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Abstract

Digital pathology has enabled us to capture, store, query and analyze scanned biopsy
samples as digital images. The widespread adoption of digital pathology has spurred the
digitization of tissue biopsy samples, known as whole slide images (WSIs). Content-based
WSI retrieval and computational pathology are expected to reduce the physicians’ work-
load, improve diagnostic performance, and facilitate the teaching and research in pathology.
Recent advances in deep learning have the potential to contribute to computational pathol-
ogy and more effective WSI search systems. Deep learning is a successful tool for image
analysis, including various applications in the medical domain. However, considering the
extremely large size of the multi-resolution images and lack of patch-level labelled data,
deep networks are challenging to adapt for WSI analysis. More precisely, the gigantic
size of WSIs imposes three main challenges to apply deep learning to represent pathol-
ogy image data for efficient and accurate processing. First, it is not easy to obtain deep
WSI embeddings in an end-to-end manner. Second, storing WSIs and patch embeddings
in Euclidean space needs significant memory resources when operating in large reposito-
ries. Third, WSI and patch search using Euclidean embeddings in large image archives
is infeasible. In order to address the above challenges, first, we propose Efficient Spectral
Hashing (ESH), a method based on spectral hashing formulation with lower space and time
complexities which leads to binary representations with an enhanced search performance
compared to many recent hashing methods. We also proposed a novel quantization scheme,
called non-rigid quantization (NRQ), where for the first time we proposed to employ non-
rigid transformations for minimizing quantization loss. After studying standard hashing
algorithms, the main challenge is modifying these methods so that they can be applied to
WSIs. Due to the gigantic size of WSIs, the first step in processing WSIs is to replace them
with a subset of their associated representative patches. Considering this multi-instance
(bag of patches) representation per WSI, this is not clear how to apply the two proposed
methods to learn binary WSI representations. To mitigate this challenge, we proposed we
proposed CNN-Deep Sets (CNN-DS) to learn one permutation invariant vector representa-
tion per WSI in an end-to-end manner. Although using CNN-DS, we were able to obtain
WSI embeddings, still there were two issues with this approach. First, the method faces
high GPU memory usage during the training due to keeping multiple bags of patches in
the memory. Second, the obtained embeddings were in Euclidean space which for the very
large archives the search speed becomes very slow while they occupy significantly more
storage. Further, applying ESH/NRQ on the extracted embeddings needs an additional
learning step. To unify ideas from ESH/NRQ with CNN-DS that is learning compact
(binary and sparse) permutation-invariant WSI representation for efficient search and also
to bypass training time memory bottleneck we proposed a novel framework based on deep
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generative modelling and the Fisher Vector Theory. We introduced new loss functions
for learning sparse and binary permutation-invariant WSI representations that employ
instance-based training achieving better memory efficiency. The learned WSI representa-
tions were validated on The Cancer Genomic Atlas (TCGA) and Liver-Kidney-Stomach
(LKS) datasets. The proposed method outperforms Yottixel (a recent search engine for
histopathology images) both in terms of retrieval accuracy and speed. Further, we achieve
competitive performance against SOTA on the public benchmark LKS dataset for WSI
classification. Finally, showed that learning sparse permutation-invariant WSI represen-
tations which in our framework is associated with encouraging sparsity on the gradients
reduces the sharpness of the loss landscape and as a result improves the generalization of
deep neural networks.
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Chapter 1

Introduction

1.1 Motivation

The widespread use of the Internet and recent advances in the development of several fields
such as smartphones, high-resolution microscopes, and cameras have massively contributed
to creating large data repositories. The amount of data generated each year is accelerated
more than before and this is just the beginning of the data revolution that will affect every
business and many aspects of human life. This data explosion is observed in various fields,
including business, finance, healthcare, and communication.

A healthcare-related example is digitizing histopathology glass slides of tissue samples.
Histopathology is the examination of tissue under a microscope to study the relation be-
tween tissue morphology and different diseases [113, 53]. A digital histopathology image,
called a Whole Slide Image (WSI), is captured via a special scanner where the tissue glass
slide is digitized at different zoom levels. WSIs are gigapixel images generally with large
dimensions, often larger than 100,000 by 100,000 pixels [19]. Pathologists are usually over-
worked, and their jobs are stressful and rigorous. It is expected that WSI content-based
retrieval systems can be beneficial in different ways, including teleconsultation, workload
efficiency, collaborations, improving diagnostic accuracy, virtual education, and research
[113, 115]. More precisely, Pathologists examine biopsy tissues to detect the tumors and to
investigate their characteristics in order to evaluate tumor aggressiveness which is s a com-
plex task that needs many years of experience, and sub-speciality expertise [55]. However,
having a fast and reliable retrieval system can act as additional knowledge that shares the
experience of many other pathologists that investigated similar cases in the past. This will
lead to a more reliable and objective diagnosis with less inter-observer variability. Please
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note that although the phrase “retrieval” can refer to a more general notion compared with
“search”, in this thesis, we use “search” and “retrieval” interchangeably.

Considering the above mentioned potentials of digital pathology and WSI content-based
retrieval systems, one expects that WSIs can be analyzed using the myriad of computer
vision methods currently available for similar tasks in other fields. As such, the usage of
deep learning for WSI analysis has become an active area of research [19]. Unfortunately,
scientific progress with these data has been rather slow because of difficulties with the data
itself. These obstacles include highly complex textures of different tissue types, colour vari-
ations caused by different stainings, rotationally invariant nature of WSIs, lack of labelled
data, and most notably, the extremely large size of the images [19, 113]. Additionally,
these images are multi-resolution, meaning that each WSI may contain images from dif-
ferent zooming levels, primarily 5x, 10x, 20x, and 40x magnification levels [19, 113, 53].
The largest obstacle that hinders developing a WSI content-based retrieval system and
also the application of deep networks in computational pathology tasks is the sheer size of
WSIs that makes the deployment of many solutions infeasible - or perhaps even impossible.
Hence, techniques to deal with storage, search and analysis of giga- and terabyte datasets
have become even more necessary than before.

The problem of search in big data is recognized as the nearest neighbour search in
which the objective is to retrieve the nearest neighbour data point to the query data point
among all data points in an archive. Because of data abundance, databases are generally
very large (consisting of millions of data points). Further, in many applications, including
computer vision, data points are high dimensional1. Considering both the gigantic size
of databases and the high dimensionality of each data point, this is clear that nearest
neighbour search is prohibitively time-consuming. Apart from the computational cost
of search, significant memory resources are needed to store this massive data. These
challenges are even more daunting for gigapixel images. This is because it is not trivial
to have a single (global) representation for gigapixel images as this is not possible to
simply feed these multi-magnification images into networks. Considering this difficulty, a
general way for representing WSIs can be extracting some small patches from WSIs and
simply use a deep pre-trained network to extract features from each patch. This approach
provides us with a set of (or bag of) feature vectors for each WSI which makes the dataset
significantly larger. This is because each WSI is itself a set of patches where the set size
can generally be something between several hundreds to several thousands feature vectors.
In this setting, where each WSI is presented by a set of patches, some challenges emerge.
First, it is not clear to calculate the distance (dissimilarity) between two WSIs, i.e., two

1Today, the standard way of representing a regular image is using pre-trained networks that lead to the
vector representation of the image with dimensionality in order of 1000-4000.
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sets of patches (vectors). Second, the speed in patch-based search may become too low
due to the high number of patches. Finally, significant memory resources are necessary for
storing representations of these patches.

In order to address these challenges, this thesis explores two computer vision research
directions separately and then propose a framework for unifying these two research direc-
tions. The first idea is learning similarity preserving binary representations for patches.
Note that as each WSI contains multiple patches, the number of patches may become too
large (e.g., for large tissue samples), which may render the embedding in Euclidean space
in the patch retrieval task infeasible. The second idea is learning one single representation
per WSI that must capture the semantic information in the gigapixel image. Such repre-
sentation is particularly useful in the WSI search problem both in terms of retrieval speed
and memory usage. Finally, the possibility of proposing a framework for unifying binary
representation learning and WSI representation learning tasks is explored.

For the patch search problem, where the number of WSI patches is prohibitively large,
one can employ binary representations. Learning binary representations is known as “hash-
ing” . Learning to hash is generally understood to be learning similarity-preserving binary
representations and is one of the most effective techniques for the fast approximate near-
est neighbour search due to its efficiency in storing big data, and computational speed
[118]. That explains why there is a large body of works on different types of hashing
for image-based applications where the high-dimensionality inherent to visual data poses
unique challenges to any search and retrieval system. Hashing has been applied to different
problems where the fast nearest neighbour search is necessary. Examples where hashing has
been applied include image annotation [120], segmentation of videos [79], multimedia re-
trieval [29], [108], large-scale clustering [129] and audio search [116]. With recent advances
in the area of approximate nearest neighbour search, the word hashing is being used in
two different contexts. Traditionally, hashing refers to indexing algorithms that attempt
to increase search speed to achieve better performance compared with exhaustive search
(linear scan) [118]. These hashing algorithms increase the search speed using lookup tables.
On the other hand, the phrase hashing is recently used to describe algorithms that learn
similarity preserving binary codes from data in continuous spaces. In these algorithms,
which are mainly referred to learning-based algorithm (“learning to hash”), the focus is
on learning binary representations of images that preserve the neighbourhood structure of
continuous data as much as possible. In learning-based methods, algorithms are evaluated
based on their retrieval performance in exhaustive search (linear scan). This search strat-
egy is known as hash code ranking [118] where the similarity is efficiently calculated using
the Hamming distance.

For the WSI search problem, obtaining one single embedding per WSI that fully cap-
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tures the semantic information of WSI can be a straightforward solution; having one feature
vector per WSI improves both search speed and necessary memory resources to store WSIs.
However, considering that the common practice in dealing with WSIs is patch selection,
one has to deal with a set representation problem to obtain a vector that fully captures
the semantic information in each WSI. Given this set of patches representing each WSI,
one possible solution is Multi-Instance Learning (MIL) [51] where a label is assigned to a
set of instances instead of one instance. However, as this is discussed in the next chapters,
there are other alternatives based on the bag of visual words [17] that have been ignored
by the computational pathology community and still have a great potential in the set rep-
resentation problem and provide computational advantages compared with the common
MIL scheme.

1.2 Problem Statement

The problem that is faced in designing a deep learning-based content-based WSI/patch
retrieval is as following.

How can we obtain compact deep WSI/patch representations that can be used in WSI
and patch search while training-time memory bottleneck is bypassed? To answer the above
question, the problem is approached by developing the following methods:

1. Methods for learning high quality compact representations e.g., binary/sparse repre-
sentations for patch retrieval problem.

2. Methods for learning high quality permutation invariant WSI representations while
they can handle multi-magnifications and bypass the Graphics Processing Unit (GPU)
memory bottleneck caused by gigantic size of WSIs.

3. A framework for unifying solutions for the two above problems to achieve ultimate
efficiency, i.e., compact WSI representations.

In this thesis, efficiency is sought in multiple directions to propose a unified approach
where these directions meet each other. First, for the patch search (and within WSI search)
problem, it is desired to obtain binary representations (or any other form of compact
representations like sparse representations) that lead to efficient image retrieval both in
terms of retrieval speed and memory usage. Second, this is expected the proposed method
obtains one vector embedding per WSI that fully captures the semantic information in the
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WSI and, at the same time, handle multi-magnifications and enjoys a low computational
and memory expenses during training. Furthermore, this is anticipated the developed
deep neural net can obtain both compact representation (binary or sparse) for WSIs and
patches and is trained in an end-to-end manner. This is desired because this neural net
does not face memory bottleneck during training, i.e., it is trained on instances, not a bag
of instances and employs information from all magnifications in the WSI.

For binary representation learning, the learning to hash literature is explored and this
is tried to develop methods that suit the intrinsic nature of our data that is gigantic size.
More precisely, this is attempted to adapt current methods such that they can easily bypass
the memory bottleneck and reduce time complexity during binary representation learning
of patches.

For representation learning of WSIs, i.e., obtaining one vector that models a WSI, a
variety of ideas based on heuristic architectures, MIL-based approaches, and dictionary
learning approach are studied. We propose learning schemes for WSI representation learn-
ing based on permutation invariant neural networks and also dictionary learning approach
where the objective is to learn compact WSI representations from different magnifications
in an end-to-end manner while the memory bottleneck is bypassed. As a matter of fact,
although due to permutation invariance properties, the MIL scheme has become a stan-
dard approach for applying deep learning to WSIs, we argue that this approach may not
be the best or the only possible option for WSI representation learning. The main reason
for this argument is the fact that in MIL, multiple bags are fed to the neural net. This can
be particularly problematic in the processing of WSIs as the number of patches per WSI
(bag size) is around 200-300, which even with a batch size like 16 causes memory issues
for end-to-end training on images. Considering this, our final proposed method scheme is
not based on the common MIL scheme and instead we employ deep generative models as a
dictionary learning-based approach to obtain compact WSI representations from different
magnifications while the training is end-to-end and the memory bottleneck is bypassed.

In summary, we are interested in an approach that provides:

1. Permutation invariant representations for WSIs while the training is on instances
instead of a bag of instances.

2. Representations for both WSIs and patches.

3. Compact representations (including binary or sparse).

4. Representations that are guided by available information, e.g., the primary site of
the tissue.
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5. Multi-magnification informed representations.

To the best of my knowledge, such a network does not exist in the literature of medical
image processing, and its contribution can be very helpful.

1.3 Thesis Organization

In the last section, we briefly introduced problems that we may face to obtain high-quality,
compact representation for patches and WSIs. We observed that some natural candidates
for this difficult task are learning to hash and possible schemes for WSI representation
learning. The rest of this thesis is organized as follows: the existing related literature on
learning to hash and WSI representation learning will be briefly reviewed in Chapter 2.
Subsequently, inspired by limitations in existing methods, in Chapters 3 and 4, we pro-
pose two efficient unsupervised hashing methods namely ESH and Non-rigid Quantization
(NRQ) for learning high quality binary representations that can be easily applied to big
data while enjoy lower time complexity. Then, in Chapter 5 we propose a learning scheme
based on permutation invariant neural network Deep Sets that employs the hierarchical
relation between primary site and primary diagnoses which helps the network to make bet-
ter predictions. In Chapter 6 we propose a framework based on deep generative models for
learning compact (binary/sparse) WSI permutation invariant representations, this frame-
work enable us to to end-to-end training without training time memory bottleneck while
it can handle multiple magnifications. Finally, in Chapter 7 the conclusion is presented.
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Chapter 2

Related Works

The increased acquisition of WSIs data has opened new opportunities in the quantitative
analysis of tissue histopathology, e.g., supporting the diagnostic process by reducing the
inter-and intra-observer variability among pathologists. As a result, there is a hope that
employing machine learning algorithms in histopathology image analysis can provide more
advantages from the digitization in the pathology domain. As such, the usage of deep
learning for WSI analysis has become an active area of research. Unfortunately, scientific
progress with these data has been slowed because of difficulties with the data itself. These
difficulties include highly complex textures of different tissue types, colour variations caused
by different stainings, rotationally invariant nature of WSIs, lack of labelled data and most
notably, and the extremely large image size (often larger than 100,000 by 100,000 pixels).
Additionally, these images are multi-resolution, meaning that each WSI may contain images
at different zooming levels, primarily 5x, 10x, 20x, and 40x magnification [113].

One of the main usages of applying deep learning on WSIs is the representation learning
of these images, which is challenging due to their large size. In practice, this hurdle is
often bypassed by simply considering small ‘patches’ of the WSI, a set of which is meant to
represent the entire WSI [27, 10]. Existing patching schemes allow us to split the WSI into
tiles to be inputted to deep Convolutional Neural Network (CNN)s for WSI representation
learning. However, such representations impose some new challenges.

1. Patch level labels generally are not available. In many cases, all we have is WSI level
annotations which are not valid for all patches of that WSI.

2. Representing each WSI by a set of vector embeddings needs significant memory
resources to store large archives of the patch and WSI representations.
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3. Representing every WSI by a set of embeddings makes the downstream tasks, e.g.,
WSI classification and retrieval, non-trivial.

To address these challenges, three main ideas are explored in this thesis.

1. Learning high-quality binary representations of patch embeddings.

2. Developing a framework to learn one universal embedding per WSI. Ideally, we are
interested in end-to-end methods that capture information from different magnifica-
tions and data modalities without facing the training time memory bottleneck.

3. Combining the first and second techniques to achieve compact (binary or any other
efficient representation, e.g., sparse) WSI representations for ultimate efficiency.

2.1 Binary Representation Learning

Learning binary representations is one possible solution for efficient patch and WSI search
problems. This is because of the two main reasons. First, binary representations signifi-
cantly occupy less memory. Second, owing to the efficiency of the Hamming distance in
calculating distance between binary embeddings, the retrieval speed for binary represen-
tations is significantly high. Given the advantages of binary representations for gigapixel
WSI search, here the related literature is explored. Then in the next chapter, I present
my approach for binary representation learning that bypasses the training time memory
bottleneck inherent to big data (e.g., patches in our case) and reduces time complexity.

2.1.1 Categorization of Hashing Methods

Hashing algorithms can be categorized in many different ways. In the following, we briefly
introduce these categorizations and explain each one separately.

Data-Independent and Data-Dependent

The first categorization classifies the hashing methods in two main sub-groups: data-
independent and data-dependent algorithms [118]. The Locality Sensitive Hashing (LSH)
[2] is one of the first representatives in the first group where hash functions are con-
structed using random projections. Although these methods are faster compared with
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data-dependent algorithms, their performance is inferior. Furthermore, it is known that in
the data-independent methods, due to ignoring the label information or the structure of
data, the performance heavily depends on the length of binary codes, and as a result, they
may not be efficient enough for big data.

Supervised and Unsupervised

To address shortcomings related to data-independent algorithms, many data-dependent (or
learning-based) hashing algorithms have been proposed. The learning-based hashing meth-
ods are divided into supervised and unsupervised methods. As it is clear from their names,
supervised hashing methods incorporate label information to learn similarity-preserving
binary codes e.g., semi-supervised hashing [119], supervised hashing with kernels [77], and
discrete hashing [104]. On the other hand, unsupervised methods only use the affinity
information in the data [123].

Single-modal and Cross-modal

Another categorization of data-dependent hashing algorithms is based on the fact that
they learn similarity-preserving binary codes from a single type of data or more than one
data type, i.e., cross-modal hashing algorithms[118].

Deep Hashing

Recently deep learning has been applied to the supervised hashing problem [25]. This
categorization is mainly referring to the type of hash functions. more precisely, when the
hash function is a deep learning model, the authors refer the algorithm a deep hashing
algorithm.

One-step and Two-step

Deep learning methods can be divided into two categories which are one-step and two-step
methods. The one-step category refers to the methods where hash function and binary
codes are learned simultaneously. As an example, authors in [70] proposed a scheme to
jointly learn the hash function and image features with a triplet loss formulation. On the
other hand, in two-step methods, first, binary codes are obtained, and then a deep network
(deep hash function) is used to learn a mapping from continuous space to binary codes.
The main challenge in these types of algorithms is the binary code inference step [7].
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2.1.2 Challenges in Learning to Hash

Although deep hashing algorithms have improved the retrieval performance in supervised
hashing problems, there are practical limitations in using these algorithms. The first
limitation is the test-time computational cost that is obtaining binary code for the query
(input) image. Note that one of the main reasons for employing hashing algorithms is their
high computational speed in retrieval. However, in deep hashing methods, due to the large
number of parameters in hash functions, they have slower test-time encoding compared
with linear hash functions. Besides, deep hashing algorithms generally have been applied
to supervised problems, while in practice, real-world problems are mainly unsupervised as
labelling data can be prohibitively expensive.

2.1.3 Literature Review on Unsupervised Hashing

Because of the challenges related to the supervised hashing methods, unsupervised hashing
methods have recently attracted more attention. Classic unsupervised hashing algorithms
include Spectral Hashing (SH) [123], Hashing with Graphs [78], Spherical Hashing (SpH)
[43], K-means Hashing (KMH) [36], Iterative Quantization (ITQ) [33], Anchor Graph Hash-
ing (AGH) [78], and Discrete Graph Hashing (DGH) [76]. Furthermore, other more re-
cent works on unsupervised hashing include Binary Autoencoder (BA) [8], Scalable Graph
Hashing (SGH) [54], Large Graph Hashing with Spectral Rotation (LGHSR) [72], k-Nearest
Neighbors Hashing (KNNH) [37], and Simultaneous Compression and Quantization (SCQ)
[44]. Although deep learning has been mainly applied to the supervised hashing problem,
some unsupervised deep hashing algorithms have recently been proposed. Some recent deep
unsupervised hashing algorithms include Deep Hashing (DH) [25], Unsupervised Hashing
with Binary Deep Neural Network (UHBDNN) [20], Deepbit [73] and Similarity-Adaptive
Deep Hashing (SADH) [105].

Note that due to the discrete nature of the hashing problem, it leads to difficult opti-
mization problems. For this reason, to simplify the problem, the above mentioned algo-
rithms formulate the problem from different perspectives. For example, authors in ITQ
[33], and Angular Quantization (AQ) [32] propose to minimize quantization loss using a
neighbourhood preserving transformation. In Isotropic Hashing (IsoHash) [65], equalizing
variance across projections was proposed. Authors in BA [8] suggested that if the binary
codes are representative enough, one can reconstruct euclidean representation from them
and, as a result, proposed to reduce reconstruction loss in an encoder-decoder architecture.
Finally, authors in SH [123] proposed a formulation for direct binary code learning that
preserves affinity in euclidean space.
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In the following, we briefly review some seminal works and also recent advances on two
main techniques out of the above algorithms for unsupervised hashing algorithms namely
quantization-based and graph hashing algorithms.

