
Supervisory Adaptive Control
Revisited: Linear-like Convolution

Bounds

by

Craig Lalumiere

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Craig Lalumiere 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Classical feedback control for LTI systems enjoys many desirable properties including
exponential stability, a bounded noise-gain, and tolerance to a degree of unmodeled dy-
namics. However, an accurate model for the system must be known. The field of adaptive
control aims to allow one to control a system with a great deal of parametric uncertainty,
but most such controllers do not exhibit those nice properties of an LTI system, and may
not tolerate a time-varying plant. In this thesis, it is shown that an adaptive controller
constructed via the machinery of Supervisory Control yields a closed-loop system which
is exponentially stable, and where the effects of the exogenous inputs are bounded above
by a linear convolution - this is a new result in the Supervisory Control literature. The
consequences of this are that the system enjoys linear-like properties: it has a bounded
noise-gain, is robust to a degree of unmodeled dynamics, and is tolerant of a degree of
time-varying plant parameters.

This is demonstrated in two cases: the first is the typical application of Supervisory
Control - an integral control law is used to achieve step tracking in the presence of a
constant disturbance. It is shown that the tracking error exponentially goes to zero when
the disturbance is constant, and is bounded above by a linear convolution when it is not.
The second case is a new application of Supervisory Control: it is shown that for a minimum
phase plant, the d-step-ahead control law may be used to achieve asymptotic tracking of
an arbitrary bounded reference signal. In addition to the convolution bound, a crisp bound
is found on the 1-norm of the tracking error when a disturbance is absent.

iii

Acknowledgements

I would like to express my sincere thanks to my supervisor, Professor Daniel E. Miller,
for providing me both academic and professional guidance, for directing my research, point-
ing me in interesting directions, helping me solve problems, and for his many hours spent
proof reading this work.

I would also like to show my appreciation to my readers Professor Andrew Heunis and
Professor Christopher Nielsen for providing their valuable feedback and comments.

iv

Dedication

This work is dedicated to my parents, whose unconditional love and support guided
me through my personal troubles encountered during graduate school. Without them, this
thesis would not have been possible.

v

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Objective . 2

1.2 Notation . 4

2 A Discussion of Parameter Estimation Techniques 5

2.1 The Projection Algorithm . 6

2.2 Ordinary Least-Squares . 8

2.3 Kalman Filter . 10

2.4 Weighted Least Squares . 11

2.5 Supervisory Control . 13

3 Supervisory Control Setup 15

3.1 Plant Definition . 15

3.2 Estimator Definition . 17

3.3 Preliminary Technical Results . 19

4 d-Step-Ahead Adaptive Tracking 24

4.1 Control Law . 25

4.2 State Space Representation . 28

vi

4.3 Nominal Tracking . 29

4.4 Closed-loop Stability . 34

4.5 Robustness . 48

4.6 Simulation Results . 50

5 Pole Placement Step Tracking with Constant Disturbance Rejection 60

5.1 Control Law . 64

5.2 State Space Representation . 67

5.3 Closed-loop Stability . 68

5.3.1 A Bound on the Tracking Error . 78

5.4 Robustness . 79

5.5 Simulation Results . 86

6 Conclusions and Future Work 91

References 93

APPENDICES 99

A Proof of Lemma 3.1 100

B Proof of Claim 4.1 103

C Matlab Code 105

C.1 Main Loop . 105

C.2 Plant Model . 106

C.3 Supervisory Estimator . 108

C.4 Projection Algorithm Estimator . 110

C.5 d-Step-Ahead Control Law . 111

C.6 Pole Placement Control Law . 112

vii

List of Figures

2.1 System diagram of a Supervisory Controller with n controller candidates [15] 13

4.1 Nominal sinusoid tracking performance of Supervisory Control vs the Pro-
jection Algorithm; the parameters are dashed and the estimates are solid.
. 51

4.2 Nominal step tracking performance of Supervisory Control vs the Projection
Algorithm; the parameters are dashed and the estimates are solid. 52

4.3 Performance in the presence of a random disturbance and time-varying pa-
rameters of Supervisory Control vs the Projection Algorithm; the parame-
ters are dashed and the estimates are solid. Supervisory dwell-time is τD = 2. 53

4.4 Performance of Supervisory Control with non-convex S and random distur-
bance. 56

4.5 Performance of Supervisory Control with non-convex S and random distur-
bance. 57

4.6 Performance of Supervisory Control with non-convex S and τD = 16. . . . 58

4.7 Performance of Supervisory Control with non-convex S and τD = 1. . . . 59

5.1 Block diagram of the estimator with pole placement controller and integrator. 61

5.2 Performance of Supervisory Control vs the Projection Algorithm in the pres-
ence of a piecewise constant disturbance. 87

5.3 Performance of Supervisory Control vs the Projection Algorithm in the pres-
ence of a random disturbance with piecewise constant mean. 88

5.4 Performance of Supervisory Control vs the Projection Algorithm in the
presence of a random disturbance with piecewise constant mean and time-
varying parameters. 89

viii

5.5 Performance of Supervisory Control without a dwell time vs the Projection
Algorithm in the presence of a random disturbance with piecewise constant
mean and time-varying parameters. 90

ix

Chapter 1

Introduction

Adaptive control is an approach used to control systems with uncertain and possibly time-
varying parameters. Instead of being a classical, fixed controller, designed using a priori
information about the plant dynamics, an adaptive controller uses a posteriori information
gathered during runtime to continuously tweak itself in the hopes of improving its own
performance. This allows the controller to adapt to a wide range of operating conditions,
creating the potential for a system with an immense degree of robustness to parametric un-
certainty. Adaptive controllers are often separated into two categories: ‘indirect’ adaptive
controllers and ‘direct’ adaptive controllers. The former works on the principle of real-time
system identification: some sort of model fitting algorithm is used to continuously update
an estimated model of the plant, and each time the model changes, some classical feedback
control strategy is used to create a new control law. The latter is any adaptive control
scheme that does not use the intermediate step of modeling the plant.

This thesis is concerned with indirect adaptive control: a parameter estimator paired
with a ‘certainty equivalence’ 1 control law. In many instances the control law is linear, but
the effect of the parameter estimator in the feedback loop results in a nonlinear system,
and may exhibit chaotic behavior [27]. Indeed, adaptive systems are often very difficult to
analyze. Adaptive controllers were pursued in the 1960’s in an attempt to cope with the
complicated dynamics of the supersonic X-15 experimental aircraft. They were used with
some success, but their nature was not fully understood, and the adaptive controller was in
part responsible for the crash of the X-15-3 [6]. It wasn’t until the 1980’s that stability of

1The certainty equivalence principle is to take the parameter estimate at face value and design a control
law as though it were the true parameters, in contrast to other control laws which may take the estimate
uncertainty into account [28].

1

adaptive systems began to be proven, see e.g. [9, 11, 39, 44, 45]. These adaptive controllers
were shown to be highly robust to a large degree of parametric uncertainty, but they were
often intolerant of time-varying parameters, disturbances or unmodeled dynamics, e.g. see
[7], thus they may be entirely non-robust in another sense.

Subsequent research over the following two decades used various innovations to attempt
to alleviate some of these shortcomings to a degree. Some of these changes include the use of
signal normalization, deadzones, σ−modification, and using projection onto a convex set of
admissible parameters, e.g. see [29, 8, 51, 23, 21, 55, 56, 43, 54, 53, 26]. However, in general
these redesigned controllers still only provide asymptotic stability and not exponential
stability; furthermore, typically a bounded gain on the disturbance is not proven, although
some of the proposed controllers, especially those which use projection, provide a bounded-
disturbance bounded-state property, as well as tolerance of some degree of unmodeled
dynamics and/or time-variations.

In the 1990s a new technique labeled Supervisory Control was shown in [40, 41] to
produce exponential stability, a bounded gain on the noise/disturbance, step tracking, and
robustness to a degree of unmodeled dynamics. While tolerance to time variations has not
been proven for this controller, in [52] a modified version using hysteresis is shown to have
some degree of tolerance.

1.1 Objective

Classical LTI feedback control enjoys a bounded gain on the disturbance and tolerance to a
degree of unmodeled dynamics, but is limited to only plants with fixed dynamics known a
priori. In contrast, most adaptive controllers can stabilize a plant with uncertain dynamics,
but may fail in the presence of a disturbance or unmodeled dynamics or when the plant’s
dynamics change over time. The proposed solution of this thesis is to devise an adaptive
controller with linear-like closed-loop behavior. To understand what this means, consider
an LTI system with state vector x(t), initial condition x(t0) at time t0 ∈ Z, exogenous
input w(t) and state transition matrix Φ satisfying ∥Φ(t)∥ ≤ γλt for some γ ≥ 1 and
λ ∈ (0, 1). Then the state’s evolution over time is described by the convolution

x(t) = Φ(t− t0)x(t0) +
t−1∑
i=t0

Φ(t− i− 1)w(i), t ≥ t0.

An adaptive system is nonlinear, so such a result will not exist. Instead we aim to show
that the magnitude of the state vector is upper bounded by a similar convolution. In fact,

2

it is sufficient if only a part of the system’s overall state is bounded as such. If one can
break the closed-loop system state up into two components:

x(t) =

[
x̄(t)
x̃(t)

]
,

with the plant’s output y(t) and control input u(t) elements of x̄(t), while x̃(t) contains
other variables such as parameter estimates, and then show that there exists a γ ≥ 1 and
λ ∈ (0, 1) such that the bound

∥x̄(t)∥ ≤ γλt−t0∥x̄(t0)∥+
t−1∑
i=t0

λt−i−1|w(i)|, t ≥ t0

holds uniformly for all admissible initial conditions x(t0), then one can show that the
system has various desirable properties. An obvious consequence of the convolution bound
is that the signals y and u are exponentially stable, and the system has a bounded gain on
the disturbance. What is less obvious is that using a modular technique analysed in [49, 37]
yields robustness to a degree of unmodeled dynamics and slowly time-varying parameters.

Such a result has been seen once before using the Projection Algorithm parameter
estimator. This is shown in [31, 35] where it is paired with a pole placement controller to
achieve step tracking, and in [32, 36] where it is paired with the d-step-ahead controller
to track an arbitrary reference signal. However, in the d-step-ahead setup, some stringent
assumptions are required, namely that the delay of the plant must be known a priori, as
does the sign of the high frequency gain. However, this last issue is partially mitigated in
[46, 47, 48, 50] by using multiple convex regions and multiple estimators, though only for
the first order case.

The objective of this thesis is to design an adaptive controller which provides the same
linear-like property of [35, 36, 38], while relaxing some of the assumptions; namely, we
remove the need to know the plant delay and the sign of the high frequency gain. To
achieve this, we apply Supervisory Control in discrete-time to both the classical d-step-
ahead adaptive tracking problem (this is, in itself, new) and to the step tracking problem
using an integral pole placement controller. In both cases a convolution bound is proven,
demonstrating that this forms a truly robust closed-loop adaptive system: robustness to
large scale initial uncertainty in the plant model and to bounded disturbances, and courtesy
of [49, 37], robustness to a degree of unmodeled dynamics and time-varying parameters.

3

1.2 Notation

We use standard notation throughout this thesis. We use the Euclidean 2-norm for vectors
and the corresponding induced norm for matrices, and denote the norm of a vector or
matrix by ∥ · ∥. For an arbitrary subset X of Rn, we define its norm to be

∥X∥ := sup
x∈X

∥x∥.

We let {a, . . . , b} denote the integer interval {x ∈ Z : a ≤ x ≤ b}. We let l∞ denote the set
of real-valued bounded sequences. We let ker{·} denote the kernel (nullspace) of a matrix,
and vec(·) denotes the vectorization operator. For an arbitrary signal a : Z → R, we let
∆a(t) denote a(t) − a(t − 1), and we let q−1 denote the unit backwards shift operator:
q−1a(t) = a(t − 1). For an LTI system H(z) with right-sided impulse response h(t), and
an arbitrary signal a : {t ∈ Z : t ≥ t0} → R, we define their convolution product as

{h ◦ a}(t) :=
t−t0∑
j=0

h(j)a(t− j).

Lastly, it is assumed that
i2∑

i=i1

(·) = 0, i2 < i1.

4

Chapter 2

A Discussion of Parameter
Estimation Techniques

In this chapter we discuss several parameter estimators which may be used to form an
indirect adaptive control system, and consider which may be candidates for our desired
adaptive system with ‘linear-like’ properties. The goal for these adaptive controllers is to
control a discrete-time, LTI plant of the form

y(t+ 1) =



y(t)
...

y(t− n+ 1)
u(t)
...

u(t−m+ 1)


︸ ︷︷ ︸

=:ϕ(t)

⊤ 

a∗1
...
a∗n
b∗1
...
b∗m


︸ ︷︷ ︸

=:θ∗

+w(t), t ≥ t0.

Here y(t) ∈ R is the plant’s output, u(t) ∈ R is the control input, and w ∈ l∞ the
disturbance (or noise) input. The controller’s goal is to make the output y asymptotically
track a reference signal r from a suitable class. The system’s initial condition ϕ(t0) is
assumed to be known (since it consists of measurable input-output data) but the parameter
vector θ∗ is unknown, but lies within a known, compact set S. The model corresponds to
the transfer function

P (z−1) =
b∗1z

−1 + . . .+ b∗mz
−m

1− a∗1z
−1 − . . .− a∗nz

−n
.

5

If θ∗ were known, then classical feedback design techniques could be used to stabilize the
system. Instead, the indirect adaptive controller uses its estimator to generate an estimate
θ̂ of the true parameters θ∗. This is then used with the ‘certainty equivalence’ control
method, which is to design a control law which would stabilize the system if the θ̂ were
the true parameters. Thus, the control law takes the form 1

u(t) = f
(
θ̂(t), y(t), ϕ(t− 1), r

)
. (2.1)

As discussed in Chapter 1, we hope to create an adaptive controller where the closed-
loop behavior obeys a linear-like bound: specifically, where the total system state is split
into two parts:

x(t) =

[
x̄(t)
x̃(t)

]
,

and there exists a γ ≥ 1 and λ ∈ (0, 1) such that the bound

∥x̄(t)∥ ≤ γλt−t0∥x̄(t0)∥+
t−1∑
i=t0

λt−i−1 (|w(i)|+ |r(i)|), t ≥ t0 (2.2)

holds uniformly for any initial starting time t0 ∈ Z, initial condition

[
x̄(t0)
x̃(t0)

]
, and θ∗ ∈ S.

