
Private Two-Party Random Minimum
Spanning Forest Computation

by

Marian Dietz

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Marian Dietz 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Finding the Minimum Spanning Tree, or more generally the Minimum Spanning Forest
(MSF), of a weighted graph is a well-known algorithmic problem. While this problem
itself can be directly applied to any kind of networks, it also has less obvious applications
like the approximation of the Traveling Salesman Problem. However, there is only limited
work on efficiently computing an MSF in a two-party computation setting, where the
input graph is split between two parties, and the goal is to find the MSF on the combined
graph without leaking any information about the parties’ respective inputs. Any prior
work on this problem either follows a generic approach that builds a circuit in order to
run it through a general multi-party computation protocol, or requires a high number of
communication rounds (usually at least linear in the graph size). In addition, all of these
approaches assume that the edge weights are unique.

In this work, we are going to address these issues by first defining a lightweight and
simple protocol with a low worst-case number of communication rounds, under the con-
straint that no two edges share the same weight. We then analyze the problems occurring
after enabling the possibility of duplicated weights, and look at the more general prob-
lem of generating a Random Minimum Spanning Forest, which defines a distribution of
the desired output in case the MSF is not unique. We carefully design a protocol for the
semi-honest security model in such a way that as many values as possible can be published
in the early stages. This reveals information about the graph structure that is then used
to reduce the number of communication rounds. By doing this we get a protocol that
performs especially well whenever the number of identical weights is low, while it stays
secure and correct regardless of the graph structure and its edge weights.

iii

Acknowledgements

I would like to thank Florian Kerschbaum for his supervision during the master’s pro-
gram. His guidance made this work possible and his outstanding support was always there
when I needed it. Thank you to Mohammad Hajiabadi and Douglas Stebila for being part
of the thesis committee and reading this work. I would also like to thank the CrySP lab
for providing a great atmosphere to learn and study in.

I am grateful to my family for encouraging me to study in Waterloo. Many thanks to
my partner Yueheng for going to the event at which we met, for always being there for me
and making this time so much better, and for supporting me with all my decisions.

iv

Table of Contents

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

2 Related Work 5

3 Preliminaries 7

3.1 Graphs . 7

3.2 Minimum Spanning Forests . 9

3.2.1 Minimum Spanning Forests for Graph Partitionings 10

3.2.2 Connectivity . 11

3.3 Two-party computation . 11

3.3.1 Framework . 14

3.3.2 Protocol Notation . 16

3.3.3 Low-level circuit communication cost 18

4 Problem Definition 19

v

5 Protocol for graphs with distinct weights 21

5.1 Borůvka’s Algorithm . 22

5.2 Adaption as a two-party computation protocol 23

5.3 Security . 25

6 Issues arising from edges with the same weight 27

6.1 Leaky tie-breaker for two-party protocols 28

6.2 Omitting tie-breaker from the output . 29

7 Building blocks 33

7.1 Find first . 33

7.2 Secret prefix operations . 35

7.3 Joint random number generation . 37

7.4 Boolean Matrix Multiplication . 38

7.5 Connectivity . 39

8 Protocol for unweighted graphs 42

8.1 Correctness and Security . 45

8.2 Optimization for the case |C| = 2 . 50

9 General Protocol 54

9.1 Crucial observations . 55

9.2 Informal description . 61

9.2.1 Finding subgraphs . 61

9.2.2 Detailed description . 62

9.2.3 Optimization . 64

9.3 Formalized protocol . 65

9.3.1 Practical considerations . 67

9.4 Correctness . 69

9.5 Security . 71

vi

10 Performance Analysis 74

10.1 Theoretical Analysis . 74

10.1.1 Extreme Cases . 75

10.2 Analysis of Laud’s protocol . 77

10.2.1 Reading and Writing . 77

10.2.2 The complete MSF protocol . 79

10.3 Comparison . 79

10.3.1 Results . 80

11 Conclusion 83

References 84

vii

List of Tables

3.1 Low-level circuit communication complexities 17

10.1 Number of communication rounds required by the general protocol for ran-
domly generated graphs . 81

10.2 Number of communication rounds required by the general protocol for TSP
graphs . 82

viii

List of Figures

6.1 Graphs distinguishable using a leaked tie-breaker 30

9.1 Example graph for the general protocol . 60

9.2 Example for combining MSFs of subgraphs in the general protocol 60

9.3 Example for subgraphs that can be discovered in the first iteration of the
general protocol . 66

10.1 Example graph which requires a minimal number of iterations in the general
protocol . 76

10.2 Example graph that requires a maximum number of iterations in the general
protocol . 76

ix

List of Algorithms

1 Functionality: Random Minimum Spanning Forest 19
2 Borůvka’s MSF algorithm . 23
3 Protocol: Random Minimum Spanning Forest following Borůvka’s MSF al-

gorithm . 24
4 Functionality: Find first . 33
5 Protocol: Find first . 34
6 Protocol: Prefix-� . 36
7 Functionality: Random number generation 37
8 Protocol: Random number generation . 38
9 Functionality: Boolean Matrix Multiplication 39
10 Functionality: Graph connectivity . 39
11 Protocol: Graph connectivity . 40
12 Protocol: Random Spanning Forest for unweighted graphs 44
13 Functionality: Random selection . 51
14 Protocol: Random selection . 52
15 Protocol: Random Minimum Spanning Forest 68

x

Chapter 1

Introduction

Finding a Minimum Spanning Forest is one of the fundamental and most basic problems
in graph theory. Given a weighted and undirected graph, its Minimum Spanning Forest
(MSF) is a subset of the graph’s edges that fulfill the three requirements:

• Minimum: The sum of all weights of the edges in the MSF is as small as possible.

• Spanning : Every two vertices that are connected in the original graph are also con-
nected using only the edges in the MSF.

• Forest : The MSF edges do not form a cycle.

On a connected graph (where each vertex can be reached from all other vertices), a Mini-
mum Spanning Forest would also be called a Minimum Spanning Tree, because all vertices
are reachable from each other using only the MSF edges, which thus form a tree.

The MSF problem has many immediate applications, including any kind of computer or
communication networks, but also less obvious ones like speech recognition or clustering,
and it can even be used to achieve a very simple 2-approximation of the NP-hard Traveling
Salesman Problem [17].

There are three very common algorithms for solving the MSF problem:

• Kruskal’s algorithm [23]: Add edges in the order of increasing weight to the MSF,
under the condition that the two endpoints are not yet connected to each other using
previous MSF edges.

1

• Prim’s algorithm [30]: Start from an arbitrarily chosen vertex, and repeatedly add
the smallest edge incident to already discovered vertices. If the given graph is not
connected, this procedure needs to be repeated by starting at an undiscovered vertex
until all vertices have been found.

• Borůvka’s algorithm [8]: Maintain a set of components where for each of them the
MSF is already known. In every iteration, select the best incident edge for each
component, and add all of those to the MSF. This algorithm only works if all weights
are unique, otherwise it might result in cycles.

In a graph where no edge weight occurs more than once, the MSF is always unique. In
all other case, depending on the application, it might be sufficient to just compute the total
weight of the MSF (which is unique independent of whether weights may occur multiple
times), or an arbitrarily selected MSF. This can be achieved with all of the algorithms
described above by making the edge weights unique, e.g. by adding a unique index to
each edge, and comparing two edges by their indices if their weights are equal. However,
sometimes this solution might not be sufficient: For example, edge indices could be heavily
biased towards a specific graph structure. In such a case, it might be desired to assign
random secondary weights to all edges, which lead to a more balanced selection of an MSF
among the set of all MSFs. We call an MSF selected by this procedure a Random Minimum
Spanning Forest, and this is the main problem that we are going to study in this work.

This is close to the notion of Random Spanning Forests [13], where an unweighted
graph is given, and the problem consists of finding an MSF on the graph when a uniformly
random weight is assigned to each edge. However, in our scenario, we assume there already
exists a weighted graph, and the randomly generated secondary weights are only used to
compare two edges that have the same original weight. Note that our notion of a Random
Minimum Spanning Forest also differs from generating a Uniform Spanning Forest, which
selects any MSF from the set of all MSFs with uniform probability. This problem would
be solvable for example with Wilson’s algorithm [36].

In two-party computation, or more generally multi-party computation, the goal is for
the involved parties to jointly compute a function that depends on private inputs by each of
the parties, without learning anything about each other’s input other than what is already
implied by the final output [14]. There are two different notions of security that are
usually considered: Semi-honest security, where all parties are assumed to follow the given
protocol, while they might try to infer information from all information they received during
the course of the protocol, and malicious security, where protection from misbehaving
parties is desired (i.e., it needs to be possible to discover or correct such behavior). While

2

stronger, protocols secure against malicious adversaries have a significant overhead in time
and communication amount [22].

Most generic protocols for multi-party computation require the problem to be written as
a binary or arithmetic circuit, which can then be executed in a secure way. One of the most
common ways to do this is Yao’s garbled circuit method [37] based on binary circuits for two
parties in the semi-honest security model. This protocol requires only a constant number
of communication rounds, independent of the structure of the circuit. Other protocols
depend on the circuit depth [4], [15], and can handle either a binary or arithmetic domain
for a varying number of parties [12]. There is a variety of different implementations and
frameworks for multi-party computation [19]. Some frameworks switch between domains
(e.g. binary or arithmetic) and the corresponding protocol during the execution in order
to achieve an improved efficiency [11].

For the MSF problem we study in this work, we want to find two-party protocols in
the semi-honest security model. The reason for this is that two-party protocols are usually
easier to apply in practice as it allows two parties to compute their combined MSF without
having to find an independent third party. Furthermore, the default way of running them
in a generic framework requires more resources than a protocol for three or more parties
based on an honest majority assumption [22], which makes it clear that protocols designed
for one specific purpose are required to achieve a good performance for two parties.

Restricting ourselves to the semi-honest security model allows us to find much more
optimized protocols. We are going to depend heavily on the ability to reveal certain parts
of the output in the middle of the protocol. This is something that is difficult to make
efficient in a maliciously secure protocol, as any adversary could simply adjust their own
input whenever they receive new revealed information about the output. In addition, our
protocol will be independent of the number of edges each party owns, so that no party ever
knows how many edges the other party has. A maliciously secure protocol would require
a commitment mechanism so that no party can change their own input after starting the
protocol, and therefore any existing method would have to publicly fix the number of edges
beforehand.

We also concentrate on a high-latency network, meaning that the two parties who
want to compute their combined MSF are physically separated from each other by a large
distance. A message sent from one party to the other one can take a long time, and
therefore we are interested in primarily minimizing the number of communication rounds,
while not significantly increasing the total amount of data sent. Yao’s garbled circuits only
use a constant number of rounds, but it has been shown that other lightweight protocols
can be faster if the circuit depth (and therefore the number of communication rounds) is
optimized [32]. Due to its simplicity, we use the GMW protocol [15], which maintains secret

3

bits by sharing them between the two parties (s.t. the two shares given to the parties add up
to the secret bit). Any linear operations (negation, or XOR) on secret-shared bits are free
and do not require any communication, while multiplications are typically evaluated using
oblivious transfers. However, it is also possible to instead use pre-calculated multiplication
triples (so-called Beaver-Triples) to speed up the online phase [3]. Additional optimizations
like oblivious transfer extension can be used to efficiently compute a large amount of
multiplication triples in an offline phase before starting the actual protocol [21].

The remainder of this thesis is organized as follows: In Chapter 2, we give an overview
of previous work on computing MSFs in a secure setting. We state all the necessary
definitions and notations in Chapter 3, and we define the problem that we want to solve in
Chapter 4. In Chapter 5, we give a protocol based on Borůvka’s algorithm for graphs with
distinct edge weights, and we discuss the problems arising from edges with equal weights
in Chapter 6. Chapter 7 gives a list of useful sub-protocol, which we use in Chapter 8 for
a protocol for unweighted graphs, and in Chapter 9 for our full and general protocol. We
analyze it and perform comparisons in Chapter 10. All of this is briefly summarized in the
conclusion in Chapter 11.

4

Chapter 2

Related Work

There is only very limited previous work on multi-party protocols for computing Minimum
Spanning Forests. However, there are still some publications that could be applied to this
problem.

GraphSC is a general framework for graph algorithms in multi-party computation [29].
Its main feature is the ability of scattering data from vertices to all incident edges, and
gathering data from all incident edges into a vertex. While these operations can be paral-
lelized for the whole graph, each such operation distributes information only locally. Thus,
applying GraphSC to MSF problems would result in a large number of iterations (each of
them consisting of multiple communication rounds) that is at least linear in the number of
vertices.

Similarly, Prim’s algorithm has been implemented in the more general ObliVM frame-
work [28], which can be applied to any secure computation problem. However, the number
of iterations that require communication is also linear in the number of vertices combined
with the number of edges. Therefore, this approach is not suitable for our goal of mini-
mizing the number of communication rounds.

Blanton, Steele, and Aliasgari have studied oblivious algorithms targeted towards dense
graphs [5]. The authors give a protocol solving the MSF problem by simulating Prim’s
algorithm on a graph given its adjacency matrix. However, it is infeasible to apply such
protocols to large graphs with few edges, as the total communication complexity is at least
as large as the square of the number of vertices.

Brickell and Shmatikov have studied a range of graph problems in the semi-honest
security model, under the assumption that the output will be revealed at the end of the
protocol [9]. While this restriction makes it impossible to use the graph protocol as just one

5

building block in a larger protocol, it allows for easier and much more efficient computa-
tion: In their protocols for all-pairs-shortest-distance and single-source-shortest-distance,
Brickell and Shmatikov note that the current shortest distance can always be revealed, as
it can be inferred from the final output in any case. This reveal step makes subsequent
computation easier. The authors also give MSF protocols based on either Kruskal’s or
Prim’s algorithm. However, both of these protocols would result in a number of iterations
that is linear in the number of vertices, and all iterations need to be run sequentially as
they require communication that depend on previous results. We address this problem by
adapting this type of protocol to Borůvka’s algorithm in Chapter 5. In addition, all of these
protocols suffer from the fact that they cannot handle edges with the same weight. While
Brickell and Shmatikov argue that all edge weights can be made unique in a canonical way,
we are interested in designing a protocol that works for assigning a random ordering to
edges with the same weight.

The most relevant work on MSFs has been done by Laud [25], as they are optimizing
the number of communication rounds. They give an implementation of Awerbuch and
Shiloach’s adaption of Borůvka’s algorithm [2] in a semi-honest 3-party computation setting
in the Sharemind framework [6]. This protocol is slightly more general than our approach,
as it does not need to reveal the MSF at the end of the computation in order to fulfill
security. However, as we will see in Chapter 10, our protocol (Chapter 9) can achieve
a much lower number of communication rounds in many cases. In addition, it does not
depend on any complicated sorting or permutation procedures, and can be implemented
easily in any two-party (or multi-party) computation framework with basic operations such
and comparisons (see Section 3.3.3). As Laud’s protocol is based on arithmetic sharing in a
3-party setting, any direct comparison of running times would not be fair. For this reason,
we attempt to find a lower bound on the number of communication rounds required by
this protocol in Section 10.2, and compare this with the number of rounds required by our
own protocol.

In a subsequent work, Anagreh, Vainikko, and Laud attempt to use the primitives from
Laud’s protocol [25] for an optimized secure version of Prim’s algorithm [1]. However,
it is not suitable for our setting, as the use of Prim’s algorithm means that it can be
applied only to connected graphs (i.e., a minimum spanning tree instead of a forest needs
to be computed). Furthermore, the presented protocol is based on adjacency matrices, and
therefore the total communication cost is at least quadratic in the number of vertices.

6

Chapter 3

Preliminaries

In this chapter, we give all necessary definitions for graphs (Section 3.1) and minimum
spanning forests (Section 3.2). Furthermore, we present the background on two-party
computation and their protocols in Section 3.3.

Note that throughout this work, we let [n] := {0, 1, . . . , n − 1} for any non-negative
integer n ∈ N.

3.1 Graphs

We define the universe of all possible vertices in a graph as V , and the universe of all
possible edges in a graph as E . The function r : E → {{u, v} | u, v ∈ V , u 6= v} maps each
edge to an unordered set containing its two endpoints. w : E → N assigns a weight to each
edge. A finite, weighted, undirected multigraph consists of a pair (V,E) of two finite sets
V ⊆ V and E ⊆ E , s.t. for all edges e ∈ E, its two endpoints r(e) = {u, v} are in V . Since
this is the only type of graphs we look at in this work, we may also just call them graphs.

For a finite set of edges E ⊆ E , we define its total weight as w(E) :=
∑

e∈E w(e). We
might also consider the subset E=w ⊆ E of edges restricted to a certain weight w, i.e.,
E=w := {e ∈ E | w(e) = w}. Similarly, sometimes we also consider E<w or E≤w, which are
defined as the subset of E containing only those edges that have weight strictly less than
w, or at most w, respectively.

Any c ⊆ V is called a component of V . A partitioning C is a set of mutually disjoint
components of V . A partitioning C is a partitioning of a finite set of vertices V ⊆ V , if

7

each v ∈ V is contained in exactly one component c ∈ C. Given partitioning C of V , and
a vertex v ∈ V , we use C(v) to denote the unique component c ∈ C with v ∈ c.

Given a set V ⊆ V of vertices, we define the corresponding trivial partitioning V as the
partitioning {{v} | v ∈ V }, i.e., as the set consisting of all single-vertex components with
vertices from V . When we have a partitioning C, we define C as the set of vertices that
are contained in C, i.e., C :=

⋃
c∈C c. Note that if C is a partitioning of V , then we have

C = V .

Given a set of edges E ⊆ E , and given a component c ⊆ V , or a partitioning C (s.t. every
edge e in E has only endpoints in C, i.e., r(e) ⊆ C), we define

E(c) := {e ∈ E | r(e) = {u, v}, u ∈ c, v /∈ c},
E(C) := {e ∈ E | r(e) = {u, v}, C(u) 6= C(v)},

to be the set of edges having exactly one endpoint in c, or the set of edges with endpoints
in two different components from C, respectively. For a set of vertices V ⊆ V (or a
partitioning C with C = V) and a set of edges E ⊆ E , we define

EC := EV := {e ∈ E | r(e) ⊆ V }

to be the set of all edges for which both endpoints are in V (or both endpoints are in
arbitrary components of C). Note that EV = E(V). In addition, note that EC contains
all edges with endpoints anywhere in C, while E(C) only contains edges where the two
endpoints are in different components of C.

For a partitioning C and an edge e ∈ E (with endpoints in C), we define C[e] to be the
partitioning resulting from C by merging the components that are connected by e, i.e., if
r(e) = {u, v}, then

C[e] :=

{
C if C(u) = C(v)

(C \ {C(u), C(v)}) ∪ (C(u) ∪ C(v)) otherwise
.

Note that C[e] is also a partitioning. For a finite set of edges E ⊆ EC , we let C[E] be
the graph partitioning resulting from C by merging the components that are connected
through edges in E, i.e., if E = {e1, . . . , ek}, then C[E] = C[e1]...[ek]. Note that the order
of the edges in E does not matter, and that C[E] is also a partitioning.

For a set E ⊆ E and a component c ⊆ V , min{w(e) | e ∈ E(c)} is the minimum weight
of an edge from E leaving component c. If there is no such edge, this minimum is defined
to be ∞.

8

3.2 Minimum Spanning Forests

For a graph G = (V,E), we call (e1, . . . , ek) (k ≥ 1, ei ∈ E, ei 6= ej for i 6= j) a path, if
there are vertices v0, . . . , vk ∈ V with r(ei) = {vi−1, vi} for every 1 ≤ i ≤ k. In addition,
this path is simultaneously a cycle, if v0 = vk. We say that two vertices u, v ∈ V are
connected w.r.t. E to each other if there is a path (e1, . . . , ek) with corresponding vertices
u, v1, . . . , vk−1, v.

A set of edges F ⊆ E is a spanning forest of G, if both of the following conditions are
satisfied:

(1) F is spanning : for every two vertices u, v ∈ V that are connected on graph G =
(V,E), u and v are also connected on graph (V, F), and

(2) F is a forest : for any strict subset F ′ (F , there are two vertices u, v ∈ V that are
connected on (V, F), but not connected on (V, F ′). Equivalently, F does not contain
a cycle.

A spanning forest F is a minimum spanning forest (MSF) of G, if the following additional
condition is satisfied:

(3) F is minimum: there is no spanning forest F ′ of G with w(F ′) < w(F).

For every graph G there is at least one minimum spanning forest. In addition, if w(e) 6=
w(e′) for all e, e′ ∈ E with e 6= e′, it is known that there is a unique minimum spanning
forest. If G has a unique minimum spanning forest F , we define MSF(V,E) := F .

In order to be able to select a single MSF if G has multiple MSFs, we need the notion
of a tie-breaker. A tie-breaker is a permutation π of the edges E, which assigns a distinct
number from [|E|] to every e ∈ E, i.e., π : E → [|E|] is a bijective function. Given a
fixed edge set E, there are exactly |E|! of these permutations, and by E! we denote the
set consisting of all |E|! permutations. For E ′ ⊆ E, we can restrict a permutation π ∈ E!
to edges in E ′, which we denote as π|E′ . This π|E′ is defined as the unique permutation in
E ′! that fulfills π|E′(e) < π|E′(e′) ⇐⇒ π(e) < π(e′) for all e, e′ ∈ E ′, i.e., the ordering of
edges E ′ in π|E′ is the same as their ordering in π.

Now, a spanning forest F is a minimum spanning forest of G with tie-breaker π, if the
following new minimality condition is satisfied (which replaces condition (3) above):

(3) F is minimum: there is no spanning forest F ′ of G with w(F ′) < w(F) or w(F ′) =
w(F) and

∑
e∈F ′ π(e) <

∑
e∈F π(e).

9

For every graph G = (V,E) and tie-breaker π : E → [|E|], there is exactly one minimum
spanning forest, which we denote by MSF(V,E, π).

Usually, we are interested in studying random tie-breakers. This means that a uniformly
random π ∈ E! is chosen, and MSF(V,E, π) is returned. We denote by MSF(V,E) the result
of this random process. Note that for graphs with a unique minimum spanning forest, the
selected tie-breaker has no effect and the result is deterministic. Thus, this definition agrees
with our previous definition of MSF(V,E) if G = (V,E) has a unique MSF.

