
Path Planning Framework for

Unmanned Ground Vehicles on

Uneven Terrain

by

Olzhas Adiyatov

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Olzhas Adiyatov 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, I address the problem of long-range path planning on uneven terrain for

non-holonomic wheeled mobile robots (WMR). Uneven terrain path planning is essential for

search-and-rescue, surveillance, military, humanitarian, agricultural, constructing missions,

etc. These missions necessitate the generation of a feasible sequence of waypoints, or

reference states, to navigate a WMR from the initial location to the final target location

through the uneven terrain. The feasibility of navigating through a given path over uneven

terrain can be undermined by various terrain features. Examples of such features are loose

soil, vegetation, boulders, steeply sloped terrain, or a combination of all of these elements. I

propose a three-stage framework to solve the problem of rapid long-range path planning. In

the first stage, RRT-Connect provides a rapid discovery of the feasible solution. Afterward,

Informed RRT* improves the feasible solution. Finally, Shortcut heuristics improves the

solution locally. To improve the computational speed of path planning algorithms, we

developed an accelerated version of the traversability estimation on point clouds based

on Principal Component Analysis. The benchmarks demonstrate the efficacy of the path

planning approach.

iii

Acknowledgments

I would like to thank my supervisors Professors Stephen Smith and Baris Fidan for the

guidance through my time at University of Waterloo. I would also like to thank my

colleagues in the Autonomous Systems Laboratory for the insightful discussions. I would

like to thank Frank, Barry, Armin, Rinat, Assylbek, and Iliyas for being good friends.

Finally, I would like to thank my family for their love and support.

iv

Dedication

This is dedicated to my family.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 4

1.3 Organization . 4

2 Background and Literature Survey 5

2.1 Terrain representation and traversability measures 6

2.1.1 Elevation grid maps . 6

2.1.2 Meshes . 7

2.1.3 Point clouds and voxel maps . 7

2.1.4 Traversability and cost maps . 8

2.2 Motion planning . 9

2.2.1 Graph search algorithms . 10

2.2.2 Artificial potential fields . 11

vi

2.2.3 Sampling-based planners . 12

2.2.4 Learning-based planners . 14

3 Ground Vehicle Traversability Assessment for Uneven Terrain 15

3.1 Problem definition and preliminaries . 17

3.2 Methodology . 20

3.3 Experiments . 24

3.4 Conclusion . 26

4 Multistage Path Planning on Uneven Terrain 29

4.1 Problem formulation . 33

4.1.1 Framework . 35

4.2 Experiments and results . 38

4.3 Conclusion . 39

5 Conclusion 41

5.1 Future work . 41

References 43

APPENDICES 51

A 3D rigid body rotation 52

B Path planning algorithms 54

vii

List of Tables

4.1 Results of the benchmark of the proposed path planning framework. 39

viii

List of Figures

1.1 General architecture of the Autonomous Navigation system for an Unmanned

Ground Vehicle. 3

3.1 Geometrical aspects of traversability. From left to right, (a) robot moving

on a plane, (b) robot moving on gravel (c) robot moving up a hill (also risk of

losing stability (tip over)), (d), (e) are examples of completely untraversable

regions. 16

3.2 Configuration space of the robot. 18

3.3 Eigenvalues hint at the spread of the data point. In (a), we can observe a

plane, while λ1 ≈ λ2 � λ3. In case (b) all eigenvalues are approximately

the same number; hence we are dealing with a spherical surface. 21

3.4 Roughness computation. The red points are the point cloud we obtain with

the mapping, and the black lines represent the geometry of the environment.

The green line is the computed plane from the point set. ~e3 is the normal

to the computed plane. λ3 is the smallest eigenvalue of PCA. 23

3.5 Computation time for traversability computation 24

3.6 The linear relation of variance and the maximum step (roughness) in the

terrain patch. 25

3.7 Green to yellow denotes candidates for traversable regions, using only the

variance metric to decide the traversability of the point cloud patch. . . . 27

ix

3.8 Path planning solution for the ground vehicle based on the original traversabil-

ity estimation and proposed modification. (b) and (d) are point clouds of

the examined points, where green points are the traversable regions, blue

ones are the detected untraversable region via the original method and the

red points are the early untraversable region detections. 28

4.1 Short-horizon look ahead strategy is suboptimal [30, p. 642]. The graph

depicts the case where short-horizon planning can result in a disastrous

result of getting stuck. The left turn would be a better option, compared

to a strategy that minimizes the distance between the robot and the goal

position. 30

4.2 Block diagram of the proposed path planning framework. 35

4.3 Yellow path is an initial path generated by RRT-Connect. The cyan path

is the optimized path generated by RRT*. The red path is a final path

generated by the Shortcut heuristic algorithm. 40

B.1 (B.1a) Sample a random node qrand. (B.1b) Find a nearest neighbour node

qnearest in Tmajor. (B.1c) extend() computes qnew that is ε distance from

qnearest along the motion to qrand. (B.1d) Try to connect Tminor to q. (B.1e)

Successful connection we terminate the algorithm. (B.1f) Solution path is

path with yellow nodes and green edges. 55

B.2 First sample and find a nearest neighbour to the randomly sampled node

(B.2g). Determine the valid state you can add to the tree. Find the best

parent for the candidate node. Reroute all the neighbouring nodes through

the new node if it results in a better cost from root to the neighbouring node. 57

x

Chapter 1

Introduction

Over the past 60 years, robotics and automation have demonstrated successful results in

various aspects of human life. Robotic arms began replacing people in dirty, dull, and

dreary jobs in the 1970s. However, until the beginning of the 21st century, robots were

mainly deployed only in a controlled industrial setting or research laboratories at universi-

ties. Starting from 2005, owing to developments in computer hardware, sensors, and actu-

ators, we have observed great progress in robotics. Interestingly, the advancement occurs

during the same period as the DARPA Grand Challenge. The challenge has demonstrated

the efficacy of self-driving vehicles. Simultaneously, quadrotors became ubiquitous, and

they have found applications in digital photography, videography, and entertainment.

The Fukushima accident in 2011 and the COVID-19 outbreak have shown the im-

portance of autonomous robots for disaster management. Robotic systems can provide

significant assistance during anthropogenic and natural disasters, through search and res-

cue. Unmanned Aerial Vehicles (UAVs) are commonly used for surveillance of the disaster

zone [66], serving as ”eyes” for Unmanned Ground Vehicles (UGVs), which will undertake

the rescue part of the operation. A UAV/UGV autonomous cooperation is an interesting

robotic system configuration for search-and-rescue robotics (SAR) [62]. SAR, like any other

field of robotics, includes several distinct aspects: mapping that enables us to represent

the surroundings, localization that enables us to find our robot on the previously generated

map, and planning that produces a sequence of actions we need to undertake to reach the

1

goal, and obtain controls that ensure the execution of the generated plan. Autonomous

UGVs are also required for Sample Return Robot scenarios [15].

Path planning is a major problem in autonomous robotics. Solving a path planning

problem results in a sequence of safe robot states from a start state to a goal. The basic

safety index for path planning is an absence of obstacle collisions.

In the case of an autonomous ground vehicle that must navigate a terrain, we can

take into consideration the stability of the autonomous ground vehicle, the operator’s

safety/comfort, and/or clearance from obstacles. Uneven terrain delivers a significant

hindrance to ground robot mobility. For a successful traversal of uneven terrain, we should

consider geometry, the material of the terrain. For example, a wheeled ground vehicle, due

to its physical capabilities, cannot traverse a very steep hill, or the wheels can get stuck in

the mud. A careful reader may notice that the mechanical design of a ground robot greatly

affects the traversability of uneven terrain, i.e., legged robots are better at crossing uneven

terrain. Hence, path planning on uneven terrain is an interesting problem to tackle from

various aspects including mapping, planning, and control of the robot in the environment.

1.1 Motivation

Recently, self-driving car navigation in a structured environment has made significant

progress due to advancements in computation and usage of deep learning [47]. Navigation

in structured environments allows the exploitation of simplifications, such as travelling on

a flat plane. Self-driving cars treat obstacles as objects that should be avoided. However,

unlike navigation in a structured environment, rough terrain navigation requires assess-

ment of the environment for navigable regions. The notion of an obstacle in rough terrain

depends on the mobile robot itself. Navigable regions are different in a way that flat ter-

rain is easier to traverse compared to rugged terrain or sloped terrain or a combination of

both. The function that determines the navigability of terrain is called the traversability

assessment function. Autonomous navigation on uneven terrain has a wide variety of appli-

cations. Search and rescue, space exploration. Autonomous navigation for an unmanned

ground vehicle consists of well-known and defined subsystems:

2

• Perception, Mapping, and Localization

• Path or Motion Planning and Control

The perception subsystem consists of sensors mounted on the robot. The perception sub-

system is utilized as an input to the mapping and localization subsystem. These two

components update the internal model of the robot and the surrounding world. The robot

and world model are used further for planning and control. Planning generates a motion

plan that is executed by a control subsystem. Fig. 1.1 outlines the block diagram for the

autonomous navigation system. Currently, sampling-based planners [37] are a state-of-

Figure 1.1: General architecture of the Autonomous Navigation system for an Unmanned
Ground Vehicle.

the-art approach for the solution of motion planning problems. In short, sampling-based

planners iteratively explore the map in a random fashion. To determine a solution this

kind of planner is executed for a considerable number of iterations. Hence, it requires each

of the subroutines to be computationally inexpensive, so that one can have reasonable

3

execution times to obtain solution paths. The following section outlines the contribution

of this thesis.

1.2 Contribution

The main contribution of the thesis is the design of a path planning framework for uneven

terrain navigation. The key aspects of the proposed path planning framework include

traversability estimation and the layout of the approach. The path planning framework

combines two existing sampling-based planners into a multi-stage planner that obtains the

feasible path first and refines the path afterwards. For traversability assessment, I propose

an accelerated traversability estimation function of the existing approach by utilizing the

auxiliary information generated by Principal Component Analysis. Finally, working with

our industry partner, the path planning framework was deployed on a hardware platform

operating in a large off-road environment.

1.3 Organization

Chapter 2 reviews the traversability estimation and path planning on uneven terrain. Chap-

ter 3 introduces the problem of traversability assessment and points out the consequential

effect of the computationally expensive traversability estimation function. Chapter 4 intro-

duces the problem of path planning on uneven terrain. It clarifies the proposed three-stage

hierarchical approach to the path planning problem. Finally, the last chapter concludes

the thesis and provides directions for future works.