The motivation for this is that one could then apply the results of [49] to show that
the closed-loop system retains exponential stability even in the presence of unmodeled
dynamics and slowly time-varying parameters. The purpose of this chapter is to informally
consider several well known parameter estimates, draw parallels between them, and provide
justification as to why we believe they may or may not be candidates for such a result.

2.1 The Projection Algorithm

This is a recursive estimator which is initialized with some initial guess θ̂(t0). Then at
every time-step, a new observation of y(t + 1) is used in conjunction with the previous
estimate θ̂(t) to produce the new estimate θ̂(t+ 1). We know that

y(t+ 1) = ϕ(t)⊤θ∗ + w(t),

1We use r here rather than r(t) since in some cases, the controller needs access to r a short distance
into the future.

6

but the disturbance w(t) is unknown, so we use the equation

y(t+ 1) = ϕ(t)⊤θ̂(t+ 1)

as the basis for selecting θ̂(t+ 1). Notice that if ϕ(t) = 0, this has no solution; otherwise,
it has many solutions. Since θ̂(t) ∈ Rn+m, in the case where ϕ(t) ̸= 0, the set of solutions
to this equation represents a n+m−1 dimensional hyperplane. With the assumption that
θ̂(t) has been well chosen and is ‘good’ in some way, we choose θ̂(t+1) to be the element on
this hyperplane which is nearest to θ̂(t). This is achieved by projecting the point θ̂(t) onto
the hyperplane. Thus, the ‘ideal’2 Projection Algorithm parameter estimator is described
by the recursive-update equation:

θ̂(t+ 1) =

{
θ̂(t) if ϕ(t) = 0

θ̂(t) + ϕ(t)
ϕ(t)⊤ϕ(t)

(
y(t+ 1)− ϕ(t)⊤θ̂(t)

)
otherwise.

When paired with a control law of the form (2.1) to create an adaptive controller, it
produces a nonlinear system; its state is described by ϕ(t) and θ̂(t), but instead we will
define the parameter estimation error as

θ̃(t) := θ̂(t)− θ∗,

and choose to define the state vector as

x(t) =

[
ϕ(t)

θ̃(t)

]
.

If the exogenous inputs (disturbance and reference) were zero, one would hope that the
state x would be exponentially stable, thus y → 0, u → 0 and θ̂ → θ∗. However, this is
not the case: it is well known that the parameter estimate will generally not converge to
the true parameters.

A slight variation of this estimator is used in [31, 35] and [32, 36] for the pole placement
and d-step-ahead cases respectively. In that setup, the set S must be convex, and the
parameter estimate is projected onto the set at each step to ensure that θ̂(t) ∈ S. Then,
by splitting the state vector into two components:

x̄(t) := ϕ(t), x̃(t) := θ̃(t),

2In much of the literature, this algorithm is modified to avoid having to treat the case ϕ(t) = 0
separately, but doing so makes it lose the nice property we are interested in [38].

7

then x̄ does indeed satisfy a bound of the sort (2.2) which holds uniformly for any t0 ∈ Z,
initial condition ϕ(t0), θ̂(t0) ∈ S, and θ∗ ∈ S. This in turn is leveraged to show that the
adaptive system enjoys various robustness properties. Additionally, in the pole placement
approach of [48], the constraint that S be convex is relaxed through the use of multiple
estimators.

2.2 Ordinary Least-Squares

The first in a series of optimization-based estimators, the ‘ordinary least-squares’ estima-
tor is where θ̂(t) is chosen to minimize the overall squared prediction error over all past
observations:

θ̂(t) = argmin
θ

t−1∑
i=t0

(y(i+ 1)− ϕ(i)⊤θ)2, t ≥ t0. (2.3)

A very important term related to this estimator is the matrix

R(t) :=
t−1∑
i=t0

ϕ(i)ϕ(i)⊤, t ≥ t0.

At a given time t ≥ t0, if R(t) is not full-rank, then the optimization routine described
above has many solutions. If R(t) is full-rank, then there is a unique solution. Also, in the
latter case, the estimator can be equivalently described by a recursive-update equation. If
t̄0 ≥ t0 is such that R(t̄0) is full rank, then R(t) is full rank for all t ≥ t̄0. In this case,
we introduce what is referred to as the ‘covariance matrix’, P (t) := R(t)−1, t ≥ t̄0. Then,
with initial condition θ̂(t̄0) and P (t̄0) := R(t̄0)

−1, the estimator above is equivalent to

θ̂(t+ 1) = θ̂(t) +
P (t)ϕ(t)

1 + ϕ(t)⊤P (t)ϕ(t)

(
y(t+ 1)− ϕ(t)⊤θ̂(t)

)
,

P (t+ 1) = P (t)− P (t)ϕ(t)ϕ(t)⊤P (t)

1 + ϕ(t)⊤P (t)ϕ(t)
, t ≥ t̄0.

P (t) ∈ R(n+m)×(n+m) is known as the covariance matrix since it represents the uncertainty
in the estimate. Observe that ∥P (t)∥ is non-increasing: as more data is observed, the
covariance decreases, hence the estimator’s confidence in its estimate increases. To avoid
the added complexity in the case where R(t) is singular, let us assume that the system is
initialized at a given time t̄0 with R(t̄0) positive definite. When paired with a control law

8

of the form (2.1) to create an adaptive controller, the total system state is described by
ϕ(t), θ̂(t) and P (t); however, it will be more useful to define it as

x(t) :=

 ϕ(t)
vec(R(t))

θ̃(t)

 .
Now let us consider if all or part of the state vector might be exponentially stable. As

with the Projection Algorithm, it is well known that θ̂ generally does not converge to θ∗,
so it is not true that the entire state x is exponentially stable. Next let us consider only
the partial state

x̄(t) := ϕ(t).

Consider the simple case where the disturbance and reference are both zero: then the
bound (2.2) simplifies to the standard definition [13] for global exponential stability for the
partial state x̄: there exists a γ ≥ 1 and λ ∈ (0, 1) such that the bound

∥ϕ(t)∥ ≤ γλt−t̄0∥ϕ(t̄0)∥, t ≥ t̄0 (2.4)

holds for any t̄0 ∈ Z and initial condition ϕ(t̄0), θ̂(t̄0) and R(t̄0). However, it is easy to
show that this is not the case. Let θ̂(t̄0) be a poor initial guess such that the control law
is initially destabilizing, thus in the short term, y is growing exponentially. Now suppose
that R(t̄0) is some small, positive definite matrix. Then we expect the estimator to rapidly
‘learn’ and the parameter estimate will improve, the control law will become stabilizing,
and ϕ will converge to zero relatively quickly.

Next observe that as P (t) → 0, the update in θ̂ becomes zero. In this extreme case,
the estimator is certain that it has found the correct parameters, so it ignores any future
information - the estimator ‘turns off’. So now suppose that the system is initialized with
the same θ̂(t̄0) as before, but R(t̄0) is very large (hence P (t̄0) is very small). In this case, the
estimator will be very hesitant to change θ̂ away from θ̂(t̄0), so the control law will remain
destabilizing for a much longer time. The parameter estimate will eventually improve and
ϕ will asymptotically approach zero, but ∥ϕ∥∞ will be much greater than in the previous
example. This shows that the upper bound of ϕ generally scales with the initial condition
R(t0), which suggests that (2.4) will not hold uniformly for all positive definite R(t0). A
formal proof is not provided as this is only of peripheral interest.

The only remaining option would be if the partial state

x̄(t) :=

[
ϕ(t)

vec(R(t))

]
9

satisfied the bound ∥∥∥∥[ϕ(t)
vec(R(t))

]∥∥∥∥ ≤ γλt−t̄0

∥∥∥∥[ϕ(t̄0)
vec(R(t̄0))

]∥∥∥∥ (2.5)

uniformly for all initial conditions. But since R is non-decreasing, this is clearly not the
case. Therefore an indirect adaptive controller created using the ordinary least-squares
estimator does not exhibit the linear-like property that we are pursuing, which agrees with
the fact that it is well known that such a controller is intolerant of plants with time-
varying parameters due to the phenomenon of the estimator ‘turning off’ as R(t) grows.
This shortcoming is what motivates the following two estimators, which are similar to the
ordinary least-squares estimator, but do not tend to ‘turn off’, so they may be able to
adaptively control systems whose parameters change slowly over time.

2.3 Kalman Filter

One way to handle slowly time-varying parameters is to model them as a stochastic process.
Consider a Gaussian random vector ξ with constant covariance matrix Q. Now model the
plant’s parameter vector as a Gauss-Markov process with the dynamics

θ∗(t+ 1) = θ∗(t) + ξ(t).

Suppose also that the disturbance w is a Gaussian random signal with constant variance
σ. Now, with some initial guess θ̂(t0) and initial parameter covariance matrix P (t0), a
Kalman Filter may be used to estimate the parameter vector:

θ̂(t+ 1) = θ̂(t) +
P (t)ϕ(t)

σ + ϕ(t)⊤P (t)ϕ(t)

(
y(t+ 1)− ϕ(t)⊤θ̂(t)

)
,

P (t+ 1) = P (t)− P (t)ϕ(t)ϕ(t)⊤P (t)

σ + ϕ(t)⊤P (t)ϕ(t)
+Q, t ≥ t0.

Notice the similarities between the Kalman filter equation and the recursive form of the
ordinary least-squares estimator. The important distinction is the additive Q term, which
has the effect of injecting ‘uncertainty’ into the estimator. This means that in the absence
of new observations (i.e., ϕ(t) = 0), the estimator begins to lose confidence in the accuracy
of its estimate. This ensures that P (t) does not asymptotically decrease to zero, so the
estimator does not ‘turn off’, and it shall be able to estimate slowly time-varying param-
eters. When paired with a control law of the form (2.1) to create an adaptive controller,

10

and with R(t) := P (t)−1, it too can have its state represented by

x(t) :=

 ϕ(t)
vec(R(t))

θ̃(t)

 .
In simulation, this estimator is quite effective at adaptively stabilizing systems with slowly
time-varying parameters, but let us determine if it may be exponentially stable. For the
very same reasons as the ordinary least-squares estimator, the full state x(t) and partial
state x̄(t) = ϕ(t) are not exponentially stable, so consider the partial state:

x̄(t) :=

[
ϕ(t)

vec(R(t))

]
.

Suppose that on some interval, ϕ(t) = 0. Then the covariance update simplifies to P (t +
1) = P (t) + Q. Then ∥P (t)∥ is increasing linearly over time, so ∥R(t)∥ is decaying like
1
t
. This is certainly an improvement over the previous estimator, but 1

t
is slower than

any exponential, so x̄(t) is not exponentially stable, hence the system cannot satisfy the
desired exponential bound. This is not to say that the estimator is bad, as its simulated
performance is very good. However, it may be very difficult to prove any meaningful
bounds on its performance, and it might be only locally stable.

2.4 Weighted Least Squares

Another often-used technique to estimate slowly time-varying parameters is to modify
the ordinary least-squares cost function by placing greater importance on more recent
observations. With forgetting factor λ ∈ (0, 1), the ‘weighted least-squares’ estimator is

θ̂(t) = argmin
θ

t−1∑
i=t0

λt−i−1
(
y(i+ 1)− ϕ(i)⊤θ

)2
, t ≥ t0.

Like the ordinary least-squares estimator, this can be written in recursive form. Define
R(t) as

R(t) :=
t−1∑
i=t0

λt−i−1ϕ(i)ϕ(i)⊤, t ≥ t0.

11

If t̄0 ≥ t0 is such that R(t̄0) is full rank, then R(t) is full rank for all t ≥ t̄0. Now
let P (t) := R(t)−1, t ≥ t̄0. Then, with initial condition θ̂(t̄0) and P (t̄0) := R(t̄0)

−1, the
estimator above is equivalent to

θ̂(t+ 1) = θ̂(t) +
P (t)ϕ(t)

λ+ ϕ(t)⊤P (t)ϕ(t)

(
y(t+ 1)− ϕ(t)⊤θ̂(t)

)
,

P (t+ 1) =
1

λ

(
P (t)− P (t)ϕ(t)ϕ(t)⊤P (t)

λ+ ϕ(t)⊤P (t)ϕ(t)

)
, t ≥ t̄0.

Alternatively,

θ̂(t+ 1) = θ̂(t) +
R(t)−1ϕ(t)

λ+ ϕ(t)⊤R(t)−1ϕ(t)

(
y(t+ 1)− ϕ(t)⊤θ̂(t)

)
,

R(t+ 1) = λR(t) + ϕ(t)ϕ(t)⊤, t ≥ t̄0.

Notice again the similarities between these equations and of the preceding two estimators.
The key difference here is that in the case where ϕ(t) = 0, the covariance matrix P grows
exponentially. This conceptually has the same effect as the +Q term in the Kalman filter,
except that here the growth is faster. By pairing this with a control law of the form (2.1)
to create an adaptive controller, its state may be represented by

x(t) :=

 ϕ(t)
vec(R(t))

θ̃(t)

 .
Like the Kalman filter, this works quite well in simulation at adaptively stabilizing systems
with slowly time-varying parameters, but let us determine if it may be exponentially stable.
As before, the full state x(t) and partial state x̄(t) = ϕ(t) are not exponentially stable, so
consider the partial state:

x̄(t) :=

[
ϕ(t)

vec(R(t))

]
.

Suppose that on some interval, ϕ(t) = 0. Then the update in R simplifies to R(t + 1) =
λR(t). This is exponential decay, exactly as we would hope. Thus, it might be that an
indirect adaptive controller created using the weighted least-squares estimator obeys a
convolution bound such as (2.2). However, it does not appear that this has ever been
proven, nor any sort of stability proof at all when a disturbance is present.

12

2.5 Supervisory Control

The Supervisory Control method was first proposed in [40, 41] as a continuous-time adap-
tive control algorithm functioning on the basis of switching. It is further expanded in e.g.
[3, 4, 14, 16, 17, 18, 20, 42, 52, 1, 19]. An overview can be found in [15]. A formal definition
of this estimator is given in Section 3.2, but a simplified description of its behavior is as
follows. It is assumed that the true plant parameters θ∗ lies inside some known, compact
space S. For each element in S, the designer creates a stabilizing LTI controller via the
certainty equivalence principle. Each element of S also has some performance metric which
tracks how well it matches the observed input-output behavior. A system known as the
‘supervisor’ monitors each of these performance signals and occasionally switches which
controller is in the feedback loop, based on which element of S has the smallest error, as
illustrated in Figure 2.1. This occasional switching between continuous-time controllers
results in a hybrid dynamical system. A ‘dwell time’3 is imposed to limit the rate at which
the estimator is permitted to switch, which is a key component of the stability proof.

