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Abstract

The Snow Albedo Feedback (SAF) is an important contributor to Arctic warming,
however models disagree significantly on the strength of this effect. Previous work has
investigated the influence of vegetation on surface albedo, however the accuracy has been
limited by the resolution of model output. In this work, we perform a pan-Arctic survey
using Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data and
Coupled Model Intercomparison Project (CMIP6) model output, to perform a comprehen-
sive analysis of the effects of vegetation on SAF. We computed pan-Arctic composites of
MODIS observational data at the 500m scale and compared the results with the CMIP6
ensemble.

Using MODIS data, we found a mean SAF of -2.17 % ⋅K−1 from April-July over the
climatological period 2001-2019, which is stronger than predicted by the CMIP6 intermodel
mean. Additionally, we identified the source of this discrepancy - models currently do not
adequately capture the dynamics of late-season melt-off in the high Arctic grassland and
barren regions, which results in an underestimate of SAF. In this work, we demonstrate
that land cover changes have a small but nonzero (≤ 10%) contribution to overall changes
in SAF on the timescale of decades, indicating the importance of dynamic vegetation
models. Furthermore, we identify upscaling resolution as a major source of local error in
SAF, however due to cancellation of errors this has minimal impact on estimates of pan-
Arctic mean SAF. Finally, we identify a logarithmic relationship between LAI (Leaf Area
Index) and SAF. This work can benefit modelling groups seeking to better capture SAF
dynamics, by explaining SAF errors in terms of vegetation dynamics, and by demonstrating
the existence of spatial structure in SAF fields at sub-model grid scales.
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Chapter 1

Introduction

The Arctic is currently in a critical period for climate change. Over the past several decades,
and projected into the future, we observe rapid change across all metrics, from temperature
to ice coverage. The Arctic is warming up considerably faster than the rest of the world
[4], with 2 − 3○ C of warming observed since the 19th century. This is accompanied by
well-documented decreases in sea ice coverage [5], as well as receding glaciers in Greenland
[6] and the Canadian Arctic archipelago.

Of particular interest is the Snow Albedo Feedback (SAF), which contributes to an
amplification of warming in the Arctic. The surface albedo α measures the proportion
of reflected solar radiation, and is a key parameter determining the radiative balance.
Presently, models differ significantly in their estimates of the magnitude of the SAF [7]
[8]. This provides motivation for a better understanding of the relationship between snow
cover, vegetation and surface albedo, as these surface properties all influence the SAF. In
this work, we perform a full investigation of the link between vegetation and SAF using a
combination of remote sensing data and model output.

1.1 Surface Albedo

The radiative energy budget of Earth can be decomposed into longwave (terrestrial) and
shortwave (solar) radiation. In this work, we limit the scope of our investigation to incoming
solar radiation and its interactions with the Earth’s surface.

Definition 1 Surface albedo αsfc is defined as the ratio of integrated upwelling spectral
irradiance Euλ and downwelling spectral irradiance Egλ, where the integration is performed
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over a wavelength band [λ1, λ2] [9].

αsfc =
∫

λ2

λ1
Euλdλ

∫
λ2

λ1
Egλdλ

(1.1)

The full treatment of the interaction between an optical surface and light requires
the treatment of bidirectional reflectance [10], which is a probability distribution over all
incident and reflected angles. Surface albedo provides a convenient way to integrate out
these angular terms into a single scalar quantity that represents the proportion of radiation
that is absorbed a given point on the optical surface. Surface albedo is a key determinant of
the Earth’s climate, as regions with low albedo absorb more radiation and thus contribute
to the net global warming.

1.2 Vegetation as a Predictor of Albedo

Snow and vegetation together form the optical surface where radiation is either reflected,
emitted or absorbed. Surface albedo directly impacts the rate at which incoming short-
wave radiation is reflected or absorbed. The optical properties of the Earth’s surface can
also influence the emissivity of outgoing terrestrial radiation [11], however this is outside
the scope of this thesis. The primary interaction between snow and vegetation is through
masking, where snow is deposited on top of the vegetation layer. A consequence of this
interaction is that the surface albedo is highly dependent on the vegetation, and moti-
vates the use of vegetation indicators to predict albedo. Vegetation indicators are either
categorical (discrete) or continuous.

Definition 2 Vegetation Subtype is a discrete indicator, which takes a set of N vegeta-
tion categories and associates each pixel of a remote-sensing or model dataset to a distinct
vegetation category.

Loranty (2011) [1] demonstrated that Arctic regions of different vegetation subtype
show different seasonal cycles of albedo (reproduced in Fig.1.1). In this analysis, low-
height vegetation subtypes such as sedge had αmax = 0.757, while forest regions have much
lower maximum albedo with αmax = 0.403. More recent work [12] has shown that forested
regions have albedo profiles that differ based on vegetation subtype. This motivates further
investigation of the use of vegetation subtype as a predictor.
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Figure 1.1: Albedo seasonal evolution closely resembles a logistic curve for each vegetation
subtype, representing a transition from the snow-covered αmax to the snow-free αmin value
once the spring melt-off has concluded. Original figure from [1].

Definition 3 Leaf Area Index (LAI) is defined as the one-sided leaf area per unit
ground surface area [13], in units of [m2/m2].

Wang (2016) [3] performed an analysis using the Canadian Land Surface Scheme
(CLASS) model [14], showing two key results. The first result is that the albedo of re-
gions with low LAI are more sensitive to LAI errors than regions with high LAI. Secondly,
Wang performed a model simulation demonstrating that reducing the LAI in the model
(a simulation of deforestation) for taiga and tundra regions yielded higher albedo values,
and hence a net cooling. However, similar investigations at tropical latitudes show that
deforestation at lower latitudes yields a net heating effect [15] [16], given the absence of
snow in equatorial regions.
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Analysis of NDVI changes in the Arctic has been the subject of considerable study
[17] [18]. Given the prominence of NDVI as a vegetation metric in the remote sensing
literature, it is a natural candidate to consider for making predictions of albedo. However,
previous results [19] have shown only a loose correlation (R2 = 0.58) between NDVI and
surface albedo, and thus we restrict our attention in this work to using vegetation subtype
and LAI to predict surface albedo.

Definition 4 The Normalized Difference Vegetation Index (NDVI) is a normal-
ized metric of vegetation density derived from the difference between spectral reflectance in
the near-infrared ρnir and red ρred bands. The reflectances are defined as the ratio between
reflected and incident radiation within a given wavelength band.

NDVI =
ρnir − ρred
ρnir + ρred

(1.2)

By construction, this metric is bounded within the range NDV I ∈ [−1,1].

1.2.1 Effects of Arctic Greening on Surface Albedo

The Moderate Resolution Imaging Spectroradiometer (MODIS) operational data record
from 2000-2021 has recorded large-scale vegetation shifts, including many studies which
show widespread greening [20] [18]. While the vegetation changes have been extensively
covered in the literature, the impact of these vegetation shifts on albedo has not been fully
explored, which motivates an investigation of this mechanism. Arctic greening has typically
been classified in the literature [21] as a function of NDVI, while we seek to investigate
changes in albedo as a function of vegetation subtype (land cover shifts) and LAI (Arctic
greening).

We have identified three important vegetation processes which are occurring in the Arc-
tic and Taiga regions, which we propose have a significant effect on albedo. It is important
to note that there is a coupling between all of these effects and snow, as mentioned in the
previous section. All three of these effects must be considered as special cases of the overall
greening trend. One of the primary goals of this thesis is to compute the effects of these
trends on SAF.

1. Greening of the Arctic (barren regions becoming vegetated)

2. Greening of the Arctic (increased LAI in existing vegetated regions)

3. Transitions from one type of vegetation to another
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1.3 Snow Albedo Feedback

The snow albedo feedback (SAF) [22] is a feedback process which affects snow cover in the
Arctic. An intitial rise in temperature causes a decrease in snow cover S, which decreases
the albedo, which again causes an increase in temperature, creating a feedback loop. Due
to its role in Arctic amplification, the SAF has been the subject of considerable interest,
both in terms of analytic calculations and model simulations. Thackeray’s study defines
the NET term [7] as the total derivative of surface albedo with respect to temperature, the
formal definition of which is given below.

Definition 5 Snow Albedo Feedback: The NET term represents SAF in terms of a
total derivative in units of percent albedo change per Kelvin [% ⋅K−1]. The numerator αsfc

is a spatial field representing the monthly difference in albedo, and the denominator is the
monthly temperature difference averaged over the pan-Arctic domain.

κ4 = NET =
∆αsfc

<∆T >
(1.3)

In Definition 5, the angle brackets represent a spatial average over the entire pan-Arctic
domain. As a point of clarification, in this work percent albedo change refers to an absolute
change in albedo, where 1% corresponds to an albedo change of ∆αsfc = 0.01.

Qu and Hall (2007) [2] decomposed the SAF relationship between snow, surface temper-
ature and surface albedo using four coupling coefficients κi. There are four physical effects,
including the change in snow cover caused by temperature increase κ1, changes in albedo
due to snow masking κ2, albedo shifts due to temperature-induced snowpack metamorpho-
sis κ3, and κ4 measures increases in surface temperature due to radiative transfer induced
by albedo change. We note that the κ4 coefficient is exactly the NET term introduced in
[7].

Having established the need for a more thorough investigation of the influence of veg-
etation on surface albedo αsfc, the next step is an analysis of how vegetation modifies the
interaction between snow cover, temperature and surface albedo. In Fig. (1.2), we extend
the schematic diagram from [2] to illustrating the additional couplings that vegetation pro-
vides to the SAF. We theorize that vegetation has three distinct couplings to SAF; changes
to vegetation subtype occurring over decades, vegetation-induced change in albedo, and
changes to the snow fraction S caused by canopy masking.
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Figure 1.2: Diagram showing links between vegetation, surface temperature Ts, albedo and
snow cover S. Original figure from [2]

1.4 Land Surface Models

Earth System Models (ESMs) are complex simulations of climate dynamics, which include
many coupled sub-components. The Coupled Model Intercomparison Project (CMIP) is
a set of ESMs, with the output data standardized for the purpose of comparison. One
important component of these ESMs is Land Surface Models (LSMs), which simulate
processes occurring at the Earth’s surface such as the impacts of vegetation on the carbon
cycle, evapotranspiration and surface albedo. Within these models, it is not possible to
simulate all processes in terms of PDEs. The unresolved physics must be parametrized, so
we instead have explicit parametrizations for certain components. In this work, we focus
on investigating the parametrization of vegetation canopy effects on surface albedo.
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An example of an ESM is the Community Earth System Model (CESM), for which
Thackeray et al.[23] demonstrated the existence of vegetation-linked biases in surface
albedo, specifically related to vegetation masking. Within the most recent version (CESM2)
[24], the land dynamics are performed by Community Land Model 5 (CLM5) [25]. The link
between land cover and surface albedo in CLM4.5 has been explored in Meier et al.[26].
The land and atmospheric simulations are coupled by means of atmospheric input such as
pressure, temperature and CO2 concentration. In return, the land model provides output
such as diffuse and direct albedo, heat flux, and absorbed solar radiation.