Our definitions of MSF(V,E) also work for unweighted graphs. We say that a graph
G = (V,E) is unweighted, if there is a fixed weight w∗ ∈ N with w(e) = w∗, i.e., every
e ∈ E has the same weight. In case of unweighted graphs, we may also just use the
term spanning forest instead of minimum spanning forest, as there is no real notion of a
minimum. A random spanning forest (i.e., MSF(V,E)) is defined the same way as before,
i.e., selecting a random π ∈ E!, and then returning the spanning tree that is minimum
w.r.t. π.

Note that this definition MSF(V,E) of an MSF with a random tie-breaker is not the
same as uniformly choosing a random MSF from the set of all minimum spanning forests.
The probability of receiving an MSF F through MSF(V,E) may be different from the
probability of receiving an MSF F ′ 6= F , depending on the structure of the graph G.

3.2.1 Minimum Spanning Forests for Graph Partitionings

Now we extend the definitions for MSFs from the previous section to the case where we
have a partitioning C. The semantics are defined so that we can view each component
c ∈ C as a single vertex and each edge between two vertices (in the original sense) as an
edge between their two components.

For a graph G = (V,E), and a corresponding partitioning C of V (i.e., V = C), we
call (e1, . . . , ek) (k ≥ 1, ei ∈ E, ei 6= ej for i 6= j) a path on C, if there are components
c0, . . . , ck ∈ C with r(ei) = {u, v} s.t. C(u) = ci−1 and C(v) = ci for every 1 ≤ i ≤ k. In
addition, this path is simultaneously a cycle, if c0 = ck. We say that two components c, c′ ∈
C are connected w.r.t. C to each other if there is a path (e1, . . . , ek) on C with corresponding
components c, c1, . . . , ck−1, c

′. We say that two vertices u, v ∈ V are connected w.r.t. C, if
C(u) and C(v) are connected to each other.

We can now define a minimum spanning forest (MSF) of G w.r.t. C and tie-breaker
π : E → [|E|] as a set F ⊆ E for which the following three conditions hold:

(1) for every two components c, c′ ∈ C that are connected on (V,E) w.r.t. C, c and c′

are also connected on (V, F) w.r.t. C,

10

(2) for any strict subset F ′ (F , there are two components c, c′ ∈ C that are connected
on (V, F), but not connected on (V, F ′), and

(3) there is no spanning forest F ′ fulfilling (1) and (2) with w(F ′) < w(F) or w(F ′) =
w(F) and

∑
e∈F ′ π(e) <

∑
e∈F π(e).

Informally, this definition just means that we are looking for the MSF on the graph where
we merge all vertices in a component together, and adjust the edges accordingly. As such,
for a fixed tie-breaker π, there is a unique minimum spanning forest, which we denote by
MSF(C,E, π). As before, MSF(C,E) is the output of the random process that uniformly
chooses a random π ∈ E! and returns MSF(C,E, π).

Note that for a set of vertices V ⊆ V and edges E ⊆ E , we have MSF(V,E, π) =
MSF(V ,E, π). This also implies that MSF(V,E) is a random process with the same output
distribution as MSF(V ,E).

3.2.2 Connectivity

For a graphG = (V,E), and a corresponding partitioning C of V , we define the connectivity
Conn(C,E) := {d0, . . . , d`−1} s.t. the following criteria are satisfied:

(1) di 6= ∅ for all i ∈ [`] (no di is empty),

(2) C = d0 t · · · t d`−1 is the union of the pairwise disjoint sets di, and

(3) two components c, c′ ∈ C are in the same di iff they are connected on G w.r.t. C.

Note that the set Conn(C,E) always exists and is unique.

Informally, Conn(C,E) partitions the components of C into equivalence classes, s.t. two
components are in the same class iff they are connected to each other w.r.t. C.

3.3 Two-party computation

In two-party computation, we have two parties, each of them owning an input, who want to
compute together the output of a predefined function on the given inputs, without gaining
any information about the other party’s input. The goal is to define an efficient protocol,
specifying the actions taken by each party (i.e., communication with each other and local

11

computations), s.t. the function is computed while preserving privacy. A protocol is always
run with security parameters λ and κ that it provides to both parties at the beginning of the
execution. We require statistical correctness to be fulfilled w.r.t. λ, and that computational
privacy holds w.r.t. κ.

A functionality f is a random function that specifies the desired output distribution
given the two inputs. If x is the input owned by party 1 and y is the input owned by party
2, then f(x, y) is a random variable (a, b), where a is the output that party 1 receives, and
b is the output that party 2 receives. In many scenarios, we want the outputs a and b to be
exactly the same. In this case, we may simply write f(x, y) = a instead of f(x, y) = (a, a),
where a is the output for both party 1 and party 2.

For example, assume that f is the simple graph problem of testing whether two vertices
u and v are connected by a path. Both parties know the complete set of vertices V and
the two points u and v, but every party i has a secret set of edges E(i). They want to
compute whether there is a path between u and v on the graph consisting of vertices V
and edges E(1) ∪ E(2). We can model this as follows: party i’s input is (V, u, v, E(i)), and
f((V, u, v, E(1)), (V, u, v, E(2))) is 1 iff there is a path between u and v using edges E(1)∪E(2),
and 0 otherwise. On the other hand, whenever the two parties have different opinions on
how V , u, or v should look like, then this problem does not make much sense, and so we
let f((V (1), u(1), v(1), E(1)), (V (2), u(2), v(2), E(2))) be undefined if V (1) 6= V (2), u(1) 6= u(2), or
v(1) 6= v(2). In this way, we have an option of assuming that there is a “public input” known
to both parties, and the protocol only has to output a useful result if both parties think
that the public input is the same. In order to emphasize that certain parts of the input
are public and known to both parties, we can just write fV,u,v(E(1), E(2)), i.e., we write the
public part of the input in the functionality’s subscript.

For a given protocol Π, we denote by

outputΠ(λ, κ, x, y) = (outputΠ
1 (λ, κ, x, y), outputΠ

2 (λ, κ, x, y))

a random variable that contains the output of running Π with security parameters λ and
κ on party 1’s input x, and party 2’s input y. outputΠ

1 (λ, κ, x, y) is the random variable
containing the output generated by party 1, and outputΠ

2 (λ, κ, x, y) is the random variable
containing the output generated by party 2. We only consider semi-honest security, and
therefore we assume that no party ever deviates from Π.

viewΠ
1 (λ, κ, x, y) is another random variable that contains the view that party 1 gets

during the protocol execution, and similarly viewΠ
2 (λ, κ, x, y) is the view of party 2. A view

of a party consists (1) of its input, (2) of all the randomness it has generated, and (3) of all
the messages it has received. Thus, given a view, it is possible to reconstruct the party’s
internal state at every timestep.

12

The correctness of a protocol Π is generally handled in different ways by different
authors. For example, [14] requires Π to have the exact same output distribution as
the functionality f for every input pair (x, y). On the other hand, [12] incorporates the
correctness condition into the security condition, implying that it suffices if the protocol’s
output distribution and the functionality are computationally indistinguishable. While
one of our sub-protocols (generating random numbers from a secret-shared interval, see
Section 7.3) has a small chance of error in which case the protocol aborts, we still want to
have a strong notion of correctness that states that whenever the protocol does not abort,
its output distribution is exactly the same as that of the functionality.

Definition 1. The protocol Π correctly implements functionality f , if for all x, y and
security parameters λ and κ, the protocol fulfills the following two criteria:

• Pr[Π(λ, κ, x, y) aborts] ≤ negl(λ) and

• Pr[Π(λ, κ, x, y) = z | Π(λ, κ, x, y) does not abort] = Pr[f(x, y) = z] for any possible
output z of the functionality.

Here, negl(λ) means that the given probability grows smaller than the inverse of any
polynomial in λ.

Our definition of semi-honest security is a standard one following e.g. that from [14]
or [27]. While this definition is security parameter-based, it incorporates only one party’s
output into each of the equations (3.1) and (3.2).

Definition 2. For a set A of valid inputs, we say that the two probability ensembles X =
{X(λ, κ, a)}λ,κ∈N,a∈A and Y = {Y (λ, κ, a)}λ,κ∈N,a∈A are computationally indistinguishable
(denoted by X

c≡ Y), if for every non-uniform polynomial-time algorithm D, there exists
a negligible function negl(·), s.t. for every a ∈ A and λ, κ ∈ N:

|Pr[D(X(λ, κ, a)) = 1]− Pr[D(Y (λ, κ, a)) = 1]| ≤ negl(κ)

The protocol Π privately computes f in the semi-honest security model, if there are
polynomial-time algorithms S1 and S2 s.t.

{(S1(1κ, x, f1(x, y)), f2(x, y))}λ,κ,x,y
c≡ {(viewΠ

1 (λ, κ, x, y), outputΠ
2 (λ, κ, x, y)}λ,κ,x,y and

(3.1)

{(S2(1κ, y, f2(x, y)), f1(x, y))}λ,κ,x,y
c≡ {(viewΠ

2 (λ, κ, x, y), outputΠ
1 (λ, κ, x, y)}λ,κ,x,y, (3.2)

13

where x, y are inputs for which f(x, y) is defined, and λ, κ ∈ N.

Note that we require all algorithms to run in time polynomial in the security parameter
κ. This means that we also need to incorporate this security parameter into the function-
ality f , so that the protocol is not required to work correctly in case of κ being too small
to be able to read the complete input. However, in order to keep the notation clean, we
just omit this.

For our case of semi-honest security, protocols can easily be composed. This means that
it is possible to construct a protocol that calls another protocol as a subroutine. If the
sub-protocol fulfills semi-honest security, and the main protocol fulfills semi-honest security
when restricting the view s.t. it does not include the execution of the sub-protocol, then it
fulfills semi-honest security when replacing the call to the sub-protocol by a real execution:

Lemma 1 (Following Theorem 2.2.3 from [14]). Assume that there is a protocol Πf for
functionality f , which is allowed to make oracle queries to a functionality g. If Πf fulfills
semi-honest security (where the view of a party consists only of its input, its random choices,
all received messages, and all outputs of calls to g), and there is a semi-honest protocol Πg

computing g, then the protocol Π computing f that results from Πf by replacing the oracle
calls by real executions of Πg fulfills semi-honest security.

Note that in the full protocol Π, for each execution of the sub-protocol Πg, the security
parameter κ may be the same as in the complete protocol. However, it might be necessary
to increase λ for the call of Πg so that the full protocol still fails correctness only with
probability negligible in its own λ.

For example, if Πg fails with probability ≤ 1
2λ
, and Πf calls Πg n times, then every

execution of Πg needs to be run with security parameter λ+log n (i.e., each execution fails
with probability ≤ 1

2λ+logn), so that the overall failure probability is ≤ 1
2λ
.

3.3.1 Framework

There are many existing protocols that are able to compute any arbitrary functionality
that can be expressed as a boolean or arithmetic circuit (see e.g. [12] for a overview of
the most important fundamental protocols). However, random-access memory needs to be
implemented in a static circuit by scanning through the whole memory to find the value
corresponding to a secret index. One possible solution to this is oblivious RAM (ORAM)
that attempts to emulate a memory in sublinear time per access (as first formalized by [16],
and implementable using e.g. [34]). Since these operations are still very expensive, we avoid

14

building a large circuit by designing a protocol tailored specifically towards one application:
finding a random MSF.

General-purpose protocols are still very useful as building blocks used by larger proto-
cols (like our MSF protocols) if they do not require any RAM. For example, we will see
that we need to privately compute the minimum of an integer known to party 1 and an
integer known to party 2. This can be done easily by expressing the minimum operation
using a boolean circuit, and then evaluating it securely.

Most general-purpose protocols are based on some variant of secret-sharing. This means
that an integer or a single bit is split into two shares, s.t. each party knows only one of
the two shares, and it looks completely random. When having both shares, it is easy to
combine them in order to receive the actual value that they encode.

We base our protocols on binary secret-sharing, or more specifically the GMW proto-
col [15] by Goldreich, Micali, and Wigderson. A bit b is shared between two parties by
selecting a random r ∈ {0, 1}, which is sent to party 1, and then sending r ⊕ b to party 2.
To both parties, their shares look uniformly random. Some operations on secret shares do
not require any communication. For example, to take the XOR of two secret-shared bit,
both parties can simply compute the XOR of their respective shares locally. Multiplica-
tion on the other hand requires communication in this protocol, which could be based on
a 1-out-of-4 oblivious transfer [14]. In order to optimize the online phase, we assume that
Beaver-Triples are used, i.e., precalculated random multiplication triples that can be used
to mask real multiplications when running the actual protocol [3].

In our protocols, we can now make use of secret-shared bits, and we can perform
computation on them using the GMW protocol: each party’s memory consists of their own
plaintext data, and secret-shared bits. Secret-shared bits can be concatenated to receive
secret-shared integers of a fixed bitlength. Everyone can work on their own local data
without communicating, or perform shared computation together with the other party.
Any communication has one of the following three forms:

• A party sends plaintext data to the other party. This adds more plaintext data to
the second party’s internal memory.

• The two parties reveal a secret-shared bit (by both parties sending their own share
to the other one). This adds more plaintext data to both party’s internal memory.

• Two secret-shared bits are multiplied with each other. This adds another secret-
shared bit to both party’s internal memory.

15

Now, any possible binary circuit can be implemented using only bit multiplication and
XOR. Section 3.3.3 contains a list of low-level protocols (e.g. addition or comparison of
two secret-shared integers) that we may use.

The bottleneck of a protocol can come either from the total amount of communication
that is performed between the two parties, or from the network latency. If the latency is
very low (e.g. the two parties are located in the same data center), the former might be
more relevant. However, we are trying to find a protocol that performs well no matter
where the two parties are located. For this reason, we try to minimize the number of
communication rounds, so that the network latency is not a significant bottleneck of the
protocol.

When using the GMW protocol, the number of required communication rounds is
strongly correlated with the multiplicative depth. This is because for any two commu-
nication steps do not depend on each other, they can be sent together in one message,
instead of sending the first one and then waiting for the result before sending the second
one. However, whenever a secret-shared bit is computed as the multiplication of two other
secret-shared bits, the protocol needs to wait until the shares of the two inputs bits have
been calculated before running the multiplication itself. Therefore, whenever possible, any
communication should be parallelized, which can be done in a layer-wise manner: all com-
munication steps that do not have any yet unknown dependencies are performed in one
batch. Under the assumption that any local computations take a negligible amount of
time, and all communication in one layer can be executed in parallel, the total running
time depends solely on the multiplicative depth and the time it takes for a message to be
sent from one party to the other one.

Note that it would also be possible to run our protocols with a different underlying
secret-sharing scheme, implemented not using the GMW protocol. This could include
Yao’s garbled circuits [37], or arithmetic circuits making use of Shamir’s secret-sharing
scheme [33] like the BGW protocol [4], or mixed protocols as used in the ABY frame-
work [11]. However, we attempted to optimize our protocols towards binary secret-sharing,
as for the purpose of minimum spanning forests, many comparisons or bit-decompositions
need to be performed, which is simpler in a binary scheme than in an arithmetic domain.

3.3.2 Protocol Notation

In this work, instead of giving an explicit binary circuit, we always describe the corre-
sponding program in pseudocode. A bit b that is secret-shared is denoted by JbK, and for
convenience we may also just write a secret-shared integer a composed of multiple bits as

16

Protocol Rounds Total

Bit operations

¬JbK 0 0
JbK⊕ Jb′K 0 0
JbK ∧ Jb′K 1 O(1)
JbK ∨ Jb′K 1 O(1)

Arithmetic operations JaK + Ja′K dlog2Be+ 1 O(B logB)
JaK− Ja′K dlog2Be+ 2 O(B logB)

Comparisons

JaK = Ja′K dlog2Be O(B)
JaK < Ja′K dlog2Be+ 1 O(B)
JaK ≤ Ja′K dlog2Be+ 1 O(B)

min(JaK, Ja′K) dlog2Be+ 2 O(B)
Multiplexer if JbK then JaK else Ja′K 1 O(B)

Share and Reveal
Sharep(a) 1 O(B)

Revealp(JaK) 1 O(B)
Reveal(JaK) 1 O(B)

Table 3.1: The number of communication rounds required for the most common low-level
protocols in the GMW protocol. These numbers are collected from [32], where the authors
give a list of descriptions of low-level circuits with minimum multiplicative depth. We
assume that JbK and Jb′K are shares of single bits, and JaK and Ja′K are shares of B-bit
integers.

JaK. If a value a is known to party i, we write Sharei(a) to indicate that party i creates
a sharing of a and sends one half of it to the other party. Reveali(JaK) means that the
integer a, which is secret-shared, is revealed only to party i (i.e., the other party sends its
own share of a to party i, who can then compute a itself). Reveal(JaK) indicates that a
is revealed to both parties, i.e., everyone sends their own share to the other one. Values
not written in the notation J·K are either public, i.e., known to both parties, or known to
one party, depending on the context.

Note that for a protocol doing only operations on secret shares, their security already
follows from the security of the GMW protocol [15], because it can be fully described as
a binary circuit evaluated within the GMW protocol. Only when we reveal values in the
middle of a protocol, we need to provide a proof of security.

17

3.3.3 Low-level circuit communication cost

There is a variety of low-level protocols working on secret shares. This includes arithmetic
operations like JaK + Ja′K or JaK− Ja′K (which return a secret-shared integer), comparisons
like JaK < Ja′K or JaK = Ja′K (which return a secret-shared bit), bit operations like JbK∨Jb′K or
JbK∧ Jb′K, or a multiplexer if JbK then JaK else Ja′K (which returns a secret-shared integer
if b is a single bit and a and a′ are integers). Schneider and Zohner have summarized
depth-optimized circuits for these kinds of operations on binary shares [32]. We recall the
number of rounds and the total communication cost required for all low-level circuits used
in this work in Table 3.1.

One round means that each party sends data to the other party and receives the data
that the other party has sent in the same round. For example, in a network with a round-
trip time of 50ms, one round might take 25ms.

When minimizing the number of communication rounds, it is important to keep the
number of arithmetic operations and comparisons low, as all of them require a number
of rounds that is roughly the logarithm of the integer bitlength. Other operations (like
multiplexer, as well as sharing and revealing) all require only one round each.

Note that we give an explicit number of rounds, but only an asymptotic number of
communicated bits. This is because the total communication depends on many factors
resulting from the specific implementation, and for some of the low-level circuits (like
addition) there is no simple explicit formula.

18

Chapter 4

Problem Definition

In this chapter we formally describe the general problem of computing MSFs using a two-
party protocol. We assume that there is a public and finite set of vertices V ⊆ V , and
each party p has a private set of edges E(p). The two parties intent to jointly, and securely,
compute MSF(V,E(1) ∪ E(2)), i.e., on the graph with vertices V and edges resulting from
taking the union of the two private edge sets.

We assume that E (1) =
(
V
2

)
× N × {1} is the universe of potential edges that party 1

can choose from, i.e. any edge e ∈ E (1) has the form e = ({u, v}, w, 1), where r(e) = {u, v}
and w(e) = w. Similarly, E (2) =

(
V
2

)
× N × {2} is the universe of edges that party 2 can

choose from, i.e., every e ∈ E (2) has the form e = ({u, v}, w, 2), where r(e) = {u, v} and
w(e) = w. As a result, the graph (V,E(1) ∪ E(2)) may have multi-edges, but any edge e
with two fixed endpoints u, v ∈ V and weight w ∈ N can occur only twice: once in E(1) (in
the form ({u, v}, w, 1)), and once in E(2) (in the form ({u, v}, w, 2)).

This desired behavior is formalized in Functionality 1. The universe of all edges is given
as E = E (1) t E (2). It is guaranteed that E(1) ⊆ E (1) contains only edges from E (1) and that
E(2) ⊆ E (2) contains only edges from E (2). This restriction makes sure that given any edge
e in the MSF returned by any protocol, it is possible to determine whether it belongs to
party 1 or to party 2.

Functionality 1 Random Minimum Spanning Forest
Public: Partitioning C of a finite set of vertices V ⊆ V
functionality RandomMSF(E(1), E(2))

return MSF(C,E(1) ∪ E(2))
end functionality

19

Note that if MSF(V,E(1) ∪ E(2)) for a finite set of vertices V needs to be computed
instead of MSF(C,E(1) ∪E(2)) for a partitioning C, then the two parties can simply select
C := V and run any protocol implementing this functionality. This results in the same
output distribution because of MSF(V,E) = MSF(V ,E) for any graph G = (V,E).

In the following chapters, the goal will be to design efficient protocols implementing
Functionality 1. We are going to see a protocol that works correctly and is secure only in
the restricted setting where all the edges in E(1) ∪E(2) have distinct weights (Section 5), a
protocol for the case where all the edges in E(1) ∪ E(2) have the same weight (Section 8),
and finally a protocol for the fully generic case where all kinds of weights are allowed
(Section 9).

For convenience, whenever the set of edges is shared between two parties, we let E :=
E(1) ∪ E(2) to be the combined set of all edges given in the input.

20

Chapter 5

Protocol for graphs with distinct
weights

For the semi-honest model, Brickell and Shmatikov have proposed a protocol for computing
the minimum spanning forest [9] by following either Kruskal’s algorithm [23] or Prim’s
algorithm [30]. Every party has the public set of edges that are already known to be part
of the minimum spanning forest. In each iteration, every party chooses the next edge that
it would add to the MSF if there were no other parties involved (i.e., the shortest edge
that doesn’t create a cycle in the MSF set in case of Kruskal’s algorithm, or the shortest
edge incident to previously discovered vertices in case of Prim’s algorithm). This results
in two candidates for the next MSF edge: one that is provided by party 1 and one that
is provided by party 2. Using any secure multi-party computation protocol for computing
the minimum, the parties compute together the shorter one of these two edges, and then
they reveal it to everyone.

In case of a connected graph, this protocol (regardless of whether Kruskal’s or Prim’s
algorithm is used) requires Θ(n) sequential applications of the secure protocol computing
the minimum edge. Each such application is relatively cheap, because it has a constant
number of rounds and total communication cost (i.e., the number of bits sent between the
two parties). Thus, the bottleneck becomes the latency produced by the high number of
iterations.

In order to address this problem, we give a new protocol for computing minimum
spanning forests based on Borůvka’s algorithm [8]. As this algorithm can be parallelized
easily, it also provides a simple way of processing multiple MSF edges in a single iteration,
reducing our number of rounds from linear to O(log n). The only downside is that, just
like protocols based on Prim’s or Kruskal’s algorithm, this method only works for a graph

21

where no edge weight occurs more than once in the input (or if there is a publicly known
tie-breaker deployed).

In Section 5.1, we describe how Borůvka’s algorithm works in a one-party (i.e., non-
secure) setting, and in Section 5.2, we translate the algorithm into a two-party computation
protocol, whose security is proven in Section 5.3.