Figure 2.1: System diagram of a Supervisory Controller with n controller candidates [15]

We propose a different point of view for considering Supervisory Control: it turns out

3A dwell time of τD means that whenever the controller gains are changed, they cannot be changed
again for at least τD steps.

13

that by taking Morse’s original controller, converting it into discrete-time, and removing a
couple extra complexities that aren’t needed in the discrete-time setup, it becomes simply
the following parameter estimator: for t > t0,

θ̂(t) =


θ̂(t− 1) if supervisor ‘dwelling’ at time t

argmin
θ∈S

t−1∑
i=t0

λt−i−1
(
y(i+ 1)− ϕ(i)⊤θ

)2
otherwise,

combined with a suitable certainty equivalence control law. Here λ ∈ (0, 1) is a forgetting
factor chosen by the designer.

Observe that this estimator is the same as the weighted least-squares estimator, with
two exceptions. Firstly, the true parameters θ∗ and estimated parameters θ̂ are confined to
a known set S in much the same way as in the Projection Algorithm setup used in [36, 38]
and other successful adaptive controllers. Secondly, instead of allowing the estimator to
change its estimate at every time-step, it is required to ‘pause’ for the duration of the dwell
time. This similarity between Supervisory Control and the weighted least-squares estimator
is not obvious to the casual reader of the rest of the Supervisory Control literature. In
making these changes, we are indeed able to show that the closed-loop system admits a
convolution bound of the sort (2.2). This is proven in Chapter 4 when the Supervisory
estimator is paired with a d-step-ahead control law, and in Chapter 5 when it is paired with
a pole placement controller with integrator. The convolution bound is then used to show
that the system remains stable in the presence of unmodeled dynamics and time-varying
parameters. While it is already proven in e.g. [41] that Supervisory Control is robust to
unmodeled dynamics in the step tracking setup, it is not shown to tolerate time-varying
parameters, except in [52], where a local stability result is shown for a slightly different
estimator in the presence of slowly time-varying parameters. Since Supervisory Control
has not been applied to d-step-ahead tracking before, the robustness results in this case
are totally new.

14

Chapter 3

Supervisory Control Setup

3.1 Plant Definition

Let t0 ∈ Z be a fixed, arbitrary initialization time. We begin by considering a plant
described by a linear, time-invariant difference equation made up of a vector of true pa-
rameters θ∗ and regression vector ϕ(t):

y(t+ 1) =



y(t)
...

y(t− n+ 1)
u(t)
...

u(t−m+ 1)


︸ ︷︷ ︸

=:ϕ(t)

⊤ 

a∗1
...
a∗n
b∗1
...
b∗m


︸ ︷︷ ︸

=:θ∗

+w(t), t ≥ t0. (3.1)

Here y(t) ∈ R is the plant’s output, u(t) ∈ R is the control input, and w ∈ l∞ the
disturbance (or noise) input. The system’s initial condition ϕ(t0) is assumed to be known.
Later we will allow the plant’s parameters to be time-varying, but the initial analysis is
for a time-invariant plant.

Remark 3.1 It turns out that if the system has a disturbance at both the input and output,
then it can be easily converted to a system of the above form.

15

Associated with this plant are the polynomials

Aθ∗(z
−1) = 1− a∗1z

−1 − . . .− a∗nz
−n,

Bθ∗(z
−1) = b∗1z

−1 + . . .+ b∗mz
−m,

and the associated transfer function

Bθ∗(z
−1)

Aθ∗(z−1)
.

The true parameter vector θ∗ is assumed to be unknown but belongs to a known set
S ⊂ Rn+m. We impose a set of assumptions on the set of admissible parameters.

Assumption 3.1 n is known;

Assumption 3.2 m is known;

Assumption 3.3 S is compact.

In later chapters, additional assumptions will be added, depending on what specific control
law is being used.

Remark 3.2 Since we do not require an ̸= 0 nor bm ̸= 0, Assumptions 3.1 and 3.2 can be
interpreted as assuming that an upper bound on n and m is known.

Remark 3.3 The restraint that S be compact in Assumption 3.3 is quite reasonable in
practical situations; it is used here to prove uniform bounds and decay rates on the closed-
loop behavior.

Remark 3.4 The upcoming parameter estimation will require optimization of a convex
function over a set of admissible parameter estimates. Carrying out such optimization
over the (typically) non-convex set S may be challenging. To alleviate this, since S is
compact, it follows that there exists a finite number p of compact convex sets Si ⊂ Rn+m

so that

Ŝ :=

p⋃
i=1

Si ⊃ S.

Thus the optimization will be performed over Ŝ, first by optimizing over each Si, and then
choosing the best out of each of the p candidate optimizers.

16

3.2 Estimator Definition

We now formalize the precise definition of the Supervisory Estimator. Consider the plant
definition in (3.1) and let H(z) be a stable LTI filter with impulse response h(t). If θ ∈ Ŝ
is an estimate of θ∗, then the prediction error is defined as

eθ(t) :=

t−t0∑
j=0

h(j)
(
y(t− j)− ϕ(t− j − 1)⊤θ

)
, t ≥ t0 + 1, θ ∈ Ŝ;

using our convolution notation, this can be written as

eθ(t) = {h ◦ y}(t)− ({h ◦ ϕ}(t− 1))⊤ θ t ≥ t0 + 1, θ ∈ Ŝ. (3.2)

The filter H(z) is referred to as the ‘data filter’ by Åström and Wittenmark [58, Chap-
ter 11]. Its purpose is to filter out components of the observed data which are considered
to be unreliable. For instance, if the plant is known to be influenced by a constant dis-
turbance, then introducing a zero at z = 1 into H(z) will eliminate its influence on the
parameter estimation. Similarly, if the observations are corrupted by high frequency mea-
surement noise, then H(z) should be low-pass. In most practical applications, H(z) should
combine both of these, resulting in a band-pass filter.

The parameter estimator is built around the exponentially-weighted cost function with
forgetting factor λ ∈ (0, 1):

J(θ, t) :=
t−1∑
i=t0

λt−i−1|eθ(i+ 1)|2, t ≥ t0 + 1. (3.3)

The parameter estimation routine is loosely defined as follows: occasionally, θ̂(t) is chosen
to be any θ ∈ Ŝ which minimizes J(θ, t). There may not be a unique minimizer: in this
case, if θ̂(t− 1) is one of the minimizers, then θ̂(t) = θ̂(t− 1); if not, then θ̂(t) is arbitrarily
chosen to be any one of the minimizers. To limit the rate at which the estimator may
switch, we introduce the notion of ‘dwelling’; this is quite unusual in the adaptive control
literature, but it will be needed in the later stability proof. Any time when the value of
θ̂ changes, the supervisor goes into a state of ‘dwelling’ and remains as such for the next
τD − 1 steps, with τD being a positive integer chosen to be sufficiently long (the criteria
for choosing the dwell-time will be provided later). During this time, θ̂ is held constant.
Thus, the rate of switching of θ̂ is limited to at most once every τD time-steps.

17

To formalize this switching procedure, we introduce a new dynamic variable τ(t),
dubbed the ‘dwell-timer’, constrained to the set {0, . . . , τD − 1}. Whenever τ takes a
positive value, the supervisor is in the ‘dwelling’ state. With an initial condition τ(t0) ∈
{0, . . . , τD − 1} and an initial parameter guess θ̂(t0) ∈ Ŝ, for t ≥ t0, the parameter estima-
tion routine is defined by

[
θ̂(t+ 1)
τ(t+ 1)

]
=



[
argmin

θ∈Ŝ
J(θ, t+ 1)

τD − 1

]
if τ(t) = 0 and

J(θ̂(t), t+ 1) > min
θ∈Ŝ

J(θ, t+ 1)

[
θ̂(t)

max{τ(t)− 1, 0}

]
otherwise.

(3.4)

This fully defines the estimator dynamics. However, the act of minimizing J(θ, t) as defined
in (3.3) seems difficult to implement. To make this optimization computationally easier,
we employ a technique shown in [40]. The cost function J(θ, t) is reformulated by means
of a new dynamical system called the ‘performance weight generator’ whose output is a
weighting matrix W (t) ∈ R(n+m+1)×(n+m+1) with dynamics defined as

W (t+ 1) = λW (t) +

[
{h ◦ ϕ}(t)

{h ◦ y}(t+ 1)

] [
{h ◦ ϕ}(t)

{h ◦ y}(t+ 1)

]⊤
, t ≥ t0, (3.5)

with initial condition W (t0) = 0. In this manner, we find that

W (t) =
t−1∑
i=t0

λt−i−1

{[
{h ◦ ϕ}(i)

{h ◦ y}(i+ 1)

] [
{h ◦ ϕ}(i)

{h ◦ y}(i+ 1)

]⊤}
, t > t0.

Thus, the cost function (3.3) may be equivalently expressed in quadratic form as

J(θ, t) =

[
θ
−1

]⊤
W (t)

[
θ
−1

]
, t ≥ t0 + 1. (3.6)

By Remark 3.4, Ŝ is made up of a finite union of compact, convex sets. Thus, minimizing J
over Ŝ reduces to p straightforward convex optimization problems, which can be efficiently
computed.

A consequence of this parameter estimation routine is that at every step for which the
system is not dwelling (τ(t− 1) = 0), the inequality

t−1∑
i=t0

λt−i−1|eθ̂(t)(i+ 1)|2 ≤
t−1∑
i=t0

λt−i−1|eθ(i+ 1)|2

18

holds for every θ in Ŝ. Most importantly, since θ∗ is a member of Ŝ, it follows that
t−1∑
i=t0

λt−i−1|eθ̂(t)(i+ 1)|2 ≤
t−1∑
i=t0

λt−i−1|{h ◦ w}(i)|2, t ≥ t0 + 1 s.t. τ(t− 1) = 0. (3.7)

3.3 Preliminary Technical Results

Here are some lemmas to be used in the following proofs. We start with a reformulation
of Section VIII B of [41].

Lemma 3.1 Let δ be a positive constant and let X be a list of vectors x1, x2, . . . , xm ∈
Rn whose first element satisfies ∥x1∥ ≥ δ. Then there exists an ordered subset
{xi1 , xi2 , . . . , xin̄} ⊆ X , with 1 ≤ n̄ ≤ max{n,m} and

1 = i1 < i2 < . . . < in̄ ≤ m,

as well as coefficients α(i,j) : {1, . . . ,m} × {1, . . . , n̄} → R which satisfy

α(i,j) = 0, i = 1, . . . , ij − 1, j = 2, . . . , n̄,

|α(i,j)| ≤
(
1 +

∥X∥
δ

)n̄

, i = ij, . . . ,m, j = 1, . . . , n̄,

as well as ∥∥∥∥∥xi −
n̄∑

j=1

α(i,j)xij

∥∥∥∥∥ ≤ δ, i = 1, . . . ,m.

This is quite similar to the ordinary procedure of taking a set of vectors {x1, x2, . . . , xm}
and extracting from it an ordered subset {xi1 , xi2 , . . . , xin̄} which span the set, in which
case for each xi there exists a list of coefficients α(i,1), . . . α(i,n̄) such that

xi =
n̄∑

j=1

α(i,j)xij .

For this standard basis vector decomposition, the coefficients may be arbitrarily large.
However, with our construction, we have traded equality for an approximation, and in
return we are able to ensure that all the coefficients are bounded.

19

Proof: A proof is shown in [41], but for completeness one is also provided in Appendix A
of this work. □

We also use a modified version of Kreisselmeier’s Lemma from [22].

Lemma 3.2 Consider the time-varying square matrix:

Ā(t) = A(t) + ∆(t).

Let Φ(t, τ) and Φ̄(t, τ) be the state transition matrices of A(t) and Ā(t), respectively.
Suppose there exists constants c ≥ 1, µ ∈ (0, 1) such that

∥Φ(t, τ)∥ ≤ cµt−τ , t ≥ τ. (3.8)

Then, for every µ̄ ∈ (µ, 1), α ≥ 0, and β ∈ [0, µ̄−µ
c
), there exists a c̄ ≥ 1 such that if

t2−1∑
t=t1

∥∆(t)∥ ≤ α + β(t2 − t1), t2 > t1, (3.9)

then the following bound holds:

∥Φ̄(t, τ)∥ ≤ c̄µ̄t−τ , t ≥ τ. (3.10)

Proof: If t = τ then Φ̄(t, τ) = I, so clearly (3.10) holds. Now consider the case when
t > τ :

∥Φ̄(t, τ)∥ ≤ ∥Φ(t, τ)∥+
t−1∑
i=τ

∥Φ(t, i+ 1)∥∥∆(i)∥∥Φ̄(i, τ)∥

≤ cµt−τ +
t−1∑
i=τ

cµt−i−1∥∆(i)∥∥Φ̄(i, τ)∥

Now introduce the change of variables z(i) := µτ−i∥Φ̄(i, τ)∥:

µt−τz(t) ≤ cµt−τ +
t−1∑
i=τ

cµt−i−1∥∆(i)∥µi−τz(i)

z(t) ≤ c+
t−1∑
i=τ

c

µ
∥∆(i)∥z(i),

20

and apply the Bellman-Gronwall inequality (e.g. [5, Appendix E])

z(t) ≤ c

t−1∏
i=τ

(
1 +

c

µ
∥∆(i)∥

)

∥Φ̄(t, τ)∥ ≤ cµt−τ

t−1∏
i=τ

(
1 +

c

µ
∥∆(i)∥

)

= c
t−1∏
i=τ

(µ+ c∥∆(i)∥).

Finally, apply the inequality of arithmetic and geometric means and use (3.9):

∥Φ̄(t, τ)∥ ≤ c

(
1

t− τ

t−1∑
i=τ

(µ+ c∥∆(i)∥)

)t−τ

≤ c

(
µ+ cβ +

cα

t− τ

)t−τ

, t > τ.