4

Chapter 2

Background and Literature Survey

Historically, most of the research on path planning for mobile robots has focused on in-

door applications. In the indoor setting, a robot faces a structured environment, mainly

consisting of straight lines and flat planes. The indoor setting greatly simplifies the path

planning problem, as the mobile robot operates on the flat, leveled ground that can be eas-

ily represented with a 2-D grid. In essence, this kind of path planning problem disregards

the interaction with the terrain except for obstacle collisions. In addition, flat or leveled

terrain simplifies the modeling of the system dynamics of the robot.

However, mobile robots cannot exclusively facilitate human operations in warehouses,

laboratories, or services for the elderly. Outdoors are also of great interest, for example,

search and rescue, agriculture, military, development, and humanitarian. The problem of

navigation in uneven terrain has two main aspects: mapping (representation) and planning.

What is an uneven terrain? According to Iagnemma and Dubowsky in [22] rough or uneven

terrain can be loosely described as an unstructured terrain with features that can cause

a robot to become entrapped or lose balance. Examples of these features are loose soil,

vegetation, boulders, steeply sloped terrain, or a combination of all of these elements.

Before we continue with our literature review, let us provide the notation that will be

utilized throughout the thesis. Afterward, we will talk about the representation of uneven

terrain first, followed by the discussion on the planning aspect of the navigation problem.

5

In this work, the robot is operating in an outdoor environment on uneven terrain. All

possible variations of the environment can be expressed with a physical state space P . We

also have to model the internal state of the robot in the surrounding environment, this will

be denoted as I. Robots have the means to interact with the environment, and it can be

accomplished by exciting the system, this will be denoted as the Action/Control space U .

Now, we have the necessary definitions to articulate the following sections over the

representation of the terrain and the methods to generate motion plans on it.

2.1 Terrain representation and traversability measures

The terrain representation governs the solution approach to the path planning problem.

Depending on the application, we have to account for the geometry/topology of terrain

and for texture, for example, vegetation and dust, trees, overhanging structures, etc. The

seminal work on environment representation was performed by Moravec and Effes in [45].

They introduced occupancy grid maps, a widely used probabilistic approach to represent

the surroundings of a mobile robot. The original occupancy grid was generated with a

rangefinder. The probabilistic foundation of the approach allows roboticists to represent

obstacles, free space, and unknown regions. Occupancy grid maps come with the drawback

that the approach only addresses mobile robot navigation on flat surfaces in the presence

of obstacles that are detected by a rangefinder or LIDAR.

The following is a review of the uneven terrain representations.

2.1.1 Elevation grid maps

One of the most common representations of the terrain is a digital elevation map (DEM)

[18, 34]. In this respect, we have a function h(x, y) that outputs an elevation value for a

certain x and y. Generally, DEM is a 2-D matrix with elevation information in each cell.

In this case we have h(xi, yi), where xi and yi are uniformly separated from each other

on the respective axes. DEMs provide efficient storage and retrieval of terrain elevation

information, yet they inherently suffer from a lack of ability to represent overhanging

6

structures (bridges, trees, poles). Furthermore, since DEMs are uniformly discretized,

they tend to lose terrain shape details. To alleviate the limitations of DEMs, the extension

of the method was proposed by Pfaff in [51]. Multi-Level Surface maps (MLS maps) utilize

scene segmentation. Further, locally connected components are used as an elevation map.

The elevation grid uniformity is also a serious thing to consider because of the mismatch

of the sensor resolution and map resolution. Vegetation representation is also a serious

problem with elevation grids.

2.1.2 Meshes

As stated above, elevation grids are an efficient and easily implementable method, yet

they are restricted to certain types of terrain. We can go further and use polyhedrons

to represent the terrain. A polygon mesh is a collection of vertices, edges, and faces

that represent a polyhedral object. Unlike DEMs, meshes are capable of representing

terrain shapes at various detail levels (e.g. overhanging structures). In addition to that,

meshes are a memory-efficient representation of surfaces. The significant disadvantage of

the generation of meshes of a complete environment is that it is a computationally intensive

procedure [32, 40]. The correct extraction of surfaces is the main challenge in working with

mesh maps. Ruetz et al. in [57] introduce On Visible Point Clouds Mesh (OVPC Mesh).

This mesh is generated on-demand using the generalized hidden point removal (GHPR)

operator to determine the visible points. To estimate the traversability of the mesh, the

method considers the normal plane to a polygon of the mesh and the difference in height

of the vertices of the polygon. Their benchmarks have demonstrated that OVPC mesh

generation is faster than Octomap (3-D version of the occupancy grids) generation [20],

and has more stable timing compared to elevation mapping generation.

2.1.3 Point clouds and voxel maps

A point cloud is a set of data points relative to a coordinate frame. There are different

ways to obtain a point cloud: LIDAR, depth cameras (e.g., Microsoft Kinect), structure-

from-motion [60]. One of the by-products of the SLAM is point clouds (point sets). Unlike

7

DEM, point clouds do not have limitations on geometry representation. The key issue

of point sets for terrain representation is memory consumption. To address the issue of

high memory consumption of point clouds, Hornung et al. introduced OctoMaps in [20].

OctoMap is the octree-based [44] 3-D occupancy grid that provides probabilistic occupancy

estimation. Having discussed the uneven terrain representations, let us provide a review of

the methods of assessing the suitability of sections of the map for mobile robot locomotion.

2.1.4 Traversability and cost maps

In different types of terrain, mobile robots have different levels of maneuverability based on

their mechanical design. Thus, an elevation map must be transformed into a cost map ac-

cording to an appropriate cost function. We will refer to this cost function as traversability.

Traversability measures the ability of a mobile robot to successfully occupy and traverse a

patch of terrain (or the environment, in general). In this work, the definition of traversabil-

ity takes into consideration the kinematic and dynamic constraints of a mobile robot and

terrain characteristics. Papadakis in [48] pointed out two to estimate traversability without

physical interaction with the terrain:

1. Geometry-based (Point cloud, LIDAR, elevation mapping);

2. Appearance-based (RGB images, multi-spectrum imaging).

Here are a few examples of safety factors for wheeled mobile robots using geometry-based

methods slope of the terrain [13], ground clearance [46], terrain roughness [48]. There is a

slight variability in the way one can determine terrain roughness or slope. Let’s consider

some of the methods to determine these quantities.

Principal component analysis (PCA) is the go-to method for normal vector estimation

on point clouds. Intuitively, one can think of PCA as a process of fitting an ellipsoid to

data points. Lalonde et al. in [35] used the PCA outputs as features for shape detection. In

their method, they have studied 3 cases of point distribution of the points on a point cloud

generated by LIDAR. The method demonstrated the efficacy of PCA to distinguish three

classes: sphere, plane (a thin disk), and cylinder. A variant of the point cloud traversability

8

feature was explored in this paper [55]. The traversability feature generation algorithm can

be applied both in indoor and outdoor applications. However, the researchers reported that

the outdoor application suffers from not being robust. The related work on environment

representation for uneven terrain addressed the problem deterministically. Krusi et. al. in

[32] also utilized PCA to estimate the position of the mobile robot and the roughness of

the terrain underneath the mobile robot.

Full or partial mobile robot and terrain interaction might be simulated and used for

traversability estimation. High-fidelity wheeled mobile robot kinematic and dynamic mod-

els were introduced in [61]. The paper demonstrated 1000 times faster than real-time

computation, which enables us to use the model for path planning. Ma and Shiller [43]

proposed to estimate the pose by setting up a simple interaction of robot-terrain dynamics,

which requires a terrain to be modeled as a B-patch (which is a 3-D version of a B-spline).

In their method, researchers simulate a robot that is brought down on the terrain from a

small height. A drawback of the method, we should provide the initial pose height of the

vehicle.

Roan in [56] surveys tip-over measures. The study considers three algorithms, the

zero moment point (ZMP), the force angle stability measure (FA), and the moment height

stability measure (MHS). The clearance determination algorithm for the implementation

of the planet rover was discussed in [46].

Thrun et al. introduced probabilistic terrain analysis in [64], which enabled the Stanford

team to win DARPA Grand Challenge. As research in the field of determining a nice

traversability cost function evolved, it turned out that Machine Learning techniques might

find a better use than a hand-picked traversability cost function. In [58] the authors

employ a Gaussian Process machine learning approach to classify 2 types of terrain patches,

traversable or not, followed by the HRA* planner and costmap manipulation.

2.2 Motion planning

Motion planning is a field of robotics that solves the problem of finding a safe sequence

of states of the robot from the initial state to the goal state (region). The basic motion

9

planning problem, also known as the Piano mover’s problem, or geometric motion planning,

focuses on generating the sequence of states for a robot without hitting any obstacles. Reif

has shown geometric motion planning to be a PSPACE-hard problem in [54]. Related work

on planning on uneven terrain falls into five main categories:

1. Graph search algorithms using motion primitives.

2. Artificial potential fields planners.

3. Sampling-based motion planners.

4. Variational methods.

5. Learning-based motion planners.

2.2.1 Graph search algorithms

As was stated before, modeling the behavior of the system is an essential part of planning.

Planners have a representation of the configuration space of the robot. A graph is a common

data structure that represents the C-space or environment of the robot. Mathematically,

we record them as G = (V,E), where V is a set of vertices of the graph, and it encodes

discrete states of the space, while E are the edges that represent the transition from one

state to another. E is a set of pairs of vertices of V . A grid is a type of graph. Each cell of

a grid is a vertex and depending on the connectivity of the grid, each cell can be connected

to 4 or 8 of its immediate neighbors.

The main idea behind the graph search algorithm method is to represent the terrain as

an interconnected graph with weighted edges depending on an objective, most frequently

the path length, followed by the execution of a shortest-path algorithm with a modified

path length objective to account for the terrain geometry and the robot capabilities. In [23],

the researchers developed a framework for a planetary rover, which considers the terrain

information. The framework includes a model-based assessment of the terrain with the

analysis of rover stability followed by the A* [16] is used as a path planning algorithm. The

researchers in [7] proposed a two-stage A*-based algorithm for the generation of drivable

10

trajectories. The first stage is called Hybrid-State A* search, and it utilizes two heuristics.

The first heuristic is based on the shortest nonholonomic path to the goal with no obstacles

present. The second is the shortest path to the goal pose, considering obstacles but ignoring

the nonholonomic constraints of the vehicle. The greater of the two values is then used as

a heuristic function in the regular A* algorithm for a discretized lattice. The second stage

of the approach is the local optimization of the trajectory based on the conjugate gradient

descent algorithm. Unfortunately, this work only addresses the problem of trajectory

generation on flat terrain with binary obstacles.