5.1 Borůvka’s Algorithm

Borůvka’s algorithm [8] makes use of the following fact that holds in a graph with unique
edge weights: among all edges incident to a fixed vertex u, the best incident edge (i.e., the
unique edge with smallest weight that has u as one of its endpoints) is always part of the
MSF.

This fact can be used on all n vertices simultaneously, which yields n edges. However,
these are not necessarily distinct, as two vertices that are directly connected may have
chosen the same edge. This means that the set of selected edges (without duplicates) has
size ≥ dn

2
e.

Now, all vertices that are connected by a chosen edge are merged into a single component
and the next iteration starts: for each component, we look for the smallest incident edge
connecting it to a different component. This process is repeated at most blog2 nc times, as
the number of components is reduced by half in each iteration.

This procedure is formalized in Algorithm 2. We assume that V ⊆ V is a finite set
of vertices, and that E ⊆ E is a finite set of edges with unique weights (i.e., there are
no two edges e1, e2 ∈ E, e1 6= e2 with w(e1) = w(e2)). The algorithm’s task is to return
MSF(V,E), which is known to be unique (i.e., no randomization is required) due to the
unique edge weights.

The set of components C can be maintained using a union-find data structure. In each
of the blog2 nc iterations, each component c ∈ C is checked for its best incident edge e.
If e exists (i.e., there is at least one edge leaving component c), it is added to M , a set
that holds all edges selected in the current iteration. At the end of the iteration, vertices
connected by edges in M are merged (C ← C[M]), and all selected edges are added into
F (F ← F ∪M), which holds the final set of edges.

Note that the loop going over all components c ∈ C in Algorithm 2 can be parallelized,
as the selection of edges are independent of each other. This motivates our new protocol
requiring less communication rounds than those relying on Kruskal’s or Prim’s algorithm.

22

Algorithm 2 Borůvka’s MSF algorithm
1: function BorůvkaMSF(V,E)
2: F ← ∅
3: C ← V
4: for i = 1, . . . , blog2 |V |c do
5: M ← ∅
6: for c ∈ C do
7: e← arg mine∈E(c) w(e)
8: if e 6= ⊥ then
9: M ←M ∪ {e}

10: end if
11: end for
12: C ← C[M]
13: F ← F ∪M
14: end for
15: return F
16: end function

5.2 Adaption as a two-party computation protocol

Now we transform the described algorithm into a protocol for two-party computation. After
each of the blog2 nc iterations, every party knows the current state of the partitioning C,
and the set F of edges already selected for the MSF. The only remaining question is how
to securely compute the best incident edge e for every component c ∈ C.

This problem can be easily solved as follows: For each c ∈ C, every party p can locally
compute the best edge e(p) ∈ E(p) going out of c. Then, in order to find the overall best
edge in E(1) ∪ E(2), it suffices to compare the best edge e(1) from E(1) with the best edge
e(2) from E(2). This can be done by secret-sharing the two values w(e(1)) and w(e(2)),
and comparing them securely (i.e., testing which one of them is the smaller one). The
result of this comparison can be revealed, and the party owning the better edge sends all
information about this edge (its endpoints and its weight) to the other party. Both of them
can then add this edge to M .

Protocol 3 (which implements Functionality 1) formalizes this procedure. It assumes
that each party p is given its set of edges E(p) ⊆ E (p) s.t. no weight occurs in more than
one edge in E(1) ∪ E(2), and that an MSF sampled from MSF(V,E(1) ∪ E(2)) needs to be
returned. Note that we also assume that the initial partitioning is C = V , i.e., each vertex
is in its own partition. This is just to simplify the analysis of Protocol 3 and its comparison

23

with Algorithm 2, and the protocol would also work if the initial partition C implies that
two or more vertices are already merged.

Protocol 3 Adaption of Borůvka’s MSF algorithm as a two-party protocol

1: Public: Partitioning C = V of a finite set of vertices V ⊆ V
2: Precondition: There are no two edges e, e′ ∈ E(1) ∪ E(2), e 6= e′ with w(e) = w(e′)
3: protocol BorůvkaMSF(E(1), E(2))
4: F ← ∅
5: for i = 1, . . . , blog2 |V |c do
6: M ← ∅
7: for c ∈ C do
8: Party p: e(p) ← arg mine∈E(p)(c) w(e) (for both p = 1, 2)
9: Jv(1)K← Share1(w(e(1))) and Jv(2)K← Share2(w(e(2)))

10: if Reveal(Jv(1)K < Jv(2)K) then
11: Party 1 sends e(1) to Party 2
12: M ←M ∪ {e(1)}
13: else if v(2) <∞ then
14: Party 2 sends e(2) to Party 1
15: M ←M ∪ {e(2)}
16: end if
17: end for
18: C ← C[M]
19: F ← F ∪M
20: end for
21: return F
22: end protocol

Note that if a party p does not find any edge going out of c, we assume that it defines
e(p) = ⊥, and w(e(p)) = ∞. Thus, if the other party still has an edge incident to c, then
the other’s weight will definitely be smaller than ∞. If none of the parties found any edge
(i.e., v(1) =∞ = v(2)), then this information can be communicated and no party sends any
edge to the other one.

The only difference between the two-party Protocol 3 and the one-party Algorithm 2
is the way in which edges are selected. However, the protocol guarantees that we always
choose the best edge from (E(1) ∪ E(2))(c). Therefore, this protocol imitates Algorithm 2
on edges E(1) ∪ E(2), and inherits its correctness.

24

5.3 Security

Despite revealing the edges and the comparison results during the course of the protocol,
Protocol 3 is secure, as we show in Theorem 1. This is because given the full MSF returned
by the protocol, it is possible to infer all comparison results and edges sent in each step.

Theorem 1. Protocol 3 privately computes Functionality 1 in the semi-honest security
model if no edge weight occurs more than once in the combined input.

Proof. A view view1 in this protocol consists of (E(1), q1, . . . , qblog2 |V |c), where qi is the view
corresponding to one of the iterations. Thus, qi = (sc, ec)c∈Ci is comprised of all comparison
results and edges sent in iteration i, with Ci being the current state of the partitioning in
iteration i. Note that we did not add secret shares themselves to the view, for the simple
reason that they are always completely random-looking (and independent of each other).
Thus, a simulator can just insert a random value for each secret-share in the view, and this
always has the correct distribution.

A simple simulator S(E(1), F) (for party 1, a simulator for party 2 works in an analogous
way) that only requires input E(1) and the MSF F returned by Protocol 3 in its input can
be defined in the following way: S simulates the Protocol 3 pretending that party p’s input
was F (p) := {({u, v}, w∗, p∗) ∈ F | p∗ = p}. Informally, F (p) contains the set of MSF edges
that belong to party p, and we are going to show that it makes no difference whether the
input to the protocol was (E(1), E(2)) or (F (1), F (2)).

We need to show that the output (E(1), q′1, . . . , q
′
blog2 |V |c

) of S is exactly the same as
view1, where q′i = (s′c, e

′
c)c∈C′i , with C ′i being the current partitioning state within the

simulator in iteration i. In order to do this, we need to show qi = q′i for any iteration i.
Because the real partitioning state C1, and the simulated partitioning state C ′1 are both
equal to V in the first iteration, they are also equal to each other (Ci+1 = C ′i+1) in iteration
i+ 1 if we prove qi = q′i for every i under the assumption Ci = C ′i.

Therefore, it suffices to show that for every i, if Ci is the current partitioning state,
then the comparison result s′c is the same as sc, and that e′c = ec for every c ∈ Ci.
So assume that the protocol is trying to find the best edge going out of c ∈ Ci. Let
e(p) ← arg mine∈E(p)(c) w(e) be the edge selected by party p in the real execution. Let
e′(p) ← arg mine′∈F (p)(c) w(e′) be the best edge selected by party p in the simulation of S.

Assume that in the real world, the comparison is true, i.e., sc = 1, and we had w(e(1)) <
w(e(2)). Then, e(1) was sent to party 2 and it must have been added to F (1). Thus, the
edge e′(1) selected by the simulator must be at least as good as e(1): w(e′(1)) ≤ w(e(1)). In
addition, we can’t have the strict inequality w(e′(1)) < w(e(1)) (because e′(1) ∈ F (1) ⊆ E(1)

25

would have a smaller weight than e(1), a contradiction to the minimality of e(1)). Similarly,
we know that w(e′(2)) ≥ w(e(2)), and combining these relations yields

w(e′(1)) = w(e(1)) < w(e(2)) ≤ w(e′(2)).

This means that the simulator determined the correct result s′c = 1 of the comparison
between the edges selected by the two parties for component c. Because the weights of e′(1)

and e(1) are equal, by uniqueness of edge weights, we also have e′(1) = e(1). This means
that the edge e′(1) added to the view by the simulator is exactly the same as the real edge
e(1) that party 1 sent to party 2.

If w(e(1)) ≥ w(e(2)) (i.e., sc = 0), then for an analogous reason, we also have w(e′(1)) ≥
w(e′(2)), and e′(2) = e(2), thus showing that the simulator always produces the correct
comparison result, and the correct edge sent by one of the parties to the other.

Communication cost

Let B be the bitlength used for edge weights. This imposes the restriction of any weight
being in the range [0, 2B). A typical implementation could reserve weight 2B − 1 for
encoding the value ∞ to indicate that no such edge exists at all.

There are blog2 |V |c iterations of the outer loop. Within each such iteration, all compo-
nents c ∈ C can be processed simultaneously because they do not depend on each other’s
results. For any c ∈ C, the protocol first needs to share v(1) and v(2) in one round, then run
Jv(1)K < Jv(2)K, which takes dlog2Be + 1 rounds, and revealing its result requires another
round. Afterwards, one of the parties might need to send an edge to the other party,
which can be done in plaintext and does not require any multiplication, but still adds one
communication round to the cost.

The total communication cost is dominated by the comparisons Jv(1)K < Jv(2)K. For
every component c ∈ C, such a comparison only needs to be performed once (if nobody has
any incident edge, i.e., v(1) =∞ = v(2), in iteration i, then nobody will have any incident
edge in iteration i+ 1 either, therefore making it unnecessary to re-run the comparison in
the next iteration if no edge was added). Over the course of the whole protocol, there will
be less than 2|V | different components in C: Initially, there are |V | components, and each
of the < |V | merges can create only one new component. Every comparison requires O(B)
multiplications, and therefore the total communication cost is bounded by O(|V | ·B).

Number of rounds: ≤ blog2 |V |c · (dlog2Be+ 4)

Total communication: O(|V | ·B)

26

Chapter 6

Issues arising from edges with the same
weight

Borůvka’s algorithm itself (even in a local one-party computation as in Algorithm 2) does
not necessarily work correctly if the minimum spanning forest is not unique (i.e., there must
be at least two edges with the same weight). The problem is that in a single iteration, there
might be a cycle of edges added to the set of edges forming the minimum spanning forest.
For example, look at the fully connected graph with n = 3 vertices and equal weights on
all edges. In the first (and only) iteration, the algorithm may choose for every vertex any
of the two incident edges, as all of them have the same weight. Thus, it may choose all
three edges simultaneously, which produces a cycle and clearly contradicts the definition
of a minimum spanning forest.

For the one-party algorithm, this problem can be addressed by using any arbitrary
tie-breaker. This could for example be the index of the edge in the array of all edges, or
a random secondary weight s.t. no two edges share the same value. Now, whenever two
edges have the same weight, they can still be compared by looking at the tie-breaker which
implicitly defines a total ordering on the set of all edges.

Doing this guarantees that Borůvka’s algorithm finds a minimum spanning forest.
Which of the MSFs is returned (in case of non-uniqueness of the MSF) depends on the
tie-breaker used. For example, using a deterministic tie-breaker like the index of the edge
results in a deterministic MSF. In some cases, one might want to find a random minimum
spanning forest by choosing random secondary weights, as in our randomized definition of
MSF(V,E).

27

6.1 Leaky tie-breaker for two-party protocols

A similar solution works for finding a minimum spanning forest in a graph with non-unique
edge weights with a two-party protocol. Protocol 3 can be adapted in a straightforward
way to add tie-breakers to the comparison of two edges. However, this may result in some
undesired leakage of information. This is because the tie-breaker value itself needs to be
part of the output of the protocol. Only if this is done, will the simulator be able to
correctly reconstruct the view of a party given the output and this party’s input.

If this leakage is acceptable, tie-breakers π can be computed in the following way: In
the beginning, every party assigns the value of π to each of its edges (for example, an
index, or a unique random value). Now, whenever two edges need to be compared (which
can happen locally when a party needs to find the best incident edge, or securely when
the parties compare their respective edges), it needs to be possible to do this using only
the two weights and the tie-breaker π. There must be a secure two-party computation
protocol for computing the result of such a comparison. When the owner of an edge e
needs to share it in plaintext (because it turns out that it is part of the desired minimum
spanning forest), both the endpoints r(e) and the weight w(e), and the tie-breaker π(e)
need to be published.

This tie-breaking process preserves security of the two-party protocol: Given the addi-
tional data π that is sufficient for inferring the total ordering of the edges, the simulator
can correctly determine the order in which the edges where added (like in Theorem 1 for
the case of unique edge weights).

Examples for possible tie-breakers computable in this fashion include:

• Every party i randomly permutes its edges and then uses their new indices as the
tie-breaker π. Now, two edges are compared (1) by weight, (2) by permutation index,
and (3) by the index of the edge’s owner (i.e., 1 or 2, depending on which party the
edge belongs to).

The disadvantage of this method is that it may be slightly biased towards edges
belonging to one of the two parties, and that the permutation indices of the edges
in the final MSF that belong to each of the parties are revealed. This might reveal
information about the number of edges that each party owns.

• It is also possible to assign long random tie-breakers π to all edges. Note that π will
not necessarily need to be a permutation E → [|E|], but it suffices if π(e) 6= π(e′) for
all distinct edges e, e′ ∈ E, e 6= e′. With long random values of π(e) for all e ∈ E, if

28

the bitlength of these values is large enough, the probability of two edges having the
same value can be made negligibly small.
The corresponding leakage reveals less information about the number of edges owned
by the other party than the previous method. A completely random tie-breaker π
might even intuitively sound like it doesn’t give anything away. However, this is not
true: for example, if a party has a lot of edges of a specific weight w∗ that are added
to the MSF, it is likely that many of these edges have a low tie-breaker value π(·). If
there are not many edges of w∗, but they are still added to the minimum spanning
forest (e.g. because w∗ is small), then their values of π can have a “more uniform”
distribution, i.e., they have larger tie-breaker values. Thus, the additional leakage
can reveal something about the edges owned by the other party, and this additional
information gained is hidden behind the seemingly random secondary weights.

• One approach that doesn’t require any randomness is the following: Use the indices
of the two endpoints of an edge, or secondarily the number of the owning party (i.e.,
1 or 2) as its tie-breaker. That is, if two edges e and e′ with r(e) = {u, v} and
r(e′) = {u′, v′} have equal weight w(e) = w(e′), then they are compared by u and
u′. If u = u′, then they are compared by v and v′. If these indices are still equal,
then the edge that belongs to party 1 is defined to be the smaller one.
This approach does not have any additional leakage (because all information by which
two edges are compared, including its weight, endpoints, and owning party, are always
given in the output, even without a tie-breaker). However, in many scenarios it might
be undesirable to use such a deterministic tie-breaker, as it is heavily biased towards
vertices with smaller indices if there many duplicated edge weights.

6.2 Omitting tie-breaker from the output

Since the goal is to only compute the minimum spanning forest, leaking any additional
graph information might not be acceptable for certain use cases. This is the reason why
we are looking for a protocol that only outputs the minimum spanning forest without any
other information. One very apparent solution that might seem correct is to just leave
away the additional tie-breaker information from the output. For example, assume that
each party assigns random secondary weight π(·) to all its edges, and when sharing an edge
e in plaintext with the other party, they only transmit the endpoints r(e) and the original
weight w(e), not the random tie-breaker π(e).

Now, since the tie-breaker values were selected in a uniformly random way, a potential
simulator (that only sees the minimum spanning forest without the tie-breaker π) could

29

1 2 3 4e1 e2 e3

e4

1 2 3 4e1 e2 e3

ẽ4

Figure 6.1: Two different graphs that can be distinguished when the tie-breaker π is leaked.
Party 1’s input E(1) = {e1, e2, e3} consists of the thick edges, while party 2’s input consists
of either E(2) = {e4} (in the left graph) or Ẽ(2) = {ẽ4} (in the right graph). To show that we
can distinguish between the two graphs, we calculate the probabilities of the MSF consisting
of exactly the thick edges (i.e., E(1)) and simultaneously satisfying π(e1) < π(e2) < π(e3).

assign random values for π on its own and compute the views accordingly. While for a
fixed input, the distribution of such a simulated view sounds like it should be the same as
the real distribution of all views producing this minimum spanning forest, this is actually
not the case for all possible inputs. In fact, it can be proven that there are different input
pairs which have a different distribution of views, even with the same overall protocol
output. Thus, given any simulator, it is possible to computationally distinguish between
its simulation and the real distribution of views on at least one of these inputs. As a result,
no correct simulator can exist.

Theorem 2. Assume that there is a protocol Π implementing Functionality 1. This means
that the protocol returns MSF(V,E, π) for a uniformly random π : E → [|E|]. If one of the
parties p is able to determine the relative ordering of the edges in E(p) that were selected
for the MSF (i.e., MSF(V,E, π) ∩ E(p)) w.r.t. π, then this protocol is not secure.

Proof. W.l.o.g. assume that party 1 is able to infer the relative ordering of their own edges
that were selected for the MSF. We show that there is no simulator for party 1 satisfying
the necessary conditions for semi-honest security (Definition 2).

We construct two graphs that we will be able to distinguish, even when the same MSF
is returned by protocol Π. They are shown in Figure 6.1. In both graphs, we have four
vertices V = {1, 2, 3, 4}, and the input of party E(1) is always defined as E(1) = {e1, e2, e3},
where r(e1) = {1, 2}, r(e2) = {2, 3}, and r(e3) = {3, 4}. The difference is that, in the
first graph, party 2 has the single edge E(2) = {e4} with r(e4) = {1, 3}, while it has the
single edge Ẽ(2) = {ẽ4} with r(ẽ4) = {2, 4} in the second graph. All weights w(e) = 0 (for
e = e1, e2, e3, e4, ẽ4) are equal. This is why the generated MSF crucially depends on the
chosen permutation π.

For a π : E(1) ∪ E(2) → [4], let F (π) := MSF(V,E(1) ∪ E(2), π) be the MSF generated
in the first graph on tie-breaker π. For a π : E(1) ∪ Ẽ(2) → [4], let F̃ (π) := MSF(V,E(1) ∪

30

E(2), π) be the MSF generated in the second graph on tie-breaker π.

For the purpose of a contradiction, assume that there is a simulator S for party 1
fulfilling semi-honest security, and that the protocol’s output will be E(1). We know that it
is possible (by assumption) to efficiently compute π|E(1) given viewΠ

1 . Thus, we may assume
that simulator S computes π|E(1) instead of the complete view. Then, by equation (3.1),

|Pr[D(S(1κ, E(1), F (π)), F (π)) = 1]− Pr[D(π|E(1) , F (π)) = 1]| ≤ negl(κ) (6.1)

|Pr[D(S(1κ, E(1), F̃ (π)), F̃ (π)) = 1]− Pr[D(π|E(1) , F̃ (π)) = 1]| ≤ negl(κ) (6.2)

where π : E(1) ∪ E(2) → [4] (or π : E(1) ∪ Ẽ(2) → [4] in case of the second graph) is the
uniformly random permutation of all edges, and π|E(1) : E(1) → [3] is the relative ordering
restricted to edges E(1).

We construct a distinguisher D as follows: D(π|E(1) ,M) returns 1 iff M = E(1) and
π(e1) < π(e2) < π(e3). That is, D returns 1 iff the MSF returned by the protocol consists
exactly of edges E(1), and they are ordered by the tie-breaker π as π(e1) < π(e2) < π(e3).
Note that π(e1) < π(e2) < π(e3) can be efficiently checked by D as it is equivalent to
π|E(1)(e1) < π|E(1)(e2) < π|E(1)(e3), and D has knowledge of π|E(1) .

Note that the generated MSF for the first graph is equal to E(1) (i.e., MSF(E(1) ∪
E(2), π) = E(1)) iff π(e1) < π(e4) and π(e2) < π(e4). The probability for this happening
(over the random choice of π) is exactly 1

3
. Similarly, the probability of MSF(E(1) ∪

Ẽ(2), π) = E(1) over the random choice of π is exactly 1
3
. In other words, no matter

whether party 2’s input is E(2) or Ẽ(2), the probability for the MSF containing exactly the
edges E(1), but not the edge provided by party 2, is exactly 1

3
.

Thus, the probability of the distinguisher returning 1 must be the same, regardless of
whether party 2 was providing e4 or ẽ4:

Pr[D(S(1κ, E(1), F (π)), F (π)) = 1]

= Pr[F (π) = E(1) and D(S(1κ, E(1), E(1)), E(1)) = 1]

=
1

3
· Pr[D(1κ, S(E(1), E(1)), E(1)) = 1]

= Pr[F̃ (π) = E(1) and D(S(1κ, E(1), E(1)), E(1)) = 1]

= Pr[D(S(1κ, E(1), F̃ (π)), F̃ (π)) = 1]

Combined with the two inequalities (6.1) and (6.2), we may conclude that D is unable
distinguish between the two scenarios (if Π were secure):

|Pr[D(π|E(1) , F (π)) = 1]− Pr[D(π|E(1) , F̃ (π)) = 1]| ≤ negl(κ). (6.3)

31

However, this does not hold:

• D(π|E(1) , F (π)) returns 1 for exactly two permutations of π: π(e1) < π(e2) < π(e3) <
π(e4) and π(e1) < π(e2) < π(e4) < π(e3).

• D(π|E(1) , F̃ (π)) returns 1 for exactly one permutation of π: π(e1) < π(e2) < π(e3) <
π(ẽ4).

Thus, the difference between the two probabilities in equation (6.3) is 1
4!
, which is a constant

and therefore not negligible.

In conclusion, the assumed simulator cannot exist, and protocol Π is not secure.