Since β is chosen such that µ+ cβ < µ̄, there exists a c̄ ≥ 1 such that (3.10) holds. □

Last of all, since we desire a convolution of the sort (2.2), but the cost function (3.3)
that the estimator uses is a sum-of-squares, we will require a means to convert between
them:

Lemma 3.3 For any constant λ ∈ (0, 1) and signal x : Z → R, the following inequalities
hold:

i2−1∑
i=i1

λi2−i−1|x(i)| ≤

√√√√ 1

1− λ

i2−1∑
i=i1

λi2−i−1|x(i)|2, i2 > i1,√√√√i2−1∑
i=i1

λi2−i−1|x(i)|2 ≤
i2−1∑
i=i1

√
λ
i2−i−1

|x(i)|, i2 > i1.

21

Proof: The first inequality comes from the Cauchy-Schwarz inequality:

i2−1∑
i=i1

λi2−i−1|x(i)| ≤

√√√√i2−1∑
i=i1

(√
λ
i2−i−1

)2 i2−1∑
i=i1

(√
λ
i2−i−1

|x(i)|
)2
,

=

√√√√1− λi2−i1

1− λ

i2−1∑
i=i1

λi2−i−1|x(i)|2,

≤

√√√√ 1

1− λ

i2−1∑
i=i1

λi2−i−1|x(i)|2.

The second inequality comes from simple algebra:

i2−1∑
i=i1

λi2−i−1|x(i)|2 =
i2−1∑
i=i1

(√
λ
i2−i−1

|x(i)|
)2

≤

(
i2−1∑
i=i1

√
λ
i2−i−1

|x(i)|

)2

. □

Remark 3.5 We can find a continuous-time analog to the first inequality of Lemma 3.3
via the Cauchy-Schwarz inequality: for any constant λ > 0 and signal x : R → R,∫ t

0

e−λ(t−τ)|x(τ)|dτ ≤

√∫ t

0

(
e−

λ
2
(t−τ)

)2
dτ

√∫ t

0

(
e−

λ
2
(t−τ)|x(τ)|

)2
dτ

≤

√
1

λ

∫ t

0

e−λ(t−τ)|x(τ)|2dτ , t ≥ 0,

but there does not exist a continuous-time analog to the second inequality: it is not true
that for any λ > 0, there exists constant c ≥ 0 such that for all x : R → R,√∫ t

0

e−λ(t−τ)|x(τ)|2dτ ≤ c

∫ t

0

e−λ(t−τ)|x(τ)|dτ , t ≥ 0.

To see why this is so, consider the example of x(·) = 1: then the above inequality becomes√
1− e−λt

λ
≤ c

1− e−λt

λ
, t ≥ 0.

22

This would be true if and only if

1 ≤ c√
λ

1− e−λt

√
1− e−λt

, t ≥ 0.

But

lim
t→0+

1− e−λt

√
1− e−λt

= 0,

so such a c cannot exist. Hence, while a bound involving1√∫ t

0

e−λ(t−τ)|w(τ)|2dτ

is discussed in equation (51) of [41] regarding the closed-loop behavior of continuous-time
Supervisory Control, it does not follow that a convolution bound of the desired sort follows
from that.

1In [41], b(·) represents the exogenous inputs; it is analogous to w(·) in our setup.

23

Chapter 4

d-Step-Ahead Adaptive Tracking

Here we consider the adaptive tracking problem where the Supervisory parameter estimator
defined by (3.4) - (3.6), with λ ∈ (0, 1) to be chosen later, is combined with the d-step-
ahead control law. This has never been done before in the Supervisory Control approach.
Recall that the plant model being considered is

y(t+ 1) =



y(t)
...

y(t− n+ 1)
u(t)
...

u(t−m+ 1)


︸ ︷︷ ︸

ϕ(t)

⊤ 

a∗1
...
a∗n
b∗1
...
b∗m


︸ ︷︷ ︸

θ∗

+w(t), t ≥ t0. (4.1)

The controller’s goal is to make the plant’s output y(t) track an arbitrary bounded reference
signal r(t) using a bounded control signal u(t). There are no assumptions made on the
nature of the disturbance, so for this chapter we let the data filter H(z) be 1. Beside
Assumptions 3.1 - 3.3, which are assumed to hold, we will enforce an additional assumption
on the set of admissible parameters S to ensure that the d-step-ahead control law is well
behaved:

Assumption 4.1 The polynomial Bθ(z
−1) corresponding to each θ in S has all of its

zeros in the open unit disk.

24

Remark 4.1 Assumption 4.1 is a requirement that the plant be minimum phase; this is
necessary for a causal controller to provide asymptotic tracking of an arbitrary bounded
reference signal using a bounded control signal [30]. Moreover, since the roots of a polyno-
mial are a continuous function of its coefficients, and the coefficients of Bθ(z

−1) lie within
a compact set, it follows that there exists a λS < 1 such that the zeros of Bθ(z

−1) all lie
within the open disk of radius λS.

Remark 4.2 Assumption 3.3 and Assumption 4.1 imply that the leading coefficient of
Bθ(z

−1), which is the system’s ‘high frequency gain’, is bounded away from zero.

Remark 4.3 The components Si that make up Ŝ can be chosen such that each element
of Si satisfies Assumption 4.1, the corresponding polynomial Bθ(z

−1) has all of its zeros

within the open disk of radius λS, and each model Bθ(z
−1)

Aθ(z−1)
has the same relative degree, so

henceforth we will assume that this is the case.

4.1 Control Law

Here we define what is known as the ‘d-step-ahead’ control law, which is the causal con-
troller which would drive y to the arbitrary reference r should the parameter vector θ∗

be known and the disturbance w be zero. It turns out that this controller places some of
the closed-loop poles at the location of the plant’s zeros, with the rest of the poles placed
at the origin. Assumption 4.1 guarantees that all these pole-zero cancellations are stable.
The simplified closed-loop transfer function is then z−dθ∗ , where dθ∗ is the relative degree
of the plant. To implement this, the controller is provided with r(t + dθ∗) - the reference
signal advanced dθ∗ steps forward in time. This is what inspires the control law’s name.
Its construction is as follows.

Consider first the simple case where dθ∗ = 1. Then the ‘one-step-ahead’ control law is
the u(t) that satisfies the equation

r(t+ 1) =



y(t)
...

y(t− n+ 1)
u(t)
...

u(t−m+ 1)


︸ ︷︷ ︸

ϕ(t)

⊤ 

a∗1
...
a∗n
b∗1
...
b∗m


︸ ︷︷ ︸

θ∗

, t ≥ t0 + 1.

25

However, if dθ∗ > 1, then the term b∗1 will be zero, so this equation will not have a solution
for u(t). In this case, the system must be reparameterized into the so-called ‘predictor
form’. The process for doing so is shown in Lemma 4.2.1 of [12] and is also provided here.
First, observe that the plant can be rewritten as

y(t+ 1) =



y(t)
...

y(t− n+ 1)
u(t)
...

u(t−m+ 1)


︸ ︷︷ ︸

ϕ(t)

⊤ 

a∗1
...
a∗n
b∗1
...
b∗m


︸ ︷︷ ︸

θ∗

+w(t), t ≥ t0.

=⇒


1

−a∗1
...

−a∗n


⊤ 

y(t+ 1)
y(t)
...

y(t− n+ 1)

 =


0
b∗1
...
b∗m


⊤ 

u(t+ 1)
u(t)
...

u(t−m+ 1)

+ w(t), t ≥ t0.

=⇒ Aθ∗(q
−1)y(t+ 1) = Bθ∗(q

−1)u(t+ 1) + w(t), t ≥ t0. (4.2)

Now let B′
θ∗(q

−1) = qdθ∗Bθ∗(q
−1). This ensures that the leading coefficient of B′

θ∗(q
−1) is

non-zero. Now for each θ ∈ Ŝ, let

Fθ(z
−1) := 1 + fθ1z

−1 + . . .+ fθ(dθ−1)z
−dθ+1 (4.3)

and
Gθ(z

−1) := gθ1 + gθ2z
−1 + . . .+ gθnz

−n+1

be the unique solution to the equation

Fθ(q
−1)Aθ(q

−1) + q−dθGθ(q
−1) = 1. (4.4)

This may be obtained, for example, by using long division, as in [36]. Now we operate on
each side of (4.2) by Fθ∗(q

−1):

Fθ∗(q
−1)Aθ∗(q

−1)y(t+ dθ∗) = Fθ∗(q
−1)Bθ∗(q

−1)u(t+ dθ∗)+Fθ∗(q
−1)w(t+ dθ∗ − 1), t ≥ t0,

and apply Fθ∗(q
−1)Aθ∗(q

−1) = (1− q−dθ∗Gθ∗(q
−1)) to the LHS and rearrange to yield

y(t+ dθ∗) = Gθ∗(q
−1)y(t) + Fθ∗(q

−1)Bθ∗(q
−1)u(t+ dθ∗) + Fθ∗(q

−1)w(t+ dθ∗ − 1), t ≥ t0.

26

Hence, if we define

βθ1 + βθ2z
−1 + . . .+ βθnz

−n+1 := Fθ(z
−1)B′

θ(z
−1),

w̄(t) := Fθ∗(q
−1)w(t+ dθ∗−1),

then we can express the plant as

y(t+ dθ∗) =



y(t)
...

y(t− n+ 1)
u(t)
...

u(t−m+ 1)


︸ ︷︷ ︸

ϕ(t)

⊤ 

gθ∗1
...

gθ∗n
βθ∗1
...

βθ∗m


+ w̄(t), t ≥ t0.

The nature of a certainty equivalence controller is that we interpret the parameter estimate
θ̂ as though it were the true parameter; thus we choose the control input u(t) to be that
which makes the predicted output equal to the reference. Hence, the control law is that
which satisfies the equation 1

r(t+ dθ̂(t)) =



y(t)
...

y(t− n+ 1)
u(t)
...

u(t−m+ 1)


︸ ︷︷ ︸

ϕ(t)

⊤ 

gθ̂(t)1
...

gθ̂(t)n
βθ̂(t)1
...

βθ̂(t)m


, t ≥ t0 + 1,

or equivalently, that which satisfies the difference equation

r(t+ dθ̂(t)) = Gθ̂(t)(q
−1)y(t) + Fθ̂(t)(q

−1)B′
θ̂(t)

(q−1)u(t), t ≥ t0 + 1. (4.5)

We want to rearrange this equation to solve for u(t). To this end, observe that each model’s
delay lies within {1, . . . ,m}, and define

r̄(t) :=

 r(t+ 1)
...

r(t+m)

 , fθ := −
[

gθ2
βθ1

. . . gθn
βθ1

0 βθ2

βθ1
. . . βθm

βθ1
0
]
, gθ := − gθ1

βθ1
,

1u(t0) is given as part of the initial condition ϕ(t0), so the control law only holds for t ≥ t0 + 1.

27

and let hθ ∈ R1×m be the vector whose dthθ element is equal to 1
βθ1

and zero elsewhere.
Then the d-step-ahead control law is written as

u(t) = fθ̂(t)ϕ(t− 1) + gθ̂(t)y(t) + hθ̂(t)r̄(t), t ≥ t0 + 1. (4.6)

Observe that the term βθ1 is bounded away from zero due to Assumptions 3.3 and 4.1 (see
Remark 4.2). This plus the compactness of Ŝ means that all coefficients in the control law
are uniformly bounded for θ ∈ Ŝ.

4.2 State Space Representation

As in Chapter 2, define the parameter estimation error as

θ̃(t) := θ̂(t)− θ∗, t ≥ t0.

With the data filter from Chapter 3 chosen as H(z) = 1, the prediction error (3.2) can
be rewritten as

eθ̂(t)(i) = y(i)− ϕ(i− 1)⊤θ̂(t)

= ϕ(i− 1)⊤θ∗ + w(i− 1)− ϕ(i− 1)⊤θ̂(t),

= w(i− 1)− ϕ(i− 1)⊤θ̃(t), t ≥ t0, i ≥ t0 + 1. (4.7)

We can now form an update equation for ϕ(t). Start by defining, for every k ∈ N,

Āk :=


0

1
. . .
.

1 0

 ∈ Rk×k, b̄k :=


1
0
...
0

 ∈ Rk;

then begin the state-space construction with

ϕ(t+ 1) =

[
Ān 0
0 Ām

]
ϕ(t) +

[
b̄n
0

]
y(t+ 1) +

[
0
b̄m

]
u(t+ 1), t ≥ t0.

Now incorporate the control law (4.6):

ϕ(t+ 1) =

([
Ān 0
0 Ām

]
+

[
0
b̄m

]
fθ̂(t+1)

)
ϕ(t) +

[
b̄n

b̄mgθ̂(t+1)

]
y(t+ 1)

+

[
0
b̄m

]
hθ̂(t+1)r̄(t+ 1) t ≥ t0. (4.8)

28

Finally, substitute in the plant dynamics from (4.1): with

Aθ1θ2 :=

[
Ān 0
0 Ām

]
+

[
b̄n
0

]
θ1

⊤ +

[
0
b̄m

]
(fθ2 + gθ2θ1

⊤),

we end up with

ϕ(t+ 1) = Aθ∗θ̂(t+1)ϕ(t) +

[
0
b̄m

]
hθ̂(t+1)r̄(t+ 1) +

[
b̄n

b̄mgθ̂(t+1)

]
w(t), t ≥ t0. (4.9)

Alternatively, from (4.7), substitute y(t + 1) = eθ̂(t+1)(t + 1) + θ̂(t + 1)⊤ϕ(t) into (4.8) to
yield another representation:

ϕ(t+ 1) = Aθ̂(t+1)θ̂(t+1)ϕ(t) +

[
0
b̄m

]
hθ̂(t+1)r̄(t+ 1) +

[
b̄n

b̄mgθ̂(t+1)

]
eθ̂(t+1)(t+ 1), t ≥ t0.

(4.10)

This form is useful because Aθθ represents the closed-loop system dynamics if θ̂(·) = θ∗ =
θ ∈ Ŝ. Due to the certainty equivalence control law, the d-step-ahead controller places
some of the eigenvalues of this matrix at the zeros of the corresponding plant model, and
the rest at the origin. From Remark 4.3, it follows that for each fixed θ ∈ Ŝ, the matrix
Aθθ is stable with margin2 λS ∈ (0, 1). Notice also that ∥Aθθ∥ is uniformly bounded due
to the compactness of Ŝ and the uniform boundedness of fθ and gθ. It follows that there
exists a γ̂ such that

∥Ak
θθ∥ ≤ γ̂λkS, k ≥ 0, θ ∈ Ŝ. (4.11)

Finally, define these constants for later:

γ1 := 1 + sup
θ∈Ŝ

|gθ|, γ2 := sup
θ∈Ŝ

∥hθ∥.