Much recent work has been performed on soil hydrodynamics, biogeochemistry [27] and
atmospheric coupling [28], in the context of investigating simulations of vegetation in land
surface models. However, for the purpose of our investigation, we seek to understand the
impacts of vegetation dynamics on albedo specifically. Therefore, we limit the scope of our
analysis of vegetation to strictly the effects which modify the surface albedo. Within the
context of vegetation-driven changes to vegetation, there are diverse characteristics which
impact model behavior. These include plant functional type, crop functional type, leaf
area index (LAI), vegetation height and canopy gap fraction.

1.4.1 Canopy Effects

The interception of snowfall by a vegetation canopy has significant effects on the resulting
surface albedo. Furthermore, models differ significantly in their representation of canopy
effects. A framework for classifying parametrizations within LSMs was introduced by Qu &
Hall in [2], and was expanded by Essery [29]. In this framework, canopy parametrizations
are separated into four types, with Type 1 the most complex (full simulation of radiative
transfer), and Type 4 the most simplified parametrization (assuming albedo is independent
of vegetation).

Type 3 parametrizations involve a simple weighted average where the surface albedo
is sum of the snow albedo αsnow and the land albedo αland, weighted by the snow cover
fraction S.

αsfc = αsnowS + αland(1 − S) (1.4)

Although some research in this domain has previously focused on either vegetation [1]
[30] or snow exclusively, more recent work has focused on modeling the effects of snow
and vegetation together. A recent paper by Essery [29] performed a detailed analysis of
canopy effects on albedo. The ECHAM5 climate model [31] is an ESM which includes
treatment of the canopy as a separate layer from the ground, which corresponds to a Type
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2 parametrization. This involves a two-level approximation, where the gap fraction fg
represents the probability of a photon passing through the canopy layer and reaching the
ground [32]. This parametrization is linear with respect to snow cover fs, canopy snow
cover fc, and gap fraction fg.

αsfc = fg[(1 − fs)αg0 + fsαgs] + (1 − fg)[(1 − fc)αc0 + fcαcs] (1.5)

The reflection of incoming solar radiation incident onto a vegetated surface either partially
or fully covered in snow is an instance of thermal radiation transfer in the context of a
participating medium. The full geometry of a snowbank with complicated geometry on
top of a non-uniform vegetated surface is too computationally expensive to model directly,
therefore some simplifying assumptions must be made.

1.4.2 Intermodel Spread in SAF

Accurate modelling of the SAF is an ongoing challenge for land surface models. The
intermodel spread in the CMIP5 ensemble [33] ranges from −0.67 to −1.66%K−1. Given
the importance of the snow albedo feedback in determining the strength of Arctic warming,
this spread creates large uncertainty in climate projections.

Previous work [8] [34] has suggested that the differences in how these models treat
vegetation is a significant source of uncertainty in albedo. This provides clear motivation
for further investigation into the role of vegetation variability on albedo, and by extension
the SAF. Additionally, we wish to investigate the SAF spread in land surface models by
using a simplified modelling framework.

Existing parametrizations of surface albedo within CMIP5 models are quite complex
in that each model uses a different combination of schemes for representing land, snow
albedo and vegetation masking. Qu and Hall [2] classified canopy parametrizations into
four different categories, organized by complexity of the parametrization of snow-vegetation
interaction. A key result from an analysis of SAF spread in CMIP5 models [33] was the
discovery that more complex parametrizations did not necessarily correspond better to
observations, and in fact some of the least-performant models used a full radiative transfer
model to account for the canopy interaction.

Hall and Qu (2006) [35] introduced the notion of emergent constraints, which is the
approach of using an ensemble of climate models to derive an empirical relationship between
current climate observations and future predicted quantities [37]. This technique has been
applied to constrain uncertainties on effects such as snow albedo feedback [36] and sea-ice
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albedo feedback [38]. In contrast, a complete understanding of SAF for individual models
would require detailed perturbed physics experiments for each model. Emergent constraints
seek to leverage an ensemble of climate models in order to determine relationships between
climate quantities without having to perform computationally expensive diagnostics of
individual models.

Our aim is to create a simplified diagnostic framework that can be used to identify issues
with this entire ensemble of land surface models. The advantage of this diagnostic approach
is that we can isolate specific physical processes (such as decadal land cover changes, canopy
interactions, or the timing of spring melt-off) and see how well each model simulates these
processes. The goal of this diagnostic framework is to identify specific issues in the existing
ESM ensemble that lead to a large spread in the SAF.

In addition to categorizing the relevant physical mechanisms behind vegetation interac-
tions, we are also interested in identifying the most relevant physical scale for this process.
Given that the surface albedo depends critically on local surface characteristics, we expect
albedo variability at the stand scale (≈50m). Given that the typical ESM grid cells are on
the order of 100km, this provides an opportunity to use remote sensing data at the highest
available resolution to determine SAF with greater accuracy. The computation of SAF
at the 500m scale has not been performed previously in the literature, providing a clear
motivation for a high resolution pan-Arctic study.

1.5 Research Questions

This Thesis is organized around the following three questions, each with a corresponding
set of testable hypotheses, relating to a specific theme of variability, resolution and model
spread.

1. What is the link between variability in Arctic vegetation and surface albedo on
timescales from days to decades?

Hypothesis 1 Vegetation subtype is a strong predictor of surface albedo in that vari-
ability within a vegetation subtype is less than variability between subtypes.

Hypothesis 2 Change in vegetation on a decadal scale has a detectable impact on
surface albedo. We classify these changes as land-cover driven shifts in albedo.

2. What is the influence of grid resolution on local and global (pan-Arctic mean) errors
in SAF?

9



Hypothesis 3 Given the spatial heterogeneity in vegetation subtypes at the 500m
scale, we predict similar high-resolution spatial structure in SAF at sub-model grid
scales.

Hypothesis 4 Existing model grid sizes are too coarse to fully capture observed land
albedo interactions. We predict this introduces a significant error that may contribute
to intermodel spread in SAF.

3. To what extent do vegetation characteristics such as vegetation subtype and leaf area
index explain the intermodel spread in SAF?

Hypothesis 5 Given the link between vegetation and surface albedo, we predict that
model errors in representing vegetation subtype and leaf area index are linked to errors
in SAF.
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Chapter 2

Data and Methods

2.1 Data Summary

Satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) and Sentinel-
3 provide researchers with access to remote sensing datasets for a variety of observed
quantities. These include LST (Land Surface Temperature), albedo, NDVI, among others.
A key feature of these datasets is their high resolution, which permits investigation of
surface phenomena down to the 500m scale.

In contrast, numerical climate models are run at much larger resolutions, with the
latitudinal resolution of models in the CMIP6 (Coupled Model Intercomparison Project
Phase 6) ensemble ranging from 78km to 313km per grid cell. This chasm between the
resolution of remote sensing data and models provides both challenges and opportunities,
particularity for the case of characterizing correlations and physical processes. We intro-
duce methods that aim to use both high-resolution remote sensing data and CMIP6 model
output to investigate the dynamics relating snow cover, vegetation and surface albedo.

In this work, the pan-Arctic spatial domain is all land surface north of 60○N, excluding
Greenland. We exclude Greenland using spatial masking to maintain consistency with the
existing literature [22]. The rationale behind this exclusion is due to the almost complete
lack of vegetation on Greenland, as well as the fact that different models are not consistent
in how the Greenland ice sheet is represented. This choice of spatial domain is applied to
both the remote sensing and model analysis.
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2.1.1 Remote Sensing Data

The primary remote sensing dataset used in this work is MODIS (Moderate Resolution
Imaging Spectroradiometer), an instrument onboard the Terra and Aqua satellites [39],
and the selected variables are summarized in Table 2.1. MODIS products have global
coverage, with over 20 years of operational data. Given that we wish to perform a pan-
Arctic analysis on the impact of slowly-changing vegetation on albedo over a multi-decadal
timescale, this high degree of spatial and temporal availability makes the MODIS dataset
well-suited for our use case.

The binary data collected by MODIS sensors is referred to as Level-0 data. This input
data is then converted into calibrated radiance fields (Level-1 data) [40]. Finally this
information is processed into a set of gridded geophysical parameters (classified as Level-2
and Level-3 products, indicating a higher degree of post-processing). One limitation of
this work is that we use the post-processed Level-3 products as a starting point for our
analysis, and therefore we assume the reliability of the MODIS data processing, given that
we do not deal with the radiances directly.

Given that our goal is better characterization of surface albedo, we can consider two
kinds of limitations. The first is observational, in that we might be limited by the
availability of data or the temporal and spatial resolution of the datasets in question. Given
that MODIS data is available at a high spatial resolution (1km or 500m, depending on the
product), and is available over a 20-year time period, we do not face many observational
limitations.

Another limitation is computational, in that it is not feasible to run numerical climate
models at the resolution of the availability of remote sensing data. As an alternative
approach, we plan to analyze subgrid parametrizations of surface albedo, such that the
high-resolution vegetation datasets can be fully utilized. Additionally, we aim to investigate
correlations between the MCD12Q1 (Land Cover Type) and MCD43A3 (Surface Albedo)
datasets.

The albedo fields provided by MODIS are given in the MCD43A3 dataset, which in-
cludes both white-sky albedo (WSA) and black-sky albedo (BSA). WSA represents
albedo for completely diffuse incoming radiation, while BSA is the albedo of completely
direct incident radiation [9]. In order to maintain consistency with previous work [1], we
use white-sky albedo (diffuse) to remove the dependence on solar zenith angle [42]. There
exists a third type called blue-sky albedo (BSA), which is a linear combination of WSA
and BSA weighted to simulate realistic atmospheric conditions, however MODIS does not
provide a blue-sky albedo product.
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Key Dataset Name Frequency Size Resolution
MCD12Q1 Terra+Aqua Land Cover Type Yearly 5.5 GB 500m
MCD43A2 Terra+Aqua Albedo Quality Daily 6.2 TB 500m
MCD43A3 Terra+Aqua Albedo Daily 20.9 TB 500m
MOD10A1 Snow Cover Daily 2.0 TB 500m
MOD11A1 Terra Land Surface Temp. Daily 1.0 TB 1km
MOD13A3 Terra Vegetation Indices Monthly 98 GB 1km
MOD15A2H Terra Leaf Area Index 8-Day Mean 62 GB 500m

Table 2.1: Table of MODIS datasets used so far in this work. Note that the sizes are for all
tiles in the operational history (2001-2019) over the entire pan-Arctic domain. The albedo
datasets are too large to store directly, but we plan to work around this by storing only a
subset of the albedo channels.

For our analysis of vegetation, we use two separate products. The first, MCD12Q1,
provides a set of land cover classifiers. There are five distinct classification schemes in this
dataset. Currently, we use the Annual Plant Functional Types classification [43], as its
categories correspond best to the existing literature on forest albedo [29]. The second is
MOD15A2H, a dataset of LAI values used for comparison with model output.