The authors of [41] present a ROS [52] package for layered costmaps. The main advan-

tage of their method is that by storing separate layers independently, a user can modify

the layers and add them all and use the resultant map for path planning, consequently

used with the A* search algorithm.

Optimal control-based trajectory generation was shown to be able to include terrain

information and rover dynamics [21]. Howard and Kelly employ numerical optimization to

solve this. This approach accounts for risk, obstacles, duration, and energy consumption.

The proposed framework can operate in real time. They also used neural networks to

provide a good initial estimate for the trajectory generation routine.

2.2.2 Artificial potential fields

The use of the artificial potential field (APF) [42, p. 386] for path planning was inspired

by the potential energy fields, such as magnetic or gravitational fields. In these natural

potential fields, a particle tends to move from higher potential regions to lower potential

regions. The concept of a particle is applicable to a robot that navigates the environment.

Obstacles and untraversable regions have higher potential, thus repelling the robot from

being near them. The goal is a lower potential region (minimum). Following the negative

gradient direction, we will eventually arrive at a minimum of an artificial potential field.

The gradient descent algorithm has a drawback due to its myopic nature of the algorithm.

The algorithm can get stuck in a local minimum; thus, the robot will not reach the goal

region [42]. Therefore, the usual application of the APF is narrowed down to obstacle

11

avoidance [42]. Artificial potential fields were applied to rough terrain path planning in

[63].

2.2.3 Sampling-based planners

Sampling-based algorithms can alleviate the problem of getting stuck at a local minimum.

Sampling-based planners provide a generic framework that can solve global planning prob-

lems as well as local planning problems. In general, a sampling-based motion planner

samples randomly the configuration space followed by the construction of a graph until

the algorithm discovers the solution. Notable algorithms include Probabilistic Roadmaps

[29, 28] and its variants and Rapidly-exploring Random Tree (RRT) [36] and its variants.

In 2011, Karaman and Frazzoli presented RRT* [27] —a sampling-based planner that is

asymptotically optimal, i.e., an asymptotically optimal planner guarantees the discovery of

an optimal solution if the planner is allowed to run for an infinite time if the optimal solu-

tion exists. Creating a handcrafted cost function is a challenge with the above-mentioned

methods.

In [11] the notion of obstacleness was introduced. Obstacleness is a cost function to

determine the traversability for the mobile robot. After establishing the cost function, re-

searchers modified the RRT algorithm to explore low-cost regions first, followed by gradual

approval for sampling in higher-cost regions. The article does not provide any guarantees

on the optimality of the path.

Brunner et al. in [2, 3] demonstrate a solution to the motion planning problem for

a reconfigurable tank tread UGV. The authors introduced several cost functions for the

reconfigurable UGV system. After the cost map was generated, RRT* was utilized and,

as a performance index, the cumulative cost of each of the states in the path.

Krusi et al. [32] proposed a framework for path planning on point-cloud maps. In this

framework, each point in a point cloud receives a value of traversability, and we treat it as

a motion planning constraint. The traversability measure consists of two components: the

roughness of the terrain patch and the orientation of the robot on this patch. Roughness is

estimated for each of the points in the point cloud by querying a smaller sphere and fitting

12

the plane, after computing the distance to each of the points and ordering it from the

biggest to the lowest and taking the subset of the points, and finding the variance of the

patch. The framework has a hierarchical structure consisting of three main stages. The first

step is global path planning solved by the bidirectional RRT-Connect algorithm [38] that

considers the static traversability of the terrain. Subsequently, RRT* (the asymptotically

optimal RRT) refines the initial feasible solution, taking into account only the path length.

Lastly, a gradient-free perturbation-based trajectory optimization generates the solution

for the feedback controller. Importantly, the mobile robot cannot turn on the spot or move

sideways; hence, researchers represent the segments between valid states as cubic splines

with continuous curvature. A trajectory is a sequence of robot states on planar patches,

i.e., the motion between states in the path is assumed to be performed on small planes.

Customarily, in sampling-based planners, the candidate points are sampled randomly

from a configuration space. Krusi et al. do not sample random states, instead, they

randomly sample a point from the point cloud map and convert it to a robot state. Inter-

estingly, the proposed framework cannot handle moving obstacles and stops to recompute

the new motion plan every time the environment has changed. Another disadvantage is

that during RRT* stage, the planning framework takes into account only the path length

as an optimization objective. We can conclude that the behavior at the second stage is

unpredictable due to disregard of the traversability criterion. They reported that during

the outdoor experiments, wheel slip was reported as an issue.

FMT* [24] as well as other PRM-based planners are notorious for generating paths that

have unnecessary turning actions [67]. Zhu et al. in their work [67] addressed the issue

by formulating the trajectory smoothing technique as a convex optimization problem. In

their work, the path is a sequence of states that are used as key points to smooth the

jittery input path. The researchers formulate the mathematical optimization problem

using the key points as constraints to the problem in addition to the constraint of the

system dynamics of the vehicle. The drawback of their approach is the disregard of the

traversability measure, via generating only obstacle-free trajectories.

13

2.2.4 Learning-based planners

Recently, Machine Learning (ML) has found a variety of applications in robotics and

automation. In [5] researchers established a traversability estimation technique using the

convolutional neural network that classifies traversable and untraversable patches in the

heightmap. Currently, learning-based methods raise concerns regarding their reliability.

To the best of the author’s knowledge, there are no analytical guarantees for any learning-

based planning or control algorithms.

14

Chapter 3

Ground Vehicle Traversability

Assessment for Uneven Terrain

Wheeled mobility is the most popular and energy-efficient approach to ground environment

navigation. Though most wheeled mobile robots (WMRs) operate in planar environments,

and it simplifies the analysis and design of navigation systems; yet, applications like search

and rescue (SAR) require navigation on uneven terrain, and WMR cannot easily traverse

all terrains. For instance, a mobile robot navigating irregular terrains such as loose sand

or rubbled slopes might experience low wheel traction resulting in poor maneuverability,

unlike the case of moving on a flat regular plane. To plan a safe path, we have to establish a

measure that will show us if a robot can successfully traverse the region. The robot’s ability

to traverse the terrain depends both on the robot’s kinematic and dynamic constraints and

terrain geometry and structural composition.

To characterize all these limitations of the robot’s capabilities to traverse the navigable

terrain, we will define a notion of traversability of the terrain captured by a cost function

that indicates the probability of successful traversal of the patch of terrain.

Traversability estimation is a well-studied topic that was initially aimed at planetary

exploration, later it finds applications in SAR and Agriculture Robotics [48]. Let us start

from a plain language definition of the traversability measure and move on to the more

formal definition later in this chapter. A traversable region is a patch of terrain where we

15

Figure 3.1: Geometrical aspects of traversability. From left to right, (a) robot moving on
a plane, (b) robot moving on gravel (c) robot moving up a hill (also risk of losing stability
(tip over)), (d), (e) are examples of completely untraversable regions.

can safely place a robot. In other words, a terrain patch will have no steps higher than

the wheels can go, and the robot can remain stable on that terrain patch. In the most

rudimentary case, we can compose the traversability from two characteristics of the terrain

patch:

• roughness is defined as the biggest step on the terrain patch, it is related to the

irregularity of the underlying terrain;

• slope is a component that determines the level of slip and tip-over hazard via con-

straining the allowable roll and pitch angle of WMR.

The footprint of the robot governs the size of the terrain patch.

Let us assume that a point cloud represents a terrain that is made of homogeneous

material, Figure 3.1 demonstrates popular scenarios during the robot navigation on uneven

terrain, the top subfigure demonstrates the best-case scenario when a robot traverses a flat

plane. The latter subfigures demonstrate cases when there is a risk of losing stability or

structural integrity of the vehicle during the traversal of the rubbled terrain or going up a

hill.

Navigation on point clouds has been researched in the past. Particularly, Liu and

Siegwart [39] proposed a Tensor Voting Framework-based metric computation on a raw

point cloud that enables graph search algorithms to be utilized on the graphs generated.

Krusi et al. [32] devised a traversability estimation by determining a normal vector to a

16

point cloud patch using PCA, followed by computing the maximum signed distance variance

of the point from the fitted plane. We can move on and specify the problem definition of

traversability inspection. The body of work on uneven terrain motion planning models the

terrain interaction as a deterministic quantity, rather than a probabilistic quantity [49].

Depending on the texture of the uneven terrain, we can observe wheel slip, i.e., a wheel

turns faster than it is possible on the type of terrain, subsequently, wheel slip can cause the

loss of controllability of the robot [65]. The aspect of terramechanics should be modeled

and foreseen in the planning phase for better results; however, we leave it for future work.

3.1 Problem definition and preliminaries

Let us first discuss the robot pose description, followed by a representation of the robot

environment, and finally conclude with the problem definition of assessing WMR terrain

traversability.

WMR is modeled as a rigid body in 3-D space, and thus the robot configuration space

has 6 dimensions. Three dimensions come from the translational part (x, y, z), and the

latter three from the rotational component about each of the axes. The 3-D rigid body

transformation without deformation is captured by special Euclidean group SE(3).

Definition 3.1.1. The Special Orthogonal Group SO(3) is the set of 3×3 real matrices,

also known as rotation matrices, such that RTR = I and det(R) = 1.

Definition 3.1.2. The Special Euclidean group SE(3) is the set of transformation

matrices that describes the reference frame B relative to the coordinate frame A,

TAB :=

[
RAB tAB

0 1

]
∈ SE(3), (3.1)

where tAB ∈ R3 is a translation column vector, and RAB := [xAB,yAB, zAB] ∈ SO(3) is

a rotation matrix. The column vector xAB is the orientation of x-axis of frame B in terms

of frame A. Similarly, with column vectors yAB and zAB and y and z are the axes of frame

B.

17

Figure 3.2: Configuration space of the robot.

The orientation of the rigid body might be accomplished with consecutive rotations of

the object about its axes. Although the orientation of the object is unique, the sequence

of rotations to obtain it is not unique. In this paper, we will stick to the roll-pitch-yaw

convention. Rotation angles about z-axis, y-axis, and x-axis are yaw α, pitch β, and roll γ

angles, respectively. The upper and lower limits of these angles are α, β, γ ∈ [−π, π). See

figure 3.2. Appendix A provides a refresher on 3-D rigid body transformation.

A robot pose will be denoted as TMR, where R is the frame of reference fixed to the

robot and M is the coordinate frame of a map. The robot footprint is the region under

the robot, i.e., the approximate projected bounding box.

In Chapter 2, we reviewed different types of robot world representation. Let us consider

the case for a point cloud map representation.

Definition 3.1.3 (Planning map). A point cloud is a set of points in Cartesian 3-D space.