4.3 Nominal Tracking

At this point, when the disturbance is zero, we will derive a bound on the size of the
tracking error

ϵ(t) := y(t)− r(t)

2Stability margin refers to the eigenvalues of the matrix lying within the open disk of some specified
radius.

29

in terms of the size of the initial condition and the size of the reference signal. Quite
surprisingly, we are able to do so before proving any form of closed-loop stability.

Theorem 4.1 For every τD ≥ 1, there exists a constant c ≥ 1 such that for every t0 ∈ Z,
λ ∈ (0, 1), θ∗ ∈ S, ϕ(t0) ∈ Rn+m, τ(t0) ∈ {0, . . . , τD − 1} and r ∈ l∞, if w = 0, when
the supervisory controller given by (3.4) - (3.6) and (4.6) is applied to the plant (4.1),
the following bound holds:

∞∑
t=t0

|ϵ(t)| ≤ c (∥r∥∞ + ∥ϕ(t0)∥) .

Remark 4.4 In most adaptive control papers on the d-step-ahead control problem, it is
proven only that

∞∑
t=t0

|ϵ(t)|2 <∞.

Clearly Theorem 4.1 proves something much stronger; using Lemma 3.3, we find

∞∑
t=t0

|ϵ(t)|2 ≤ c2 (∥r∥∞ + ∥ϕ(t0)∥)2 .

Proof: Fix λ ∈ (0, 1), set w = 0 and let θ∗ ∈ S, ϕ(t0) ∈ Rn+m and r ∈ l∞ be arbitrary.
Let t1, t2, ... be the time indices where θ̂ switches. Since the supervisor is necessarily not
dwelling at these switch times, from (3.7), the following equality holds for each switching
time tj:

tj−1∑
i=t0

λtj−i−1|eθ̂(tj)(i+ 1)|2 = 0, j ≥ 1. (4.12)

Since this is a sum of non-negative components, it must be that each eθ̂(tj)(i + 1) = 0 for

i ∈ {t0, . . . , tj − 1}. Since the disturbance is absent, eθ̂(tj)(i + 1) is simply −ϕ(i)⊤θ̃(tj).
Thus, by defining

N0 := Rn+m,

Nj := ker


 ϕ(t0)

⊤

...
ϕ(tj − 1)⊤


 , j ≥ 1,

30

it follows that Nj+1 ⊂ Nj, j ≥ 0, and for each j ≥ 0, θ̃(tj) ∈ Nj.

Recall that by (3.4), the supervisor only changes θ̂ if it finds a new candidate in Ŝ
which is better than the previous value of θ̂. Thus, it must be that for each switching time
tj,

tj+1−1∑
i=t0

λtj+1−i−1|eθ̂(tj)(i+ 1)|2 >
tj+1−1∑
i=t0

λtj+1−i−1|eθ̂(tj+1)
(i+ 1)|2 = 0, j ≥ 0.

This implies that θ̃(tj) /∈ Nj+1, specifically θ̃(tj) ∈ Nj \ Nj+1 for each j ≥ 0, and hence

dim{Nj+1} < dim{Nj}, j ≥ 0. Since the dimension of N0 is n + m, it follows that θ̂
can’t switch more than n+m times. Thus, let N ≤ n+m be the number of switches, so
t1, t2, . . . , tN is the complete list of switching times.

The key part of this proof is to find a relationship between the tracking error ϵ and
the prediction error eθ̂. This is done by taking advantage of the d-step-ahead control

law. Consider first the simple case where θ̂(t) corresponds to a plant model
Bθ̂(t)(z

−1)

Aθ̂(t)(z
−1)

with

relative degree one. Then we use the ‘one-step-ahead’ control law 3

r(t+ 1) = ϕ(t)⊤θ̂(t), t ≥ t0 + 1 s.t. dθ̂(t) = 1,

and it is clear that

ϵ(t+ 1) = y(t+ 1)− r(t+ 1)

= y(t+ 1)− ϕ(t)⊤θ̂(t)

= eθ̂(t)(t+ 1), t ≥ t0 + 1 s.t. dθ̂(t) = 1.

It is more complicated when the plant model has a greater delay, as the ‘predictor form’
transformation shown in Section 4.1 must be used. Using (4.4) and (4.5), one can see that:

ϵ(t+ dθ̂(t)) = y(t+ dθ̂(t))− r(t+ dθ̂(t))

= y(t+ dθ̂(t))−
(
Gθ̂(t)(q

−1)y(t) + Fθ̂(t)(q
−1)B′

θ̂(t)
(q−1)u(t)

)
=
(
1− q−dθ̂(t)Gθ̂(t)(q

−1)
)
y(t+ dθ̂(t))− Fθ̂(t)(q

−1)Bθ̂(t)(q
−1)u(t+ dθ̂(t))

= Fθ̂(t)(q
−1)
(
Aθ̂(t)(q

−1)y(t+ dθ̂(t))−Bθ̂(t)(q
−1)u(t+ dθ̂(t))

)
, t ≥ t0 + 1.

3Recall that u(t0) is an element of the the initial condition ϕ(t0), so the control law only holds for
t ≥ t0 + 1.

31

The last term above corresponds to the prediction error with respect to the estimate θ̂(t):

eθ(t) := y(t)−



y(t− 1)
...

y(t− n)
u(t− 1)

...
u(t−m)


︸ ︷︷ ︸

ϕ(t−1)

⊤ 

a1
...
an
b1
...
bm


︸ ︷︷ ︸

θ

=


1

−a1
...

−an


⊤ 

y(t)
y(t− 1)

...
y(t− n)

−

 b1
...
bm


⊤  u(t− 1)

...
u(t−m)


= Aθ(q

−1)y(t)−Bθ(q
−1)u(t), t ≥ t0 + 1.

Thus, using the coefficients of Fθ(q
−1) as defined in (4.3), one can express the tracking

error as a function of the delayed prediction errors:

ϵ(t+dθ̂(t)) = eθ̂(t)(t+dθ̂(t))+fθ̂(t)1eθ̂(t)(t+dθ̂(t)−1)+ ...+fθ̂(t)(dθ̂(t)−1)eθ̂(t)(t+1), t ≥ t0+1.

Using the fact that θ̂ is constant on the interval {tj, . . . , tj+1 − 1} , j ≥ 0:

ϵ(t) = Fθ̂(tj)
(q−1)eθ̂(ti)(t)

= eθ̂(tj)(t) + fθ̂(tj)1eθ̂(tj)(t− 1) + ...+ fθ̂(tj)(dθ̂(tj)−1)eθ̂(tj)(t− dθ̂(tj) + 1),

t ∈
{
tj + dθ̂(tj), . . . , tj+1 + dθ̂(tj) − 1

}
, t ̸= t0 + dθ̂(t0), j ≥ 0. (4.13)

We use (4.12) in conjunction with (4.13) to find a bound on the tracking error. To do
so, we break up the sum of the tracking errors as several partial sums:

∞∑
t=t0

|ϵ(t)| =
t1−1∑
t=t0

|ϵ(t)|+
t2−1∑
t=t1

|ϵ(t)|+ . . .+
∞∑

t=tN

|ϵ(t)|. (4.14)

Now we analyze each of the partial sums; each will fall into one of two cases, to be analyzed
separately.

32

Case 1: eθ̂(tj)(t) ̸= 0 for some t in {tj + 1, . . . , tj + τD − 1}. In this case, the estimator
will switch as soon as it ceases dwelling, i.e. tj+1 = tj + τD. We simply use the worst-case
dynamics to find a bound on the tracking error. By observing that y(t) is an element of
ϕ(t), we begin with:

tj+1−1∑
t=tj

|ϵ(t)| ≤
tj+τD−1∑

t=tj

(∥ϕ(t)∥+ ∥r∥∞). (4.15)

Now use (4.9) to find a bound for ϕ on this interval. Let ā := supθ1∈S,θ2∈Ŝ ∥Aθ1θ2∥, which
is finite because S and Ŝ are compact and fθ and gθ are uniformly bounded. Thus,

∥ϕ(t)∥ ≤ āt−tj+1∥ϕ(tj − 1)∥+ γ2
āt−tj+1 − 1

ā− 1
∥r∥∞, t ∈ {tj, . . . , tj + τD − 1} . (4.16)

Case 2: eθ̂(tj)(t) = 0 for for t in {tj + 1, . . . , tj + τD − 1}. Since the supervisor ceases
dwelling at time tj + τD, we know that the prediction error must remain zero up until the

next time θ̂ switches, thus:

eθ̂(tj)(t) = 0, t ∈ {tj, . . . , tj+1 − 1} .

Since θ̂(t) and hence dθ̂(t) are constant on the interval {tj, . . . , tj+1 − 1}, it follows from

(4.13) that the tracking error ϵ(t) is exactly zero on the interval
{
tj + dθ̂(tj), . . . , tj+1 − 1

}
(the exception is in the first switching period - ϵ(t) is zero on the interval{
t0 + dθ̂(t0) + 1, . . . , t1 − 1

}
). Therefore,4

tj+1−1∑
t=tj

|ϵ(t)| ≤



t0+m∑
t=t0

(∥ϕ(t)∥+ ∥r∥∞) j = 0

tj+m−1∑
t=tj

(∥ϕ(t)∥+ ∥r∥∞) otherwise.

(4.17)

Notice that on the interval {tj, . . . , tj+1 − 1}, (4.10) is a stable system whose input eθ̂(t)(t)

is zero. Thus we use (4.11) to show that

∥ϕ(t)∥ ≤ γ̂λ
t−tj+1
S ∥ϕ(tj − 1)∥+ γ̂γ2

1− λ
t−tj+1
S

1− λS
∥r∥∞, t ∈ {tj, . . . , tj+1 − 1} . (4.18)

4Using the knowledge that the delay can be no greater than m.

33

Both cases: By combining (4.16) and (4.18), it follows that there exists a constant γ3
such that for each j ∈ {1, . . . , N},

∥ϕ(tj − 1)∥ ≤ ājτD∥ϕ(t0)∥+ γ3
ājτD − 1

āτD − 1
∥r∥∞. (4.19)

Now consider (4.14). The final term, for t ≥ tN , must fall into Case 2. For it and every
other interval in Case 2, we use (4.17), (4.18) and (4.19). Similarly, for every interval in
Case 1, we use (4.15), (4.16) and (4.19). This yields the desired result. □

4.4 Closed-loop Stability

Before presenting the main result on stability, we return to the issue of dwell time. The
matrix Aθθ plays a critical role here. We know from (4.11) that Aθθ is stable for any fixed
θ ∈ Ŝ. Of course, here θ̂ is time-varying and we will need to impose a constraint to ensure
that the state transition matrix Φ corresponding to Aθ̂(t)θ̂(t) is also well-behaved. To make
our stability proof work we will require that the filter gain λ be larger than the maximum
of the plant zeros: λ ∈ (λS, 1). Now choose λ̃ ∈ (λS, λ), and suppose that the goal is to
ensure that Φ(t2, t1) goes to zero at least as fast as λ̃t2−t1 as t2− t1 → ∞. If the dwell time
is τD, then we expect that this will be achieved if

γ̂λτDS ≤ λ̃τD ⇔ τD ≥ ln(γ̂)

ln
(

λ̃
λS

) ; (4.20)

indeed, if this is the case, then it is easy to see that

∥Φ(t2, t1)∥ ≤ γ̂λ̃t2−t1 , t2 ≥ t1 ≥ t0.

Remark 4.5 If all admissible plant models contain no zeros, or only zeros at the origin,
then each Aθθ is deadbeat and the minimum required dwell time is n+m.

Therefore, if θ̂(t) is any piecewise-constant signal with dwell-time satisfying (4.20), then
the system (4.10) is exponentially stable, which reveals the convolution bound, albeit in
terms of internal signals rather than exogenous ones: with t̄0 ≥ t0,

∥ϕ(t)∥ ≤ γ̂λ̃t−t̄0∥ϕ(t̄0)∥+ γ̂
t−1∑
i=t̄0

λ̃t−i−1
(
γ1|eθ̂(i+1)(i+ 1)|+ γ2∥r̄(i+ 1)∥

)
, t ≥ t̄0.

34

Thus, a stability proof relies on finding a meaningful bound on the term

t−1∑
i=t̄0

λ̃t−i−1|eθ̂(i+1)(i+ 1)|. (4.21)

In the trivial case where n = 0 and m = 1 (the plant is a delay with a gain), we find that
the minimum dwell-time is τD = 1 and the parameter estimation law (3.4) - (3.6) simplifies
to

θ̂(t) = argmin
θ∈Ŝ

t−1∑
i=t0

λt−i−1|eθ(i+ 1)|2, t ≥ t0.

From this it may be inferred that

t−1∑
i=t0

λt−i−1|eθ̂(t)(i+ 1)|2 ≤
t−1∑
i=t0

λt−i−1|w(i)|2, t ≥ t0,

and
t−1∑
i=t0

λt−i−1|eθ̂(t)(i+ 1)|2 ≤
t−1∑
i=t0

λt−i−1|eθ̂(t+1)(i+ 1)|2, t ≥ t0.

Claim 4.1 The two inequalities above may be used to show that

t−1∑
i=t0

λt−i−1|eθ̂(i+1)(i+ 1)|2 ≤
t−1∑
i=t0

λt−i−1|w(i)|2, t ≥ t0.

Proof: See Appendix B. □

This result, when combined with Lemma 3.3 and the assertion that λ̃ < λ, can be used
to find a useful bound for (4.21), showing that the system is exponentially stable with a
convolution bound. Thus, the stability proof is very straightforward in this trivial case,
but in the general case where n + m > 1, it is much more complicated. In essence, the
following stability proof is just finding a useful bound for (4.21) in the case where the
dwell-time is greater than 1.