Quantization-based Hashing

One line of research on unsupervised hashing are quantization-based methods where they
attempt to reduce quantization error. In this point of view, the corruption in the neigh-
bourhood structure of data is due to quantization error. Considering this, in order to learn
similarity preserving binary codes, one may attempt to reduce quantization error. One
common step in conventional unsupervised quantization-based hashing algorithms that at-
tempts to minimize the quantization loss is applying Principal Component Analysis (PCA),
a transformation that reduces the redundancy among the features and also projects the
data into a rotation-invariant space. This approach is used in many hashing algorithms
including in the seminal algorithm ITQ [33], AQ [32], and IsoHash [65] where the rotation
is calculated in a way such that the quantization loss of obtaining binary codes is mini-
mized. The ITQ is still among algorithms with the highest performance for unsupervised
hashing as it captures the affinity information in the original space leading to binary codes
with good quality. However, there are two obvious limitations in this algorithm. First,
the process of projecting data to a rotation invariant space and minimizing the quantiza-
tion loss occurs in two separate stages. Second, the quantization error is reduced merely
by a rotation matrix which may not be powerful enough to reduce quantization error to
the ultimate limit. To overcome the first limitation of ITQ, which is projecting data and
minimizing quantization loss in two independent steps, authors have recently attempted
to combine these two steps. For example, in SCQ [44], authors also propose to compress
and quantize data using a single matrix simultaneously. More precisely, this algorithm
is similar to the ITQ, where the orthogonal matrix for minimizing quantization loss is no
longer a square matrix. The KNNH [37] is also a new development based on the ITQ skele-
ton where a heuristic approach was suggested to minimize conditional entropy of deriving
binary codes. In practice, in KNNH, is exactly equivalent to the ITQ algorithm except
that a simple heuristic that is replacing each data point by the average of k nearest data
points is used to reduce conditional entropy. This step is called shrinkage as pull data
points closer to each other (and probably far away from Hamming vertices!).
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Graph Hashing

The first graph hashing algorithm is SH [123]. In this work, the authors developed a loss
function where pairwise similarities between data points in Euclidean space are used as
penalty terms such that the more similar data points are mapped to closer binary codes
in the Hamming space. This loss function, along with bit balance and bit uncorrelation
constraints, leads to a formulation known as spectral hashing (SH). The SH is a natural ap-
proach as it incorporates the affinity matrix directly into deriving affinity-preserving binary
codes. However, the mentioned SH method has three main problems. First, calculating
the pairwise affinity between data points is computationally expensive, that is, O(n2 × d)
where n is the number of data points and d data dimensionality. Second, even for one
bit, the optimization problem in SH is equivalent to balanced graph partitioning, which is
a hard problem. Third, the problem size grows linearly with the number of data points
which makes it interactable to be used for large archives. As a result, different attempts
have been made to address these limitations. To reduce the computational complexity
of calculating affinity matrix, authors in hashing with graphs paper AGH [78] suggested
employing neighbourhood graph to derive a low-rank approximation of the affinity matrix.
The complexity of this approximation is O(n). To deal with the computational complex-
ity of the discrete optimization faced in spectral hashing, initially, continuous relaxation
was proposed. However, in this simplified approach, the binarization step destroys the
learned manifold structure and degrades the quality of binary codes. To mitigate this
issue, some authors proposed to incorporate a quantization loss. For example, spectral
rotation (LGHSR) [72] a two-step approach similar to the idea in ITQ, was recently intro-
duced, which finds the optimal rotation that minimizes the quantization loss. In discrete
graph hashing (DGH) [76] authors attempted to solve the relaxed problem and minimize
the distance between continuous and the binary set simultaneously. In Robust Discrete
Hashing (RDSH) [126], an objective function for obtaining the relaxed solution along with
both optimal rotation for reducing quantization loss and hash function was developed. Fi-
nally, authors of Discrete Spectral Hashing (DSH) [46] recently proposed another approach
to joint optimization over relaxed variables with minimum quantization. They showed that
their solution achieves better performance while reducing training complexity.

2.2 WSI Representation Learning

Although binary representations seem to be a good solution for the WSI search problem,
considering the bag of patches representation for WSIs, there is no established way to
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calculate the distance between two sets of vectors. One solution was proposed by Kalra
et al. in [58] where authors resorted to the heuristic approach of taking the median of
minimums to calculate the total distance between two WSIs. Although they were able
to show that their approach achieved satisfactory performance, due to the computational
complexity inherent to the median of minimums method, when the number of patches is
high, even using binary representations, this approach can be computationally expensive.
Further, there is no theoretical guarantee behind the median of minimum method.

On the other hand, representing a WSI using one global vector representation not only
removes the necessity of resorting to decision fusion methods in WSI classification but
also considerably simplifies the WSI search problem. Considering the gigapixel nature of
WSIs, there is a large body of work on producing WSI representations suitable for different
quantitative tasks. In the following, the related literature on WSI representation learning
is reviewed. For better organization, papers are categorized into three main groups, i.e.,
heuristic architectures, MIL based methods, and dictionary learning approaches which are
explained in the following subsections.

2.2.1 Heuristic Architectures

One line of research for WSI representation learning is based on the methods that split
the WSI learning problem into multiple steps to simplify the problem. More precisely, in
these methods, first, there is an instance-based training step where instances are smaller
parts of WSIs, typically patches, and then another network is trained to obtain WSI
embedding while capturing spatial relationship among the patches. As some examples,
authors in [15] trained an Inception-V3 model on patches extracted from 20x and 5x
magnifications for lung cancer subtype classification. To predict a label for a WSI from
patch label predictions, they employed a simple heuristic based on the proportion of the
patches assigned to each category. Tellez et al. [112] proposed a two-step method to employ
CNNs for WSI classification. To this end, in the first stage, they compress image patches
using unsupervised learning. Then compressed patches are placed together (such that their
spatial position is kept), and they are fed to another CNN for final prediction. Bejnordi
et al. [4] developed a context-aware stacked CNN, which consisted of two networks to
capture information in both fine-grained and low-resolution domains. In their model, the
first CNN was trained on high-resolution patches to learn cellular-level information. Then,
the output of this network is connected to the second CNN to build the new model. In the
second round of the training, this new model is trained on the larger patches, and during
the training, the weights of the first sub-network are frozen. In Spatio-Net [64] patches
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are first processed by a CNN, then the embedded patches with each neighbour are fed into
2D-LSTM layers to capture the spatial information.

2.2.2 MIL-based Approach

Representing each WSI as a bag of image patches makes permutation invariant networks
and MIL-based schemes [18, 57, 51] a natural approach for WSI representation learning [93].
The two main types of MIL methods are instance-based and embedding-based methods. In
the instance-based approach, the neural net is trained on instances, and for every instance,
a probability between 0 and 1 is calculated (in binary classification setting). Then, a
MIL-based symmetric function removes the set nature of data and calculates the label
of the bag. The advantage of the instance-based method is its ability to detect the key
instances (instances that contribute the most to recognizing the label of the bag). This
explainability is particularly important in the medical imaging domain. On the other
hand, the disadvantage of instance-based methods compared with embedding-based MIL
has inferior performance in bag classification. The embedding-based methods are pretty
similar to the instance-based MIL. The main difference is that the MIL-based symmetric
function is applied on instance embeddings instead of instance scores. The main limitation
in embedding-based methods is that there is no way to retrieve key instances.

One of the initial efforts in MIL-based WSI classification was conducted by Hou et al.
[45]. They proposed a patch-level classifier for WSI classification. In order to combine
their patch-level classifier, they proposed a decision fusion model. By considering the
spatial relationship among the patches, they utilized an expectation-maximization method
to obtain the set of distinct patches from each WSI. More precisely, the mentioned patch-
based CNN by Hou et al. [45] can be seen as a two-step instance-based MIL method where
an algorithm is presented to determine instance classes. The issue with Hou et al. [45] is
the fact that this approach is not end-to-end, meaning the two-stage neural networks and
EM approach appeared to perform sub-optimally. Motivated by this limitation, employing
end-to-end MIL algorithms has been an area of research for better WSI representation
learning. Deep Sets is one recent work on permutation invariant networks [130] where the
authors specified a permutation-invariant function and proposed to employ universal set
function approximators in the neural network. They showed that despite its simplicity,
their proposed permutation-invariant architecture could achieve promising performance
in a variety of tasks, including point cloud classification. Another permutation-invariant
neural network similar to Deep Sets is PointNet [91] which has also been shown to be
effective, showing promising results on Point Cloud classification and segmentation tasks
and can be applied to WSI representation task. For further improvement over traditional
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pooling layers, authors in [49] introduced attention-based MIL. Although the attention-
based MIL approach showed promising results compared with traditional pooling layers,
they are more prone to overfitting when the number of WSIs is small. [11] proposed an
end-to-end MIL-based method for simultaneous patch and WSI representation learning in
a single framework where a center loss is introduced to map patch embeddings from the
same WSI to a single centroid and reduce the intra-class variations. They showed that their
approach achieves promising results compared with other MIL-based methods, especially
two-stage MIL methods.

These and many other papers all used patch-level training with decision fusion methods
to achieve WSI-level labels. Although this can be a helpful approach for classification, for
WSI search, it leads to a set of vector representations that have to be used to calculate
distances between WSIs. There is no established way how to calculate the distance between
two sets of vectors. For example, authors in [58, 96] resorted to the heuristic approach
of taking the median of minimums to calculate the total distance between two WSIs.
Although they were able to show that their approach achieved satisfactory performance,
due to the computational complexity inherent to the median of minimums method, the
retrieval time can be considerably high. On the other hand, representing a WSI using one
global vector representation not only removes the necessity of resorting to decision fusion
methods in WSI classification but also considerably simplifies the WSI search problem.

2.2.3 Dictionary Learning Approach

This is clear that due to the permutation invariance property of the MIL scheme, it has
become a standard approach for applying deep learning to WSIs. However, I argue that
this approach may not be the best or the only possible option for WSI representation
learning. The main reason for this argument is that multiple bags are fed to the neural net
in the MIL scheme. This can be particularly problematic in processing WSIs as the number
of patches per WSI (bag size) is around 300, which even with a batch size like 16 leads to
a batch of data with a size of 16× 300× 1000× 1000× 3. This causes memory issues for
end-to-end training on WSIs. Furthermore, there is no interpretability in embedding-based
MIL, which is suitable for obtaining one representation per WSI.

Another approach that can be used for the WSI representation problem (or equivalently,
the set representation problem) has some roots in old-school computer vision. As the
proposed ideas in this thesis (chapter 6 ) are deeply related to this approach, the related
literature and ideas are reviewed in more depth.
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Bag of Visual Words for Set Encoding

Before the invention of deep learning, local image descriptors were being used for image
representation. For histopathology image representation, the problem is fairly similar, ex-
cept that instead of local descriptors, deep networks are employed to represent patches.
As a result, in order to obtain a universal WSI representation, patch representations can
be combined using methods similar to the Bag of Visual Words (BOW) [17] and other dic-
tionary earning based methods. In BOW method, a clustering algorithm with K cluster
is run on all local descriptors (deep patch embedding) from all images to build a dictio-
nary. Then, for each WSI, we initialize a zero vector with K elements associated with k
clusters and fill the vector by counting the number of patches that belong to each cluster.
By the help of this method, one can easily get rid of the bag of patch deep embedding
representation of data.

Fisher Kernel

Authors initially introduce the idea of employing the gradient of the log-likelihood of the
generative model with respect to parameters in [52]. They proposed Fisher Kernel for
exploiting generative models in discrimination tasks. More precisely, the key idea behind
Fisher Kernel is to derive a kernel function from a generative probability model. Initially,
the main motivation for deriving such a kernel was bridging the gap between generative
and discriminative models. The Fisher Kernel achieves this by capturing the generative
process in a metric between examples (or set of examples, i.e., X = {xt, t = 1, . . . T} where
T is the number of examples in the set). In fact, in the classification task, the objective is
to find the differences in the posterior probabilities for the labels L. In comparison, here
we are interested in the difference between the generative process of two examples, i.e., xi

and xj or two sets of examples, i.e. Xi and Xj (we shall see how the difference between
two sets of examples can be handled using this kernel). This characteristic of encoding sets
particularly makes Fisher Kernel a natural candidate for WSI representation learning. To
capture the generative process in a metric between two sets of examples, Tommi S. Jaakkola
and David Haussler [52] proposed to employ the gradient space of the generative model.
Based on [52], “the gradient of the log-likelihood with respect to a parameter describes
how that parameter contributes to the process of generating a particular example”. To
formulate this idea more formally consider a class of probability models P (X | θ) where θ
is a parameter vector and θ ∈ Θ and X is set of examples i.e, X = {xt, t = 1, . . . T}. In
this case, the Fisher Score is defined as
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UX = ∇θlogP (X | θ) (2.1)

Note that the UX ∈ Rd where d is the dimensionality of the Fisher Score which is equal
to the number of parameters in the generative model P (X | θ) and is independent of the
number of data points in the set T .

Then, the Fisher Information Matrix (FIM) is calculated as follows:

I = Ex∼P (x|θ){UXU
T
X} (2.2)

Based on [52], the class of probability models P (X | θ) defines Riemannian manifold
MΘ and the Fisher Score UX = ∇θlogP (X | θ) transform an example (or set of examples)
into a feature vector that is a point in the gradient space of the manifold MΘ. This
gradient UX defines the steepest ascent that increases the log-likelihood of the generative
model. In other words, fisher kernel theory transforms data points from data space to
(generative) model space. Having the Fisher information matrix I, [52] proposed to measure
the similarity between two sets of examples, i.e., X and Y using the Fisher Kernel

K(X,Y) = UT
XI

−1UY (2.3)

GMM-based Fisher Vector for Image Classification

Although BOW encoding scheme can be helpful for set representation, one can argue
that it only captures the first-order statistics of data to obtain WSI representation. This
statement can be validated if we further look into the encoding process. Let us say we apply
k-means as a clustering step. Then, each patch is encoded in WSI representation based on
its distance to the cluster centers, which is the average of data points in the clusters. More
precisely, BOW only employs membership of each data point which is merely specified
based on the distance to the cluster centers (first-order statistics).

Inspired by this limitation, authors in [89] replaced k-means with Gaussian Mixture
Model (GMM). They introduced GMM-based Fisher Vector, which can be calculated us-
ing the gradient of the log-likelihood of the GMM with respect to parameters, i.e., mixing
coefficients, means, and variances, given some observations. Unlike BOW, the Fisher vector
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representation can capture higher-order statistics information while obtaining representa-
tion for a set of local descriptors. In fact, [100] showed that BOW is a special case of
GMM-based Fisher vector when the gradient is only calculated with respect to the weight
parameters of a GMM. Authors in [89] employed these derivations to encode each set of
local descriptors to one global image representation. To this end, first, note that the Fisher
information matrix is symmetric and positive definite [52] and subsequently the I−1 ma-
trix has the same characteristics. Considering this, if we replace I−1 with its Cholesky
decomposition I−1 = LTL the Fisher Kernel in Eq. 2.3 can be written as

K(X,Y) = UT
XL

TLUY (2.4)

Then, the Fisher Vector for a set of data points X is defined as normalized gradient of
the log-likelihood function of generative model [100]:

Fisher Vector = LUX = L∇θlogP (X | θ) (2.5)

In practice, to remove the dependency of Fisher Vector on the sample size, it is
normalized to the sample size T when this is being calculated for a set of data points
X = {xt, t = 1, . . . T},:

Fisher Vector =
1

T
L∇θlogP (X | θ) = L

1

T

T∑
t=1

∇θlogP (xt | θ) (2.6)

This enables us to derive a representation for a set of data points in a metric space. This
is due to the fact given a set of independent data points, the gradient of the log-likelihood
function of the generative model is the summation of gradients of the generative model
given each data point. This is notably similar to the counting procedure in the BOW
method. However, instead of merely employing first-order statistics information (captured
using the distance of data points from k-means cluster centers), Fisher Vector uses higher-
order statistics by the help taking the gradient of the generative model with respect to its
parameters. Another interesting property of Fisher Vector is its robustness to background
image information [90].

For GMM as a generative model, the formulas for the gradient with respect to the
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GMM parameters, i.e., mixing weights, means, and variances, are presented in the [100].
Based on the Eq. 2.6, after having the gradients, the only remaining element to calculate
the Fisher Vector for a set of given observations is L which is the square-root of the inverse
of the FIM. In the GMM case, the authors in [100] found a diagonal approximation of
FIM, which reduces the computational load of calculating the normalizing matrix, i.e., the
square root of the inverse of the FIM.

Improving GMM-based Fisher Vector

To improve the GMM-based Fisher Vector, several heuristics have been proposed in the
literature. In the following, some of these proposed improvements are briefly reviewed.

L2 Normalization: According to the [90], the Fisher Vector automatically nearly
ignore the background (image independent) information. However, based on the [90],
Fisher vector still depends on the proportion of foreground image-specific information. As
a result, two images containing the same object but a different proportion of background
information (e.g. same object at different resolutions) will have different Fisher Vectors.
This can be problematic in images that a high proportion of the image is background. To
remove the dependency, the authors proposed to L2 normalize the gradient vector. Their
experiments showed that this L2 normalization step could improve the performance of the
Fisher Vector.

Power Normalization: Another improvement proposed by [90] is power normaliza-
tion. The empirical observation inspires this normalization step that as the number of
Gaussians increases, Fisher Vectors become more sparse. This means that for any given
dimension, the distribution of features experiences its peak around zero. The main issue
with this sparsity is the fact that this degrades the performance of L2 distance. To deal
with this limitation, the authors propose to either employ a more suitable distance for
sparse vectors like L1 distance or “unsparsify” the vectors in a way the L2 similarity is
preserved. For achieving the latter, the authors [90] proposed to apply the function

f(z) = sign(z)|z|α, (2.7)

where 0 ≤ α ≤ 1 is a normalization parameter. The authors showed that this normal-
ization step improves the performance of the Fisher Vector. To combine power and L2
normalizations, authors in [90] proposed first to apply power and L2 normalization steps.

Supervision in GMM-based Fisher Vector: Although Fisher Vector provides
many advantages, most importantly a natural way for set representation, one disadvantage
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of this approach is the fact that there is no clear way to incorporate labels (weak labels) or
available information in this framework. In fact, according to the Tommi S. Jaakkola and
David Haussler, [52]: “A kernel classifier employing the Fisher kernel derived from a model
that contains the label as the latent variable is, asymptotically, at least as good a classifier
as the maximum a posteriori labelling based on the model”. Motivated by this, some at-
tempts have been made to incorporate label information in GMM. For example, in [26], the
authors proposed a heuristic approach to train one specific GMM per class. Then for test
time encoding, they proposed to fold representation obtained from all GMMs together to
obtain on global representation. Although this approach showed significant improvement
in the performance compared with unsupervised Fisher Vector, this method leads to in-
tractable high dimensional representations for problems with a large number of categories
as the dimension of the Fisher Vector increases linearly with the number of categories.
To mitigate this limitation, other heuristics have been proposed [89]. However, there is
no straightforward method to incorporate the label information in the training of GMMs.
As we will see in the next sections, this limitation can be easily solved with the help of
semi-supervised deep generative models.

Fisher Vector for WSI Representation Learning

Having all discussed characteristics of Fisher Vector in mind, it can be seen as an alternative
for MIL in the whole slide representation task. Remarkably, unlike the MIL scheme,
the training step in the Fisher Vector is instance-based which significantly bypasses the
memory bottleneck. Although the Fisher Kernel theory seems to be a suitable approach
for WSI representation, there are very limited works that have employed this theory for
the WSI representation task. One reason for this can be the fact that fisher vector theory
is formulated in a fully unsupervised manner while considering the challenges inherent to
pathology images (e.g., challenging textures, colour variations, etc.) employing available
information, i.e., primary site or primary diagnosis of the WSI in obtaining an efficient
global representation is necessary. To the Best of my knowledge, the only papers that
have employed Fisher Vector for WSI representation are [109, 110]. Unfortunately, both of
these papers employ GMM-based Fisher Vector in an unsupervised manner which is not
enough for a difficult task like WSI representation learning. To mitigate this limitation,
both [109, 110] employed a supervised mapping as a separate second step to refine the
fisher vector representations. However, there are still some limitations in their approach.
First, the supervision has not been incorporated in the learning process of generative model
parameters. Second, they employed GMM as the generative model, which is known to be
sub-optimal as this cannot be applied in an end-to-end manner to the images. Besides,
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GMM is not able to fully capture the natural clustering of the patch descriptors. This
is due to the inefficient training scheme in GMM and the fact that by employing the
GMM, no more than second-order statistics of data are captured using Fisher Vector.
To train the generative model in an end-to-end manner, incorporate label information
and enable the Fisher Vector to capture higher-order statistics, recently, Fisher Vectors
based on the deep generative models have been introduced. More precisely, Adversarial
Fisher Vector [132], and Fisher Vector-Variational Autoencoder (VAE) [92] based on the
Generative Adversarial Network (GAN), and VAE are the latest works on deep generative
model-based Fisher Vectors. Although recently GAN and VAE-based Fisher Vectors have
been introduced in the general computer vision community, they have not been used for ??
representation. Deep generative models along with Fisher Vector theory can be a very good
candidate for learning compact WSIs representations without any training bottleneck.

This thesis develops a framework based on deep generative models that can achieve:

1. Permutation-invariant WSI representation trained on instances.

2. Representations for both WSIs and patches.

3. Representations guided by available information, e.g., primary site and diagnosis.

4. Compact representations (including binary or sparse).

5. Multi-magnification informed representations.

21



Chapter 3

ESH-A Non-alternating Graph
Hashing Algorithm for Large-scale
Image Search

3.1 Prologue

The content of this Chapter is based on the following paper published during the Ph.D.
research:

1. S. Hemati, et al. A Non-alternating Graph Hashing Algorithm for Large-scale Image
Search Computer Vision and Image Understanding, Volume 219, May 2022, 103415

3.2 Introduction

Here, we propose improving the current enhancements for spectral hashing formulation
in terms of training-time memory usage, time complexity, and retrieval performance. Al-
though different methods have been proposed to achieve better-relaxed solutions while
reducing complexity, we should note that all of the proposed methods, including LGHSR,
DGH, RDSH, and DSH, employ an alternating approach between two or more optimization
variables and keep the binary decision variable within the problem. However, we argue
that this increases the runtime complexity and is unnecessary. In this section, we pro-
pose an efficient graph hashing methods built on top of spectral hashing formulation, i.e.,
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direct optimization of binary codes. More precisely, we develop a new formulation that
allows us to convert the optimization problem raised in SH [123] with n × k parameters
to a problem with d× k decision variables (d dimensionality and k number of bits), where
d ≪ n. In addition, in the proposed formulation, the optimization problem is a function
of one decision variable, and as a result, the optimization is non-alternating, which signifi-
cantly reduces the computational complexity. Two optimization algorithms were employed
to obtain a solution for the suggested optimization problem. The results on four public
datasets show that the proposed formulation outperforms the state-of-the-art approaches
and, at the same time, is more efficient than the recent algorithms proposed for the graph
Laplacian hashing problem.

