(B) as just the basic cone at x”.

2.2 Circuits of Polyhedra

Here we will provide some background and fundamental results on the circuits of polyhedra.
Recall that formally, the circuits are defined as follows:

Definition 2 (See [58]). Given a polyhedron of the form P = {x € R" : Ax = b, Dx < d},
a non-zero vector g € R™ is a circuit if

(i) g € ker(A), and

(i) supp(Dg) is an inclusion-wise minimal set in the collection
{supp(Dy) : y € ker(A4),y # 0}.

Another way of understanding condition (ii) is that a circuit is parallel to an inclusion-
wise maximal set of the hyperplanes defined by the inequalities Dz < d (which, in a
minimal description, define the facets of P). This interpretation makes it clear geometri-
cally why all edge-directions are also circuits. By this definition, if g is a circuit, then so is
ag for all a # 0, and therefore there are infinitely many circuits. To represent the circuits
with a finite set, we can normalize them in various ways. Following [19, 25, 37, 19, 63, 38],
we denote by C(A, D) the (finite) set of circuits with co-prime integer components.

The following proposition gives an equivalent condition under which a vector g is a

circuit:

Proposition 1 (See [63]). Given a polytope P = {x € R™ : Ax = b, Dx < d}, a
non-zero vector g € R™ is a circuit iff g is a unique (up to scaling) nonzero solution of
{Az =0, D'z =0} where D' is a row submatriz of D.

The following proposition implies that the circuits can be collected into equivalence
classes based on the support of their product with D:

Proposition 2 (See [58]). Let g € C(A,D), v € ker(A4), and suppose supp(Bg) =
supp(Bwv). Then g = av for some a € R.
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Then for each such equivalence class, C(A, D) contains two representatives, g and —g.

This implies a fundamental and extremely useful property of the circuits, called the
sign-compatible representation property of circuits. We say two vectors v and w are sign-
compatible with respect to D if the i-th components of the vectors (Dv) and (Dw) satisfy
(Dv)(i) - (Dw)(i) > 0 for all 1 <1i < mp. The representation property is as follows:

Proposition 3 (See [78]). Let v € ker(A)\{0}. Then we can express v asv = 3.+, a;g’
such that for all1 <1<k

g' € C(A, D),

g' and v are sign-compatible with respect to D and supp(Dg’) C supp(Dw),

o; € RZO,

o and k < n.

That is, any feasible direction can be decomposed into a sum of at most n circuits which
are all sign compatible with the original direction (and thus, each other). This property
allows for an alternative and equivalent definition of circuits

Proposition 4 (See [19]). The set C(A, D) is the unique (up to re-scaling) inclusion-wise
mainimal set with the sign-compatible representation property.

Essentially, it is the sign compatible representation property that allows circuits to be used
as a set of augmentation directions for solving LPs:

Proposition 5 (See [58]). Consider an LP of the form (1.1) with feasible region P, and
let ' be a non-optimal solution. Then there exists g € C(A, D) such that €’ +eg € P for
some € >0 and c'g > 0.

A circuit-path is a finite sequence of feasible solutions xg, 1, ..., x, satisfying x;1, =
x; + «;g;, where g; € C(A, D) and a; > 0 is such that x; + o9, € P but x; + (a; +¢)g; ¢ P
for all € > 0 (i.e., the augmentation is maximal). Note that x; is not necessarily a vertex
of P. We say that such a circuit-path has length ¢q. A circuit-path is called monotone if
each g; satisfies €Tg; > 0 (i.e., it is an improving circuit).

Given two points & and y in P, the circuit distance from « to y is the length of a
shortest circuit-path from x to y. Due to the requirement that circuit augmentations are
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maximal, circuit-paths are not necessarily reversible, and so the circuit distance from x to
y is not necessarily the same as the circuit distance from y to .

Given a polyhedron P, the circuit diameter of P is the maximum circuit distance
between any pair of vertices of P. Here, we must address an important technicality. The
conditions in Definition 1 are perfectly well-defined even if we are given a description of P
with redundant inequalities. Indeed, in an optimization setting, we are likely to be given
P by some linear description, and there is usually no guarantee that this description won’t
contain redundant information. However — as is evident from condition (ii) especially —
adding redundant inequalities to a linear system can grow the set of circuits. In fact, as
mentioned in Chapter 1, is known in general that equivalent polyhedra do not necessarily
have equivalent sets of circuits. However, we would like to be able speak of the circuit
diameter as being purely a property of the geometry of P. This would be a desirable
property, and would give the circuit diameter more parity with the combinatorial diameter.

Therefore, when considering the circuit diameter (i.e., in Section 3.4), we will assume
that the given description of P is munimal, by which we mean the following:

Definition 3 (See e.g. [32]). Given a polyhedron P (considered as a geometric object), we
say that {x € R" : Az = b, Dx < d} is a minimal description of P if it satisfies the
following:

(i) P={x € R": Ax = b, Dx < d}

(i) No inequality of {x € R" : Az = b, Dx < d} can be made an equation without
changing the solution set.

(#1i) No inequality or equation of {x € R™ : Ax = b, Dx < d} can be omitted without
changing the solution set.

In Section 3.4, we prove the following lemma, which resolves the dilemma described above:
Lemma 3. Let P be any polyhedron where {x € R" : Az = b, Dx < d} and {x € R":
Ax =b', D'e < d'} are both minimal descriptions of P. Then C(A,D) =C(A',D").

This shows that if we restrict ourselves only to descriptions of P which are minimal, then
in fact the circuits of P are independent of its description. This is known to be true for
full-dimensional polyhedra as they are known to have inequality-form descriptions which
are unique up to re-scaling of the inequalities. However, this is not immediately obvious
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for polyhedra which are not full-dimensional, as their descriptions have no such uniqueness
property. To our knowledge, this was not previously observed.

A circuit-augmentation algorithm computes a monotone circuit-path starting at a given
initial feasible solution, and it performs augmentations along circuits until an optimal solu-
tion is reached (or unboundedness is detected). The circuit g to use at each augmentation
is usually chosen according to some circuit-pivot rule. As discussed before, the authors
of [37] consider three such rules, each of which gives rise to a corresponding optimization
problem.

The optimization problem that arises when following the Greatest Improvement circuit-
pivot rule will be called Great(P, x, c), and is as follows:

max c'(ag)
st. geC(A,D)

a>0
x+ag € P.

The optimization problem that arises when following the Dantzig circuit-pivot rule will be
called Dan(P, x, ¢), and is as follows:

max —c'g
st. geC(A, D)
gcC(x).

The optimization problem that arises when following the Steepest Descent circuit-pivot
rule will be called Steep(P, x, ¢), and is defined as follows:

c'g
max —
llgll:
st. geC(A,D)
g cC(x).

A maximal augmentation given by an optimal solution to Great(P, x, ¢) is called a Greatest
Improvement augmentation. A Dantzig augmentation and a Steepest Descent augmenta-
tion are defined similarly. In this thesis, we will only use maximal augmentations, and
therefore will omit the word “maximal” henceforth.
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Let @, and @x,,;, be a maximizer and minimizer, respectively, of the objective function
in an LP problem of the form (1.1). We will use the following lemma from [37] based on
well-known estimates of [2]:

Lemma 4 (See Lemma 1 in [37]). Let € > 0 be given. Let ¢ be an integer vector. Define
frin— et fU = eTaa. Suppose that f¥ = cTxy, is the objective function value of
the solution xy at the k-th iteration of an augmentation algorithm. Furthermore, suppose
that the algorithm guarantees that for every augmentation k,

(fH = %) = B — f4).

Then the algorithm reaches a solution with objective value less than f™* — e in no more
than 2log ((f™a — fmin) /&) /B augmentations.

We now state the following easy lemma — a version of which appears in [37] — that we
reprove for completeness and to establish that it holds for general form LPs:

Lemma 5. Let & be any feasible solution of the LP problem (1.1). Then with a sequence
of at most n mazimal augmentations, we can reach a verter solution & of (1.1) such that
x> c'x.

Proof. Let T = {i: D;® =d(i) }. If T is not a vertex, then we can select any direction
g € ker (;T) such that ¢'g > 0, and such that for some ¢ > 0, & := & + g satisfies
D;x < d(i) for all i ¢ T. We then use g to perform a maximal step g at . Since the
step is maximal, there exists an index ¢ ¢ T such that D;(Z + ag) = d(i). This enables
us to grow the set T at the new feasible solution. Furthermore, ¢™(Z 4+ ag) > ¢'@. We
can iterate this process, and note that the number of linearly independent rows of ( DAT)
increases by one at each step. Therefore, after at most n — rank(A) iterations we arrive at
a vertex .

Note that the above argument does not require the use of circuits, but it requires
only that the selected directions are improving with respect to ¢. By the sign-compatible
representation property of circuits though, at any non-optimal point &, there always exists
an improving direction that is a circuit. O]

2.3 Other Prior Work

Simplex There are many different pivot rules for the Simplex method, and the list of
pivot rules that have already been studied is too large to cover here in detail; we refer the
reader to [92] for a general taxonomy.
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In 1972, Klee & Minty [67] showed for the first time that pivot rules may exhibit expo-
nential behavior — even in the case where short monotone paths exist. They constructed an
explicit set of examples such that Dantzig’s original pivot rule requires exponentially many
steps. The algorithm could be tricked into visiting all 2¢ vertices of a deformed cube to
find a path between two nodes which are only one step apart in the 1-skeleton of the cube.
Later, Zadeh found that bad exponential behavior may appear even in nice families such

as network flow problems [96]. Today, all popular pivot rules for the Simplex method are
known to require an exponential number of steps to solve some concrete “twisted” linear
programs (see [3, 4, 43, 52, 57,56, 60, 71, 92, 96, 99] and references therein). We also know

that pivot rules as decision problems are hard in the sense of complexity theory [1, 44, 13].

Today, only a few highly structured families of LPs have reasonable bounds of efficiency
for the Simplex method. A notable family of LPs is the family of network flow linear
programs which have been shown to be solvable in polynomial time by Orlin [76]. Dadush
& Hahnle [33] — inspired by prior work of Brunsch & Roglin [27] and Eisenbrand & Vempala
[17] — studied the Simplex method with the Shadow Vertex pivot rule of K. H. Borgwardt
[16]. In the remainder of this thesis, we drop the word “Vertex” from the name for sake
of brevity. They studied this rule over low-curvature polyhedra. Intuitively, a polyhedron
is low-curvature when the hyperplanes at the boundary meet vertices at sharp angles,
i.e., their tangent cones are slim. Dadush and Héanhle obtained a diameter bound of
O(% In %) for d-dimensional polyhedra with curvature parameter 6 € (0, 1]. They showed
that, starting from some initial vertex, an optimal vertex can be found using an expected
O(%5 In %l) Simplex pivots, each requiring O(md) time to compute, where m is the number
of constraints. An initial feasible solution can be found using O(de3 In %) pivot steps. Their
analysis of the Shadow pivot rule differs in that they study the behavior of the pivot rule in
relation to the geometry of the normal cones. Borgwardt referred to this perspective as the
dual Shadow pivot rule in and used the dual perspective to prove his bounds as well. We
note that 0/1 polytopes do not have bounded curvature or small subdeterminants because
the coefficients of defining inequalities can be extremely large [95].

Inspired by the work of Y. Ye [95], Kitahara & Mizuno [65, 6], showed that in specific
context of LPs in the standard equality form (SEF)

max{ c'x : Az =b, x>0}, (2.2)

the number of different basic feasible solutions (BFSs) generated by the Simplex method
using Dantzig’s pivot rule is bounded by m4[n2 log(n)], where 7 and 7 are the minimum
and the maximum values of all the positive elements of primal BFSs. Their results showed
that the number of non-degenerate pivots performed by the Simplex method with Dantzig’s
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rule is strongly polynomial for a subclass of 0/1-LPs: namely, those that can be expressed in
standard equality form with all extreme points having variables in { 0,1} (e.g., the Birkhoff
polytope). We stress that while every 0/1 polyhedral region can be written in standard
form by adding slack variables, at an extreme point such variables could potentially take
values not inside {0,1}. Thus, they may not satisfy the hypothesis of [65, 64]. As such,
the strongly polynomial bound of [65, 6] does not extend to all 0/1-LPs, and so these
results do not give a complete answer to Question 2.

It is important we stress that when we speak of the Simlpex method here, we mean
the traditional version of the primal Simplex method, based only on local basic feasible
solution information (as taught in most courses and used in most software). It is not
easy to compare results in this setting with generalizations or variations of the Simplex
method. Work outside of the traditional version of the Simplex method has achieved results
which are very interesting in their own right, but do not deal with the same algorithm.
In particular, different assumptions may be made about the input, the algorithms may be
stated in different oracle models — such as augmentation and verification oracles — or they
may move in directions other than edges at a vertex solution (see [28, 29, 30, 37, 40, 38] and
the many references therein). For example, there are “variations” of the Simplex method
for which the number of non-degenerate pivots (or simply augmentations, when bases are
not even considered) is strongly polynomially bounded, but such results require modifying
the objective function to the point that the path of edges followed may or may not be
monotonically improving in the original objective function [10, 30].

Diameter Besides studies of upperbounds on the combinatorial diameter for general
polytopes, there is a long history of studies of such upperbounds for some special classes
of polytopes. In particular, many researchers have considered the combinatorial diameter
of polytopes corresponding to classical combinatorial optimization problems. Prominent
examples of polytopes for which the combinatorial diameter has been widely studied are
Transportation and Network Flow polytopes [5, 6, 20, 21, 26], Matching polytopes [, 31],
Traveling Salesman (TSP) polytopes [79, 59], and many others. Currently the best known
general upperbound on the diameter is exponential in n [39, 90].

Since for every polytope the set of circuit directions contains all edge directions, the
combinatorial diameter is always an upper bound on the circuit diameter, it’s circuit ana-
logue. Thus even if the Hirsch Conjecture does not hold for the combinatorial diameter,
it may be true for the circuit diameter. In particular, Borgwardt et al. [19] conjectured
that the circuit diameter is at most f — d for every d-dimensional polytope with f facets.
We refer the reader to [22] for recent progress on this conjecture. The circuit diameter

22



has also been studied in the context of well-known problems in combinatorial optimiza-
tion [20, 19, 63, 24].
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Chapter 3

Circuits

3.1 Hardness of Some Circuit-Pivot Rules

3.1.1 The Circuits of the Fractional Matching Polytope

Let G be a simple connected graph with nodes V(G) and edges E(G). We assume |V (G)| >
3. Given v € V(G), we let dg(v) denote the edges of E(G) incident with v. We call a node
v € V(G) aleaf if |0¢(v)| = 1, and let L(G) denote the set of leaf nodes of G. Furthermore,
for X C E and & € R, we let 2(X) denote Y,y x(e).

Let Pryvar(G) denote the fractional matching polytope of G, which is defined by the
following (minimal) linear system:

x (0g(v)) <1, for all v € V(G) \ L(G). (3.1)
x > 0.

In this section, we fully characterize the circuits of Ppyar(G). We will prove that, if @ is
a circuit of Peyar(G), then supp(x) induces a connected subgraph of G that has a very
special structure: namely, it belongs to one of the five classes of graphs (&1, &, &3, &4, E5,)
listed below.

(i) Let & denote the set of all subgraphs F' C G such that F' is an even cycle.
(ii) Let & denote the set of all subgraphs F' C G such that F' is an odd cycle.

(iii) Let & denote the set of all subgraphs F' C G such that F is a simple path.
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(iv) Let & denote the set of all subgraphs F' C G such that F is a connected graph
satisfying F' = C'U P, where C and P are an odd cycle and a non-empty simple path,
respectively, that intersect only at an endpoint of P (see Figure 3.1).

(v) Let & denote the set of all subgraphs F' C G such that F'is a connected graph with
F = C1UPUC,, where C; and Cy are odd cycles, and P is a (possibly empty) simple
path satisfying the following: if P is non-empty, then C; and C5 are node-disjoint
and P intersects each C; exactly at its endpoints (see Figure 3.2); if P is empty then
C} and C intersect only at one node v (see Figure 3.3).

We will associate a set of circuits to the subgraphs in the above families by defining the
following five sets of vectors. It is worth noticing that similar elementary moves appeared
in [39] in applications of Grébner bases in combinatorial optimization.

Uree, {9 € {-1,0,1}%9: g(e) 20 iff e € B(F)
g(or() =0 Ve V(F) |,

Uree, {9 € (=101 : g(e) #0 iff e € B(F)
g(dp(w)) #0 for one w € V(F)

gOr) =0 e V(F)\{u} },

Uree, {9€ {-1,0,1}%@: g(e) £0 iff e € B(F)
g(0r(v)) =0 Yo :|6p(v)] =2 }

Ci= Ur—(ruojes, {9 € ZPD . gle) # iff e € E(F )
9(0p(v)) =0 Vo :[dp(v)| >
gle)e{-1,1} Vee E(C )

(
gle) € {—2,2} Ve € E(P) },

Cs = Ur—ciurucy)es, {g € 2" gle) # iff e € E(F)
g(dp(v )) Vv e V(F)
g(e) S { 1 1} Ve € E(Cl U 02)
gle) € {-2,2)  Vee E(P) }

See Figure 3.4 for an example of a vector g € Cs.
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Figure 3.1: An Example of a subgraph belonging to &,

Figure 3.2: An Example of a subgraph belonging to £ where P is non-empty.

Figure 3.3: An Example of a subgraph belonging to & where P is empty.

-1 /C\ />
T’ 1 —1

1 >)— -2 —-0—2—0— —2—0—2 —<< 1
-1

L I
I N

Figure 3.4: Example of a vector g € C5. Each edge e is labeled with g(e).

It is known that the vectors of C; U - - - UCs correspond to edge-directions of Peyat(G)
(see e.g. [7, 82]). Let us denote by C(Ppmar(G)) the set of circuits of Peyar(G) with

co-prime integer components.