Theorem 2 shows that if the tie-breaker π is supposed to stay secret, but (partial)
information about it is revealed through a party’s view, then this party can be capable of
inferring information about the other party’s input (that it would not have known without
the leakage through the simulator). In particular, even if all values of π are kept secret-
shared, and the protocol is designed in such a way that a party can only infer information
about its own edge ordering, the protocol cannot be secure. This also means that if a
protocol assigns random tie-breaker values (in public) to all edges, but they are not part
of the functionality that is supposed to be computed (e.g. Functionality 1 in this work),
then this protocol is insecure.

Note that in the proof we assumed that Π is perfect, and produces the correct output
with probability 1. However, even if a security parameter λ is used and the protocol
may fail with negligible probability, D can still distinguish between the two graphs with
non-negligible probability.

32

Chapter 7

Building blocks

There is a variety of smaller sub-protocols we will use for computing a random MSF of an
unweighted graph (Protocol 12) and for our fully general MSF protocol (Protocol 15). We
define them here and show their correctness and security (when non-trivial), in order to
keep the later presentations simple.

7.1 Find first

This building block takes a secret-shared list L = [JL0K, JL1K, . . . , JL|L|−1K] of public length,
where each element in L is of the form (JdK, JxK). JdK is an arbitrary secret-shared value
(or multiple values, depending on the application), while JxK is a secret-shared bit. The
output is the first element for which x = 1. If there is no such element (i.e., x is 0 for
each entry in L), then the last element (JL|L|−1K) is returned. This is formally described
by Functionality 4.

Functionality 4 Find first
functionality FindFirst(L)

if x = 0 for all (JdK, JxK) ∈ L then
return JL|L|−1K

else
return JLiK for the smallest i with JLiK = (_, J1K)

end if
end functionality

33

Note that FindFirst(L) returns two secret-shares JdK and JxK. Since secret-shares
always look completely random, the returned share (JdK, JxK) is independent of the shares
JLiK = (JdK, JxK) of selected index i, even though they represent the same values. This
makes it impossible to determine which i is the smallest for which the corresponding JxK
is 1.

Protocol 5 implements this behavior. It depends on the ability to “merge” two con-
secutive elements in L. Such a merge of two entries (JdK, JxK) and (Jd′K, Jx′K) results in
(JdK, JxK) if x = 1 or (Jd′K, Jx′K) otherwise. When doing this repeatedly until L consists
only of one entry, this remaining entry is the overall result.

Protocol 5 Find first
1: protocol FindFirst(L)
2: while |L| > 1 do
3: L′ ← []
4: for i = 0, 2, . . . with i+ 1 < |L| do
5: (JdK, JxK)← JLiK, (Jd′K, Jx′K)← JLi+1K
6: Jd∗K← if JxK then JdK else Jd′K
7: Jx∗K← JxK ∨ Jx′K
8: Append (Jd∗K, Jx∗K) to L′
9: end for

10: Append JL|L|−1K to L′ if |L| is odd
11: L← L′

12: end while
13: return L0

14: end protocol

Theorem 3. Protocol 5 correctly implements Functionality 4.

Proof. We show correctness by induction over increasing |L|.

Assume |L| = 1. In that case JL0K is returned, which obviously fulfills the functionality
regardless of the value of x.

Assume |L| > 1. If x = 0 for all (JdK, JxK) ∈ L, then L′ will also only contain entries
(JdK, JxK) with x = 0. Thus, by induction, the protocol will output JL′|L′|−1]K, which is
equal to JL|L|−1K (whether |L| is odd or not). Otherwise, let i be the smallest index with
JLiK = (_, J1K). Then, JL′b i

2
cK = JLiK and JL′jK = (_, J0K) for all j < b i

2
c. Thus, by

induction, the protocol will output JLiK.

34

Since this protocol is working solely on secret-shares, semi-honest security follows di-
rectly from the security of the secret-sharing scheme, i.e., the GMW protocol in our case.

Communication cost

The cost of communication depend on the size |L| of the given list, and the bitlength B of
a single element in L.

There are exactly dlog2 |L|e iterations of the while-loop, as the number of elements
remaining decreases from n to dn

2
e in every iteration. Note that within every iteration,

all i’s can be processed simultaneously, as they do not depend on each other’s results. In
addition, Jd∗K and Jx∗K can be computed simultaneously. Both the multiplexer and the bit-
or take exactly one round, and therefore each iteration of the while-loop requires only one
round. There are |L| − 1 merge step in total, and each of them uses B + 1 multiplications
(B for the multiplexer, and 1 for the bit-or).

This approach of merging two consecutive elements is much better than a linear scan:
The number of rounds grows only logarithmically with the length of L, while for a linear
scan it would grow linearly.

Number of rounds: dlog2 |L|e

Total communication: O(|L| ·B)

7.2 Secret prefix operations

Assume that we have a list L = [JL0K, JL1K, . . . , JLN−1K] of secret-shares of length N . These
values can be single bits, integers, or data with an arbitrary amount of bits, as long as they
all have the same length. In addition, assume that � is an arbitrary known associative
binary operation on two of those secret-shared values, for which we have a secure semi-
honest protocol (e.g. the logical operator ∨ for bits, or + for integers) which requires r�
communication rounds and c� total communicated bits per invocation. Now we want to
compute shares of JL0K�JL1K�· · ·�JLiK for every i ∈ [N] quickly. If � is an operation that
does not require any communication, this is a very simple task. Otherwise, we might want
to minimize the number of communication rounds, or the total amount of communication.

In order to do this, we can make use of existing algorithms for computing prefix sums
(or other associative operations) in parallel. For example, [20] presents an algorithm for
computing the prefix array with any associative operation in log2N depth and O(N logN)

35

applications of � (if N is a power of 2). As shown in Protocol 6, this can be trivially turned
into a semi-honest protocol for two parties to compute the prefix-� of a list of length N ,
using just r� · log2N rounds of communication and O(c� ·N logN) total communication.

Protocol 6 Prefix-�
1: protocol PrefixArray�(L)
2: for i = 0, 1, . . . with 2i < |L| do
3: for j = |L− 1|, . . . , 0 with j − 2i ≥ 0 do
4: JLjK← JLjK� JLj−2iK
5: end for
6: end for
7: return L
8: end protocol

If the total communication is a bottleneck that needs to be minimized, other parallel
prefix array algorithms can be used, which exchange more rounds for fewer operations.
For example, [24] presents an algorithm using about 2 log2N depth, but on the other hand
only O(N) operations in total.

Communication cost

The cost of communication depends on the length |L| of the given list, and on the cost for
one operation of �.

There are exactly dlog2 |L|e iterations of the outer while loop. All j for one such
iteration can be processed simultaneously, because they do not depend on each other’s
results. Therefore, one outer iteration takes r� rounds. The total communication can be
bounded by the number of rounds, multiplied with |L|, which is a bound for the number
of j’s that the protocol iterates over.

Note that a linear scan (i.e., first computing JL0K⊕ JL1K, then JL0K⊕ JL1K⊕ JL2K, and
so on) would result in a linear number of communication rounds, while for the approach
presented here, this number grows only logarithmically.

Number of rounds: dlog2 |L|e · r�
Total communication: O(|L| · log |L| · c�)

36

7.3 Joint random number generation

It will be necessary to generate a secret random number that is within a range [0, N),
where N ≥ 0 is also a non-negative secret number not known to any party (i.e., it is
secret-shared). If N = 0, it is supposed to return 0. This is shown in Functionality 7.

Functionality 7 Random number generation
functionality RandInt(JNK)

return a secret-shared integer generated uniformly from [0,max(1, N))
end functionality

Our approach, shown in Protocol 8, is the same one as [7, Algorithm 7], which works as
follows: Both parties prepare λ uniformly random numbers [0, 2B), whereB is the bitlength.
They combine them into λ secret-shared random numbers ci. In our secret-sharing scheme,
this comes for free without any communication: each party can take its random number
as its own share, and the XOR of these two shares the secret-shared uniformly random
number ci.

Then, the two parties jointly compute a secret bitmask M from N that has the lowest
` bits set to one, where ` is the highest bit set in N . For every ci, they take the bit-wise
AND of ci and M . If the result is smaller than N , then it is a uniformly random number
in [0, N), otherwise it is rejected. The bit-share JdiK denotes whether ci was accepted or
not.

It suffices if one of the k random numbers is accepted. Finding any of these numbers
is done by making use of the FindFirst-protocol (Protocol 5).

Note that this protocol will abort if (ci ∧M) ≥ N for all i ∈ [λ], while N > 0 (which
is equivalent to M0 = 1). However, M is always smaller than 2N , and therefore the
probability of ci ∧ M being not in [0, N) is at most 1

2
. Repeating this process λ times

ensures that this only happens with probability at most 1
2λ
, i.e., negligible in λ. For a more

detailed correctness and security analysis, refer to [7].

Communication cost

Let B be the bitlength of the bound N , and simultaneously the bitlength of the generated
number. Let λ be the number of repetitions made.

The first step is to compute the prefix-or of the B bits of N , which takes dlog2Be
rounds and O(B logB) total communication. The following for-loop can be executed si-
multaneously for all i, contributing another dlog2Be + 2 rounds (1 for the bit-and, and

37

Protocol 8 Random number generation, following [7, Algorithm 7]
1: protocol RandInt(JNK = JNB−1K, . . . , JN0K)
2: Party 1: ai ← {0, 1}B for i ∈ [λ]
3: Party 2: bi ← {0, 1}B for i ∈ [λ]
4: JciK← ai ⊕ bi
5: [JMB−1K, . . . , JM0K]← PrefixArray∨([JNB−1K, . . . , JN0K])
6: R← []
7: for i ∈ [λ] do
8: JciK← JciK ∧ JMK
9: JdiK← JciK < JNK

10: Append (JciK, JdiK) to R
11: end for
12: (JcK, JdK)← FindFirst(R)
13: if JdK = J0K and JM0K then
14: abort
15: end if
16: return JcK
17: end protocol

dlog2Be + 1 for the comparison) and O(λ · B) communication. The call to FindFirst
then adds dlog2 λe rounds and O(λ ·B) communication.

We assume that the condition JdK = J0K and JM0K is not checked explicitly. Instead
of aborting, we can also let the protocol produce wrong outputs. Alternatively, if this
protocol is used as a building block within a larger protocol, it would also be possible to
first return JcK, and then check in the background whether the condition is true. This
would not add any extra rounds.

Number of rounds: 2dlog2Be+ dlog2 λe+ 2

Total communication: O(B · (λ+ log2B))

7.4 Boolean Matrix Multiplication

In order to test the connectivity of a graph in a low number of communication rounds (see
Section 7.5), we need to be able to compute the product of two n× n-matrices consisting
of shares of single bits.

38

Functionality 9 Boolean Matrix Multiplication of two shared matrices of size n× n each
functionality BMM(JAK, JBK)

return JA ·BK
end functionality

The corresponding protocol is defined in a straightforward way: Assume that the shares
of matrices A and B are given as JAK = (JaijK)i,j∈[n] and JBK = (JbijK)i,j∈[n]. Then, the
returned matrix JCK = (JcijK)i,j∈[n] is computed as JcijK =

∨
k∈[n] aik ∧ bkj.

Communication cost

After computing aik ∧ bkj simultaneously for all i, j, k ∈ [n], the protocol needs to combine
them into

∨
k∈[n] aik ∧ bkj. This can be done for all i, j ∈ [n] simultaneously in dlog2 ne

rounds with exactly n− 1 applications of ∧ for all i, j in a tree-like manner by combining
n
2
pairs of bits in the first round, n

4
bits in the second round, and so on.

Number of rounds: dlog2 ne+ 1

Total communication: O(n3)

7.5 Connectivity

Using Boolean Matrix Multiplication (BMM, see Section 7.4), we can compute the con-
nectivity Conn(C,E) for a public partitioning C of vertices V ⊆ V and a set of edges E
split between the two parties in a low number of rounds, in exchange for relatively high
communication costs. Functionality 10 contains the desired behavior. Note that as for
MSF computation, we require E(1) ⊆ E (1) and E(2) ⊆ E (2). In words, a protocol for this
functionality is required to split the components from C into sets in such a way that two
components are in the same set iff they are reachable from each other on the graph (V,E)
w.r.t. C.

Functionality 10 Connectivity between a subset of components
Public: Partitioning C of a finite set of vertices V ⊆ V
functionality Connectivity(E(1), E(2))

return Conn(C,E(1) ∪ E(2))
end functionality

39

Protocol 11 contains our solution to this problem. The components in C are numbered
from 0 to k − 1, and we denote them by c0, . . . , ck−1. Then, a secret-shared adjacency
matrix A = (aij)i,j∈[k] is created. aij is 1 iff there is an edge between ci and cj (or if i = j).
Since A`ij is 1 iff components ci and cj are reachable from each other using a path with at
most ` edges, and two reachable components need to have a path of length < k between
each other, we only need to compute Ak−1. The resulting matrix tells us for each pair of
vertices whether they are reachable from each other.

Protocol 11 Connectivity between a subset of components
1: Public: Partitioning C = {c0, . . . , ck−1} of a finite set of vertices V ⊆ V
2: protocol Connectivity(E(1), E(2))
3: for i, j ∈ [k] with i 6= j do
4: Party p: a(p)

ij ← E(p)(ci, cj) 6= ∅ (for both p = 1, 2)
5: JaijK← Share1(a

(1)
ij) ∨ Share2(a

(2)
ij)

6: end for
7: JaiiK← J1K for all i ∈ [k]
8: JAK← (JaijK)i,j∈[k]

9: for dlog2(k − 1)e times do
10: JAK← BMM(JAK, JAK)
11: end for
12: A← Reveal(JAK)
13: return {{cj | aij = 1} | i ∈ [k]} (after removing duplicates)
14: end protocol

Theorem 4. Protocol 11 correctly implements Functionality 10.

Proof. By definition of JAK, we have JaijK = J1K iff there is a direct edge between ci and
cj, or if i = j. This means that JaijK = J1K iff there is a path of length ≤ 1 between ci and
cj. For any ` ≥ 1, by using induction and the definition of Boolean Matrix Multiplication,
A` contains a 1 in row i and column j iff there is a path of length ≤ ` between ci and cj.

By the repeated squaring method, after the second for-loop, we have JaijK = J1K iff
there is a path of length 2dlog2(k−1)e ≥ k − 1 between ci and cj, which happens iff there is
any path at all between ci and cj.

Thus, A divides all components into equivalence classes of components reachable from
each other. The return value of Protocol 11 contains for every ci the set {cj | aij = 1} of
components connected to ci. We remove any duplicate sets from {{cj | aij = 1} | i ∈ [k]}

40

(each equivalence class would be added once for every component in it), and therefore this
is by definition of Conn(C,E(1) ∪ E(2)) the required output.

Theorem 5. Protocol 11 privately computes Functionality 10 in the semi-honest security
model.

Proof. Everything up to the Reveal(·)-step is computed on secret-shared bits and there-
fore secure. Thus, it suffices to show that given the output {d0, . . . , d`−1} of the protocol,
we can reconstruct the revealed matrix A.

As shown in Theorem 4, after revealing, matrix A = (aij)i,j∈[k] has aij = 1 iff there is a
path on E w.r.t. C between ci and cj. By definition of Conn(C,E), we know that ci and
cj are in the same set dr iff they are connected to each other, i.e. there is a path w.r.t. C
between them. Thus, a simulator can perfectly reconstruct A by setting aij = 1 iff ci and
cj are in the same set dr.

Communication cost

The protocol consists of one share step, one step in which a bit-or is computed for all
i, j ∈ [n] in order to find aij, dlog2(k − 1)e applications of BMM, and one reveal step.

Number of rounds: dlog2(k − 1)e · (dlog2 ke+ 1) + 3

Total communication: O(k3 log k)

41

Chapter 8

Protocol for unweighted graphs

The protocol presented in this chapter computes a random spanning forest (following Func-
tionality 1) on an unweighted graph (or, alternatively, a graph where every edge has the
same weight).

The main purpose of this protocol is to use it as a building block for the full protocol
(see Chapter 9) on very small subgraphs (more specifically, whenever the computed MSF
contains components connected by edges of the same weight). However, the number of
edges in such a subgraph can be arbitrarily high, and therefore the protocol in this chapter
is designed in such a way that it does not depend on this number (as long as it fits into the
integers of a previously fixed bitlength). The number of edges that a party owns should
not be leaked to the other party. This is the reason that for every pair of vertices and the
index of a party, we only keep track of the number of edges between this pair of vertices
that belong to the given party. From the indices of its chosen edges, each party is able to
select the corresponding edge to add it to the output.

We loosely follow Kruskal’s algorithm [23] for computing a random spanning forest.
As a reminder, this algorithm proceeds as follows: It iterates through all edges in order
of increasing weight, and adds one of them to the minimum spanning forest if the two
endpoints are not already connected by edges that were previously added. Checking this
condition is usually done with a union-find data structure, by merging vertices already con-
nected together to one component. Such a union-find data structure can be implemented
by choosing a root vertex for each component, and letting every vertex in the component
point to the root vertex. The difference between Kruskal’s algorithm and our protocol is
that in our case, all edges have the same weight, and so we simply select a random edge
that we add to the spanning forest and repeat this process for n− 1 times.

42

Protocol 12 shows a formal description of our procedure. We assume that the compo-
nents in the initial partitioning C = {c0, . . . , cn−1} are numbered from 0 to n− 1, and that
there is a weight w∗ s.t. w(e) = w∗ for every e ∈ E(1) ∪ E(2) in the input. The goal is to
compute MSF(C,E(1) ∪ E(2)).

Over the course of the protocol, components will be merged together if an edge between
them has been selected and added to the MSF. For this reason, we store a union-find data
structure: for every i ∈ [n], we define ui to be the index of the root component that ci
belongs to. That is, in the beginning, we have ui = i for all i ∈ [n], and when we merge
along an edge connecting ci and cj, we set the new value of uk to ui for every k ∈ [n] with
uk = uj.

For every pair of components (ci, cj) (0 ≤ i < j < n) and for every party p = 1, 2,
we want to store two secret-shares: (1) the number of edges |E(p)(ci, cj)| that party p
has that connect a vertex from ci with a vertex from cj, and (2) the index of the edge
within E(p)(ci, cj) that has been added to the MSF (if there is any at all). To simplify the
protocol, we “flatten” these arrays by defining d(i, j, p) = (p− 1) · n(n−1)

2
+ j·(j−1)

2
+ i. Note

that d(i, j, p) is a bijection, i.e., for every pair 0 ≤ i < j < n and every p = 1, 2 it assigns
a different index between 0 and N − 1, where N := n · (n − 1) is the total length of the
flattened array (in other words, N is the number of tuples (i, j, p) denoting two different
components 0 ≤ i < j < n and a party p = 1, 2).

We want ad(i,j,p) to be the the number of edges |E(p)(ci, cj)| that party p has that connect
a vertex from ci with a vertex from cj. Thus, at the beginning of the protocol, we secret-
share ad(i,j,p) := |E(p)(ci, cj)|. As soon as ci and cj are connected through edges selected for
the MSF (i.e., ci and cj are merged together, meaning that ui = uj), we set ad(i,j,p) ← 0,
in order to make sure that no edges between ci and cj can be selected anymore.

We let sd(i,j,p) be the index of the edge within E(p)(ci, cj) that has been added to the
MSF. In the beginning, we choose sd(i,j,p) := ⊥ to indicate that no edge from E(p)(ci, cj)
has been added to the MSF yet.

As in Kruskal’s algorithm, we add an edge to our spanning forest in the main loop
(line 9) at most n− 1 times. To do this, we compute the prefix sum Az = a0 + · · ·+ az of
the az’s. Then, AN−1 = a0 + · · · + aN−1 contains the total number of edges for which the
two endpoints have not been merged yet into the same component. We choose a random
number r ∈ [AN−1] that corresponds to the edge that we are selecting in this iteration.
This can be done using the RandInt protocol (line 11). Then, we want to find the edge
that this r corresponds to, i.e., the z̃ = (̃i, j̃, p̃) for which Az̃−1 ≤ r < Az̃. This is equivalent
to the first z̃ fulfilling r < Az̃. Thus, we can call the sub-protocol FindFirst to find the
first z for which gz := Az > r is true (line 13).

43

Protocol 12 Random Spanning Forest for an unweighted graph
1: Public: Partitioning C = {c0, . . . , cn−1} of a finite set of vertices V ⊆ V
2: Precondition: There is a w∗ ∈ N with w(e) = w∗ for every e ∈ E(1) ∪ E(2)

3: protocol UnweightedSF(E(1), E(2))
4: JuiK← i ∀i ∈ [n]
5: for 0 ≤ i < j < n and p = 1, 2 do
6: Jad(i,j,p)K← Sharep(|E(p)(ci, cj)|)
7: Jsd(i,j,p)K← ⊥
8: end for
9: for n− 1 times do

10: [JA0K, . . . , JAN−1K]← PrefixArray+([Ja0K, . . . , JaN−1K])
11: JrK← RandInt(JAN−1K)
12: JgzK← JAzK > JrK ∀ z ∈ [N]
13: ((JũK, JṽK), Jg̃K)← FindFirst([(JuiK, JujK), JgzK]d(i,j,p)=z∈[N])
14: if Reveal(g̃) is false then break end if
15: for 0 ≤ i < n do
16: JuiK← if JuiK = JṽK then JũK else JuiK
17: end for
18: for d(i, j, p) = z ∈ [N] do
19: JazK← if JuiK = JujK then 0 else JazK
20: JszK← if JgzK ∧ ¬Jgz−1K then JrK− JAz−1K else JszK . g−1 = 0, A−1 = 0
21: end for
22: end for
23: F ← ∅
24: for 0 ≤ i < j < n and p = 1, 2 do
25: Send Revealp(sd(i,j,p)) to party p
26: if party p determines that sd(i,j,p) 6= ⊥ then
27: Party p: e← sd(i,j,p)-th element from E

(p)
ij

28: Party p sends e to the other party
29: F ← F ∪ {e}
30: end if
31: end for
32: return F
33: end protocol

44

Next, all ui with ui = uj̃ are updated to uĩ (line 16). This makes sure that for all i, j
where ci are merged together, we have ui = uj. In addition, for all merged components
ci, cj, we set ad(i,j,1) and ad(i,j,2) to 0 (line 19). Finally, sz̃ is updated to r −Az̃−1 (line 20).
This is the value that corresponds to the index of the selected edge selected from E(p̃)(cĩ, cj̃).

At the end of the protocol (line 24), sd(i,j,p) is revealed to party p for all i and j. If p
notices that one of their edges between ci and cj was selected (sd(i,j,p) 6= ⊥), they send the
corresponding edge to the other party. The final output is the set of all selected edges.