Let us denote a point cloud as P = {pi ∈ R3 | i = 1, 2, . . . , n}, n ∈ Z+. However, a point pi

is often augmented with color, class (e.g., material), or confidence level. Let us say that all

possible point clouds belong to a set of point clouds P . Finally, a planning map is a point

cloud with a sufficient resolution where a robot-sized terrain patch is not represented by a

18

single point.

To assess the terrain regions for an autonomous mobile robot, let us adopt the notation

and problem definition presented in Krüsi et al. [32], where terrain inspection is a function

fti : (P,TMR) 7→ (TMR̃, τ), (3.2)

where P ∈ P is a point cloud planning map, TMR ∈ SE(3) is an assessment pose. Two

outputs of the function are TMR̃ ∈ SE(3) is the anticipated robot pose on the point cloud

patch surface, and τ is the likelihood of traversability, with τ = 0 meaning the terrain is

untraversable (an obstacle), and τ ∈ (0, 1] is a traversable region for the robot. Closely

following Krüsi [32], the traversability estimation function can be decomposed into two

distinct functions, which compute the anticipated robot pose TMR̃ and the traversability

τ of the point cloud patch.

f pti : (P,TMR) 7→ TMR̃ (3.3)

f τti : (P,TMR̃) 7→ τ (3.4)

Pose anticipation function f pti requires robot dimensions (height, width, length) to de-

termine the attainable robot pose. To generate a traversability index τ , we must consider

the constraints of the mechanical design of the robot. For a successful region traversal,

we need to account for maximum and minimum pitch and roll angles to prevent roll or

tip-over.

Within the proposed framework that will be discussed later in the following chapters,

one will need to evaluate the traversability of points in the environment. Hence, the

traversability cost function will be invoked a lot. In [32], the traversability cost is evalu-

ated on raw point cloud data in each stage of their path planning framework. The main

disadvantage of their method is that they compute the normal vector to the point cloud

patch using PCA and discard valuable information about the spread of the data. Lalonde

et al. [35] use eigenvalues to infer the shape of the point cloud patch, the relation of eigen-

values indicates if we have a plane, sphere, or tube. Employing this, we can easily filter

out obstacles and untraversable terrain by examining the eigenvalues of the terrain patch.

19

3.2 Methodology

The following section closely follows the work of Krüsi [32]. The main contribution is the

introduction of a hierarchy of traversability tests that range from simple to thorough and

enable a faster generation of motion plans.

Let us reiterate the assumptions I take into account to devise a terrain inspection

function. Firstly, I only consider the local geometry of the point cloud. In the second

assumption, I assume that the point cloud chunk we are assessing is made of a material

that allows us to have sufficient traction on the terrain. The third assumption is the robot

has no articulated joints between the wheel axes and little to no suspension system. Then

the problem of placing a robot on a point cloud boils down to fitting a plane on top of the

point cloud chunk. The last assumption is that the input planning map is sufficiently fine.

In other words, a region where all points are within the radius of the robot bounding circle

of the point cloud can support the robot.

To determine a chunk of a point cloud that can support the robot, we will need a notion

of neighborhoods of point p ∈ P . Let us consider a ball point cloud neighborhood.

Definition 3.2.1 (Neighborhood ball). Let p ∈ P and r > 0, then a point cloud neigh-

borhood ball is Br,P (p) = {v : v ∈ P, ‖p− v‖ ≤ r}, r > 0.

In this work, the radius r of the neighborhood ball is the radius of a bounding sphere

of the robot. A bounding sphere is a sphere of minimum radius r that encloses the robot.

The analysis of the patch will indicate if the point cloud region can accommodate the

WMR, i.e., the attainable robot pose will be estimated and the presence of obstacles will

be detected. The first step is to estimate the possible robot pose on the point cloud patch.

Thus, similarly to [32], we need to fit a plane on robot-sized point cloud data Br,P . Hoppe in

[19] treats a point cloud as a set of data points and utilizes Principal Component Analysis

(PCA) [50] to inspect the data spread and estimate the normal vector to a plane. To

perform PCA, we need to compute two statistical measures of the point cloud patch: a

centroid of N points pi ∈ Br,P (tMR), and their covariance matrix via the outer product,

20

Figure 3.3: Eigenvalues hint at the spread of the data point. In (a), we can observe a plane,
while λ1 ≈ λ2 � λ3. In case (b) all eigenvalues are approximately the same number; hence
we are dealing with a spherical surface.

formulated as

p̄ =
1

N

∑
pi∈Br,P (tMR)

pi, (3.5)

S =
1

N

∑
pi∈Br,P (tMR)

(pi − p̄)(pi − p̄)T . (3.6)

Next, we perform eigenvalue decomposition of the covariance matrix [26]. The result of

the decomposition is unit-length eigenvectors e1, e2, e3, and their corresponding eigenvalues

sorted as λ1 ≥ λ2 ≥ λ3 ≥ 0. Often the smallest eigenvalue λ3 and the corresponding

eigenvector e3 are used to estimate the normal vector to the fitted plane. Yet, the smallest

eigenvalue will not necessarily indicate the normal to the point cloud region, for example,

there is no unique normal to a spherical object, and this object should be treated as an

obstacle, i.e., a non-traversable region.

The eigenvalues of S are suitable for filtering out extreme cases of non-traversable

regions using the notion of planarity [1]

Pλ =
λ2 − λ3
λ1

(3.7)

which ranges from 0 to 1, where 0 means the point cloud patch is not planar and 1

means a point cloud patch is a plane with no thickness. In the case of Pλ < Pλ,min the

underlying point cloud patch is not planar; hence it is possible to label it as an untraversable

region. For Pλ < Pλ,min, it is acceptable to proceed with the orientation estimation of

21

Algorithm 1 fρti(P,TMR̃) 7→ ρ

1: Compute p̄ as in Eq. 3.5
2: Compute S as in Eq. 3.6
3: Perform eigenvalue decomposition on S with e1, e2, e3 and λ1 ≥ λ2 ≥ λ3 ≥ 0
4: Compute planarity feature Pλ as in Eq. 3.7
5: if Pλ < Pλ,min or λ3 > ρmax then
6: return 0
7: else
8: for all pi ∈ Br,P do
9: di = (p̄− pi) · e3

10: [mind,maxd] = minmax(mind,maxd, di)
11: if |maxd−mind | > ρmax then
12: return 0

the robot. Since the planarity is a relative measure, there is a need to use the λ3 (the

smallest eigenvalue, also variance, i.e., the spread of points) to figure out the maximum

step present in the point cloud patch. If λ3 > ρmax then we can conclude that the region

is not traversable, where ρmax is the maximum step that the WMR can traverse. If the

preliminary traversability tests fail, we have to analyze the point cloud patch in more

detail.

Having detected that the terrain patch contains a planar portion, we can resume anal-

ysis of the terrain patch for untraversable obstacle detection. Similarly to Krusi et al. [32]

we find the largest distance (di) from a fitted plane to a point in the point cloud patch.

We will keep track of the minimum and maximum signed distances using minmax, that

is, the function outputs the smallest, biggest values out of the three input values. The

absolute distance between the minimum and maximum values is a maximum step in the

point cloud patch that will be referred to as the roughness of the terrain patch. The picto-

rial representation of the process is on Fig 3.4. The algorithm of the proposed approach,

please refer to Algorithm 1 for details.

Closely following [32], by estimating the orientation of the robot on the point cloud

patch. Here is the procedure for robot pose estimation f pti for a given assessment pose

TMR. The normal vector e3 is collinear with the z-axis of the estimated robot pose, yet

these vectors can point in opposite directions. The estimated configuration will inherit the

22

Figure 3.4: Roughness computation. The red points are the point cloud we obtain with
the mapping, and the black lines represent the geometry of the environment. The green
line is the computed plane from the point set. ~e3 is the normal to the computed plane. λ3
is the smallest eigenvalue of PCA.

direction of the normal from the query pose,

n = zMR̃ = sgn(xMR · e3)e3. (3.8)

To project x and y axes onto the new plane, we use the following equation,

xMR̃ =
n × yMR

||n × yMR||
(3.9)

yMR̃ = n × xMR̃. (3.10)

As a result, the rotation matrix RMR̃ = [xMR̃,yMR̃, zMR̃]. The final step of pose estimation

is projection of the translational component of the query configuration onto the fitted plane,

tMR̃ = tMR +
(p̄− tMR) · n

zMR · n
zMR. (3.11)

Rotation matrix is used to compute the roll α and pitch β angles for a query yaw γ,

β = asin(−r31) (3.12)

α = acos

(
r32

cos β

)
, (3.13)

where r31, r32 are first and second elements of the third row of the matrix RMR̃. These two

values are constrained due to the robot static stability on the inclined plane, or formally

α ≤ αmax and βmin ≤ β ≤ βmax.

Finally, here is the traversability estimation function which is a linear combination of

23

terms,

f τti(P,TMR̃) = τ := 1− wrough
fρ(P,TMR̃)

ρmax

+ wroll
|α|
αmax

+ wpitchmax(
β

βmin

,
β

βmax

) ∈ [0, 1],

where wrough, wroll, wpitch are the weights of each of the components of the traversability

function. The set of weights is established empirically, yet future work will include the

procedure for determining the optimal values. In this section, the pose estimation and the

terrain inspection method were outlined. The expectation for the new terrain traversability

cost function is a faster function that will result in a faster path planning framework for

the ground vehicle on the uneven terrain.

3.3 Experiments

In this section, we cover a set of computational benchmark studies for the studied path

planning problems. In the experiment, we compare two versions of traversability cost; the

traversability cost function from [32] and the proposed method. The experiment was per-

0.5 1.0 1.5 2.0 2.5
Duration (ms)

0

2500

5000

7500

10000

12500

15000

17500

20000

Ca
lls

Proposed cost
Krusi

Figure 3.5: Computation time for traversability computation

24

formed on Clearpath Husky, a small-scale research platform with no suspension and skid-

steering drive. This robot can be bounded by a sphere with radius of 0.5 m. To compare

these two terrain traversability functions, computation time benchmarks were performed.

In this comparison of the terrain traversability computation, these two algorithms were

executed for 30000 iterations. The results of the benchmark simulation experiments are

shown in Fig. 3.5. In these experiments, the proposed cost has a faster response, which

will directly influence the path planning framework execution time.

The mean execution time of the proposed cost function and the original cost function

are 0.20 ms and 1.04 ms with standard deviation of 0.033 ms and 0.23 ms, respectively.

Thus, the improvement is at least 5 times with a lesser spread of the time execution for

the proposed terrain inspection function.