3.3 Spectral Hashing

Let X ∈ IRn×d denote a mean zero and unit variance data matrix with rows represent-
ing training data points, each with a dimensionality of d. The original spectral hashing
formulation [123] is as follows:

argmin
∑
i,j

Ai,j∥bi − bj∥2 (3.1)

s.t.
∑
i

bi = 0,
1

n

∑
i

bib
T
i = Ik, bi ∈ {−1, 1}k,

where bi and bj are k-bit binary codes corresponding to the i-th and j-th data points,
respectively, Ik is a k by k identity matrix, and Ai,j is the (i, j) entry of the affinity matrix
A, which measures the similarity between the i-th and j-th data points. Let us denote
the k-bit binary representation of the data matrix X by B ∈ {−1, 1}n×k. Suppose D is an
n × n diagonal matrix whose diagonal element i is given by Di,i =

∑
j Ai,j. The matrix

form of the optimization problem can then be written as follows:

argmin
B

Tr{BT (D−A)B} (3.2)

s.t. BTB = nIk, BT1n×1 = 0, B ∈ {−1, 1}n×k.,

where Tr represents the trace operation, L = D −A is the graph Laplacian matrix [75],
and 1n×1 is a vector of length n, where all elements are 1.
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To reduce the computational complexity in calculating the affinity matrix A from
O(n2d) to O(n), we employ the low-rank approximation of the hashing with graphs paper
[78]. This approximation is based on a small number (m) of data points, that is, anchors,
with m ≪ n. In general, the m cluster centers obtained from the K-means algorithm,
after running a few iterations, are considered as m anchors uj for j = 1, . . . , m. These
anchors are used to construct an n×m affinity matrix Z using a Gaussian kernel of pair-
wise distances between the n observed data points and the m anchors. That is, the (i, j)
entry of the matrix Z is given by Zi,j = K(xi, uj)/N0, where xi is the i-th data point,
K(xi, uj) = exp(∥xi − uj∥22/σ2), and σ is a hyperparameter. To impose sparsity on Z,
only distances from the s ≪ m nearest neighbor anchors are kept, and the rest are set
to zero. Furthermore, the normalization factor N0 is calculated as

∑
j∈<i> K(xi, uj), and

the normalized low-rank approximation of the affinity matrix (which is also sparse) can
be calculated as A = ZΛ−1ZT with Λ = diag(ZT1). Finally, note that after using this
low-rank approximation, we have D = I.

3.4 Efficient Spectral Hashing

To develop the Efficient Spectral Hashing (ESH) algorithm, first recall that the problem
in Eq. 3.2 can be written as follows:

argmin
B

− Tr{BTAB} (3.3)

s.t. BTB = nIk, BT1n×1 = 0, B∈{−1, 1}n×k

As pointed out, even for a single bit, this problem is extremely difficult, and continu-
ous relaxations are generally used for simplification. However, naive relaxation generally
degrades the quality of the binary codes, and for this reason, finding better continuous
relaxations has been an area of study. Now, we take the first step toward efficiency. we
assume that the binary codes can be obtained from the following simple model:

B = sgn(XW), (3.4)

where W is a d × k matrix and sgn(·) denotes the element-wise sign operation. Given
this model, the n× k optimization variable is replaced with the d× k matrix W. Clearly,
d≪ n, and thus the proposed model reduces the search space. In this case, the optimization
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problem in Eq.3.3 will convert into the following problem:

argmin
W

− Tr{sgn(WTXT )Asgn(XW)}

s.t. sgn(XW)T sgn(XW) = nIk,

sgn(XW)T1n×1 = 0.

(3.5)

Note that after obtaining W, the binary matrix B can be calculated using Eq. 3.4.
Although the aforementioned model reduces the search space, owing to sgn(·), this is
still a discrete optimization problem and is difficult to solve. Removing sgn(·) results in
poor binary codes owing to the accumulated quantization error. However, if we ensure
that the elements of XW are sufficiently close to +1 or -1, then the XW ≈ sgn(XW)
approximation is no longer unrealistic. To this end, we propose a novel regularization
term that pushes the elements of XW closer to ±1 without adding any other optimization
variables. This is particularly different from methods such as LGSHR, DGH, RDSH, and
DSH, all of which do so by including one or more optimization variables, which leads to
alternating optimization approaches. The proposed relaxed optimization problem function
has the following form:

argmin
W

− Tr{WT (XTAX)W}+
α

2
∥ |XW| − J∥2F

s.t. WTXTXW = nIk, (XW)T1n×1 = 0,
(3.6)

where J is an n × k matrix with all elements equal to 1, |·| represents the element-wise
absolute value, and ∥ · ∥F denotes the Frobenius norm. First, note that, because the data
are zero-centered, the last constraint in Eq. 3.6 is already satisfied and thus we remove it
from the problem statement. In addition, to further simplify the problem, we transform
the orthogonality of the columns of XW into the orthonormality of the columns of W.
Finally, we normalize the cost function by the number of samples to obtain smoother
training. Taking these changes into account and denoting XTAX as S, which is a d × d
matrix, the problem in Eq. 3.6 will take the following form:

argmin
W

L(W) =
−1

n
Tr{WTSW}+

α

2n
∥ |XW| − J∥2F

s.t. WTW = Ik.

(3.7)

To solve this constraint optimization problem, two algorithms, namely, the projected
gradient and Stiefel manifold optimization, are employed.
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3.4.1 Projected Gradient-ESH1

In this algorithm, during each iteration, the matrix W is updated using the gradient descent
method as if there is no constraint, and the updated matrix is then projected to the closest
matrix in the feasible set. The derivative of the first term in Eq. 3.7 is 2SW. For the
derivative of the second part, first note that we have |XW| = sgn(XW)⊙XW, where ⊙
denotes the Hadamard (element-wise) product. The derivative can then be calculated as
follows:

∂

∂W
∥ |XW| − J∥2

F

=
∂

∂W
Tr
(

(|XW| − J)T (|XW| − J)
)

= 2XT sgn (XW)⊙ (|XW| − J)

= 2XT (XW − sgn (XW)) . (3.8)

This derivative is valid everywhere, except for zero. For zero, we define the derivative
as equal to zero. In this case, if the derivative of the cost function in Eq. 3.8 in iteration
p is G, it can then be calculated as follows:

Gp =
−2

n
SWp +

α

n
XT (XWp − sgn(XWp)), (3.9)

In this case the learning rule for minimizing the expression can be written as follows:

Wp = Wp−1 − ηGp−1, (3.10)

where η is the learning rate parameter. To complete the iteration step, we project W
onto the feasible set. This is equivalent to finding the closest matrix Q to W such that
QTQ = Ik. This problem is known as the projection on the Stiefel manifold, which can be
formulated as follows:

Proj(W) := argmin
Q

∥W −Q∥2F

s.t. QTQ = Ik.
(3.11)
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Fortunately, there is a closed form solution to this problem:

Q = Proj(W) = UId×kV
T , (3.12)

where W = UΣVT is the Singular Value Decomposition (SVD) of W. Interested readers
can see [84] for a detailed proof. Algorithm 1 summarizes the proposed projected gradient
method.

Algorithm 1 Proposed ESH1 Algorithm

Input: Training data X ∈ IRn×d, affinity matrix A ∈
IRn×n, number of iterations N , learning rate η.
Output: Binary matrix B ∈ {−1, 1}n×k.
Initialization: Initialize an orthogonal matrix W:
W0 ∈ IRd×k

1: S← XTAX
2: Compute α according to Eq.3.19
3: for p = 1, 2, . . . , N do
4: Wp ←Wp−1 − . . .
5: . . . η

(−2
n
SWp−1 + α

n
XT (XWp−1 − sgn(XWp−1))

)
6: UΣVT ← SVD(Wp)
7: Q← Proj(W) = UId×kV

T

8: Wp ← Q
9: end for
10: B← sgn(XW)

3.4.2 Stiefel Manifold Optimization-ESH2

The problem in Eq. 3.7 is an optimization on the Stiefel manifold, and methods developed
for the optimization on manifolds can be used to obtain a solution. In this study, we
employ the method in [124], where an efficient algorithm has been proposed to preserve
the updated W on the Stiefel manifold during each iteration. Briefly, to preserve the
orthogonality constraint on W during each iteration, we define the skew-symmetric matrix
F in iteration p − 1 as Fp−1 = Gp−1W

T
p−1 −Wp−1G

T
p−1, and denote the updated version

of the W as Y(τ), then using a Crank-Nicolson-like scheme we have

Y(τ)p = Wp−1 −
τ

2
Fp−1 (Wp−1 + Y(τ)p) , (3.13)
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where τ is the step size parameter. In this case, the closed-form solution for Y(τ) is given
as follows:

Y(τ)p =
(
I +

τ

2
Fp−1

)−1 (
I− τ

2
Fp−1

)
Wp−1. (3.14)

Following [124], we employ the Barzilai-Borwein (BB) method to reduce the total num-
ber of iterations:

τp =
|Tr

(
(Mp)

T (Yp)
)
|

Tr ((Yp)T (Yp))
, (3.15)

where Mp = Wp −Wp−1, and Yp = ∇L(Wp) − ∇L(Wp−1), in which ∇L(W) = G −
WGTW is the gradient of the loss function in the tangent planes. Algorithm 2 summarizes
the proposed manifold optimization method.

Algorithm 2 Proposed ESH2 Algorithm

Input: Training data X ∈ IRn×d, affinity matrix A ∈
IRn×n, number of iterations N .
Output: Binary matrix B ∈ {−1, 1}n×k.
Initialization: Initialize an orthogonal matrix W:
W0 ∈ IRd×k, step size τ .

1: S← XTAX
2: Compute α according to Eq.3.19
3: for p = 1, 2, . . . , N do
4: Gp−1 ← −2

n
SWp−1 + α

n
XT (XWp−1 − sgn(XWp−1))

5: Fp−1 ← Gp−1W
T
p−1 −Wp−1G

T
p−1

6: Y(τ)p ←
(
I + τ

2
Fp−1

)−1 (
I− τ

2
Fp−1

)
Wp−1

7: Wp ← Y(τ)p

8: τ ← |Tr((Mp)T (Yp))|
Tr((Yp)T (Yp))

9: end for
10: B← sgn(XW)

3.4.3 Out of Sample: Hashing New Data

Thus far, we have derived a binary representation for the training data. To obtain a binary
representation for a new data point x∗, the same approach as in many spectral hashing

28



methods can be used [76, 72]. More precisely, let b(x∗) be the binarized version of x∗.
Then, using a similar approach as applied for training, we can write the following:

argmin
b(x∗)

n∑
i

A(xi,x
∗)∥bi − b(x∗)∥22,

s.t. b(x∗) ∈ {−1, 1}k
, (3.16)

where A(xi,x
∗) = ziΛ

−1z(x∗), and zi is the i-th row of matrix Z. By expanding ∥bi −
b(x∗)∥22, this problem can be written as

argmax
b(x∗)

⟨b(x∗),BTZΛ−1z(x∗)⟩

s.t. b(x∗) ∈ {−1, 1}k.
(3.17)

In this case, the solution is

b(x∗) = sgn(BTZΛ−1z(x∗)). (3.18)

3.4.4 Implementation Note

To avoid tuning the parameters, we set the learning rate parameter for all datasets and
experiments to a fixed value (η = 0.01). Furthermore, we propose a novel method for
automatically determining the regularization parameter α for each dataset. To this end,
we call the first and second terms in Eq. 3.7 T1 and T2, respectively. If we denote the
initialization of W as W0, then we propose setting α such that the importance of the first
and second parts of the cost function is the same in the first iteration:

∣∣T1(W
0)
∣∣ =

α

2

∣∣T2(W
0)
∣∣⇒ α =

∣∣∣∣2T1(W
0)

T2(W0)

∣∣∣∣ . (3.19)

The ESH code is provided in this Github page.
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3.5 Datasets, Evaluation, and Results for ESH

3.5.1 Datasets

The performance of ESH1 and ESH2 are evaluated on standard benchmark datasets,
namely CIFAR-10 [67], LabelMe-12-50K [114], a medical image dataset NCT-CRC-HE-
100K [82], and NUS-WIDE [13]. These datasets provide a total of 489,000 images for
learning and testing.

• The CIFAR-10 dataset is a 10-class dataset consisting of 60,000 color images of
size 32× 32 pixels containing classes like airplane, horse, cat, ship, frog and more.

• The LabelMe-12-50K dataset is a 12-class dataset containing 50,000 images of size
256× 256 pixels. This dataset is highly imbalanced such that five classes constitute
91% of all images while there is one class that only contains 0.6% of the samples.
The images of this dataset have multiple label values between zero and one. In
our experiments, same as previous works that employed this dataset for evaluating
hashing algorithms, we choose the class of the largest label value as the image label.

• The NCT-CRC-HE-100K dataset is 9-class histopathology dataset containing
100,000 non-overlapping image patches from hematoxylin & eosin stained (H&E)
images of human colorectal cancer and normal tissue. All images are 224×224 pixels
and color-normalized. Tissue classes include adipose, background, debris, lympho-
cytes, mucus, smooth muscle, normal colon mucosa, cancer-associated stroma, and
colorectal adenocarcinoma epithelium.

• The NUS-WIDE dataset is a multi-label dataset that contains 269,000 images
collected from Flickr. This database contains 81 ground-truth concepts.

3.5.2 Hash Code Evaluation

To evaluate the performance of the ESH1 and ESH2 in comparison to other methods, we use
standard measures for image retrieval quality assessment. These measures include mean
Average Precision (mAP), precision at N samples (i.e., precision@1000), and precision
of Hamming distance with a radius of 2 (precision@r=2). Briefly, mAP measures the
overall performance of the retrieval over all classes, whereas precision@N calculates the
proportion of true positive over top N retrieved samples. Finally, precision@r=2 measures
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the precision over all retrieved images that have a Hamming distance equal or less than
2 from the query image. For LabelMe-12-50K, which is highly imbalanced, following the
common setting in previous works [37], the macro average mAP is reported to avoid biased
performance increase for frequent classes to dominate the overall performance. In order to
use the results provided by other methods, the experimental setting here has been adopted
from previous works.

Table 3.1: Comparison of retrieval performance, for 16, 32, 64 and 128 bits based on macro
mAP (average over classes) for LabelMe-12-50k dataset represented by 4096-D VGG-FC7
descriptor. The best performance values are highlighted in boldface.

macro mAP %
Method 16 Bit 32 Bit 64 Bit 128 Bit

SH 12.60 12.59 12.24 -
SpH 13.59 15.10 17.03 -
KMH 13.36 15.47 16.58 -
BA 16.96 18.42 20.80 -
ITQ 17.61 18.65 20.10 21.49
DGH 21.45 22.74 25.41 26.77
LGHSR 21.10 23.49 23.98 22.85
KNNH 20.13 23.34 26.06 27.62
DSH 24.70 23.78 24.35 22.39
SCQ 22.89 24.95 26.50 26.35
ESH1 22.95 25.67 27.59 28.94
ESH2 22.87 26.85 28.20 29.61

3.5.3 Results on LabelMe-12-50K

We report the macro mAP for this imbalanced dataset. A VGG network was employed
for the feature extraction. For the test and train split, similar to the common setting, we
sample 10% of each class as the test data and 90% as the training set. Table 3.1 presents
the performance of ESH1 and ESH2 compared with the other methods. It is obvious that,
except for the 16-bit setting where DSH obtains a better performance, for the 32, 64, and
128 bits, ESH1 and ESH2 attain a better macro mAP compared to other algorithms. In
Table 3.1, SpH indicates spherical hashing [43], and KMH stands for k-means hashing [36].
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Table 3.2: Comparison of retrieval performance, based on mAP, precision@1000, and preci-
sion@r=2 on CIFAR-10 represented by 4096-D VGG-FC7 features. The best performance
values are highlighted in boldface.

mAP % precision % @1000 precision@r=2
Method 16Bits 32 Bits 64Bits 128Bits 16Bits 32Bits 64Bits 128Bits 16Bits 32Bits 64Bits

SH 18.31 16.54 15.78 - - - - - - - -
SpH 18.82 20.93 23.40 - - - - - - - -
KMH 18.68 20.82 22.87 - - - - - - - -
BA 25.38 26.16 27.99 - - - - - - - -
ITQ 26.23 26.73 27.90 29.22 36.71 38.79 40.75 42.53 39.33 27.71 00.06
DGH 27.73 27.44 28.01 29.47 40.36 39.46 39.70 40.69 38.73 42.25 44.04
LGSHR 27.83 25.87 22.12 19.66 39.98 42.84 41.82 40.45 38.45 46.11 32.75
KNNH 29.25 30.55 32.60 33.68 38.13 40.51 43.32 44.57 37.66 24.95 03.43
DSH 27.72 25.36 22.12 19.55 40.36 42.87 41.80 40.57 38.73 45.69 26.15
SCQ 27.52 27.42 30.34 32.25 34.24 36.51 40.29 43.15 30.58 38.24 25.14
ESH1 32.11 33.08 34.47 34.92 38.67 42.15 44.75 45.70 35.03 43.59 44.26
ESH2 31.59 33.44 34.72 35.29 41.32 43.47 45.16 45.95 38.73 46.69 43.58

3.5.4 Results on CIFAR-10

For CIFAR-10, similar to [37], each image is represented by a deep 4096-D feature extracted
from the VGG network [106]. For the test & train split, 10% of each class is sampled as the
query set, and the remaining instances are sampled as the training set. Table 3.2 shows the
results for CIFAR-10 based on mAP, precision@1000, and precision@r=2. As can be seen,
ESH1 and ESH2 outperform the state-of-the-art approaches, namely, LGHSR, KNNH,
and DSH, based on mAP and precision@1000 for all 16-, 32-, 64-, and 128-bit settings.
For precision@r=2, ESH1 and ESH2 achieved the best performance for 64 and 16 bits,
respectively, and competitive results for 32 bits. The first row in Fig. 3.1 compares the
performance of the ESH algorithms with recent competitive algorithms, LGHSR, DSH, and
KNNH based on precision-recall graphs. Clearly, the ESH algorithms achieved a better
performance than the recent methods.

3.5.5 Results on NUS-WIDE

For this multi-label dataset, similar to the common setting [78], VGG features were used
for image representation. Images with labels among the 21 most frequent labels (195,834
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Table 3.3: Comparison of retrieval performance based on mAP, precision@5000, and pre-
cision@r=2 on NUS-WIDE dataset represented by VGG-F deep features. The best perfor-
mance values are highlighted in boldface.

mAP % precision % @5000 precision@r=2
Method 16Bits 32Bits 64Bits 128Bits 16Bits 32Bits 64Bits 128Bits 16Bits 32Bits 64Bits

LSH 40.45 48.04 46.75 - 47.95 55.29 58.95 - - - -
SH 44.74 42.60 42.36 - 59.15 54.98 54.18 - - - -
AGH 49.80 47.14 44.72 - 70.43 70.29 69.29 - - - -
SGH 48.86 49.10 51.33 - 64.92 66.04 69.01 - - - -
ITQ 52.09 53.12 54.04 54.85 64.34 66.62 68.48 69.54 67.31 51.91 05.21
DGH 51.35 52.21 53.34 55.96 66.33 65.35 66.02 67.20 65.14 68.41 70.19
LGHSR 50.06 47.72 45.71 44.11 68.42 68.09 67.92 66.95 68.87 71.98 45.27
KNNH 55.12 57.03 58.61 59.45 66.77 69.83 71.07 72.13 68.61 49.78 09.58
DSH 49.87 47.07 45.67 44.03 68.05 68.17 67.83 67.15 68.67 71.86 39.93
SCQ 56.34 56.21 56.10 53.54 68.45 70.64 70.81 69.00 68.74 70.92 08.98
ESH1 56.32 56.89 57.47 57.28 67.58 69.47 71.46 72.31 64.64 72.30 60.14
ESH2 56.54 57.16 57.71 57.53 68.20 70.80 72.14 72.45 64.34 72.06 62.08

images) were selected. We randomly sampled 100 images from each class to construct the
test set, and the remaining images were used to train the hash function and populate the
hash table. For the mAP and precision calculation, two images are considered neighbors
if they share at least one common label. Table 3.3 presents the validation of the ESH1
and ESH2 algorithms on this dataset. Here, LSH indicates locality sensitivity hashing [31],
PCAH is semi-supervised hashing [119], and SGH represents salable graph hashing [54].
For mAP, ESH1 and ESH2 outperform DSH, which is the most recent method based on a
spectral hashing formulation and has a higher complexity than ESH. For the NUS-WIDE
dataset, in some cases, ESH algorithms do not outperform the state-of-the-art method
KNNH. Note that with the KNNH method, there exists an O(n2d) complexity for distance
computing and an O(n2 log2 n) complexity for sorting, whereas the ESH methods are by
far more efficient with a complexity of O(2ndkN +ndm). Furthermore, for precision@r=2,
compared with DGH, DSH, and LGHSR, the results of the ESH methods do not always
show the best performance. In this regard, first, we should note that all DGH, DSH,
and LGHSR have been formulated based on two decision variables (one discrete and one
continuous), whereas the ESH is a function of one decision variable. This means that
the runtime of the ESH methods are significantly lower (see Fig. 3.2) compared with
these methods. Considering this lower complexity, providing a competitive performance
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compared with the state-of-the-art approaches imply that the ESH algorithms propose
a tradeoff between lower complexity and simultaneously achieving a good performance.
Second, for precision@r=2, it is true that ESH values are not always the state-of-the-art,
but we should note that, in precision@r=2, r = 2 is an empirical setting for reducing the
number of retrieved images, which leads to the different performances achieved by the
different methods. Finally, the precision-recall graphs in the second row of Fig. 3.1 shows
that the ESH algorithms are competitive compared with the state-of-the-art approaches.

Table 3.4: Comparison of retrieval performance based on mAP, precision@1000, and preci-
sion@r=2 on NCT-CRC-HE-100K dataset represented by EfficientNet features. The best
performance values are highlighted in boldface.

mAP % precision % @1000 precision@r=2
Method 16Bits 32Bits 64Bits 128Bits 16Bits 32Bits 64Bits 128Bits 128Bits 32Bits 64Bits

ITQ 54.72 55.78 57.50 58.39 68.41 71.64 74.63 76.14 67.90 72.54 35.66
DGH 49.85 47.24 51.61 59.61 74.08 77.14 77.05 77.58 68.75 79.02 79.15
LGHSR 55.28 47.74 38.65 32.37 75.66 78.21 77.13 74.67 73.80 79.82 67.76
KNNH 58.02 61.47 64.28 65.79 70.27 74.91 78.16 80.30 68.37 69.56 42.73
DSH 58.75 45.63 37.27 32.52 76.70 78.71 77.73 75.30 75.15 79.56 61.49
SCQ 64.90 67.25 67.75 66.57 76.03 80.07 80.01 80.02 69.64 80.51 72.65
ESH1 66.32 66.77 67.14 66.26 74.82 77.36 79.84 80.32 67.14 76.92 80.02
ESH2 63.54 67.30 67.75 67.04 71.85 78.12 80.16 80.46 63.04 77.17 80.41

3.5.6 Results on NCT-CRC-HE-100K

For the NCT-CRC-HE-100K dataset, EfficientNet [111] pre-trained on ImageNet was used
for feature extraction. The training set consists of 70,000 randomly sampled images, and
the test set includes the remaining 30,000 images. Table 3.4 shows that ESH1 and ESH2
achieved the best performance in terms of mAP for 16, 32, 64, and 128 bits. For preci-
sion@1000, DSH achieved the best result, and ESH2 achieved a 2% lower precision. How-
ever, as the number of bits increases, the performance of the ESH algorithms increases with
a stronger trend such that for 32-bit settings ESH2 and DSH perform equally, and ESH
algorithms outperform DSH for 64 and 128 bits with a margin of 3% and 5%, respectively.
Clearly, the ESH algorithms attain the best precision at @r=2 under the 64-bit setting.
Although for 16-and 32-bit settings, DSH and LGHSR achieved the best performance, the
ESH algorithms were still competitive. The third row in Fig. 3.1, illustrates how the ESH
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Figure 3.1: Precision-recall graphs for CIFAR-10 (first row), NUS-WIDE (second row),
and NCT-CRC-HE-100K (third row) for different numbers of bits (k = 16, 32, 64). Clearly
ESH1 and ESH2 achieve competitive performance against state-of-the-art unsupervised
hashing techniques.
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algorithms perform compared with recent methods in terms of precision-recall graphs. In
almost all cases, the ESH algorithms achieved a better performance in comparison with
the other methods.