8.1 Correctness and Security

The correctness is based on the following lemma, which states that a random MSF can
be found as done in Protocol 12: selecting a uniformly random edge between two un-
merged components, and then continuing to find an MSF on the partitioning where the
two endpoints have been merged.

Lemma 2. Let G = (V,E) be an unweighted graph (i.e., there is a weight w∗ ∈ N
s.t. w(e) = w∗ for all e ∈ E) and C a partitioning of V s.t. E(C) 6= ∅. Then, choos-
ing a uniformly random edge e from E(C) and returning {e}∪MSF(C[e], E) has the same
output distribution as MSF(C,E).

Proof. Note that the described procedure is equivalent to choosing a uniformly random
e ∈ E(C), a uniformly random π ∈ E!, and returning {e} ∪MSF(C[e], E, π). In addition,
the return value of MSF(C,E) is equivalent to selecting a uniformly random τ ∈ E! and
returning MSF(C,E, τ).

Note that there are |E(C)| · |E|! possible ways for choosing a pair (e, π), and there are
|E|! possible ways for choosing a permutation τ . Thus, in order to prove this lemma, it
suffices to assign |E(C)| different pairs (e, π) to every fixed permutation τ (with each (e, π)
being assigned to only one τ) s.t. the two outputs {e}∪MSF(C[e], E, π) and MSF(C,E, τ)
are equal.

For a fixed pair (e, π) ∈ E(C) × E!, we can construct a permutation τ ∈ E! s.t. e
becomes the best edge among all E(C) according to τ , and the positions of the other edges
from E(C) are changed in such a way that they retain their relative ordering:

(a) e is the best edge from E(C) according to τ : e = arg mine′∈E(C) τ(e′),

(b) all other edges in E(C) maintain their ordering: π(e′) < π(e′′) ⇔ τ(e′) < τ(e′′) for
all e′, e′′ ∈ E(C) \ {e}, and

45

(c) all edges that are not in E(C) maintain their assigned index in the permutation:
π(e′) = τ(e′) for all e′ /∈ E(C).

Note that this defines a unique τ for any given pair (e, π), and every τ is constructed from
exactly |E(C)| different pairs. Thus, it suffices to show that for a pair (e, π) ∈ E(C)× E!
and corresponding τ ∈ E!, the following two MSFs are equal:

M := MSF(C[e], E, π) ∪ {e} = MSF(C,E, τ) =: F.

Note that M is a spanning forest of G on partitioning C.

Assume that this equality does not hold, and let e′ be the best edge (w.r.t. τ) that is
contained in one of F and M , but not both. There are two cases:

(1) e′ ∈ F , but e′ /∈ M . We can add e′ to M in order to obtain M ′. If this does not
create a cycle on C, M was not a spanning forest. If it does create a cycle, all edges
in it are better than e′ w.r.t. π (otherwise M was not minimum).

We are going to show that any edge e′′ 6= e′ on the cycle is also contained in F ,
which proves that F also contains a cycle on C, a contradiction to the fact that F is
a spanning forest. To do this, it suffices to show that τ(e′′) < τ(e′). Then, because
e′ is the best edge w.r.t. τ on which F and M differ, e′′ must also be contained in F .

Note that e′′ must be in E(C), otherwise it could be removed from M , and the
result would still be spanning. In addition, e′ must be in E(C), otherwise it could
be removed from F , and the result would still be spanning.

We also know that e′ 6= e (because of e′ /∈M). There are two cases:

• e′′ = e. Then, by condition (a), we have τ(e′′) < τ(e′).

• e′′ 6= e. Then, by condition (b), τ(e′′) < τ(e′) follows from π(e′′) < π(e′) (since
by assumption, all edges in the cycle, including e′′, are better than e′ w.r.t. π).

(2) e′ ∈M , but e′ /∈ F . We can add e′ to F in order to obtain F ′. If this does not create
a cycle on C, F was not a spanning forest. If it does create a cycle, all edges in it
must better than e′ w.r.t. τ (otherwise F was not minimum). Thus, since e′ is the
best edge w.r.t. τ on which F and M differ, the whole cycle is contained in M as
well, which contradicts the fact that M is a spanning tree.

Using this lemma, we can now prove the correctness of Protocol 12.

46

Theorem 6. Protocol 12 correctly implements Functionality 1 if all edges in the input have
the same weight.

Proof. Note that before and after each iteration of the main loop, there is a current parti-
tioning D of V , which is at least as coarse as C (i.e., for every c ∈ C there is a d ∈ D with
c ⊆ d) fulfilling the following requirements:

(1) For every d ∈ D, there is a “root” component ci ⊆ d, s.t. uj = i for all cj ⊆ d.

(2) For any 0 ≤ i < j < n with ui = uj (i.e., ci and cj have been merged) we have
ad(i,j,1) = ad(i,j,2) = 0. If ui 6= uj, then we have ad(i,j,p) = |E(p)(ci, cj)| for p = 1, 2.
In other words, ad(i,j,p) is initially the number of edges that party p owns between
components ci and cj, but it is set to 0 as soon as components ci and cj are merged
together.

These requirements trivially hold before the first iteration of the main loop by choosing
D := C. The root of a component ci is ui = i itself. During an iteration, if the protocol
selects an edge e, then the new partitioning will be D′ := D[e].

Now we are going to show the correctness by induction in the opposite direction as how
the protocol proceeds. We show that the following invariant holds after the last iteration
of the for-loop, and that it must also hold if we go back one iteration: the protocol is going
to output all edges E(p)(ci, cj)[sd(i,j,p)] (i.e., the sd(i,j,p)-th edge in E(p)(ci, cj) according to
an arbitrary ordering) for which sd(i,j,p) 6= ⊥, combined with MSF(D,E), a random MSF
on the remainder of the graph. In other words, the output of the protocol will be

{E(p)(ci, cj)[sd(i,j,p)] | 0 ≤ i < j < n, p = 1, 2 with sd(i,j,p) 6= ⊥} ∪MSF(D,E).

This trivially holds after the last iteration of the main loop, because either the loop
terminated due to g̃ = 0 (which means that there are no edges remaining in E(D)), or
n− 1 iterations have taken place (as exactly one edge has been selected in each iteration,
all components must have been merged already). Thus, MSF(D,E) = ∅.

Now, for the induction step, let sd(i,j,p) andD be the selected indices and the partitioning
before the current iteration, and let s′d(i,j,p) and D′ be the selected indices and the new
partitioning after the current iteration. By induction hypothesis, we know that after the
current iteration, the actual output will be

{E(p)(ci, cj)[s
′
d(i,j,p)] | 0 ≤ i < j < n, p = 1, 2 with s′d(i,j,p) 6= ⊥} ∪MSF(D′, E),

47

and we need to show that including the current iteration, the protocol will output

{E(p)(ci, cj)[sd(i,j,p)] | 0 ≤ i < j < n, p = 1, 2 with sd(i,j,p) 6= ⊥} ∪MSF(D,E).

As the protocol chooses a uniformly random r ∈ [a0 + · · ·+ aN−1] that corresponds to
an edge e ∈ E(p̃)(cĩ, cj̃), we may use Lemma 2 on partitioning D to see that MSF(D,E) =
{e}∪MSF(D′, E) (i.e., we can first sample the randomly selected edge e, and then continue
to calculate an MSF on the graph after we merged along e). In addition, s′

d(̃i,j̃,p̃)
is set to

the index in E(p̃)(cĩ, cj̃) corresponding to e, and s′d(i,j,p) stays the same as before (i.e.,
s′d(i,j,p) = sd(i,j,p)) for all (i, j, p) 6= (̃i, j̃, p̃). In conclusion,

{E(p)(ci, cj)[s
′
d(i,j,p)] | 0 ≤ i < j < n, p = 1, 2 with s′d(i,j,p) 6= ⊥} ∪MSF(D′, E))

= {E(p)(ci, cj)[sd(i,j,p)] | 0 ≤ i < j < n, p = 1, 2 with sd(i,j,p) 6= ⊥} ∪ {e} ∪MSF(D′, E)

= {E(p)(ci, cj)[sd(i,j,p)] | 0 ≤ i < j < n, p = 1, 2 with sd(i,j,p) 6= ⊥} ∪MSF(D,E).

By induction, before running the first iteration of the main loop, we know that the
output will simply be MSF(C,E). This is because sd(i,j,p) = ⊥ for all 0 ≤ i < j < n and
p = 1, 2, and initially we have D = C.

Theorem 7. Protocol 12 privately computes Functionality 1 in the semi-honest security
model if all edges in the input have the same weight.

Proof. As most computations happen on secret-shared values, the security of this protocol
is very simple. It suffices to prove that there is a simulator that is able to efficiently
reconstruct all values that are revealed during the protocol.

The only values revealed are g̃ to check whether the main loop can be aborted, the
value of sd(i,j,p) (which is only revealed to party p), and all the edges that are sent and
added to F .

• Given the final protocol output F , every party knows that exactly |F | full iterations
have taken place. This is because every iteration (that is not aborted due to g̃ = 0)
adds exactly one edge to the MSF. In all iterations where an edge has been selected
we have g̃ = 1, and in an aborted iteration we have g̃ = 0.

• Let 0 ≤ i < j < n and p = 1, 2. Then, the simulator of party p can check whether
there is a an edge e ∈ F belonging to party p that connects components ci and cj.
If this is not the case, then sd(i,j,p) must have been ⊥. Otherwise, the simulator can
simply search for the unique edge e′ ∈ E(p)(ci, cj) with r(e′) = r(e) and output its
index w.r.t. E(p)(ci, cj).

48

• Any edges that are sent and added to F are already contained in the output F
themselves. Thus, there is no need for the simulator to recompute them.

Communication cost

The dependencies of the secret-shared values in Protocol 12 on each other are more difficult
to analyze than in the previous protocols. However, it is still possible to find an exact
formula for the number of rounds in a binary-secret-shared setting. Let n := |C| be the
number of components in the input, N := n · (n− 1) the number of triples (i, j, p), B the
bitlength of values containing numbers of edges (i.e., the total number of edges needs to be
bounded by 2B), and λ the number of repetitions made in every call to RandInt. Note
that the bitlength of the ui’s can be set to dlog2 ne, as this is enough to hold all possible
indices from 0 to n− 1, i.e., indices for the n initial components.

In the beginning, 1 round is required for sharing the az’s. We assume that all n − 1
iterations of the main loop are executed, i.e., no early termination occurs. Then, in every
iteration, the following secret-shares need to be computed in sequential order, because each
of them depends on the previous one:

(1) JAiK for i ∈ [N]. This is computed using PrefixArray+, which takes dlog2Ne ·
(dlog2Be+ 1) rounds.

(2) JrK, which requires a call to RandInt with 2dlog2Be+ dlog2 λe+ 2 rounds.

(3) gz for all z ∈ [N]. This can be done in parallel for all z, so all together it takes only
dlog2Be+ 1 rounds.

(4) ((JũK, JṽK), Jg̃K) is computed using FindFirst, taking dlog2Ne rounds.

(5) For every i ∈ [n], the protocol computes whether JuiK = JṽK, which takes dlog2dlog2 nee
rounds.

(6) Then, for every i ∈ [n], a multiplexer is used to compute the new value of JuiK, taking
one round.

(7) For every d(i, j, p) = z ∈ [N], the protocol computes (in parallel) whether JuiK = JujK.
This takes dlog2dlog2 nee rounds.

49

(8) Then, for every d(i, j, p) = z ∈ [N], the new value of JazK is constructed by using a
multiplexer, which contributes another round.

Note that we ignored the rounds required for computing sz here. This is because it can
already be started as soon as step (3) is finished. sz requires 1 round for computing
JgzK ∧ ¬Jgz−1K, which can be done in parallel to JrK − JAz−1K, which takes dlog2Be + 1
rounds. Then, the multiplexer for assigning the new value of sz adds another round for a
total of dlog2Be+ 2. This is less than one full computation of steps (1)-(8).

The protocol can also be optimized using the following observation: in the last iteration
(the (n− 1)-th one), it is not necessary to actually perform steps (4)-(8), as afterwards ui
and az are not used anymore. However, the steps for computing sz (and its dependencies
(1)-(3)) still need to be performed in the last iteration. This means that in the main loop,
in total we need to run n−1 times steps (1)-(3), n−2 times steps (4)-(8), and one additional
time dlog2Be + 2 for computing sz in the last iteration. Before the main loop, we need
one round for sharing the values of az, and after the main loop, we need to add two more
rounds for revealing the sz’s, and then sending the corresponding edges in plaintext.

The total number of multiplications is dominated by PrefixArray+ (with O(N ·
logN · B · logB) multiplications per iteration) and RandInt (with O(B · (λ + logB))
multiplications per iteration). In our upper bound, we replace N by n2.

Number of rounds:

(3n− 2)dlog2Be
+(2n− 3)dlog2Ne
+(2n− 4)dlog2dlog2 nee
+(n− 1)dlog2Ne · dlog2Be
+(n− 1)dlog2 λe
+5n− 2

Total communication: O(n ·B · (λ+ logB · n2 log n))

8.2 Optimization for the case |C| = 2

If C consists of only two components C = {c, c′}, then it is unnecessary to run the full
Protocol 12, as it consists of many steps that are redundant in this case. This is because
the two parties only need to select a random edge from (E(1) ∪ E(2))(C). We can do this

50

with the following more general functionality RandomSelection (Functionality 13) that
selects a uniformly random element from a list L1 owned by party 1, and a list L2 owned
by party 2, where |L1|+ |L2| is guaranteed to be greater than 0.

Functionality 13 Random selection
functionality RandomSelection(L1, L2)

r is selected uniformly at random from [|L1|+ |L2|]
if r < |L1| then

return (L1[r], 1)
else

return (L2[r − |L1|], 2)
end if

end functionality

In this scenario, each party has full knowledge of its own list, but no information about
the other party’s list. In addition, we assume that none of the two lists L1 and L2 contains
any duplicate elements (note that this is fulfilled for the use case described above, as no
party is allowed to have two edges with the exact same endpoints and the same weight).
The randomly selected element, together with its owner (i.e., whether it belongs to L1 or
L2) is revealed to both parties. Note that this functionality is not the same as choosing a
uniformly random i ∈ {1, 2}, and then a uniformly random element from Li.

We implement this behavior by using RandInt (Protocol 8) to select a random number
r ∈ [|L1| + |L2|] (this bound |L1| + |L2| needs to be secret, since otherwise a party would
learn the length of the other party’s list). Whether r corresponds to L1 (i.e., r < |L1|) or
L2 (i.e., r ≥ |L1|) can be revealed to everyone, as it will be part of the output in any case.
Then, the corresponding party receives the index in its own list in plaintext, and sends the
element to the other party. This is shown in Protocol 14.

The correctness of Protocol 14 is immediate, as it follows the steps in Functionality 13.
However, some values are revealed in the middle of the protocol execution, making it
necessary to prove the semi-honest security:

Theorem 8. Protocol 14 privately computes Functionality 13 in the semi-honest security
model.

Proof. There are two paths that the protocol can take, depending on whether r < a or
r ≥ a. Which of these two paths is taken can be inferred easily from the protocol output,
as it reveals whether the given element was provided by party 1 or by party 2.

51

Protocol 14 Random selection
1: protocol RandomSelection(L1, L2)
2: JaK← Share1(|L1|), JbK← Share2(|L2|)
3: JrK← RandInt(JaK + JbK)
4: if Reveal(JrK < JaK) then
5: Reveal1(JrK) is sent to party 1
6: Party 1 sends L1[r] to party 2
7: Both parties: return (L1[r], 1)
8: else
9: Reveal2(JrK− JaK) is sent to party 2; denote its value by r′

10: Party 2 sends L2[r′] to party 1
11: Both parties: return (L2[r′], 2)
12: end if
13: end protocol

For simplicity, we only look at the first path, as the second one is analogous. The
simulator for party 1 receive the input L1 and the protocol output (d, 1), where d is an
element from L1. Now, the simulator knows exactly what the value of the revealed index
r is: the unique i ∈ [|L1|] with d = L1[i].

The simulator for party 2 is even simpler, as the only values revealed to party 2 are the
fact that the first path was taken, and the output (d, 1) itself.

Communication cost

Let B be the bitlength used for the shares JaK and JbK. It defines an upper bound (of 2B)
for the size of |L1|+ |L2|.

In the case of r < a, the number of rounds consists of 1 for sharing |L1| and |L2|,
2dlog2Be+ dlog2 λe+ 2 for the RandInt, dlog2Be+ 1 for the comparison JrK < JaK, 1 for
revealing r to party 1, and 1 for party 1 to send the result to party 2. In the case of r ≥ a,
we would additionally take dlog2Be+ 2 rounds for the computation of JrK− JaK. However,
this value can already be computed while performing the comparison JrK < JaK. Then,
JrK − JaK is simply discarded if it turns out that r < a, in which case some unnecessary
communication took place, without increasing the number of rounds. Still, computing
JrK− JaK takes one round more than testing JrK < JaK.

The total communication is dominated by RandInt, which requires O(B ·(λ+log2B))
multiplications. Note that it might be possible that sending one element (e.g. L1[r]) requires

52

sending an even larger amount of bits than RandInt. However, this is not the case for
any of our use cases, and furthermore no costly multiplication triples would be required as
the value L1[r] can be sent in plaintext.

Number of rounds: 3dlog2Be+ dlog2 λe+ 7

Total communication: O(B · (λ+ log2B))

Now, if RandomSelection (Protocol 14) is used instead of Protocol 12 for the case
of only two components C = {c, c′}, then we save 2dlog2Be + 2 communication rounds.
The full Protocol 12 would require 5dlog2Be+ dlog2 λe+ 9 rounds.

53

Chapter 9

General Protocol

We have seen that a plain implementation of Borůvka’s algorithm as a multi-party protocol
may fail to work correctly if there are edges with the same weight while no tie-breaker is
deployed. In such a case there may be multiple minimum spanning forests, and the parties
need to commit to a strategy for choosing which MSF to output before running the protocol.
One natural and useful tie-breaker would be to choose a random minimum spanning forest,
in the sense that (1) an ordering of all edges is selected uniformly at random, and (2) ties
between edges of the same weight are broken by considering this ordering. This is exactly
our definition of the randomized function MSF(C,E).

However, if the parties are able to gain knowledge about this ordering through their
view of the protocol, this can result in leaked information (Chapter 6). This is the reason
that Protocol 3 is not secure when the two parties use a public random tie-breaker. An
alternative would be to use a fully secure protocol without any intermediate steps of re-
vealing edges, as it has been done in most prior work, e.g. by Laud [25]. As this usually
results in significantly higher communication costs, we present an optimized protocol in
this chapter which reveals information whenever it is possible, while falling back to a fully
secure MSF protocol when necessary. The protocol is carefully crafted in such a way that
it still fulfills semi-honest security. It works the fastest if there is a very low number of
edges with the same weight. Thus, if the parties are unsure whether they share edges of
the same weight, or if they know that there are only a few of them, this protocol can be
much better than protocols without any intermediate steps of revealing information, as
shown in Chapter 10.

This chapter is organized as follows: Section 9.1 first gives some Lemmas that are
required to see why the protocol works. Section 9.2 then gives an overview and intuition

54

about the full protocol. Section 9.3 contains the formal pseudocode (Protocol 15). Its
correctness and security are proven in Sections 9.4 and 9.5, respectively.

9.1 Crucial observations

First, we are going to prove a simple and helpful lemma that allows us to disregard any
irrelevant edges (Lemma 3). Then, our main observation (Corollary 2) will be a combina-
tion of Lemma 4 and Lemma 5. In addition, we also obtain Corollary 1, which we will use
to prove a termination condition of Protocol 15.

We start with proving that whenever MSF(C,E) on a partitioning C is computed, any
edge connecting two vertices within the same component can be disregarded. In other
words, the random process of MSF(C,E) is the same as MSF(C,E(C)) where we restrict
ourselves to the edge set E(C).

Lemma 3. Let G = (V,E) be a graph and C = {c0, . . . , ck−1} a partitioning of V . Then,
every MSF of (V,E) on components C only contains edges from E(C) (i.e., edges that
connect two different components). More specifically, the following two random processes
are equal.

MSF(C,E) = MSF(C,E(C)).

Proof. For any permutation π : E → [|E|] of E, we have a corresponding permutation
π|E(C) of E(C). Since every permutation of E(C) has exactly |E|!

|E(C)|! corresponding permu-
tations of E, it suffices if we prove

MSF(C,E, π) = MSF(C,E(C), π|E(C))

for every permutation π : E → [|E|].
Fix any such π and assume that this equality does not hold. Abbreviate MSF(C,E, π)

by F and MSF(C,E(C), π|E(C)) byM . Let e ∈ E be the best edge (w.r.t. w, or secondarily
π) that is in either F or M but not in the other one. There are two cases:

• e ∈ F and e /∈M .

If e /∈ E(C), we could just remove e from F to receive F ′ := F \ {e}. Note that all
components c, c′ ∈ C are still connected w.r.t. F ′ if they were connected w.r.t. F ,
since both endpoints of e are in the same component. Thus, F is not a forest, which
is a contradiction.

55

If e ∈ E(C), then we can add it to M to receive M ′ := M ∪ {e}. If this doesn’t
result in a cycle w.r.t. C, M was not a minimum spanning forest, a contradiction. If
it does, then all of the other edges in the cycle are better than e (otherwise, adding e
and removing an edge on the cycle that is worse than e would result in an MSF that
is better than M) and therefore also contained in F (as e is the best edge on which
F and M differ). Thus, the MSF F contains a cycle, a contradiction.

• e ∈M and e /∈ F .
We can add e to F to obtain F ′ := F ∪ {e}. This must result in a cycle w.r.t. C, as
otherwise F was not a spanning forest. All of the other edges in the cycle are better
than e, and therefore also contained in M . Thus, the MSF M contains a cycle, a
contradiction.

The following Lemma shows that if a graph can be split into components, s.t. each edge
between two different components has a larger weight than any edge required for an MSF
within a single component, then the full MSF can be split into MSF’s for the components.

Lemma 4. Let G = (V,E) be a graph and C = {c0, . . . , ck−1} a partitioning of V . Assume
that there is a weight w∗ ∈ N s.t. the following conditions are satisfied for every i ∈ [k]:

(i) all vertices within ci are connected on the graph (V,E<w∗) (i.e., they connected to
each other even when considering only edges of weight < w∗), and

(ii) min{w(e) | e ∈ E(ci)} ≥ w∗ (i.e., the best outgoing edge of ci has weight ≥ w∗).