Lemma 6. C(PFMAT(G>) = Cl U CQ U Cg U C4 U C5.

Proof. Since the vectors of C; U --- U Cy correspond to edge-directions of Peyar(G), it
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remains to be shown that all circuits belong to one of these sets.

Let B denote the constraint matrix corresponding to the inequality constraints (3.1).
In what follows, the rows of B will be indexed by V(G) \ L(G), and the columns of B will
be indexed by E(G). With this notation, we can treat supp(Bx) and supp(x) as a subset
of V(G) or E(G), respectively. Let g € C(Prvar(G)), and let G(g) be the subgraph of
G induced by the edges in supp(g). Note that, by definition, the vector (ng) is support-
minimal.

First we note that G(g) is connected. Otherwise, restricting g to the edges of any
component of G(g) gives a vector f with supp(Bf) C supp(Bg) and supp(f) < supp(g),
contradicting that g is a circuit.

Now, suppose that G(g) contains no cycles. Let P be any edge-maximal path in G(g),
with endpoints u and w. Note that supp(Bg) D {u,w} \ L(G). Let f € {—1,1}F() be a
vector that satisfies (i) f(e) # 0 if and only if e € E(P), and (ii) f(0p(v)) = 0 Vv # u, w.
Note that f € Cs3. Then, supp(Bf) = {u,w} \ L(G) C supp(Bg), and supp(f) C supp(g).
Therefore, it must be that the edges of G(g) are exactly E(P), and g(dp(v)) = 0 for all
v € V(G)\ {u,w}. Thus, g = f or g = —f. In any case, g € Cs.

Now, suppose that G(g) contains an even cycle C. Let f € {—1,1}P(@ be a vector
that satisfies (i) f(e) # 0 if and only if e € E(C), and (ii) f(dc(v)) =0 Vv € V(C). Note
that f € C;. Then, supp(Bf) = 0 C supp(Bg), and supp(f) C supp(g). Therefore, it
must be that the edges of G(g) are exactly E(C), and g(dc(v)) = 0 for all v € V(G).
Thus, g = f or g = —f. In any case, g € C;.

We are left with the case where G(g) contains at least one cycle, but it does not contain

any even cycle. In this case, first we state an easy claim that gives some more structure
for the graph G(g).

Claim 1. Under the assumption that G(g) contains at least one cycle, but it does not
contain an even cycle, any two odd cycles in G(g) must share at most one node.

Proof. Let C, D C G(g) be two odd cycles, and suppose, for the sake of contradiction,
that |[V(C)NV(D)| > 2. Then C can be written as the union of two edge-disjoint paths
C1 U Cy where ( is some sub-path of C' such that V(C) N V(D) = {u,v} where u and
v are the endpoints of C;, and E(C;) N E(D) = (). Since D is a cycle, we can decompose
D into two sub-paths D; and D, each with endpoints u and v. Since |E(D)| is odd, for
exactly one i € {1,2}, |E(D;)| is even. Note that since V(Cy) NV (D;) = {u,v}, C;UD,; is
a cycle for all i € {1,2}, and therefore there exists ¢ € {1,2} such that C} U D; is an even
cycle, a contradiction with the assumption. O
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Suppose that G(g) contains at least two distinct odd cycles Cy and Cy. Since G(g) is
connected, then either these two cycles share a node or there exists a simple path P in G(g)
connecting them. In particular, we can choose P so that E(P) N E(C;) =0 for i € {1 2}.
Let F = C, U PUC, (where E(P) = () if C; and C, share a node). Let f € ZF(© be a
vector that satisfies (i) f(e) # 0 if and only if e € E(F), (ii) f(0r(v)) = 0 Vv € V(F), (iii)
fle) e {—1,1} for all e € E(C,UC%), and (iv) f(e) € {—2,2} for all e € E(P). Note that
f € C5. Then supp(Bf) = 0) C supp(Bg), and supp(f) C supp(g). Therefore, it must be
that the edges of G(g) are exactly E(F), and g(dc(v)) = 0 for all v € V(G). Thus, g € C;.

Finally, suppose that G(g) contains exactly one odd cycle C. If there exists a node
w € V(O) such that g(dg(w)) # 0, then let £ € {—1,1}F() be a vector that satisfies (i)
f(e) # 0if and only if e € E(C), and (ii) f(dc(v)) = 0 Vv € V(C) \ {w}. Note that
f € Cy. Then, supp(Bf) = {w} C supp(Bg), and supp(f) C supp(g). Therefore, it must
be that the edges of G(g) are exactly E(C), and g(dc(v)) = 0 for all v € V(G) \ {w}.
Thus, it must be that g € Cs.

We are left with the case where g(dg(v)) = 0 for all v € V(C). Note that this is not
possible if supp(g) = E(C), because C' is an odd cycle. Then let P be any simple path in
G(g) which is inclusion-wise maximal subject to the condition that F(P)N E(C) = () and
[V(P)NV(C)| = {u}, where u is an endpoint of P. Let F' = C U P, and let w € V(G)
be the unique node such that [0p(w)| = 1. Let f € ZP) be a vector that satisfies (i)
f(e) #0if and only if e € E(F), (ii) f(0p(v)) =0Vv € V(F) \ {w}, (iii) f(e) € {—1,1}
for all e € E(C), and (iv) f(e) € {—2,2} for all e € E(P). Note that f € C4. Then
supp(Bf) = {w} \ L(G) C supp(Bg), and supp(f) C supp(g). Therefore, it must be that
the edges of G(g) are exactly E(F), and g(dr(v)) = 0 for all v € V(G) \ {w}. Thus, it
must be that g € Cy.

In all the above cases, g € C; U ---UCs, as desired. O
Finally, we remark that if GG is bipartite, then both the edge directions and the circuits

of Peyvat(G) are given by C;UCs. Furthermore, when G is bipartite, we have that Peyiat(G)
is a 0/1 polytope. These facts are relevant to the hardness reduction in the next section.

3.1.2 Hardness Reduction

The purpose of this section is to show that the Dantzig and greatest-improvement circuit-
pivot rules are NP-hard to compute. We will prove this via reduction from the directed
Hamiltonian path problem. In particular, let D = (N, F’) be a directed graph with n = |N|,
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and let s,t € N be two given nodes. We will construct a suitable auxiliary undirected graph
H, cost function ¢, and a matching M in H with characteristic vector Y™, such that the
following holds: D contains a directed Hamiltonian s,¢-path if and only if an optimal
solutions to Dan(Pryat(H), XM, ¢) and Great(Pryvar(H), XM, €) attain a certain objective
function value.

We start by constructing H = (V, E'). For each node v € N \ {t} we create two copies
v, and v, in V. For all v € N\ {t}, we let v v, € E. For all arcs uwv € F, with u,v # t, we
add an edge uyv, € E. That is, every in-arc at a node v corresponds to an edge incident
with v,, and every out-arc at v corresponds to an edge incident with v,. We add ¢ in V/,
and for all arcs ut € F, we have that u,t € E. Finally, we add nodes s’ and ¢, where
s's, € E and tt' € E (see Figure 3.5).

S v t
O O
s t/
N e
‘s, S V t 13
...W/
Sb Uy

Figure 3.5: An example of a digraph D above with the corresponding auxiliary graph H
below.

Now we define the cost function e. We set ¢(v,v,) = 0 for all v € N\ {t}, e(s's,) =
—W = —c(tt') such that W € Z, W > |E|, and let all other edges have cost —1. Finally,
we let

M = {vgup :v e N\ {t}} U{tt'}

be a matching in H. Recall that since H is bipartite, Peyar(H) is a 0/1 polytope, and
its circuits are given by C3 U Cs. Note also that the minimum possible objective function
value of any matching is —W —n + 1.

29



Now, consider the optimization problem

max —c'g
XM + g € Pemar(H).

Note that since eTx™ = W, the optimal value of (3.3) is at most 2W + n - 1.

Theorem 9. There exists a directed Hamiltonian s,t-path in D if and only if the optimal
value of (3.3) is 2W +mn — 1.

Proof. (=) Suppose that there exists a directed Hamiltonian s, t-path

k—lvk’ Ukt)

P = (sv',v"? - v
in D. Then P can be naturally associated to an M-alternating path P’ in H with endpoints
s and t/, as follows:

11

a’ ~a

11,2 209 k=1, k=1 k=1 k _k k  k; i
Uy, UpUsy VsU), -+, U 0,0 Uy, UaUy, Uy L, Et).

P' = (5S4, SasSp, Spv

Let g be defined as
1 ifeec E(P")\ M,
gle):=¢—-1 ifee M,

0 otherwise.

Then g € Cs, and is therefore a circuit of Pryar(H). Note that M + g € Peyar(H), and
—c’g = 2W +n — 1. Thus, g is a feasible solution to (3.3) with the claimed objective
function value.

(«<=) Now suppose that there is a solution g to (3.3), with objective function value
2W 4+ n — 1. First, we argue that the support of g is indeed an M-alternating path with
endpoints s’ and t'.

Recall that g € C; U C3. In either case, g € {1,0,—1}¥. By our choice of W, since
—cT’g = 2W +n — 1, we have that g(s's,) = 1 and g(tt') = —1. Then, since s’ and ¢’ are
not in any cycles of H, g € C3 and its support is an s, t-path. It follows that g has at
most |V| — 1 non-zero entries. Two of the non-zero entries are g(s's,) and g(tt'), and of
those that remain, exactly half have value 1. Thus,

1 1
—ch§2W+§(|V|—3):2W+§((2n+1)—3):2W—|—n—1.
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It is clear that the above inequality holds tight only if g(e) = 1 for 3(|]V| — 3) edges
of E'\ {s's,,tt'}, all of which have ¢(e) = —1, and ¢(f) = 0 for all edges f such that
g(f) = —1. Since the number of edges e with g(e) = 1 equals the number of edges f with
g(f) = —1, we have that | supp(g)| = |V| — 1, and therefore supp(g) is a path P’ spanning
H. Furthermore, all edges of M are in E(P’). By removing the first and the last edge of
P’ and by contracting all edges of M that are the form (v,v,) (for v € N), we obtain a
path that naturally corresponds to a directed Hamiltonian s’, -path in D. O

Theorem 5. The Greatest Improvement and Dantzig circuit-pivot rules are NP-hard.

Proof. We will prove this by showing that the optimization problems Dan(PryaT(G), 2, €)
and Great(Pryvar(G), @, €) are NP-hard to solve. In particular, we will show that they are
hard when G is taken to be the graph H in the above hardness reduction.

For any circuit y € C(Ppyar(H)), we have xM + 1y € P, and x™ + ay ¢ P for any
a > 1. Therefore, for all y € C(Pryar(H)) such that —eTy > 0, we have

max{—cT(ay) : XM + ay € Pryar(H), a > 0} = —cTy.

Therefore, the optimization problem (3.3) is, in fact, equivalent to both Dan(Peyar(H), , €)
and Great(Pryvar(H ), @, ¢). Thus, Theorem 9 implies that there exists a directed Hamil-
tonian s, t-path in D if and only if the optimal values of Dan(Pryar(H), x, ¢) and
Great(PrvaT(H ), , ¢) are both equal to 2W +n — 1. O

We highlight that since H is bipartite, the polytope Pryar(H) is 0/1. That is, this
hardness result holds even for LPs defined over 0/1 polytopes.

3.1.3 Hardness implications

Here we prove that the reductions in the previous section have interesting hardness impli-
cations for the Simplex method.

Corollary 1. Given a vertex of the bipartite matching polytope and an objective function,
it 1s NP-hard to decide whether there is a neighboring vertex that is optimal.

Proof. Consider again the hardness reduction in Subsection 3.1.2, and note that the optimal

solution of Great(Pryat(H), XM, ) is a circuit g that corresponds to an edge-direction
at xM. Consider the LP obtained by minimizing e¢T@ over Peyvar(H), and take x™ as
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an initial vertex solution. By Theorem 9, there is a neighboring optimal solution with
objective function value —W —n+ 1 (the minimum possible value) if and only if the initial
directed graph has a Hamiltonian path. The result follows. O

We can now prove Theorem 1, which we restate for convenience.

Theorem 1. Given an LP and an initial feasible solution, finding the shortest (mono-
tone) path to an optimal solution is NP-hard. Furthermore, unless P=NP, it is hard to
approximate within a factor strictly better than two.

Proof. Once again, consider the hardness reduction in Subsection 3.1.2, and the LP ob-
tained by minimizing e¢'® over Pryar(H). By Theorem 9, in order for a Hamiltonian
path to exist on D, the optimal solution of this LP must have objective function value
—W —n + 1, so without loss of generality, we can assume that this is the case. Take
XM as the initial vertex solution. Under the latter assumption, as noted in the proof of
the previous corollary, there is a neighboring optimal solution to xy* if and only if D has
a Hamiltonian path. This implies the following: (i) if D has a Hamiltonian path, then
there is a shortest (monotone) path to an optimal solution on the 1-skeleton of Peya(H)
that consists of one edge; (ii) if D does not have a Hamiltonian path, then any shortest

(monotone) path to an optimal solution has at least two edges.

Then suppose, for the sake of a contradiction, that we can approximate the shortest
(monotone) path to an optimal solution within a factor v < 2. Then given any directed
Hamiltonian path instance, we can reduce the problem as in Subsection 3.1.2 and use this
approximation algorithm to get a path to the optimal solution of the fractional matching
instance whose length is yL where L is the length of a shortest path. Since 1 < v < 2,
vL < 2 iff L = 1, which itself holds iff D has a Hamiltonian path. The result follows. [

As mentioned in the introduction, our result implies that for any efficiently-computable
pivot rule, the Simplex method cannot be guaranteed to reach an optimal solution via a
minimum number of non-degenerate pivots, unless P=NP. In a way, this result is similar
in spirit to some hardness results proven about the vertices that the Simplex method can
visit during its execution [18, 11, 1].

The following hardness result also holds for circuit-paths, via the exact same argument.

Theorem 10. Given an LP and an initial feasible solution, finding the shortest (monotone)
circuit-path to an optimal solution s NP-hard. Furthermore, unless P=NP, it is hard to
approximate within a factor strictly better than two.
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3.2 Circuit Augmentation Algorithms

We start with the following formal definitions of approximate Greatest Improvement aug-
mentations and of approximate Greatest Improvement circuit-pivot rules.

Definition 4. Let v > 1, x € P, and a*g* be a Greatest Improvement augmentation at x.
We say that an augmentation ag is a y-approximate Greatest Improvement augmentation
at x, if

1
aclg > ~(a*cg").

-2

That is, ag is a y-approximate Greatest Improvement augmentation if the objective
function improvement gained from the augmentation ag is at least a ~ fraction of the
objective function improvement gained from the augmentation a*g*.

Definition 5. A circuit-pivot rule is a y-approximate Greatest Improvement circuit-pivot
rule if at any point x € P, the augmentation produced by the rule at x is a y-approximate
Greatest Improvement augmentation at .

As mentioned in the introduction, we define

@)

where the max is taken over all n X n submatrices (g) of (g) such that (g) has rank n.
Furthermore, we let w; be the minimum 1-norm distance from any vertex to any facet not
containing it. Formally, let vert(P) be the set of vertices of P. For a given v € vert(P),
let F(v) be the set of feasible points of P that lie on any facet F' of P with v ¢ F.

wy = min lv— flli-

v € vert(P), f € F(v)
Finally, we let M; be the maximum 1-norm distance between any pair of vertices; i.e,

Ml = max H'Ul — v2”1.
v1,v2 € vert(P)
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3.2.1 Approximate Greatest Improvement augmentations

Let us recall the statement of Lemma 1:

Lemma 1. Consider an LP in the general form (1.1). Denote by § the mazimum absolute
value of the determinant of any n X n submatriz of (g). Let xy be an initial feasible
solution, and let v > 1. Using a y-approximate Greatest Improvement circuit-pivot rule,
we can reach an optimal solution * of (1.1) with (’)(n7 log (5 c’(x* —mo))) augmentations.
Furthermore, if all extreme points of the feasible region have integer coordinates, we can
reach an optimal solution with O(n'y log (CT(.’I:* — :vo))) augmentations.

Proof. Let x;, be the solution at the k-th iteration of an augmentation algorithm. By the
sign-compatible representation property of the circuits,

p
¥ —x = E a;g"
i=1

where g* € C(A, D) and p < n. Note that, as a consequence of Proposition 3, for any i we
have that o; > 0 and x; + o;g° is feasible. More precisely, A(xy + a;g°) = Az + ;Ag' =
Axy, = b. Furthermore, we know Dz, < d and Dx* = D(xy + Y 0 ;g") < d. This and
the sign-compatibility of g* and (x* — x}) implies that D(xy, + a;g°) < d foralli =1...p.

We then have

p p
O<cl(z"—xy) =" Z g = Z a;c’g’ < nA,

i=1 i=1
where A > 0 is the largest value of ac™z over all z € C(A, D) and « > 0 for which x; +az
is feasible. Note that in particular, A > a;eTg’ for all i € [p]. Equivalently, we get

T(p* —
A S@ @)

n

Now let az be a y-approximate Greatest Improvement augmentation applied to xy,
leading to xp,1 = x; + az. Since ac’z > }YA, we get

1 cl(x* —x
c(xp1—xp) =ac’z> —A > u
v m
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Thus, we have at least a factor of g = Win of objective function value increase at each
augmentation. Applying Lemma 4 with e = 1/§2 then yields a solution & with cT(z*—x) <
1/62, obtained within at most 4n~y log(d ¢T(z* — x)) augmentations.

By Lemma 5, a vertex solution ' with ¢’ > ¢T@ can be reached from & in at most
n additional augmentations. It remains to prove that x’ is optimal.