3.5.7 Effect of Regularization

To determine how incorporating the regularization term in Eq. 3.7 improves the quality
of the binary codes, we ran experiments with α = 0 on NCT-CRC-HE-100K. Table 3.5
shows that the setting of α = 0 significantly degrades the performance, confirming the
effectiveness of the proposed regularization.

Table 3.5: Effect of the regularization term on retrieval performance in terms of mAP for
NCT-CRC-HE-100K detaset.

NCT-CRC-HE-100K
Method, Regularization 16 Bit 32 Bit 64 Bit 128 Bit

ESH1, α = 0 40.65 35.96 31.09 26.80
ESH1, α=automatic 66.32 66.77 67.14 66.26

3.5.8 Time Complexity and Runtime Comparison

In this section, we provide a complexity analysis of the ESH1 algorithm and compare it
with recent representative graph hashing methods. The complexity required for calculating
matrix S, which only needs to be calculated once, is O(ndm). Note that the complexity
of k-means algorithm for selecting the centers is excluded as this is a common step in all
graph hashing algorithms which employ the low-rank approximation method proposed in
AGH paper for affinity matrix construction. For the learning rule applied in the projected
gradient method, the complexity is O(2ndkN), and as a result, the overall complexity is
O(2ndkN +ndm). Table 3.6 presents the complexity of the proposed ESH algorithms and
recent representative graph hashing methods without including the complexity of calcu-
lating the affinity matrix. Clearly, the RDSH algorithm has the highest time complexity
O(n3), which is due to solving a standard Sylvester equation to derive the spectral solu-
tion. In contrast, the AGH algorithm has the lowest complexity because it uses an eigen
decomposition to obtain a spectral solution. The other algorithms listed in Table 3.6 are
a function of at least two decision variables, which increases the complexity. For example,
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the term nkNlog2n in LGHSR and DSH represents the complexity of updating additional
variables non-existent in the ESH algorithms. On the other hand, ESH has lower com-
plexity as the optimization is a function of one variable, and there is no inner loop, for
example, terms such as NGN in DSH or NBN in DGH iterations.

To further validate the training time efficiency of the proposed ESH algorithms, we
conduct a runtime comparison among graph hashing methods on NUS-WIDE dataset for
128 and 256-bit settings. As discussed earlier, due to the closed-form solution for AGH,
this algorithm has the lowest time complexity. By contrast, the time complexity of RDSH
is O(n3), which is significantly higher than that of the other algorithms. As a result, we
compared the runtime of the ESH methods with DSH, DGH, and LGHSR. Fig. 3.2 shows
the runtime of ESH1, ESH2, DSH, DGH, and LGHSR. Apparently, ESH2 and ESH1 have
the lowest runtimes compared with the other graph hashing methods. In addition, based
on this figure, the runtime of DGH and LGHSR increases quadratically with the number
of bits i.e., k. This can also be seen in Table 3.6 where the k2 term exists in the time
complexity of DGH and LGHSR.
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Figure 3.2: Runtime comparison of ESH1 and ESH2 against the graph hashing algorithms
DSH, DGH, and LGHSR on NUS-WIDE dataset for 128- and 256-bit settings. Clearly
ESH1 and ESH2 have lower training time compared with other graph hashing methods
DSH, DGH, and LGHSR.

3.5.9 ESH1 versus ESH2

As indicated in the results section, ESH2 (manifold optimization) achieves a better perfor-
mance in most cases compared with ESH1 (projected gradient). This is because, in ESH2,
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Figure 3.3: Convergence of ESH1 and 2 on NUS-WIDE dataset for 128-bit setting. Ac-
cording to the graph, ESH2 converges faster than ESH1.

the matrix W is updated on the Stiefel manifold. In other words, in ESH2, while W is
updated, the orthogonality constraint is preserved. However, in ESH1, we update W using
a gradient descent without considering the orthogonality constraint, and then find the clos-
est orthogonal matrix to the updated W. ESH2 and ESH1 can be compared in terms of
the run time. As shown in Fig. 3.2, ESH2 has a lower training time compared with ESH1,
which is due to the faster convergence of the manifold optimization. The graph in Fig. 3.3
compares the convergence of ESH1 and ESH2 for the NUS-WIDE dataset. Clearly, ESH2
has a faster convergence rate. Note that although ESH2 performs better in terms of both
the quality of the binary codes and the runtime, it may face a memory bottleneck during
training owing to the matrix inversion step (see Eq. 3.14). However, in our case, this is
not a problem because the inversion is conducted on a d × d matrix instead of an n × n
matrix where d≪ n. This is due to the fact that we transformed the problem from n× k
parameters to a problem with d× k decision variables.

3.5.10 Comparison With Deep Unsupervised Hashing

Although deep learning has mainly been applied to supervised hashing problems, recent
attempts have been made to develop deep unsupervised hashing methods. Some examples
include DH [25], UHBDNN [20], DeepBit [73], and SADH [105]. Table 3.7 compares the
performance of our proposed method compared with these algorithms. Clearly, based on
Table 3.7, ESH 1 and ESH 2 outperform UHBDNN and DeepBit and provide competitive
results compared with SADH. In this Table, “R+” implies that raw images are fed to
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Table 3.6: Comparison of time complexities where n is number of data points, d, dimen-
sionality of data, k, number of bits, m number of selected anchors, s the affinity matrix
sparsity parameter for selecting a subset of s anchors, N number of iterations, and NB, NG

are number of inner loop iterations.

Method Time complexity

AGH O(m2n + (s + 1)kn)
DGH O(nmkNBN + k2nN)
RDSH O(n3)
LGHSR O(m2n + (s + 1)kn + 2nk2N + nkN log2 n)
DSH O(nmkNGN + nkN log2 n)
ESH O(2ndkN + ndm)

the network, suggesting that these methods are end-to-end. By contrast, “V+” indicates
that the vector representations are fed to the network. Considering the simplicity of our
proposed method in comparison with deep learning methods, and that feature learning has
not been included, the obtained results are promising

Table 3.7: ESH compared with deep unsupervised hashing algorithms for NUS-WIDE
dataset. The R+ and V+ means the respective algorithm works on raw images and vector
data (images after feature extraction) respectively.

mAP % precision % @5000

Method 16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

V+UHBDNN 54.26 51.72 54.74 70.18 69.60 72.74

R+DeepBit 39.22 40.32 42.06 45.54 51.34 57.72

R+SADH 60.14 57.99 56.33 71.45 73.88 75.04

ESH1 56.32 56.89 57.47 67.58 69.47 71.46

ESH2 56.54 57.16 57.71 69.74 72.49 75.62

3.6 Summary and Conclusions on ESH

In this Chapter, we proposed a novel formulation for spectral hashing that achieves a
highly competitive performance compared with most recent methods, and at the same
time achieves a low complexity. The proposed projected gradient method is highly efficient
for three reasons. First, the formulation for ESH transforms the decision variable with a
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dimensionality of n × k into d × k, where d ≪ n. Second, the affinity matrix, which
is n × n in the spectral formulation, was removed, and instead, a d × d matrix S plays
a similar role. Finally, and more importantly, unlike other graph hashing schemes, the
proposed formulation achieves high-quality binary codes without adding any additional
decision variables to the problem. We applied two different optimization techniques, that
is, a projected gradient and manifold optimization, to obtain a solution. Using extensive
experiments on four public datasets, we showed that the proposed method outperforms
or achieves highly competitive results compared with recent methods and offers a low
complexity at the same time. For future work, we plan to update the affinity matrix along
with the proposed loss function, which needs the use of an end-to-end training framework
where feature learning is achieved through training. To conduct feature learning, we may
need to employ a reconstruction loss with the proposed loss function in Eq. 3.7. We believe
that such a scheme can significantly improve the performance of the proposed method.
Furthermore, another interesting path for future studies is to apply this more efficient non-
alternating hashing scheme instead of the more complex alternating algorithm employed
by [47] for the network quantization problem.
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Chapter 4

Beyond Neighbourhood-Preserving
Transformations for
Quantization-Based Unsupervised
Hashing

4.1 Prologue

The content of this chapter is based on the following paper published during the Ph.D.
research:

1. S. Hemati, et al. Beyond neighbourhood-preserving transformations for quantization-
based unsupervised hashing Pattern Recognition Letters Volume 153, January 2022,
Pages 44-50

In the previous Chapter , we proposed the efficient spectral hashing (ESH) for binary
representation learning where the main idea was to preserve the neighbourhood of data
in binary as much as possible. Although ESH achieves high quality binary codes while
enjoys less memory usage and training time compares with other spectral hashing based
methods, it still leads to difficult constrained optimization problem. Another well studied
approach for binary representation learning is quantization based approach where generally
formulations lead to more straightforward optimization problems. In this Chapter, we
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Figure 4.1: Histogram of transformed MNIST dataset using a) Raw (no transformation)
data, b) ITQ (rigid transformation) and c) SNRQ (rigid and non-rigid transformations).
As can be seen, SNRQ is more effective that ITQ in preparing the data to be quantized at
zero.

propose a novel form of quantization called non-rigid quantization which leads to high-
quality binary representations compared with latest quantization based hashing methods.

Employing a neighbourhood preserving transformation is the common practice in quan-
tization based hashing methods. For example, the ITQ [33], Angular Quantization (AQ)
[32], Isotropic Hashing (IsoHash) [65], Efficient Spectral Hashing (ESH) [42], Optimal Pro-
jection Hashing (OPH) [12], and Simultaneous Compression and Quantization (SCQ) [44]
employ neighbourhood preserving transformations in different forms to reduce the quan-
tization loss. The main issue with binarization is destroying neighbourhood structure
of data. Having this in mind, rotation matrices seem to be a good choice for reducing
quantization loss as they preserve neighbourhood. Although they are effective, we argue
that a single rotation is not powerful enough to minimize the quantization error. Instead,
we propose to employ transformations beyond rotation that even corrupt neighbourhood
structure of data in favour pushing for quantization. As we will see, such transformation
coupled with a rotation leads to high quality binary codes that outperforms state-of-art
linear unsupervised hashing methods. Although the proposed idea can be applied to many
hashing algorithms that employ a single rotation for reducing quantization error, here we
choose to develop this idea on top of ITQ which is very fast and still among competitive
hashing methods. In ITQ, the data is projected to lower dimensionality and then the
optimal rotation is found such that it minimizes the quantization error in two separate
steps. In our method, we employ a transformation beyond rotation and also resolve the
discontinuity in projecting data to lower dimensionality and reduce quantization error. We
formulate and optimize our objective function such that in our algorithm:

1. The data is projected and quantized simultaneously. This means unlike many con-
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ventional linear unsupervised hashing methods, the projection matrix is contributed
towards reducing quantization error.

2. We relax the orthogonality on projection matrix in favor of reducing quantization
error even if it corrupts the original neighbourhood. We experiment different matrix
norms for achieving this non-rigid (non-similarity preserving) transformation.

3. An efficient sequential update scheme is proposed for learning the projection matrix.

The left plot in Fig. 4.1 shows the histogram of the raw data, while the middle and right
plots show transformed data for a neighbourhood preserving transformation (ITQ) and
transformed by a non-neighbourhood preserving operations using our proposed method
Sequential Sequential Non-rigid Quantization (SNRQ). Apparently, SNRQ pushes data
points more distinctively toward +1 and -1 modes compared to ITQ.

Using extensive quantitative experiments on five public detest and also qualitative
results, we show that although our transformation corrupts the neighbourhood of data,
the final binary codes obtained using our method, preserve more neighbourhood compared
to many other linear hashing methods.

4.2 Method

4.2.1 Formulation

In this section, we formulate an optimization problem that follows two objectives. Firstly,
it is desirable to jointly learn a projection matrix and minimize the quantization loss of
projected data. Secondly, the orthogonality constraint on the projection matrix is relaxed
such that we can employ a non-rigid transformation for reducing quantization error. These
two objectives together enable non-orthogonal projection matrix to contribute to minimiz-
ing quantization loss in a way different from the orthogonal rotation matrix. The first
objective is achieved by joining the two well-known ITQ steps, namely applying PCA to
the data and minimizing quantization loss. Let X ∈ IRn×D represents zero-centered data
in which n is the number of training data points and D is the data dimensionality. It is
well understood that the projection matrix W ∈ IRD×K or K principal components of data
can be obtained by maximizing the objective function

arg max
W

Tr{WTXTXW} s.t. WTW = IK , (4.1)

43



where IK is the K × K identity matrix and Tr{} is the trace of a matrix. Here we
define V as V = XW with V ∈ IRn×K. We would like to minimize the quantization loss
of transformed data. To do this, we find an orthogonality relaxed matrix W (the relaxed
orthogonality constraint on W will be formulated later in Eq. 4.3) and an K×K orthogonal
rotation matrix R such that the quantization loss of thresholding the transformed data
VR = XWR at zero is minimized. This can be formulated as minimizing the following:

Q(B,R,W) = ∥XWR−B∥2F s.t. RTR = IK , (4.2)

where B ∈ {−1, 1}n×k is the corresponding binary representation of X. In order to jointly
learn the projection matrix W and minimize the quantization loss using both non-rigid W
and rigid R, we relax the orthogonality constrain on the projection in PCA formulation
and also regularize this by a quantization term which leads to our proposed objective
function:

arg max
W,R,B

J(W,R,B)=Tr{WTCxW} − α∥XWR−B∥2F − β∥WTW−IK∥2F , (4.3)

subject to RTR = IK and B ∈ {−1, 1}n×k where α and β are quantization and rigidness
regularization parameters, and finally Cx = XTX. Note that in Eq. 4.3 both W and
R are contributing to minimizing quantization loss, ∥XWR −B∥2F , but in different ways
as orthogonality constraint on W is smoothed whereas R is a pure orthogonal rotation
matrix. This is one of the main differences between the proposed method and other existing
methods e.g., in contrast to ITQ, IsoHash, AQ, and SCQ.

4.2.2 Optimization

In order to jointly minimize the quantization loss and learn the projection matrix, we need
to find W, R, and B in a way to maximize the objective function in Eq. 4.3. Due to binary
constraints on B, the optimization is intractable. Hence, inspired by technique used in ITQ
paper, we use a coordinate descent approach to optimize the objective function over W,
R, and B. To this end, in each step we consider one of the W, R, and B variable and the
two other matrices are assumed to be constant.

Fix R and B, and update W: In order to optimize the objective in Eq. 4.3 with respect
to W, we easily calculate the derivative with respect to W as follow:
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∂J(W,R,B)

∂W
= 2CxW − α

(
2XT (XWR−B)RT

)
− β

(
4W(WTW − IK)

)
. (4.4)

Having the gradient w.r.t W, we found that the L-BFGS-B optimizer [135] obtain a
good solution for W. However, as each variable should be updated multiple times (while
other are fixed) we observed that optimizing for W directly is a time-consuming procedure.
To mitigate this challenge, in the following we propose a sequential approach for updating
W. As we will show in experiments, sequential approach achieves comparable performance
while reducing training time significantly. In sequential scheme, each time one column of
W is updated while the rest of columns are considered fixed. First, let’s expand the second
term (quantization loss) in Eq. 4.3:

∥XWR−B∥2F = ∥XWR∥2F − 2Tr{XWRBT}+ ∥B∥2F
=Tr{WTCxW} − 2Tr{W(RBTX)}+ const.

(4.5)

Now let’s expand the relaxed orthogonality constraint (the third term in Eq. 4.3):

∥WTW − IK∥2F = ∥WTW∥2F − 2Tr{WTWIK}+ const

=Tr{(WWT )(WWT )} − 2Tr{WWT}+ const.
(4.6)

Using Eqs. 4.5 and 4.6 for the second and third terms in Eq. 4.3, respectively, and
defining Cy = RBTX provides us with the objective function for the case that W is
variable:

arg max
W

(1− α)Tr{WTCxW}+ 2αTr{WCy}

− βTr{(WWT )(WWT )}+ 2βTr{WWT}.
(4.7)

Let’s start formulating the problem such that one column of W is considered variable while
the remaining columns are constant. To this end, the k-th column of W that is considered
variable is denoted by zk and all other columns are shown by W′. In this case, for the first
term we receive

Tr{WTCxW} = Tr{CxWWT} =

Tr{Cx(W′W′T + zkz
T
k )} = const + zTkCxzk.

(4.8)

Note that here first we used the fact that Tr{Cxzkz
T
k } = Tr{zTkCxzk} and then removed

Tr{·} as the zTkCxzk is scalar. Similarly, if we define the k-th row of Cy as uT
k and the
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rest of the rows as C′
y, then the second term can be written as

Tr{WCy}=Tr{W′C′
y + zku

T
k }=

const +Tr{uT
k zk}= const +uT

k zk.
(4.9)

For the third term in Eq. 4.7 we write

Tr{(WWT )(WWT )} =

Tr{(W′W′T + zkz
T
k )(W′W′T + zkz

T
k )} =

const + 2zTkW
′W′Tzk + zTk zkz

T
k zk.

(4.10)

As zTkW
′W′Tzk and zTk zkz

T
k zk are scalars, Tr{·} can be removed. Similarly, for the last

term we obtain
Tr{WWT}=Tr{W′W′T + zkz

T
k }=

const +Tr{zTk zk}=const + zTk zk.
(4.11)

Incorporating Eqs. 4.8, 4.9, 4.10, and 4.11 into Eq. 4.7, if we set

Q = (1− α)Cx − 2βW′W′T + 2βID, (4.12)

then by maximizing the following objective function one can obtain the zk, k-th column of
W:

arg max
zk

J(zk)=zTkQzk+2αuT
k zk−βzTk zkzTk zk. (4.13)

To update each column of W, i.e, zk, where k = 1 . . . K, we have to find zk that
maximizes Eq. 4.13. The gradient of objective function (Eq. 4.13) can be calculated as

∂J(zk)

∂zk
= 2Qzk + 2αuk − 4βzk(zkz

T
k ). (4.14)

Now, we use the L-BFGS-B optimizer to obtain solutions. As we will show in experiments,
this sequential learning scheme significantly reduces the training time of the proposed
algorithm without sacrificing the quality of binary codes. This efficiency is in part because
of simplifying the objective function and also reducing the search space by dividing the
problem to K sub-problems.

Fix R and W, and update B: In this case, the optimization in Eq. 4.3 takes the
following form:
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arg min
B

∥XWR−B∥2F s.t. B ∈ {−1, 1}n×k. (4.15)

Having in mind that R and W are fixed, clearly, minimization of Eq. 4.15 with respect
to B is equivalent the maximization of Tr{(XWR)TB} where elements of B can be either
1 or -1. As we know from ITQ [33], the optimal B can be calculated as

B = sgn(VR) = sgn(XWR). (4.16)

Fix W and B, and update R: For the case that R is variable, maximizing Eq. 4.3 is
equivalent to

arg min
R

∥VR−B∥2F s.t. RTR = IK . (4.17)

This is the Orthogonal Procrustes problem where a rotation matrix is found such that
two point sets are aligned with each other. Here, these two point sets are the target binary
code matrix B and projected data V. This problem has closed form solution when R is a
square orthogonal (rotation) matrix [101] which is

R = ŜST . (4.18)

where SΛŜT is the SVD of the K by K matrix BTV.

In summary, in each iteration, Eq. 4.16 and Eq. 4.18 are used to update B and
R, respectively.To update W, in each iteration, K optimization problems for K columns
of W are solved. After obtaining R, and W, the binary representation of the data X
can be obtained B = sgn(VR) = sgn(XWR). When the direct optimization is used
for updating W we denote our method NRQ and for the sequential case this denoted by
SNRQ. Algorithm 1 summarizes the proposed scheme to update all three matrices method.

4.2.3 Implementation Note

We use K eigenvectors of Cx corresponding to K largest eigenvalues as initialization of W.
For R, we use the rotation matrix obtained by ITQ as initialization of R. Although we will
show the algorithm is robust to different values for α and β, to avoid tuning regularization
parameters, we set α = 3 and β = 0.01 for all datasets and experiments. In order to
choose α, the only consideration is to keep it larger than 1. This can be understood based
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Algorithm 1 The Proposed SNRQ Algorithm

Input: Data matrix X, number of iterations N
regularization parameters α and β
Output: Projection matrix W, rotation matrix R
Initialization: Initialize W and R

1: for iteration= 1, 2, . . . , N do
2: V← XW
3: B← sgn(VR)

4: SΛŜ
T
← SVD(BTV)

5: R← ŜST

6: Cy ← RBTX
7: for k = 1, 2, . . . , K do
8: uT

k ← Cy[k, :]
9: Q← (1− α)Cx − 2βW′W′T + 2βIK
10: Solve Eq. 4.13 for each column of W, i.e., zk
11: J(zk) = zTkQzk + 2αuT

k zk − βzTk zkz
T
k zk

12:
∂J(zk)
∂zk

= 2Qzk + 2αuk − 4βzk(zkz
T
k )

13: Update the k-th column of W, i.e., zk
14: W[:, k]← zk
15: end for
16: end for

on Eq. 4.12 which shows there is a trade-off between reducing quantization error and
maximizing variance across projections. This is clear that the quantization error is our
priority. The algorithm is fairly robust to β, and based on our experiments, any number
between 0.01 to 50 easily does the job. For the number of iterations, experiments on a
variety of detests show that 70 iterations are generally sufficient, and after that, the loss
function does not change significantly. As a results, We set the number of iterations N to
70. An implementation of the proposed method is provided in this GitHub repository.
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4.3 Experiments and Results

4.3.1 Datasets and Evaluation Protocol

The performance of the proposed SNRQ algorithm is evaluated on five standard benchmark
datasets, MNIST [71], CIFAR-10 [67], an unbalanced dataset LabelMe-12-50K [114], a
medical image dataset NCT-CRC-HE-100K [82], and a multi-label NUS-WIDE [13]. These
datasets provide a total of 489,000 images for learning and testing.