2.1.2 Model Data

The Coupled Model Intercomparison Project Phase 6 (CMIP6) [44] is the latest iteration of
the CMIP project, which seeks to compare the model outputs from a collection of numerical
climate models. The CMIP6 ensemble is the current state-of-the-art in coupled climate
models in terms of resolution and physical parametrizations.

Given the importance of resolution in climate models, statistical [45] and dynamical
downscaling [46] techniques have been developed. Statistical downscaling attempts to
improve the resolution of global climate models by using historical meteorological observa-
tions. Dynamical downscaling involves using a global climate model to set the boundary
conditions of a higher-resolution regional climate model. Statistical downscaling does not
necessarily help constrain the intermodel spread in SAF, as we are still left with the chal-
lenge of spread coming from different vegetation parametrizations. For dynamical down-
scaling, the lateral boundary conditions coming from the global climate model would still
be subject to the same resolution-limited effects. For these reasons, we do not employ
downscaling in our analysis of SAF.
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To maintain consistency with the remote sensing analysis, we choose a spatial domain
that includes all land area north of 60○. For the temporal domain, we have selected 2001-
2014 for the model comparisons, as this is the maximum temporal overlap between CMIP6
model output and remote sensing data availability.

The CMIP6 experiment we investigated was AMIP (Atmospheric Model Intercompar-
ison Project), the data availability of which are summarized in Tables 2.2. The temporal
domain of the CMIP6 AMIP simulations is from 1979-2014. A key feature of the AMIP
experiments is that SST (Sea Surface Temperature) and SIC (Sea Ice Concentration) are
prescribed to historical values [44], while allowing land/atmosphere to evolve freely.

Given the SST and SIC forcings to historical temperatures, this makes AMIP a good
comparison to the historical MODIS record. Of the 33 models in the AMIP ensemble, we
selected all models with LAI data availability, creating a 24-member ensemble to examine
the relationship between LAI and SAF.
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Table 2.2: Data Availiblity for AMIP Model Runs (2001-2014)

Model Name LonÖLat TS RSDS/RSUS Veg. Subtype LAI
1. ACCESS-CM2 1.88°Ö1.25° ✓ ✓ ✓ –
2. ACCESS-ESM1-5 1.88°Ö1.24° ✓ ✓ ✓ ✓

3. BCC-ESM1 2.81°Ö2.81° ✓ ✓ ✓

4. CAMS-CSM1-0 1.13°Ö1.13° ✓ ✓ – ✓

5. CESM2-WACCM 1.25°Ö0.94° ✓ ✓ – ✓

6. CESM2 1.25°Ö0.94° ✓ ✓ – ✓

7. CIESM 1.25°Ö0.94° ✓ ✓ – ✓

8. CMCC-CM2-HR4-8 1.25°Ö0.94° ✓ ✓ – ✓

9. CMCC-CM2-SR5-0 1.25°Ö0.94° ✓ ✓ ✓ ✓

10. CanESM5 2.81°Ö2.81° ✓ ✓ – ✓

11. E3SM-1-0 1.00°Ö1.00° ✓ ✓ – ✓

12. EC-Earth3 0.70°Ö0.70° ✓ ✓ – –
13. EC-Earth3-AerChem 0.70°Ö0.70° ✓ ✓ – –
14. EC-Earth3-CC 0.70°Ö0.70° ✓ ✓ ✓ ✓

15. EC-Earth3-Veg 0.70°Ö0.70° ✓ ✓ – ✓

16. FGOALS-g3 2.00°Ö2.25° ✓ ✓ – ✓

17. GFDL-ESM4 1.25°Ö1.00° ✓ – – –
18. GISS-E2-1-G 2.50°Ö2.00° ✓ ✓ – ✓

19. IITM-ESM 1.88°Ö1.91° ✓ ✓ – –
20. INM-CM4-8 2.00°Ö1.50° ✓ ✓ – ✓

21. INM-CM5-0 2.00°Ö1.50° ✓ ✓ – ✓

22. IPSL-CM6A-LR 2.52°Ö1.25° ✓ ✓ – ✓

23. KACE 1.88°Ö1.25° ✓ ✓ – –
23. KIOST-ESM 1.88°Ö1.88° ✓ ✓ – ✓

24. MIROC6 1.41°Ö1.41° ✓ ✓ – –
25. MPI-ESM-1-2-HAM 1.88°Ö1.88° ✓ ✓ – ✓

26. MPI-ESM1-2-HR 0.94°Ö0.94° ✓ ✓ – ✓

27. MPI-ESM1-2-LR 1.88°Ö1.88° ✓ ✓ – ✓

28. MRI-ESM2 1.13°Ö1.13° ✓ ✓ – –
29. NESM3 1.88°Ö1.88° ✓ ✓ – –
30. NorCPM1 2.50°Ö1.88° ✓ ✓ – –
31. NorESM2-LM 2.50°Ö1.88° ✓ ✓ – ✓

32. SAM0-UNICON 1.25°Ö0.94° ✓ ✓ – ✓

33. TaiESM1 1.25°Ö0.94° ✓ ✓ – ✓
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2.2 Partitions of a General Domain

Both observational and model data are stored in gridded datasets1, corresponding to some
2D projection. This projection is specified in the native projection coordinates (x, y) ∈
R2, which is locally isomorphic to some subset of the Earth’s surface Ω ⊆ S2. For the
purpose of this document, the methods we introduce are projection-independent. The only
assumption we make regarding the projection is each pixel of the gridded datasets contain
approximately the same area. However, this does not hold in all cases, longitude-latitude
grids are an example of when this assumption is violated. If the projection produces pixels
of different areas (in the gridded datasets), a set of weights wkl would be required to ensure
normalization.

We consider the case of a general domain Ω, which represents a subsection of the
Earth’s surface. Furthermore, in this work we consider only surface effects, which allows
us to consider only 2D partitions, and neglect the complications associated with multiple
height levels (for example, atmospheric models contain many vertical levels). Additionally,
we allow our domain to be non-contiguous, as this reflects the geography of many regions
such as the Canadian Arctic Archipelago.

We take as a starting point a matrix representation A ∈Mkl(R) of some remote sensing
dataset. An example of such a dataset would be LST (Land Surface Temperature), with
the elements akl corresponding to temperature values of each pixel of the projection. Next,
we introduce a partition of this domain.

Definition 6 A partition2 of a spatial domain Ω is a set of M non-overlapping subsets
Ωi, which satisfy the following constraints:

1. The union of all subsets is the entire domain

Ω =
M

⋃
i=1

Ωi (2.1)

2. The intersection of any two subsets has zero area (meaning that the subsets share at
most a border).

1For models, the underlying equations are solved at the scale of the model grid. For remote sensing
data, typically the source resolution of the instrument is aggregated into a product resolution (for example,
500m in the case of the land cover product MCD12Q1).

2This notion of partition differs slightly from the strict topological definition provided in [47]. We
relax the condition Ωi ∩ Ωj = ∅ to allow for an infinitesimal overlap at the boundaries. In practice, these
definitions are equivalent for our purposes, as the boundary intersections have zero area and thus do not
contribute to our analysis.

16



∫
Ωi∩Ωj

dΩ = 0 (2.2)

Figure 2.1: Schematic diagram illustrating the difference between a regular model grid (on
the left) and a partition, as introduced in Definition 1. Here we have a partition of a
rectangular domain Ω into four subsets Ω1 (orange), Ω2 (yellow), Ω3 (blue), and Ω4 (green).
We observe that these subsets Ωi are non-contiguous, and the union is equal to the entire
domain, i.e. Ω = Ω1 ∪Ω2 ∪ Ω3 ∪Ω4.

This type of partition provides several key advantages. First, we note that the subsets
Ωi need not be contiguous, which allows us to create partitions that correspond to the
underlying surface characteristics. In contrast, the regular lines of a model grid cut across
these classifications. Secondly, this type of partition allows us to trace contours at the full
resolution of the remote sensing dataset at the 500m or 1km level. A schematic showing a
comparison between model grid cells and our partition is shown in Fig.2.1. Finally, this is
a general method that can be applied to land surface problems generally, and is not limited
to applications in the Arctic (although that is the focus of this work).

In later sections, we introduce a partition according to vegetation subtype, in which
each subdomain corresponds to a distinct vegetation class, such as evergreen forest or
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shrubland. As we expect that the surface albedo αsfc of each biosphere will behave similarly,
this motivates a decomposition in terms of vegetation subtype. In contrast, we expect the
surface albedo to vary considerably over a model grid cell. We can also consider similar
partitions based on other surface properties, such as elevation or land surface temperature3.

Although this definition is provided for the continuous case, in practice all remote sens-
ing datasets are provided in gridded representation at a finite resolution. These partitions
are implemented by applying masks to a gridded array of spatial data. In the discrete case,
an element Ωi of the partition is the set of all pixels corresponding to category i. In order
to use this partition scheme, we must assume that each pixel corresponds to exactly one
category.

2.2.1 Partition: Vegetation Subtype

For the categories of vegetation subtypes, we specify these sub-regions as {Ω1,⋯,ΩN}. This

decomposition provides much more flexibility, as there are a variety of vegetation classifiers
available. To each vegetation subtype we associate a (potentially non-contiguous) region
Ωi.

The MODIS MCD12Q1 dataset provides five distinct land cover classifications. In this
work, we use the decomposition specified by the Annual Plant Functional Types classifi-
cation, which separates the Arctic domain into the N = 6 categories of evergreen forest,
deciduous broadleaf, deciduous needleleaf, shrub, grass and barren regions. The Circum-
polar Arctic Vegetation Map (CAVM) [48] includes a vegetation classification with N = 26
distinct subtypes. However, the domain specified in the CAVM does not cover the pan-
Arctic domain north of 60○N, therefore we cannot use this classification as part of our
analysis.

2.3 Pan-Arctic Composites

One of the primary methods used in this work is the construction of pan-Arctic composites
consisting of all land surface area north of the 60N parallel. We generate and store these
composites as large matrices in the MODIS Sinusoidal projection [49]. This equal-area
projection consists of appending all individual MODIS tiles into a joint spatial product,
which is then analyzed using the following methodology.

3For the case of a continuous variable (such as NDVI or temperature), we must bin the data into M
discrete bins in order to perform this decomposition.
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2.3.1 Methodology for Generating Composites

Each of the composites are produced at the maximum spatial and temporal resolution
available over the 2001-2019 period of study, which is 500m for Land Cover and Surface
Albedo, and 1km for the Land Surface Temperature (LST) product. Since land cover is a
slowly-varying quantity, MODIS provides MCD12Q1 as a yearly product, while the Albedo
and LST are available as daily products. For the Albedo and LST composites, we compute
a daily albedo composite from 2001-2019, over the March-August window. This temporal
window is chosen as it fully captures the spring melt cycle, which is the primary physical
process for the Snow Albedo Feedback.

Despite these differences in temporal and spatial availability, the basic methodology for
constructing the composites is the same in all cases, and is outlined in this section.