Suppose &’ is a non-optimal vertex. There exist subsets 17 and T of { 1,...,mp } such

that &’ is the unique solution to
( , ) ( b )
T = ,
Dr, d(T1)

(Di)w B (d(l;z))’

Let 6; = |det (D‘il)| and §, = | det (D‘L;Q) |. By Cramer’s rule, the entries of ' are integer

and x* is the unique solution to

multiples of % and the entries of x* are integer multiples of é. Then, by letting §' =

lem(dy, 85), we have that the entries of (@’ — «*) are integer multiples of §. Since ¢ is an
integer vector, we have that ¢"(x’ — x*) > 5, and by the definition of d, we have that
% > . This is a contradiction to the fact that ¢T(z* — a') < 1/6%

Note that if all the vertex solutions of the given LP have integer coordinates, then we

can instead set € = 1 instead of € = 1/§2. O]

The proof of Lemma 1 closely mimics the arguments used in [37], though we note
again that their proof is only done for equality form LPs. Lemma 1 also establishes that
the result obtained by [37] regarding the number Greatest Improvement augmentations
needed to solve an equality form LP extends to general-form LPs (trivially, by taking
v = 1). The extension of this result to general-form LPs has valuable implications on the
circuit diameter, which we explore later in Section 3.4.

3.2.2 Steepest Descent Circuit-Pivot Rule

Using the approximation result developed above, we give a new bound on the number of
Steepest Descent augmentations needed to solve an LP with a bounded feasible region.
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Theorem 6. Consider the LP max{c'x : x € P} of the form (1.1) where P is bounded.
Let wy denote the minimum 1-norm distance from any vertex v € P to any facet F of P
such that v ¢ F. Let My be the mazimum 1-norm distance between any pair of vertices of
P. Using a Steepest Descent circuit-pivot rule, a circuit-augmentation algorithm reaches
an optimal solution x* from any initial feasible solution xqy, performing at most

0 (" tox (3er(a’ - ) )

w1

augmentations.

Proof. First, we can apply Lemma 5 to move from @, to a vertex solution ' of the LP in
at most n steps.

Let 2 be an optimal solution to Steep(P, &', ¢), and let z := mz” Note that z is a

circuit of P, being a rescaling of 2 € C(A, D). Let az be a Steepest Descent augmentation
at «’. Similarly, let 2* be an optimal solution to Great(P,a’, ¢), let z* := i lulé* and let

z
a*z* be a Greatest Improvement augmentation at @’. Then we have that (¢"2)/||2||, >
(c72*)/||2*]|1, and so €Tz > ¢Tz*. Therefore
a
ac’z > ac’z' = (E) (a*cTz").

Since the augmentation a.z is maximal, we have that at the point &'+ az, there exists some
facet of our feasible region which contains «’+az but not ’. Then w; < ||(&'+az)—2'||; =
al|z||1. Since ||z]]; = 1, it follows that o« > w;. Since &’ + a*z* is feasible, we have that
|(x' +a*z*) —'||; is at most the maximum 1-norm distance from @’ to any other feasible
point. As above, it follows that a* is at most the maximum 1-norm distance from x’ to
any other feasible point. Since the function f(y) = ||y — «'||; is convex, this maximum is
achieved at a vertex. It follows that o* < M;.

Given these bounds on « and «*, it follows that

w1
ac’'z> [ — | (a"c'z"). 3.4
> (51 e (3.4)
Now let & = o’ + az. By Lemma 5, a vertex solution @ can be found from Z in at
most n — 1 additional augmentations (e.g., using again Steepest Descent augmentations,
but on a sequence of face-restricted LPs) with ¢'@ > ¢'@. Then we have that € — @

is an (ﬂ—ll)—approximate Greatest Improvement augmentation at @', and since & is also
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c=(1,1)

x = (0,0)

Figure 3.6: This gives a family of examples (parameterized by k) where i) moving along
the edges incident at a vertex yields an arbitrarily bad approximation of moving along
the Greatest Improvement circuit, and i) a Steepest Descent augmentation at x is a
(tight) ]‘f—ll—approximate Greatest Improvement augmentation. This polygon has vertices
x = (0,0),y1 = (0,1),y2 = (k, k), (k,k —1),(k — 1,k) and (1,0). One can check that at
x, y; is both a Steepest Descent augmentation as well as a steepest edge, while y, is a
Greatest Improvement augmentation. We have that ¢y, = icTyg = ﬁ—llcTyg.

a vertex, we can continue to apply this procedure. Since it takes at most n Steepest
Descent augmentations to find such an (%)—approximate Greatest Improvement augmen-

tation, it follows from Lemma 1 that from an initial solution xy, we can reach x* in
(@) (ng% log (dcT(x* — wo))> Steepest Descent augmentations. O
1

We note that the inequality (3.4) yields the following corollary.

Corollary 2. Let x be a vertex solution of an LP with bounded feasible region. A Steepest

My

Descent circuit augmentation at x is an <w1 -approzimate Greatest Improvement aug-

mentation.

The example given by Figure 3.6 shows that the approximation factor ]u\f—ll can be tight.
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3.3 Asymmetric Steepest Descent Circuit-Pivot Rule

Given P = {x € R" : Ax = b, Dx < d}, a point & € P (considered to be fixed), and
z € ker(A), let

N(z;D,m) = »_ (m) D;z.

iE[mD]:
D;z>0

Note that if we consider & to be fixed, then the coefficient ( y

ﬁ) is a constant inde-

pendent of z.

Definition 6. Given an LP of the form (1.1) with feasible region P, an Asymmetric
Steepest Descent (ASD) circuit at x is a circuit g € C(A, D) that mazimizes —<2— over

N(z;D,x)
all z € C(A, D) such that x + ez € P for some € > 0.

We take a moment to justify the name “Asymmetric Steepest Descent.” We remind
the reader that the authors of [25] extend the Steepest Descent circuit-pivot rule of [37] to
general form LPs by defining it to choose the circuit that maximizes ¢'g/||Dg|;. Although
it has the potential to be confusing in the context of the rest of this thesis, it is this
definition of Steepest Descent that inspires the name “Asymmetric Steepest Descent” —
by way of contrast. This is in part because the authors of [25] introduce a framework to
compute Steepest Descent circuits (according to their definition), and we will use the same
framework to compute ASD circuits. Further, while the expression ||Dgl|; can be thought
of as treating all rows of D “symmetrically”, the ASD circuit-pivot rule treats the rows
of D “asymmetrically”: When evaluating the expression N(z; D, x), we only consider the
inequalities that z is “tightening,” and furthermore each of these rows affect the expression
differently depending on how close they are to tight at x.

The optimization problem that arises when following the ASD circuit-pivot rule will be
called ASD(P, x, ¢), and is defined as follows:

c’g
" N(giD,@)
st. geC(A, D),
g cC(x).

Note that the value of N(% 2 does not change when we scale z by some positive

multiple. It is possible that N7(z7; D,x) = 0. In such a case, if ¢Tz = 0, we will regard
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N(Zg’m) to be 0, and otherwise we will regard it to be positive or negative infinity, depending

on the sign of ¢"z. In particular, this can happen if the given LP is unbounded. In such a
case, for any point & € P, there exists a circuit g with ¢'g > 0 such that x + ag € P for
all @ > 0. This latter condition implies that D;g < 0 for all 7, and thus N(g; D, x) = 0.
This implies the following:

Lemma 7. An LP of the form (1.1) is unbounded if and only if for any feasible solution

x, an ASD circuit g at © has N(;Tg z = 00 Furthermore, in such a case, any circuit g
with cT—g) = o0 is an ASD circuit.

N(g;D,x

3.3.1 Computing ASD circuits

We will rely on some definitions and results in [25], restated here. The authors define the
cone C4 p to be

Cap={(z,y",y ) eR"*P A2 =0,Dz=y" —y ,y",y >0}.

They then show that C4 p is generated by extreme rays of two forms. First are “trivial”
extreme rays of the form (0, e;, e;) where e; denotes an elementary coordinate vector
(of the appropriate dimension). Second are extreme rays of the form (g,y*,y~) where
g € C(A,D), y = max{0,D;g}, and y; = max{0,—D;g}. They show that not all
vectors of the first form generate extreme rays of C'y p, but all vectors of the second form
do (See Theorem 3 of [25]).

Given a point & € P, they further define the cone Cy4 p . to be the cone Cy p intersected
with the hyperplanes y;” = 0 for all i such that D;x = d(i). They show (Theorem 5 in [27])
that the (nontrivial) extreme rays of Cy p, correspond exactly to those circuits g such
that g € C(x). Furthermore, they show that for all vectors w such that © + u € P,
(u,y*,y~) € Caps where y = max {0, Dju }, and y; = max {0, —D;u }.

We will take a similar approach as [25] to prove the following theorem:

Theorem 11. Consider an LP (P) of the form (1.1) with feasible region P and a feasible
solution ' € P. In polynomial time, we can:

e Determine if (P) is unbounded.
o [f (P) is not unbounded, determine if ' is optimal.

e If (P) is not unbounded and x' is not optimal, compute an optimal solution to
ASD(P, &', c)
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Note that we are not claiming to be able to compute an ASD circuit in any circumstance.
In particular, if the original LP is unbounded, then the method described here will not
necessarily return an ASD circuit, but will instead certify unboundedness (If, however, the
certificate is also a circuit, it will be an ASD circuit). Unfortunately this implies that
computing an ASD circuit is at least as hard as determining whether or not an LP is
unbounded. This casts doubt on the possibility that an ASD circuit can be computed
without using an LP solver as a subroutine.

Similarly to [25], in order to prove Theorem 11, we will intersect Cy p, with an ap-
propriate halfspace, creating a polyhedron P4 p, whose optimal solution with respect to
c will be an ASD circuit (if @ is not optimal for (P) and if (P) is not unbounded). In
particular, we consider the following polyhedron:

Definition 7. Let P4 pg, be the polyhedron obtained from Cy p . by intersecting it with
the halfspace defined by the inequality

1
Tyt — - - + <1,
Ayt = D (d(i)—Dim)y’ =1

ie[mD]

Consider an extreme ray generator (g,y",y~) of Cap, with g # 0. Then since
y" = max {0, D;g }, we have that for all i € [mp] with D;g > 0, D;g = y*. This leads to
the following observation:

Observation 1. Let (g,y",y~) generate an extreme ray of Ca p . with g # 0. Then

N(g:D,m)= ) (d(l)_;m) y, =hTy".

ZG[mD]
D¢w<d(i)

Lemma 8. Let (P) be an LP of the form (1.1) with feasible region P, and let ' € P. Then
(P) is unbounded if and only if the LP problem (P') = max{c'z: (z2,y",y") € Papa }
s unbounded.

Proof. Suppose that (P) is unbounded. Then there exists a vector u € R"™ such that
'+ au € P for all @ > 0 and ¢"u > 0. By Theorem 5 of [25], a(u,y",y~) € Capa,
for all & > 0, where y;" = max{0, D;u} and y; = max{0,—D;u} for all i. It remains
to show that a(u,y",y~) € Py p for all @ > 0. That is, we must show that hTy*™ =0
(Note that h and y™ are both > 0, so hTy™ > 0). Since @’ + au € P for all a« > 0, we

40



have that Du < 0, and so y™ = 0. Thus, hTy" = 0, so a(u,y",y~) € Py p for all
a > 0, and so (P') is unbounded, as desired.

Now suppose instead that (P’) is unbounded. Then there exists (w,y™,y~) such that
a(u,yt,y~) € Papa for all @ > 0 and ¢™u > 0. Then hTy* = 0, and so y;” = 0 for all
i € [mp] such that D;a’ < d(i). Furthermore, we have by the definition of P4 p . that
y;t = 0 for all i such that D;x’ = d(i). Then since D;u = y;” — y;, we have that Dyu < 0
for all 4 € [mp]. This implies that ' + au € P for all @ > 0. Since ¢"u > 0 this implies
that (P) is unbounded, as desired. O

We can now prove Theorem 11.

Proof of Theorem 11. Consider the LP problem (P’') = max{c'z : (z,y",y~) € Papa }-
Consider the result of solving (P’) starting from the vertex 0 using any LP solver that runs
in polynomial time and returns an optimal extreme point solution if one exists. If (P) is
unbounded, then by Lemma 8, solving (P’) will determine that (P’) is unbounded, and
this will certify that (P) is unbounded. Then we may assume that (P) is bounded. We
have that @’ is optimal for (P) if and only if O is optimal for (P’), so if @’ is optimal,
solving (P’) will determine as much. Then we may assume further that &’ is not optimal
for (P).

In this case, (P’) is also not unbounded, and 0 is not optimal for (P’). Then solving
(P') returns some vertex solution (z,y*,y~). It remains to show that z is the scaling of
an optimal solution to ASD(P,x’,¢) (Note that z may not itself be an optimal solution
to ASD(P, &', ¢) if it does not have co-prime integer components, and is therefore not in

C(A,D)).

We have that z # 0 since otherwise 0 is optimal for (P’), contradicting our assumption
that it is not. Then z is a scaling of a circuit g in C(A, D). Now, every circuit in C(A, D)
which is strictly feasible at @’ corresponds to some vector (2’,y'",y’~) which is either a
vertex of P4 pg or generates an extreme ray of P4 pg.. Note that if any such vector
generates an extreme ray, then €'z’ <0, as (P’) is not unbounded. Therefore, the strictly
feasible circuits at @’ with positive objective function value all correspond to vertices of
P A,D,x’-

Let g’ be a circuit in C(A, D) which is strictly feasible at ' and with ¢'g’ > 0. Then
g’ corresponds to a vertex (2',y'",y"") of Py pa. Since (z,y",y") is optimal for (P’),
we have that ¢Tz > ¢7z’. Since C4 p - has only the vertex 0, all vertices of P4 p . other
than 0 lie in the hyperplane hTy™ = 1. This, combined with Observation 1 gives that

cTz c’z’

> .
N(z;D,x') — N(2/;D,a')
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Since z and 2’ are scalings of g and g’, respectively, we have that

c'g S c’g’
N(g;D,z’) — N(g;D,x')

Then g is an ASD circuit (and can be easily recovered from z), as desired. O]

3.3.2 Solving LPs with ASD Circuits

The purpose of this section is to prove the following:

Theorem 12. Consider an LP (P) of the form (1.1) with feasible region P, and let x°
be any initial feasible solution of (P). If (P) has an optimal solution, then some optimal
solution x* to (P) can be reached starting from x° in at most

O (mpnlog (6c"(z* — a)))
ASD circuit augmentations.

Proof. We will show that at any feasible point ', an ASD circuit augmentation is an mp-
approximate Greatest Improvement augmentation. Then the result follows from Lemma 1.

Let g’ be an optimal solution to ASD(P,«’, ¢) and let g* be an optimal solution to
Great(P, ', ¢). Then by definition, we have that

c'g’ S c'g*
N(g';D,2') ~ N(g*;D,z')
Let 2/ = /g’ and z* = a*g* be the maximal ASD and Greatest Improvement circuit
augmentations at @', respectively. Then since N(;TDz’z,) is invariant under scaling of z, we
have that
c'z cTz*

>
N(z';D,x') — N(z*;D,x')’

and therefore

L NEDE)

—— 1 Lclz*.

N (z* D, x')

Then it remains to show that % > ——. In fact, we will show that N(z;D,z) > 1
and N(z;D,x) < mp for all  and all ax1mal augmentations z at x, regardless of
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whether or not z is a circuit. Since & + z is feasible, Each summand in

> (aw=pm) "7

ie[mD]:

D¢w<d(i)

D;z>0
is in [0, 1]. Furthermore, since z is a maximal augmentation at @, there exists an index
[ € [mp] such that D;z = d(l) — D;x. That is, there exists a summand that equals 1, so
N(z; D,x) > 1. Similarly, since each summand is in [0, 1] and since there are at most mp
of them, we have that N(z; D, x) < mp, as desired. ]

Together, Theorems 11 and 12 give the following corollary:

Corollary 3. Consider an LP (P) of the form (1.1). A circuit-augmentation algorithm
with an ASD circuit-pivot rule reaches an optimal solution in polynomial time.

3.4 Circuit Diameter

Here we explore the implications that Lemma 1 has when bounding the circuit diameter of
general polyhedra as well as for LPs defined over lattice polytopes. We remind the reader
that in this section, we assume that polyhedra are represented with minimal descriptions,
as defined in Definition 3. We will first prove a lemma that will not only be useful for a
later proof, but is also of independent interest for the study of circuits.

Lemma 3. Let P be any polyhedron where {x € R™ : Az = b, Dx < d} and {x € R™:
Ax =V, D'z < d} are both minimal descriptions of P. Then C(A,D) = C(A',D’).

Proof. We will first show that ker(A) = ker(A’). Consider any point ' € P such that
D;x’ < d(i) for all i € [mp]. Note that such a point exists because we assume that P has
more than one solution (see Chapter 2). For any vector z € R", we have that ' + ¢z € P
for some € > 0 iff z € ker(A). Likewise, &’ + ¢z € P for some ¢ > 0 iff 2 € ker(A’). Then
ker(A) = ker(A’), as desired.

We will now show that C(A’, D) = C(A’,D'). As shown in Theorem 6.17 of [32],
each inequality in a minimal description of P defines a facet of P. Furthermore, in any
description of P, each of its facets must be described by some inequality. Then it suffices
to show that given any minimal description of P, replacing any facet-defining inequality
with any other inequality that defines that same facet gives a new minimal description
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with the same set of circuits. Given this, one can replace the inequalities of Dx < d with
inequalities of D'x < d’ one at a time, giving the desired result.

Then suppose that the system D"x < d” is obtained from the system Dx < d by
replacing an inequality D]x < d(i) with the inequality hTx < u (where we will then say
that D! = h and d”(i) = u), and let F' be the facet of P that they both define. We have
that g is a circuit in C(A’, D”) if and only if it is the unique (up to scaling) solution to a

system
A/
[Df}} z=0

for some J C [mp] such that rank ( 3,/,) =n—1and ( g,/,) has full row-rank. Consider the
J J

flat H affinely spanned by the vertices of F. Then we have both that
H={zeR":Dlz=d(i)}n{xecR": Ax=0b}

and that
H={zeR":Dx=d(i)}n{xeR":Axz=0b"}.