Then, sampling Fi as MSF(ci, Eci) for all i ∈ [k], sampling F as MSF(C,E) (all of these
happening independently of each other), and returning F0 ∪ · · · ∪ Fk−1 ∪ F has the same
output distribution as MSF(V,E).

Proof. By Lemma 3, F is sampled according to MSF(C,E(C)). Also note that for any
MSF M := MSF(V,E) and i ∈ [k], the restricted set of edges Mci that only contains
edges connecting vertices from ci is still a spanning forest on ci. If this were not true,
then we could add an arbitrary edge e of weight < w∗ between two vertices in ci that
are not connected using Mci to M to obtain M ′ := M ∪ {e}. This must result in a
cycle on V (otherwise M was not spanning), and it must contain at least one edge e′
connecting two different components in C, which has weight ≥ w∗ by assumption (ii).

56

Thus, M ′′ := M ′ ∪ {e′} is also a spanning forest, but its total weight w(M ′′) < w(M) is
better than that of M , a contradiction to M being minimal.

Note that E = Ec0 t · · · tEck−1
tE(C), i.e., the edge set E can be split into edges Eci

within components ci and into edges E(C) connecting different components. Thus, every
permutation τ : E → [|E|] on E can be split into τ |Eci corresponding to the components ci
(for all i ∈ [k]) and into τ |E(C) corresponding to E(C). Every tuple (τEc0 , . . . , τEck−1

, τE(C))

can be constructed from exactly |E|!
|E(C)|!·

∏
i∈[k] |Eci |!

different τ ’s. As a result, in order to prove
this lemma, it suffices if we show the following for every permutation τ of E:

MSF(c0, Ec0 , τ |Ec0) ∪ · · · ∪MSF(ck−1, Eck−1
, τ |Eck−1

) ∪MSF(C,E(C), τ |E(C)) = MSF(V,E, τ)

Fix any such τ and assume that the equality does not hold. Let Fi := MSF(ci, Eci , τ |Eci),
F := MSF(C,E(C), τ |E(C)), andM := MSF(V,E, τ). Let e ∈ E be the best edge (w.r.t. w,
or secondarily τ) that is in either F0∪ · · · ∪Fk−1∪F or M but not in the other one. There
are a few cases:

• Assume e ∈M , but e /∈ F0 ∪ · · · ∪ Fk−1 ∪ F .
If e ∈ E(C), then the two endpoints of e are in different components in C, and
therefore we have w(e) ≥ w∗ (by assumption (ii)). We can add e to F to obtain
F ′ := F ∪{e}. This must result in a cycle w.r.t. C, as otherwise F was not spanning.
All edges in the cycle must be better than e (otherwise F was not minimum), and
because e is the best edge on which the two sets differ, all of them are also contained
in M . Thus, M contains a cycle w.r.t. C. Since every two vertices in a component
c ∈ C are connected by edges in M , M even has a cycle w.r.t. V , a contradiction.
If e ∈ Eci , then the two endpoints of e are in the same component ci. We can add e
to Fi to obtain F ′i := Fi ∪ {e}, which must result in a cycle on ci. All edges in the
cycle are better than e (otherwise Fi was not minimum), so M contains a cycle on
ci, a contradiction.

• Assume e ∈ F , but e /∈M .
We can add e to M to obtain M ′ := M ∪ {e}, which must contain a cycle on C. All
of the edges in the cycle are better than e, and therefore also contained in F . Thus,
F contains a cycle, a contradiction.

• Assume e ∈ Fi, but e /∈M .
We can add e to M to obtain M ′ := M ∪ {e}, which must contain a cycle on ci. All
of the edges in the cycle are better than e, and therefore also contained in Fi. Thus,
Fi contains a cycle, a contradiction.

57

The following corollary can be used to show that when no edges between the components
in C exist, an MSF for the whole graph can be constructed as a combination of MSFs for
the components itself.

Corollary 1. Let G = (V,E) be a graph and C = {c0, . . . , ck−1} a partitioning of V .
Assume that E(C) = ∅, i.e., there are no edges remaining that connect two different
components of C. Then, sampling Fi as MSF(ci, Eci) for all i ∈ [k] (all of them happening
independently of each other) and returning F0∪· · ·∪Fk−1 has the same output distribution
as MSF(V,E).

Proof. Let w∗ := max{w(e) | e ∈ E} + 1. Using this w∗, both prerequisites for Lemma 4
are satisfied. In addition, the return value of MSF(C,E) is always ∅ because of E(C) = ∅.
Thus, according to Lemma 4, MSF(V,E) is equivalent to F0 ∪ · · · ∪ Fk−1 for Fi sampled
from MSF(ci, E).

Now we show that if all remaining components in a graph are connected using a specific
weight w∗, then all other edges can be disregarded:

Lemma 5. Let G = (V,E) be a graph and C a partitioning of V . Assume that there is a
weight w∗ ∈ N s.t. the following conditions are satisfied:

(i) all components of C are connected to each other on the graph (V,E=w∗) w.r.t. C (i.e.,
they are connected to each other even when considering only edges of weight = w∗),
and

(ii) min{w(e) | e ∈ E(ci)} = w∗ for every i ∈ [k] (i.e., there are no edges of weight < w∗

that could be added to an MSF).

Then, MSF(C,E) has the same output distribution as MSF(C,E=w∗).

Proof. For every permutation π : E → [|E|], we define τ = π|E=w∗ as the corresponding
permutation restricted to E=w∗ . Since every τ : E=w∗ → [|E=w∗|] has exactly |E|!

|E=w∗ |!
corresponding π’s, it suffices if we prove that

MSF(C,E, π) = MSF(C,E=w∗ , π|E=w∗)

for every permutation π : E → [|E|].
Fix any such π and assume that the equality does not hold. Abbreviate MSF(C,E, π)

by F and MSF(C,E=w∗ , π|E=w∗) byM . Let e ∈ E be the best edge (w.r.t. w, or secondarily
π) that is in either F or M but not in the other one. There are two cases:

58

• e ∈ F but e /∈M . According to the assumptions, and because M is spanning, every
two components c, c′ ∈ C are reachable on (V,M) w.r.t. C. Thus, if we add e to M
to obtain M ′ := M ∪ {e}, M ′ must contain a cycle on C. All edges besides from e
on the cycle have weight w∗. Because of w(e) ≥ w∗, all edges on the cycle must be
better than e (w.r.t. w, or secondarily π), and therefore they are all contained in F .
Thus, F also contains a cycle on C, a contradiction.

• e ∈M but e /∈ F . If we add e to F to obtain F ′ = F ∪ {e}, F ′ must contain a cycle.
Since all edges on the cycle (besides from e itself) are better than e, they must have
weight w∗. This means that they are all contained in M , and therefore M contains
a cycle, which is a contradiction.

By combining Lemma 5 and Lemma 4, we now obtain the following corollary. It
states the most important observation that we will make use of in Protocol 15: MSFs on
components that require only edges of weight < w∗ can be combined into an MSF for the
whole graph if the components are connected to each other using edges of weight w∗.

Corollary 2. Let G = (V,E) be a graph and C = {c0, . . . , ck−1} a partitioning of V .
Assume that there is a weight w∗ ∈ N s.t. the following conditions are satisfied:

(i) all vertices within ci are connected on the graph (V,E<w∗) for all i ∈ [k], and

(ii) all components of C are connected to each other on the graph (V,E=w∗) w.r.t. C, and

(iii) min{w(e) | e ∈ E(ci)} = w∗ for every i ∈ [k].

Then, sampling Fi as MSF(ci, Eci) for all i ∈ [k], sampling F as MSF(C,E=w∗) (all of these
happening independently of each other), and returning F0 ∪ · · · ∪ Fk−1 ∪ F has the same
output distribution as MSF(V,E).

Proof. First, apply Lemma 5 to show that MSF(C,E) has the same output distribution as
MSF(C,E=w∗). Then this corollary follows from Lemma 4.

59

0

1

2

3

4

5

6

7

8

1

1

2

2

2

3

4

4

3

4

4

0

1

2

3

4

5

6

7

8

1

1

2

2

2

3

4

4

3

4

4

Figure 9.1: The graph on the left is an example where each weight may occur more than
once. Any MSF (e.g. the thick edges on the right) would consist of all edges of weight 1
and 3, any two edges of weight 2, and two edges of weight 4 that do not result in a cycle.

0

1

2

1

1

0

1

2

3

4

2

2

2

0

1

2

3

4
5

3

6

7

3

0

1

2

3

4
5

6

7

8
4 4

4

4

⇒ ⇒
⇒

⇒

Figure 9.2: This graphic shows for the graph given in Figure 9.1 all subgraphs for which
the MSF can be computed separately in order to combine them into one MSF for the
whole graph. A component of vertices that are already merged together is depicted in this
figure as multiple indices surrounded by a single line. MSF({{0}, {1}, {2}}, E=1) results in
the merged component {0, 1, 2}. Then, MSF({{0, 1, 2}, {3}, {4}}, E=2) leads to the compo-
nent {0, 1, 2, 3, 4}, MSF({{0, 1, 2, 3, 4}, {5}}, E=3) to {0, 1, 2, 3, 4, 5}, MSF({{6}, {7}}, E=3)
to {6, 7}, and finally MSF({{0, 1, 2, 3, 4, 5}, {6, 7}, {8}}, E=4) results in all vertices being
merged together into one component {0, 1, 2, 3, 4, 5, 6, 7, 8}. Combining these subgraph
MSF’s results in the MSF shown on the right-hand side in Figure 9.1.

60

9.2 Informal description

Figure 9.1 contains an example on which we will describe how the protocol works.

The protocol maintains a partitioning C of the vertices V ⊆ V such that the MSF
for each component c ∈ C can be found separately, because all edges in the MSF of c
have strictly smaller weight than any edge leading out of component c. The goal is to use
UnweightedSF (Protocol 12) on subgraphs that are as small as possible, and then merge
the corresponding components together. We use Corollary 2 to do this in the following way:
Whenever there is a subset S = {c0, . . . , ck−1} of components, all of them are connected
to each other on the graph (V,E=w∗) w.r.t. C, and the combination c∗ = c0 ∪ · · · ∪ ck−1 of
all these components does not have any outgoing edge of weight ≤ w∗, then the MSF for
c∗ can be computed as MSF(c0, Ec0) ∪ · · · ∪ MSF(ck−1, Eck−1

) ∪ MSF(S, (Ec∗)=w∗). In the
following description, we call such a set S ⊆ C of the partitioning C simply a subgraph.

As an example, Figure 9.2 shows how the graph in Figure 9.1 can be broken down into
minimal subgraphs for which their MSF can be computed separately and then combined
into the complete MSF. The combined MSF is shown on the right-hand side in Figure 9.1.

It is important to note the following: the edges returned by UnweightedSF are
not needed before the end of the MSF protocol, and therefore it is not necessary to
wait for the result of a call to this sub-protocol. Instead, our protocol can compute all
UnweightedSF’s together in the end, and then output the union of all returned sets of
edges.

9.2.1 Finding subgraphs

It remains to answer the question of how to efficiently and securely find those subgraphs for
which the MSF’s can be computed separately. For a single party who only knows their own
edges, it is impossible to determine these subgraphs on their own. Thus, a few important
observations regarding publishable information (without any leakage) are required. These
are shown in Section 9.5. For example, whenever we have a component c ⊆ V , then the
minimum weight min{w(e) | e ∈ E(c)} of an edge leading out of the component c can be
revealed without any leakage (Lemma 6). In addition, given a weight w, it is allowed to
reveal the set of components resulting from merging only edges of weight ≤ w (Lemma 7).

One option for finding subgraphs with separately computable subgraph MSF’s would be
to find Conn(V,E≤w) simultaneously for every possible weight w ∈ N. Then, if c0, . . . , ck−1

are components found by Conn(V,E≤w−1), but all vertices in c0 ∪ · · · ∪ ck−1 are connected

61

to each other by Conn(V,E≤w), then MSF({c0, . . . , ck−1}, w) is one of the desired sub-
graph MSF’s. However, this method has a huge communication overhead: Every call to
Connectivity would require a total amount of O(|V |3) communicated bits, and if the
space of possible weights (which could be 32-bit integers in a typical implementation) is
not extremely small, this method is infeasible.

For this reason, we attempt to compute Connectivity only whenever it is necessary.
Our protocol applies some optimizations to use as much of the public information as
possible in order to determine subgraphs which can be merged and for which the MSF can
be computed separately.

Assume that for every remaining component c ∈ C, we already know the weight
min{w(e) | e ∈ E(c)} of the best incident edge. Then, let w be such a weight that
occurred as the best possible weight leading out of at least one component c ∈ C, and
let S ⊆ C be the subset of components with min{w(e) | e ∈ E(c)} = w for all c ∈ S.
Using Connectivity, we can compute which of the components in S are connected to
each other using edges of weight w. If s ⊆ S is a set of components connected to each
other using edges of weight w, and none of them has another edge of weight w going to a
component that is not part of s, then s is one of the subgraphs for which the MSF can be
computed separately, and its components can be merged.

9.2.2 Detailed description

The protocol alternates (until no new edges can be discovered) between two essential steps
that require communication with the other party. Both of these steps can be performed for
all remaining components in parallel. After performing both steps, the protocol discovers
subgraphs for which the MSF can be computed separately, and merges the components
accordingly. After performing all of these steps, the protocol begins the next iteration,
starting again with the first step.

First step The first step is to compute wc = min{w(e) | e ∈ E(c)} for each component
c ∈ C, which represents the weight of the best edge leaving c. This value is revealed to
both parties. Computing wc is very simple: party p can find vp := min{w(e) | e ∈ E(p)(c)}
locally, and then the result is simply min(v1, v2), computable by secret-sharing v1 and v2,
testing whether Jv1K < Jv2K, and then using a multiplexer to choose and reveal the smaller
one of Jv1K or Jv2K.

62

Second step Locally, every party can compute Sw = {c ∈ C | wc = w} for every weight
w ∈ N that occurred in the previous step, which contains all components c ∈ C where w is
the best weight of an incident edge (i.e., wc = w). Assume that Sw = {c0, . . . , ck−1}. Now,
the protocol starts to test which of these components are connected to each other (using
edges of weight w), and which of them are connected to components in C \ {c0, . . . , ck−1}.
This information can be used to decide which of the components to merge, and for which
of them we need to wait for more information about the rest of the graph. To do this,
we compute the connectivity of components {c0, . . . , ck−1, c

∗
w} (where c∗w = V \

⋃
i∈[k] ci

consists of all vertices that are in none of the ci’s) on edges E=w. This is done as described
in Functionality 10 (which implements the function Conn(·, ·)), and results in d0, . . . , d`−1,
groups of ci’s.

For example, consider the graph in Figure 9.1, and look at all vertices whose best
incident weight is 3. These are exactly the vertices 5, 6, and 7 (i.e., S3 = {{5}, {6}, {7}}).
Then c∗3 = {0, 1, 2, 3, 4, 8} is the set of vertices not in S3. Now the protocol would compute
Conn({{5}, {6}, {7}, {0, 1, 2, 3, 4, 8}}, E=3) in order to find out which of the vertices are
connected to each other using edges of weight 3. This computation would yield the two
groups {{6}, {7}} and {{5}, {0, 1, 2, 3, 4, 8}}, which means that 6 and 7 are connected to
each other with edges of weight 3, while vertex 5 is connected with edges of weight 3 to
components that are not in S3.

Discovering subgraphs Using the information revealed in the first two steps, each party
can now locally (without any communication with the other party) decide which subgraphs
can be merged. Assume that (d0, . . . , d`−1) = Conn({c0, . . . , ck−1, c

∗
w}, E) was the result of

a of the connectivity test in the previous step. Then we can process this information as
follows:

(1) Let i ∈ [`], where c∗w /∈ di. This means that all components in di are connected
to each other using edges of weight w, and none of them has an outgoing edge of
weight w to a component that is not in di. Thus, di is a set of components for which
the MSF can be computed separately: We merge all components in di, i.e., define
gi :=

⋃
c∈di c, and we set C ← (C \ di)∪ {gi}. By Corollary 2, the MSF for gi can be

generated as the union of the MSF’s for all c ∈ di, combined with the MSF generated
by Protocol 12 on the components from di.

Note that min{w(e) | e ∈ E(gi)} > w, i.e., the weight of the best edge leaving the
new component gi is larger than w. The new value of min{w(e) | e ∈ E(gi)} will be
computed in the next iteration of the protocol.

63

(2) For the special set di∗ that contains c∗w (i.e., c∗w ∈ di∗), we can’t do anything yet:
There must be other components in C \ {c0, . . . , ck−1} that c ∈ di are connected to
using edges of weight w, but we do not know which ones they are. For this reason,
the components in di∗ will wait until in some iteration, there is another component
that has w as its best incident weight.

In our example with w = 3, case (1) occurs for {{6}, {7}}, and case (2) occurs for
{{5}, {0, 1, 2, 3, 4, 8}}. This means that the protocol can merge {{6}, {7}} into a single
component {6, 7}, and compute the corresponding MSF (consisting only of a single edge)
separately. The only other subgraph MSF that can be computed immediately in the first
iteration is MSF({{0}, {1}, {2}}, E=1), because the vertices 0, 1, and 2 are connected to
each other using edges of weight 1, and all of their edges going to other components have
weight > 1. This is shown in Figure 9.3(a).

This protocol terminates after a finite amount of iterations for the following sim-
ple reasons: Given the current partitioning C, let w∗ be the smallest weight among all
min{w(e) | e ∈ E(c)} for any c ∈ C, and let c0, . . . , ck−1 ∈ C be those components which
fulfill min{w(e) | e ∈ E(ci)} = w∗. Then, every ci is connected to at least one other cj
(j 6= i), thus resulting in at least one merge happening in this iteration. There can be at
most |V | − 1 merge steps that take place before the whole graph has been merged into
connected components. At that point of time, we will have wc =∞ for all c ∈ C.

9.2.3 Optimization

There is a simple, but very effective, optimization that can be applied in order to minimize
the amount of unnecessary computations.

At the end of an iteration (after some separately computable subgraphs have already
been determined), let w be the smallest incident weight for a set of components sw that
have not been merged (i.e., case (2) occurred). If there is only one component c ∈ C (that
is not contained in sw) which can potentially have outgoing edges of weight w, then the set
sw ∪ {c} is another separately computable subgraph. That is, the components in sw ∪ {c}
can be merged together using edges of weight w, and its MSF needs to be added to the
final output. This optimization can be repeated for as long as possible in a single iteration.
Whenever there is more than one component c ∈ C that might have outgoing edges of
weight w, it is impossible to determine which of these components the sw are connected
to, and therefore we cannot do anything further.

It remains to answer the question of how to check whether a component c ∈ C may
have an outgoing edge of weight w. If c resulted from the merge in the current iteration by

64

edges of weight w′, then we know that any outgoing edge of c has weight > w′. This yields a
very simple way (that doesn’t require any computation shared between parties) to restrict
the weights of outgoing edges of a component c, and therefore this is the mechanism that
we deploy in our protocol for checking the condition needed for applying the optimization.

More specifically, if w is the second-to-smallest weight used for creating any component
in C as the combination of multiple smaller components in the current iteration, then for
any w′ ≤ w, we can merge all components in sw′ with the unique (already merged) com-
ponent c for which the corresponding weight was smaller than w′. As shown in Figure 9.3,
this optimization would yield to two additional merge steps in the first iteration for our
example graph.

9.3 Formalized protocol

Protocol 15 formally describes this process. Note that we assume that the initial parti-
tioning C is given as C = V , i.e. every vertex is in its own partition. Thus, Protocol 15 is
going to find a random MSF from MSF(V,E), which slightly differs from the more general
Functionality 1, which requires to find a random MSF from MSF(C,E) for a partitioning C
of V . Even though Protocol 15 also works for an arbitrary partitioning C, the correctness
and security proofs become simpler if we restrict ourselves to C = V .

In this protocol, the current partitioning C is modified whenever two or more compo-
nents are merged together. Additionally, a function F : C → 2E is maintained, which maps
each component c ∈ C to a set of edges that together form the MSF that was generated on
c. The protocol uses a function Merge(S = {c0, . . . , ck−1}, w) (line 4) to merge together
components of a subgraph S = {c0, . . . , ck−1} that fulfill the following conditions (which
are exactly the preconditions of Corollary 2):

(i) all vertices within ci are connected on the graph (V,E<w) for all i ∈ [k], and

(ii) all components of C are connected to each other on the graph (V,E=w) w.r.t. C, and

(iii) min{w(e) | e ∈ E(ci)} = w for every i ∈ [k].

Thus, using Corollary 2, the MSF F (c∗) on the new component c∗ =
⋃
i∈[k] ci can be

found by computing MSF(S,E=w), and combining this with F (ci) for all i ∈ [k]. As E=w

contains only edges of a single weight, MSF(S,E=w) can be found securely with a call
to UnweightedSF. However, this does not need to happen immediately. Instead, as
the overall output of Protocol 15 is simply the union of the return values of all calls to

65

0

1

2

3

4

5

6

7

8

1

1

2

2

2

3

4

4

3

4

4

(a) First iteration (without optimization)

0

1

2

3

4

5

6

7

8

2

2

2

3

4

4

4

4

(b) First application of optimization

0

1

2

3

4

5

6

7

8

3

4

4

4

4

(c) Second application of optimization

0

1

2

3

4
5

6

7

8
4 4

4

4

(d) State after the complete first iteration

Figure 9.3: This example illustrates all the subgraphs that can be discovered in the first
iteration of the protocol. Each component contains only a single vertex, so in the beginning
of this first iteration of the protocol, a vertex is equivalent to a component. After computing
min{w(e) | e ∈ E(c)} for every c ∈ C, and testing the connectivity for all weights that
occurred in the first step (1, 2, 3, and 4), the components {0}, {1}, and {2} could be merged
(because MSF({{0}, {1}, {2}}, E=1) can be computed separately), and the components {6}
and {7} could be merged (and MSF({{6}, {7}}, E=3) can be computed separately). This
is shown by the dashed lines in (a). The optimization then notices that vertices 3 and
4 must both be connected to the new component {0, 1, 2} using edges of weight 2 (b).
Thus, MSF({{0, 1, 2}, {3}, {4}}, E=2) can be computed separately, and the components
are merged together into {0, 1, 2, 3, 4}. Then, according to the optimization, {5} must
be connected to the new component {0, 1, 2, 3, 4}, so these two components are merged
together, and MSF({{0, 1, 2, 3, 4}, {5}}, E=3) is added to the global MSF (c). In the final
state (d), it is not possible to apply the optimization again, because for the component
{8} it is unknown whether it has an edge to {0, 1, 2, 3, 4, 5} or to {6, 7} (or both).