1. Construct a pan-Arctic K × L composite, which consists of all MODIS tiles at a
single timestep for a given product (Land Cover, Albedo or LST).

2. Perform a spatial mask to exclude bodies of water and Greenland. We have excluded
Greenland from all of our analysis in order to maintain consistency with the method-
ology of the existing literature [7]. The motivation for this exclusion is that Greenland
is primarily covered by permanent glaciers, and thus does not have a seasonal melt
cycle as we see in non-glaciated regions.

3. Exclude invalid pixels from the analysis. This is primarily applicable to the MCD43A3
product, which cannot resolve the surface albedo when there is cloud cover. For in-
valid land cover pixels, we note that although these categories are changing with
respect to time, the fractional area change due to invalid and water pixels over the
pan-Arctic domain is 0.0024%, and thus to a very good approximation we can con-
sider the total land area as a constant.

We then use these fields as a starting point for further analysis. The procedures for
temporal, spatial and climatological means are described in §2.3.2. For the analyses con-
sisting of the entire domain, we exclude only Greenland and bodies of water. For the
case of subtype analysis (i.e., using the partitioning scheme described in §2.2.1), we first
perform a spatial partition into land cover types whose regions are represented by Ωi, with
the index i corresponding to each vegetation subtype. Next, we define the area Ai,t of a
partition using the following expression:

Ai,t ≡ Area(Ωi,t) (2.3)
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We additionally define an area fraction γi,t for a given vegetation subtype i for a par-
ticular year t, corresponding to the fraction of the total domain area A.

γi,t ≡
Ai,t

A
(2.4)

Furthermore, we construct these vegetation partitions in the temporal domain 2001-
2019. Since land cover changes are small but nonzero, we obtain different partitions for each
year. Symbolically, we can represent the changes in land cover fractions as the following
derivative:

d

dt

Area(Ωi)

A
=
dγi
dt
≠ 0 (2.5)

We wish to separate effects relating to change in land cover type (i.e. vegetation
composition change) from changes within a vegetation subtype. The methodology used for
subtype analysis is that we construct a vegetation mask for each subtype that consists of all
pixels which have not undergone land cover change. That is, when analyzing the results for
a given subtype (evergreen, deciduous needleleaf, deciduous broadleaf, shrub, grassland or
barren) Ωi, we analyze only pixels that were consistently one type of vegetation throughout
the entire data record 2001-2019. This allows us to separately examine effects driven by
land cover changes from effects within a vegetation type. Furthermore, an analytic scheme
to decompose these effects is shown in more detail in §2.5.

In addition to these vegetation masks, we also construct regional spatial masks in order
to separate results by region (Eurasia and North America, as well as an overall analysis of
the pan-Arctic domain).

2.3.2 Albedo Composites

In this analysis, we seek to characterize the spatial and temporal variance of the surface
albedo in terms of the standard deviation for each vegetation subtype. This analysis is
required in order to justify to what extent our assumption (that albedo and SAF can be
effectively decomposed by vegetation subtype) is valid.

Having established the procedure for generating albedo composites in §2.3, we take the
daily albedo composites as a starting point for the following analyses. In order to determine
the spatial variance, we first take the climatological mean for each day over the index set
of years (2001-2019). We then obtain a spatial variance for each subtype by taking the
standard deviation of all spatial points within a given vegetation subtype region Ωi.
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2.3.3 Field Averaging

In this section, we introduce a set of definitions to show exactly how the temporal, spatial
and climatological means are calculated for each quantity of interest. First, we consider
some field α(x, y, t) which has some spatial and temporal profile. Here α denotes albedo
but these definitions apply to any GIS variable defined over a spatial grid.

Definition 7 We denote the spatial average of a given variable α(x, y, t) as:

⟨α(x, y, t)⟩ =
1

A ∫Ω
α(x, y, t)dA (2.6)

The angle brackets denote a spatial mean, converting functions of (x, y, t) into functions
of t only by taking the spatial mean at each timestep over the domain Ω.

Definition 8 We denote the temporal average of a given variable α(x, y, t) as:

ᾱ(x, y) =
1

T ∫
T

0
α(x, y, t)dt (2.7)

Furthermore we note that the temporal average transforms α(x, y, t) into a function of
space only α(x, y) which has been temporally averaged at each point in the domain.

Definition 9 We denote the climatological average of a given variable α(x, y, t) as the
mean over an index set of N years. In this context, αi(x, y, t) denotes the albedo for the
ith year.

α(x, y, t) =
1

N

N

∑
i

αi(x, y, t) (2.8)

Furthermore we note that the climatological average is, like its input functions αi(x, y, t)
also a function of three variables (x, y, t).

2.4 SAF Methodology

For our analysis of SAF, we use the daily pan-Arctic composites of albedo and snow cover
to generate monthly averages. As part of our methodology, we look at only land pixels,
and mask out Greenland from both our albedo field and the Land Surface Temperature
spatial average. The data processing procedure is as follows:
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1. Create daily composites of Land Cover Type (MCD12Q1), LST and Albedo over the
entire data period (2001-2019)

2. Create a spatial mask for the overall land surface area, in order to exclude any
non-land components of the MOD11A1 (Land Surface Temperature) and MCD43A3
(Albedo) datasets.

3. Create spatial masks for each vegetation subtype, being careful to exclude any pixels
that change land cover type during the 2001-2019 period. The reason for this ex-
clusion is that in this analysis, we wish to understand how surface albedo (and by
extension SAF) are changing within a given subtype, and that is different from the
effect of changing land cover.

4. Using the spatial masks to exclude non-land and invalid points, we compute a
monthly average for LST and albedo, and save the results to netCDF4. For monthly
temporal averages, each pixel is treated separately. We sum all of the available daily
data, and divide the result by the total number of days. In the equations below k, l
are spatial indices, and i is a temporal index. Nkl is the number of valid data points
in a given month,

T̄month,kl =
1

Nkl

Nkl

∑
i=1

Tkl,i

ᾱmonth,kl =
1

Nkl

Nkl

∑
i=1

αkl,i

(2.9)

5. Compute the NET field for each year (2001-2019) with Definition 5 using the monthly
averaged fields from the previous step, where ∆αsfc is the difference between two
months, and ∆T is obtained by taking a spatial average of the difference between
monthly averages.

For each year, we have calculated a spatial mean SAF value for each vegetation subtype,
performing a spatial integration over each vegetation subtype region Ωi:

⟨NETi(t)⟩ =
1

Ai
∫
Ωi

NET(x, y, t)dA (2.10)

We use these yearly spatial means for each subtype in order to determine the interannual
variability in Snow Albedo Feedback for each monthly transition.
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2.5 Methodology for Intermodel Comparison

As described in §2.1.2, we performed our analysis on the CMIP6-AMIP model runs. We
construct an ensemble of 24 models, and implemented the following methodology.

1. Starting with global input temperature (TS), downwelling radiation (RSDS), up-
welling radiation (RSUS), leaf area index (LAI) and vegetation subtype fields, we
extract the Arctic sub-regions and mask out Greenland.

2. Reproject all model data to a uniform 1○ × 1○ grid in order to perform mean and
standard deviation calculations over a consistent grid.

3. Given that a uniform lat/lon grid has grid cells that have area that vary with latitude,
construct a set of weights wij to account for this effect (where yij is the latitude of
the ijth grid cell in radians).

wij = cos(yij) (2.11)

Using Definition 5, we compute the SAF field as a quotient of the upwelling and down-
welling radiation fields.

αsfc =
RSUS

RSDS
(2.12)

In addition to performing this intermodel comparison, we use the MODIS composites
described in the previous section as a reference dataset. We have also computed the zonal
means for the original resolutions of each model, and observed only minor (≤ 0.1m2/m2)
changes to the results compared to the 1○ grid. This implies that the rescaling procedure
does not significantly impact the results, and justifies this approach (of creating a uniform
1○ ensemble) in the remainder of the analysis.

2.6 Analytic Decomposition of Vegetation Effects

In this section, we introduce an analytic scheme for decomposing the physical effects of
vegetation type change from changes within a vegetation type. These methods are applied
to our remote sensing analysis of SAF in §3.4.

Our approach relies on a perturbation of the land cover area. We start with a small
perturbation to the subdomains Ωi, and compute its effects on the surface albedo. An
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example of such a change in nature would be a subtype composition shift from forest to
grassland induced by climate change. As a starting point, we take our expressions for
subtype area introduced in §2.3.1.

Ai = Area(Ωi) (2.13)

We note also that total area is conserved, in keeping with our assumptions specified by the
partition framework in §2.2. Using the area fractions γi, we note:

γ1 +⋯ + γN = 1
N

∑
i=1

dγi
dt
= 0

(2.14)

Furthermore, we decompose the albedo into vegetation subtype, and parametrize the
albedo climatology of each subtype withM parameters x⃗i, withM parameters for each veg-
etation subtype. Earlier versions of this work used a 4-parameter logistic model, however
one of the aims of this decomposition is to show that it is independent of the parametriza-
tion scheme.

αi(t) = α(x⃗i, t) (2.15)

Next, we consider a model grid cell and perform a subgrid parametrization on the mean
albedo ᾱ(t) as a function of both perturbations. This computation is performed at the
subgrid scale, as the MODIS land cover dataset MCD12Q1 is available at the 500m scale,
which is much higher resolution than typical ESM grid cells (≈20km). Here, the spatial
average is over the model cell, not the entire domain Ω.

⟨α(t)⟩ = ∫
Ω
α(t)dt =

N

∑
i=1

γiα(x⃗i, t) (2.16)

Next, we consider a perturbed ᾱ∗(t) under the influence of a climatological x⃗∗i = x⃗i+∆x⃗i

as well as an area perturbation γ∗i = γi+∆γi. The area perturbation reflects a change in veg-
etation distribution, while the climatological change ∆x⃗i indicates shifts in the climatology
within individual vegetation subtypes.
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⟨α∗(t)⟩ =
N

∑
i=1

γ∗i α(x⃗i +∆x⃗i, t)

=
N

∑
i=1
(γi +∆γi)α(x⃗i +∆x⃗i)

=
N

∑
i=1

γiα(x⃗i +∆x⃗i) +
M

∑
i=1

∆γiα(x⃗i +∆x⃗i)

(2.17)

Next, we assume linearity with respect to the perturbed parameters x⃗i, and perform
the following multivariate Taylor expansion, where the summation index j runs over the
M parameters of each vegetation subtype:

⟨α∗(t)⟩ =
N

∑
i=1

γi[α(A⃗i, t) +
M

∑
j=1

∆xij
∂α

∂xij

] +
N

∑
i=1

∆γi[α(x⃗i, t) +
M

∑
j=1

∆xij
∂α

∂xij

]

⟨α∗(t)⟩ =
N

∑
i=1

γiα(x⃗i, t) +
N

∑
i=1

M

∑
j=1

γi∆xij
∂α

∂xij

+
N

∑
i=1

∆γiα(x⃗i, t) +
N

∑
i=1

M

∑
j=1

∆γi∆xij
∂α

∂xij

⟨α∗(t)⟩ = ᾱ(t) +∆ᾱclim(t) +∆ᾱcover(t) +∆ᾱjoint(t)

(2.18)

To add clarity to these terms, we note that the second term ∆ᾱclim denotes the shift in
mean albedo due to shifts in the climatology, ∆ᾱcover denotes the shift due to land cover
changes only, and the final term ∆ᾱjoint is a cross term that contains the joint interaction
between the two perturbations.