Figure 3.6: The linear relation of variance and the maximum step (roughness) in the terrain
patch.

For further inspection of the new traversability estimation technique, we can refer to

25

Fig 3.6. The figure demonstrates the scatter plot of point set variance and the maximum

step determined by the traversability cost function. We can claim that there is a linear

relationship between these two variables with a Pearson correlation coefficient r = 0.9979.

Variance in this case is the square root of the smallest eigenvalue, and it indicates the spread

of data relative to the collinear normal vector. The main observation is that there is a

linear relation between variance and maximum step determined by the elaborate procedures

proposed in [32]. This justifies the utilization of the threshold based only on variance. The

figure demonstrates the result of running the original traversability inspection for 500000

different points on the map. One can take a look at the map used in the experiment in

Fig. 3.7. The map contains a gravel road and obstacles such as sandpits, hills, bushes,

fences, piles of bricks, and other types of uneven terrain.

To demonstrate the efficacy of the method, the traversability estimation function was

utilized in the path planning framework. The traversability estimation function was used

as a binary obstacle state validity checker for the RRT* algorithm. We recorded the

execution time of the path planning algorithm for these different traversability functions.

The algorithm was executed for 20000 iterations on the same map. As a result, the proposed

method has an average execution time of 17.8 s and the previous traversability estimation

function on average works for 18.1 s. The results of these two methods are depicted in Fig.

3.8.

3.4 Conclusion

A novel simplified point cloud terrain inspection function was proposed. The method is

based on the traversability inspection function presented by Krusi in [32]. The traversabil-

ity method utilized by Krusi has to perform additional calculations of the distance for each

of the points on the inspected area. However, since we have to perform PCA decomposition

we obtain the direction-wise variance of data of the point cloud patch; hence we can elimi-

nate cases of untraversable terrain regions. The benchmark experiments demonstrated that

the proposed method was at least 5 times faster than the method introduced by Krusi in

[32]. The future work includes providing analytical proof that our traversability function is

26

Figure 3.7: Green to yellow denotes candidates for traversable regions, using only the
variance metric to decide the traversability of the point cloud patch.

a suitable metric for terrain inspection. The hand-crafted traversability function is a diffi-

cult function to come up with. This issue might be addressed with machine learning-based

approaches for the traversability estimation.

27

(a) (b)

(c) (d)

Figure 3.8: Path planning solution for the ground vehicle based on the original traversabil-
ity estimation and proposed modification. (b) and (d) are point clouds of the examined
points, where green points are the traversable regions, blue ones are the detected un-
traversable region via the original method and the red points are the early untraversable
region detections.

28

Chapter 4

Multistage Path Planning on Uneven

Terrain

Uneven terrain path planning is an essential problem for search and rescue, surveillance,

military, humanitarian, agricultural, constructing missions, etc [25, 59, 6, 10]. These mis-

sions necessitate the generation of a feasible sequence of waypoints, or reference states,

to navigate a wheeled mobile robot from the initial location to the final target location

through the uneven terrain. The feasibility of navigating through a given path over un-

even terrain can be undermined by various terrain features. Recall from Chapter 2 that

rough/uneven terrain is an unstructured terrain that can immobilize or entrap the robot.

The robot can lose control due to a geometrical arrangement of terrain or due to a texture

of a terrain. Historically, research in path planning for mobile robots considered flat sur-

faces in structured environments with static obstacles. However, unlike path planning on

flat terrain, the objective of rough terrain path planning includes avoiding obstacles and

still being able to complete the mission considering constraints on motion caused by the

geometry or texture of the terrain. Real-world mobile robots usually cannot turn on the

spot; they move along continuous curves. For flat terrain, we can generate an obstacle-free

continuous curve that represents the feasible path. However, if we try to execute it on an

actual, possibly rough, terrain the autonomous vehicle can roll over and damage the user

and itself. Hence, the path planning methods that assume flat terrain are not applicable

29

Figure 4.1: Short-horizon look ahead strategy is suboptimal [30, p. 642]. The graph depicts
the case where short-horizon planning can result in a disastrous result of getting stuck.
The left turn would be a better option, compared to a strategy that minimizes the distance
between the robot and the goal position.

as is. To quantify the features of rough terrain, in Chapter 3, we were accustomed to

the traversability estimation function that differentiates safe and unsafe terrain regions.

Uneven terrain navigation requires us to forecast the behavior of an underlying terrain,

unlike navigating a smooth asphalt in the case of autonomous parking.

The motivation for this research is a lack of a planning framework for robust motion

planning on uneven terrain. A framework for motion planning on uneven terrain, intro-

duced by Iagnemma and Dubowsky in [22], utilizes a two-step planning framework. Their

framework utilizes a two-step algorithm that gradually increases the analysis of the ter-

rain traversability. Their framework was designed to generate plans for a short horizon

restricted by a sensing device (a range finder). Greedy motion planning in receding horizon

fashion is likely to result in unreasonable behavior. Refer to Fig. 4.1. Howard and Kelly in

[21] introduced a generic approach for the trajectory generation that can accomplish mo-

tion planning on rough terrain. According to Howard and Kelly[21] in most of the work,

research groups rely on feedback controllers to account for the wheel slip. Their approach

utilizes the optimal control formulation for the trajectory generation with the performance

index that accounts for the traversability aspects of the path. In their framework, Howard

and Kelly rely on an elevation map and exact obstacle locations. These require an addi-

30

tional step that generates the map from the sensory inputs. The conversion from sensory

inputs to elevation map is not a computationally cheap operation [4]. The navigation

framework presented by Krusi et al. [32] addresses the issue of deficiency of elevation map

representation via point clouds. In their framework, the point cloud is a by-product of the

SLAM process. As was mentioned in Chapter 2, point clouds can represent a wider vari-

ety of topologies compared to elevation maps, and polygonal meshes. In their framework,

Krusi et al. used a three-stage approach for motion planning. The first two stages utilize

sampling-based planners for the fast discovery of a feasible solution, followed by the opti-

mization of this feasible path. The motion segments at these two stages were approximated

with cubic spline trajectory, which was described in [31]. Due to the stochastic nature of

sampling-based planners and the limited computational power of their onboard computer,

their path contained sporadic unnecessary turning actions. The third stage resolves this

problem using the gradient-free smoothing approach, yet the actual system dynamics of

the vehicle are not considered.

To move forward, we will need to talk about two types of motion planning problems:

geometric and kinodynamic planning. Geometric path planning, also known as the piano

mover’s problem, considers the generation of an obstacle-free path disregarding the kine-

matics/dynamics of the robot of the resultant motion plan. Kinodynamic planning can be

considered as an extension of the geometric path planning problem that accounts for the

system dynamics of the robot.

Structured environments provide abundant information that enables simplifications of

the autonomous driving problem. A survey paper by Paden et al. in [47] establishes

that the hierarchical approach is prevalent for the planning component of a navigation

system in structured environments. This structure consists of four layers: Route Planning,

Behavior planning, Motion planning, and Feedback control. Having this in mind, we can

draw inspiration from the methods used in autonomous driving for enabling uneven terrain

motion planning.

It was determined in Chapter 2 that sampling-based planners provide the generic formu-

lation and an acceptable solution to the path planning problem. The power of sampling-

based planners comes from the generic problem formulation, which does not require an

explicit representation of obstacles and constraints from the perspective of a robot, en-

31

abling their applicability virtually to any path planning problem in robotics. This led to a

natural choice of the sampling-based planner as a backbone of the uneven terrain motion

planner. However, the sampling-based approach has its disadvantages. One disadvantage

is the long computation times for certain cases. For example, an attempt to solve the

problem in one shot can result in a subpar solution, induced by the complexity of the path

planning problem. The majority of the previous work on uneven terrain path planning

simplifies the environment to be able to generate motion plans using given computational

resources (running time, memory).

Solving one comprehensive problem with differential constraints and terrain traversabil-

ity aspects is a computationally complex problem to tackle. To address the differential con-

straints of the motion planning problem, we must solve two-point boundary value problems

(BVPs)[17]. Conventional approaches for solving BVP cannot incorporate obstacles. An-

other aspect is the availability of an efficient traversability estimation procedure. One

approach is to break down the problem into several manageable problems with a lesser

detail and gradually improve the solution. A hierarchical approach is a kind of approach

that iteratively improves the path solution quality at each stage of a hierarchy, and uneven

terrain motion planning can leverage this kind of approach.

The first stage ensures that a robot feasibly is placed in the configuration space of the

robot (i.e., the attempt to traverse the terrain patch will not result in a collision with the

environment), and the second stage will ensure that the physical system can execute the

chain of states.

The chapter proposes a practical approach for motion planning on uneven terrain. Prior

work on uneven terrain path planning [32, 22, 21] has addressed the problem on distances

no more than 100 m. Our work differs from the above-mentioned methods in the following

way. We propose a method to solve the path planning problems on the scale of 200-500 m.

To address the shortcomings of the previous approaches, we propose an algorithm that

consists of two stages. The first stage computes an admissible path, considering terrain

traversability and simplified system dynamics of our autonomous robot. The second stage

optimizes the path length of the admissible solution. The second stage also examines the

traversability in more detail. The terrain representation is an important aspect of path

planning. A point cloud is a suitable representation of uneven terrain. We leverage the

32

point cloud representation using our traversability function proposed in Chapter 3.

4.1 Problem formulation

The chapter will concentrate on the generation of an admissible motion plan (path) for

a wheeled mobile robot on uneven terrain. An admissible path has to be generated from

an initial 3D pose to a goal region, respecting the constraints imposed by the map and

capabilities of the robot. In our case, the environment map available to the robot is in the

form of a point cloud (set of points). The robot’s capabilities are in the form of kinematic,

dynamic, and holonomic constraints of the WMR.

Definition 4.1.1 (Admissible/Feasible Motion planning). The motion planning problem

would be to find a sequence of states such that our robot A does not collide with any

obstacles O ⊂ W . The state of the robot A is referred to as a configuration q. The set

of all robot configurations makes up the configuration space Q, also known as C-space. It

is worth noting that workspace W is not the same as configuration space Q. In general,

mapping C-space to a workspace is a tedious task. Let Qinvalid ⊂ Q be the set of all invalid

configurations of the robot in the environment. An example of an invalid configuration

state is the case when a robot penetrates the ground or an obstacle. Consequently, we

denote the set of all valid configurations by Qvalid = Q \Qinvalid. A basic motion planning

problem generates a path π : [0, 1]→ Qvalid, such that π(0) = qstart and π(1) ∈ Qgoal.