66

UnweightedSF that were made, it is possible to run all UnweightedSF’s in parallel
at the end of the protocol in order to save communication rounds.

The while-loop in line 10 alternates between the two described steps until no more edges
can be added to the MSF (line 17). The for-loop in line 12 finds the best incident weight
wc for each remaining component c ∈ C. W contains the set of all weights wc that were
found in this first step. The for-loop in line 18 tests which of the components in Sw (which
contains all components c ∈ C with wc = w) are connected to each other using edges of
weight w, and which of them are still connected to components outside of Sw using edges
of weight w. tw contains the result of the call to Connectivity.

The rest of the protocol consists only of local computations (and calls to Merge
which are also purely local if all UnweightedSF’s are called simultaneously in the end).
The set merged (line 23) will contain pairs (c, w) of a component c ∈ C and a weight
w ∈ N, s.t. it is known that the best outgoing edge of component c has weight > w (i.e.,
min{w(e) | e ∈ E(c)} > w). In line 29, a set di of components is merged together if it is
known that all of them are reachable from each other using edges of weight w, and if no
component from di is connected to any component outside of di using an edge of weight
at most w. Thus, in line 30, (c, w) is added to merged with c =

⋃
c′∈di c

′ being the new
component. On the other hand, for every w ∈ W , sw (line 27) is defined to contain those
components c ∈ C with min{w(e) | e ∈ E(c)} that are not yet merged because they are
connected using edges of weight w to components outside of Sw.

The while-loop in line 33 performs the optimization described in Section 9.2.3. Let w
be the smallest weight (if any exists) s.t. sw 6= ∅. If there is only one (c, w′) ∈ merged
with w′ < w (i.e., only c can be connected to the components in sw using edges of weight
w), then the components in sw ∪ {c} are merged together. (c, w′) needs to be replaced by
(c′, w) in merged (where c′ is the new merged component), as it is known that any edge
leaving c′ needs to have weight > w (line 35).

9.3.1 Practical considerations

As described, whenever Merge is called on a subgraph S for weight w, UnweightedSF
is used in order to find MSF(S,E=w). However, the actual output of UnweightedSF
is not used until Protocol 15 terminates, at which point the union of all outputs of
UnweightedSF is returned. Therefore, we can defer the execution of all these calls
until the rest of the protocol has terminated in order to run them in parallel and save
communication rounds.

In addition, it can happen that the protocol attempts to compute wc = min{w(e) | e ∈
E(c)} multiple times for a single component c ∈ C. For example, this happens when wc is

67

Protocol 15 Random Minimum Spanning Forest
1: Public: Partitioning C = V of a finite set of vertices V ⊆ V
2: protocol RandomMSF(E(1), E(2))
3: State F : C → 2E , i.e. the MSF’s discovered for the already merged components
4: function Merge(S = {c0, . . . , ck−1}, w)
5: c∗ ←

⋃
i∈[k] ci

6: C ← (C \ S) ∪ {c∗}
7: F (c∗)← F (c0) ∪ · · · ∪ F (ck−1) ∪UnweightedSFS((E

(1)
c∗)=w, (E

(2)
c∗)=w)

8: return c∗

9: end function
10: while true do
11: W ← ∅
12: for c ∈ C (in parallel) do
13: Party p computes vp ← min{w(e) | e ∈ E(p)(c)}
14: wc ←Minimum(v1, v2)
15: if wc 6=∞ then W ←W ∪ {wc} end if
16: end for
17: if W = ∅ then break end if
18: for w ∈W (in parallel) do
19: Sw ← {c ∈ C | wc = w}
20: c∗w ← V \

⋃
c∈Sw c

21: tw ← ConnectivitySw∪{c∗w}(E
(1)
=w, E

(2)
=w)

22: end for
23: merged← ∅
24: for w ∈W do
25: ({d0, . . . , d`−1})← tw
26: i∗ ← the unique index i ∈ [`] with c∗w ∈ di∗

27: sw ← di∗ \ {c∗w}
28: for i ∈ [`] \ {i∗} do
29: c←Merge(di, w)
30: merged← merged ∪ {(c, w)}
31: end for
32: end for
33: while ∃ smallest w ∈W with sw 6= ∅ s.t. there is only one (c, w′) ∈ merged with w′ < w do
34: c′ ←Merge(sw ∪ {c}, w)
35: merged← (merged \ {(c, w′)}) ∪ {(c′, w)}
36: sw ← ∅
37: end while
38: end while
39: return

⋃
c∈C F (c)

40: end protocol

68

computed in the first iteration, but c is not merged together with any other component yet.
Then, in the second iteration, wc would have to be computed again. However, since it is
guaranteed that the value of wc does not change, this recomputation does not need to take
place explicitly. The values from the previous iteration can be cached and re-used. The
same can be done for any calls to Connectivity: whenever this sub-protocol is called
with the same parameters for a second time, a cached value from the first call can be used
instead.

9.4 Correctness

Theorem 9. Protocol 15 correctly implements Functionality 1.

Proof. We only need to show that at any point of time the following two invariants hold
for any c ∈ C:

(1) F (c) is an MSF sampled according to the distribution MSF(c, Ec), and

(2) all vertices in c are connected to each other on the graph (V,E<w∗), where w∗ =
min{w(e) | e ∈ E(c)} (i.e., any edge leaving c is larger than any edge in the MSF of
c).

If this holds, the algorithm terminates with
⋃
c∈C F (c) when W = ∅, i.e., there is no edge

e ∈ E(c) for any c ∈ C. Thus, E(C) = ∅ and by Corollary 1, the output is MSF(V,E),
which is exactly the desired behavior.

Now we show that (1) and (2), which trivially hold in the beginning, are maintained
throughout Protocol 15. Whenever Merge(S = {c0, . . . , ck−1}, w), k ≥ 2 is called with
components ci ∈ C s.t.

(i) all pairs of ci, cj are connected to each other on the graph (V,E=w) w.r.t. C,

(ii) min{w(e) | e ∈ E(ci)} = w for all i ∈ [k], and

(iii) min{w(e) | e ∈ E(c∗)} > w for the new component c∗ =
⋃
i∈[k] ci,

then both invariants (1) (according to Corollary 2) and (2) (which follows from (i) and (iii))
are maintained. Thus, it suffices to prove that (i)-(iii) hold whenever Merge is called.

Note that up to line 23, Merge is not called at all, but the protocol computes wc =
min{w(e) | e ∈ E(c)} for each c ∈ C, and for every weight w ∈ W = {wc | c ∈ C}, the
following values are found:

69

• Sw = {c ∈ C | wc = w} (the set of components with w being the best incident
weight),

• c∗w = V \
⋃
c∈Sw c (the set of vertices not contained in Sw), and

• tw (indicating which components in Sw∪{c∗w} are connected to each other using only
edges of weight w).

In the subsequent for-loop (line 24), let w ∈ W and i ∈ [`]\{i∗} as defined in Protocol 15,
with di = {c0, . . . , ck−1}, for which Merge(di, w) will be called. Because of wci = w for
all ci, we know that condition (ii) holds. Furthermore, by definition of tw, all c ∈ di are
connected to each other on the graph (V,E=w) w.r.t. C (condition (i)). If c∗ =

⋃
c∈di c is the

new combined component, then we will also have min{w(e) | e ∈ E(c∗)} > w (condition
(iii)), as otherwise there would be an edge e between c ∈ di and c′ /∈ di with w(e) = w, a
contradiction to the definition of tw.

For the following while-loop that performs the optimization (line 33), we require the
following additional invariants that hold before and after each of its iterations:

(a) For every c ∈ C with E(c) 6= ∅: there is a w with (c, w) ∈ merged or c ∈ sw (i.e., each
remaining component c ∈ C has either been merged in this iteration, or it is still in
the set of unmerged components sw).

(b) ∀(c, w) ∈ merged: c ∈ C with min{w(e) | e ∈ E(c)} > w (i.e., for all merged
components, the best incident weight is higher than that of all previously seen edges).

(c) ∀w ∈ W, c ∈ sw: c ∈ C with min{w(e) | e ∈ E(c)} = w, and c is connected to c∗w on
the graph (V,E=w) w.r.t. C.

These invariants hold before the first iteration, as for any w ∈ W , there are just two
changes that could have happened in the previous for-loop:

• For i∗ with c∗w ∈ di∗ , any component c ∈ di∗ \{c∗w}, c is added to sw. By construction,
we have min{w(e) | e ∈ E(c)} = w, and c is connected to c∗w using edges from E=w

(because Connectivity put c and c∗w into the same set di∗). Thus, (c) is fulfilled
for this c.

• For every other i 6= i∗, the components in di are merged together into one component
c. Then (c, w) is inserted into merged. (b) is fulfilled, because otherwise there would
be an edge e ∈ E(c) with w(e) = w. However, then one of the components in di
would have had an edge of weight w to a component in dj for j 6= i, a contradiction
to the correctness of Connectivity.

70

Invariant (a) is satisfied as for every c ∈ C with E(c) 6= ∅, the iteration for the correspond-
ing w ∈ W either put c into merged, or into sw.

Now we show that (i)-(iii) hold for every Merge in the while-loop in line 34, and that
invariants (a)-(c) are maintained. Assume that w is the smallest w ∈ W with sw 6= ∅ and
that there is only one (c, w′) ∈ merged with w′ < w. Then, Merge(sw ∪ {c}, w) will be
called, which creates a new component c′. By (c), every component in sw is connected
to c∗w using edges of weight w. In addition, by assumption (w being minimal and there
is only one (c, w′) ∈ merged with w′ < w), and (a)-(c), every component c′′ ∈ C with
c′′ /∈ sw ∪ {c} has only incident edges of weight > w. This means that every component in
sw is connected to c itself using edges of weight w, which implies (i). Furthermore, every
edge leaving c′ must have weight > w, which proves (iii). (ii) follows directly from (c).

It remains to show that the invariants (a)-(c) continue to hold for every iteration of
this while-loop in line 33. Invariant (a) stays true (since for the new component c′ ∈ C,
we have (c′, w) ∈ merged), invariant (b) stays true (since the best incident edge of c′ has
weight > w), and invariant (c) stays true (since we set sw to ∅).

In conclusion, we have shown correctness of the protocol under the condition that it
terminates. For a single iteration, let w be the weight of the smallest edge remaining, i.e.,
min{w(e) | e ∈ E(C)}. At least two components c, c′ ∈ C must be directly connected by
an edge of weight w, and they are in the same di with c∗w /∈ di because the best outgoing
edge of any component that is part of c∗w must be larger than w. As a result, c and c′ will
be merged together in this iteration. The protocol always terminates, because in every
iteration of the outer while-loop, there will be at least one merge happening, and there can
be at most |V | − 1 merges in total.

9.5 Security

The security of Protocol 15 is based on the following two lemmas.

Lemma 6. Let G = (V,E) be a graph. If F ⊆ E is a minimum spanning forest (i.e., it
is a possible output of MSF(V,E)), then the following equation holds for any component
c ⊆ V :

min{w(e) | e ∈ E(c)} = min{w(e) | e ∈ F (c)}

Informally, this lemma states that the smallest weight of an edge leading out of com-
ponent c stays the same if we restrict the edges we are looking at to a minimum spanning
forest.

71

Proof. Because of F ⊆ E, it is obvious that the right-hand side cannot be strictly smaller
than the left-hand side. So for the purpose of a contradiction, assume that

min{w(e) | e ∈ E(c)} < min{w(e) | e ∈ F (c)}.

That is, there is an edge e ∈ E(c) with w(e) < min{w(e) | e ∈ F (c)}. We can define
F ′ := F ∪ {e}. If this does not result in a cycle, then F was not a minimum spanning
forest. If it does, remove any edge e′ 6= e on the cycle to obtain F ′′ := F ′ \ {e′}. Since
we know that w(e) < w(e′), and breaking up the cycle does not make any pair of vertices
unreachable if they were previously reachable from each other, F ′′ would be a spanning
forest with w(F ′′) < w(F), a contradiction to F being minimal.

Lemma 7. Let G = (V,E) be a graph, C a partitioning of V , and w∗ ∈ N an arbitrary
weight. If F ⊆ E is a minimum spanning forest of G, then the following equation holds:

Conn(C,E≤w∗) = Conn(C,F≤w∗)

Proof. Any two components c1, c2 ∈ C that are connected on C using only edges from F≤w∗
are trivially also connected on C using only edges from E≤w∗ (because of F≤w∗ ⊆ E≤w∗).

Now assume that c1 and c2 are connected using E≤w∗ , but not using F≤w∗ . Then at least
one of the edges e ∈ E≤w∗ with w(e) ≤ w∗ on the path between c1 and c2 can be added
to F≤w∗ without creating a cycle. However, if we add e to F and obtain F ′ := F ∪ {e},
then F ′ must contain a cycle (otherwise F was not spanning). There is at least one edge
e′ on the cycle with weight > w∗ (because by assumption, the two endpoints of e are not
connected using F≤w∗). Now, F ′′ := F ′ \ {e′} no longer contains a cycle and therefore F ′′
is also a spanning forest. However, we have w(F ′′) < w(F) (because of w(e) < w(e′)),
which is a contradiction to F being minimum.

We have shown that any two components c1, c2 ∈ C are connected to each other with
E≤w∗ iff they are connected to each other with F≤w∗ . In conclusion, the two definitions
of Conn(C,E≤w∗) and Conn(C,F≤w∗) are equivalent (see the definition in Section 3.2.2),
which proves this lemma.

Theorem 10. Protocol 15 privately computes Functionality 1 in the semi-honest security
model.

Proof. A simple simulator S (that works for both parties in the same way) that only
requires the MSF F returned by Protocol 15 in its input can be defined in the following way:
S simulates the Protocol 15 pretending that party p’s input was F (p) := {({u, v}, w∗, p∗) ∈
F | p∗ = p} (i.e., no edges other than those in the selected MSF exist).

72

In order to show security, we need to prove that the output of every call to a sub-
protocol is the same in the real execution on edges E as in the simulator’s execution on
edges F . We may assume that all previous outputs of sub-protocols have already been the
same, and we only need to show that the next one will be the same in both worlds.

Note that Protocol 15 only calls sub-protocols at three different places:

(1) Minimum(v1, v2) in line 14. In the real world, this is

Minimum(min{w(e) | e ∈ E(1)(c)},min{w(e) | e ∈ E(2)(c)}) = min{w(e) | e ∈ E(c)}.

Similarly, the simulator calls

Minimum(min{w(e) | e ∈ F (1)(c)},min{w(e) | e ∈ F (2)(c)}) = min{w(e) | e ∈ F (c)}.

By Lemma 6 and due to the fact that F is an MSF of (V,E), we have min{w(e) |
e ∈ E(c)} = min{w(e) | e ∈ F (c)}. Thus, the simulator’s output is equal to the real
output.

(2) ConnectivitySw∪{c∗w}(E
(1)
=w, E

(2)
=w) in line 21. By correctness of Connectivity, the

return value would be Conn(Sw∪{c∗w}, E=w). On the other hand, the simulator would
call ConnectivitySw∪{c∗w}(F

(1)
=w, F

(2)
=w), which returns Conn(Sw ∪ {c∗w}, F=w). Note

that none of the components in Sw or c∗w can have an outgoing edge of weight < w∗,
so the outputs are the same as Conn(Sw ∪ {c∗w}, E≤w∗) and Conn(Sw ∪ {c∗w}, F≤w∗)
in the real and the simulator’s world, respectively. Thus, according to Lemma 7, the
simulator’s output is equal to the real output.

(3) Whenever UnweightedSFS is called on edges (Ec∗)=w (with c∗ =
⋃
i∈[k] ci) in the

real execution, its output M is added to the final return value of Protocol 15. This
means that M ⊆ F .

Let the simulator’s output of this call to UnweightedSF beM ′. We haveM ′ ⊆M ,
as no edge e ∈ F \ M can connect two different components from {c0, . . . , ck−1}
(since {c0, . . . , ck−1} are already pairwise connected by M , and any other edge would
introduce a cycle). In addition, any edge in M must also be in M ′, otherwise M ′ is
not spanning.

This shows that the simulator’s output M ′ is equal to the real output M .

73

Chapter 10

Performance Analysis

The performance (in terms of efficiency, especially the number of communication rounds)
of Protocol 15 highly depends on the structure of the graph. In this chapter, we give an
analysis to find out in which cases the protocol performs better than its alternatives.

In Section 10.1, we calculate the number of communication rounds per protocol iteration
and give examples which minimize or maximize the number of iterations. In order to
compare our protocol with Laud’s MSF protocol [25], Section 10.2 presents a brief analysis
of the number of communication rounds required by their protocol. In Section 10.3, we
then use a random graph generation algorithm to show that as long as the input graph is
not explicitly constructed for the worst case of Protocol 15 and the number of duplicate
edge weights is not extremely high, our protocol can achieve very good results.

10.1 Theoretical Analysis

We assume that Protocol 15 is split into two phases: (1) the merge phase where all
the separately computable subtrees are found, and (2) the final step where all calls to
UnweightedSF are run at the same time.

Each iteration in the first phase consists of two steps that require communication:

(1) For each c ∈ C, computing the Minimum weight of an edge incident to c. In order to
do this, first the locally best values of each party need to be shared, then the actual
Minimum protocol is executed, and finally the result needs to be revealed. In total,
this takes dlog2Be + 4 rounds (which can be run in parallel for all c ∈ C), where B

74

is the bitlength of the edge weights. For example, when B = 32 is used, this step
would take 9 communication rounds.

(2) For each w ∈ W , computing Connectivity on the partitioning Sw ∪ {c∗w}. The
performance depends on the number of components k in Sw ∪ {c∗w} (which can be
at most one more than the number of components with w being their best incident
weight). The required number of rounds is dlog2(k− 1)e · (dlog2 ke+ 1) + 3, so e.g. 6
for k = 3, 11 for k = 5, or 45 for k = 50.

While all calls to Connectivity can be run simultaneously, they could take different
numbers of rounds. Thus, the total number of rounds depends on the maximum k
over all parallel runs.

The second protocol phase only consists of parallel calls to UnweightedSF. The
number of communication rounds required for this phase depends solely on the size of the
largest subgraph for which UnweightedSF is called.

10.1.1 Extreme Cases

The number of required communication rounds itself can be easily maximized by letting
all edges in a connected graph have the same weight. While there would be only one full
iteration of the first protocol phase, UnweightedSF will be called on the whole graph,
therefore taking a linear number of rounds (in the number of vertices) with a relatively
high constant factor.

It is more interesting to look at graphs with a low number of duplicate weights. In
particular, in this section we present two examples that minimize and maximize the number
of required rounds when no two edges have the same weight. Note that in the second phase,
UnweightedSF will only be called on subgraphs of size 2, thus requiring a constant
number of communication rounds that is independent of the number of vertices.

Figure 10.1 gives an example of a graph where the number of iterations is minimized:
Only one full iteration is required in the first phase, because the optimization can be
applied on the whole graph s.t. afterwards only one component remains.

Figure 10.2 on the other hand gives an example where the edge weights are still unique,
however Protocol 15 requires a linear number of iterations because the optimization is not
applicable at all.

75

1 2 3 4 5 . . .
1 2 3 4 5

Figure 10.1: An example for a graph on which Protocol 15 takes a minimum number of
rounds. In the first iteration, the best incident edge weight is computed for every vertex.
This would be w{1} = w{2} = 1, and w{u} = u − 1 for all u ≥ 3. Then, after testing
the connectivity, vertices 1 and 2 are merged together (and MSF({{1}, {2}}, E=1) is added
to the global MSF). Afterwards, the optimization can infer that 3 must be connected to
the new component {1, 2} using an edge of weight 2. Thus, MSF({{1, 2}, {3}}, E=2) is
computed and we get the new component {1, 2, 3}. This continues until all vertices are
merged in the first iteration of the protocol. The total number of communication rounds
consists of dlog2Be + 4 for computing the minimum weights, 6 for the connectivity tests,
plus the number of rounds required for UnweightedSF on two components as described
in Section 8.2.

1 2 3 4 5 . . .

1′ 2′ 3′ 4′ 5′ . . .

1 3 5 7 9

2 4 6 8 10

Figure 10.2: An example for a graph with unique edge weights on which Protocol 15
takes a maximum number of rounds. In the first iteration, the best incident edge weight
is computed for every vertex. This would be w{1} = w{2} = 1, w{1′} = w{2′} = 2, and
w{u} = 2u − 3 and w{u′} = 2u − 2 for all u ≥ 3. Then, after testing the connectivity,
vertices 1 and 2 are merged together (and MSF({{1}, {2}}, E=1) is added to the global
MSF), and vertices 1′ and 2′ are merged together (and MSF({{1′}, {2′}}, E=2) is added to
the global MSF). However, the optimization cannot be applied in this case: For any of
the other components (i.e., {u} or {u′} for u ≥ 3), it is unknown whether it is connected
to {1, 2} or {1′, 2′}. Thus, the protocol needs to start the next iteration, in which again
just two merges of two components each can take place. In summary, if there are 2n
vertices in the beginning, then n−1 full iterations need to be executed, each of them using
dlog2Be+4 rounds for the first step, and 6 rounds for testing the connectivity. The number
of full protocol iterations is maximized: the termination condition at the end of the proof
of Theorem 9 shows that at least one merge for the smallest overall weight w′ happens in
each iteration. If there is no second merge in the same iteration, then the optimization
could be applied to the smallest w with with sw 6= ∅, which results in another merge step
for a total of at least two merges per iteration.

76

10.2 Analysis of Laud’s protocol

Laud has described a way to securely compute a minimum spanning forest in the semi-
honest model for 3-party computation [25], and provided an implementation in the Share-
mind framework [6]. It is based on Awerbuch and Shiloach’s MSF algorithm [2], which
modifies Borůvka’s algorithm [8] in such a way that no union-find operations with unpre-
dictable running time need to be performed. The algorithm is highly parallelizable and
requires only O(log2 |V |) iterations in total when using enough processors.

Laud’s protocol does not perform any reveal steps during the execution (other than
values required for sorting, but they do not yield any information about the input). Instead,
it takes secret-shares of the complete graph (i.e., a list of secret-shared edges), and it
returns a list of secret-shared edges. This problem is stronger than the one we are looking
at (Functionality 1): revealing any values correlated to the input is not allowed, as a
simulator is not able to see the produced MSF, but only its secret-shares.