• The MNIST Dataset contains 70,000 gray-scale images all of size 28 × 28 pixels.
There are 10 classes in this dataset for handwritten digits.

• The CIFAR-10 Dataset is a 10-class dataset consisting of 60,000 color images of
size 32× 32 pixels.

• The LabelMe-12-50K Dataset is a 12-class dataset containing 50,000 images of
size 256× 256 pixels. This dataset is highly imbalanced such that five classes consti-
tute 91% of all images while there is one class that only contains 0.6% of the samples.
The images of this dataset have multiple label values between zero and one. In our
experiments, same as previous works that employed this dataset [37] for evaluating
hashing algorithms, we choose the class of the largest label value as the image label.

• The NCT-CRC-HE-100K Dataset is 9-class histopathology dataset containing
100,000 non-overlapping image patches from hematoxylin & eosin stained (H&E)
images of human colorectal cancer and normal tissue. All images are 224×224 pixels
and color-normalized.

• The NUS-WIDE Dataset is a multilabel dataset that contains 269,000 images
collected from Flickr. This database contains 81 ground-truth concepts.

4.3.2 Hash Code Evaluation

To evaluate the performance of the SNRQ, we use standard measures for image retrieval
quality assessment. These measures include mean Average Precision (mAP), and precision
at M samples (e.g., precision@1000). Briefly, mAP measures the overall performance of the
retrieval over all classes, whereas precision@M calculates the proportion of true positive
over top M retrieved samples.
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Table 4.1: Comparison of retrieval performance based on mAP and precision@1000 on
MNIST dataset represented by 512-D GIST descriptor. The best performance is high-
lighted in boldface. KMH: K-means Hashing [36], SpH: spherical hashing [43].

mAP % precision % @1000
Method 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

SH 32.59 33.23 30.65 - - -
SpH 31.27 36.80 41.40 - - -
KMH 31.96 37.39 41.11 - - -
BA 48.48 51.72 52.73 - - - -
ITQ 46.37 50.59 53.69 69.67 75.13 80.45
KNNH 53.07 61.11 65.55 73.99 83.32 87.05
SCQ 62.39 74.49 72.23 79.26 88.46 88.90
NRQ (Ours) 71.46 69.44 72.79 84.59 85.49 87.30
SNRQ (Ours) 64.70 76.98 73.48 80.00 88.53 88.27

Table 4.2: Comparison of retrieval performance, based on mAP, for 16, 32 and 64 bits
for CIFAR-10 and macro mAP (average over classes) for LabelMe-12-50k datasets both
represented by 4096-D VGG-FC7 descriptors.

CIFAR-10 LabelMe-12-50k
Method 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

SH 18.31 16.54 15.78 12.60 12.59 12.24
SpH 18.82 20.93 23.40 13.59 15.10 17.03
KMH 18.68 20.82 22.87 13.36 15.47 16.58
BA 25.38 26.16 27.99 16.96 18.42 20.80
ITQ 26.82 27.38 28.73 18.06 19.40 20.73
DGH 27.73 27.44 28.01 21.45 22.74 25.41
LGHSR 27.83 25.87 22.12 21.10 23.49 23.98
DSH 27.72 25.36 22.12 24.70 23.78 24.35
SCQ 27.52 27.42 30.34 22.89 24.95 26.50
KNNH 29.06 30.82 32.60 20.13 23.79 26.22
NRQ (Ours) 31.42 30.87 33.05 24.27 27.40 28.65
SNRQ (Ours) 30.10 31.82 33.10 25.14 26.80 28.50

4.3.3 Results on MNIST dataset

Following the setting of [37] for MNIST data, each image is presented by a GIST 512-D
descriptor, 10% of each class is considered for query set and the remaining data is used as
training set. Table 4.1 shows the results for MNIST in terms of mAP, and precision@1000.
Clearly, the NRQ and SNRQ methods provide an improvement over other methods in
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all cases with only one exception for precision@1000 where the SCQ slightly outperforms
SNRQ with less than 0.5% in 64 bit.

4.3.4 Results on CIFAR-10 Dataset

For this dataset, following the common setting [37, 133], we used deep 4096-D features
extracted from VGG network [106] and sample 10% of each class as query set and the
remaining instances as training set. The left half of Table 4.2 represents the results for this
experiment setting. As it can be seen, NRQ and SNRQ outperform state-of-art namely
KNNH [37] and SCQ [44].

4.3.5 Results on LabelMe-12-50k Dataset

As it was pointed out, this dataset is highly imbalanced. To ascertain a fair comparison,
we calculate mAP values that are macro averages over all classes. Following the common
setting [37] we sample 10% of each class to construct the query set, and the remaining data
points as training set. Besides, VGG network has been used to extract feature vectors.
As Table 4.2 shows, NRQ and SNRQ are performing better and outperform state-of-art
methods with a large gap.

4.3.6 Results on NCT-CRC-HE-100K Dataset

For this dataset, we used EfficientNet [111] pre-trained on ImageNet to extract 1280-
D feature vectors from images. We randomly sampled 70,000 images (out of 100K) for
training set and the rest of images (30,000) for test. For efficiency, we reduced the feature
vector dimensionality to 512 values by the PCA. Table 4.3 shows that NRQ and SNRQ
outperform competitive methods based on mAP and precision@1000 with a significant gap.

4.3.7 Results on NUS-WIDE Dataset

For NUS-WIDE experiments, we used the common setup in many hashing papers [78, 105].
In this setting, images are selected which their labels are among the 21 most frequent labels.
This leads to 195,834 images. We randomly sample 2,100 images (100 images from each
class) from 195,834 images for the test set and the rest of the images are used for training
the hash function and populating the hash table. We used VGG-F network [9] to extract
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Table 4.3: Comparison of retrieval performance based on mAP, and precision@1000 on
NCT-CRC-HE-100K dataset represented by features extracted by EfficientNet.

mAP % precision % @1000
Method 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ITQ 55.8 57.8 59.5 68.8 72.6 75.4
DGH 49.85 47.24 51.61 74.08 77.14 77.05
LGHSR 55.28 47.74 38.65 75.66 78.21 77.13
DSH 58.75 45.63 37.27 76.70 78.71 77.73
KNNH 58.02 61.47 64.28 70.27 74.91 78.16
SCQ 64.90 67.25 67.75 76.03 80.07 81.01
NRQ (Ours) 75.32 73.08 77.25 83.94 83.32 86.91
SNRQ (Ours) 68.51 75.45 78.75 80.19 84.58 87.07

Table 4.4: Comparison of retrieval performance on NUS-WIDE dataset represented by
VGG-F deep features.

mAP % precision % @5000
Method 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

SH 44.74 42.60 42.36 59.15 54.98 54.18
AGH 49.80 47.14 44.72 70.43 70.29 69.29
DGH 54.03 52.74 49.64 71.15 71.91 70.66
LGHSR 50.79 47.72 45.45 66.79 68.59 67.60
ITQ 53.39 54.61 55.75 65.80 68.69 70.59
DSH 49.87 47.07 45.67 68.05 68.17 67.83
KNNH 55.12 57.53 58.61 66.77 69.83 71.07
SCQ 58.34 56.21 56.10 68.45 70.64 70.81
NRQ (Ours) 60.83 62.08 63.34 69.91 72.07 73.82
SNRQ (Ours) 61.78 62.74 62.60 70.83 72.33 73.37

features from images. Results for this experiment are reported in Table 4.4. The results
for other algorithms mainly are directly reported from literature. [105].

4.3.8 Comparison Between NRQ and SNRQ

Here we compare NRQ and SNRQ both in terms of run-time and performance. If we
directly update the projection matrix, the training becomes significantly time consuming.
To address this, we proposed sequential update scheme which achieves the same perfor-
mance while significantly reduces the time complexity. The training times of NRQ and
SNRQ for CIFAR-10 dataset are shown in Fig. 4.2. Although based on Fig. 4.2, SNRQ
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Figure 4.2: Training time for NRQ and SNRQ applied to the CIFAR-10 dataset for different
number of bits. According to the graph, the training time for SNRQ is significantly less
than NRQ.
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(c) SNRQ (α=3. β=50)
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(d) SNRQ (α=3, β=200)
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(e) SNRQ (α=2, β=50)
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Figure 4.3: Visualization of the ITQ and SNRQ performance in projecting the data to
a space with less quantization loss on a 2D toy dataset: (a) The reference 2-D data, (b)
data rotated & projected by ITQ, (c-f) Data rotated & projected by SNRQ using different
values of β & α. In SNRQ, the data points are pushed more towards Hamming vertices at
cost of corrupting the neighbour structure of data.
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is significantly faster compared with NRQ, as can be seen from Tables 4.1, 4.2, 4.3, and
4.4 their performance is similar. The time difference for training may be quite significant
for petabyte archives with gigapixel files like satellite imaging and digital pathology where
images are commonly quite large, > 50,000 by 50,000 pixels. For the latter each patient
often comes with many images.

4.3.9 SNRQ vs. ITQ

To validate how employing a non-rigid transformation acts compared with rigid one, we
generated a synthetic toy dataset. Fig. 4.3 shows the transformed data by ITQ and
SNRQ on this toy dataset under for values of α and β. Fig. 4.3 part (a) represents the
toy data. Fig. 4.3 part (b) shows the same data after transformation by ITQ. Figs. 6.3
part (c), (d), (e), and (f) show the transformed data using SNRQ for different values of
α and β. This graph reveals role of these regularization parameters in SNRQ algorithm
which is controlling the trade-off between preserving neighbourhood structure of data and
pushing data points. They can cause unsafe quantization. The smaller the β (larger the α)
the unsafer the quantization. The quantization loss is increasingly reduced by corrupting
neighbourhood.

4.3.10 Comparison of SNRQ With Deep Unsupervised Hashing
Algorithms

Recently deep learning has been applied to unsupervised hashing including DH [25], UHBDNN
[20], DeepBit [73], and SADH [105]. To compare SNRQ with Deep unsupervised hashing
methods, we employ NUS-WIDE in the setting same as Table 4.4. As Table 4.5 shows,
SNRQ outperforms UHBDNN and DeepBit by a considerable gap. Compared with SADH,
results are highly competitive. Considering DeepBit and SADH are feeding images into a
CNN and learn the features, which implies that the quality of features used in SADH, and
DeepBit are expectedly better than VGG-F extracted features, it is quite impressive that
SNRQ is superior or delivering on par results.

4.3.11 Ablation Study

We set α = 3 and β = 0.01 for all experiments and datasets. Based on the following ex-
periments, although β and α regulates the trade-off between preserving the neighbourhood
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Table 4.5: SNRQ compared with deep unsupervised hashing algorithms for NUS-WIDE
dataset. The terms R+ and V+ mean the respective algorithm works on raw images and
vector data (images after feature extraction) respectively. The performance is measured
based on based on mAP and precision@5000. R+ and V+ means raw images and VGG
features are fed to the network respectively.

mAP % precision % @5000
Method 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

V+UHBDN 54.26 51.72 54.74 70.18 69.60 72.74
R+DeepBit 39.22 40.32 42.06 45.54 51.34 57.72
R+SADH 60.14 57.99 56.33 71.45 73.88 75.04
V+SNRQ 61.78 62.74 62.60 70.83 72.33 73.37

structure and the quality of quantization, SNRQ is robust to changes. Results in Table 4.6
show the SNRQ performance on MNIST and LabelMe-12-50k datasets for different values
β = 0.01, 0.05, 0.1, and 0.5 for the 16 bit setting. Even the worst performance after chang-
ing β = 0.01 is still state-of-art. We also tested the robustness of SNRQ to changes in α.
We should not use α = 1 as it removes the Q from objective. For α, first the β value is set
to 0.01, then we evaluated SNRQ for α =2, 3, 4 and 5 in Table 4.6. The performance for
α =2,3, 4 and 5 is consistently high reaching highest for α = 4. Considering the proposed
objective function in Eq. 4.3, if we put α = 0, there will be no quantization step, and
the problem becomes a PCA-like objective function where the orthogonality constraint has
been smoothed. Similar to PCA, this would lead to poor binary representations due to ac-
cumulated quantization error. For β = 0, the projection matrix W becomes too dominant
and destroys the neighbourhood of data leading to loss of information. Besides, from an
optimization point of view, for α = 0 and β = 0, the objective function would become a
quadratic function where, given the fact that covariance matrix is positive semi-definite,
the maximization is unbounded. As a result, α = 0 and β = 0 do not make sense in the
context of this method.

4.3.12 Achieving Non-rigid Projections

We achieved a non-rigid transformation by relaxing orthogonality constraint on projection
matrix. We used the well-known Soft Orthogonality (SO) ∥WTW−IK∥2F . However, there
are other ways of achieving this non-rigid projection matrix [3]. We also tried Double
Soft Orthogonality (DSO) ∥WTW−IK∥2F + ∥WWT−ID∥2F , and Mutual Coherence (MC)
∥WTW−IK∥2∞ where we resorted to auto differentiation for implementation. Based on
Table 4.7, the simple soft orthogonality SO is achieving better performance in most cases.
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Table 4.6: Comparison of retrieval performance for MNIST (GIST 512-D) and LabelMe-
12-50k (4096-D VGG-FC7) datasets based on mAP for different values of β and α.

16 bits, α = 3
Dataset β = 0.01 β = 0.05 β = 0.1 β = 0.5
MNIST 64.70 64.29 67.17 66.38
LabelMe 26.08 25.29 25.29 25.10

16 bits, β = 0.01
Dataset α = 2 α = 3 α = 4 α = 5
MNIST 63.3 63.18 65.58 65.30
LabelMe 24.20 24.54 25.73 25.63

Table 4.7: Comparison of SO, DSO, and MC for obtaining non-rigid transformation on
NCT-CRC-HE-100K dataset based on mAP and precision@1000.

mAP % precision % @1000
Method 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

SO 71.34 76.83 76.57 82.94 86.13 86.30
DSO 71.07 76.29 75.40 81.59 85.60 86.16
MC 72.43 73.94 76.86 82.70 83.72 85.86

4.4 Conclusions

We introduced Sequential Non-rigid Quantization (SNRQ). The backbone of SNRQ is
based on ITQ (iterative quantization) [33]. Although the ideas presented in ITQ are in-
teresting, we argued that learning projection and rotation in two separate steps could be
sub-optimal. Furthermore, a rigid transformation may not be enough for reducing quan-
tization to the ultimate limit. Motivated by these limitations, we proposed an algorithm
to reduce both dimensionality and quantization loss simultaneously. We also employed a
non-rigid transformation to push for quantization beyond rotation. Employing non-rigid
transformations is generally against intuition. It does not preserve the neighborhood of
data (and all these efforts for reducing quantization error is to preserve more neighborhood
after binarization). However, we showed that corrupting neighborhood in favor of reduc-
ing quantization eventually leads to better codes. An efficient nested coordinate descent
algorithm was employed to update all three matrices. The results on five public datasets
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totaling almost half a million images showed that the proposed method outperforms the
state-of-art linear hashing methods.

As the future work, we plan to extend the idea of binary representation learning using
the rigid and non-rigid transformations to the deep architectures. In this framework, while
the non-rigid transformations can be realized using regularization terms similar to the soft
orthogonality in Eq. 4.3. For the rigid transformation, one can project the gradient on
to orthogonal feasible set using the projection operation proposed in [84] to update the
rotation matrix. Besides, it has been recently demonstrated that hashing can be used in
the network quantization task [30]. This would be interesting to see how the proposed
quantization method performs for network quantization.
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Chapter 5

CNN and Deep Sets for End-to-End
Whole Slide Image Representation
Learning

5.1 Prologue

The content of this Chapter is based on the following paper published during the Ph.D.
research:

1. S. Hemati, et al. CNN and Deep Sets for End-to-End Whole Slide Image Repre-
sentation Learning Proceedings of Machine Learning Research 143:301–311, 2021

5.2 Introduction

So far in the last two Chapters, we explored methods for learning high quality binary rep-
resentation learning. However, due to the giagantic size of WSIs, the proposed methods
cannot be applied to WSIs directly. Motivated by this limitation,in this Chapter we inves-
tigate a simple end-to-end WSI representation learning and then in the next Chapter, we
attempt to unify binary and WSI representation learning ideas to achieve a framework for
learning efficient representations for WSIs.

As it was pointed out in the related work section, patch extraction is typically the
first step for the representation learning of a WSI. Commonly, thousands of representative
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patches can be extracted from a WSI. Processing the patches separately instead of the entire
WSI eases the memory bottleneck; however, this leads to multi-vector embedding, which
is non-trivial to transform to a single vector representation introducing new challenges,
e.g., high data usage and compromised retrieval speed [58]. Computing a single-vector
representation of a WSI is an active area of research [112, 57]. Ideally, we are interested
in a deep-learning solution that can be efficiently trained on WSI patches (at various
magnifications), yielding a compact single-vector representation for the WSI, much more
suitable for efficient retrieval tasks.

Representing each WSI as bag of image patches makes MIL [18, 57] a natural approach
for WSI representation learning [93]. Considering this, employing permutation invariant
networks have potential to be used as an effective approach for developing end-to-end
WSI representation learning. One recent simple yet effective work on permutation invari-
ant networks is Deep Sets [130]. In the original work detailing Deep Sets, the authors
specified a permutation-invariant function and proposed to employ universal set function
approximators in neural network. They showed that despite its simplicity, their proposed
permutation-invariant architecture can achieve promising performance in a variety of tasks
including point cloud classification.

The objective of this Chapter is to propose an end-to-end permutation invariant CNN
capable of obtaining a vector representation for a WSI. We use Deep Sets as a simple
permutation-invariant neural network which makes it suitable for patch set data for WSI
representation learning. We propose to employ a CNN along with Deep Sets to achieve
a single global representation per WSI. To this end, we propose two reshape layers to
connect our CNN to Deep Sets such that we can train a deep network in an end-to-end
manner. Note that having one global representation for each WSI enables us to train
our network in a multi-label classification scheme such that the targets for each WSI are
primary site and primary diagnosis. This enables the proposed CNN-Deep Sets (CNN-Deep
Sets (CNN-DS)) architecture to be used for WSI search in both horizontal search (search
for primary site) and vertical search (search for primary diagnosis) [58]. In order to further
guide the proposed CNN-DS, we employ hierarchical multi-label training where primary
site information is used to predict primary diagnosis labels. This idea is based on the
fact that every primary site has its own disease sybtypes so we prevent the network from
predicting meaningless diseases/primary site pairs. We show that the proposed network
coupled with hierarchical multi-label training can be used for WSI representation. We
validate the proposed scheme against Yottixel for the image search task on The Cancer
Genome Atlas (TCGA) dataset [122, 14] both in terms of retrieval performance and speed.
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5.3 Method

5.3.1 Preprocessing

The common practice to deal with gigapixel WSIs is patch extraction which leads to a
bag of patches (set representation) [113]. This type of image embedding pulls out some
patches so that the network can train on a smaller set without sacrificing too much of tissue
information. As it is not always clear which areas of a WSI are the regions of interest,
patch extraction is challenging. In particular a chosen patch may not be relevant to the
WSI diagnosis as it may contain exclusively healthy tissue or a combination of healthy
and malignant tissue. Considering this, the patch extraction step is crucial as we may
loose valuable information. This problem can be more severe in patch-based training as
we assign WSI label to each patch which may not be correct. In this paper, we employ a
patch extraction algorithm used in Yottixel [58]. The patch selection method selects the
representative patches from a WSI. We removed non-tissue portions of WSIs using colour
threshold. The remaining tissue-containing patches are grouped into a pre-set number of
categories through a clustering algorithm (we chose 9, and K-means algorithms). A portion
of all clustered patches (e.g., 10%) are randomly selected within each cluster, yielding a
mosaic. The mosaic is transformed into a set of features, obtained through a deep network
(shown in Figure 5.1). The mosaic is meant to be representative of the full WSI, and
enables much computational convenient computation for training of neural networks we
randomly accept 40 patches from the mosaic.

5.3.2 Proposed CNN-Deep Sets (CNN-DS)

Representing a WSI by a mosaic of patches reduces our WSI to a set representation learning
problem. Motivated by this, we propose applying Deep Sets [130] to learn a permutation-
invariant representation for each WSI in an end-to-end manner. The general architecture
proposed in Deep Sets for representation of set X that contains elements x1, x2, . . . xn

follows the following form, fX = ϕ(θ(x1), . . . , θ(xn)), where, fX is the set representation, θ
is a non-linear mapping and ϕ is a pooling operation, including sum, mean, and max. In the
Deep Sets paper, the authors proved that their proposed architecture was capable of acting
invariantly and universally on set inputs approximate any set function [130]. The universal
invariance refers to the property that shuffling the input vector does not result in a change
of the output vector; mathematically, for any reordering, π(i): F ({x1, x2, x3, . . . , xn}) =
F ({xπ(1), xπ(2), xπ(3), . . . , xπ(n)}). In this Chapter, we employ the max pooling operation
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Figure 5.1: Proposed architecture for end-to-end WSI representation leaning. This ar-
chitecture contains four main modules namely reshape layers, a CNN, Deep Sets, and a
hierarchical multi-label learning layer.

for symmetric function part of Deep Sets as it it has been shown to be superior to other
pooling layers for set representation learning [130].

CNN-DS Design for End-To-End Training

To have an end-to-end algorithm that learns high-quality permutation invariant represen-
tation per WSI, we employ EfficientNet B0 [111] prior to the Deep Sets model. Fig. 5.1
shows our proposed CNN-DS architecture.

Crucial to the design of our network are two reshape layers: one before the CNN
(EfficientNet B0 here) and one before the permutation-invariant Deep Sets. The first
reshape layer is necessary to feed into the convolutional layers. Considering batch size of
16, extracting 40 patches per each WSI (set size= 40), and resizing patches from 1000 ×
1000 to 224 × 224, the input tensor of our network has the shape (16,40,224,224,3). To feed
this 5-dimensional tensor to the CNN-Deep Sets, we use the reshape layer to turn the input
tensor into a 4-dimensional tensor with shape (640,224,224,3) so that in EfficientNet each
patch is treated as an individual image and not part of a set. EfficientNet then transforms
the data into shape (640,7,7,1280) which is further reduced to shape (640,1280) by the
global max pooling. To prepare this matrix for Deep Sets, we process it with two dense
layers. These layers reduce the dimensionality and apply a symmetric activation function
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tanh(·) which is helpful before symmetric functions employed by Deep Sets. After these
dense layers, the data shape is (640,512). To retain the set nature of the data, our second
reshape layer changes the dimensionality to (16,40,512). This data is then given to Deep
Sets to obtain a global representation for each WSI, which was represented by a set of
patches. After Deep Sets we have a (16,1024) representation where each WSI has been
embedded as a 1024 dimensional vector.