Definition 4.1.2 (Optimal motion planning). Optimal motion planning extends the mo-

tion planning problem with a cost function c : Π → R+, where Π is a set of all possible

paths. Therefore, the optimal motion planning problem is to find such a path π∗:

π∗ = arg min
π

c(π)

s.t. π(0) = qstart,

π(1) ∈ Qgoal

(4.1)

The cost function is well-behaved, meaning that the cost of the subsections cannot be

higher than the whole path cost.

33

Let’s move on and revise the configuration space for the rigid body in the 3-D space.

Definition 4.1.3 (Pose representation). WMR is a rigid body in 3-D, its SE(3) pose is

represented by TAB = (RAB, tAB), where TAB =

[
RAB tAB

0 1

]
∈ R4×4,RAB ∈ R3×3, tAB ∈

R3×1. For details, please refer to Appendix A.

Definition 4.1.4. Trajectory σ : [0, T] → Qvalid, σ(0) = q0, σ(T) ∈ Qgoal, T is the final

time. A trajectory σ ∈ Σ, i.e., an element of a set of all possible trajectories, termed Σ.

The study will address the trajectory generation since path π, is just a trajectory that was

limited to a 0,1 period.

Definition 4.1.5 (Differential constraints). Differential constraints are constraints on

derivative terms of the system dynamics.

Definition 4.1.6 (Motion planning on Uneven Terrain). Let us give the formal definition

of the motion planning problem on uneven terrain. The WMR operates in the 3-D environ-

ment represented by a point cloud PM ∈ P , where PM := {pi ∈ R3 | i = 1, 2, . . . , n}, n ∈
Z+. The study only considers the point cloud maps that are sufficiently dense relative to

the robot size.

The robot resides at a known state TMS ∈ SE(3) and the objective is to compute a

trajectory σ : [0, T] → SE(3) should be generated from the start robot pose to the goal

position TMG ∈ SE(3) respecting following criteria:

1. No obstacle collision of the robot with the environment.

2. The robot should maintain constant contact with the terrain.

3. Non-holonomic constraints are respected by the planning framework.

4. The output solution should consider constraints on kinematics and dynamics of the

WMR.

5. The planning framework optimizes a provided adjustable cost function c : Σ → R+

to a local minimum.

34

4.1.1 Framework

Inspired by [32], our framework for uneven terrain path planning comprises three stages.

The first stage discovers the initial feasible solution. The second stage improves the solution

given this feasible path. Lastly, we smooth the resultant path and reduce the number of

waypoints that represent the final path (see Fig. 4.2). The second and third stages of

planning share the same objective function. Uneven terrain path planning has to consider

the following aspects: the constraint on the orientation of the WMR, the presence of

obstacles, and path length. These aspects will be described in the following subsections.

All stages of the path planning framework use Dubins car [9] model to connect two points.

Initial Path

PoseRRT-Connect

Improved Path

Informed RRT*

Pose
Shortcut

Traversability

Traversability
Traversability

estimator

Traversability

Stage 2

Stage 1

Stage 3

Start and Goal positions

Output Path

Point CloudPose

Ramer-Douglas-Peucker Algorithm

Solution Path

Figure 4.2: Block diagram of the proposed path planning framework.

The path planning framework consists of three stages. The first step uses the RRT-

35

Connect algorithm [33]. It is an efficient heuristic algorithm that rapidly discovers a feasible

solution. Here is the short walk-through of the algorithm. RRT-Connect extends the basic

Rapidly-Exploring Random Tree [36] planning algorithm by the utilization of two separate

trees that stem from start and goal states. At each iteration of the algorithm, we switch

between the start and goal trees and refer to the active and inactive ones as major and

minor trees. Then a new sampled state is checked if it can be added to the active tree.

If so, we proceed with the connect stage of the algorithm, in which we greedily grow the

inactive tree to the valid node of the active tree. Eventually, both of the trees overlap and

we have a solution. This solution is passed down to the next stage of the path planner. The

detailed description of the RRT-Connect algorithm is in the Appendix B with pseudocodes

in Algorithms 2, 3, 4.

The second stage of the path planning framework utilizes Informed RRT* [12] a variant

of RRT* [27] to generate an optimized version of the initial feasible path. RRT* is an

asymptotically optimal motion planning algorithm. It means that, if we allow the algorithm

to work for an infinite amount of time, it will surely find the global optimal solution if one

exists. Therefore, RRT* was chosen to improve the quality of the initial feasible path.

Briefly, regular RRT* works in the following way. The tree is initialized with a start pose

as a root node. Then the following steps are executed until a termination condition. For

example, the number of allowed iterations is the termination condition. As with regular

RRT, a random state is sampled. The next step is to find the nearest tree node to the

random state. Then the steering function determines the new node that is sufficiently close

to the tree to be added. Afterward, RRT* determines the set of nearest neighbors of this

new node within a certain radius. In the next step of the algorithm, we should iterate

through the nearest-neighbor set and determine the best parent for the new node. After

the best parent was determined, RRT* iterates the set of nearest neighbors and reconnects

these nodes in case the total cost of the path from the root node to the nearest node is

better through the new node. Please refer to detailed explanation of RRT* in the Appendix

B, with pseudocode listed in Algorithms 5,6,7.

In the second stage of the path planning framework, we are restricting the sampling to

an ellipse around the initial path generated in the first step. The method is also known

as Informed RRT*. In this case, we will spend the computational resources only on the

36

improvement of the feasible path. RRT* optimizes the path with a provided objective

function. In this thesis, the cost function includes path length, traversability measure, and

change in robot heading. The total cost of the path is computed for each of the segments

of the path. The cost of the segment of the path is,

c
(
πTMR1

,TMR2

)
= η1L(πTMR1

,TMR2
) + η2

K∑
k=1

[
f τti
(
P, πTMR1

,TMR2
(k∆k)

)
+ η3∆α

(
πTMR1

,TMR2
((k − 1)∆k), πTMR1

,TMR2
(k∆k)

)]
, (4.2)

where ηi ∈ [0, 1] and η1 + η2 + η3 = 1 is an importance coefficient, L is path length

between two states TMR1 , TMR2 , πTMR1
,TMR2

: [0, 1] → SE(3) is a function that returns all

intermediate states between two points, ∆k = 1
K

is a path resolution, and absolute value

of the change in the heading of the robot ∆α : SE(3)×SE(3)→ R+. The cost function is

intended to penalize change in the heading angle, and navigate through most traversable

regions of the path while keeping the length of the path at a minimum.

Recall that, RRT* is an asymptotically optimal planner, yet for practical considerations,

we cannot afford to run the planner for an infinite amount of time. We terminate the

planner after a certain number of iterations. As a result, the output path needs additional

refinement. Please refer to Fig. 4.2.

Path smoothing & simplification: To smooth the path, we use the shortcut path

simplification algorithm from [14]. The shortcut heuristic algorithm works in the following

way. A path, consisting of a sequence of states, is randomly subdivided into two segments.

If there is a valid path segment between states that omit this segment, then the segment

is removed and the path is optimized. After the path was smoothed, we need to eliminate

unnecessary path points on the resultant path. The resultant path is a concatenation of

different fragments of the Dubins path, i.e., it consists of arcs and straight lines. These

arcs and lines are represented with straight line segments of the same length. The path

can be a straight line, but it will still be represented with numerous linear segments of

uniform size. We would like to eliminate this redundancy. This was accomplished with

Ramer–Douglas–Peucker algorithm [53, 8]. We recursively choose two endpoints on the

path and look for the farthest away point from the line, if it is more than some ε, we say

37

it is one of the endpoints and proceed, and we examine these two new lines.

4.2 Experiments and results

We evaluate the proposed method in three different scenarios on a map that has both

structured and unstructured terrain. The computer used had the following specifications:

Intel®Core™i7-8700K CPU @ 3.70GHz with 16 GB RAM at 2400MHz. The framework

was implemented using ROS Noetic. PCL and Eigen libraries were used for point cloud pro-

cessing and handling. Path planning algorithms were implemented on top of the Open Mo-

tion Planning Library (OMPL). Our testbed system is Clearpath Warthog. This wheeled

robot is a large all-terrain vehicle that can also be bounded in a sphere of radius 1.5 m.

The resulting paths were tested on a real test track. The proposed solution paths were

tracked successfully by the robot vehicle. Though the robot vehicle was moving too close

to the edge of the road.

A series of benchmarks were conducted to demonstrate the efficacy of the path planning

framework. The mission consisted of three sections (cases). Each case was from about 100

to 500 meters. Each of the cases had different traversability features. The first case was a

scenario where a robot has to drive a long stretch of road that has a few obstacles. The

second case contains rough terrain on an inclined plane. The third case consists of another

stretch of road with obstacles. For each of the cases, the first stage was executed until it

discovers a solution, followed by 5000 iterations of Informed RRT*. The benchmark was

conducted 10 times for each of the cases. Here are the metrics used in the study: success

rate (%), path length (m), and computation time (s).

The success rate is the rate of successful discovery of exactly the goal state. Please refer

to Table 4.1 for details. The path length and computation time are listed as mean values

with standard deviation. Notice that in all the cases when the solution was discovered

the path length denoted as L in the table varies less than 3%. However, the computation

time varied significantly, due to the stochastic nature of sampling-based planners such as

RRT-Connect and Informed RRT*.

Please also refer to Fig. 4.3. It depicts case A of benchmarks of the path generated

38

case A case B case C
run # L (m) t (s) success run # L (m) t (s) success run # L (m) t (s) success

1 456.91 60 1 1 189.77 63 1 1 147.13 53 1
2 450.44 43 1 2 184.89 41 1 2 137.92 46 1
3 453.05 110 1 3 186.76 83 1 3 144.39 136 1
4 442.58 90 1 4 187.76 73 1 4 135,17 48 1
5 449.58 55 1 5 187.18 58 1 5 135.27 48 1
6 452.22 35 1 6 117.00 26 0 6 134.73 46 1
7 453.11 105 1 7 186.44 75 1 7 134.75 30 1
8 449.86 56 1 8 190.34 58 1 8 195.14 44 0
9 453.24 77 1 9 191.41 120 1 9 135.81 56 1

10 458.13 132 1 10 188.51 64 1 10 135.88 51 1

avg 451.91 76.3 100% avg 181.01 66.1 90% avg 143.62 55.8 90%
stdev 4.31 31.97 stdev 22.58 25.17 stdev 18.62 29.02

Table 4.1: Results of the benchmark of the proposed path planning framework.

by the path planner framework. The yellow path is an initial path generated by RRT-

Connect. The cyan path is the optimized path generated by RRT*. The red path is the

smoothened version of the optimized path.