In addition, Laud’s protocol assumes that all edge weights are unique. However, due
to the fact that no reveal steps take place, it is still possible to use it in order to simulate
Functionality 1 in a simple way: A secret-shared tie-breaker permutation π for the set
of edges is generated either explicitly (i.e., take an array with numbers 0, . . . , |E| − 1
and shuffle it), or in a more efficient way with small probability of error (i.e., generate a
random secondary weight for each edge, s.t. the probability of generating two times the
same weight is negligible). Supplementing each edge weight by this tie-breaker yields the
option to compare two edges by their new weight for the cost of just one secret integer
comparison (provided that its bitlength is large enough to hold both the original weight
and the additional tie-breaker).

The fact that this protocol is based on arithmetic secret sharing and its framework
has only been implemented for 3-party computation makes it impossible to compare it
experimentally with our 2-party protocol based on binary secret sharing. However, in this
section we attempt to give a loose lower bound on the number of communication rounds
required by Laud’s protocol [25]. This will show that, even though Laud’s protocol has
a poly-logarithmic running time independent of the structure of the graph, the involved
constant factors are so large that it is often worth it to use Protocol 15 instead.

10.2.1 Reading and Writing

Laud’s protocol makes use of parallel writing and reading, i.e., it stores a shared memory
that can be efficiently read from and written to for a batch of requests [25]. The reading

77

and writing procedures are based on the ability to securely shuffle an array and to securely
sort an array.

There are many ways to shuffle an array in a 3-party computation setting [26]. Even
though there are constant-round shuffle protocols, they usually require large total com-
munication costs (e.g. O(n2) when using permutation matrices). Laud instead suggests
applying Waksman networks [35]. Each party could generate their own random permuta-
tion, and then propagate the given array through a Waksman network in order to apply the
permutation. If this is done (sequentially) for all parties, a uniformly random permutation
was applied, and no party has any knowledge about how it looks like. A plain Waksman
network would require roughly 2 log2 n rounds, and repeating this for all involved parties
makes the constant factor even higher. However, for our comparison, we simply make the
conservative assumption that shuffling a length-n array costs blog2 nc rounds, as a variety
of optimizations could be applied. We assume that shuffling, i.e., applying a uniformly
random permutation, has the same costs as applying a secret-shared permutation (e.g., a
secret permutation that is split into the composition of exactly one permutation known by
each party) to a secret-shared array.

Sorting an array of length n can be done by randomly permuting it, and then applying a
common sorting algorithm (e.g. QuickSort) [18]. Any comparisons in this sorting algorithm
can be revealed to all parties as the shuffle step guarantees that the array ordering looks
completely random. If r is the number of rounds it takes to compare two secret-shared
numbers, then the sort step would take at least blog2 nc(r + 1) rounds: Every iteration
in QuickSort (including the subsequent reveal step) requires (r + 1) rounds, and there are
at least blog2 nc such iterations. If one comparison of two secret-shared numbers takes
3 rounds [10], then combining all of this means that one sort operation takes 5blog2 nc
rounds.

Assume that there is a secret-shared array of length m, and the protocol needs to
perform n read accesses, given by a length-n array of secret-shared indices in the range
[0,m− 1). Laud’s protocol splits this process into two steps: The first one creates a secret
permutation based on the access indices. In the second step, this permutation is applied to
the original array containing the data. This procedure implies that the permutation created
in the first step can be re-used if the protocol requires reading values from the same indices
in a different array. Our lower bound yields 5blog2 nc rounds for the preparation step, and
2blog2 nc rounds (because two permutations need to be applied) for the second step. Note
that for simplicity, we just use n instead of n+m in these round complexities.

The write operation requires the ability to sort a binary array (that contains only 0s
and 1s) which is stable w.r.t. the 0s, and which may reveal the number of 0s. This is done
by Laud with one shuffle and some additional operations that we may ignore (because they

78

require a constant amount of rounds), thus blog2 nc is a lower bound for this operation.

The write operation, similarly to the read operation, can be split into a preparation
and an application step. However, the preparation step of a write operation requires more
work: besides from sorting one array, one binary array sort and one permutation step need
to be applied. Thus, at least 7blog2 nc rounds are required for the first step. Applying
the actual write operation requires applying only two permutations, which takes a total of
2blog2 nc rounds.

10.2.2 The complete MSF protocol

Laud’s MSF protocol runs for blog3/2 nc iterations, each of them containing many steps
that need to be run sequentially.

Checking whether the current union-find data structure contains a star for a given
vertex requires (in total) one read preparation step, two read perform steps, one write
preparation step, and one write perform step, in addition to some low-level computations
with constant round complexity. Thus, at least 18blog2 nc rounds are needed.

One iteration of the full protocol requires checking for stars as described, and addition-
ally performing two read preparation steps, three read perform steps, one write prepare
step, and one write perform step. This sums up to a lower bound of 43blog2 nc rounds.

In total, blog3/2 nc of these iterations need to be performed. This gives us a conservative
lower bound of ≈ 1.7·43·blog2 nc2 > 73·blog2 nc2 communication rounds required by Laud’s
algorithm.

10.3 Comparison

We implemented a program in such a way that for any given graph, we can calculate the
number of communication rounds that the real protocol would take. This program simply
simulates all the steps in Protocol 15 and computes the number of rounds required for
each call to a sub-protocol (which depends on the number of rounds calculated for each
sub-protocol in the previous sections of this work). Note that for our protocol, it does not
matter which party each edge belongs to, because the number of communication rounds
and the total communication cost does not depend on this.

We run this on a variety of graphs and compare the results with Laud’s algorithm. In
order to show where the bottleneck of our protocol lies, we report other values in addition

79

to the number of communication rounds (split into phase one and two): For phase 1
of the protocol, we calculate the number of full iterations and the maximum number of
components on which Protocol 11 (Connectivity) has been called. For the second phase,
we report the maximum subgraph size on which UnweightedSF is called.

We perform comparisons of two types of graphs: (1) randomly generated graphs, and
(2) Traveling Salesman Problem graphs [31].

Randomly generated graphs We generate random graphs by sampling two uniformly
random and distinct endpoints for each edge. Weights are either generated as a uniformly
random integer weight in the range [0, w) for a fixed upper bound w, or we make the
edge weights completely unique by assigning indices [0, |E|) to the edges and then shuffling
them.

We generate graphs for |V | = 10, 102, 103, 104, 105, and always set |E| := 10|V |. This
high number of edges ensures that most vertices in the graph are connected to each other.
We repeat each configuration 5 times and report the mean values and standard deviations
in Table 10.1. We attempt to choose values for w such that we can see in which cases our
protocol achieves a better number of rounds than our lower bound for Laud’s protocol.

Traveling Salesman Problem In order to show that our protocol also works well on
“real” graphs, we also take a few randomly selected TSP graphs from the collection TSPLIB
[31]. This is because one important application of MSFs is to approximate the Traveling
Salesman Problem. We select the graph in such a way that the number of vertices ranges
between 52 and 1748. As all of the graphs are complete, the number of edges is roughly
the square of the number of vertices, and therefore higher number of vertices would result
in rather infeasible problem instances. The results are presented in Table 10.2.

10.3.1 Results

All of our experiments assume bitlength B = 32, and λ = 32 repetitions for securely
generating random numbers with Protocol 8.

We can clearly see from Table 10.1 that the number of rounds increases when w, the
upper bound on edge weights, is small. It is minimized when the edge weights are fully
unique. The reason for this is that a small bound of w means that many edges may have
the same weight, and therefore UnweightedSF needs to be run on very large subgraphs
in the second phase. For example, on 105 vertices and 106 edges, our protocol requires

80

Phase 1 Phase 2
|V | |E| w Iterations Protocol 11 Rounds Protocol 12 Rounds [25]

10 102

5 1 11 32 10 699

657
10 1.4± 0.5 9.8± 0.4 39± 9.7 7.4± 2.3 469.8± 213.9
100 2.6± 0.9 5.2± 1.5 45.8± 16.0 3.2± 0.4 112.6± 30.4

unique 2± 0.7 3 30± 10.6 2 27

102 103

20 2.6± 0.5 63.2± 8.0 131± 20.7 34.4± 4.6 3562± 567.0

2628
50 4± 0.7 34.2± 5.3 160± 21.6 15.2± 2.6 1261.2± 288.8
100 5.6± 1.3 21.6± 0.5 175± 35.4 7.6± 0.9 477.6± 85.9
1000 7.4± 1.1 7± 0.7 142± 22.6 3.8± 0.8 157.4± 64.3

unique 8.6± 1.1 3 129± 17.1 2 27

103 104

100 7.4± 0.5 185.4± 20.4 479.6± 41.9 62.4± 7.2 7151.6± 1024.1

5913

200 10.2± 1.3 96.4± 7.2 527.6± 58.2 32.4± 2.4 3258.2± 371.8
500 15.6± 1.1 48± 2.5 563.6± 39.3 15.4± 1.3 1248.2± 163.0
1000 17.8± 3.7 29± 2.3 536.4± 87.2 11.8± 1.3 872.6± 144.0
10000 20.2± 2.8 10± 1.7 386.6± 43.5 4.2± 0.4 184.6± 39.4
unique 22± 4.8 3 330± 72.7 2 27

104 105

500 18.4± 0.5 414.2± 4.1 1345.4± 29.6 116.8± 6.5 14926.2± 833.0

12337

1000 25.2± 2.0 209.4± 16.9 1486.2± 101.9 63.6± 4.0 7374.8± 699.2
5000 35.4± 1.7 58.4± 4.2 1202.2± 38.2 20± 1.9 1779± 175.9
10000 37.8± 2.9 35.8± 3.1 1076± 61.8 12.4± 0.5 965± 46.6
100000 39.4± 5.7 11.6± 0.9 771.6± 99.9 5.2± 0.4 267.8± 28.6
unique 48± 10.3 3 720± 155.2 2 27

105 106

5000 53.2± 4.7 439.4± 9.8 3549.8± 334.2 120.4± 2.1 15390.6± 267.5

18688

20000 91.2± 8.7 130.2± 3.8 3560.6± 271.2 42.6± 4.2 4550.8± 583.1
50000 97.8± 15.9 64.2± 2.4 2928.6± 419.5 22.6± 2.1 2088.8± 274.6
100000 101.6± 22.3 41.4± 2.6 2612.2± 453.8 16.2± 1.6 1374.4± 216.3
1000000 97.8± 9.9 14.2± 0.8 1827.6± 145.9 6.2± 0.4 340± 47.0
unique 91.8± 15.1 3 1377± 226.8 2 27

Table 10.1: This table displays the results produced by Protocol 15 on random graphs.
The leftmost columns denote the number of vertices, the number of edges, and the upper
bound for the randomly generated weights. For phase 1 of the protocol, we report the
number of full iterations, the maximum number of components on which Protocol 11
(Connectivity) was called, and the resulting number of communication rounds. For the
second phase, we report the maximum subgraph size on which UnweightedSF is called
and the corresponding number of communication rounds. In the rightmost column we state
our lower bound of the number of rounds that Laud’s protocol would take on the given
number of vertices. As we generate 5 independent graphs in each setting, we report both
the mean values and the standard deviations in this table.

81

Phase 1 Phase 2
|V | |E| Graph Iterations Protocol 11 Rounds Protocol 12 Rounds [25]
52 1326 berlin52 7 6 117 3 99 1825
180 16110 brg180 3 181 184 15 1186 3577
666 221445 gr666 28 9 490 3 99 5913
1379 950131 nrw1379 19 76 734 13 1016 7300
1655 1368685 d1655 10 1297 557 64 7235 7300
1748 1526878 vm1748 32 583 943 14 1101 7300

Table 10.2: This table shows the results produced by Protocol 15 on TSP graphs. The
reported numbers follow the same format as in Table 10.1, with the only difference that
we do not have a fixed upper bound on the weight, but we just take the graph with name
stated in the third column from TSPLIB [31].

about 8000 rounds if w = 20 000, but nearly 20 000 rounds if w = 5000. Laud’s protocol
has a constant performance independent of the edge weights, and our lower bound indicates
that it would require at least 18 000 rounds.

Note that in contrast to the second phase, the number of iterations in the first phase
increases for larger w. However, Connectivity needs to be run for a smaller number of
components, which in turn results in a decrease of the number of communication rounds,
as shown in Table 10.1. Still, its effect on the overall number of rounds is much smaller
than the additional number of rounds required for larger subgraphs in the second phase.

Table 10.2 shows the results on the selected TSP graphs. Note that, in terms of rounds,
our protocol performs better on all of them, except for d1655. The reason for this is that
on d1655, UnweightedSF needs to be called on a very large subgraph consisting of 64
vertices, which requires a large number of communication rounds.

Taking a closer look, on vm1748 and brg180, Connectivity is called for a rather
high number of components (583 and 181, respectively). Because the total communication
cost of this sub-protocol is cubic, these instances might also be infeasible for our protocol,
depending on the available bandwidth between the two parties. For all other tested TSP
graphs (berlin52, gr666, and nrw1379), the number of duplicate weights are relatively small,
and accordingly the subgraph size is also small (at most 13 on nrw1379), and therefore our
protocol performs much better than Laud’s protocol.

82

Chapter 11

Conclusion

In this work, we have presented several novel protocols for computing a Minimum Span-
ning Forests for the semi-honest security model in a two-party computation setting. Our
objective was to minimize the number of communication rounds, so that the protocol is
usable in any network setting, even when the latency is high (for example due to a large
geographical distance).

First, we have seen a very simple protocol based on Borůvka’s algorithm that only has
a logarithmic worst-case round complexity. However, it is not secure anymore if a random
tie-breaker for edges with equal weights needs to be used, and this tie-breaker is published
or the parties can infer any information about it.

As a result, we proposed a protocol that can compute a Random Minimum Spanning
Forest without any kind of leakage. However, the required number of communication
rounds highly depends on the graph structure and its weights. Whenever the number of
duplicate weights is rather small, and the graph does not follow an artificially constructed
worst-case, then the number of iterations is very low and our protocol performs better than
alternatives.

In future work, it would be interesting to further optimize this process for graphs
with structures that lead to a high number of rounds in our current protocol. One main
point of improvement that the protocol would benefit from is reducing the total amount
of communication required for testing connectivity on a subgraph with many components.
Additionally, constructing a new MSF protocol with a sublinear number of communica-
tion rounds for general unweighted graphs (e.g. by adapting prior fully secure protocols
without any reveal step) is a promising direction for further research. This could lead to
better performance of the second phase of our protocol, which is currently one of the main
bottlenecks for graphs with many duplicate weights.

83

References

[1] M. Anagreh, E. Vainikko, and P. Laud, “Parallel privacy-preserving computation of
minimum spanning trees”, in Proceedings of the 7th International Conference on In-
formation Systems Security and Privacy, ICISSP 2021, Online Streaming, February
11-13, 2021, P. Mori, G. Lenzini, and S. Furnell, Eds., SCITEPRESS, 2021, pp. 181–
190.

[2] B. Awerbuch and Y. Shiloach, “New connectivity and msf algorithms for shuffle-
exchange network and pram”, IEEE Transactions on Computers, vol. 36, no. 10,
pp. 1258–1263, 1987.

[3] D. Beaver, “Efficient multiparty protocols using circuit randomization”, in Advances
in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1991, Proceedings, J. Feigenbaum,
Ed., ser. Lecture Notes in Computer Science, vol. 576, Springer, 1991, pp. 420–432.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract)”, in Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4,
1988, Chicago, Illinois, USA, J. Simon, Ed., ACM, 1988, pp. 1–10.

[5] M. Blanton, A. Steele, and M. Aliasgari, “Data-oblivious graph algorithms for secure
computation and outsourcing”, in 8th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’13, Hangzhou, China - May 08 - 10,
2013, K. Chen, Q. Xie, W. Qiu, N. Li, and W. Tzeng, Eds., ACM, 2013, pp. 207–218.

[6] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast privacy-
preserving computations”, in Computer Security - ESORICS 2008, 13th European
Symposium on Research in Computer Security, Málaga, Spain, October 6-8, 2008.
Proceedings, S. Jajodia and J. López, Eds., ser. Lecture Notes in Computer Science,
vol. 5283, Springer, 2008, pp. 192–206.

84

[7] J. Böhler and F. Kerschbaum, “Secure sublinear time differentially private median
computation”, in 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020, The Internet Society,
2020.

[8] O. Borůvka, “O jistém problému minimálním”, in Práce Moravské přírodovědecké
společnosti, vol. 3, 1926, pp. 37–58.

[9] J. Brickell and V. Shmatikov, “Privacy-preserving graph algorithms in the semi-
honest model”, in Advances in Cryptology - ASIACRYPT 2005, 11th International
Conference on the Theory and Application of Cryptology and Information Security,
Chennai, India, December 4-8, 2005, Proceedings, B. K. Roy, Ed., ser. Lecture Notes
in Computer Science, vol. 3788, Springer, 2005, pp. 236–252.

[10] O. Catrina and S. d. Hoogh, “Improved primitives for secure multiparty integer com-
putation”, in International Conference on Security and Cryptography for Networks,
Springer, 2010, pp. 182–199.

[11] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for efficient mixed-
protocol secure two-party computation”, in 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-
11, 2015, The Internet Society, 2015.

[12] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction to secure multi-
party computation”, Found. Trends Priv. Secur., vol. 2, no. 2-3, pp. 70–246, 2018.

[13] A. M. Frieze, “On the value of a random minimum spanning tree problem”, Discret.
Appl. Math., vol. 10, no. 1, pp. 47–56, 1985.

[14] O. Goldreich, “Secure multi-party computation”, Manuscript. Preliminary version,
vol. 78, p. 110, 1998.

[15] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or A
completeness theorem for protocols with honest majority”, in Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
A. V. Aho, Ed., ACM, 1987, pp. 218–229.

[16] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
rams”, J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[17] R. L. Graham and P. Hell, “On the history of the minimum spanning tree problem”,
Annals of the History of Computing, vol. 7, no. 1, pp. 43–57, 1985.

[18] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi, “Practically effi-
cient multi-party sorting protocols from comparison sort algorithms”, in International
Conference on Information Security and Cryptology, Springer, 2012, pp. 202–216.

85

[19] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok: General purpose
compilers for secure multi-party computation”, in 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, IEEE, 2019,
pp. 1220–1237.

[20] W. D. Hillis and G. L. Steele Jr, “Data parallel algorithms”, Communications of the
ACM, vol. 29, no. 12, pp. 1170–1183, 1986.

[21] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious transfers ef-
ficiently”, in Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Pro-
ceedings, D. Boneh, Ed., ser. Lecture Notes in Computer Science, vol. 2729, Springer,
2003, pp. 145–161.

[22] M. Keller, “MP-SPDZ: A versatile framework for multi-party computation”, in CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020, J. Ligatti, X. Ou, J. Katz, and G. Vigna,
Eds., ACM, 2020, pp. 1575–1590.

[23] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling sales-
man problem”, Proceedings of the American Mathematical society, vol. 7, no. 1,
pp. 48–50, 1956.

[24] R. E. Ladner and M. J. Fischer, “Parallel prefix computation”, Journal of the ACM
(JACM), vol. 27, no. 4, pp. 831–838, 1980.

[25] P. Laud, “Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees”, Proc. Priv. Enhancing Technol., vol. 2015,
no. 2, pp. 188–205, 2015.

[26] S. Laur, J. Willemson, and B. Zhang, “Round-efficient oblivious database manipula-
tion”, in International Conference on Information Security, Springer, 2011, pp. 262–
277.

[27] Y. Lindell, “How to simulate it - A tutorial on the simulation proof technique”, in
Tutorials on the Foundations of Cryptography, Y. Lindell, Ed., Springer International
Publishing, 2017, pp. 277–346.

[28] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A programming
framework for secure computation”, in 2015 IEEE Symposium on Security and Pri-
vacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, IEEE Computer Society, 2015,
pp. 359–376.

86

[29] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi, “Graphsc:
Parallel secure computation made easy”, in 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, IEEE Computer Society,
2015, pp. 377–394.

[30] R. C. Prim, “Shortest connection networks and some generalizations”, The Bell Sys-
tem Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[31] G. Reinelt, “TSPLIB - A traveling salesman problem library”, INFORMS J. Comput.,
vol. 3, no. 4, pp. 376–384, 1991.

[32] T. Schneider and M. Zohner, “GMW vs. yao? efficient secure two-party computation
with low depth circuits”, in Financial Cryptography and Data Security - 17th In-
ternational Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers, A. Sadeghi, Ed., ser. Lecture Notes in Computer Science, vol. 7859, Springer,
2013, pp. 275–292.

[33] A. Shamir, “How to share a secret”, Commun. ACM, vol. 22, no. 11, pp. 612–613,
1979.

[34] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas,
“Path ORAM: an extremely simple oblivious RAM protocol”, in 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, A. Sadeghi, V. D. Gligor, and M. Yung, Eds., ACM, 2013,
pp. 299–310.

[35] A. Waksman, “A permutation network”, Journal of the ACM (JACM), vol. 15, no. 1,
pp. 159–163, 1968.

[36] D. B. Wilson, “Generating random spanning trees more quickly than the cover time”,
in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, Philadelphia, Pennsylvania, USA, May 22-24, 1996, G. L. Miller, Ed., ACM,
1996, pp. 296–303.

[37] A. C. Yao, “Protocols for secure computations (extended abstract)”, in 23rd An-
nual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, IEEE Computer Society, 1982, pp. 160–164.

87

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Related Work
	Preliminaries
	Graphs
	Minimum Spanning Forests
	Minimum Spanning Forests for Graph Partitionings
	Connectivity

	Two-party computation
	Framework
	Protocol Notation
	Low-level circuit communication cost

	Problem Definition
	Protocol for graphs with distinct weights
	Boruvka's Algorithm
	Adaption as a two-party computation protocol
	Security

	Issues arising from edges with the same weight
	Leaky tie-breaker for two-party protocols
	Omitting tie-breaker from the output

	Building blocks
	Find first
	Secret prefix operations
	Joint random number generation
	Boolean Matrix Multiplication
	Connectivity

	Protocol for unweighted graphs
	Correctness and Security
	Optimization for the case |C| = 2

	General Protocol
	Crucial observations
	Informal description
	Finding subgraphs
	Detailed description
	Optimization

	Formalized protocol
	Practical considerations

	Correctness
	Security

	Performance Analysis
	Theoretical Analysis
	Extreme Cases

	Analysis of laud's protocol
	Reading and Writing
	The complete MSF protocol

	Comparison
	Results

	Conclusion
	References