2.7 Resolution Upscaling Methodology

As a starting point, we take the climatological SAF composites described in §2.4. These
pan-Arctic composites are generated in units of [% ⋅K−1] at the 500m scale. Specifically,
we are investigating the NET Snow Albedo Feedback term, as described in Definition 5.
In order to investigate the effects of resolution on our ability to resolve SAF, we take the
initial K × L composite of SAF values as our reference matrix A(1). Next, we iteratively
upscale our input matrix A1 by taking block averages.

Example: A single step in the upscaling process for a 4x4 sample matrix. Each
increment of the k index for A(k) results in a doubling of the resolution.
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Figure 2.2: Schematic showing the upscaling procedure used in this section as applied to
an input albedo grid, starting with a reference resolution of 500m and iteratively doubling
the spatial scale.

A(1) =

⎛
⎜
⎜
⎜
⎝

4 3 2 0
2 1 0 2
6 2 7 3
1 3 3 5

⎞
⎟
⎟
⎟
⎠

⇒ (
2.5 1
3 4.5

)⇒

⎛
⎜
⎜
⎜
⎝

2.5 2.5 1 1
2.5 2.5 1 1
3 3 4.5 4.5
3 3 4.5 4.5

⎞
⎟
⎟
⎟
⎠

= A(2) (2.19)

Through an iterative upscaling process (shown schematically in Fig.2.2), we construct a
set of matrices Ak corresponding to upscaled NET fields.. We analyzed iterative doubling
of the resolution from 0.5km to 512km. Next, we define the local upscaling error:

Definition 10 We introduce the Local Upscaling Error as the mean normed difference
between the original reference matrix (at 500m) and the upscaled matrix. We keep the
matrices in the same size (despite the duplicated values that can be seen in Eq.2.19) in
order to simplify the calculation of the local upscaling error. Note that each matrix is a
K ×L spatial matrix, and that Ak

ij denotes a particular pixel of the A(k) matrix.

∆Ak =
1

KL

K

∑
i=1

L

∑
j=1
∣A(1) −A(k)∣ (2.20)

26



We note further that this construction satisfies the properties of a matrix norm, as the
expression above is equivalent to a matrix norm induced by the L1 norm and divided by
the number of elements in the matrix.
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Chapter 3

Characterizing Surface Albedo
Variability and Trends Across Scales

The influence of vegetation subtypes on surface albedo has attracted considerable research
interest [1] [29] [26] [50]. In this chapter, we use remote sensing data to deepen this analysis.
The MODIS dataset at a resolution of 500m provides a long temporal window (2001-2019)
at a high resolution, which provides the opportunity to examine land-cover effects that
occur at spatial scales that models are not able to fully resolve.

Firstly, we investigate how land cover is changing over decadal timescales, and the
resulting changes in surface albedo. Our hypothesis is that these land cover shifts have a
detectable influence on SAF over the MODIS data record (2001-2019). Subsequently, we
perform climatological analysis of SAF for each vegetation subtype, using the entire spatial
domain. The motivation for this analysis is to determine the extent to which vegetation
subtype can be used as a predictor of surface albedo, and to examine the temporal and
spatial variability within subtypes.

Finally, we investigate the high resolution spatial structure of SAF, in order to test the
hypothesis that existing model grid sizes are too coarse to fully capture SAF dynamics.
We aim to use this high-resolution dataset to show that performing SAF analysis at model
grid scales introduces significant upscaling error, relative to the 500m scale provided by
the MODIS remote sensing dataset.
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3.1 Land Cover Climatology and Trends

We are interested in vegetation subtype as a predictor of albedo, and to what extent
vegetation cover affects the seasonal melt cycle and canopy effects, both of which impact
the surface albedo (and by extension, the SAF). We have computed a land cover climatology
(2001-2019) over the pan-Arctic domain, showing the percent coverage by land cover type
in Fig.3.1. Across the Arctic, land cover is dominated by roughly equal proportions of
grass, shrub and needleleaf forest, and small contributions of barren regions and broadleaf
forest.

Figure 3.1: Graph showing the relative differences in land cover composition between North
America and Eurasia, as well as the full pan-Arctic domain.

The variation between continents is considerable, as North America has more grass
(35.3%) compared to the Eurasian grassland cover (13.7%). Additionally, Eurasia has a
larger forested percentage due to deciduous needleleaf trees in the larch forests of Siberia.
We observe that non-vegetated terrain (barren and permanent snow/ice) represents a much
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larger proportion of the domain (9.1% barren, 5.3% permanent snow/ice) in North America,
with large sections of the Canadian Arctic Archipelago having barren or glaciated regions.
In contrast, the fraction of non-vegetated domain is much smaller over Eurasia (1.7%
barren, 1.4% permanent snow/ice), consisting only of a few mountain ranges and far-north
archipelagos such as Novaya Zemlya, Severnaya Zemlya and Svalbard. A visualization of
the spatial variability in vegetation subtype at the 500m scale is shown in Fig.3.2.

Overall, we can conclude that there are large differences in land cover between conti-
nents. This conclusion comes from the MODIS remote sensing dataset, and our resulting
analysis of land surface fractions γi for each vegetation subtype. We can connect this
insight with plant biology - the physical separation of the North American and Eurasian
continents has resulted in separate evolutionary pathways for forest species [51] [52]. The
intersecting effects of topography and plant evolution have lead to a marked difference in
vegetation composition.

In addition to the climatological analysis of land cover, we also perform an interannual
analysis to examine trends in vegetation composition (shown in Fig.3.3). For the most
part, these vegetation trends are slowly varying in time, with the notable exception of the
abrupt drop in deciduous forest cover in Siberia between 2017-2019, which we attribute
to wildfire effects. In contrast, we observe increases in deciduous forest area in North
America. This shows the large role of local conditions in determining vegetation changes.
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Figure 3.2: This land cover decomposition uses the LC Type 5 classification scheme from
the MCD12Q1 dataset at the 500m scale. This analysis reveals complexity in the spatial
structure of Arctic vegetation, down to the highest available resolution. We observe fractal
patterns in the vegetation, particularly at the interface between vegetation zones. One
example of such details is the speckling of deciduous and evergreen forests that we observe
in Alaska.
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Figure 3.3: Relative change in land cover for each vegetation subtype, compared to 2001
baseline. Deciduous needleleaf has been excluded from the North American plot, given
that it covers only 0.034% of the North American land area.
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3.2 Albedo Variability within Vegetation Subtypes

In order to investigate the variability within vegetation subtypes, we compute the spatial
and temporal variance for each subtype. While the rest of this work uses white-sky albedo
(WSA) for consistency with the literature [1], we include the results for black-sky albedo
(BSA) for consistency. The results are shown below in Fig.3.4.

In the resulting analysis, we obtain higher values of BSA compared to WSA. This effect
is more prominent at earlier times of the year, as well as higher latitudes. This is consistent
with the BSA-WSA bias for the Northern Hemisphere shown in the literature [53], and is
a function of the solar azimuth angle.

We also note that there is a larger temporal variance during the snow melt period (day
120-200), which corresponds to our intuition that the albedo has more temporal variance
during periods of rapid change. Furthermore, we also observe a rise in albedo for barren
regions during the month of August, which corresponds to early-onset snowfall due to the
combination of high elevation and latitude. Furthermore, we observe a separation in the
temporal mean of the three forest types (evergreen, deciduous needleleaf and deciduous
broadleaf). This is an effect coming from the influence of plant physiology on the ability of
the forest canopy to support snow cover. Based on the work performed in [3], we theorize
that evergreen forests must have lower values of either fsnow (fraction of canopy covered by
snow) or lower values of canopy gap fraction χ compared to deciduous broadleaf forests,
with deciduous needleleaf as an intermediate case.

The results for low-height vegetation, as well as barren regions, are consistent with
the results from Loranty (2011) [1]. The snow masking effect is much stronger for these
vegetation subtypes, as the structure of this vegetation does not provide a snow-free canopy,
which results in much higher values of albedo due to snow masking.
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Figure 3.4: Plot showing the spatial and temporal variability of the climatological mean
albedo for the pan-Arctic domain for each vegetation subtype. The shaded errorbars on
the plot are given by the 1σ contours of the spatial and temporal standard deviation within
each subtype.

34



3.3 SAF Climatology

We have computed a climatology of SAF using the full pan-Arctic domain over the 2001-
2019 time period, the results of which are shown in Fig.3.5. We observe that the seasonal
cycle of SAF is small for March-April, and peaks in June-July at -2.76 % ⋅ K−1. The
climatological mean SAF from April-July is −2.17% ⋅K−1. This result is larger than pre-
vious results in the literature [54] [55] [56], however this is explained due to differences
in methodology. Although some methodological considerations remain fixed (such as the
exclusion of Greenland and the definition of SAF as a monthly finite difference), there are
several important differences, which we list below.

1. Spatial Domain: In our study, we perform an analysis of SAF including all land
surface area north of 60○N, while previous studies included a much larger domain.
Fernandes et al. (2009) [54] used the Northern Hemisphere APP domain [57], while
Fletcher et al. [55] and Thackeray et al. (2016) used a domain including Northern
Hemisphere land north of 45○N. Given that the magnitude of SAF generally increases
with latitude, we expect our results to have stronger spatial mean SAF, given the
absence of low-latitude data points.

2. Inclusion of additional months: In our analysis we included an additional month
pair, extending the analysis to July/August. We found stronger SAF at high-Arctic
latitudes during this monthly transition.

3. Temporal Domain: In our analysis we used the temporal domain 2001-2019, while
Fernandes et al. studied the observational window 1982-1999. The temporal domain
for Fletcher et al. (2015) and Thackeray et al. (2016) was 2000-2004 for observational
data. In Fig.3.5 we show that Arctic SAF has an overall negative trend for SAF,
which implies that we expect stronger SAF in our more recent period of study.

4. Observational Data Source: Fernandes et al. (2009) used the AVHRR (Advanced
Very High Resolution Radiometer) APP-x (Polar Pathfinder-x) instrument as the
source of albedo data. In contrast Fletcher et al. (2015), Thackeray et al. (2016)
and this work used MODIS albedo data.

As part of our analysis, we replicated spatial plots of SAF provided in Fernandes et al.
(2009) [54], as well as Fletcher et al. (2015) [55] and performed a qualitative comparison
of the NET fields north of 60○N, where the data could be directly compared. In order to
make this comparison we restricted the seasonal domain to the months analyzed in previous
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studies. We found that the resulting plots were visually consistent with the previous results,
indicating that methodological differences were causing the discrepancy.