In order to demonstrate the advantage of this multistage approach, an additional ex-

periment was conducted. The same path planning problem was solved with the proposed

approach, with RRT-Connect and Informed RRT*. The proposed approach provided a

relatively good compromise between execution time and solution quality. The proposed

method on average took 51.7 s with a total cost of 485.8. RRT-Connect was the fastest

with an average duration of 13.7 s and a total cost of 518.7. The last was Informed RRT*,

with an average execution time of 221.5 s and a total cost of 490.1.

4.3 Conclusion

A multi-stage path planning framework for rough terrain navigation for wheeled robots

was developed and tested. The path planning framework can generate paths on uneven

terrain, taking into account geometric features of the terrain. The efficacy of the framework

was demonstrated through simulation experiments and execution of the solution path on

a real-world test track.

39

Figure 4.3: Yellow path is an initial path generated by RRT-Connect. The cyan path is
the optimized path generated by RRT*. The red path is a final path generated by the
Shortcut heuristic algorithm.

40

Chapter 5

Conclusion

This thesis has considered two important aspects of path planning on uneven terrain.

Initially, I demonstrated the advantage of the accelerated traversability estimation function.

Since the validity checker in our case traversability function is a frequently used function

in the sampling-based path planners, it provided a speed-up in obtaining the solution

path. Furthermore, in this thesis, I proposed a multi-stage path planning framework for

uneven terrain. The path planning framework was tested on a test track with the industry

partner. It was able to traverse the path on a real test track. The benchmark experiment

comparing the framework against each of the algorithms used demonstrated the advantage

of the three-stage approach. The resulting solution path length was consistent, however,

the solution time was less consistent.

5.1 Future work

In future work, one could optimize the computation time for rough terrain motion planning

to enable online path planning on uneven terrain. Another important consideration for

uneven terrain is information from color, which should be incorporated in the following

works. Objects with the same geometry and different color can pose different risks to the

mobile robot. Another direction of research is the incorporation of the confidence level

41

of the sensor readings. Depth cameras and structure-from-motion approaches are able

to return the confidence level for each of the readings. These data can be employed for

a probabilistic approach to the path planning problem to improve the robustness of the

output paths.

42

References

[1] R. Blomley, M. Weinmann, J. Leitloff, and B. Jutzi. Shape distribution features for

point cloud analysis – a geometric histogram approach on multiple scales. ISPRS

Ann. Photogramm. Remote Sens. Spat. Inf. Sci., II-3:9–16, August 2014.

[2] M. Brunner, B. Brüggemann, and D. Schulz. Autonomously traversing obstacles -

metrics for path planning of reconfigurable robots on rough terrain. In Proceedings of

the 9th International Conference on Informatics in Control, Automation and Robotics.

SciTePress - Science and and Technology Publications, 2012.

[3] M. Brunner, B. Brüggemann, and D. Schulz. Hierarchical rough terrain motion plan-

ning using an optimal sampling-based method. In IEEE International Conference on

Robotics and Automation, pages 5539–5544. IEEE, May 2013.

[4] W. Burgard, M. Hebert, and M. Bennewitz. World modeling. In Springer Handbook

of Robotics, pages 1135–1152. Springer International Publishing, 2016.

[5] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti. Learning ground

traversability from simulations. IEEE Robotics and Automation Letters, 3(3):1695–

1702, July 2018.

[6] F. Colas, S. Mahesh, F. Pomerleau, M. Liu, and R. Siezwart. 3D Path Planning

and Execution for Search and Rescue Ground Robots. 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 722–727, 2013.

[7] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Practical search techniques

in path planning for autonomous driving. In Proceedings of the First International

43

Symposium on Search Techniques in Artificial Intelligence and Robotics (STAIR-08),

Chicago, USA, June 2008. AAAI.

[8] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature. Cartographica: The

International Journal for Geographic Information and Geovisualization, 10(2):112–

122, December 1973.

[9] L. E. Dubins. On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents. Amer. J. Math.,

79(3):497–516, 1957.

[10] M. Eich, F. Grimminger, and F. Kirchner. A Versatile Stair-Climbing Robot for Search

and Rescue Applications. 2008 IEEE International Workshop on Safety, Security and

Rescue Robotics, pages 35–40, 10 2008.

[11] A. Ettlin and H. Bleuler. Rough-Terrain robot motion planning based on obstacleness.

In 2006 9th International Conference on Control, Automation, Robotics and Vision,

pages 1–6. IEEE, December 2006.

[12] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed RRT*: Optimal sampling-

based path planning focused via direct sampling of an admissible ellipsoidal heuris-

tic. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

2997–3004, 2014.

[13] D. B. Gennery. Traversability analysis and path planning for a planetary rover. Auton.

Robots, page 16, 1999.

[14] R. Geraerts and M. H. Overmars. Creating high-quality paths for motion planning.

Int. J. Rob. Res., 26(8):845–863, August 2007.

[15] Y. Gu, J. Strader, N. Ohi, and et al. Robot foraging: Autonomous sample return in

a large outdoor environment. IEEE Robot. Autom. Mag., 25(3):93–101, September

2018.

44

[16] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determina-

tion of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,

4(2):100–107, July 1968.

[17] M. T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill, New York,

2 edition, 2002.

[18] M. Herbert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade. Terrain mapping for

a roving planetary explorer. In International Conference on Robotics and Automation,

pages 997–1002 vol.2, May 1989.

[19] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface recon-

struction from unorganized points. In Proceedings of the 19th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’92, pages 71–78, New

York, NY, USA, July 1992. Association for Computing Machinery.

[20] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap:

an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots,

34(3):189–206, April 2013.

[21] T. M. Howard and A. Kelly. Optimal rough terrain trajectory generation for wheeled

mobile robots. Int. J. Rob. Res., 26(2):141–166, February 2007.

[22] K. Iagnemma and S. Dubowsky. Mobile Robots in Rough Terrain: Estimation, Motion

Planning, and Control with Application to Planetary Rovers. Springer Science &

Business Media, July 2004.

[23] K. Iagnemma, F. Genot, and S. Dubowsky. Rapid physics-based rough-terrain rover

planning with sensor and control uncertainty. In IEEE International Conference on

Robotics and Automation, volume 3, pages 2286–2291 vol.3, May 1999.

[24] L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast marching tree: a fast

marching sampling-based method for optimal motion planning in many dimensions.

Int. J. Rob. Res., 34(7):883–921, June 2015.

45

[25] E. Jelavic, F. Farshidian, and M. Hutter. Combined Sampling and Optimization Based

Planning for Legged-Wheeled Robots. IEEE International Conference on Robotics and

Automation (ICRA), pages 8366–8372, 2021.

[26] I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer,

New York, NY, New York, NY, 1986.

[27] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.

Int. J. Rob. Res., 30(7):846–894, June 2011.

[28] L. E. Kavraki, M. N. Kolountzakis, and J. Latombe. Analysis of probabilistic

roadmaps for path planning. IEEE Trans. Rob. Autom., 14(1):166–171, February

1998.

[29] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Trans. Rob. Autom.,

12(4):566–580, August 1996.

[30] A. Kelly. Mobile Robotics: Mathematics, Models, and Methods. Cambridge University

Press, November 2013.

[31] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation via parametric

optimal control. Int. J. Rob. Res., 22(7-8):583–601, July 2003.

[32] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart. Driving on point clouds: Motion

planning, trajectory optimization, and terrain assessment in generic nonplanar envi-

ronments: Driving on point clouds. J. field robot., 34(5):940–984, August 2017.

[33] J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path

planning. IEEE International Conference on Robotics and Automation, 2:995–1001,

2000.

[34] I. S. Kweon and T. Kanade. High-resolution terrain map from multiple sensor data.

IEEE Trans. Pattern Anal. Mach. Intell., 14(2):278–292, 1992.

46

[35] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert. Natural terrain classifi-

cation using three-dimensional ladar data for ground robot mobility. J. field robot.,

23(10):839–861, October 2006.

[36] S. M. Lavalle. Rapidly-Exploring random trees: A new tool for path planning. Tech-

nical report, Computer Science Dept., Iowa State Univ., 1998.

[37] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, May

2006.

[38] S. M. LaValle and J. Kuffner. Randomized kinodynamic planning. Int. J. Rob. Res.,

20(5):378–400, May 2001.

[39] M. Liu and R. Siegwart. Navigation on point-cloud — a riemannian metric approach.

In IEEE International Conference on Robotics and Automation (ICRA), pages 4088–

4093. IEEE, May 2014.

[40] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, August 1987.

[41] D. V. Lu, D. Hershberger, and W. D. Smart. Layered costmaps for context-sensitive

navigation. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 709–715. IEEE, September 2014.

[42] K. M. Lynch and F. C. Park. Modern robotics: mechanics, planning, and control.

Cambridge University Press, Cambridge, UK, 2017.

[43] Y. Ma and Z. Shiller. Pose estimation of vehicles over uneven terrain. March 2019.

[44] D. Meagher. Geometric modeling using octree encoding. Computer Graphics and

Image Processing, 19(2):129–147, 1982.

[45] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In IEEE In-

ternational Conference on Robotics and Automation, volume 2, pages 116–121, March

1985.

47

[46] K. Otsu, G. Matheron, S. Ghosh, O. Toupet, and M. Ono. Fast approximate clearance

evaluation for rovers with articulated suspension systems. J. field robot., 37(5):768–

785, August 2020.

[47] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of motion

planning and control techniques for Self-Driving urban vehicles. IEEE Transactions

on Intelligent Vehicles, 1(1):33–55, March 2016.

[48] P. Papadakis. Terrain traversability analysis methods for unmanned ground vehicles:

A survey. Eng. Appl. Artif. Intell., 26(4):1373–1385, April 2013.

[49] P. Papadakis and F. Pirri. 3D Mobility Learning and Regression of Articulated,

Tracked Robotic Vehicles by Physics-based Optimization. In Virtual Reality Interac-

tion and Physical Simulation, Eurographics, Darmstadt, Germany, December 2012.

[50] K. Pearson. LIII. On lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

2(11):559–572, November 1901.

[51] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to elevation maps for

outdoor terrain mapping and loop closing. Int. J. Rob. Res., 26(2):217–230, February

2007.

[52] M. Quigley, K. Conley, B. Gerkey, and et al. ROS: an open-source robot operating

system. In ICRA workshop on open source software, volume 3, page 5, 2009.

[53] U. Ramer. An iterative procedure for the polygonal approximation of plane curves.

Computer Graphics and Image Processing, 1(3):244–256, November 1972.