CNN-DS Design for Multi-label Training

To update the network parameters, the vector embedding of the WSI outputted by Deep
Sets is used in a multi-label classification task where labels are primary site and primary
cancer subtypes. First, the output of Deep Sets is inputted to two different dense layers
for primary site and cancer subtype classification. The elevated layer in Fig. 5.1 is the
primary site classifier component with 24 outputs and a softmax activation function where
each output predict a primary site probability for the WSI. Since every primary site has
its own cancer subtype, we can use the primary site predicted label to predict the primary
diagnosis label. We therefore design the final lower layer to be a set of 24 layers associated
with 24 primary sites where number of outputs for each layer is equal to the number of
cancer subtypes for that primary site. For example, if the first layer in the lower final
layer represents the brain as the primary site, then the primary diagnosis type layer will
either be Glioblastoma Multiforme (GBM) or Lower Grade Glioma (LGG) - only two
possible outputs with a softmax activation function. This layer therefore calculates the
P (GBM|Brain) and P (LGG|Brain) probabilities. However, we aimed to calculate P (GBM)
and P (LGG) probabilities with this assumption that we know the probability of the given
WSI is Brain, i.e., P (Brain) which we can obtained from upper final layer. To do this we
use law of total probability as follows:

P (GBM) = P (GBM|Brain)P (Brain) (5.1)

P (LGG) = P (LGG|Brain)P (Brain) (5.2)

The multiplication between P (Brain) and P (GBM|Brain), or P (LGG|Brain) is shown using
the connection between upper and lower final layers. We develop these layers for all other
primary sites and their corresponding cancer subtypes where categorical cross entropy
is used as loss function. Compared with a simple multi-label training with a sigmoid
activation and binary cross entropy, this guided multi-label training needs significantly
fewer epochs.
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Training

All patches were reduced from 1000 by 1000 to 224 by 244 images. Then, for each WSI
we ended up with a tensor of shape (40, 224, 244, 3) where 40 is number of patches per
WSI. We set the batch size to 16 which leads to a tensor shape (16, 40, 224, 244, 3) for
one batch of data. A batch of this size is quite large, leading to issues in regular GPU
memory and run times. To handle data of this size we employed four Tesla V 100 GPUs in
parallel mode. We employed the Adam optimizer [61] with 0.000001 learning rate to avoid
instabilities. The Albumentations library [5] was used to apply horizontal and vertical flip,
90 degree rotation, shifting and scaling data augmentation. Finally, in the last two dense
layers we employed dropout at a 0.25 rate.

5.4 Results

To validate the proposed architecture for WSI representation, we employ the CNN-DS to
obtain one feature vector for set of patches (here 40) per WSI. The output of the feature
extractor for the proposed architecture is obtained from the dense layer after the Deep
Sets layer, a 512 dimensional representation for each WSI. Unlike the training, obtaining
WSI representations for test data can be done using a regular GPU. To investigate the
quality of obtained WSI representations we validate the obtained features in the image
search task for test data. We compare the proposed method with Yottixel search engine
[58] on two different WSI search tasks, namely, horizontal and vertical search. Horizontal
search refers to how accurate we can find the tumour type across the entire test database.
Vertical search quantifies how accurately we find the correct cancer subtype of a tumour
type among the slides of a specific primary site including different primary diagnoses. Due
to small size of test set, we employ leave-one-out strategy and report the average scores.

5.4.1 Dataset

We employ 5861, 281, and 604 WSIs unfrozen sections from TCGA for training, validation,
and testing, respectively. The dataset spanned 24 primary sites and 30 primary cancer
diagnoses. The tumour types available in the dataset include brain, breast, endocrine,
gastrointestinal tract, gynecological, hematopoietic, liver/pancreaticobiliary, melanocytic,
head and neck, prostate/testis, pulmonary, and urinary tract.
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5.4.2 WSI Search

The k-nearest neighbors (k-NN) horizontal search results both for k = 3 and k = 5 are
shown in Table 5.1. Clearly, almost in all primary sites there is a significant improvement in
retrieval performance compared with Yottixel search engine. Table 5.2 presents the k-NN
vertical search result using Yottixel and WSI embeddings obtained from CNN-DS. Unlike
horizontal search, CNN-DS obtained better results in all cases compared with Yottixel in
vertical search; in some cases Yottixel achieves better results. Looking more closely at
these cases, the improvement of Yottixel against CNN-DS is not significant in most cases.
Fig. 5.2 shows the 2-D representation of obtained WSI embedding using CNN-DS labelled
based on primary site and primary diagnosis labels.

Table 5.1: Majority-3 and 5 search accuracy (%) for the horizontal search (primary site
identification) among 604 WSIs for Yottixel and CNN-DS (best results in green).

Accuracy (in %)
Tumor Type Patient # Yottixel (k = 3) CNN-DS (k = 3) Yottixel (k = 5) CNN-DS (k = 5)

Brain 46 73 91 73 89
Breast 77 45 77 38 79
Endocrine 71 61 66 59 62
Gastro. 69 50 75 49 74
Gynaec. 18 16 33 0 27
Head/neck 23 17 69 13 65
Liver 44 43 56 36 43
Melanocytic 18 16 50 5 38
Mesenchymal 12 8 100 0 83
Prostate/testis 44 47 81 43 77
Pulmonary 68 58 91 54 89
Urinary tract 112 67 76 62 74

5.4.3 WSI Classification

The Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) are two
main cancer types of non-small cell lung cancer. The classification of LUAD versus LUSC
can aid pathologists in diagnosis of these cancer subtypes that include 65-70% of all lung
cancers [131]. To validate the performance of CNN-DS, we apply it to LUAD/LUAC
classification task. We gathered 2,580 (H&E) stained WSIs of lung cancer from TCGA
repository. Among this, we employ 1,806 for training set and the remaining 774 WSIs
for test set [57]. The patch selection and the architecture design of CNN-DS is the same
as the one that used in transfer learning task. We avoid training convolutional layers to
have a fair comparison against other transfer-learning based methods. The results have

64



been reported in Table 5.3 where CNN-DS can achieve competitive performance against
the state-of-art.

Table 5.2: Majority-3 and -5 search through k-NN for the vertical search among 604 WSIs.
Best F1-measure values highlighted.

F1-measure (in %)
Site Subtype nslides Yottixel CNN-DS Yottixel CNN-DS

Brain
LGG 23 78 89 75 81
GBM 23 82 89 83 84

Endocrine
THCA 50 92 98 91 98
ACC 6 25 28 28 0
PCPG 15 61 81 61 79

Gastro.

ESCA 10 12 44 25 55
COAD 27 62 69 54 70
STAD 22 61 64 57 78
READ 10 30 55 16 0

Gynaeco.
UCS 3 75 80 50 50
CESC 6 92 66 76 80
OV 9 80 82 66 82

Liver, panc.
CHOL 4 26 0 25 0
LIHC 32 82 95 87 95
PAAD 8 94 94 77 94

Prostate/testis
PRAD 31 98 97 95 96
TGCT 13 96 93 86 93

Pulmonary
LUAD 30 62 61 62 61
LUSC 35 69 60 69 62
MESO 3 0 50 0 0

Urinary tract

BLCA 31 89 95 86 94
KIRC 47 91 87 89 84
KIRP 25 75 84 79 81
KICH 9 70 53 66 0

5.4.4 Query time comparison against Yottixel

We inteded to obtain one global representation for a WSI. We argued that this is partic-
ularly useful for WSI search as the set representation is bypassed. Hence, we measured
query time for the leave-one-out approach used for 604 WSIs. Results showed that while
for Yottixel it takes around 16 minutes to calculate pairwise distances between 604 WSIs,
in our case it takes around 20 seconds to reproduce the results.

In the following, the full description of the abbreviations for cancer subtypes in Table
5.2 have been presented in Table 5.4.
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Table 5.3: CNN-DS evaluation on lung cancer classification via transfer learning.

Algorithm Accuracy (in %)

Kalra & Adnan et al. [57] 84
Khosravi et al. [60] 83
Yu et al. [128] 75
CNN-DS (Ours) 86

Figure 5.2: 2-D representation of obtained WSI embedding using CNN-DS labelled based
on 24 primary sites (left) ad 30 primary diagnoses (right). As can be seen, embeddings for
WSIs with different classes have been separated to a good extent.

5.5 Conclusion

We employed Deep Sets along with a CNN for end-to-end WSI representation. This was in-
spired by bag of patches (set) representation per WSI. Two reshape layers connected CNN
with Deep Sets. We propose to train our CNN-DS in the multi-label scheme. We used
the law of total probability to capture the primary site predicted probability for obtaining
probability of primary diagnosis. We validated the proposed topology in a transfer learning
scheme for WSI search. We showed that the proposed architecture can obtain WSI embed-
dings leading to comparable retrieval performance compared with Yottixel while reducing
the retrieval time significantly. We also applied the proposed scheme to lung classifcation
task and achieved competitive results compared with the state-of-art. One limitation of the
proposed method is number of small patches (here 40) that has been used to model each
WSI. In future works we would to sample more patches per WSI and see how it improve
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Table 5.4: Full description for primary diagnosis abbreviations used in the paper.

Abbreviation Primary Diagnosis
ACC Adrenocortical Carcinoma
BLCA Bladder Urothelial Carcinoma
CESC Cervical Squamous Cell Carcinoma and Endocervical Adenoc.
CHOL Cholangiocarcinoma
COAD Colon Adenocarcinoma
ESCA Esophageal Carcinoma
GBM Glioblastoma Multiforme
KICH Kidney Chromophobe
KIRC Kidney Renal Clear Cell Carcinoma
KIRP Kidney Renal Papillary Cell Carcinoma
LGG Brain Lower Grade Glioma
LIHC Liver Hepatocellular Carcinoma
LUAD Lung Adenocarcinoma
LUSC Lung Squamous Cell Carcinoma
MESO Mesothelioma
OV Ovarian Serous Cystadenocarcinoma
PAAD Pancreatic Adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate Adenocarcinoma
READ Rectum Adenocarcinoma
STAD Stomach Adenocarcinoma
TGCT Testicular Germ Cell Tumors
THCA Thyroid Carcinoma
UCS Uterine Carcinosarcoma

the performance of the model. Further, here we started from the ImageNet wights which
may not be the best possible option for weight initialization. Given the recent success of
self supervised methods, it would be interesting to explore how the performance changes
if we start from a set of weights that have been obtained from self supervised training.
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Chapter 6

Sparse and Binary
Permutation-Invariant Whole Slide
Image Representation Learning
Without Memory Bottleneck

6.1 Prologue

The content of this Chapter is based on the following paper published during the Ph.D.
research:

1. S. Hemati, et al. Compact Whole Slide Image Representation Learning Without
Memory Bottleneck under submission.

6.2 Introduction

So far, in Chapters 3 and 4 we explored methods for binary representation learning of
images. The main issue with these methods is the fact that they can only be used for
patches and not WSIs. Then in Chapter 5 we explored a simple WSI representation
learning framework based on the MIL and the permutation invariant neural network. The
main issues with this approach were the huge memory usage during the training and also
lack of ability to obtain binary representations for WSIs. In this Chapter, we propose
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a framework that unifies the ideas from earlier Chapter where the objective is obtaining
compact (binary and sparse) permutation invariant representations for WSIs while the
memory usage during the training is reduced.

MIL enables learning on set data instead of using single instances during training. MIL
is an appropriate method applicable to WSI representation, and as a result, there is a large
body of papers exploring various MIL schemes for WSI representation learning [18, 41, 93,
45, 49, 57]. Although MIL has become a preferred method for WSI representation, it does
have several limitations. Among others, MIL requires all instances to be processed at once
as a set (called bag), making it difficult to develop end-to-end training in a memory-efficient
manner. Another issue with existing WSI representation methods is that the obtained
embeddings cannot be directly used for WSI search in its raw form. Searching within large
archives of WSIs through the nearest neighbour search would lead to a prohibitively large
increase in memory demand and retrieval time [117]. As a result, the ancillary processing
method is usually necessary to encode these embeddings into more suitable forms, i.e.,
binary and sparse embeddings facilitating the speed and memory efficiency in nearest
neighbour search. Finally, current WSI engines, i.e., Yottixel [58], SMILY [40] ignore the
a-priori knowledge, such as tumor type, about WSIs for performing the search. It is ideal
to employ all known attributes of WSIs for producing a more effective embedding. For
this Chapter, our contribution is design of neural network for WSI representation learning
which provides:

1. The compact (sparse and binary) and permutation-invariant WSI representations
ideal for efficient WSI search in large archives.

2. the permutation-invariant representation of WSIs, trained end-to-end by feeding in-
dividual instances instead of a bag of instances which eases up the time and memory
bottlenecks, enabling our methods to even incorporate patches at multiple magnifi-
cation levels.

3. Learning representations guided by a-priori information, i.e., the tumor type as a
way of self-supervision.

To the best of our knowledge, such a network that provides the above-mentioned func-
tionalities does not exist in the literature of medical imaging and designing it can be very
helpful. Having the mentioned objectives in mind, here we propose our idea for learn-
ing compact WSI/patch representation with no memory issue. The proposed scheme is
based on the combination of old-school machine learning algorithms and recent advances
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in deep generative models. We further present some novel ideas to unify learning WSI
representation learning and learning binary & sparse representations.

The rest of this Chapter is organized as follows: In section 6.3 we briefly review the
current related works on WSI representation learning. Then, in section 6.4 we provide the
details of our proposed framework. Next, in section 6.5 we validate the effectiveness of our
approach for search and classification tasks on two publicly available benchmark datasets.
Finally, we conclude the Chapter in the section 6.6.

6.3 Related works

In this section, we review the related literature on WSI representation learning. We or-
ganized the related literature into three main themes, i.e., heuristic deep architectures,
glsMIL-based methods, and dictionary learning approaches.

6.3.1 Heuristic Architectures

These methods generally split the task into multiple separate steps to simplify the prob-
lem. First, there is an instance-based training where instances are smaller parts of WSIs,
typically patches. Then, another network is trained to obtain WSI embeddings while cap-
turing the spatial relationship between patches. For example, Bejnordi et al. [4] proposed
to employ two sub-networks for processing high and low-resolution information separately
and then attaching two networks together. Other works in this category are Spatio-Net [64]
and the neural compression scheme proposed by Tellez et al. [112]. In Spatio-Net, a grid
of embeddings for each patch and its neighbours are obtained by a CNN feature extrac-
tor, and then they are processed by 2D-LSTM layers to capture the spatial information.
Tellez et al. [112] proposed a two-stage neural compression where the first stage is devoted
to unsupervised representation learning of grid of all image patches per WSI. Then, they
employed this trained model to obtain compressed patches and WSI. Finally, in one recent
work, authors in [83] proposed a framework to choose between low and high-resolution
information for WSI classification.

6.3.2 Multiple Instance Learning

Representing each WSI as a bag of patches makes MIL-based schemes a natural approach
for end-to-end WSI representation learning [18, 93, 57, 51, 49]. One of the early works in
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MIL-based WSI classification was conducted by Hou et al. [45] where they first trained a
patch level classifier and then a fusion model using MIL scheme to achieve WSI classifi-
cation. In fact, one can regard this approach as a two-step instance-based MIL method
where an algorithm determines instance classes. Motivated by this, Chikontwe et al. [11]
proposed an end-to-end MIL-based method for simultaneous patch and WSI representation
learning in a single framework where a center loss is introduced to map patch embeddings
from the same WSI to a single centroid. They showed that their approach achieves promis-
ing results compared with other MIL-based methods, especially two-stage MIL methods.
Other recent MIL methods include [49] and [41] where pooling layers based on attention
mechanism and Deep Sets [130] have been proposed. Finally, Kalra et al. [56] employed
focal factor learning to modulate the aggregated patch-level predictions.

6.3.3 Dictionary Learning

Another approach that can be used for the WSI representation is the bag of visual words
(BoVW) [17] for encoding local image descriptors into one embedding. A more advanced
version of BoVW that captures higher-order statistics to obtain the set representation is
based on the Fisher Kernel theory and generative models [52]. Authors in [89] introduced
Gaussian mixture model (GMM)-based Fisher Vector which can be calculated using the
normalized gradient of the log-likelihood of the GMMs with respect to parameters, such
as mixing coefficients, means, and variances, given a set of observations. Further, recently
there has been some research to extract Fisher Vector from deep generative models [92,
132]. Although this set encoding ability makes Fisher Kernel a natural candidate for WSI
representation learning. There are only a few papers that use Fisher theory and dictionary
learning in general for the WSI representation task [109, 110, 136]. The reason could be
attributed to the fact that Fisher Vector is formulated in a fully unsupervised manner using
GMMs. However, considering the challenges inherent to pathology images (e.g., complex
textures and colour variations), employing available WSI information, i.e., tumor type and
primary diagnosis, in obtaining an efficient global representation is necessary. Further,
GMM-based Fisher Vector captures no more than second-order statistics of data for set
encoding. Besides, the training of GMMs is sub-optimal and not end-to-end. Finally, the
obtained encodings are generally high-dimensional embeddings in Euclidean space, which
are less desirable for WSI search due to their increased distance computation times.
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Figure 6.1: The first row represents the proposed architecture and associated instance-
based training scheme. The second row shows the procedure for obtaining the WSI em-
bedding for a set of patches of this WSI given the trained model.
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6.4 Method

This section presents the proposed framework for learning compact WSI representations.
First, we briefly review the relevant concepts, i.e., Fisher Kernel [52] and Fisher Vector
theories [89]. Next, we describe the proposed method based upon VAEs and Fisher Vector
theory. The proposed method is memory efficient during training and learns representations
that are permutation-invariant, compact (sparse/binary), and can be conditioned on known
information (e.g., the given tumor type) for the self-supervision. The proposed method is
trained in an end-to-end manner on individual instances instead of a bag of instances to
obtain representations for both patches and the WSI in its entirety.

6.4.1 Preparation

The key idea behind Fisher Kernel is to derive the kernel function from a generative
probability model. Initially, the main motivation for deriving such kernels was bridging the
gap between generative and discriminative models [52]: “the gradient of the log-likelihood
with respect to a parameter describes how that parameter contributes to the process of
generating a particular example”. As a result, to take advantage of generative models in
discriminative tasks, Jaakkola and Haussler proposed to employ the gradient space of the
generative models to use the generative process as a similarity metric between examples
(or set of examples, i.e., X = {xt, t = 1, . . . , T} where T is the number of examples in the
set) [52]. Let us consider a class of probability models p(X | θθθ) where θθθ ∈ ΘΘΘ is a parameter
vector and X is set of examples, i.e., X = {xt, t = 1, . . . , T}. The Fisher Score is then
defined as

UX = ∇θθθ log p(X | θθθ), (6.1)

where the UX ∈ Rd. The dimensionality d of the Fisher Score is equal to the number of
parameters in the generative model p(X | θθθ) independent of the number of data points in
the set T . The FIM is

I = Ex∼p(x|θθθ){UXU
T
X}. (6.2)

Subsequently, the Fisher Kernel can be defined as

K(X,Y) = UT
XI

−1UY (6.3)

Fisher Kernel can be used to calculate the similarity between two sets of data points [52].
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Authors in [89] proposed the GMM-based Fisher Vector as a way to encode a set of local
descriptors in a single embedding where the Fisher Vector is the normalized Fisher Score
(sF ) calculated as

sF =
1

T
L∇θθθ log p(X | θθθ)=L

1

T

T∑
t=1

∇θθθ log p(xt | θθθ), (6.4)

where L is calculated from Cholesky decomposition of inverse FIM, i.e., I−1 = LTL, with
that assumption that data points in X are statistically independent.

6.4.2 Deep Compact Fisher Vector

Although GMM-based Fisher Vector outperforms BOW in the sense that it captures
second-order statistics for obtaining the set representation, there are some issues that
makes them unsuitable for WSI representation learning. First, GMMs are trained in a
fully unsupervised manner while considering the challenges inherent to pathology images
(e.g., challenging textures, colour variations, etc.) employing available information, i.e.,
primary site or primary diagnosis of the WSI in obtaining an compact global representation
is necessary. Second, GMMs are sub-optimal as this cannot be applied in an end-to-end
manner to the images. Besides, GMMs are not able to fully capture the natural clustering
of the patch descriptors. This is due to the inefficient training scheme in GMMs and the
fact that by employing the GMMs, no more than second-order statistics of data are cap-
tured using Fisher Vector. Motivated to remove these limitations, we propose a new type
of Fisher Vector based on the deep generative models for the WSI representation learning.
The contributions of our method are as follows.

1. To capture higher-order statistics while learning the set representation, we propose
to employ generative models VAE here [62] for WSI representation learning.

2. We add a classification loss to the training such that the available WSI level primary
diagnosis labels are employed during the training of the VAE.

3. We design the VAE to be conditioned on available information, e.g., the tumor type.
Given the fact that every tumor type has its own specific cancer subtypes, this
conditioning is expected to improve the quality of WSI embeddings.

4. More importantly, we propose two novel loss functions for compact (sparse and bi-
nary) and permutation-invariant WSI representation learning.
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We start by training a VAE and then modify the VAE to be conditioned on tumor type.
We add a classification loss to the end of the encoder part such that primary diagnosis label
information is injected into the model space. Finally, we propose two novel loss functions
for learning sparse and binary permutation-invariant representations.

VAE Loss Function

To learn the encoder and decoder parameters of the VAE, i.e., ϕϕϕ and θθθ, that models
distribution of x, we assume the prior distribution on the random variable z is pθθθ(z) and
as a result, xt is sampled from pθθθ(x | z). In this case, one can show that the lower bound
for the log pθθθ(x) can be calculated as

log pθθθ(x)≥−qϕϕϕ(z | x)pθθθ(z)+Eqϕϕϕ(z|x) [log pθθθ(x |z)] , (6.5)

where qϕϕϕ(z | x) is the approximate posterior with parameters ϕϕϕ. The lower bound in
Eq. 6.5 is known as variational lower bound and on the patch xt and it is represented
with LB(ϕϕϕ,θθθ,xt). We aim to maximize LB to learn the generative model parameters. In
context of the VAE model, qϕϕϕ(zt | xt) and pθθθ(xt | zt) are encoder and decoder, respectively.
In order to learn the encoder and decoder parameters, i.e., ϕϕϕ and θθθ, first we assume the
prior distribution pθθθ(zt) is N (zt; 0, I) and qϕϕϕ(zt | xt) and pθθθ(xt | zt) follow the normal
distributions N (zt;µµµzt ,σσσ

2
ztI) and N (xt;µµµxt ,σσσ

2
xt
I). In this case, by estimating the latent

code using one-step Monte Carlo, the variational lower bound is

LB(ϕϕϕ,θθθ,xt)=log pθθθ(xt | zt)+
1

2

d∑
j=1

(1 + logσσσ2
zt(j))−

1

2
∥µµµzt∥2 −

1

2
∥σσσzt∥2, (6.6)

where zt is sampled from N (µµµzt ,σσσ
2
ztI).