Then as before, (;:T)m = (d,l,’zi)) if and only if (‘3;)m = (dlz;)), and therefore ([‘;}_,/T) and (g;)

have the same kernel. Since all other inequalities of Dx < d and D"x < d” are the same,

this implies that
A/
) a=o

Al
{DJ g=0,

and so g € C(A’, D) if and only if g € C(A’, D"), as desired. O

if and only if

We recall the statement of Theorem 7:

Theorem 7. There exists a polynomial function f(m,a) that bounds above the circuit
diameter of any rational polyhedron P = {&x € R™ : Az = b, Dx < d} with m row
constraints and maximum encoding length among the coefficients in its description equal
to a.

Proof. We may assume that P is pointed and has more than one vertex, as otherwise the

statement is trivial. Then rank (g) =n, and som = ma+mp > n. Recall that, by possibly
scaling, we can assume that all coefficients in its description (i.e., all entries of A, D, b, d)
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are integers. Let & and & be two vertices of P. Let T := {i : D;& = d(i)}. Let €T be the
vector obtained by adding the rows of A and Dy. By construction, using this vector as
an objective function, Z is the unique optimal solution to the LP problem (1.1). Lemma 1
shows that we can reach & from @ with O(nlog (0 ¢™(Z — x))) augmentations.

We define i
0= max{ det (D)‘}’

where the max is taken over all n X n submatrices (g) of (SIZ) such that (é) has rank

n. Note that ¢"(Z — x) < |[|c[|«||Z — ®[|1. The result then follows by observing that
log(||c]|o) = O(a+ logm), log(||Z — x||1) < log(2nd) (using Cramer’s rule), and log(d) <

log(d) = O(n(a + logn)). O

3.4.1 Lattice Polytopes

We show that for any k-lattice polytope P, the circuit diameter is bounded by a function
which is polynomial in n and logarithmic in k. This is in contrast with the combinatorial
diameters of such polytopes which is ©(kn).

Theorem 8. The circuit diameter of a k-lattice polytope is at most O(poly(n)log(kn)).

Proof. Let x; and a3 be any two vertices of a k-lattice polytope P, and let {x € R" :
Axz = b, Dx < d} be any minimal description of P with integer data. Let ¢ be any integer
objective function such that xs is the unique maximizer of ¢'x over all x € P. Ultimately,
we will use Lemma 1 to bound the circuit distance from x; to a3, but to achieve the
desired result, it will be necessary to bound the term log(d(c"(x; — x3)). To do this, we
will use Lemma 2 to assume without loss of generality that the entries of ¢ are not too
large. This requires first showing that there exists a minimal description of P in which the
encoding length of any entry of (g) is not too large, which will conveniently bound ¢ as
well. By Lemma 3, using a different minimal representation of P does not change the set of
circuits, and therefore does not change the circuit diameter. We rely on the technique used
in the proof of Corollary 26 of [95]. The technique is used to bound the entries of matrices
defining full-dimensional 0/1-polytopes, but is readily generalized to k-lattice polytopes
which may or may not be full-dimensional.

In the case where P is not full-dimensional, we first extend P to a full-dimensional
polytope P’: Since P is not full-dimensional, there exists some index ¢ € [n]| such that
the elementary basis vector e; is not in ker(A). That is, for all @ € P, we have that
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x+ae; ¢ P for all a # 0. Let P’ be the polytope obtained by taking the convex hull of P
and P+ e;. We can repeat this until we have a polytope P’ which is full-dimensional. Note
that by construction, the same elementary basis vector e; will not be chosen twice, so the
coordinates of the vertices of P’ are integers between 0 and k+ 1. Note also that P appears
as a face of P’. Since it is full-dimensional, the polytope P’ has some minimal description
P ={x e R": D'z <d'} with integer data which is unique up to rescaling. We will now
show that there exists such a description in which the entries of D’ are bounded.

Let D’ be any row of D'. Since the description of P’ is minimal, each inequality of the
system D'x < d’ defines a facet of P'. Let vy,...,v,_1 be vertices of P’ whose affine span
is a hyperplane H containing a facet F' of P’ which is defined by the equality D;Ta: =d(j).
By translating all of the the points vy, ..., v,_1 by —vg and letting w; = v; —vg for 1 <7 <
n — 1, we get that the points 0, ws, ..., w,_; affinely span the hyperplane H' defined by
the equation D;Ta: = 0. Let V be the matrix in { —(k+1),...,—1,0,1,..., k+1 }(”_I)X”
whose i-th row is w;. Then we have that H' is equivalently given by an equality hTx =
0 with k(i) € {£det(Vi)} where Vi € {—(k+1),...,—1,0,1,... k413" Dx0=1 4
obtained from V' by deleting the i-th column of V. Thus, the hyperplane H containing the
facet F' of P’ can be equivalently given by the equality hTx = hTv,, and so the inequality
D;Ta: < d/(j) in the system defining P’ can be replaced by the inequality hTx < hTwvy.
Note that this preserves the fact that our description has integer data.

We now bound the absolute value of the entries in h by bounding determinant of V.
Since the entries of V* are bounded in absolute value by k + 1, we have by Hadamard’s
inequality that |det(V?)| < (k + 1)"n™2. Thus, we may assume without loss of generality
that the system D'x < d' defining P’ is such that the entries of D’ are bounded (in
absolute value) by (k4 1)"n™/2. Since P appears as a face of P’, we can obtain a minimal
description of P by setting some inequalities of D'z < d’ to equations and by removing
some redundant inequalities. Therefore, we may assume without loss of generality that in
the system Ax = b, Dx < d defining P, the entries of (g) are also bounded (in absolute
value) by (k4 1)"n™/2.

This implies that the encoding length of (g) is at most log((k + 1)"n™2). Then
by Lemma 2, we may assume that

lelle < 2% (-4 DNk + )2y 1)

Note therefore that log(||c|| ) is at most on the order of poly(n) log(kn). Now, by Lemma 1,
we know that there exists a circuit-path (given by the Greatest Improvement circuit-
pivot rule) from @; to ®» whose length is O(nlog(dcT(x1 — @2))), where again § is the

maximum absolute value of any subdeterminant of (g). We have that ¢T(x; — @x2) <
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n- |l — T2l - ||€]lo < 1k - ||€]|oo. Furthermore, by another application of Hadamard’s
inequality, we get that
5 < ((k+1)"n"?)"n"2.

Thus, log(dc™(x; — @2)) is at most O(poly(n)log(kn)), and therefore so is the length of
the circuit-path from x; to x5, as desired. O
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Chapter 4

Edges Rules in 0/1-LPs

4.1 Steepest Edge Rule

In this section, we explore the implications that Theorem 6 has in the case of 0/1-LPs,
eventually proving Theorem 13 and Theorem 15. We start with the following lemma, which
shows that at a vertex of a 0/1 polytope a Steepest Descent circuit is the same as a steepest
edge:

Lemma 9. Consider a problem in the general form (1.1) whose feasible region P is a 0/1
polytope, and let x be a non-optimal vertex of P. Then the optimal solution to Steep(P, x, ¢)
corresponds to an edge-direction at @, and can be computed in polynomial time.

Proof. Consider the optimal objective function value of Steep(P,x,¢). It is not difficult
to see that this value is bounded above by the optimal objective function value of the
following optimization problem O:

max c'z
st [z <1 (4.1)
z€C(x)

over all z € R". This is true since if g € C(A, D) is a feasible solution to Steep(P, z, c),
then ﬁ is a feasible solution of @ with the same objective function value.

Let Pg denote the feasible region of Q. Note that Py is the feasible cone at  in P —
given by the constraint (4.2) — intersected with an n-dimensional cross-polytope — given
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by the constraint (4.1). The constraint (4.1) can be modeled using the linear constraints

vz <1 forallve {1,-1}". (4.3)

It follows that Pg is a polytope, and therefore Q is a feasible bounded LP. There exists an
optimal vertex y of Pg which is determined by n linearly independent constraints of Pg.

Since € {0,1}" and P is a 0/1 polytope, each entry of @ is either equal to its upper
bound or its lower bound. Thus, the feasible cone at x lies within a single orthant of R".
This implies that among all the linear constraints that model ||z|; < 1, only one is facet
defining. In particular, it is the constraint vTx < 1 where v = 1 — 2. That is, v is defined

by
L1 ifz@) =0,
(i) = {_1 £ (i) — 1 (4.4)

Therefore, y is contained in at least n — 1 facets corresponding to inequalities that describe
the feasible cone at x. Since « is not optimal, y # O.

As a consequence of this, we have that the optimal solution of Q corresponds to an
edge-direction of P incident with @. It follows that the optimal solution of Steep(P,x, ¢)
is an edge-direction of P incident with «, and since it is the optimal solution of an LP of
polynomial size, it can be computed in polynomial time. O

We recall that in [25], it was shown that for their different definition of the Steepest
Descent circuit pivot rule, a Steepest Descent circuit augmentation can be computed in
polynomial time for all LPs. Despite similarities in the two versions of the Steepest Descent
circuit-pivot rule, the technique they employ cannot be straightforwardly applied to work
for the definition used here, and our computability result in Lemma 9 is not implied by
theirs.

Since the set of edges is contained in the set of circuits, Lemma 9 implies that at an
extreme point solution of an LP defined over a 0/1 polytope, the Steepest Descent circuit
and the steepest edge are the same. This motivates the following definition:

Definition 8. Given a 0/1 LP (P) of the form (1.1) with feasible region P, let x be a
vertex of P, and let v = 1 — 2x. The Steepest Edge rule selects an edge direction that

. . T . .
mazimizes = over all edge directions at x.

That is, the Steepest Edge rule chooses to move along the steepest edge incident to x,
as the name suggests. Although we could clearly define the Steepest Edge rule for arbitrary
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LPs (and instead define it to choose the edge that maximizes ”‘;T—Hzl), we define it this way
because this definition will be more compatible with our later aim to extend this edge rule
to a Simplex pivot rule which follows the same path. Since we do not analyze the Steepest
Edge rule outside the context of 0/1-LPs, the loss of generality is not impactful for this
thesis.

The fact that the Steepest Edge rule and the Steepest Descent circuit-pivot rule fol-
low the same path in the setting of 0/1-LPs means that, in this setting, results about
the Steepest Descent circuit-pivot rule apply to the Steepest Edge rule as well. We now
combine Corollary 2 and Lemma 9 to show the following:

Theorem 13. Let x be a vertex solution of a 0/1-LP with n variables. An augmentation
along a steepest edge is an n-approximate Greatest Improvement circuit-augmentation.

Proof. At a vertex, a Steepest Descent circuit is also a steepest edge. Therefore, Corollary 2
also applies to a steepest edge. Since P is a 0/1 polytope, we immediately have that
M; < n. We now show that w; > 1. Let v be any vertex of P and let F' be any facet of
P which does not contain v. By reflecting and translating P, we may assume without loss
of generality that v = 0 (Note that these operations do not change the 1-norm distance
between any pair of points in P). It therefore suffices to show that for any facet F' not
containing 0, [|y||; > 1 for all y € F. Since F' is a 0/1 polytope not containing 0, this
clearly holds for all vertices of F'. Since all other points in F' are convex combinations of
the vertices of F', it also holds for all other points in F. Therefore, 10\2_11 > % O

We are now ready to prove the following theorem:

Theorem 14. Given a problem in the general form (1.1) whose feasible region P is a
0/1 polytope, a circuit-augmentation algorithm with a Steepest Descent circuit-pivot rule
reaches an optimal solution by performing a strongly-polynomial number of augmentations.
Furthermore, if the initial solution is a vertex, the algorithm follows the path on the 1-
skeleton of P generated by the Steepest Edge rule.

Proof. Let us call (LP1) the given LP problem of the form (1.1) whose feasible region is P.
Since P is a 0/1 polytope, for the sake of the analysis we can assume that the maximum

absolute value of any element in A and B is < ";,52 [98]. Apply Lemma 2 to (LP1) to get an

equivalent objective function €. Finally, let (LP2) := max{ '@ : Az =b, Bex <d, x € R" }.

Let &y and «* be the initial solution and the optimal solution, respectively. Note that
by the equivalence of ¢ and ¢/, «* is optimal for both (LP1) and (LP2). By performing at
most n augmentations, we can assume x is a vertex. First, we will show that Theorem 14
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holds for (LP2). Then, we will show that a circuit-augmentation algorithm traverses the
same edge-walk when solving (LP2) and (LP1) when using the Steepest Descent circuit-
pivot rule. This will prove the statement.

Recall that the Steepest Descent circuit-pivot rule selects at each step an improving
circuit g that maximizes ﬁ. Since the feasible region of (LP2) is a 0/1 polytope, we
can apply Lemma 9. Thereflore, each augmentation corresponds to moving from a vertex
to an adjacent vertex. Furthermore, the total number of augmentations can be bounded
via Theorem 13 and Lemma 1 by

O (n* log (¢"(z* — x0))) -

We now address the term log (c’T(ar:* — mo)). Since xy and x* are both in {0,1}",
we have that log (¢T(z* — @) < log(||¢/[1) < log(n|/c'||e), which is polynomial in n
due to Lemma 2(a). Therefore, the number of augmentations required to solve (LP2) is
strongly-polynomial in the input size.

To finish our proof, it remains to show that when the circuit-augmentation algorithm
is applied to (LP1), it performs the same edge-walk as it does when it is applied to (LP2).
To see this, we will rely on the polyhedral characterization of the problem Steep(P,x, c),
used in the proof of Lemma 9. As explained there, the edge-direction g selected by our
algorithm applied to (LP2) is an optimal solution to the LP max{c'Tx : * € Py}, which
describes Steep(P, x,c’). Note that the maximum absolute value of a matrix-coefficient
of this LP is also at most ”;f Therefore, due to Lemma 2(b), g is an optimal solution
to max{c'Tx : x € Py} (i.e., Steep(P,x,c)) if and only if it is an optimal solution to
max{c'x : = € Pg} (i.e., Steep(P, x,c)). Therefore, the circuit-augmentation algorithm
implemented according to the steepest-descent circuit-pivot rule, performs the exact same
pivots for the objective functions ¢’ and c. n

This implies the following theorem:
Theorem 15. Given an LP in the general form (1.1) whose feasible region P is a 0/1
polytope, then

(i) The Steepest Edge rule can be computed in polynomial, and it generates a monotone
path between any vertex and the optimum whose length is strongly-polynomial in the
wput size of the LP.

(ii) When the feasible region P is a non-degenerate 0/1 polytope, the Simplex method with
a Steepest Edge pivot rule reaches an optimal solution in strongly-polynomial time.
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Note that while the number of augmentations performed is polynomial in n and is
independent from the number of rows m4 + mp, actually computing the movement along
a steepest edge to the next vertex solution requires a number of operations which also
depends on mp. This fact and Theorem 14 imply Part (i) of Theorem 15. In the context
of the Simplex method, moving to a neighboring vertex along a steepest edge might require
several degenerate basis exchanges. Having a pivot rule that implies a strongly-polynomial
bound on the total number of basis exchanges remains an open question, but if the polytope
is non-degenerate, then the two concepts coincide, hence we obtain Part (ii) of Theorem 15.

We conclude this section with a few remarks. First, we mention that while the Steepest
Edge rule can be computed in polynomial time, this of course relies on the use of an
existing efficient LP solver. As such, this makes Theorem 15 a result which is not of
practical use for the direct purpose of solving LPs. However, the fact that it is computable
in polynomial time is still of significant importance. As discussed in Chapter 1, in order
for there to exist a pivot rule for the Simplex method which solves an LP in polynomial
time, we require that it is not NP-Hard to generate monotone paths of polynomial length.
We show in Theorem 15 that this holds in the setting of 0/1 LPs.

Second, we want to mention that we were interested in proving a strongly-polynomial
bound on the number of augmentations, without trying to obtain the best possible such
bound. For example, one could possibly get a better bound on the number of augmentations
using a recent result of Eisenbrand et al. [10] instead of the result of Frank and Tardos [51].

Third, we remark that our main focus was bounding the number of augmentations
performed by the Steepest Edge rule in particular. This is because Steepest Edge is a
classical decision rule and one of our objectives here is to understand its performance.
Regarding our use of Lemma 2, the authors of [51] observe that when applying Lemma 2
to LPs defined over 0/1 polytopes, it suffices to choose N = n + 1 rather than N =
(n 4+ 1)!12"* + 1, which is required in general. We remark that we cannot take N = n + 1
in this context because, while our original LP is defined over a 0/1 polytope, the auziliary
LP Q used in Lemma 9 is not. In order to argue that the algorithm performs the same
edge-walk in (LP1) as it does in (LP2), we require that our new objective function ¢ is
equivalent to our original objective function ¢ not just for those two LPs, but also for Q.
By taking N =n+1 in Lemma 2 and by instead following the path of steepest edges with
respect to €, we could get a shorter path which is monotone with respect to e. However,
this path would not necessarily be the path of steepest edges with respect to ¢, and this
is the path whose length we aim to analyze. Hence, we rely on the fully general version
of Lemma 2.

Finally, as already mentioned, in the context of pivot rules for the Simplex method,
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the name “Steepest Descent” often refers to a normalization according to the 2-norm of a
vector, rather than the 1-norm. Since for any vector g € R", we have v/n||g|l2 > ||g||1 >
llgl]2, it is not difficult to note that the bound on the length of the circuit-path obtained
in Theorem 14 still holds if we normalize according to the 2-norm.