[54] J. H. Reif. Complexity of the mover’s problem and generalizations. In 20th Annual

Symposium on Foundations of Computer Science, pages 421–427, October 1979.

[55] G. Reina, M. Bellone, L. Spedicato, and N. I. Giannoccaro. 3D traversability awareness

for rough terrain mobile robots. Sensor Review, 34(2):220–232, 2014.

48

[56] P. R. Roan, A. Burmeister, A. Rahimi, K. Holz, and D. Hooper. Real-world validation

of three tipover algorithms for mobile robots. In IEEE International Conference on

Robotics and Automation, pages 4431–4436, May 2010.

[57] F. Ruetz, E. Hernández, M. Pfeiffer, and et al. OVPC mesh: 3D free-space represen-

tation for local ground vehicle navigation. In International Conference on Robotics

and Automation (ICRA), pages 8648–8654, May 2019.

[58] À. Santamaria-Navarro, E. H. Teniente, M. Morta, and J. Andrade-Cetto. Terrain

classification in complex three-dimensional outdoor environments: Terrain classifica-

tion in complex 3D outdoor environments. J. field robot., 32(1):42–60, January 2015.

[59] F. N. Santos, H. Sobreira, D. Campos, and et al. Towards a Reliable Robot for Steep

Slope Vineyards Monitoring. Journal of Intelligent & Robotic Systems, 83(3-4):429–

444, 2016.

[60] J. L. Schönberger and J. Frahm. Structure-from-Motion revisited. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 4104–4113. IEEE, June

2016.

[61] N. Seegmiller and A. Kelly. High-Fidelity yet fast dynamic models of wheeled mobile

robots. IEEE Trans. Rob., 32(3):614–625, June 2016.

[62] C. Shen, Y. Zhang, Z. Li, and et al. Collaborative air-ground target searching in

complex environments. In IEEE International Symposium on Safety, Security and

Rescue Robotics (SSRR), pages 230–237, October 2017.

[63] S. Shimoda, Y. Kuroda, and K. Iagnemma. High-speed navigation of unmanned

ground vehicles on uneven terrain using potential fields. Robotica, 25(4):409–424, July

2007.

[64] S. Thrun, M. Montemerlo, and A. Aron. Probabilistic terrain analysis for high-speed

desert driving. In Robotics: Science and Systems II. Robotics: Science and Systems

Foundation, August 2006.

49

[65] T. Thueer and R. Siegwart. Mobility evaluation of wheeled all-terrain robots. Rob.

Auton. Syst., 58(5):508–519, May 2010.

[66] A. Wallar, E. Plaku, and D. A. Sofge. Reactive motion planning for unmanned aerial

surveillance of Risk-Sensitive areas. IEEE Trans. Autom. Sci. Eng., 12(3):969–980,

July 2015.

[67] Z. Zhu, E. Schmerling, and M. Pavone. A convex optimization approach to smooth

trajectories for motion planning with car-like robots. In 54th IEEE Conference on

Decision and Control (CDC), pages 835–842, December 2015.

50

APPENDICES

51

Appendix A

3D rigid body rotation

Aviation terms roll, pitch, yaw were adopted in the robotics community to represent the

rotation of the rigid body around its frame of reference.

We will follow the right-hand rule, i.e., all rotations will be counterclockwise to the

corresponding axis.

Yaw is the counterclockwise rotation around z-axis,

Rz(α) =

cosα − sinα 0

sinα cosα 0

0 0 1

 . (A.1)

Pitch is the counterclockwise rotation around the y-axis,

Ry(β) =

 cos β 0 sin β

0 1 0

− sin β 0 cos β

 . (A.2)

52

Roll is the counterclockwise rotation around x-axis,

Rx(γ) =

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 . (A.3)

Performing roll, pitch, and yaw rotation yields a rotation matrix that is the result of

the multiplication of yaw, pitch, and roll matrices:

R(α,β, γ) = Rz(α)Ry(β)Rx(γ) = (A.4)cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ

sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ

− sin β cos β sin γ cos β cos γ



53

Appendix B

Path planning algorithms

The following is explanation of the planners that are used in the proposed path planning

framework. Let us start with RRT-Connect [33]. Followed by the explanation of RRT*

[27] and clarification of the difference between original RRT* and Informed RRT* [12]. At

every iteration of the algorithm, RRT-Connect operates only on one of the two trees. Please

follow the Algorithms 2. We refer to the operand as a main or major tree Tmajor = (N , E),

while the other one is referred as a minor tree Tminor. Each iteration of the algorithm we

alternate the major tree Tmajor between trees rooted in start and goal states. Similarly,

with the minor tree Tminor. As in the original RRT, at each iteration, the main tree

grows towards the randomly sampled state qrand via extend routine (see Algorithm 3).

The subroutine outputs the result, S ∈ {ADVANCED, REACHED, TRAPPED}, of the attempt to

connect to the provided states. The output is later used for flow control of the expansion

of the trees. Subsequently, we determine the nearest neighbour qnearest to the randomly

sampled state qrand. The algorithm then allows to extend the major tree Tmajor from qnearest

to qrand only to some extent ε and we refer to this node as qnew. It means that every node

in the tree is within ε distance from the nearest node. If an attempt to connect a new node

fails S = TRAPPED, we switch the major and minor trees and proceed with the algorithm.

Otherwise, the algorithm greedily attempts to connect (see Algorithm 4 the minor tree

Tminor to the new state of Tmajor, until it is connected to the minor tree or until we hit

an obstacle. The moment trees overlap, we have a feasible solution. We pass this feasible

54

solution down to the next stage.

(a) (b) (c)

(d) (e) (f)

Figure B.1: (B.1a) Sample a random node qrand. (B.1b) Find a nearest neighbour node
qnearest in Tmajor. (B.1c) extend() computes qnew that is ε distance from qnearest along
the motion to qrand. (B.1d) Try to connect Tminor to q. (B.1e) Successful connection we
terminate the algorithm. (B.1f) Solution path is path with yellow nodes and green edges.

Now, we will familiarize the reader with the core RRT*, since our framework is built

upon this algorithm. To facilitate the understanding of the algorithm, one can refer to the

pseudocode of RRT* in Algorithms 5, 6 and 7. First, the empty tree graph τ = (N , E) is

initialized. The initial state qstart of the robot is assigned as the root node of the tree τ .

Afterwards, at each iteration, we randomly sample a node qrand from a configuration space

until the maximum number of iterations N is reached. In our framework, random nodes

55

Algorithm 2 π ← RRT-Connect(qstart, qgoal)

1: Tmajor ← init tree(qstart)
2: Tminor ← init tree(qgoal)
3: for N iterations do
4: qrand ← sample()

5: if extend(Tmajor, qrand) 6= TRAPPED then
6: if connect(Tminor, qnew) = REACHED then
7: return path(Tmajor, Tminor)
8: swap(Tmajor, Tminor)
9: return empty path()

Algorithm 3 S ← extend(T, q)

1: qnearest ← nearest neighbor(T, q)
2: qnew ← steer(qnearest, q)
3: if is valid(qnearest, qnew) then
4: T ← place node(qnearest, qnew)
5: if qnew = q then
6: return REACHED

7: else
8: return ADVANCED

9: return TRAPPED

Algorithm 4 S ← connect(T, q)

1: repeat
2: S ← extend(T, q)
3: until not (S = ADVANCED)
4: return empty path()

56

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2: First sample and find a nearest neighbour to the randomly sampled node
(B.2g). Determine the valid state you can add to the tree. Find the best parent for the
candidate node. Reroute all the neighbouring nodes through the new node if it results in
a better cost from root to the neighbouring node.

57

Algorithm 5 τ = (N , E)← RRT*(qstart)

1: τ ← init tree(qstart)
2: for N iterations do
3: qrand ← sample()

4: qnearest ← nearest neighbor(τ, qrand)
5: qnew ←steer(qnearest, qrand)
6: if is valid(qnearest, qnew) then
7: Qnear ← near neighbors(τ, qnew)
8: qmin ← choose parent(Qnear, qnearest, qnew)
9: τ ← place node(qmin, qnew, τ)

10: τ ← rewire(τ,Qnear, qmin, qnew)
11: return τ

will be sampled from the planning map (point cloud map PM) this way we will decrease

the search space of the planner. Afterwards, the nearest neighbour qnearest ∈ τ to the new

sample qrand is determined and steer function finds the closest reachable point qnew. The

steering function requires solving a two-point boundary value problem, at this stage of our

framework, we will use a Dubins path to connect points. Then, the validity of the motion

from qnearest to qnew is checked. The validity in our particular case is the absence of obstacles

and admissible orientation of the robot. If a valid motion exists, RRT* initiates two local

optimizations, choose parent and rewire. To perform the optimization, the algorithm

obtains Qnear, which is a set of nodes considered near to the qnew according to a distance

metric (a radius or the number of near neighbours). RRT* uses the choose parent routine

to check all the nodes in Qnear and sets the parent of qnew as the node which minimizes the

cost from qinit. A function cost(q) returns an accumulated cost from qinit to a particular

node q, while c(qi, qj) computes a cost-to-go from qi to qj. Next, rewire inspects the nodes

in Qnear and connects them to qnew in case when qnew as the parent decreases the cost from

qinit.

58

Algorithm 6 qmin ← choose parent(Qnear, qnearest, qnew)

1: qmin ← qnearest
2: cmin ← cost(qnearest) + c(qnew, qnearest)
3: for qnear ∈ Qnear do
4: if is valid(qnear, qnew) then
5: c′ = cost(qnear) + c(qnew, qnear)
6: if c′ < cmin then
7: qmin ← qnear
8: cmin ← c′

9: return qmin

Algorithm 7 τ ← rewire(τ,Qnear, qmin, qnew)

1: for qnear ∈ Qnear\qmin do
2: if is valid(qnew, qnear) and

cost(qnew) + c(qnew, qnear) < cost(qnear) then
3: τ ← reconnect(qnew, qnear, τ)
4: return τ

59

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contribution
	Organization

	Background and Literature Survey
	Terrain representation and traversability measures
	Elevation grid maps
	Meshes
	Point clouds and voxel maps
	Traversability and cost maps

	Motion planning
	Graph search algorithms
	Artificial potential fields
	Sampling-based planners
	Learning-based planners

	Ground Vehicle Traversability Assessment for Uneven Terrain
	Problem definition and preliminaries
	Methodology
	Experiments
	Conclusion

	Multistage Path Planning on Uneven Terrain
	Problem formulation
	Framework

	Experiments and results
	Conclusion

	Conclusion
	Future work

	References
	APPENDICES
	3D rigid body rotation
	Path planning algorithms