Conditioned VAE

As the tumor type of a WSI is always available, we conditioned VAE on the tumor type
of the given WSI to draw benefit from this apriori knowledge. Following the [107], let’s
represent the tumor type as a one-hot encoded vector ztt, then we concatenate this vector to
the zt. Furthermore, to inject WSI-level primary diagnosis information into the generative
model, we add a classification loss to the last layer of the encoder before the sampling layer.
We assign the WSI label to all patches extracted from that WSI. Then, we concatenate
the softmax of predicted primary diagnosis zpd, with length k, to the latent space. The
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latent space associated with xt that is fed to decoder is modified as zt ← [zt, ztt, zpd].
Considering the classification loss, so far, the loss function for training the Conditioned
Variational Autoencoder (CVAE) has the form

LCVAE = λ1Lrec + λ2Lkl + λ3Lcls, (6.7)

where minimizing the first two terms is equivalent to maximizing the variational lower
bound, and the third loss is the classification loss of predicting cancer subtypes.

Deep Sparse Fisher Vector

Now, we propose a novel method for learning Conditioned Deep Sparse Fisher Vector
(C-Deep-SFV). As the gradient space represents the WSI, we encourage sparsity in the
gradient by adding the l1 norm of the gradient of the loss function in Eq.6.7 to the overall
training loss. To regularize the gradient, we utilize the double backpropagation, where given
a batch of data points X; the loss function can be written as

LSFV = LCVAE + λ4

∑
Wi∈W

∥∇Wi
LCVAE(W,X)∥1, (6.8)

where W is the set of CVAE parameters for all layers, Wi and ∇Wi
LCVAE(W,X) are the

is parameters and the gradient of the CVAE loss with respect to the ith layer parameters.
To the best of our knowledge, such an end-to-end Sparse Fisher Vector learning does not
exist in the literature.

Deep Binary Fisher Vector

For learning Conditioned Deep Binary Fisher Vector (C-Deep-BFV), inspired by the quantization-
based learning in hashing literature [33, 42], we propose to reduce the quantization loss of
the gradient of the CVAE loss with respect to each layer’s parameters. We propose to find

arg min
Bi,∇Wi

LCVAE(W,X)

∑
Wi∈W

∥∇Wi
LCVAE(W,X)−Bi∥22

s.t. Bi ∈ {−1, 1}di×1,

(6.9)
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where Bi is the flattened binary representation of the gradient of the CVAE loss w.r.t
parameters of the ith layer. In this case, the loss function to obtain BFV can be written as

LBFV =LCVAE+λ5

∑
Wi∈W,Bi∈B

∥∇Wi
LCVAE(W,X)−Bi∥22, (6.10)

where B is the set of closest hamming vertices to gradients w.r.t all layers. Given the binary
optimization variable Bi, on each epoch, we employ the coordinate descent approach and
update each of Bi and Wi while the other is fixed. For the case that Wi is fixed the
problem turns to

arg min
Bi

∥∇Wi
LCVAE(W,X)−Bi∥22

s.t. Bi ∈ {−1, 1}di×1,
(6.11)

where by expanding Eq.6.11 it turns out the above minimization is equivalent to

arg max
Bi

BT
i .∇Wi

LCVAE(W,X)

s.t. Bi ∈ {−1, 1}di×1.
(6.12)

This problem has the following closed-form solution [33]:

Bi = sgn(∇Wi
LCVAE(W,X)). (6.13)

The loss function can be for fixed Bi as

LBFV =LCVAE+λ5

∑
Wi∈W

∥∇Wi
LCVAE(W,X)−Bi∥22 (6.14)

This is similar to SFV learning in Eq. 6.8. The variables can be updated using double
backpropagation.

Deep Sparse Binary Fisher Vector

Knowing that the length of obtained WSI embeddings is equal to the number of param-
eters in the generative model, we may be interested in compact (short) binary codes for
more efficient WSI retrieval. We propose to employ both gradient sparsity and gradient
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quantization losses to achieve Conditioned Deep Sparse Binary Fisher Vector (C-Deep-
BFV). Gradient sparsity pushes the generative model to use fewer parameters to generate
a data point. As a result, the quality of embedding will be more robust to dropping some
dimensions, i.e., gradient w.r.t some parameters of VAE. To choose effective dimensions
for each tumor type we find the top M parameters that provide the highest variance in
their respective gradient values for the training data.

VAE Architecture and Training Scheme

The architecture of the proposed conditioned VAE is given in the first half of 6.1. We
employed a frozen pre-trained CNN (DenseNet-121 [48]) as the backbone of the VAE.
Each encoder and decoder parts contain three fully connected layers. The last layer of the
encoder is fed to a softmax layer (SM Layer in 6.1) for primary diagnosis prediction. In
order to condition the VAE, for each patch, the output of the softmax layer along with a
one-hot encoded vector representing the available tumor type information of the patch is
concatenated to the latent vector to create the Zt. Then, this vector is fed to the decoder
part. As it can be seen from the Fig. 6.1, the CVAE is trained on a per-instance basis
enabling to include even patches from multiple magnifications.

WSI Embedding Extraction

After the training phase, to obtain a single embedding for a WSI, all patches of that WSI
are fed to the CVAE (see the second half of Fig. 6.1). Then, given the reconstruction
loss, we calculate the average gradient over all patches using backpropagation to obtain
the Fisher Score (sF ). Based on Fisher Theory, we also need L obtained from FIM to
normalize the vector and derive the Fisher Vector. However, given the computational load
of calculating L, we replace this with identity matrix and normalize the gradient using
power and l2 normalization steps proposed by [90]. In other words, representing the power
and l2 normalization steps as S(·) operator, the conditioned deep compact Fisher Vector
vF is calculated from the Fisher Score sF :

vF =S

(
1

T

T∑
t=1

∇θθθ,ϕϕϕ∥xt − x̂t(θθθ,ϕϕϕ)∥22

)
=S (sF ) . (6.15)

where xt and x̂t(θθθ,ϕϕϕ) are the patch embedding and its reconstruction. The size of the
proposed feature vector is equal to the number of parameters in CVAE. The test-time, the
one-hot vector of the tumor type, will be fed to the CVAE as a known parameter while the
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zpd is calculated by the classifier. For cases that there are multiple WSIs per patient, still
we can feed all patches from all WSIs of the patient to the generative model, calculate the
gradients, average them, and eventually obtain one embedding per “patient”.

6.5 Results

We evaluate the quality of the WSI embeddings obtained by the proposed method for both
search and classification tasks. The datasets we employed are diagnostic slides from The
Cancer Genomic Atlas (TCGA) repository [122] and the Liver-Kidney-Stomach (LKS)
immunofluorescence [83] to conduct experiments.

6.5.1 WSI search

For this experiment, we randomly selected 40% of the TCGA diagnostic WSIs as a test set
and the rest for training. For both test and training WSIs, 15% of patches with 1000×1000
patch size have been selected based on the Yottixel (the same clustering method has been
applied)[58]. Similar to [58], the vertical search has been applied on the test set (3,761
WSIs), and leave-one-out patient performed for searching WSIs through the same primary
site. The majority of the top 3 similar cases have been used for predicting each query cancer
subtype. Table. 6.1 compares F1-measure between Yottixel, Conditional GMM-based
Fisher Vector (C-GMM-FV), Conditioned Deep Fisher Vector (C-Deep-FV), C-Deep-SFV,
C-Deep-BFV, and C-Deep-BFV. Yottixel takes the median of minimum patch distances
to calculate two WSIs dissimilarity, while C-GMM-FV and our proposed method obtain
one embedding per WSI. Our proposed method improved the search F1-measure for all 29
cancer subtypes while the embeddings are binary and/or sparse. Although in almost all
subtypes of two primary sites (Gynecological and Prostate/testis), C-Deep-FV performed
better than other methods, almost in all cases, compact WSI embeddings obtained by
gradient sparsity and quantization losses achieve even better search performance (see Table.
6.1). The compactness of the proposed embeddings leads to high efficiency for WSI search
in terms of memory usage and retrieval times. Fig. 6.2 (a) shows the embedding for C-
Deep-FV and C-Deep-SFV across the first 5,000 high variance dimensions given the tissue
type of the given WSI out of 1,407,105 parameters of our CVAE. Considering Fig. 6.2
(a), after encouraging sparsity on the gradients, the C-Deep-SFV can represent the WSI
by significantly much fewer parameters leading to compact representations. Fig. 6.2 (b)
shows the effectiveness of incorporating gradient sparsity loss in reducing the l1 norm of
the loss function gradient during the epochs.
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Table 6.1: F1-measure (in %) for majority-3 search through k-NN of the vertical search
among 3770 test WSIs for Yottixel, C-GMM-FV, C-Deep-FV (C-D-FV), C-Deep-SFV (C-
D-SFV), C-Deep-BFV (C-D-BFV), and C-Deep-SBFV (C-D-SBFV). Best F1-measure val-
ues highlighted.

Site Subtype nslides Yottixel C-GMM-FV C-D-FV C-D-SFV C-D-BFV C-D-SBFV

Brain
LGG 323 86.60 85.35 92.83 93.07 93.10 93.43
GBM 387 88.68 87.63 93.44 93.76 93.99 94.24

Endocrine
THCA 198 97.98 97.02 98.74 99.24 99.24 98.50
ACC 93 93.68 91.01 94.62 95.08 94.62 95.13
PCPG 70 92.53 87.14 91.97 92.95 90.64 91.97

Gastro.

ESCA 55 60.95 58.82 72.00 65.42 75.43 66.66
COAD 174 72.62 71.95 72.72 74.93 74.44 76.42
STAD 157 79.75 79.75 78.59 80.75 83.48 83.97
READ 61 24.24 29.62 23.52 31.77 30.30 31.37

Gynaeco.
UCS 37 65.62 66.66 78.26 72.13 74.62 73.01
UCEC 206 84.23 82.82 89.31 87.29 83.33 88.16
CESC 113 71.71 76.10 86.36 81.44 70.47 81.65
OV 42 64.78 68.42 76.74 83.95 77.33 80.95

Haematopoietic.
THYM 80 93.41 93.49 93.56 93.97 96.93 94.04
DLBC 14 47.61 42.10 35.29 54.54 80.00 50.00

Liver, panc.
CHOL 17 32.00 38.46 40.00 48.27 41.66 32.00
LIHC 146 94.31 93.55 92.61 93.91 94.00 94.38
PAAD 65 93.93 91.85 92.18 94.65 93.93 93.75

Melanocytic mal
SKCM 184 96.08 98.37 98.11 98.37 98.92 98.92
UVM 40 76.92 92.30 90.90 92.30 94.73 94.73

Prostate/testis
PRAD 176 98.56 98.00 99.42 98.55 99.14 99.14
TGCT 112 97.79 96.88 99.11 97.81 98.67 98.66

Pulmonary
LUAD 218 67.44 74.77 77.96 79.12 74.88 79.13
LUSC 198 67.75 70.02 71.65 72.95 72.04 76.14
MESO 27 7.14 43.24 50.00 51.28 40.00 31.25

Urinary tract

BLCA 193 90.41 88.26 92.34 92.83 94.20 95.93
KIRC 195 88.88 88.26 91.82 93.75 91.47 93.81
KIRP 142 77.73 75.53 82.97 84.01 84.05 84.78
KICH 47 79.06 84.78 86.36 89.58 89.36 87.50

The length of our proposed WSI embedding is equal to the number of trainable param-
eters of the generative model, which is 1,407,105. Although here we employed a relatively
small generative model for models with millions of parameters, the embeddings may not
be suitable for efficient WSI search. The proposed gradients sparsity solves this issue by
enforcing the generative model to use a smaller number of parameters for generating sam-
ples. In other words, by imposing sparsity on gradients, one can argue that the parameters
that the gradients are zero w.r.t them do not have a significant contribution to generating
those samples, so they can be removed from embeddings. We have validated the effect
of the sparsity loss by selecting the gradients w.r.t. a subset of some parameters that
leads to high-variance gradients per tissue type. Table. 6.2 shows the feature reduction
results for the same search with keeping 500, 5, 000, and 40, 000 high variance bits. Based
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Figure 6.2: (Left). Feature values across first 5,000 high variance dimensions for a WSI
using C-Deep-SFV and C-Deep-FV. (Right) Gradient sparsity loss (l1 norm of the loss
function gradient) of C-Deep-SFV and C-Deep-FV during the training epochs. According
to the left figure, the C-Deep-SFV is highly sparsified compared with C-Deep-FV. The
right figure indicates the effectiveness of the learning scheme in reducing l1 norm of the
loss function gradient during the epochs.

on Table. 6.2 and Fig. 6.3, keeping even 4000 high variance bits not only outperforms
Yottixel and C-GMM-FV in terms of search performance but also leads to significantly
faster search speed. Table. 6.2 clearly shows that the sparsity term helps the network to
produce embedding with fewer but more informative bits. The right column in most sub-
types outperforms the left column. Based on the Fisher Vector Theory this is intuitive that
the gradients w.r.t generative model parameters show the contribution of each parameter
to generating a sample. More precisely, by encouraging sparsity on the gradients, fewer
parameters are contributing to generation; consequently, more parameters can be dropped
in the final embedding.

6.5.2 WSI Classification

For this task, we validated the quality of obtained WSI embeddings on both TCGA and
LKS datasets. For both cases, we trained a simple, fully connected network with two layers
on top of the SFV embeddings for the purpose of WSI classification. Lung Adenocarcinoma
(LUAD) and Lung Squamous Cell Carcinoma (LUSC) are two main types of non-small
cell lung cancer (NSCLC) that account for 65-70% of all lung cancers [34]. Automated
classification of these two main subtypes of NSCLC is a crucial step to building computer-
ized decision support systems. The dataset for this experiment consists of all lung cancer
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Figure 6.3: Retrieval times for the leave-one-patient-out search experiment presented in
Table 6.1 for Yottixel and C-Deep-SBFV with different number of bits. Clearly, binary
WSI embeddings from C-Deep-SBFV lead to faster WSI search.

slides in TCGA (comprising of 2 TB of data). We used 2,580 WSIs from TCGA public
repository [122] with 774 WSIs for the test and the rest for the train. We have achieved
greater than or similar to all existing research works without utilizing any expert’s opinions
or domain-specific techniques, as listed in Table. 6.3. However, the compared methods
use their own subset of the WSIs with their own test-train split, making it difficult to
benchmark them.

The Liver-Kidney-Stomach (LKS) is the other publicly available dataset that we use
for validating quality of WSI embeddings. The LKS dataset contains immunofluores-
cence WSIs realized by authors in [83]. The dataset contains 684 WSIs from four classes
Anti-Mitochondrial Antibodies (AMA), Negative (Neg), Vessel-Type Anti-Smooth Muscle
Antibodies (SMA-V), and Tubule-Type Anti-Smooth Muscle Antibodies (SMA-T). This
dataset contains one low-resolution image and also a set of patches per WSI. Following
the same split in [83], we compared C-Deep-SFV against the proposed method in the
paper Selective Objective Switch (SOS), Reinforced Dynamic Multi-Scale (RDMS), [22]
and three techniques for WSI classification, namely Image-Level, Patch-Level, and Con-
ventional Multi-Scale (see [83] for more detail). For this experiment, we only employed
low-resolution images for training the backbone and then for each WSI we used is low-
resolution image along with 5% of high-resolution patches for training the CVAE and
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Figure 6.4: Effect of changing regularization parameter for gradient sparsity and quantiza-
tion of C-Deep-SFV and C-Deep-BFV. As can be seen, the search performance of obtained
WSI embeddings is fairly robust to the change of regularization parameters. See 6.5 the
supplementary material for full results.

extracting the WSI embedding. The results for this experiment are presented in Table. 6.4
where our method outperforms the Image-Level, Patch-Level, Conventional Multi-Scale,
RDMS methods and achieves on par result compared with SOS. It is worth mentioning
that our proposed architecture has one CNN backbone, while in SOS, two networks for low
and high resolutions images have been used. Besides, embeddings obtained by or method
are compact and suitable for WSI search. Further extensive results on LKS dataset have
been presented in the Table. 6.6, Table. 6.7,Table. 6.8, and Table. 6.9.

6.5.3 Ablation study

To study how gradient sparsity and quantization loss may affect retrieval performance, we
conducted comprehensive ablation experiments. Fig. 6.4 shows the average F1 measure
across all sites for C-Deep-SFV and C-Deep-BFV where values 1 × 10−5, 1 × 10−4, and
1 × 10−3 have been tested for both λ4 and λ5. The average F1 decreases with increasing
the λ4. However, we should note that this experiment has been conducted with the same
number of epochs (150). Our experiments showed that by increasing the λ4 and also the
number of epochs, the average F1 measure does not decrease. To see the effect of changing
regularization parameters in more detail, we refer the readers to Table. 6.5.
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Table 6.2: F1-measure (in %) for majority-3 search through k-NN of the vertical search
among 3,761 test data points for C-Deep-BFV (C-D-BFV), C-Deep-SBFV (C-D-SBFV)
WSI embeddings with top 500, 1000, and 5000 high variance features.

500 Bits 5000 Bits 40000 Bits
Site Subtype C-D-BFV C-D-SBFV C-D-BFV C-D-SBFV C-D-BFV C-D-SBFV

Brain
LGG 84.48 89.02 86.27 90.93 93.21 94.06
GBM 86.55 89.83 87.68 92.38 93.91 94.76

Endocrine
THCA 92.97 93.62 94.43 95.26 98.48 98.24
ACC 82.87 84.37 86.91 93.19 94.68 96.25
PCPG 73.43 75.40 69.49 84.61 91.30 92.64

Gastro.

ESCA 35.41 52.08 41.37 51.02 73.58 72.89
COAD 64.37 70.96 68.16 70.96 77.65 74.58
STAD 60.81 78.01 71.83 75.54 84.01 85.80
READ 20.00 17.47 30.30 19.80 37.83 27.77

Gynaeco.
UCS 53.33 61.53 63.49 60.60 81.81 67.60
UCEC 82.01 81.69 82.77 84.21 88.53 86.99
CESC 64.03 64.48 63.73 73.87 82.24 82.35
OV 64.93 52.17 74.66 70.42 82.50 83.95

Haematopoietic.
THYM 91.76 94.04 92.39 91.56 94.54 91.01
DLBC 22.22 50.00 23.52 36.36 60.86 28.57

Liver, panc.
CHOL 25.00 9.52 20.00 23.07 34.78 38.46
LIHC 81.36 84.24 85.09 85.34 92.30 93.95
PAAD 58.18 66.12 68.42 74.79 98.29 90.90

Melanocytic mal
SKCM 96.02 94.31 97.57 95.58 97.57 94.91
UVM 78.87 79.16 88.31 81.39 88.31 80.85

Prostate/testis
PRAD 91.37 96.04 94.05 95.18 98.29 98.85
TGCT 86.84 93.69 90.58 92.37 97.32 98.24

Pulmonary
LUAD 62.30 67.89 69.27 68.62 76.64 75.71
LUSC 61.65 62.31 61.08 64.51 72.72 72.53
MESO 12.90 50.90 25.80 50.00 52.63 65.11

Urinary tract

BLCA 75.88 82.95 81.42 82.84 96.12 94.84
KIRC 77.47 82.46 77.87 85.78 93.93 91.83
KIRP 60.00 62.94 60.60 63.67 88.64 85.71
KICH 42.25 52.27 50.00 54.34 89.79 87.23

6.5.4 Does Gradient Sparsity Improve Generalization?

In this Chapter, we proposed a new loss function, namely gradient sparsity that encourages
sparsity on the gradients to obtain sparse permutation-invariant representations. Although,
we introduced this loss function to obtain sparse permutation-invariant representations,
during the experiments we observed that models trained using this loss function achieve
better generalization. For instance, Looking more closely at Table 6.1, an interesting
property of learning with sparse gradients can be discovered. By comparing the results of C-
Deep-SFV (trained with sparse) and C-Deep-FV (trained with no constraint on gradients),
one can easily observe for the majority of cases that the number of slides is too low and the
network is prone to overfitting, the network with trained with sparse gradients achieves
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Table 6.3: Comparison of WSI classification methods against Deep-SFV on lung cancer
classification via transfer learning.

Method Accuracy (in %)

Yu et al. [128] 75
Khosravi et al. [60] 83
Kalra & Adnan et al. [57] 84
Hemati et al. [41] 86
Deep-SFV (Ours) 88

Table 6.4: Comparison of different WSI classification methods against Deep-SFV on LKS
dataset. For more detailed experiments see the 6.6, 6.7,6.8, and 6.9 in supplementary
material.

Method Accuracy (in %)

Image-Level 81.95
Patch-Level 69.27
Multi-Scale 85.37
RDMS [22] 88.78
SOS [83] 90.73
Deep-SFV (Ours) 90.73

superior performance. Further, in Table 6.2, we can see that including gradient sparsity loss
improves the performance of the model on the test set. To further explore this, we conduct
another experiment using a simple CNN with three convolutional layers on CIFAR-10 [67]
dataset. Naming the the gradient sparsity regularization parameter as λ, this simple CNN
is trained in two different settings i.e., with gradient sparsity λ = 0.0005 and without
gradient sparsity losses λ = 0. Surprisingly, as can be seen in Fig. 6.5, both test accuracy
and loss plots confirm that gradient sparsity can improve the generalization of the neural
network.

Another interesting way to measure quantify the generalization ability of a machine
learning model is through lens of Membership Inference Attack (MIA) [98]. In short, MIA
on machine learning models employ the model parameters and/or parameters and aim
to identify whether a data sample was used to train the target machine learning model
or not. As a result, if the machine learning model generalize well or equivalently behave
more similar on the test and train sets, it will be more robust against this attack. we
employed TensorFlow privacy to run attacks on the two mentioned models trained on
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Table 6.5: Ablation study on λ4 and λ5 regularization parameters based on Majority-3
search through k-NN of the vertical search among 3761 test WSIs.

F1-measure (in %)
λ4 = 10−5 λ5 = 10−5 λ4 = 10−4 λ5 = 10−4 λ4 = 10−3 λ5 = 10−3

Site Subtype C-D-SFV C-D-BFV C-D-SFV C-D-BFV C-D-SFV C-D-BFV

Brain
LGG 90.88 92.87 93.07 93.10 92.72 93.80
GBM 91.67 93.91 93.76 93.99 93.53 94.70

Endocrine
THCA 98.48 97.29 99.24 99.24 98.74 98.75
ACC 92.55 91.30 95.08 94.62 95.13 94.62
PCPG 88.40 90.07 92.95 90.64 91.42 90.37

Gastro.