Now we present the main stability proof of this chapter. First notice that the overall
system state is uniquely defined by ϕ(t), W (t), θ̂(t) and τ(t). Since W (t) is a matrix, we

35

vectorize it so that the overall system state vector may be expressed as

x(t) :=


ϕ(t)

vec
(
W (t)

1
2

)
θ̂(t)
τ(t)

 .
It will become clear later why we choose W (t)

1
2 instead of W (t). Now split the state up

into components x̄(t) and x̃(t):

x̄(t) :=

[
ϕ(t)

vec
(
W (t)

1
2

)]
, x̃(t) :=

[
θ̂(t)
τ(t)

]
.

The following theorem shows that x̄(t) is exponentially stable uniformly in x̃(t), and admits
a convolution bound.

Theorem 4.2 For every λ ∈ (λS, 1), λ̃ ∈ (λS, λ), λ̄ ∈ (
√
λ, 1), and τD satisfying

(4.20), there exists a γ ≥ 1 so that for every θ∗ ∈ S, t̄0 ≥ t0, ϕ(t̄0) ∈ Rn+m,
W (t̄0) ∈ R(n+m+1)×(n+m+1) positive semidefinite and symmetric, τ(t̄0) ∈ {0, . . . , τD − 1},
θ̂(t̄0) ∈ Ŝ, and r, w ∈ l∞, when the supervisory controller given by (3.4) - (3.6) and (4.6)
is applied to the plant (4.1), the following bounds hold:

∥x̄(t)∥ ≤ γλ̄t−t̄0∥x̄(t̄0)∥+ γ
t−1∑
i=t̄0

λ̄t−i−1 (|w(i)|+ ∥r̄(i+ 1)∥), t ≥ t̄0, (4.22)

∥x̄(t)∥ ≤ γλ̄t−t̄0∥x̄(t̄0)∥+ γ
t−1∑
i=t̄0

λ̄t−i−1|w(i)|+ γ
t+m−1∑
i=t̄0+1

λ̄t−i−1|r(i+ 1)|, t ≥ t̄0. (4.23)

Proof of Theorem 4.2

Fix λ ∈ (λS, 1), λ̃ ∈ (λS, λ), and λ̄ ∈ (
√
λ, 1), and let θ∗ ∈ S, t̄0 ≥ t0, ϕ(t̄0) ∈ Rn+m,

θ̂(t̄0) ∈ Ŝ, W (t̄0) positive semidefinite and symmetric, τ(t̄0) ∈ {0, . . . , τD − 1}, θ̂(t̄0) ∈ Ŝ,
and r, w ∈ l∞ be arbitrary.

36

To prove this, we split up time into those for which ∥θ̃(t)∥ is small and those for which
it is not. Before proceeding, recall from (4.11) that

∥Ak
θθ∥ ≤ γ̂λkS, k ≥ 0, θ ∈ Ŝ.

Since λ ∈ (λS, 1), it follows that λS <
√
λ, so from standard linear systems theory there

exists a σ > 0 and γ̄ ≥ 1 so that the state transition matrix Φθ∗θ̂(t) corresponding to Aθ∗θ̂(t)

satisfies
∥Φθ∗θ̂(t)(t2, t1)∥ ≤ γ̄

√
λ
t2−t1

(4.24)

for t2 ≥ t1 ≥ t0 for which ∥θ̃(t+ 1)∥ = ∥θ̂(t+ 1)− θ∗∥ ≤ σ. With δ ≤ σ chosen sufficiently
small, we now partition the time line of t ≥ t̄0 into two parts:

� intervals of the form {t, . . . , t̄} satisfying ∥θ̃(t)∥ < δ ≤ σ, t ∈ {t+ 1, . . . , t̄} in which
case we can obtain a bound on ∥ϕ(t)∥ in terms of exogenous inputs and ∥ϕ(t)∥, and

� times t ≥ t̄0 for which ∥θ̃(t + 1)∥ ≥ δ in which case we obtain a bound on ∥ϕ(t)∥ in
terms of the exogenous inputs and ∥ϕ(t̄0)∥.

Part 1: A bound on ∥ϕ(t)∥ on intervals {t, . . . , t̄}, t0 ≤ t < t̄ < ∞ for which
∥θ̃(t)∥ < δ, t ∈ {t+ 1, . . . , t̄}

For intervals of this sort, (4.24) holds. It follows from (4.9) that

∥ϕ(t)∥ ≤ γ̄
√
λ
t−t

∥ϕ(t)∥+ γ̄
t−1∑
i=t

√
λ
t−i−1

(γ1|w(i)|+ γ2∥r̄(i+ 1)∥), t ∈ {t, . . . , t̄} . (4.25)

Part 2: A bound on ∥ϕ(t)∥ for ∥θ̃(t)∥ ≥ δ and t ≥ t̄0

Here we will obtain a bound on ∥ϕ(t)∥ in terms of ∥ϕ(t̄0)∥ and the exogenous inputs (this
differs from Part 1). To construct the bound we analyze (4.10) on the whole interval
{t̄0, . . . , t}.

Recall that from the dwell-time constraint (4.20), we know that (4.10) is a stable system.
What remains is to find a meaningful bound for (4.21) . This is the goal of the following
analysis, which borrows heavily from [41]. First, define the constant:

k̄ := 1 + ∥S∥.

37

We shall use the following preliminary result; here we use Morse’s terminology of a projec-
tion operator, which is more commonly termed a characteristic function.

Claim 4.2 For every fixed t̄0 ≥ 0 and t ≥ t̄0, there exists a projection operator ψ : {t ∈
Z : t ≥ t̄0} → {0, 1} that satisfies√√√√ t−1∑

i=t̄0

λt−i−1(1− ψ(i))|eθ̂(t)(i+ 1)|2 ≤

√√√√ t−1∑
i=t̄0

λt−i−1|w(i)|2 + k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥

and
∞∑

i=t̄0

|ψ(i)| ≤ τD − 1. (4.26)

Proof: From (3.7), if the supervisor is not dwelling at time t (if τ(t− 1) = 0), then√√√√ t−1∑
i=t0

λt−i−1|eθ̂(t)(i+ 1)|2 ≤

√√√√ t−1∑
i=t0

λt−i−1|w(i)|2.

But this does not hold whenever the supervisor is dwelling. In that case, let t̄ be the
most recent time when the supervisor was not dwelling. Since the system only dwells
for τD time-steps, we know that t − t̄ ≤ τD − 1. We introduce a projection operator
ψ : {t ∈ Z : t ≥ t̄0} → {0, 1} defined by

ψ(i) =

{
1 i ∈ {t̄, . . . , t− 1}
0 else;

38

thus (4.26) holds and we obtain:√√√√ t−1∑
i=t̄0

λt−i−1(1− ψ(i))|eθ̂(t)(i+ 1)|2 =

√√√√λt−t̄

t̄−1∑
i=t0

λt̄−i−1|eθ̂(t̄)(i+ 1)|2

≤

√√√√λt−t̄

t̄−1∑
i=t0

λt̄−i−1|w(i)|2

≤

√√√√λt−t̄0

t̄0−1∑
i=t0

λt̄0−i−1|w(i)|2 +

√√√√ t−1∑
i=t̄0

λt−i−1|w(i)|2

=

√
λt−t̄0

[
θ∗

−1

]⊤
W (t̄0)

[
θ∗

−1

]
+

√√√√ t−1∑
i=t̄0

λt−i−1|w(i)|2

≤ k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥+

√√√√ t−1∑
i=t̄0

λt−i−1|w(i)|2. □

The next step of the proof is quite unusual, so first consider a special example to
help illustrate the motivation. Firstly, suppose that θ̂(i) is almost constant for i in
{t̄0 + 1, . . . , t}. Specifically, let us assume that ∥θ̂(i)− θ̂(t)∥ ≤ δ for all i in {t̄0 + 1, . . . , t}
(hence, ∥θ̃(i)− θ̃(t)∥ ≤ δ). Then by using (4.7), Claim 4.2 and Lemma 3.3,

39

t−1∑
i=t̄0

λt−i−1|eθ̂(i+1)(i+ 1)|

=
t−1∑
i=t̄0

λt−i−1|w(i)− ϕ(i)⊤
(
θ̃(t) + θ̃(i+ 1)− θ̃(t)

)
| (using (4.7))

≤
t−1∑
i=t̄0

λt−i−1
∣∣∣ϕ(i)⊤ (θ̃(i+ 1)− θ̃(t)

)∣∣∣+ t−1∑
i=t̄0

λt−i−1|w(i)− ϕ(i)⊤θ̃(t)|

≤
t−1∑
i=t̄0

λt−i−1δ∥ϕ(i)∥+
t−1∑
i=t̄0

λt−i−1|w(i)− ϕ(i)⊤θ̃(t)|
(
using ∥θ̃(i)− θ̃(t)∥ ≤ δ

)
=

t−1∑
i=t̄0

λt−i−1δ∥ϕ(i)∥+
t−1∑
i=t̄0

λt−i−1ψ(i)|w(i)− ϕ(i)⊤θ̃(t)|+
t−1∑
i=t̄0

λt−i−1(1− ψ(i))|eθ̂(t)(i+ 1)|

≤
t−1∑
i=t̄0

λt−i−1
(
δ + 2∥Ŝ∥ψ(i)

)
∥ϕ(i)∥+

t−1∑
i=t̄0

λt−i−1|w(i)|

+

√√√√ 1

1− λ

t−1∑
i=t̄0

λt−i−1(1− ψ(i))|eθ̂(t)(i+ 1)|2
(
using ∥θ̃(i)∥ ≤ 2∥Ŝ∥ and Lemma 3.3

)

≤
t−1∑
i=t̄0

λt−i−1
(
δ + 2∥Ŝ∥ψ(i)

)
∥ϕ(i)∥+

t−1∑
i=t̄0

λt−i−1|w(i)|+ k̄√
1− λ

√
λ
t−t̄0∥W (t̄0)

1
2∥

+
1√
1− λ

√√√√ t−1∑
i=t̄0

λt−i−1|w(i)|2 (using Claim 4.2)

≤
t−1∑
i=t̄0

λt−i−1
(
δ + 2∥Ŝ∥ψ(i)

)
∥ϕ(i)∥+ k̄√

1− λ

√
λ
t−t̄0∥W (t̄0)

1
2∥

+

(
1 +

1√
1− λ

) t−1∑
i=t̄0

√
λ
t−i−1

|w(i)| (using Lemma 3.3)

This forms a nice convolution, except for that first term involving δ+2∥S∥ψ(i). However,
due to the finite support of ψ from (4.26), and since δ can be chosen to be arbitrarily small,

40

one can use a perturbation result e.g., Lemma 3.2, to show that the closed-loop system is
stable.

In this example, we’ve been able to approximate each θ̃(i), i ∈ {t̄0 + 1, . . . , t} by θ̃(t),
but this generally will not be possible, so we use Lemma 3.1 to produce a similar result in
the general case. To do so, we are going to approximate each θ̃(i) as a linear combination of
a finite set of carefully chosen basis vectors. Since θ̃(i) ∈ Rn+m, we need no more than n+m
of these basis vectors. The basis vectors will be chosen from the set {θ̃(t̄0+1), . . . , θ̃(t)}, and
in order to make use of Claim 4.2, we require that each θ̃(i) be approximated only by vectors
from its future. To apply Lemma 3.1 to find a bound for (4.21), we begin by fixing t ≥ t̄0+1
such that ∥θ̃(t)∥ ≥ δ. Now apply Lemma 3.1 with X := {θ̃(t), θ̃(t − 1), . . . , θ̃(t̄0 + 1)}
(notice the decreasing order). The lemma gives us a construction of basis vectors, and by

reversing their order, they can be expressed as
{
θ̃(i1), θ̃(i2), . . . , θ̃(in̄)

}
with n̄ ≤ n + m,

and t̄0 + 1 ≤ i1 < . . . < in̄ = t. The lemma also provides a set of coefficients α(i,j), but
we are going to let gj(i) be a suitably defined shifted version of these coefficients such that
they satisfy

gj(i) = 0, i = ij + 1, . . . , t, j = 1, . . . , n̄− 1, (4.27)

|gj(i)| ≤

(
1 +

2∥Ŝ∥
δ

)n̄

, i = 1, . . . , ij, j = 1, . . . , n̄, (4.28)

and such that the approximation error

c̄(i) := θ̃(i)−
n̄∑

j=1

gj(i)θ̃(ij), i = t̄0 + 1, . . . , t (4.29)

satisfies ∥c̄(i)∥ ≤ δ. Thus, each θ̃(i) for i = t̄0 + 1, . . . , t is approximated by a linear
combination of these basis vectors.

Now we apply (4.29) to (4.7) to express the prediction error in terms of these basis

41

vectors:

eθ̂(i+1)(i+ 1) = w(i)− ϕ(i)⊤θ̃(i+ 1)

= w(i)− ϕ(i)⊤
n̄∑

j=1

gj(i+ 1)θ̃(ij)− ϕ(i)⊤c̄(i+ 1)

= w(i) +
n̄∑

j=1

gj(i+ 1)
(
w(i)− ϕ(i)⊤θ̃(ij)− w(i)

)
− ϕ(i)⊤c̄(i+ 1)

= w(i) +
n̄∑

j=1

gj(i+ 1)eθ̂(ij)(i+ 1)−
n̄∑

j=1

gj(i+ 1)w(i)− ϕ(i)⊤c̄(i+ 1)

=
n̄∑

j=1

gj(i+ 1)eθ̂(ij)(i+ 1) +

(
1−

n̄∑
j=1

gj(i+ 1)

)
w(i)− ϕ(i)⊤c̄(i+ 1),

i = t̄0, ..., t− 1. (4.30)

This converts the problem of finding a bound for (4.21) to that of finding a bound for

t−1∑
i=t̄0

λt−i−1|gj(i+ 1)eθ̂(ij)(i+ 1)|, j = 1, ..., n̄.

To do so, we make use of Lemma 3.3, Claim 4.2, (4.27) and (4.28). We see that for each
j ∈ {1, . . . , n̄}, there exists a projection operator ψj : {t ∈ Z : t ≥ t̄0} → {0, 1} satisfying

42

(4.26) such that

t−1∑
i=t̄0

λt−i−1(1− ψj(i))|gj(i+ 1)eθ̂(ij)(i+ 1)|

≤

(
1 +

2∥Ŝ∥
δ

)n+m ij−1∑
i=t̄0

λt−i−1(1− ψj(i))|eθ̂(ij)(i+ 1)| (using (4.27) and (4.28))

≤

(
1 +

2∥Ŝ∥
δ

)n+m
√√√√ 1

1− λ

ij−1∑
i=t̄0

λij−i−1(1− ψj(i))|eθ̂(ij)(i+ 1)|2 (using Lemma 3.3)

≤ 1√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m
√√√√ t−1∑

i=t̄0

λt−i−1|w(i)|2 + k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥


(using Claim 4.2)

≤ 1√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m(t−1∑
i=t̄0

√
λ
t−i−1

|w(i)|+ k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥

)
(using Lemma 3.3) .