Additionally, we replicated a zonal plot of NET from Fletcher et al. (2015) [55] and the
Hovmöller diagram from Thackeray et al. (2016) and found the distribution of NET values
followed a similar pattern. Having performed this analysis we conclude that the results are
consistent with the previous literature, after we account for the relevant methodological
differences.

In our results for the NET term, we observe a clear negative trend in SAF over the
19-year period of study. Furthermore, the late-season melt-off in June-July has the most
negative trend in SAF, with a decrease in SAF of −0.16%/K per decade. Collectively, these
results indicate the importance of late-season snow melt to the overall SAF.

Figure 3.5: Climatological SAF and trend for the temporal period 2001-2019 over the
entire domain. The errorbars denote the 1σ temporal standard deviation, representing the
interannual variability.
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3.3.1 SAF variability by Vegetation Subtype

Using the climatological SAF as a starting point, we further decompose the SAF results
by vegetation subtype. Using our partition scheme for vegetation subtype regions Ωi, we
calculate SAF for each year (2001-2019) and each vegetation subtype. The mean, standard
deviation and trend for SAF for each vegetation subtype are shown in Fig.3.6.

We observe that barren regions show very high values of SAF (mean −8.3% ⋅K−1 for
June-July), as well as an overall negative trend, placing this vegetation subtype as an
outlier. Barren regions (4.5% of the pan-Arctic domain) contribute a disproportionate
share of the SAF relative to their small spatial extent. Similarly, grassland regions show
high SAF for June-July (-7.2 % ⋅K−1). These low-height vegetation classes provide a large
contribution to the overall mean SAF.

Given that SAF is calculated from a monthly change in albedo, it is no surprise that the
effects observed in §3.2 when we separate albedo into vegetation subtype are replicated for
SAF. Specifically, we again observe a separation into the three groups of forested regions
(evergreen, deciduous needleleaf, deciduous broadleaf), low-height vegetation (grass and
barren) as well as the intermediate case of shrubland. The melt-off over forested regions
occurs earlier in the year, leading to SAF peaking during the April-May transition. For
grassland and barren regions we observe a melt-off that occurs much later in the season
during the June-July transition.

Overall, we observe that the trends are essentially flat for the early-season melt period.
We note that these trends are linearizations, and they are plotted on top of considerable
interannual variability in SAF. One noticeable outlier is deciduous forest, which shows a
positive SAF trend for the monthly transition of May-June. The increase in the magnitude
of SAF is primarily driven by the strongly negative trends of grassland and barren regions.
Given the spatial distribution of vegetation shown in Fig.3.2, this implies high-Arctic re-
gions are highly significant in driving increases in the strength of the SAF.

3.3.2 Spatial variability in SAF

A visualization of the climatological SAF composites is shown in Fig.3.7. Generally, the
spatial distribution of the MODIS results and the intermodel mean agree, however there is
a discrepancy for the late-season melt-off. In particular, high-Arctic barren and grassland
regions show much higher results in the MODIS SAF climatology compared to the AMIP
intermodel mean.
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Figure 3.6: Mean SAF for each vegetation subtype. We observe very strongly negative
values of SAF for grass and barren regions, with shrubs as an intermediate case between
forested and grassland regions. SAF standard deviation, computed over the results from
2001-2019. We observe a clear separation in the May-June and June-July transitions,
with grass and barren regions showing a much larger standard deviation. SAF trends by
subtype, showing very different behavior depending on which vegetation subtype.
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By going to the 500m scale, we observe large values of SAF for the grass and barren
regions during the June-July transition. These SAF values (in some cases as low as -16
%/K) are well outside of the range established by previous results. Our hypothesis for these
extremely high values of SAF for the grass and barren subtype is the greater efficiency that
additional heating has on creating a melt-off transition for low-height vegetation compared
to forested regions. These values of SAF indicate a particularly strong SAF forcing for
these vegetation subtypes, as well as a need for high-resolution analysis to fully capture
these regions.

By using grid sizes that are too large to resolve this gradient, we introduce errors into
our analysis of SAF, which will be explored in more detail in §3.5.
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Figure 3.7: Climatological NET SAF from 2001-2019 over the pan-Arctic domain.
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3.4 Decomposition of SAF Changes

3.4.1 Analytic Derivation

In this section, we extend the analytic decomposition developed in §2.5 for albedo, and
apply it to SAF directly. We wish to separate the effects of land cover changes from shifts
in climatology, and use this framework to perform a retrospective analysis of SAF changes
from 2001-2019.

Consider our domain Ω, as well as the partitions into M subdomains Ωi according
to vegetation subtype. In this work, we use the MCD12Q1 Land Cover Type dataset.
Additionally, must consider that land cover types change on a yearly basis (as this is a
yearly product), so we add an additional temporal index t to denote the year. The index
set t ∈ [1,19] corresponds to the years [2001,⋯,2019] for our dataset.

Taking the spatial average of the NET term of the snow albedo feedback, we use the
Eq.2.6 over the domain Ω, where dA is an area element.

⟨NETt⟩ = ∫
Ω
NETt(x, y)dA (3.1)

As we are interested in the mean, we split the integral over each subtype (not necessarily
contiguous), and take the following approximation, taking the average for each subtype:

⟨NETt⟩ =
M

∑
i
∫
Ωi

NETt(x, y)dA

≈
M

∑
i=1

γi,t⟨NETi,t⟩

(3.2)

With this expression for the spatial mean of the NET term, we consider a perturbation
of the land surface area as well as the subtype mean NET:

γ∗i = γi +∆γi

NET∗i = NETi +∆NETi

(3.3)

This allows us to explicitly construct the change in NET due to land cover changes
∆NETcover, changes due to climatological shifts ∆NETclim as well as the joint interaction
∆NETjoint. For the next set of equations, all of these deltas are assumed to be spatial
averages, and we drop the angle brackets for simplicity.
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∆NETcover =
N

∑
i=1

∆γiNETi

∆NETclim =
N

∑
i=1

γi∆NETi

∆NETjoint =
N

∑
i=1

∆γi∆NETi

(3.4)

Using the analytic decomposition from the previous subsection, our goal is to decompose
the change in NET from 2001 to 2019 over vegetated regions. We combine the results from
§3.1 for land cover changes γi with the linearized SAF trends shown in Fig.3.6 to compute
the decomposition shown in Eq.3.4. The results of this decomposition are shown in Fig.3.8.

Our original hypothesis was that land cover changes have a significant impact on vege-
tation. We find that these land cover changes have a small but nonzero contribution to the
overall SAF, particularly in the May-July months. We find that for the May-June tran-
sition, ∆NETcover contributed 8.0% of the total change in NET, and over the June-July
transition the percentage of SAF change caused by land cover effects was 10.1%.
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Figure 3.8: This plot shows the decomposition of the mean change in SAF between 2001-
2019 averaged over the subtypes of deciduous forest, evergreen forest, shrub, grass and
barren regions. We observe negligible effects due to land cover changes (i.e. a change in
vegetation subtype) until the May-July months, at which point it becomes a significant
contributor. Interestingly, land cover changes have a net damping effect on the snow albedo
feedback during these months, leading to a cooling effect that reduces the strength of the
SAF.
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3.5 Effects of Resolution on SAF Errors

We have two related questions:

1. What are the spatial scales of variability in SAF?

2. What is the influence of resolution on local and global errors in SAF?

The use of high-resolution snow and vegetation data involves considerable computa-
tional overhead at the 500m and 1km level. Therefore, we wish to first demonstrate that
making use of these datasets at the maximum resolution provides significant benefits in
terms of an ability to reconstruct surface albedo αsfc as well as the SAF (Snow Albedo
Feedback).

Having computed a series of monthly composites for climatological SAF, we aim to
degrade the resolution of these fields to observe the local upscaling error, as defined in 10.
By starting at the 500m scale, and iteratively doubling the size of the grid up to 512km,
we observe the resulting impacts on SAF accuracy.

After computing the local upscaling error ∆NET(k) for each monthly transition between
February and July, the results can be seen in Fig.3.9. We observe a very sharp increase
in error between the spatial scales of 500m and 100km. In contrast, the larger spatial
scales contribute much less overall to the error. We also note that the June-July monthly
transition appears as an outlier, showing a much higher degree of spatial variability at all
spatial scales compared to other monthly transitions.

We have defined an analogous local upscaling error for the input albedo fields αsfc,
which resulted in similar error scaling. Given that the definition of the NET term involves
a spatial average of surface temperature over the entire pan-Arctic domain, upscaling the
temperature field will not impact the NET term. Thus we can conclude that high-resolution
spatial heterogeneity in the albedo field yields the same heterogeneity in the reconstructed
SAF NET field.

The need for high-resolution analysis of SAF can be thought of as the combination of
two effects. Firstly, complex coastline topography requires high spatial resolution in order
to properly separate land pixels from water. A good example of this is the Canadian Arctic
Archipelago. Secondly, within the land regions we can have high spatial heterogeneity of
SAF within a small spatial extent.
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Figure 3.9: Local upscaling error for the NET SAF component as a function of grid reso-
lution.

3.5.1 Influence of Resolution on Global SAF Error

Having established a high degree of spatial variability at grid sizes smaller than model
cells (≈100km), we wish to calculate the impact of local upscaling error on global error in
SAF. That is, to what extent do these high-resolution local errors contribute to bias in the
pan-Arctic estimate for SAF?

Given that June-July are the months where the spatial variability in SAF is largest, we
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perform a spatial visualization of the local upscaling error in Fig.3.10. First we compute
SAF at the 500m scale, then degrade the resolution of the input albedo fields to 100km
and perform the SAF calculation at the model grid scale. We observe a mean absolute
local error of 0.773% ⋅K−1 over the entire domain.

However despite these large local errors, this does not translate into a significant bias
in the pan-Arctic estimate for SAF. The results for the 500m and 100km SAF fields are
quite similar, with only a 2.23% (relative) change in the overall result.

< SAF500m >= −2.617% ⋅K
−1 (3.5)

< SAF100km >= −2.559% ⋅K
−1 (3.6)

Despite the 100km grid failing to capture the high-resolution dynamics, these local
errors largely cancel each other out, resulting in a only a small global error ∆SAF =
0.058% ⋅K−1. We have demonstrated the existence of high-resolution spatial structure in
SAF, however we cannot conclude that resolution is a driving factor behind the intermodel
spread in SAF.