4.2 ASD Edge Rule

Mirroring Section 4.1, in this section we explore the implications that Theorem 12 has
in the case of 0/1-LPs in the standard equality form (2.2). We start with the following
lemma:

Lemma 10. Consider an LP problem in equality form (2.2) whose feasible region P is
a 0/1 polytope, and let & be a non-optimal vertexr of P. Then the optimal solution to
ASD(P, x,c) corresponds to an edge-direction at x.

Proof. We first remark that since P is a 0/1 polytope, the LP is not unbounded. Suppose
that z is any feasible direction at @. In the case of an equality form LP, the inequality
matrix B is the identity matrix —I, so we have that

N(z-La)= 3 (%) —20).

i€[n]:
x(i)>0
z(1)<0

Since the feasible region P is a 0/1 polytope and since x is a vertex, if @(i) > 0, then
(i) = 1. Then the above sum is equal to

Z —z(i) = Z —z(i) = Z —z(i),

i€[n]: i€n]: i€[n]:
z(i)=1 x(i)=1 x(i)=1
2(1)<0 2(1)<0

where the last equality follows from the fact that z is a feasible direction at «, so z(i) < 0
if and only if x(i) = 1. Then if we let v be defined by

-1 e =1
vli) = {o it 2() = 0

(i.e., v = —x), we have that
N(z;—I,x) =v"z.
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The optimal objective function value of ASD(P,x,¢) is bounded above by the optimal
objective function value of the following optimization problem Q:

max c'z
st. vz <1
z € (C(x)

over all z € R". We first observe that the feasible region Pg of Q is not unbounded.
Otherwise, there exists a feasible direction z’ £ 0 at @ such that & 4+ a2’ is feasible for all
a > 0, contradicting that P is bounded. Then there exists an optimal vertex y of Py which
is determined by n linearly independent constraints of Q. As in the proof of Lemma 9, y
is contained in at least n — 1 facets corresponding to inequalities that describe the feasible
cone at x. Since x is not optimal, y # 0.

Then as before, we have that the optimal solution of Q corresponds to an edge-direction
of P incident with x. It follows that the optimal solution of ASD(P,x,c) is an optimal
solution to Q, and is therefore an edge-direction of P incident with «. m

This implies that at an extreme point solution of an SEF LP defined over a 0/1 polytope,
an ASD circuit and an ASD edge are the same.

Definition 9. Given a 0/1 LP (P) in the standard equality form (2.2) with feasible region
P, let  be a vertex of P, and let v = —x. The ASD edge rule selects an edge direction

that mazimizes &= over all edge directions at x.

The proof of the following theorem closely follows that of Theorem 14

Theorem 16. Given a problem in the standard equality form (2.2) whose feasible region P
is a 0/1 polytope, a circuit-augmentation algorithm with n ASD circuit-pivot rule reaches
an optimal solution by performing a strongly-polynomial number of augmentations.
Furthermore, if the initial solution is a vertex, the algorithm follows the path on the 1-
skeleton of P generated by the ASD rule.

Proof. Let us call (LP1) the given LP problem of the form (2.2) whose feasible region is P.
Since P is a 0/1 polytope, for the sake of the analysis we can assume that the maximum
absolute value of any element in A is < ";12 [98]. Apply Lemma 2 to (LP1) to get an equiv-

alent objective function ¢'. Finally, let (LP2) := max{ T : Az =b, x >0, x € R" }.

Let xy and «* be the initial solution and the optimal solution, respectively . Note that
by the equivalence of ¢ and ¢, * is optimal for both (LP1) and (LP2). By performing at
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most n augmentations, we can assume x is a vertex. First, we will show that Theorem 16
holds for (LP2). Then, we will show that a circuit-augmentation algorithm traverses the
same edge-walk when solving (LP2) and (LP1) when using the ASD circuit-pivot rule.
This will prove the statement.

Since the feasible region of (LP2) is a 0/1 polytope, we can apply Lemma 10. Therefore,
each augmentation corresponds to moving from a vertex to an adjacent vertex. Further-
more, by Theorem 12 the total number of augmentations is

O (n* log (¢"(z* — x0))) -

We now address the term log (¢'T(x* — xg)). Since xy and @* are both in {0,1}",
we have that log (¢T(x* — x)) < log(||¢/[1) < log(n||c/||«), which is polynomial in n
due to Lemma 2(a). Therefore, the number of augmentations required to solve (LP2) is
strongly-polynomial in the input size.

To finish our proof, it remains to show that when the circuit-augmentation algorithm
is applied to (LP1), it performs the same edge-walk as it does when it is applied to (LP2).
To see this, we will rely on the polyhedral characterization of the problem ASD(P,z, c),
used in the proof of Lemma 10. As explained there, the edge-direction g selected by our
algorithm applied to (LP2) is an optimal solution to the LP max{c'Tx : ® € Py}, which
describes ASD(P,x,c’). Note that the maximum absolute value of a matrix-coefficient
of this LP is also at most ”;f Therefore, due to Lemma 2(b), g is an optimal solution
to max{cTx : x € Py} (i.e., ASD(P,x,c)) if and only if it is an optimal solution to
max{c'x : x € Py} (i.e., ASD(P,x,c)). Therefore, the circuit-augmentation algorithm
implemented according to the ASD circuit-pivot rule, performs the exact same pivots for
the objective functions ¢’ and c. O]

Together, Theorem 16 and Lemma 10 imply the following theorem:

Theorem 17. Given an LP in the standard equality form (2.2) whose feasible region P
is a 0/1 polytope, the ASD rule can be computed in polynomial time, and it generatles a
monotone path between any vertex and the optimum whose length is strongly-polynomaial in
the input size of the LP.

4.3 Shadow Vertex Edge Rules

The Shadow pivot rule is a fundamental tool in the study of the average case run-time of
the Simplex method initiated by Borgwardt in [16]. This pivot rule gave rise to several
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algorithmic developments, including the arrival of smoothed complexity [31, 87, 91]. Intu-
itively, given a LP max { c"@ : & € P} starting at a vertex g € P, they find an auxiliary
vector v such that vTx is minimized at xy which allows them to project P to a polygon.
The two paths of this polygon guide the possible improving paths for P.

We present a novel modification of the Shadow pivot rule that instead comes from the
theory of monotone path polytopes first introduced by Billera and Sturmfels in [10] (see
Chapter 9 of [97] for an introduction and [9] for more details on their structure). The
vertices of the monotone path polytope are in natural correspondence with paths that
the modified Shadow pivot rule may choose. Billera and Sturmfels named these paths
coherent monotone paths. We will continue to use that name throughout because we will
allow for situations that have not been considered in earlier treatments of Shadow pivot
rule. Namely, in contrast to the original setup of [16, 34, 87, 91] we do not require that
non-degeneracy conditions hold on the LPs we consider.

4.3.1 The Shadow Rule for General Polyhedra

For the original version of the Shadow pivot rule, refer to Chapter 1 of the book of Borg-
wardt [16]. In this section, we initially consider a general LP max{c'x : € @ } where Q)
is any polyhedron in the general form. For now, @ is not necessarily 0/1.

We will prove results for general LPs in Lemma 11 and Corollary 4. Later we will restrict
those results to 0/1-LPs to prove the bounds on the lengths of monotone paths generated
by two new edge rules for 0/1-LPs: the Slim Shadow rule and the Ordered Shadow rule.
Like in the original Shadow pivot rule, we follow the edges guided by a shadow. Later,
in Section 5.3, we transform these two rules into actual pivot rules.

In the context of Shadow rules, we have a special type of monotone paths called coherent
monotone paths, which are constructed with both ¢ and an additional vector v. Taking c
and v together, we obtain a projection 7 : R — R? given by 7(x) = (vTx, cTx). Applying
this projection to @ yields a polygon m(Q). This polygon is often called a shadow of Q.

To define coherence, we require the notion of an upper path of 7(Q), depicted in Fig-
ure 4.1. Let Iy and F; denote the e;-minimal and e;-maximal faces of 7(Q) respectively.
Then let u° and u! be the e;-maximal vertices of Fy and F}, respectively. By convexity,
the line segment between u’ and u! is contained in 7(Q). Every point on the polygon lies
either above or below this line segment, since the segment travels from an e;-minimum to
an e;-maximum. The upper vertices are precisely the set of vertices that lie above or on
this segment. Formally, let L : R — R be the equation of the line affinely spanned by u°
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Figure 4.1: The red path is the upper path of the polygon. The edges Fj and Fj, are the
e;-minimal and e;-maximal faces of the polygon respectively. The green line segment is
exactly the line segment from u’, the e;-maximum of Fy, to u', the e;-maximum of F.
The choice of g* and g from the proof of Lemma 11 are shown as well.

and u!. Let u be a vertex of 7(Q). Then u is a vertex of the upper path precisely when
L(eJu) < eJu. The upper vertices form a path from u® to u! called the upper path.

A v-monotone path I' in @ is called c-coherent if m maps I' to the upper path of 7(Q).
Namely, all vertices of I' must be sent to either vertices or interior points of edges in the
upper path, and every vertex of the upper path must have a vertex sent to it from I
Note that this latter condition implies that the first vertex, xg, is the c-maximum of the
v-minimal face of (). A v-monotone path is called coherent if there exists some ¢ € R"”
such that it is c-coherent. In [10], they observed that not all monotone paths on a polytope
are coherent, and in [1 1], the authors showed that even on the octahedron, some monotone
paths are not coherent. We reproduce that example in Figure 4.2.

To find a c-coherent v-monotone path in (), at a vertex x; we maximize the slope in
the polygon 7(Q) among all v-improving edges starting at x;. Concretely, we have

(cT(u - :131))
Ty = argmax [ ——% | .
weNy(z;) \VT (4 — ;)

Here we make no assumption that the LP is non-degenerate. Furthermore, the choice of
;11 here may not be unique when ¢ is not generic. When it is not unique, one chooses
any maximizer. From this observation, we obtain a general notion of a Shadow rule.

Definition 10. Let (Q)) be an LP with feasible region @) and objective function cTx. Then
a Shadow rule constructs a path on the I-skeleton of ) from a starting vertex xy to an
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Figure 4.2: In the top of the center of the picture, a c-coherent v-monotone path is drawn
in red on the octahedron ¢®. The corresponding shadow 7(¢3) is on the bottom of the
center part of the picture where the upper path corresponding to the coherent monotone
path is highlighted in red. Under the projection 7, v and ¢ induce the x and y coordinates,
respectively as indicated by the arrows. On the right side of the picture is an example of
an incoherent monotone path on the octahedron from [11].

optimal LP solution by choosing the next vertex in the path via

cT(u—a:i))7

T; = argma
i+1 g X (’UT(’LL _ xz)

UE Ny (x;)

where v is an objective function such that xq is the c-maximum of the v-minimal face of

m(Q).

Note that a Shadow rule must come with a mechanism for choosing v given an initial
vertex xy. In the probabilistic analysis of the performance of the Simplex method using
Shadow rules in [16, 33, 87], the choice of v is made randomly. In contrast, our Shadow
Rules provide a deterministic way of making this choice.

The following lemma shows that e-coherent v-monotone paths not only lead to a max-
imum of v but also go through a maximum of ¢. Note that this lemma holds for all
c-coherent v-monotone paths on any polytope regardless of the choice of v.

Lemma 11. Consider the LP max{c'x : © € Q} for any polytope Q. Let v € R"™\ {0},
and let T' = [xg, @1, o, ..., xk] be a c-coherent v-monotone path in Q. Then there exists
some 0 <1 < k such that x; maximizes ¢ on ) and such that the portion of the path from
xo to x; 18 both c-monotone and v-monotone.

Proof. Let 7 : Q — R? be defined by 7(x) = (vTx, c’x). Equivalently, we have e]r(x) =
v’z and elr(x) = cT@. Since I is a c-coherent v-monotone path, 7(I") follows the upper
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path in 7(Q). Let u° and u' denote 7(xy) and 7(x;), the first and final vertices of the
upper path ("), respectively. As in the definition of an upper path, define L : R — R to
be the equation of the line passing through u° and u'.

Let g* be an ey-maximal vertex of 7(Q). Note that u’ and u' are e;-minimal and
e;-maximal, respectively due to being the first and last vertices of the upper path. Hence,
elu’ < elg* < eJul. Tt follows that the point g = (e]q*, L(elq*)) lies on the line segment
from u” to u' and is therefore contained in m(Q) by convexity. Since g* is es-maximal by
assumption, eJg* > elq = L(elq*). Thus, by definition, g* is a vertex in the upper path.

Thus, all es-maximal vertices are in the upper path of 7(Q). By our assumption of
coherence, there is a vertex in the coherent monotone path I' that projects to an e;-maximal
vertex in (Q). Then, since c"x = elr(x) for each x in @, the e-maximum of () is attained
at a point & € ) exactly when 7(x) is es-maximal in 7(Q). Therefore, the c-maximum is
attained on I.

By convexity, the slope from m(x;) to m(x;11) is at least the slope from 7(x;11) to
m(@;12) for each 0 <i < k—2. Hence, the upper path is strictly es-monotone exactly until
it reaches an ex-maximum of 7(Q). Recall again that elr(x;) = cTx; for all 0 < i < k.
Thus, I' is e-monotone until it reaches a c-maximum on (), meaning that I'" is both v-
monotone and c-monotone until it reaches a c-maximum, as desired. O

To prove Theorems 3 and 4, the key idea is to choose the auxiliary vector v carefully
so that the corresponding shadow paths are always short. The following corollary provides
a bound on the lengths of the paths.

Corollary 4. Let Q C R™ be a polytope, and let v € R™ \ {0}. Denote the set of vertices
of Q by V, and let F' be the face of Q minimized by v. Then for any objective function
c, the c-coherent v-monotone path from a c-mazimum of F' to a c-maximum of @) is of
length at most |[{vTu:uw eV }|—1.

Proof. Since the path is strictly v-monotone, any two vertices & and y in the path satisfy
vz # vTy. It follows that the length of the path is at most |{vTu:u eV }| — 1.
Furthermore, since the path is c-coherent it reaches a maximum of ¢ by Lemma 11. ]

For the original Shadow pivot rule in [16], the choice of v is taken to be a random
vector such that v7x is minimized uniquely at the starting vertex. For our Shadow rules,
we instead take advantage of the structure of 0/1 polytopes to make this choice of v
explicitly to guarantee that vTa always takes on few values, which by Corollary 4, yields
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short paths. In essence, we try to make v as degenerate as possible in place of Borgwardt’s
generic choice.

Finally, we observe that any Shadow rule can be computed in polynomial time.

Lemma 12. Let (Q) be an LP with feasible region Q) and objective function cTx, let xq be
a starting vertex of QQ, and let v be chosen according to a particular Shadow rule. Then
that Shadow rule can be computed in polynomial time on (Q).

Proof. Let xg, ..., x; be the path of vertices in Q followed by the Shadow rule up to the i**
step, and assume that x; is not an optimal solution. Let 2’ be the edge-direction chosen
by the Shadow rule at ;. Since v72z’ > 0, assume without loss of generality that v7z’ = 1.
We will show that 2z’ is the optimal solution to the LP Q defined by

max c'z
s.t.
viz=1

z € C(x;).

We will first show that for all elements z € C(x;), if ¢z > 0, then v7z > 0. First,
suppose that ¢ = 0. Since x( is the c-maximum on the v-minimal face, for any feasible
direction z € C(x() with ¢z > 0, we have that v7z > 0, as desired.

Now suppose that ¢ > 1, and let y = x; — «;_1, the edge-direction taken in the previous
step. We know that vz’ > 0 and ¢z’ > 0. Then we have that the feasible cone C(x;)
contains the directions z’ and —y. This implies that the projection 7(C(x;)) contains an
element whose pre-image satisfies v7z < 0 and €'z < 0 (namely, 7(—y)), and a direction
satisfying v7z > 0 and ¢z > 0 (namely, m(2’)). Recall that, under the projection 7, v
and ¢ act as coordinate vectors for the first and second coordinate of space, respectively.
Then by convexity, the cone 7(C(x;)) does not contain any element of the orthant of R?
defined by v7z < 0, €'z > 0. Therefore, by the definition of 7, C(x;) does not contain any
element satisfying both v7z < 0 and €'z > 0. Then for all elements z € C(x;), if "z > 0,
then vz > 0, as desired.

We now observe that Q is not unbounded. Since v7z > 0 for all z € C(x;) satisfying
c'z > 0, we have that the set Z = {z € C(x;) : v’z <1, €'z > 0} is a bounded set. The
set of feasible solutions to @ with positive objective value is contained in the set Z, and
so it is also a bounded set. Therefore, Q is not unbounded. Then since the feasible region
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of Q is the feasible cone at x; intersected with a single half-space, the non-zero extreme
point solutions of Q correspond to edge-directions at x;. Let z” be any other v-increasing
edge-direction at @; normalized so that v7z” = 1. Then by definition,

c’z 2 "

'z = > =c'2’,
vzl T vTzZ”

and therefore z’ is the optimal solution to Q. It follows that z’ can be computed in
polynomial time, as desired. O

4.3.2 The Slim Shadow Rule

We now return to the case of 0/1-LPs of the form max{c'@:x € P} where P = {x €
R™ : Az = b, Dx < d}, and the feasible region is a 0/1 polytope of dimension d. The
Slim Shadow rule is given by the following Shadow rule:

Definition 11. Given a 0/1-LP of the form (1.1) with feasible region P, let o be any
initial vertex of P. Let v =1 — 2xy. At a vertex x; of P, the Slim Shadow rule moves to

a neighbor
T(u — 2.
2., = argmax (M) |

weN, () \VT (U — ;)

Recall that, by Lemma 11, the maximum in this definition is always attained at a
neighbor u satisfying ¢"u > ¢"@; whenever x; is not c-maximal.