ESCA 69.42 67.76 65.42 75.43 77.04 70.17
COAD 73.38 75.97 74.93 74.44 76.21 74.01
STAD 84.07 79.23 80.75 83.48 84.45 84.01
READ 25.49 33.33 31.77 30.30 30.18 29.90

Gynaeco.
UCS 81.15 74.28 72.13 74.62 73.23 71.64
UCEC 89.97 86.18 87.29 83.33 89.42 85.58
CESC 82.72 84.30 81.44 70.47 86.84 74.17
OV 79.48 73.68 83.95 77.33 79.01 81.01

Haematopoietic.
THYM 94.54 93.49 93.97 96.93 93.56 95.23
DLBC 60.86 42.10 54.54 80.00 35.29 60.00

Liver, panc.
CHOL 41.66 25.00 48.27 41.66 14.81 16.66
LIHC 94.91 92.66 93.91 94.00 88.66 92.35
PAAD 91.97 90.90 94.65 93.93 86.82 93.12

Melanocytic malig
SKCM 98.13 98.37 98.37 98.92 97.23 97.86
UVM 90.41 92.30 92.30 94.73 88.37 89.18

Prostate/testis
PRAD 99.42 99.14 98.55 99.14 98.56 98.85
TGCT 99.11 98.66 97.81 98.67 98.56 98.23

Pulmonary
LUAD 77.84 75.84 79.12 74.88 76.95 78.70
LUSC 72.67 74.20 72.95 72.04 71.72 72.20
MESO 63.63 50.00 51.28 39.99 72.72 50.00

Urinary tract

BLCA 94.20 94.62 92.83 94.20 96.14 94.02
KIRC 92.73 90.90 93.75 91.47 93.50 89.35
KIRP 86.69 83.94 84.01 84.05 87.63 78.41
KICH 90.52 90.32 89.58 89.36 90.72 87.64

Table 6.6: Comparison of different WSI classification methods against Deep-SFV on LKS
dataset for SMA-T class.

Method F1 (in %) PR (in %) RE (in %)

Image-Level 16.67 100.00 9.09
Patch-Level 00.00 00.00 00.00
Multi-Scale 47.06 66.67 36.36
RDMS [22] 55.56 71.43 45.45
SOS [83] 70.00 71.43 63.64
Deep-SFV (Ours) 66.67 85.71 54.55
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Table 6.7: Comparison of different WSI classification methods against Deep-SFV on LKS
dataset for Negative class.

Method F1 (in %) PR (in %) RE (in %)

Image-Level 88.00 81.15 96.12
Patch-Level 79.67 68.53 95.15
Multi-Scale 90.83 86.09 96.12
RDMS [22] 93.00 95.88 90.29
SOS [83] 94.06 95.96 92.23
Deep-SFV (Ours) 93.84 91.67 96.12

Table 6.8: Comparison of different WSI classification methods against Deep-SFV on LKS
dataset for AMA class.

Method F1 (in %) PR (in %) RE (in %)

Image-Level 89.89 90.90 88.89
Patch-Level 84.71 90.00 80.00
Multi-Scale 87.06 92.50 82.22
RDMS [22] 91.49 87.76 95.56
SOS [83] 93.48 91.49 95.56
Deep-SFV (Ours) 94.51 93.48 95.56

CIFAR-10 using Adam (λ = 0) and Adam + gradient sparsity (λ = 0.0005). Fig. 6.6
shows the receiver operating characteristic curve for the MIA against models trained with
two mentioned optimizers. Clearly, the model trained with Adam + gradient sparsity
shows superior robustness against MIA compared with Adam and DP-Adam.

The sting point here is the fact that unlike differential private optimizers that improve
the model generalization at cost of sacrificing model utility (accuracy), here based on the
Figs. 6.5, 6.6, both utility and privacy robustness has been improved.

6.5.5 Why Gradient Sparsity Achieves Better Results?

The observations that gradient sparsity loss improves the generalization motivated us to
explore possible reasons behind generalization improvements caused by gradient sparsity.
In the following, we provide our intuitive and theoretical perspectives.
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Table 6.9: Comparison of different WSI classification methods against Deep-SFV on LKS
dataset for SMA-V class.

Method F1 (in %) PR (in %) RE (in %)

Image-Level 66.67 73.68 60.87
Patch-Level 23.53 36.36 17.39
Multi-Scale 77.78 79.55 76.09
RDMS [22] 83.67 78.85 89.13
SOS [83] 85.42 82.00 89.13
Deep-SFV (Ours) 84.44 86.36 82.61

Intuitive Explanation

In the following we provide some of our intuitions that can explain generalization improve-
ments caused by gradient sparsity.

1. Increasing the sparsity in gradients leads to many zero values for gradients. Consid-
ering the learning rule for updating the network parameters, zero gradients lead to
no updates in some specific weights. This can be seen as the network is learning no
to learn some patterns in data (hopefully the noise) which may reduce overfitting.

2. Encouraging sparsity in gradients leads to many zero values in gradients given batch
of data. One can see this as a dropout like operation. More precisely this can be
seen as gradient dropout.

3. Encouraging sparsity in gradients can supply avoids the over training problem.

4. From Fisher Kernel theory perspective, when gradients with respect to more pa-
rameters are zero, this means that the generative model is using smaller number of
parameters to generate samples. As a result, when we encourage sparsity in the gra-
dients, we are forcing the neural net to use smaller portion of its power to generate
samples.

Theoretical Explanation

We explored possible reasons of superior generalization of models trained with sparse gra-
dients and we realized that through loss landscape we can achieve this. More precisely,
there is a large body of works that show loss landscape with flatter local minimums are
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Figure 6.5: (Left). The CIFAR-10 test accuracy during the epochs for Adam (λ = 0)
and Adam + gradient sparsity (λ = 0.0005). (Right) The CIFAR-10 test loss during the
training epochs for Adam (λ = 0) and Adam + gradient sparsity (λ = 0.0005). Clearly
gradient sparsity improves generalization.

associated with better generalization [59, 28]. In other words deep neural networks that
their local minimum has less sharpness will generalize better. In the following, first we
define the sharpness of the loss function and then we show that encouraging sparsity in
the gradients of loss function reduces its sharpness.

sharpness := ∥L(W + E ,X)− L(W,X)∥, (6.16)

where E is a small perturbation vector with the length same as the number model of
parameters, W is the set of deep network parameters of all layers, X input data and
L(W,X) is the loss value.

In order to show that gradient sparsity can reduce the sharpness, first we show that l1
norm of the gradient of L(W,X) i.e., ∥∇WL(W,X)∥ is an upper bound for loss sharpness
in Eq. 6.16. To show this, using the first order Taylor Approximation we can write

L(W + E ,X) ≈ L(W,X) + ET .∇WL(W,X). (6.17)

Now, one can show that [1]

arg max
∥E∥∞≤ϵ

ET .∇WL(W,X) = ϵ.∥∇WL(W,X)∥1, (6.18)
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Figure 6.6: Membership inference attack performance when the model is trained with
Adam (λ = 0) and Adam + gradient sparsity (λ = 0.0005). The CNN model trained with
gradient sparsity is more robust to the membership inference attack.

which means that the maximum of ET .∇WL(W,X) for a l∞ bounded perturbation
i.e., ∥E∥∞ ≤ ϵ is equal to the l1 norm of the gradient of L(W,X) i.e., ∥∇WL(W,X)∥1.
Considering Eqs. 6.17 and 6.18 we can conclude that

∥L(W + E ,X)− L(W,X)∥ ≤ ϵ.∥∇WL(W,X)∥1. (6.19)

The Eq. 6.19 suggests that reducing l1 norm of the gradients reduce loss function
sharpness and as a result improve the generalization. To Validate this, we also monitored
the sharpness during the training i.e., ∥L(W + ϵ,X)− L(W,X)∥1, for C-Deep-SFV (λ4 =
10−4) and C-Deep-FV (λ4 = 0). Fig. 6.7 shows the sharpness for model trained with and
without gradient sparsity. Clearly, gradient sparsity reduces the loss landscape sharpness
significantly.

Another measure of generalization that is also related to loss sharpness is the entropy
of predictions or equivalently the confidence of the network predictions [134, 88]. More
precisely, networks that their output has higher entropy or equivalently there is less con-
fidence in predictions, enjoy better generalization. Considering this relation ship between
loss sharpness and confidence of predictions in Figs. 6.8 and 6.9 we compare the average
of predictions over all data points for (test and train split in the CIFAR-10 dataset) for an
example case when the ground-truth class label is 2. It is evident that the model trained
with gradient sparsity has predictions with less confidence (higher entropy).
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Figure 6.7: Loss sharpness ∥L(W + ϵ,X) − L(W,X)∥ for C-Deep-SFV (λ4 = 10−4) and
C-Deep-FV (λ4 = 0) through epochs.

6.6 Conclusions

We proposed a new framework based on deep conditional generative modelling and Fisher
Vector Theory for compact WSI representation. Unlike the common practice for WSI rep-
resentation, i.e., MIL scheme, the training for the proposed method is instance-based, and
as a result, GPU memory usage is the same as conventional training. Furthermore, we in-
troduced new loss functions, gradient sparsity and gradient quantization for learning sparse
and binary permutation-invariant representations, namely C-Deep-SFV and C-Deep-BFV,
suitable for efficient WSI retrievals. We showed that gradient sparsity loss function pushes
the generative model to use parameters for generating a sample, and as a result, one can
reduce the dimensionality of the WSI embeddings and still achieve a good performance.
The WSIs representations were validated on the largest public archive of WSIs, The TCGA
WSIs and also the LKS dataset for both WSI search and classification tasks. The pro-
posed method outperforms Yottixel a recent search engine for histopathology images and
GMM-based Fisher Vector. Furthermore, we also achieved competitive results against
state-of-the-art in WSI classifications on both lung and LKS public benchmark datasets.

Although the gradient sparsity loss function was proposed to achieve sparse permutation-
invariant WSI representations, we observed that encouraging sparsity on the gradients im-
proves the model generalization. Following this observation, additional experiments on
CIFAR-10 dataset were conducted to explore effect of gradient sparsity on the general-
ization. The test loss and accuracy plots showed that gradient sparsity improves gener-
alization. Besides, we employed the membership inference attack as another measure of
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Figure 6.8: Average of predictions for train split over class 2 for Adam λ = 0 and
Adam+gradient sparsity λ = 0.0005.

generalization where the results indicated that gradient sparsity improves the generaliza-
tion. We also presented some intuitive and theoretical investigations that explains possible
reasons why gradient sparsity improves the generalization. More precisely, we showed
that gradient sparsity reduces the loss landscape sharpness and as a result improves the
generalization.
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Figure 6.9: Average of predictions for train split over class 2 for Adam λ = 0 and
Adam+gradient sparsity λ = 0.0005.
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Chapter 7

Summary and Conclusions

Computer-assisted Diagnosis (CAD) is an active research area in the domain of medical
image analysis. The main motivation is to help the physicians by automating some of the
technical tasks performed by them. CAD is basically a learning algorithm (for example
WSI classification) and this is expected to reduce inter-observer and support a decision
taken by physicians. CAD is popular in different image modalities including X-ray, MRI,
Endoscopy, ultrasound, and digital pathology. For digital pathology, CAD systems are
being used in different tasks including detection or segmentation of tumor are in a WSI [35],
nuclei density estimation [85], and cancer staging [95].

Another scheme which we are specifically interested in is fast and efficient content-
based retrieval of WSIs/patches were given a WSI/patch as an input, this is expected that
the search engine returns and ranks the most similar WSI/patch by capturing semantic
similarity to the other WSIs/patches in a large archive of images. Content-based retrieval
systems can be beneficial in different ways, including teleconsultation, workload efficiency,
collaborations, improving diagnostic accuracy, virtual education, and research [113, 115].
More precisely, Pathologists examine biopsy tissues to detect the tumours and to investigate
their characteristics in order to evaluate tumour aggressiveness which is s a complex task
that needs many years of experience, and sub-speciality expertise [55]. However, having a
fast and reliable retrieval system can act as additional knowledge that shares the experience
of many other pathologists that investigated similar cases in the past. This will lead to a
more reliable and objective diagnosis with less inter-observer variability.

Although the content-based retrieval of medical images has been studied [94], there are
some limitations with traditional systems. On one hand, many of these systems are based
on old-school computer vision techniques to represent the WSI while these representations
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are sub-optimal compared with deep features. On the other hand, due to the large size
of WSIs, this is not straightforward to obtain compact (binary/sparse) deep embeddings
for WSIs. Considering these difficulties, the objective of this thesis was to propose a deep
neural network for learning WSI representations ideal for fast and memory efficient WSI
search in a gigantic archive. Image search in extremely large archives is challenging even for
regular-size images. However, in histopathology whole slide images, due to their gigantic
size, the problem becomes even more difficult. This is because each WSI is translated to
thousands of patches and as a result, in the patch search problem the size of the archive
is typically thousands of times larger and as a result we are faced with a bottleneck in
memory usage and search speed. Further, in WSI search problem, we end up with a bag
of embedding representations which makes it unclear to employ regular image retrieval
algorithms. To this end, in chapters 3 and 4, we proposed efficient spectral hashing and
non-rigid quantization methods for learning to hash or learning similarity preserving binary
representations suitable for large patch archives. Considering the fact that the developed
methods were not applicable to WSIs, in chapter 5 we proposed to employ Deep Sets as a
simple permutation invariant neural network for end-to-end WSI representation learning.
Although using this multi-instance learning scheme we were able to obtain WSI embed-
dings, there were two issues with the proposed approach. First, the obtained embeddings
were in euclidean space which cannot be used for search in a large archive due to search
speed and memory bottleneck issues. Second, due to keeping multiple bags of patches in
memory during the training, the proposed scheme needed considerable GPU memory dur-
ing the training. Motivated by these limitations, in chapter 6, we proposed a framework
based on deep generative models and Fisher Vector theory for learning binary and sparse
permutation invariant representations. We showed that using the proposed scheme, one
can obtain compact binary and sparse WSI embeddings that outperform recently devel-
oped WSI search engine Yotixxel both in terms of search speed and retrieval accuracy.
Further, considering that the proposed method is a dictionary learning-based approach,
and in the training phase of the generative model (creating the dictionary) there is no need
to keep bags of patches in memory, the GPU memory usage was also significantly reduced.

In the following, we discuss our contributions, limitations, and possible future directions
of the proposed methods in each chapter in more detail.
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7.1 Contributions, Limitations, and Future Works

7.1.1 ESH

Contributions in chronological order

In this algorithm which we proposed in chapter 3, we proposed a novel formulation for
spectral hashing which achieves highly competitive performance compared with most recent
methods and at the same time, enjoys very low time complexity. The proposed projected
gradient method is highly efficient for three reasons. Firstly, the formulation for ESH
transforms the decision variable with dimensionality of n×k to d×k where d≪ n. Secondly,
the affinity matrix which is n×n in the spectral formulation has been removed, and instead,
a d × d matrix S plays a similar role. Finally, and more importantly, unlike other graph
hashing schemes, the proposed formulation achieves high quality binary codes without
adding any additional decision variables to the problem and as a result it is non-alternating.
We applied two different optimization techniques i.e., projected gradient and manifold
optimization to obtain a solution. Using extensive experiments on four public datasets,
we showed that the proposed method either outperforms or achieves highly competitive
results compared with recent methods and offering low complexity at the same time.

Limitations

The first limitation of this work is the difficult optimization problem which is inherent to
all spectral hashing based formulations. The second downside of the proposed method is
the fact that it cannot be applied to WSIs directly. More precisely, we can only obtain
binary representations for patches and not WSIs.

Future Works

For future work, we plan to update the affinity matrix along with the proposed loss function,
which needs the use of an end-to-end training framework where feature learning is achieved
through training. To conduct feature learning, we may need to employ a reconstruction loss
with the proposed loss function in Eq. 6.7. We believe that such a scheme can significantly
improve the performance of the proposed method. Furthermore, another interesting path
for future studies is to apply this more efficient non-alternating hashing scheme instead
of the more complex alternating algorithm employed by [47] for the network quantization
problem.
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7.1.2 NRQ

Contributions

In chapter 4, we introduced Non-rigid Quantization NRQ which was built on top of ITQ
(iterative quantization) [33] idea. In ITQ, projection and rotation matrices are learned in
two separate steps which makes it sub-optimal. Furthermore, a rigid transformation may
not be powerful enough for reducing quantization to the ultimate limit. Motivated by these
limitations, we proposed an algorithm to reduce both dimensionality and quantization loss
simultaneously. We also employed a non-rigid transformation to push for quantization
beyond rotation. Employing non-rigid transformations is generally against intuition. It
does not preserve the neighborhood of data (and all these efforts for reducing quantization
error is to preserve more neighborhood after binarization). However, we showed that
corrupting neighborhood in favor of reducing quantization eventually leads to better binary
codes. An efficient nested coordinate descent algorithm was employed to update all three
matrices. The results on five public datasets totaling almost half a million images showed
that the proposed method outperforms the state-of-art linear hashing methods.

Limitations

Although the NRQ approach leads to slightly easier optimization problem, but still the
solution to the problem is not straightforward and a coordinate descent approach was used
to obtain a solution. Further, similar to the ESH method, the NRQ algorithm cannot be
directly applied to WSIs.

Future Works

As the future work, we plan to extend the idea of binary representation learning using the
rigid and non-rigid transformations to the deep architectures. In this framework, while
the non-rigid transformations can be realized using regularization terms similar to the soft
orthogonality in Eq. 6.3. For the rigid transformation, one can project the gradient on
to orthogonal feasible set using the projection operation proposed in [84] to update the
rotation matrix. Besides, it has been recently demonstrated that hashing can be used in
the network quantization task [30]. This would be interesting to see how the proposed
quantization method performs for network quantization.
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7.1.3 CNN-Deep Sets

Contributions

In chapter 5, inspired by bag of patches (set) representation per WSI, we employed Deep
Sets along with a CNN for end-to-end WSI representation learning. We introduced two
reshape layers to connect the CNN backbone with Deep Sets while avoiding batch size one.
We proposed a novel multi-label training scheme where the primary site prediction is used
to help the network in primary diagnosis labels prediction. To this end, we used the law of
total probability to capture the primary site predicted probability for obtaining probability
of primary diagnosis. We validated the proposed topology in a transfer learning scheme for
WSI search. We showed that the proposed architecture can obtain WSI embeddings leading
to comparable retrieval performance compared with Yottixel while reducing the retrieval
time significantly. We also applied the proposed scheme to lung classifcation task and
achieved competitive results compared with the state-of-art. Although the gradient sparsity
loss function was proposed to achieve sparse permutation-invariant WSI representations,
we observed that encouraging sparsity on the gradients improves the model generalization.
Following this observation, additional experiments on CIFAR-10 dataset were conducted
to explore effect of gradient sparsity on the generalization. The test loss and accuracy
plots showed that gradient sparsity improves generalization. Besides, we employed the
membership inference attackMIA as another measure of generalization where the results
indicated that gradient sparsity improves the generalization. We also presented some
intuitive and theoretical investigations that explains possible reasons why gradient sparsity
improves the generalization. More precisely, showed that gradient sparsity reduces the loss
landscape sharpness and as a result improves the generalization.

Limitations

One limitation of the proposed method is number of small patches (here 40) that has been
used to model each WSI. Even for keeping 40 patches per WSI and batch size of 16, we
employed four Tesla V 100 GPUs to keep this data in the memory which shows the memory
bottleneck limitation of this work. To get a better idea of the memory consumption in this
approach, considering batch size of 16, extracting 40 patches per each WSI (set size= 40),
and resizing patches from 1000 × 1000 to 224 × 224, the input tensor of our network has
the shape (16,40,224,224,3). This tensor will be reshaped into a 4-dimensional tensor with
shape (640,224,224,3) that means the task can be seen as a regular instance-based training
while the batch size is 640 which obviously is not feasible with current GPUs. The other
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limitation of the proposed approach is the fact that the obtained WSI embeddings are in
Euclidean space and as a result they are not ideal for fast and memory efficient WSI search
within gigantic archives.

Future Works

In future works we would to sample more patches per WSI and see how it improve the
performance of the model. Further, here we started from the ImageNet wights which may
not be the best possible option for weight initialization. Given the recent success of self
supervised methods, it would be interesting to explore how the performance changes if we
start from a set of weights that have been obtained from self supervised training.

Considering the fact that removing position embeddings from transformer makes them
permutation invariant, an interesting future research direction is to replace permutation
invariant unit Deep Sets with transformer models. Although given the representation
learning capability of transformers this approach probably will lead to WSI embeddings
with higher quality, the memory bottleneck during end-to-end not only exists but also it
becomes more severe.

7.1.4 Conditioned-Sparse and Binary Fisher Vector

Contributions

In chapter 6, we proposed a new framework based on deep conditional generative mod-
elling and Fisher Vector Theory for compact WSI representation. Unlike the common
practice for WSI representation, i.e., MIL scheme, the training for the proposed method is
instance-based, and as a result, GPU memory usage is the same as conventional training.
Furthermore, we introduced new loss functions, gradient sparsity and gradient quantization
for learning sparse and binary permutation-invariant representations, namely C-Deep-SFV
and C-Deep-BFV, suitable for efficient WSI retrievals. We showed that gradient sparsity
loss function pushes the generative model to use parameters for generating a sample, and
as a result, one can reduce the dimensionality of the WSI embeddings and still achieve a
good performance. The WSIs representations were validated on the largest public archive
of WSIs, The TCGA WSIs and also the LKS dataset for both WSI search and classification
tasks. The proposed method outperforms Yottixel a recent search engine for histopathol-
ogy images and GMM-based Fisher Vector. Furthermore, we also achieved competitive
results against state-of-the-art in WSI classifications on both lung and LKS public bench-
mark datasets. Although the gradient sparsity loss function was proposed to achieve sparse
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permutation-invariant WSI representations, we observed that encouraging sparsity on the
gradients improves the model generalization. Following this observation, additional exper-
iments on CIFAR-10 dataset were conducted to explore effect of gradient sparsity on the
generalization. The test loss and accuracy plots showed that gradient sparsity improves
generalization. Besides, we employed the membership inference attackMIA as another
measure of generalization where the results indicated that gradient sparsity improves the
generalization. We also presented some intuitive and theoretical investigations that ex-
plains possible reasons why gradient sparsity improves the generalization. More precisely,
we showed that gradient sparsity reduces the loss landscape sharpness and as a result
improves the generalization.

Limitations

The proposed method as a scheme for learning binary and sparse permutation invariant
representations showed great potential for WSI search. However as a technique that is
designed for clinical use cases, this is important to provide explainable representations.

Future Works

In our proposed method we employed VAEs along with Fisher Vector theory for learning
compact permutation invariant WSI representations. An interesting future research direc-
tion for the proposed learning scheme is to employ other deep generative models specially
generative Adversarial Networks (GANs) for learning binary and/or sparse WSI represen-
tations. Note the Fisher Vector theory can formulated on top of any generative models
and considering the fact that GANs can be better generative models compared with VAEs
in some senses, one can expect that GANs-based Fisher Vectors obtain better search per-
formance.
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