Our original hypothesis predicted that vegetation subtype was the primary source of
spatial variability in SAF. However, when comparing Fig.3.2 and Fig.3.10, we observe
that many areas of high variability are found in mountainous regions with sharp elevation
differences, such as the Arctic Cordillera and the Scandinavian Mountains. This indicates
that topography also plays a role in high-resolution SAF features.
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Figure 3.10: Spatial plot of local upscaling error for June-July. Indicates difference between
500m and upscaled results, with values in red corresponding to a stronger SAF at the 500m
scale.
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Chapter 4

The Role of Vegetation in SAF
Intermodel Spread

Using the CMIP6 AMIP (Atmospheric Model Intercomparison Project) data described in
§2.1.2, we use the methodology described in §2.5 to generate an ensemble of 24 models. This
explores the link between vegetation properties and SAF, with a particular focus on Leaf
Area Index (LAI). First, we perform an analysis of LAI spread within the CMIP6 ensemble,
and compare the results to MODIS observational data. We perform a similar intermodel
comparison to examine model SAF spread. Finally, we use both datasets to show that
SAF has a logarithmic dependence on LAI. We fit logarithmic curves to the LAI/SAF
relationship for each model, and find considerable intermodel spread in the values of the
fit parameters.

4.1 Analysis of LAI for the CMIP6 Ensemble

LAI is a key determinant of albedo, as shown in [3] for the CMIP5 ensemble. In this work,
Wang et al. demonstrated that albedo has high sensitivity to LAI biases, particularly
for low values of LAI. The analytic results were specific to the CLASS (Canadian Land
Surface Scheme) model, however this paper also demonstrated the link between LAI biases
and albedo bias for other models in the CMIP5 ensemble. We aim to further deepen this
investigation by updating the results for CMIP6, and extending the analysis to include the
link between LAI and SAF.

In Fig.4.1, we have performed a zonal comparison of LAI for each of 24 members of the
CMIP6 ensemble, as well as the MODIS observational dataset. We observe that model LAI
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Figure 4.1: Comparison of LAI spread within the AMIP ensemble.

north of 70○ is consistent with MODIS results, while the intermodel mean is considerably
higher than MODIS results between 60N and 70N. This latitude band contains large regions
of boreal forest (as shown in Fig.3.2). This diagnostic implies that there is considerable
spread in how different models represent these forested regions.

The fact that MODIS observations show lower LAI values over forested regions than the
intermodel mean is consistent with recent results [58] showing MODIS LAI has considerably
lower values of LAI compared to ground measurements. The impact of models having
higher LAI is a corresponding decrease in albedo, particularly earlier in the melt season
(Feb-Apr). We conclude this based on our results in Fig.3.4 showing lower albedo for forest
subtypes compared to vegetation-free regions. This is consistent with [3] demonstrating
that increased LAI leads to decreased surface albedo.
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4.1.1 Multi-model Mean and Intermodel Spread

In Fig.4.2 we have performed a seasonal climatology of LAI, showing the mean and stan-
dard deviation over the entire spatial domain, from 2001-2014. We observe that the regions
covered by evergreen needleleaf, particularly Scandinavia/Russia west of the Ural moun-
tains show large spread year-round. Additionally, in July there exists large disagreement
not only in evergreen forest regions but in Siberian shrub/grassland regions.

Within the 24-member AMIP ensemble, we have a few notable outliers such as EC-
Earth-CC, EC-Earth-Veg and CMCC-CM2-SR5. In this section, we explain the behavior
of the outlier models using the vegetation datasets. In this section, we perform an analysis
using LAI and vegetation subtype on 3 models: ACCESS-ESM1-5, CMCC-CM2-SR5 and
EC-Earth3-CC. We are limited to an analysis of these models due to the availability of
vegetation subtype data, shown in Table 2.2. Leaf Area Index (LAI) and vegetation subtype
can both be used as predictors of albedo, however they are not completely independent
quantities.

In order to investigate how different CMIP6 models represent vegetation subtype, we
have first performed a land cover climatology in Fig.4.4, excluding glaciers and bodies of
water. We observe that the CMCC-CM2-SR5 model is close to the MODIS dataset, how-
ever the ACCESS-ESM1-5 model combines grassland and shrub into a single category. In
the case of the EC-Earth3-CC model [59], we see considerable disagreement with obser-
vational data, as 88% of the domain is represented as barren, as shown in Fig.4.1. The
reason for this discrepancy is that vegetation is used as a tunable parameter in ESM model
development, as vegetation provides a key control on surface albedo [26].
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Figure 4.2: Spatial representation of seasonal mean and standard deviation for LAI, where
the standard deviation is taken for N=24 models for each point in the domain.
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Figure 4.3: Grid plot showing March-July LAI climatology from 2001-2014 for the 24
ensemble members, as well as MODIS remote sensing data.
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Figure 4.4: Land cover climatology for 2001-2014
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4.2 SAF Results for CMIP6 Ensemble

A clear difference between MODIS observational and the AMIP experiments is the strength
of the Snow Albedo Feedback, particularly during the June-July transition. The MODIS
observations indicate consistently stronger SAF values than predicted over the months
June-July, shown in Fig.4.5. This implies that existing models underestimate the surface
radiative heating caused by the Snow Albedo Feedback, as a stronger SAF will produce
increased warming.

For the Feb-March transition, the intermodel mean shows unphysical values of SAF,
which is due to the behavior of the EC-Earth3-CC and EC-Earth3-Veg models. For this
reason, we exclude these models from our ensemble analysis of SAF. We explore this in
further detail in the case studies in §4.2. Furthermore, we perform a spatial standard
deviation of the SAF results in Fig.4.6. We find the areas where the models disagree the
most correspond to the MODIS barren/grassland types. This indicates a need for a more
careful approach to parametrizing radiative feedbacks in these high-Arctic subtype regions.
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Figure 4.5: Comparison of observational (MODIS) and model ensemble SAF climatologies.
Note that both EC-Earth3-Veg and EC-Earth3-CC have been excluded from the ensemble
due to unrealistic values of temperature.
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Figure 4.6: Intermodel standard deviation of 2001-2014 SAF climatology.
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4.3 Link Between Variability in LAI and SAF

4.3.1 Intersection Between Vegetation and Surface Characteris-
tics

Wang et al. (2016) [3] performed an analysis of the seasonal cycle of albedo and LAI for the
CMIP5 ensemble over a subdomain of Eurasia. We repeated this analysis (not shown) for
CMIP6 and observed the spread of LAI and Albedo are comparable, showing similar ranges
for CMIP5 and CMIP6. This indicates that intermodel spread in LAI and albedo is an
ongoing issue for the current generation of climate models. Subsequently, we extended this
analysis ot the entire pan-Arctic domain for the 24 CMIP6 models in our ensemble, and
included SAF and surface temperature as well, the results of which are shown in Fig.4.7.

The results from this analysis are consistent with the spatial plots in Fig.4.5, in that
there is a clear discrepancy in SAF between MODIS observational results and the inter-
model mean for the June-July transition, with observational results showing higher values
of SAF than the intermodel mean during this period. Additionally, we observe a signifi-
cant discrepancy in early-season LAI values for MODIS and model data. We note that the
MODIS mean LAI for Feb-April is 0.083, while the intermodel mean for the same period
is 0.537.

The Earth3 models are clear outliers in terms of representation of vegetation. Combined
with the vegetation subtype analysis that shows the EC-Earth3-CC model as 88% covered
by barren regions, we can conclude that these models severely underestimate LAI. Another
outlier is the CMCC-CM2-SR5 model, which shows very high values of SAF over forested
regions, which is not consistent with either the MODIS observational data or the intermodel
mean.

In addition to being an outlier for vegetation, the EC-Earth3-CC model (as well as EC-
Earth3-Veg) are outliers for representing Arctic temperatures. While other models show a
monthly temperature increase between 5−7○C for the Feb-Mar transition, the EC-Earth3-
CC model has a monthly delta of only ∆T = 0.013○C for these months. Given that the
temperature difference is the denominator in Definition 5, this yields nonphysical results
for NET during these months.

We observe that the monthly temperature differences (shown in Table 4.1) in the
MODIS dataset are inconsistent with the intermodel mean, while the data provided by
Berkeley Earth shows good agreement. Previous validation work [60] has shown MODIS
overestimates daytime LST. Given that the ∆T values are larger for MODIS, this implies
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Monthly ∆T Feb-Mar Mar-Apr Apr-May May-Jun Jun-Jul Jul-Aug
MODIS 8.84 10.50 12.37 13.48 4.13 -4.46
Berkeley 6.59 9.58 10.21 8.57 3.59 -2.76

Table 4.1: Monthly temperature differences, comparing the two observational datasets
(MODIS and Berkeley Earth).

our results may be underestimating SAF (since ∆T appears in the denominator). How-
ever, this does not change our conclusion that observations show stronger SAF than the
intermodel mean.

4.3.2 Empirical Model of the LAI-SAF Relationship

For this analysis, we take the maximum annual SAF at each grid cell. We plot the resulting
distribution of points (for all models combined) in a histogram shown in Fig.4.8. We
observe that there are no regions with high LAI that show strong SAF values. This implies
that vegetation cover is protective against high SAF values. There is a straightforward
interpretation of this result in terms of canopy effects - as shown in Fig.3.4, we note the
albedo contrast between αmax and αmin over the seasonal cycle is much smaller for forested
regions than for low-height vegetation.

Given that the numerator of the NET term of the Snow Albedo Feedback is a monthly
albedo difference, this places a hard limit on the maximum strength of the SAF for forested
regions, since the maximum SAF for a given grid point is bounded by the following ex-
pression:

NET ≤
αmin − αmax

<∆T >
(4.1)

Subsequently, we have used the maximum SAF values from the CMIP6 AMIP ensemble
and fit curves to each model individually. We fit these data points to logarithmic curve with
two fit parameters (shown in Eq.4.2), excluding values with LAI ≤ 0.1 to avoid singular
values close to zero. Based on these results shown in Fig.4.10, we conclude that the
strength of SAF decreases as a function of LAI, and that the relationship is well captured
by a logarithmic curve. This is consistent with results in [14] showing saturation effects
in the LAI-albedo relationship. The physical interpretation of this response curve is that
forested regions have a smaller difference between minimum and maximum albedo due to
canopy masking, which implies a constraint on the maximum NET as shown in Eq.4.1.
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Figure 4.7: Extension of [3] for the entire spatial domain north of 60N, from 2001-2014.
The EC-Earth3 SAF results are omitted for Feb-Mar due to the singular behavior caused
by the unexpectedly small temperature difference ∆T = 0.013○C that EC-Earth3 models
show for these months.
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Figure 4.8: Relationship between LAI and SAF for all models, plotted as a density his-
togram.
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Figure 4.9: Spatial plot of minimum SAF over the seasonal cycle for INM-CM4-8 and
INM-CM5-0.

SAF(LAI) = a ⋅ log(LAI) + b (4.2)

We note that the fit parameters a, b characterizing the logarithmic relationship between
LAI and SAF differ considerably between models (shown in Table 4.2). This demonstrates
that we also have spread on the functional relationship between LAI and SAF between
models, and that the vegetation-driven spread in SAF is not simply due to different LAI
inputs, but also results from differences in how models parameterize albedo as a function
of LAI.