Note that, although the Slim Shadow rule defines v similarly to the way it is defined
for the True Steepest-Edge pivot rule, they are not precisely the same. While for the True
Steepest-Edge pivot rule we change v at each new extreme point, for the Slim Shadow
rule, v never changes. However, they are defined identically at the initial extreme point
solution, and as we will see in Section 5.3 when we extend this rule to a pivot rule, the
vector v also plays a similar role to the one it plays in the analysis of the True Steepest-Edge
rule.

As discussed earlier, we chose this v because v7x takes on very few distinct values in
0/1-LPs. For example, consider the case where P is the 0/1 cube [0, 1]". Then for v =1,
vTx takes on precisely n + 1 values at vertices of P, given by the possible numbers of
nonzero coordinates in each vertex of the cube. For the Slim Shadow rule on the cube, if
we choose 0 as our starting point, we have v = 1 — 2(0) = 1. Thus, Corollary 4 tells us
that the length of a monotone path chosen by the Slim Shadow rule on the cube starting
at the point 0 is at most n. We generalize this bound to all 0/1 polytopes.
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Theorem 18. On any 0/1-LP of the form (1.1), the Slim Shadow rule reaches an optimal
solution by performing at most n steps.

Proof. Let the LP be max{c'@:x € P} where P={x ¢ R": Az = b, Dx < d} is a
0/1 polytope. Let @y be an initial extreme point solution. Let S = {s € [n] : x¢(s) = 1}.
Note that in the cube [0, 1]", @ is the unique minimizer of the linear function v7@ where
v = 1 —2x,. Hence, x( is the unique v-minimizer on P, since all vertices of P are vertices
of the cube.

By Corollary 4, the c-coherent v-monotone path reaches the maximum of ¢ from x
in at most [{vTx : x € V}| — 1 steps. Let S = [n] \ S. Then —|S| < vz < |5 for all
x €{0,1}", so {vTxz:x €V} <|S|+|S|+1=mn+ 1. Therefore, the length of the path
is at most n. [

For a few special cases, we may tighten the bounds on the lengths of paths found by
the Slim Shadow rule.

Lemma 13. On any 0/1-LP of the form (1.1) in which the number of nonzero coordinates
among all vertices is a constant M, the Slim Shadow rule takes at most M steps.

Proof. Let the LP be max{c'@:ax € P} where P = {x € R" : Ax = b, Dz < d}
is a 0/1 polytope. Let xy be an initial vertex, and let S = {s € [n] : xo(s) = 1}.
Then by assumption, |S| = M, and the linear function —(xy)Tx takes on at most M + 1
distinct values on P given by the different possible sizes of subsets of S. Furthermore, by
assumption, 1Tz always yields the same value when applied to any vertex on P. Hence,
(1 —2x()Tx takes on at most M + 1 distinct values on vertices of P. Thus, by Corollary 4,
the length of the path used by the Slim Shadow rule starting at xy is at most M. [

Note that this bound is tight when the number of nonzero coordinates k is less than n /2,
since the monotone diameter of the hyper-simplex A(n, k) in that case is easily verified to
be k. For 0/1-LPs containing 0 as an extreme point solution, we may improve this bound
in an analogous manner.

Lemma 14. On any 0/1-LP of the form (1.1) in which O is a vertex of the feasible region
P and in which each vertexr has at most M nonzero entries, the Slim Shadow rule starting
at O takes at most M steps.

Proof. Let the LP be max{c'@:x € P} where P={x € R": Az = b, Dz < d} is a
0/1 polytope. Since we are starting at 0, we have that v = 1. By assumption, 17z takes
on at most M + 1 distinct values on vertices of P. Hence, the Slim Shadow rule will take
at most M steps. O
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4.3.3 The Ordered Shadow Rule

The bound given for the Slim Shadow rule is given in terms of the number of variables n.
However, from [71], we know that the diameter of a 0/1 polytope is at most its dimension
d. To attain a bound of at most d steps, we introduce the Ordered Shadow rule.

Definition 12. Given a 0/1-LP of the form (1.1) with feasible region P, let &y be an
initial extreme point in P. Let ¢* = ||c||; + 2. Define v € R™ by v(k) = (—1)%®) (c*)k. At
a vertex x; of P, the Ordered Shadow rule moves to a neighbor

c’(u — x;)

i1 = argmax —————~.
UE Ny (x;) ’UT(’U, - mz)

Like the Slim Shadow rule, the Ordered Shadow rule follows a shadow path found by
choosing an auxiliary vector carefully. Note also that Definition 12 implicitly assumes
an ordering on the coordinates. Namely, we chose |v(k)| = (c*)* but could also choose
lv(k)| = (¢*)?™® for any permutation o : [n] — [n], giving a different order of the variables.
Different orderings of variables can yield paths of different lengths. However, for any
choice of ¢, v is minimized uniquely at oy and the length of the path will still be at most
d by the same proof we provide here. To prove that the path is always short, we may no
longer directly apply Corollary 4. Instead, we show that the path followed satisfies another
equivalent characterization for which the length of the path is easier to analyze. We first
bound the length of a path satisfying this alternative characterization.

Lemma 15. Consider a 0/1-LP of the form (1.1) with d-dimensional feasible region P.
Let g be an initial vertex in P. We build a monotone path I' on P as follows: Define
f:R"—={0,1,...,n} by f(u) = max({k : u(k) —xo(k) # 0} U{0}). Given the i-th vertex
x; of the path, let Nyin(x;) be the set of f-minimal c-improving neighbors of ;. Select the
next extreme point of the path ;1 as the c-maximum of Ny (x;). The length of the path
I' constructed in this way is at most d.

Proof. Let the LP be max{c'@:x € P} where P={x € R": Az = b, Dx < d} is a
0/1 polytope, and let I" = [xg, @1, ...]| be the path followed by the rule described in the
statement. Define H;, = {x € R?: x(a) = xo(a) for all a > k + 1} to be the plane given
by fixing the last n — k coordinates of a vector to agree with xy. Let Fy, = Hy N P. Note
that [0,1]" N Hy is a face of the n-cube, so since P is a 0/1 polytope, Fj is also a face of
P for all 0 < k < n. We equivalently have that F, = {x € P: f(x) < k}.

Observe that Fy = xg, F,, = P, and Fy, C Fyy for all k£ € [n]. Consider x;, the ith
vertex in the path. Suppose that, for each choice of ¢+ > 0, x; and x;,; are c-maxima of
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some Fy ;) and Fj(;41) respectively for some function o : N — [n]. Then each vertex in the
path is associated to a face. Since the path is c-monotone, F, ;) is a proper face of Fy(;41).
Therefore, because the dimension of each associated face must strictly increase, the length
of the path is at most d. Thus, to finish the proof, it suffices to show that «; and @x;,, are

c-maxima of Fy, )—1 and Fy(,, ) respectively.

Suppose for the sake of contradiction that x; is not a c-maximum on the face Fy(z,, )1
Then there exists a vertex u of Fy(g,,,)—1 adjacent to x; with cTu > cTx;. Thus, we must
have f(u) < f(xi41) — 1 < f(@;11). However, by the definition of f, f(@;11) is minimal
among all c-improving neighbors of @;, a contradiction. Hence, x; is a c-maximum of
Fr@i1)-1-

Consider the LP max{c'® : © € (g, ,)}. It remains to show that x;;, is an optimal
solution to this LP. We may take x; to be our initial point and argue that from this
starting point, this LP may be solved by following a path of one step by the Shadow rule
with auxiliary vector e€y(z,, ) when xo(f(xi+1)) = 0 or —ef(a,,,) When xo(f(ziy1)) = 1.
We then argue that a;,; is a valid choice for this Shadow rule.

In what remains, we shall assume that xo(f(z;+1)) = 0, but a completely analogous
argument follows when ao(f(xiy1)) = 1. Since @o(f(2i11)) = 0, Ffz,,,)-1 is the efq,. )
minimal face of Fy(g,,,). We have already shown that x; is a c-maximum of that face.
Thus, x; is a valid starting point for the Shadow rule with auxiliary vector ey, ) for that
LP.

Note that P is 0/1, so e}, @ = x(f(xi+1)) takes on at most two values on vertices
of P: 0 or 1. In particular, e}(w“)m takes on at most two values on the vertices of the face
Fi(a;,,)- Hence, by Corollary 4, a c-coherent ey(,, )-monotone path from a c-maximum
of the ej(g,,,)-minimal face of Fy,, ) is of length at most 2 — 1 = 1. Hence, a c-coherent

€f(x;,,)-monotone path on Fy(,,, ) starting at x; is of length at most one.

Thus, x; is either equal to or adjacent to a c-maximum on Fy (s, ). Note that x;, x;4; €
Fi(@;,1), and €Tx; 1 > cTx;. Hence, x; is not a c-maximum on Fy(,, ). It follows that x;
is adjacent to such a e-maximum, and in particular, any vertex chosen by the Shadow rule

on Fy(g,,,) with auxiliary vector €y(s,,,) must be c-maximal.

Equivalently, a vertex y* is c-maximal on Fy(,, ) whenever

Tit1
T _ .
y* € argmax Tc (u—z)

€Nt ef(mi+1)<u o wl)

Y

where N;y; is the set of e, ,)-improving neighbors w of ; in Fy(,, ). Note that any

€f(z,,,)-improving neighbor u of &; must satisfy e}(mm)(u—wi) =1-0=1,since Pis 0/1.
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Furthermore, observe that a;,; must be f-minimal among all c-improving neighbors of x;,
since @; is the c-maximum of Fy(g,,,)—1. Thus, because Fy,, ) = {x : f(x) < f(xiy1)}, all
c-improving neighbors of x; in Fy,, ) must be f-minimal. Hence, the set of c-improving
neighbors of x; in Fy, is exactly Ny (2;). It follows that

i+1)
c’(u—x;)
x;11 € argmax (c'u) = argmax (c'(u — x;)) = argmax — .

UWE Npin (@4) u=Npin (;) uEN; 1 € (’l,l, - wz)

Therefore, x; 41 is a c-maximum of Fy,, ) as desired. O

i+1

See Figure 4.3 for an example of the construction of Lemma 15.

/]

Figure 4.3: The construction of Lemma 15 yields the displayed path for maximizing 7 = (1,2, 3)
on the cube [0, 1]3 starting at 0. Observe that 0 is trivially the c-maximum of the face in which all
coordinates are fixed to be 0. Then the path moves to (1,0,0), the c-maximum of the edge given
by fixing the final two coordinates to equal 0. The next step lands at (1, 1,0), the c-maximum on
the face in which the final coordinate fixed at 0. Finally, the path ends at (1,1, 1), the c-maximum
on [0,1]3.

We may use the bound on the path constructed in Lemma 15 to bound the length of
the path followed by the Ordered Shadow rule.

Theorem 19. Consider a 0/1-LP of the form (1.1) with d-dimensional feasible region P.
The Ordered Shadow rule follows a path T as described in the statement of Lemma 15.
Hence, the number of steps taken by the Ordered Shadow rule to arrive at an optimal
solution is at most d.

Proof. Let I' = [xg,x1,...,xx] be the path followed by the Ordered Shadow rule. In
particular, we have

c’(u—x;)
Tiy1 € argmax ————.
weNy(z;) VT (U — ;)

Our goal is to show that x;,; is a c-maximal element of Ny, (@;). To prove this, we will
show the following three claims hold.
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Claim 1: Let u be a c-improving neighbor of @;. Then wu is also v-improving.

Claim 2: Let u° and u! be neighbors of z; that are both c-improving and v-improving.
Suppose that b = f(u') > f(u’) = a. Then we have

0

cT(u’ —x;) (v —x)

vT(ul —x;) ~ vi(u' —x;)

Claim 3: Let «° and u! be neighbors of x; that are both c-improving and v-improving.
Suppose that b = f(u') = f(u’) and cT(u’) > ¢7(u'). Then we have

0

c’(u’ —z;) c(u' —x;)

vT(u —x;) ~ vi(u! —ax;)

Suppose that Claims 1-3 are true. By Claim 1, all e-improving neighbors of x; are
v-improving, so the results of Claims 2 and 3 hold under the weaker assumption that u°
and u! are any c-improving neighbors. Claim 2 shows us that when f(u') > f(u), u°
would be chosen over the u! by the Ordered Shadow rule. Thus, x;,; must be f-minimal
among all neighbors that are c-improving. That is, ©;;1 € Npn(@;). Similarly, Claim
3 shows that the Ordered Shadow rule will always choose a neighbor with larger c-value
among two f-minimal neighbors. That is, x;4; is a c-maximal element of Ny, (x;), which
yields the result. Therefore, to prove the theorem, it suffices to prove Claims 1-3.

Note that each claim assumes that we start at a point &; in the path. By induction,
we may assume that the path up to @; is of the desired type with base case satisfied for
i = 0 by hypothesis. Equivalently, by the proof of Lemma 15, we are able to assume that
x; is the c-maximum of the face Fyg,) = {z : f(x) < f(x;)}. As a result, we can apply a
key assumption that all c-improving neighbors of x; have larger f-value.

We may also assume without loss of generality that &y = 0, which may be accomplished
by a change of coordinates. In that case, v = (¢*, (¢*)?,...,(¢*)"), and the following final
claim will simplify our arguments for the proofs of Claims 1-3.

Claim 4: Let u° and u! be neighbors of z; that are both c-improving and v-improving.
Let b = max{f(u®), f(u')}, and let

ki =l (u’ —xi)(u'(j) — 2:(j) — T (u' — =) (u’(5) — (7).

Then we have ﬁgzziig 5:%1‘;::3 if and only if
b—1
k()P > Z —k;i(c").
j=1
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Proof of Claim 4: Since u® and ' are both c-improving and v-improving neighbors,
the numerators and denominators of each term of the first inequality are all positive. By
rearranging, we arrive at the following equivalent inequality:

c(u’ —z)v(u —z;) > T (u' — z;)vT(u’ — x;).

Note that v = (c*, (¢*)?, ..., (c*)"), so by evaluating vT(u" — x;) and v (u! — x;) we find
the inequality is equivalent to the following:
T’ —a,) Y () (W (j) = 2(h) > €T(u! — @) Y () (u’()) — 2:(j))-
j=1 j=1

In what remains, it is useful to view the left and right hand sides of the equations as
polynomials in ¢*. To simplify this expression further, we will make use of the definition
of f from Lemma 15. Recall that, by induction, we may assume that all neighbors of x;
are f-improving. Under this assumption, we claim that f(u') and f(u®) are exactly the
indices of the highest powers of ¢* in the left and right polynomials respectively. To see
this, recall that f(u') is the highest index j for which u'(j) # @o(j) =0

By our inductive hypothesis, f(u®) > f(x;). Equivalently, the highest index j for which
u®(j) # 0 is greater than the highest index k for which x;(k) # 0. Thus, u°(j) = x(j) =0
for all j > f(u) by our definition of f. Similarly u°(f(u°)) = 1 by the definition of f. At
the same time x;(f(u’)) = 0, since f(u®) > f(=x;). Thus, we have that u°(j) — z;(j) =
0—0=0forj > f(u®), and u?(f(u®))—z;(f(u")) = 1—0 = 1. Hence, f(u) is the highest
nonzero coefficient of (¢*)? for the right polynomial. The same exact argument follows for
u', which establishes that it suffices to understand when the following inequality holds:

fhy fd)
c'(u’ — z;) Z () (u'(j) — zi(j) > € (u' — x;) ‘ ()Y (u’(5) — (7).

Recall that b = max{f(u®), f(u')}. Then we may reduce the expression to understanding
when

(=l

b
(u’ — x;) Z ) —xi(j)) > T (u! — = Z ) — zi(7)),

7j=1 7=1
which we will do via order of magnitude estimates. To do these estimates, we rearrange
the inequality so that every term is on one side. This yields the inequality
b

Z Kki(c*) >0,

j=1
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where we define
rj = cT(u’ —m)(u'(§) — 2:(5)) — €T (u' — ;) (u’(j) — 2:()))-

Note that x; is exactly the difference of terms multiplied by (¢*)? after moving all terms
to the same side. By moving all the smaller degree terms back to the other side, we finally
arrive at the desired inequality:

Proof of Claim 1: Recall that, by induction, we may assume that all c-improving
neighbors of x; are also f-improving. Thus, it suffices to show that f-improving neighbors
are v-improving. Suppose that f(u) > f(x;) for some c-improving neighbor w of &;. Then
u(f(u)) =1 and @;(f(u)) =0, so

f(w)-1 fw
ol (u— ;) = () + Y (@) —z())E) > (@)= 3 ()
j=1 i=1
Since ¢* > 2, (c¢*)/® > Z;Lul)_l(C*>j> SO
fw-1
vT(u— ;) > ()™ — Z (c¢*) > 0.
j=1

Hence, u is also v-improving, which completes the proof of Claim 1.

Proof of Claim 2: By the result of Claim 4, it suffices to bound &, from below and |x;|
from above to achieve our desired inequality. We already showed that w!(f(u')) = 1 and
x1(f(u')) = 0. Furthermore, u’(f(u')) = 0 as well by our assumption that f(u!) > f(u°)
and by our definition of f. Since b = f(u'), we have that

kp = T (u’ — @) (u' (b) — (b)) — €T (u' — ;) (u’(b) — z:(b))
=c'(u’ —z;)(1-0)—c"(u' — z;)(0—0)

=cT(u’ — x;).

0 0

Since u' is e-improving, k, = ¢T(u’ — x;) > 0. Furthermore, ¢, u’, and x; are all integer
vectors, so K, = cT(u’ — ;) > 1. Hence, ry(c*)® > (c*)°.
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For the other side of the inequality, we need to bound the sizes of lower order coefficients
|k;| for 7 < b—1. To do this, we need to split into cases. Suppose first that x;(j) = 0.
Then

k= T — @) (W ()) - @) - (! — 2,) (W) - ()
— T — z,)ul (j) — T (u' — @)u(j).