Now we create a new projection operator Ψ : {t̄0, . . . , t− 1} → {0, 1} whose support is
precisely the union of the supports of ψj, j ∈ {1, . . . , n̄}:

Ψ(i) := 1−
n̄∏

j=1

(1− ψj(i));

since n̄ ≤ n+m, it satisfies

t−1∑
i=t̄0

|Ψ(i)| ≤ (n+m)(τD − 1), (4.31)

and the signal

ê(i+ 1) := (1−Ψ(i))
n̄∑

j=1

gj(i+ 1)eθ̂(ij)(i+ 1), i = t̄0, ..., t− 1,

43

satisfies

t−1∑
i=t̄0

λt−i−1 |ê(i+ 1)|

≤ n+m√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m(t−1∑
i=t̄0

√
λ
t−i−1

|w(i)|+ k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥

)
. (4.32)

Then by defining these new signals:

c̃(i) := Ψ(i− 1)
n̄∑

j=1

gj(i)θ̃(ij), ḡ(i) :=

[
b̄n

b̄mgθ̂(i)

](
1 + (Ψ(i− 1)− 1)

n̄∑
j=1

gj(i)

)
,

i = t̄0 + 1, . . . , t,

we can modify (4.30) to express it as

eθ̂(i+1)(i+ 1) = ê(i+ 1) + Ψ(i)
n̄∑

j=1

gj(i+ 1)eθ̂(ij)(i+ 1) +

(
1−

n̄∑
j=1

gj(i+ 1)

)
w(i)

− ϕ(i)⊤c̄(i+ 1)

= ê(i+ 1) + Ψ(i)
n̄∑

j=1

gj(i+ 1)
(
w(i)− ϕ(i)⊤θ̃(ij)

)
+

(
1−

n̄∑
j=1

gj(i+ 1)

)
w(i)− ϕ(i)⊤c̄(i+ 1)

= ê(i+ 1)− (c̃(i+ 1) + c̄(i+ 1))⊤ϕ(i) +

(
1 + (Ψ(i)− 1)

n̄∑
j=1

gj(i+ 1)

)
w(i),

i = t̄0, ..., t− 1.

By substituting this into (4.10), we obtain:

ϕ(i+ 1) =

(
Aθ̂(i+1)θ̂(i+1) −

[
b̄n

b̄mgθ̂(i+1)

]
(c̃(i+ 1) + c̄(i+ 1))⊤

)
ϕ(i)

+

[
0
b̄m

]
hθ̂(i+1)r̄(i+ 1) +

[
b̄n

b̄mgθ̂(i+1)

]
ê(i+ 1) + ḡ(i+ 1)w(i),

i = t̄0, ..., t− 1. (4.33)

44

Recall that Aθ̂(i+1)θ̂(i+1) is a stable matrix, so this is a stable system subject to a perturba-
tion of the sort considered in Lemma 3.2. If the perturbation is sufficiently small then the
perturbed system will also be stable. Using (4.28), (4.31), n̄ ≤ n+m and ∥θ̃(·)∥ ≤ 2∥S∥,
it is clear that

t−1∑
i=t̄0

∥c̃(i+ 1)∥ ≤ 2∥Ŝ∥(n+m)2(τD − 1)

(
1 +

2∥Ŝ∥
δ

)n+m

,

which is independent of t. Also, we know that ∥c̄(i)∥ ≤ δ, i = t̄0 + 1, . . . , t. Thus,

i2−1∑
i=i1

∥∥∥∥[b̄n
b̄mgθ̂(i+1)

]
(c̃(i+ 1) + c̄(i+ 1))⊤

∥∥∥∥
≤ 2γ1∥Ŝ∥(n+m)2(τD − 1)

(
1 +

2∥Ŝ∥
δ

)n+m

+ δγ1(i2 − i1), t̄0 ≤ i1 < i2 ≤ t.

Hence, this ‘perturbation’ is small on average. Since Aθ̂(t)θ̂(t) has stability margin λ̃ < λ,

we can apply Lemma 3.2 and it follows that if we fix δ ∈ (0, σ] such that δ < λ−λ̃
γ1γ̂

, then

(4.33) is a stable system with margin λ. Now define

γ3 := γ1

(
1 + (n+m)

(
1 +

2∥Ŝ∥
δ

)n+m)
,

and observe that ḡ(i) ≤ γ3. From Lemma 3.2, we conclude that there exists a γ4 ≥ 1 so
that for every t > t̄0 for which ∥θ̃(t)∥ ≥ δ, we have

∥ϕ(t)∥ ≤ γ4λ
t−t̄0∥ϕ(t̄0)∥+ γ4

t−1∑
i=t̄0

λt−i−1 (γ3|w(i)|+ γ2∥r̄(i+ 1)∥) + γ4γ1

t−1∑
i=t̄0

λt−i−1|ê(i+ 1)|.

Now define the constants

γ5 := γ3 + γ1
n+m√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m

,

γ6 := k̄γ1γ4
n+m√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m

.

45

Finally, using (4.32) and knowing that λ <
√
λ, for every t > t̄0 such that ∥θ̃(t)∥ ≥ δ we

have

∥ϕ(t)∥ ≤ γ4
√
λ
t−t̄0∥ϕ(t̄0)∥+ γ6

√
λ
t−t̄0∥W (t̄0)

1
2∥+ γ4

t−1∑
i=t̄0

√
λ
t−i−1

(γ5|w(i)|+ γ2∥r̄(i+ 1)∥).

(4.34)

Part 3: A bound on ∥ϕ(t)∥ on the whole interval

We claim that there exists positive constants c1, c2, c3, c4 such that for any t̄0 ≥ 0,

∥ϕ(t)∥ ≤ c1
√
λ
t−t̄0∥ϕ(t̄0)∥+ c2

√
λ
t−t̄0∥W (t̄0)

1
2∥+

t−1∑
i=t̄0

√
λ
t−i−1

(c3|w(i)|+ c4∥r̄(i+ 1)∥),

t ≥ t̄0. (4.35)

Case 1: If ∥θ̃(i)∥ < δ for all i ∈ {t̄0 + 1, . . . , t}, then using (4.25), clearly (4.35) is satisfied
with c1 = γ̄, c2 = 0, c3 = γ̄γ1, c4 = γ̄γ2.

Case 2: If ∥θ̃(t)∥ ≥ δ, using (4.34), (4.35) is satisfied with c1 = γ4, c2 = γ6, c3 = γ4γ5, c4 =
γ4γ2.

Case 3: If ∥θ̃(t)∥ < δ and there exists any t̄ ∈ {t̄0 + 1, . . . , t− 1} such that ∥θ̃(t̄)∥ ≥ δ,
then using (4.25) and (4.34) together, one can see that (4.35) is satisfied with c1 = γ̄γ4, c2 =
γ̄γ6, c3 = γ̄γ4γ5 + γ̄γ1, c4 = γ̄γ4γ2 + γ̄γ2.

Combining each case and using the knowledge that γ̄ ≥ 1 and γ4 ≥ 1, (4.35) holds in all
cases for

c1 = γ̄γ4, c2 = γ̄γ6, c3 = γ̄γ4γ5 + γ̄γ1, c4 = γ̄γ4γ2 + γ̄γ2.

Part 4: A bound on ∥W (t)∥

Observe that (4.35) is a sort of convolution bound for ϕ(t), except that it contains an

additional term with W (t̄0)
1
2 . This shows that ϕ(t) is not uniformly exponentially stable:

that is, when the exogenous inputs r and w are zero, there does not exist some γ ≥ 1 and
λ ∈ (0, 1) such that the bound

∥ϕ(t)∥ ≤ γλt−t̄0∥ϕ(t̄0)∥, t ≥ t̄0

46

holds uniformly for any initial condition. This is what motivates the choice to include both
ϕ(t) and W (t)

1
2 in x̄(t).

From (3.5), we see that

W (t) = λt−t̄0W (t̄0) +
t−1∑
i=t̄0

λt−i−1

[
ϕ(i)

y(i+ 1)

] [
ϕ(i)

y(i+ 1)

]⊤
, t ≥ t̄0.

Hence,

∥W (t)
1
2∥ ≤

√
λ
t−t̄0∥W (t̄0)

1
2∥+

√√√√ t−1∑
i=t̄0

λt−i−1

∥∥∥∥[ϕ(i)
y(i+ 1)

]∥∥∥∥2

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+

√√√√ t−1∑
i=t̄0

λt−i−1 (∥ϕ(i)∥+ |y(i+ 1)|)2

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+

√√√√ t−1∑
i=t̄0

λt−i−1 (∥ϕ(i)∥+ ∥θ∗∥∥ϕ(i)∥+ |w(i)|)2

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+ k̄

√√√√ t−1∑
i=t̄0

λt−i−1∥ϕ(i)∥2 +

√√√√ t−1∑
i=t̄0

λt−i−1|w(i)|2

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+ k̄

t−1∑
i=t̄0

√
λ
t−i−1

∥ϕ(i)∥+
t−1∑
i=t̄0

√
λ
t−i−1

|w(i)|,

t ≥ t̄0.

Thus, ∥W (t)
1
2∥ is bounded by a filtered version of ϕ(t) with a pole at z =

√
λ, which by

(4.35) is itself a convolution with a pole at z =
√
λ. Together, this would yield a convolution

bound with a double-pole at z =
√
λ. Instead, by using the fact that λ̄ ∈ (

√
λ, 1), one can

find a γ7 ≥ 1 such that a first order convolution bound holds:

∥W (t)
1
2∥ ≤ γ7λ̄

t−t̄0∥ϕ(t̄0)∥+ γ7λ̄t−t̄0∥W (t̄0)
1
2∥+ γ7

t−1∑
i=t̄0

λ̄t−i−1 (|w(i)|+ ∥r̄(i+ 1)∥), t > t̄0.

By combining this with (4.35), and using the equivalence of norms:

∥W (t)
1
2∥ ≤ ∥W (t)

1
2∥F =

∥∥∥vec(W (t)
1
2

)∥∥∥ ≤
√
n+m+ 1 ∥W (t)

1
2∥,

47

one can find a γ8 to create the convolution bound:

∥x̄(t)∥ ≤ γ8λ̄
t−t̄0∥x̄(t̄0)∥+ γ8

t−1∑
i=t̄0

λ̄t−i−1 (|w(i)|+ ∥r̄(i+ 1)∥), t > t̄0.

Finally, recall that r̄(t) is just a vector of delayed copies of r(t):

∥r̄(i)∥ ≤ |r(i+ 1)|+ |r(i+ 2)|+ . . .+ |r(t+m)|,

so (4.23) follows. □

4.5 Robustness

Consider now a more complicated scenario: the plant is dependent on the time-varying
parameter vector θ∗(t), subjected to an additive disturbance w(t), and there are some
unmodeled dynamics which enter the system via w̄(t):

y(t+ 1) = ϕ(t)⊤θ∗(t) + w(t) + w̄(t). (4.36)

We adopt a common model of acceptable time-variations used in adaptive control: with
ζ > 0 and η > 0, we let s(S, ζ, η) denote the subset of l∞(Rn+m) whose elements θ∗ satisfy
θ∗(t) ∈ S for every t ≥ t0 as well as

t2−1∑
i=t1

∥θ∗(i+ 1)− θ∗(i)∥ ≤ ζ + η(t2 − t1), t2 > t1 ≥ t0.

We also adopt a common model of unmodeled dynamics:

m(t+ 1) = βm(t) + β∥ϕ(t)∥,
w̄(t) ≤ µm(t) + µ∥ϕ(t)∥. (4.37)

As argued in [35], this model subsumes the classical additive uncertainty, multiplicative
uncertainty, and uncertainty in a coprime factorization, which is common in the robust
control literature, e.g. see [57], and is commonly used in the adaptive control literature,
e.g. see [24]. The only limitation is that the perturbations correspond to strictly causal
terms.

We will now show that if the time-variations are slow enough and the size of the
unmodeled dynamics are small enough, then the closed-loop system retains exponential

48

stability as well as the convolution bound. Furthermore, we need not re-derive the entire
stability proof: we can leverage the linear-like nature of the convolution bound proven in
Theorem 4.2 to prove this result.

Theorem 4.3 For every ζ > 0, β ∈ (0, 1), λ ∈ (λS, 1), λ̃ ∈ (λS, λ), λ̄ ∈ (
√
λ, 1),

and τD satisfying (4.20), there exists a η > 0, λ̂ ∈ (max{β, λ̄}, 1) and γ′ ≥ 1 so that
for every θ∗ ∈ s(S, ζ, η), t̄0 ≥ t0, ϕ(t̄0) ∈ Rn+m, W (t̄0) ∈ R(n+m+1)×(n+m+1) positive
semidefinite and symmetric, θ̂(t̄0) ∈ Ŝ, τ(t̄0) ∈ {0, . . . , τD − 1}, and r, w ∈ l∞, when the
supervisory controller given by (3.4) - (3.6) and (4.6) is applied to the plant (4.36) with
w̄(t) satisfying (4.37), the following bound holds:

∥∥∥∥[x̄(t)
m(t)

]∥∥∥∥ ≤ γ′λ̂t−t̄0

∥∥∥∥[x̄(t̄0)
m(t̄0)

]∥∥∥∥+ γ′
t−1∑
i=t̄0

λ̂t−i−1|w(i)|+ γ′
t+m−1∑
i=t̄0+1

λ̂t−i−1|r(i+ 1)|,

t ≥ t̄0.

Proof of Theorem 4.3

It is proven in [49] that this robustness property holds for a wide class of ‘partially’ expo-
nentially stable systems which admit a convolution bound - that is, systems of the form
(4.1) whose overall state can be decomposed as

x(t) =

 ϕ(t)
z1(t)
z2(t)

 ,
with z2(t) confined to some space X , and with

[
ϕ(t)
z1(t)

]
obeying a convolution bound.