We have also identified two outliers from the same modelling group, INM-CM4-8 and
INM-CM5-0, which show a completely different relationship between LAI and SAF. Given
that the MODIS dataset (shown as a solid black line in Fig.4.10) clearly establishes a pos-
itive relationship between LAI and SAF, we conclude that these models do not accurately
represent the relationship between vegetation and SAF. In particular, we have investigated
the spatial distribution of SAF for the INM models (shown in Fig.4.9), and we observe that
the resulting SAF fields are spatially inconsistent with MODIS SAF results. In particular
we find that the INM models show grassland and barren regions have lower SAF than
forested regions, which is inconsistent with observational results.

In order to test the extent to which the LAI vs. SAF relationship is monotonic, we
have performed a calculation of the Spearman rank correlation coefficient, the results
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of which are shown in Table 4.2. We observe that for most models, the correlation is
high, indicating a robust relationship between LAI and SAF. In general, the LAI-SAF
relationship observed in these models is a result of how diverse models parametrize albedo
as a function of surface vegetation. This indicates the need for additional diagnostics of
the LAI-albedo parametrization on outlier models such as INM-CM4-8, INM-CM5-0 and
CMCC-CM2-HR4.
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Figure 4.10: Relationship between LAI and SAF, with each model fit to a logarithmic
function of the form f(x) = a log(x) + b.
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Model a ∆a b ∆b Spearman R
ACCESS-ESM1-5 1.1094 0.0337 -1.6281 0.0357 0.834
BCC-ESM1 1.1573 0.0389 -2.8628 0.0351 0.805
CAMS-CSM1-0 1.099 0.0382 -1.9642 0.0399 0.827
CESM2-WACCM 1.1478 0.0494 -2.6167 0.0475 0.781
CESM2 1.107 0.0487 -2.6839 0.0461 0.776
CIESM 1.3463 0.0951 -2.9524 0.0664 0.488
CMCC-CM2-HR4 0.9776 0.1233 -4.2431 0.0769 0.278
CMCC-CM2-SR5 0.9007 0.0478 -2.8683 0.0456 0.655
CanESM5 0.9496 0.0324 -1.9507 0.0468 0.777
E3SM-1-0 1.3964 0.072 -3.1311 0.0654 0.547
FGOALS-g3 1.3554 0.1235 -3.3983 0.0689 0.37
GISS-E2-1-G 1.3637 0.0899 -2.9559 0.0648 0.527
INM-CM4-8 -0.1154 0.0299 -2.263 0.0312 -0.257
INM-CM5-0 -0.11 0.0297 -2.154 0.0295 -0.286
IPSL-CM6A-LR 0.4844 0.0333 -1.9615 0.0367 0.547
KIOST-ESM 0.7835 0.0596 -3.5736 0.0694 0.647
MPI-ESM-1-2-HAM 0.6947 0.0303 -1.8437 0.0314 0.736
MPI-ESM1-2-HR 0.6116 0.0254 -1.8907 0.0231 0.806
MPI-ESM1-2-LR 0.7415 0.0296 -1.9599 0.027 0.824
NorESM2-LM 1.1727 0.0452 -2.6169 0.0492 0.82
SAM0-UNICON 2.0091 0.1512 -3.8994 0.1007 0.477
TaiESM1 0.9249 0.0538 -2.0063 0.0607 0.734
Intermodel Mean 0.764 0.017 -2.706 0.016 0.4678
MODIS (obs) 1.367 0.001 -2.691 0.001 0.2885

Table 4.2: Statistics for logarithmic fit coefficients, along with error signifying 95% con-
fidence interval (a −∆a, a +∆a) and correlation coefficient. These coefficients were fit to
a logarithmic curve for each model using a weighted least-squares fit in MATLAB. The
Spearman rank coefficients represent the monotonicity of the relationship between LAI and
SAF for each model.
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Chapter 5

Conclusions

Radiative feedback processes such as Arctic amplification are key drivers of climate change.
In this work, we have demonstrated using MODIS remote sensing data that SAF is stronger
than predicted by the CMIP6 ensemble of climate models. Furthermore, we were able to
identify that this discrepancy is primarily due to strong feedbacks in high-Arctic grassland
and barren regions. Using high-resolution remote sensing data, we show that SAF in these
vegetation zones is as strong as −16% ⋅ K−1 in certain regions of Nunavut and Siberia.
These features are present in areas of complex local topography which model grid sizes are
insufficient to resolve. Our observational results are consistent with the previous literature
once we account for differences in methodology. In this work, we use a restricted spatial
domain (we analyze all land north of 60○N, as opposed to 45○N in previous work) and
extend the SAF analysis to July-August in order to capture late season melt-off.

We found that vegetation subtype exerts a strong influence on surface albedo, and by
extension SAF. We have extended the results of Loranty (2016) [1] to show that for a
given vegetation type, the seasonal cycle of albedo is logistic in nature. However, the large
spatial variability within vegetation subtypes necessitates the use of additional vegetation
predictors such as LAI, as vegetation subtype is insufficient on its own as a predictor.

Using an analytic decomposition, we were able to provide indirect evidence for changes
in albedo linked to shifts in land cover. However, the magnitude of this effect (10% of the
total SAF change for June-July can be attributed to land cover changes) was smaller than
anticipated.

The influence of resolution on error in resolving SAF was a key focus of this work.
Current climate models such as the Community Land Model (CLM) [53] address subgrid
dynamics by using a fractional partitioning scheme for each grid cell. Given that the
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SAF depends on the interaction between two high-resolution fields (vegetation and snow
cover), the fractional scheme cannot fully account for high-resolution detail. We have
demonstrated that the mean local upscaling error for an 100km model grid cell is large,
reaching 0.773% ⋅ K−1 for June-July, indicating considerable variability at spatial scales
smaller than 100km. However, we found a cancellation of errors when applied to the pan-
Arctic mean SAF, yielding a global error of ∆NET = 0.058% ⋅K−1. This indicates that
while there is large variability in SAF at local scales, due to cancellation of errors, using
low-resolution albedo fields does not introduce significant error to the pan-Arctic mean
SAF.

By performing a comparison between observational data and the CMIP6 ensemble
we found that between 60N and 70N, the intermodel mean LAI is much larger than the
MODIS results. This indicates that the CMIP6 ensemble is currently over-estimating LAI
for evergreen forests. Additionally, we demonstrate that LAI provides a key constraint on
the maximum strength of the SAF, with forested regions showing much lower SAF than
barren or grassland regions. Specifically, LAI and SAF show a logarithmic relationship,
with saturation occurring for high LAI values.

Given the ongoing relevance of SAF to Arctic warming, and the large spread in the
SAF for CMIP6 models, our work provides clear motivation for further investigation of
model vegetation-albedo parametrizations, in order to better constrain the spread on the
SAF.

5.1 Future Work

A key focus of this work was investigating the influence of resolution on SAF errors.
Although we have shown that increasing the resolution of albedo fields does not significantly
change the result for pan-Arctic mean SAF, this leaves open the possibility that there are
high-resolution interactions at sub-model grid scales between vegetation fields (vegetation
subtype, LAI) and snow cover which yield global errors in SAF. One possible investigation
would be to start with a parametrization scheme for albedo as a function of vegetation
and snow cover, and explore the impact of increasing resolution on both local and global
errors in albedo.

One of the research questions in this work was the extent to which changes in vege-
tation impact SAF. We propose an extension of this investigation via model simulations
by extending the methods used in [3] in order to apply a prescribed vegetation field to
a climate model. This would provide a clearer understanding on the impacts of dynamic
vegetation on SAF.
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Arve Elvebakk, William A. Gould, Adrian E. Katenin, Sergei S. Kholod, Carl J.
Markon, Evgeny S. Melnikov, Natalia G. Moskalenko, Stephen S. Talbot, Boris
A. (�) Yurtsev, and The other members of the CAVM Team. The Circumpolar Arc-
tic vegetation map. Journal of Vegetation Science, 16(3):267–282, 2005. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1654-1103.2005.tb02365.x.

[49] John Dwyer and Gail Schmidt. The MODIS Reprojection Tool. In John J. Qu, Wei
Gao, Menas Kafatos, Robert E. Murphy, and Vincent V. Salomonson, editors, Earth
Science Satellite Remote Sensing: Vol. 2: Data, Computational Processing, and Tools,
pages 162–177. Springer, Berlin, Heidelberg, 2006.

[50] Xiaoning Zhang, Ziti Jiao, Changsen Zhao, Ying Qu, Qiang Liu, Hu Zhang, Yidong
Tong, Chenxia Wang, Sijie Li, Jing Guo, Zidong Zhu, Siyang Yin, and Lei Cui. Review
of Land Surface Albedo: Variance Characteristics, Climate Effect and Management
Strategy. Remote Sensing, 14(6):1382, January 2022. Number: 6 Publisher: Multi-
disciplinary Digital Publishing Institute.

[51] V. L. Semerikov and M. Lascoux. Genetic relationship among Eurasian and American
Larix species based on allozymes. Heredity, 83:62–70, July 1999. Patent Number: 1
Place: London Publisher: Nature Publishing Group WOS:000081751500008.

[52] X. X. Wei and X. Q. Wang. Phylogenetic split of Larix: evidence from paternally
inherited cpDNA trnT-trnF region. Plant Systematics and Evolution, 239(1-2):67–77,
July 2003. Place: Vienna Publisher: Springer-Verlag Wien WOS:000184452600005.

73



[53] Keith W. Oleson, Gordon B. Bonan, Crystal Schaaf, Feng Gao, Yufang Jin,
and Alan Strahler. Assessment of global climate model land surface albedo
using MODIS data. Geophysical Research Letters, 30(8), 2003. eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2002GL016749.

[54] Richard Fernandes, Hongxu Zhao, Xuanji Wang, Jeff Key, Xin Qu, and Alex
Hall. Controls on Northern Hemisphere snow albedo feedback quantified using
satellite Earth observations. Geophysical Research Letters, 36(21), 2009. eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL040057.

[55] Christopher G. Fletcher, Chad W. Thackeray, and Tonya M. Burgers. Evaluat-
ing biases in simulated snow albedo feedback in two generations of climate mod-
els. Journal of Geophysical Research: Atmospheres, 120(1):12–26, 2015. eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD022546.

[56] Chad W. Thackeray and Christopher G. Fletcher. Snow albedo feedback: Current
knowledge, importance, outstanding issues and future directions. Progress in Physical
Geography: Earth and Environment, 40(3):392–408, June 2016. Publisher: SAGE
Publications Ltd.

[57] James Maslanik, Charles Fowler, Jeffrey Key, Ted Scambos, Todd Hutchinson, and
William Emery. AVHRR-based Polar Pathfinder products for modeling applications.
Annals of Glaciology, 25:388–392, 1997. Publisher: Cambridge University Press.

[58] Yunping Chen, Shuaifeng Jiao, Yuanlei Cheng, Haichang Wei, Lin Sun, and Yuan
Sun. LAI-NOS: An automatic network observation system for leaf area index based
on hemispherical photography. Agricultural and Forest Meteorology, 322:108999, July
2022. Place: Amsterdam Publisher: Elsevier WOS:000805255100001.
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