Since u’(j),u'(j) € {0,1}, —cT(u' — ;) < k; < T (u’ — x;). If x;(j) = 1, we find

by similar reasoning that —cT(u® — x;) < k; < ¢T(u' — x;). Hence, we always have that

|k;| < max{eT(u’ —x;),cT(u' —x;)}. Because u’, u',and x; are vertices of P, they are in
{0,1}" meaning that u® — x;,u! —x; € {—1,0,1}". It follows that

k| < max{cT(uo —x;), cT('u,1 —x;)} < max c'y=||c||;.
ye{-1,0,1}"

Thus, we have that
b—1
—ri(c ) < lelh D (")
J Jj=1

To finish the proof of Claim 2, it suffices to show that ||c||; Z?:(C*)j < (¢*)’. From a
typical geometric series estimate and our choice of ¢*,

1

el Z = el L= = el ey <

Thus, Claim 2 is true.

Proof of Claim 3: We again use the equivalent characterization shown in Claim 4. Note
that we have the same upper bounds for x; as from the proof of Claim 2 for all : < b —1

meaning that
b—1
—ri (") < lelly Y (¢)
j=1

However, for ky, the situation is different. Namely, we now have u’(b) = u!(b) = 1, while
x;(b) = 0. Thus,

S

-1

1

J

o = 7 (w0 — ) ((b) — (8)) — (! — ) (w(b) — :(8))
=c'(u’ —x;) — c(u' —x;)

=c'(u’ —u').
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By assumption, ¢T(u’) > ¢T(u'), so ¢T(u’ — u') > 0. By the same reasoning as before,

since ¢, u’, and u' are integer vectors, we must then have x;, = ¢T(u® — u') > 1. Then we
again have ky(c*)® > (¢*)?, so by the same argument as in the proof of Claim 2,

b—1
—r; () < Ry(c®).

1

J

This completes the proof.
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Chapter 5

Extending Edge Rules to Pivot Rules

In this chapter, we will build on the results in Chapter 4 to develop pivot rules for the
Simplex method on 0/1-LPs. The objective for these pivot rules is to design them to
generate the same paths as their corresponding edge rules. We remind the reader that
since in this chapter we will only consider 0/1-LPs, we will always assume that an LP’s
inequality constraints include the non-negativity constraints —x < 0.

5.1 The True Steepest Edge Pivot Rule

Definition 13. Given a 0/1-LP (P) of the form (1.1) with feasible region P, let (P') be
the LP obtained by putting (P) into standard equality form, let B be the current basis of
(P"), and let x be the vertex of P associated to that basis. Let v = 1 — 2x. The True
Steepest FEdge pivot rule selects a pivot direction as follows:

o If any generator z7 of an extreme ray of C(B) satisfies v7z7 <0 and c’z7 > 0, then
it selects 27 ;

cT2?

o Otherwise, it selects the generator 2’ that mazimizes $%;.

We show that if the True Steepest Edge pivot rule performs a non-degenerate pivot, 2’
is the steepest edge-direction at x in P.

Lemma 16. Let x be a vertex solution of a 0/1-LP of the form (1.1) and let ' = z+az’ be
the vertex solution obtained from x after moving maximally along the direction z’ selected
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according to the True Steepest Edge pivot rule. If ' # x, then z7 corresponds to the
steepest edge-direction at x in P.

Proof. As in Section 4.1, consider the vector v = 1 — 2x. We have that v is contained in
the same orthant O, of R"™ as the cone C(x), where O, is equal to the set of all z € R”
satisfying the inequalities

z(i) > 0 for all i such that x(i) = 0,
z(i) <0 for all i such that x(i) = 1.

Then by the definition of the 1-norm, for all vectors z in the orthant O,, ||z||; is precisely
equal to v7z. In particular, this holds for all vectors in C(x), and so all rays in C(x)
intersect the hyperplane H defined by H = {z : v7z = 1}.

Let the d extreme rays of the basic cone C(B) be generated by z',...,z% If the
extreme ray generated by z' intersects H, then assume without loss of generality (by
possibly rescaling) that 2’ is in H. Note then that for any generator z° of an extreme ray
of C(B), if 2" happens to also correspond to an edge-direction at « in P, we have that
z'e H.

Assume without loss of generality that the direction chosen according to the True
Steepest Edge pivot rule is z!'. Since &’ # x, the direction z' also corresponds to an

edge-direction at & in P. Then 2! is in the feasible cone, and by our earlier discussion,

v7z! = ||2'||; = 1. Now, consider the optimization problem Q defined by
maxc'z
s.t.
vz <1 (1)
z € C(B), (2)

and let Pg denote its feasible region. Note that Py is a polyhedron. By construction, any
generator z' € H is a vertex of Pg. In particular, this is true for those generators z* which
also correspond to edge-directions at @ in P.

We will argue that the selected direction z' is an optimal solution to the LP Q. Clearly,
it is feasible for Q. First, suppose for the sake of contradiction that Q is unbounded. Then
there exists an entire ray of C(B) which is contained in Pg on which the objective function
c is unbounded, and therefore there exists such a ray that is an extreme ray of C(B). Let
this extreme ray be generated by z°.
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Then z°¢ does not correspond to an edge-direction at « in P, and therefore corresponds
to a degenerate pivot at B. Furthermore, v7z° < 0, and ¢"2? > 0. However, this implies
that the pivot rule would have chosen the direction z¢ and not 2!, a contradiction. Thus,
the LP Q is not unbounded. This implies that all generators z* of extreme rays of C(B)
satisfying €Tz! > 0 generate extreme rays that intersect H.

There exists an optimal vertex y of Pg, and since ¢Tz! > 0, the optimal vertex is not 0.
Thus, vy is precisely one of the generators that lies in H. Let these generators be 2!, ..., 2".
By the fact that 2! was selected, we have that z! maximizes ¢z overall z € { z!,...,2* },
and so z! is an optimal solution to Q, as desired.

We will now show that z! corresponds to a steepest edge-direction at  in P. Let 2’
be any edge-direction at @, and without loss of generality assume ||2/||; = 1. Then 2’ is a
feasible solution to Q, as 2’ € C(x) C C(B). Since z! is an optimal solution to Q, we have
that

as desired. 0

The above result shows that our pivot rule guarantees the following: whenever we
perform a non-degenerate pivot, this always corresponds to moving along a steepest edge-
direction at the corresponding vertex solution of the original LP. Together Lemma 17
and Theorem 15 provide a proof of Theorem 2:

Theorem 2. On any 0/1-LP of the form (1.1), the Simplex method with a True Steepest
Edge pivot rule reaches an optimal solution by performing a strongly polynomial number of
non-degenerate pivots. Furthermore, it generates the same monotone path as the Steepest
Edge rule.

We now provide an example showing that the standard Steepest Edge pivot rule (using
the 1-norm) does not follow the same path as the True Steepest Edge pivot rule. In
particular, it is possible for the Steepest Edge pivot rule to perform a non-degenerate pivot
at a vertex solution & where the edge corresponding to that pivot is not a steepest edge-
direction at x. First, we recall the definition of the Steepest Edge pivot rule in terms of
the extreme ray of C(B).

Definition 14. Given an LP (P) of the form (1.1) with feasible region P, let (P') be the
LP obtained by putting (P) into standard equality form, let B be the current basis of (P'),
and let x be the vertex of P associated to B. The Steepest Edge pivot rule selects as a pivot

direction the generator of C(B) that mazimizes it among all generators z of C(B).
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Now, consider the 3-dimensional 0/1 polytope given by the convex hull of the points
(0,0,0), (0,1,0), (1,0,0), (1,1,0), and (0,0,1). This is a 0/1 pyramid over a square.
It can be easily checked that this polytope can be minimally described by the following
inequalities:

e()+2(3) <1, z@2)+z@3) <1, z1)>0, x(2)>0, x(3)>0.

Furthermore, it is clear that at the point ' = (0,0, 1), all but the last inequality are tight.
That is, these are the inequalities yielding the feasible cone C(x’). The edge-directions at
&’ are given by (0,0, —1), (0,1,—-1), (1,0,—1), and (1,1, —1). Given the objective function
c = (50,—1,0) to be maximized, it can be checked that the steepest edge-direction at '
is z* = (1,0,—1), the edge-direction that moves to the optimal solution (1,0,0). Note
that 2= = 25. The only other edge-direction at ' satisfying €Tz > 0 is the direction

[ETH

z' = (1,1, —1) which moves to the point (1,1,0). Note that ||CzT/i/1 = 4—39, and so 2z’ is not a

steepest edge-direction at x’

Now, consider a basis B associated with x’ whose corresponding basic cone is given by
the inequalities (1) > 0, (1) + (3) < 1, and «(2) + x(3) < 1. It can be checked that
the edge-direction z* does not generate an extreme ray of C(B), but the edge-direction
z' does. The pivot directions at B satisfying €Tz > 0 are the direction given by z’ and
(0,—1,0). Therefore, 2’ is the pivot direction chosen by the Steepest Edge pivot rule. This
gives a non-degenerate pivot, but as observed above, it does not correspond to a steepest
edge-direction at '

5.1.1 Implementation of the True Steepest Edge Pivot Rule

We now briefly describe the implementation of the True Steepest Edge pivot rule. Recall
from Section 2.1 that in the context of the Simplex algorithm, we first put our original LP
into equality form by adding slack variables.

Suppose we have some feasible basis B. For each j € N, let 2”7 be defined by 2" (B) =
Aig]lA’[j], 2" =1, and 2”(i) =0 for alli € N \ {j}. These vectors give the possible pivot
directions. Let v" be defined by

1 if x(i) = 0 and «(7) is an original variable,
v'(1) =4 —1 ifx(i) =1 and x(i) is an original variable,
0 otherwise.
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That is, v" is the extension v (as defined earlier in Section 5.1) to the slack variables
obtained by padding it with 0’s. First, if there exists j € N such that €&(j) > 0 and
v'T2"7 < 0, we choose j to be the entering column (and we choose such a j arbitrarily if
more than one element of N satisfies this condition). Otherwise, we choose

. (i)
J = argimaX;c N. ¢ (i)>0 (’U’Tz’i) : (5.1)

Again, if more than one element of N satisfies this condition we can we choose such a j
arbitrarily.

It may be that the choice of £ in Step 4 of our earlier description of Simplex is unique.
However, we may encounter degeneracy, in which case it may not be. In that situation we
use a lexicographic pivot rule to choose the leaving variable. This is a well-known way to
break ties and avoid cycling [72, 73, 91].

Note that during the algorithm we carry the extra “auxiliary cost” vector v'T. We can
think of v'T as an additional row of the tableau that needs to be updated. The vector v'T
is always zero on the slack variables added and it has only +1, —1 entries for the indices
of the original variables. After each pivot, we can easily update the entries of v'T. The
original variables must take 0 or 1 values because they are vertices of a 0/1 polyhedron.
If after a pivot, an original variable goes from being 0-valued to being 1-valued, then we
change the entry value in ¥'T from a 1 to a —1. The opposite switch occurs when we change
one of the original variables from being 1-valued to 0-valued.

Finally, over the years there have been improvements on the implementations of the
Simplex method. It is well-known that a lot of the steps can be performed faster by relying
on sparsity of matrices and some numerical tricks, such as LU factorization, but we refer
the reader to Chapter 8 of [93] for details. One special detail is that we use the 1-norm to
measure how steep the edge is. In our algorithm each iteration requires knowledge of the
norms ||Az'Axll1. It is worth remarking that while for the most common 2-norm Steepest
Edge pivot rule Forrest and Goldfarb [50] showed how to update these vector in a fast way,
here we do not offer a speedup.

5.2 Asymmetric Steepest Descent Pivot Rule

In this section, we extend the ASD rule to a pivot rule for the Simplex method which
generates the same path.
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Definition 15. Given a 0/1-LP (P) in the standard equality form (2.2) with feasible region
P, let B be the current basis of (P), and let x be the vertex of P associated to that basis.
Let v = —x. The ASD piwvot rule selects a pivot direction as follows:

o If any generator z7 of an extreme ray of C(B) satisfies v72? <0 and c’z7 > 0, then
it selects 27 ;

cT2?
Tzl *

e Otherwise, it selects the generator 27 that maximizes -

We show that the ASD pivot rule generates the same path as the ASD edge rule. The
proof of this lemma closely follows the proof of Lemma 16.

Lemma 17. Let  be an extreme point solution of a 0/1-LP of the form (2.2) and let
' = x + az? be the extreme point solution obtained from x after moving maximally along
the direction z? selected according to the ASD pivot rule. If © # x, then 2z’ corresponds
to edge direction chosen by the ASD edge rule at x.

Proof. Let H be the hyperplane defined by H = { z : v7z = 1}. As observed in the proof
of Lemma 10, the set
{zel(x) : vz<1}

is a bounded set. That is, all rays in C(x) intersect H. Let the d extreme rays of the basic
cone C(B) be generated by z',...,z% If the extreme ray generated by 2’ intersects H,
then assume without loss of generality (by possibly rescaling) that z° is in H. Note then
that for any generator 2% of an extreme ray of C(B), if 2° happens to also correspond to

an edge-direction at x in P, we have that 2 € H.

Assume without loss of generality that the direction chosen according to the ASD pivot
rule is z!. Since ' # x, the direction z! also corresponds to an edge-direction at x in
P. Then 2! is in the feasible cone, and thus v72! = 1. Now, consider the optimization

problem Q defined by

maxc'z

s.t.

vzl (1)
z € C(B), (2)

and let Py denote its feasible region. Note that Py is a polyhedron. By construction, any
generator z' € H is a vertex of Pg. In particular, this is true for those generators z* which
also correspond to edge-directions at @ in P.
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We will argue that the selected direction z! is an optimal solution to the LP Q. Clearly,
it is feasible for Q. First, suppose for the sake of contradiction that Q is unbounded. Then
there exists an entire ray of C(B) which is contained in Pg on which the objective function
c is unbounded, and therefore there exists such a ray that is an extreme ray of C(B). Let
this extreme ray be generated by z°.

Then z¢ does not correspond to an edge-direction at  in P, and therefore corresponds
to a degenerate pivot at B. Furthermore, v72? < 0, and ¢72z° > 0. However, this implies
that the pivot rule would have chosen the direction z¢ and not 2!, a contradiction. Thus,
the LP Q is not unbounded. This implies that all generators z* of extreme rays of C(B)
satisfying €Tz! > 0 generate extreme rays that intersect H.

There exists an optimal vertex y of Pg, and since ¢Tz! > 0, the optimal vertex is not 0.

Thus, vy is precisely one of the generators that lies in /. Let these generators be 2!, ..., 2".
By the fact that 2! was selected, we have that z! maximizes ¢z overall z € { 2!,... 2%},
and so z! is an optimal solution to Q. Then by definition, 2! is also the edge-direction
chosen by the ASD edge rule, as desired. O]

This implies the following theorem:

Theorem 20. On any 0/1-LP of the form (2.2), the Simplex method with an ASD pivot
rule reaches an optimal solution by performing a strongly polynomial number of non-
degenerate pivots. Furthermore, it generates the same monotone path as the ASD rule.

Furthermore, the ASD pivot rule can be implemented in tableaux form in the same way
as described in Subsection 5.1.1 by instead using the definition of v used here.

5.3 Shadow Vertex Pivot Rules

In this section, we explain how to convert any Shadow edge rule to a corresponding pivot
rule that follows the same path.

Let us start with describing the precise question that we want to address in this section.
We are given a general LP (not necessarily a 0/1-LP) with feasible region @), and a feasible
basis B for the corresponding LP in standard equality form. Let & be the extreme point
solution of ) to which B is associated. Recall that a Shadow rule chooses an improving edge
direction z in the feasible cone C(z) that maximizes <2 for a chosen vector v. However,
if we have degenerate bases, the extreme directions of the basic cone C(B) associated with

vTz
the basis B may not coincide with the extreme directions of the feasible cone C(x). Hence,
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we have the following question: How should we select an improving direction in C(B) in
order to guarantee that we are following the same path on the 1-skeleton of P traced by
the Shadow rule?

Our first observation is that if the initial basis By satisfies a small assumption, then it
is enough to consider the direction that maximizes the slope among the ones in the basic
cone C(By). We first prove this, and later show that it is always possible to find a basis
that satisfies the needed assumption via a sequence of degenerate pivots. Formally:

Theorem 21. Given an LP with feasible region Q, let B® be an initial feasible basis for the
corresponding LP in standard equality form. Let v be defined according to a given Shadow
rule, and assume that B° satisfies the following: for each z € C(B°), if cTz > 0 then
v’z > 0.

Then by starting from B® and by selecting at each basis any improving pivot direction
z € C(B) that mavimizes <2, the Simplexr method follows the same path on the 1-skeleton

vz’

of Q as the one followed by the Shadow rule.

Proof. Suppose that after a number of Simplex iterations, we have reached a basis B which
is not optimal, and assume that every basis B’ visited until B satisfies the property that
for each z € C(B’), if €7z > 0 then v7z > 0. Note that this is true by assumption at the
initial basis BY. We claim that B satisfies the property as well.

Suppose that at the current iteration the Shadow rule would move along an edge-
direction y € C(B) . Note that since B is not an optimal basis with respect to ¢, and
since the path has not yet reached an optimum with respect to ¢, Lemma 11 implies that
it is also not optimal with respect to v. Then Lemma 11 further implies that vTy > 0,
and we may assume without loss of generality that vTy = 1. Let B’ be the basis visited
right before B, and z’ be the pivot direction chosen at B’ by our procedure. We know that
v72" > 0 and ¢z’ > 0. Then we have that the basic cone C(B) contains the directions
—z" and y. This implies that the projection 7(C(B)) contains an element whose pre-image
satisfies v7z < 0 and €'z < 0 (namely, 7(—2')), and a direction satisfying v7z > 0 and
c'z > 0 (namely, 7(y)). Recall that, under the projection 7, v and ¢ act as coordinate
vectors for the first and second coordinate of space, respectively. Then by convexity, the
cone 7(C(B)) does not contain any element of the orthant of R? defined by v7z < 0,
c'z > 0. Therefore, by the definition of 7, C(B) does not contain any element satisfying
both v7z < 0 and €'z > 0. That is, for all elements z € C(B), if ¢'z > 0, then v’z > 0.
This proves our claim.

Assume that our procedure selects z as pivot direction for our basis B. Since v7z > 0,
we can assume without loss of generality that v7z = 1. We will show that Z is an optimal
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solution to the following LP we call Q:

maxc'z
S.t.
vz=1

z € C(B).

We first observe that Q is not unbounded. Since v7z > 0 for all z € C(B) satisfying
c’z > 0, we have that the set Z ={z € C(B) :v'2 <1, 'z > 0} is a bounded set. The
set of feasible solutions to Q with positive objective value is contained in the set Z, and
so it is also a bounded set. Therefore, Q is not unbounded.

Since the feasible region of Q is just the basic cone at B intersected with a single hy-
perplane (which does not contain the unique vertex 0 of C(B)), all extreme point solutions
of Q correspond to generators of extreme rays of C(B) satisfying v7z = 1.

It follows that the optimal extreme point solution of Q is an extreme ray generator of
C(B) that maximizes % That is, it is the chosen pivot direction, Z.

Assume now that z is a non-degenerate direction. Since y is the edge-direction chosen
by the Shadow rule, and since Z in this case is also an edge-direction, it follows from Defi-
nition 11 that . s

c c'z -
cTy:—yz—,,:cTz.
vTy vz

Note that this holds because the term (%) in Definition 11 is invariant under scaling.
However, since y is also feasible for Q and since Z is optimal for Q, we have that in fact
c'y = c"z. That is, this non-degenerate pivot corresponds to an edge-direction that the
Shadow pivot rule would choose. Thus, the Simplex method with the Shadow pivot rule

follows the same path on the 1-skeleton as the Shadow rule, as desired. O

It remains to argue how to find a basis BY that satisfies the property needed in our
previous theorem.

Lemma 18. Given an LP with feasible region Q, let BY be an initial feasible basis which is
not optimal for the corresponding LP in standard equality form. Let v be defined according
to a given Shadow rule, and assume that B° does not satisfy the following: for each z €
C(B®), if 'z > 0 then vTz > 0. Then, there exists a sequence of degenerate pivots that
eventually yield a basis B satisfying the above condition.
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Proof. Let xy be the extreme point associated to B?. Since B is not an optimal basis,
there exists a pivot direction z € C(B°) such that ¢z > 0, and by hypothesis we can
select one such that v7z < 0. Since 7(x) lies on the upper path of the shadow of @, any
c-increasing, non-degenerate pivot direction z’ at any basis corresponding to xy satisfies
vTz’ > 0. As such, at any basis corresponding to @y, any c-increasing pivot direction
satisfying v7z < 0 is degenerate pivot direction.

Then suppose that we perform a series of degenerate pivots by choosing pivot directions
satisfying ¢’z > 0 and, if possible, v7z < 0. Suppose that we use the lexicographic
rule [72, 73, 91] to select the variable leaving the basis. The lexicographic rule ensures that
we do not cycle, so we will eventually reach a basis B at which it is not possible to pick a
pivot direction satisfying both €Tz > 0 and v7z < 0, as desired. [

We now turn to the issue of cycling. In [66], Klee and Kleinschmidt provided a method
to implement Shadow pivot rules in general without having to worry about degeneracy and
cycling. In essence, they showed that for any sufficiently generic choice of objective function
c™ and any sufficiently generic choice of auxiliary vector v, the Shadow pivot rule with an
implementation they provide does not cycle. For implementing the Ordered Shadow and
Slim Shadow pivot rules, we may choose ¢ to be sufficiently generic by perturbing the
objective function. Furthermore, for obtaining the Ordered Shadow pivot rule, we may
perturb v by increasing the value of ¢* in Definition 12 by any small ¢ > 0. Thus, their
implementation of Simplex yields the Ordered Shadow pivot rule if we allow an additional
step of perturbing v. However, for the Slim Shadow rule, such a perturbation would affect
our argument for bounding the length. Hence, we may not apply their implementation in
that case.

As explained in [72, 73, 91], the lexicographic pivot rule provides a general technique
to avoid cycling. When the entering variable is already chosen all we need is to select the
leaving variable lexicographically. In particular, this can be integrated with the Shadow
pivot rule and we do not need to assume non-degeneracy. The lexicographic rule is exactly
what is used in our method for the True Steepest-Edge pivot rule. Namely, one may attach
a lexicographic rule for choosing the outgoing variable to prevent cycling. This method
applies to our case for both pivot rules, since it makes no assumption about ¢ or v. Hence,
the Ordered Shadow and Slim Shadow pivot rules can be implemented correctly using the
lexicographic method.

However, we close this section by introducing another implementation that is a hybrid
between Klee and Kleinschmidt’s implementation and lexicographic. Specifically, we now
show that cycling can also be avoided if (a) one uses a lexicographic pivot rule to select the
leaving variable until the first non-degenerate pivot, and (b) one imposes the assumption
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that the objective function ¢ is generic. In particular, we require that given any two pivot
directions 2z’ and z” chosen by the Shadow pivot rule, ﬂzl, f;jl, Note that this only
needs to hold for pivot directions with v7z > 0 since these are the only pivot directions

chosen by the Shadow pivot rule.

If this assumption of genericity does not hold, it can be achieved by, as usual, randomly
perturbing ¢ by a small amount. That is, by replacing ¢ by a new objective function ¢
chosen uniformly at random from the e-ball centered at ¢ (for a sufficiently small choice of
). Note that there are finitely many possible pivot directions (when normalized so that
they satisfy v7z = 1). If €72’ = 72", then ¢T(z’ — 2”) = 0. As there are only finitely
many possible pivot directions of the above form, there are finitely many possible vectors
of the form w = (2’ — 2”) for distinct pivot directions 2z’ and 2”. Then these vectors give a
finite collection of (n — 1)-dimensional linear spaces, each defined by wTa = 0 for a choice
of w. Since c is obtained as a random element of an n-dimensional set, we have that with
probability 1, ¢ does not lie in any of these linear spaces. That is, ¢™(2' — 2") # 0, as
desired.

Under this genericity assumption, the particular choice of the new basis (when there
are ties for the leaving variable) follows the lexicographic pivot rule until we make our
first non-degenerate pivot. After that, the choice of the leaving variable is arbitrary. The
following lemma implies that the Shadow pivot rule with a generic objective function does
not cycle:

Lemma 19. Given an LP of the form (1.1) with a generic objective function, in each
cTzd
vTzd

iteration of the Shadow pivot rule, the value of of the chosen pivot direction 27 is

strictly less than that of the previous iteration.

Proof. Consider an arbitrary iteration at a basis B. Assume without loss of generality that
for each generator z' of C(B), if v7z% > 0, then v72% = 1. Note that under this assumption,
we seek to show that the value of €727 is strictly less than that of the previous iteration.

Recall that the pivot direction 27 chosen by the Shadow pivot rule always has the prop-
erty that 7(27) is an extreme ray of m(C(B)), where 7 is the projection defined in Sub-
section 4.3.1. For an element z of C(B), 2 is precisely the slope of the ray of 7(C(B))
generated by 7(z), and by the convexity of 7(C(B)), the slopes of consecutive pivot direc-
tions are non-increasing. By our assumption of genericity, the slopes of consecutive pivot

directions are not equal, and so they are decreasing, as desired. O

Together, Lemma 18 and Lemma 19 allow us to find our initial basis and ensure that
we do not cycle. This allows us to prove Theorem 3 and Theorem 4, both of which we
restate here for convenience:
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Theorem 3. On any 0/1-LP of the form (1.1), the Simplex method with the Slim Shadow
pivot rule reaches an optimal solution by performing no more than n non-degenerate pivots.
Furthermore, it generates the same monotone path as the Slim Shadow rule.

Theorem 4. On any 0/1-LP of the form (1.1) whose feasible region has dimension d,
the Ordered Shadow pivot rule reaches an optimal solution by performing no more than d
non-degenerate pivots. Furthermore, it generates the same monotone path as the Ordered
Shadow rule.

Proof of Theorems 3 and 4. The number of non-degenerate pivots performed by the Slim
(resp. Ordered) Shadow pivot rule is precisely the number of edges in the path it takes
on the 1l-skeleton of the feasible region. It follows from Theorem 18 (resp. Theorem 19)
and Theorem 21 that the number of non-degenerate pivots is therefore at most n (resp.
d). m

5.4 Connections to Classical Algorithms

We wish to remark that there are several examples of well-known combinatorial algo-
rithms that turn out to use exactly the same choice of improving steps as the pivot rules
presented in this chapter, either in general or in special cases. In fact, while Theorem 2
only shows that the True Steepest-Edge pivot rule reaches an optimal solution within a
strongly-polynomial number of non-degenerate steps, one can get a more refined bound on
the number of steps for some well-known classes of polytopes, by realizing that classical
algorithms for famous combinatorial optimization problems can be interpreted as moving
along steepest edges on the 1-skeleton of the 0/1 polytope given by the set of feasible
solutions.

The first example is the shortest augmenting path algorithm for the maximum matching
and maximum flow problems. Specifically, the seminal works of Dinic in [12], and Edmonds
and Karp in [15], gave the first strongly-polynomial time algorithm for the maximum
flow problem, showing that one can augment a given flow using augmenting paths of
shortest possible length (i.e., with the minimum number of edges). Since then, the idea of
using shortest augmenting paths has been widely used in various contexts, such as for the
maximum matching problem. Note that augmenting a given matching by switching the
edges along an augmenting path corresponds to moving between adjacent extreme points of
the matching polytope [31]. Therefore, computing a maximum matching using the shortest
augmenting path algorithm corresponds (from a polyhedral perspective) to moving along
steepest edge-directions on the 1-skeleton of the matching polytope.
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Another example is the minimum mean cycle canceling algorithm by Goldberg and
Tarjan [55]. This algorithm finds a minimum cost circulation in a directed graph by pushing
flow along cycles whose ratio of cost to number of edges is minimal. This corresponds
to moving along a Steepest Descent circuit (after doing a conversion to a minimization
format), and as proved in Section 4.1, for 0/1 polytopes this corresponds to a steepest
edge-direction at a given vertex. Hence, computing a minimum cost circulation using the
minimum mean cycle canceling algorithm corresponds (from a polyhedral perspective) to
moving along steepest edge-directions on the 1-skeleton of the 0/1 circulation polytope.

Similarly, the paths followed by the modified Shadow pivot rules specialize to well
known optimization algorithms. Consider the greedy algorithm for optimization on ma-
troids. Denote by Z be the set of independent sets of a matroid on a ground set . Recall
the 0/1 matroid polytope associated to Z is Pr = conv {Z e, S € I} )

Consider the linear program max(c'x : € Pr) for a matroid polytope Pr on a ground
set E. Let [0 = @g, x4, ..., x| the path followed by the Slim Shadow rule for this LP. Let
) =Sy CS; C--- C Sk be the sequence of subsets chosen by the greedy algorithm. Then
our goal is to show that S; = supp(a;) for all 0 < i < k. At §;, the greedy algorithm
says to add the highest weight element j not in S; such that S; U {j} is still independent.
Similarly, the Slim Shadow vertex pivot rule chooses ;. as follows:

seS

c’(u—x;) T
;1 = argmax ——— = argmax c' (u — x;).
weln (@) 1T(U = Ti)  weny (@)

All 1-improving neighbors of ; are given by x;+e; for some j ¢ supp(x;) such that x; +e;
is still a vertex of P. Thus, x;4; is given by maximizing c™(u — x;) = cTe; = ¢(j) over
all possible choices of j, which yields the result. The greedy algorithm also reflects the
path chosen by True Steepest-Edge. At a greedily chosen vertex, all improving neighbors
again correspond to adding some e;. Normalizing does not change the weight, so True
Steepest-Edge corresponds also to maximizing ¢(j) over all options for j.

Special cases of the Ordered Shadow pivot rule paths also appear in the literature.
Consider the stable set polytope of the complement of a chordal graph. This 0/1 polytope
is the convex hull of all 0/1 incidence vectors of the cliques S(G) on a chordal graph G,
ie., Ps = conv({>,.ses: S €S(G)}) (see [53]). Note that because chordal graphs
are perfect, there is a complete inequality description of Ps using only clique inequalities.
It is also well-known that a graph is chordal if and only if it has a perfect elimination
ordering of its vertices [53], namely an ordering of the vertices of the graph such that,
for each vertex v, v and the neighbors of v that occur after v in the order form a clique.
This can be interpreted as a sequence of cliques of increasing sizes. Thus, one can use
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the perfect elimination orderings to obtain a maximum-size clique of a chordal graph in
polynomial-time. Furthermore, it was shown in [31] that such an ordering may be found
efficiently. One can check that the sequence of vertices obtained by the perfect elimination
ordering coincides with the steps taken by the Ordered Shadow rule so long as the perfect
elimination ordering coincides with the ordering of the indices in the corresponding 0/1
polytope.

In [69], the authors showed that there exist two-dimensional projections of 0/1 polytopes
with exponentially many vertices. Hence, the original Shadow pivot rule may take an
exponential number of iterations. Since the Slim Shadow rule requires a number of steps
bounded by n, the dimension of the ambient space, this suggests the question: Is there an
example in which the length of the path chosen by the Slim Shadow rule is exponential
in the dimension d of the feasible region? Unfortunately, yes. The example in [69] can be
modified to yield an explicit set of LPs for which the Slim Shadow rule requires a number
of steps exponential in d (while of course still being bounded by the number of variables).

There is no canonical, universal winner on performance between our two Shadow rules.
At least when applied as we described them here, in some cases the Slim Shadow rule may
actually perform better than the Ordered Shadow rule. In particular, the bounds from
sparsity in Lemma 13 may be stronger than the dimension bound. To see this note that
the Birkhoff polytope for n x n permutation matrices has dimension (n — 1)2. This is the
bound on the number of steps for the Ordered Shadow rule, yet the Slim Shadow rule
achieves a bound of only n steps by Lemma 13.

One can ask, how good are the bounds we obtain on the length of monotone paths
compared to the optimal bounds? Let us compare the Slim Shadow rule in a few instances:

e The rule yields at most n steps on both the asymmetric and symmetric traveling
salesman polytopes for n vertex graphs. The respective optimal bounds are [n/2]

and [n/3] (see [78]).

e The rule yields at most n steps on the Birkhoff polytope for n x n matrices. The
optimal bound is |n/2] ([77]).

e The rule yields at most |n/2] steps for the perfect matching polytope on the complete
graph with n vertices. The optimal bound is [n/4| ([77]).

e The rule yields at most rank(M) for an independent set matroid polytope of a
matroid M (starting at 0). As we saw this matches the optimal bound.
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Thus the lengths we obtain are — up to a constant — the same as the actual monotone
diameter in all of the above cases. Note that the bounds we find do not require any
knowledge of the combinatorics of the graphs of any of these polytopes, yet they remain
not far off from the best possible bounds.
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Chapter 6

Future Work

The work herein leaves many open questions which would be good avenues for future work.
Of course, the main open questions are whether there exists a polynomial pivot rule for
the Simplex method and whether the polynomial Hirsch conjecture is true.

Our results in Chapter 5 do not analyze the number of degenerate pivots performed by
any of the rules we propose. This suggests the following question:

Question 4. Is there a polynomial bound to the number of degenerate pivots performed
by any of the pivot rules presented here when applied to 0/1-LPs? Is there a polynomial
bound for any special subclasses of 0/1-LPs?

The results of Chapter 4 and Chapter 5 do not naively translate to LPs which are not
0/1. It would be interesting to investigate ways to achieve similar results for other well-
studied classes of LPs. For example, a natural generalization of 0/1 polytopes are lattice
polytopes, but even in the case of LPs defined over 2-lattice polytopes (i.e., those whose
vertices are contained in {0,1,2}"), similar techniques fail.

Question 5. Is there a pivot rule for the Simplex method that guarantees a (strongly)
polynomial number of non-degenerate pivots on lattice polytopes?

Of course, there may indeed be other classes of polyhedra for which our proposed pivot
rules do perform well. For example, another natural generalization of 0/1 polytopes are
box polytopes — those whose vertices are a subset of the vertices of a rectangular prism.
These have similar properties to 0/1 polytopes that make them promising candidates. In
general, we have the following question:
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Question 6. For what other classes of LPs do our proposed pivot rules require only a
polynomial number of non-degenerate pivots?

The hardness result of Theorem 1 requires the use of degeneracy. The same theorem
for non-degenerate polytopes would be a stronger result, and is left as an open question:

Question 7. What is the computational complexity of finding a shortest monotone path to
an optimal solution of a non-degenerate 0/1-LP?

Theorem 7 gives a weakly-polynomial bound on the circuit diameter of polyhedra,
while it has been conjectured that the Hirsch bound holds for the circuit diameter [19]. A
next step in this direction is to answer the following question:

Question 8. Does there exist a strongly-polynomial bound on the on the circuit diameter
of polyhedra?

There are still many open questions in the setting of circuit-augmentation algorithms.
Of paramount importance is the following:

Question 9. Does there exist a circuit-pivot rule that can be computed in (strongly) poly-
nomaial time without the use of an LP solver which arrives at an optimal solution of an LP
in a (strongly) polynomial number of augmentations?

Recent work of Sanita [$2] shows that it is strongly-NP-Hard to compute the combinato-
rial diameter of a polyhedron by utilizing a characterization of the combinatorial diameter
of the fractional matching polytope. The computational complexity of computing the
circuit-diameter of a polyhedron is open. It is possible that the characterization of the
circuits of the fractional matching polytope can be useful in determining this complexity,
and resolving this question would be of significant interest.
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