Fix λ ∈ (λS, 1), λ̃ ∈ (λS, λ), and λ̄ ∈ (
√
λ, 1). Then, using the convolution (4.22) from

Theorem 4.2, the result follows directly from applying Theorem 1 and Theorem 3 of [49]

49

with5

z1(t) ⇐ vec
(
W (t)

1
2

)
, z2(t) ⇐

[
θ̂(t)
τ(t)

]
,

w(t) ⇐ w(t), r(t) ⇐ r̄(t),

X ⇐ Ŝ × {0, . . . , τD − 1} . □

4.6 Simulation Results

Now we demonstrate in simulation the results proven in Theorems 4.1 - 4.3. The perfor-
mance is compared to the adaptive controller constructed using the Projection Algorithm
using the setup of [36], as it is the only other adaptive controller which has been shown to
exhibit the same linear-like closed-loop behavior. In the first simulation, the controller’s
ability to asymptotically track an arbitrary reference signal is demonstrated. The set of
admissible parameters being considered is the set

S =

{[
a
b

]
: a ∈ [1, 4], b ∈ [1, 4]

}
,

which satisfies Assumption 4.1. Observe that each model in this set is unstable. Since this
is convex, we choose Ŝ = S. The plant being considered is

y(t+ 1) =

[
2
3

]
︸ ︷︷ ︸

θ∗

⊤ [
y(t)
u(t)

]
︸ ︷︷ ︸

ϕ(t)

+w(t)

with initial condition

ϕ(0) =

[
y(0)
u(0)

]
=

[
0
0

]
.

The Supervisory Controller’s exponential forgetting factor λ is irrelevant as it has no
impact on its performance in the nominal setting. Since the set of admissible plant trans-
fer functions contain no zeros, the minimum dwell-time is τD = 2. Both estimators are
initialized with the parameter estimate

θ̂(0) =

[
2.5
2.5

]
.

5While this does not follow directly from the original version of [49], as it does not allow for y(t + 1)
nor a general exogenous signal of the form r̄(t) in the controller description, the updated version does so
(with minimal changes to the proof).

50

The Supervisory estimator is also initialized with

W (0) = 0, τ(0) = τD − 1 = 1.

The reference to be tracked is
r(t) = sin(0.2πt),

and the disturbance w is zero. We plot the results in Figure 4.1; with the Supervisory
Controller, the tracking error goes to zero in finite time: the parameter estimates converge
exactly to θ∗ at t = 4, so the tracking error is exactly zero at t = 5. In contrast, the
Projection Algorithm only exhibits asymptotic tracking; in this case the reference signal is
sufficiently rich that the parameter estimate too will converge to θ∗ asymptotically.

Figure 4.1: Nominal sinusoid tracking performance of Supervisory Control vs the Projec-
tion Algorithm; the parameters are dashed and the estimates are solid.

In the next simulation, the setup is precisely the same as above, except that the reference
signal is now a constant r(t) = 1. We plot the results in Figure 4.2; the result is very similar
to above, except this time the parameter estimate generated by the Projection Algorithm
never converges to θ∗. Observe that this does not prevent the Projection Algorithm from
driving the tracking error to zero. Note that the parameter estimates generated by the
Supervisory estimator need not always converge to θ∗, however it is only in special cases
where it does not happen, it is very typical for it to converge.

51

Figure 4.2: Nominal step tracking performance of Supervisory Control vs the Projection
Algorithm; the parameters are dashed and the estimates are solid.

In the next simulation, the controllers are compared in the case where there is a random
disturbance present and the plant parameters are time-varying. The setup is the same as
above except that the reference signal is again a sinusoid:

r(t) = sin(0.2πt),

the disturbance signal w is a Gaussian random signal with zero mean and standard devi-
ation 0.1, and the plant’s parameters are described by

a∗(t) = 2.5 + 1.5 cos(0.01πt), b∗(t) = 2.5 + 1.5 sin(0.003πt).

The Supervisory Controller uses exponential forgetting factor λ = 0.6, which was selected
experimentally. We plot the results in Figure 4.3; both systems exhibit stability, but the
Supervisory Controller is considerably better: on average, the RMS of its tracking error
is approximately 75% that of the Projection Algorithm. Furthermore, by removing the
dwell time, hence allowing the estimator to change θ̂ at every time-step, the simulated
system is still stable and the performance further improves to a RMS tracking error just
66% that of the Projection Algorithm; this has not been plotted. However, it has not been
proven that the system is stable without a dwell time.

52

Figure 4.3: Performance in the presence of a random disturbance and time-varying param-
eters of Supervisory Control vs the Projection Algorithm; the parameters are dashed and
the estimates are solid. Supervisory dwell-time is τD = 2.

Next, we demonstrate Supervisory Control’s ability to tolerate systems with unknown
degree, delay, and sign of the high frequency gain. This is done by constructing a non-
convex S; this is not permitted in the setup of [36], although it is shown in [46, 47] how
one can use multiple Projection Algorithm estimators to tolerate a non-convex set, however
only partial results are proven, and are limited to the first order case. In this example, we
consider a second order plant model of the form

y(t+ 1) =


a∗1(t)
a∗2(t)
b∗1(t)
b∗2(t)


︸ ︷︷ ︸

θ∗(t)

⊤ 
y(t)

y(t− 1)
u(t)

u(t− 1)


︸ ︷︷ ︸

ϕ(t)

+w(t).

The set of admissible parameters is constructed as the union of several subsets Si:

S = S1 ∪ S2 ∪ S3 ∪ S4.

53

Let us choose λ = 0.7, λ̃ = 0.695 and λS = 0.5, thus 0 < λS < λ̃ < λ < 1 as required. As
per Remark 4.1, we must ensure that S is chosen such that the zeros of every admissible
plant model lies within the open disk of radius λS. The first two subsets are defined as

S1 =



a1
a2
b1
b2

 : a1 ∈ [−2, 2], a2 ∈ [−1, 1], b1 ∈ [0.5, 2],

∣∣∣∣b2b1
∣∣∣∣ ≤ 0.49


and

S2 =



a1
a2
b1
b2

 : a1 ∈ [−2, 2], a2 ∈ [−1, 1], b1 ∈ [−2,−0.5],

∣∣∣∣b2b1
∣∣∣∣ ≤ 0.49

 .

They describe systems with a delay of one, with a positive or negative high frequency gain,
respectively. The zeros of each of these models lies within the closed disk of radius 0.49,
hence they lie within the open disk of radius λS = 0.5. This generally represents a second
order system, except the case of a2 = b2 = 0 represents a first order system. The subsets

S3 =



a1
a2
b1
b2

 : a1 ∈ [−2, 2], a2 ∈ [−1, 1], b1 = 0, b2 ∈ [0.5, 2]


and

S4 =



a1
a2
b1
b2

 : a1 ∈ [−2, 2], a2 ∈ [−1, 1], b1 = 0, b2 ∈ [−2,−0.5]


describe second order systems with a delay of two, with no zeros, and with a positive or
negative high frequency gain. Since each of these subsets is convex, we can choose Ŝ = S,
as this satisfies Remark 4.3.

Now consider the minimum dwell time. For any θ ∈ Ŝ such that b1 = 0 or b2 = 0, the
matrix Aθθ will be deadbeat; the complexity comes about with a plant model with a zero
that is not at the origin, thus we investigate the case where b1 and b2 are nonzero. In this
case, the control law is

u(t) =
[
− â2(t)

b̂1(t)
0 − b̂2(t)

b̂1(t)
0
]

︸ ︷︷ ︸
fθ̂(t)

ϕ(t− 1)− â1(t)
b̂1(t)︸ ︷︷ ︸
gθ̂(t)

y(t) +
1

b̂1(t)
r(t+ 1),

54

so the matrix of interest becomes

Aθθ =


a1 a2 b1 b2
1 0 0 0

−a21+a2
b1

−a1a2
b1

−a1 − b2
b1

−a1b2
b1

0 0 1 0

 , θ ∈ S1 ∪ S2.

As expected, the eigenvalues of this matrix are 0, 0, 0,− b2
b1
, so it has stability margin λS =

0.5. Then we find γ̂ = 88.5786 satisfies

∥Ak
θθ∥ ≤ γ̂λkS, k ≥ 0, θ ∈ Ŝ.

Hence, the dwell time condition of (4.20) becomes

τD ≥ ln(γ̂)

ln
(

λ̃
λS

) =
ln(88.5786)

ln
(
0.695
0.5

) ≈ 13.6163,

thus we choose τD = 14. The estimator is initialized with parameter estimate

θ̂(0) =


1.5
−1
0
1

 .
The reference signal is a sinusoid:

r(t) = sin(0.2πt),

the disturbance signal w is a Gaussian random signal with zero mean and standard devi-
ation 0.1. In the first simulation, the plant has parameters

a∗1(t) = 1.8, a∗2(t) = −0.85,

b∗1(t) = 0, b∗2(t) = 1;

it is a second order, unstable system with delay of two and positive high frequency gain.
We plot the results in Figure 4.4; the tracking performance is very good.

55

Figure 4.4: Performance of Supervisory Control with non-convex S and random distur-
bance.

In the second simulation, the plant has parameters

a∗1(t) = 1.8, a∗2(t) = −0.85,

b∗1(t) = −0.5, b∗2(t) = 0.1;

it is a second order, unstable system with delay of one and negative high frequency gain.
We plot the results in Figure 4.5; the performance is similar to above, except the initial
transient is worse, since the the initial guess θ̂(0) is further from the true parameters.

56

Figure 4.5: Performance of Supervisory Control with non-convex S and random distur-
bance.

Finally, we let the plant be time-varying. The plant’s parameters are described by

a∗1(t) = −2 sin(0.002πt), a∗2(t) = 2 cos(0.002πt),

b∗1(t) = 0, b∗2(t) = 1.25− 0.75 sin(0.002πt);

the plant is a time-varying second order system with delay of two and positive high fre-
quency gain. We plot the results in Figure 4.6; the initial transient is very large because
the initial guess θ̂(0) is destabilizing. It is not of much interest so it has been clipped. The
RMS tracking error stated on the plot is calculated using ϵ(t) for t ≥ 50 to avoid being
biased by the initial transient.

57

Figure 4.6: Performance of Supervisory Control with non-convex S and τD = 16.

Contrast this with Figure 4.7, which is the same as above except that the dwell time
constraint is removed, so θ̂ may change at every time-step. It has not been proven that
this system is stable, however the simulated performance is excellent. Observe also that
the initial transient is much better than above.

58

Figure 4.7: Performance of Supervisory Control with non-convex S and τD = 1.

59

Chapter 5

Pole Placement Step Tracking with
Constant Disturbance Rejection

Here we consider the step tracking problem, where the Supervisory parameter estimator
defined by (3.4) - (3.6) is combined with an integral pole placement control law, as in the
original papers by Morse [40, 41]. Recall that the plant model being considered is

y(t+ 1) =



y(t)
...

y(t− n+ 1)
u(t)
...

u(t−m+ 1)


︸ ︷︷ ︸

ϕ(t)

⊤ 

a∗1
...
a∗n
b∗1
...
b∗m


︸ ︷︷ ︸

θ∗

+w(t), t ≥ t0. (5.1)

The goal is to make the plant’s output y track a constant reference signal r in the presence
of a constant disturbance, hence to make the tracking error ϵ(t) := y(t)−r exponentially
go to zero. This is done via the internal model principle: the plant is augmented with
an integrator z

z−1
, and a pole placement controller is created via certainty equivalence to

stabilize the augmented plant. In this chapter, we will assume that the reference signal is
constant; we shall allow the disturbance w to be time-varying since that will be leveraged
later to prove robustness to time-varying parameters.

For an ordinary LTI control problem, introducing an integrator into the controller is
sufficient to eliminate the influence of a constant disturbance and track a constant refer-
ence. However, if it is not filtered out, a constant disturbance will impact the parameter

60

estimator, and thus the closed-loop performance. Hence, we use the data filter H(z) = z−1
z
.

The overall closed-loop system is illustrated in Figure 5.1. The prediction error (3.2) is
now

eθ̂(t)(i) = {h ◦ y}(i)− ({h ◦ ϕ}(i− 1))⊤ θ̂(t)

= ∆y(i)−∆ϕ(i− 1)⊤θ̂(t), t ≥ t0, i > t0.

Figure 5.1: Block diagram of the estimator with pole placement controller and integrator.

Observe that the augmented plant, with input ∆u and output ϵ, has the transfer function

1

1− z−1
× b∗1z

−1 + . . .+ b∗mz
−m

1− a∗1z
−1 − . . .− a∗nz

−n

=
b∗1z

−1 + . . .+ b∗mz
−m

1− (1 + a∗1)z
−1 − (a∗2 − a∗1)z

−2 − . . .− (a∗n − a∗n−1)z
−n + anz−n−1

.

Thus, by adopting the change of variables

φ(t) :=



ϵ(t)
...

ϵ(t− n)
∆u(t)

...
∆u(t−m+ 1)


∈ Rn+m+1, ϑ∗ :=



1 + a∗1
a∗2 − a∗1

...
a∗n − a∗n−1

−a∗n
b∗1
...
b∗m


∈ Rn+m+1,

61

the plant may be expressed as

ϵ(t+ 1) = φ(t)⊤ϑ∗ +∆w(t), t ≥ t0. (5.2)

Similarly, we define a transformed version of the estimated parameter vector at time t as

ϑ̂(t) :=



1 + â1(t)
â2(t)− â1(t)

...
ân(t)− ân−1(t)

−ân(t)
b̂1(t)
...

b̂m(t)


∈ Rn+m+1, t ≥ t0.

As in the previous chapter, we define the parameter estimation error as

θ̃(t) := θ̂(t)− θ∗ =



â1(t)− a∗1
...

ân(t)− a∗n
b̂1(t)− b∗1

...

b̂m(t)− b∗m


∈ Rn+m, t ≥ t0.

Next, define the transformed version of the parameter estimation error as ϑ̃(t) = ϑ̂(t)−ϑ∗:

ϑ̃(t) =



â1(t)− a∗1
â2(t)− a∗2 − â1(t) + a∗1

...
ân(t)− a∗n − ân−1(t) + a∗n−1

−ân(t) + a∗n
b̂1(t)− b∗1

...

b̂m(t)− b∗m


∈ Rn+m+1,

62

which is just a linear transformation away from θ̃(t). Specifically, this linear map is

R :=



1
−1 1

.

−1 1
−1

1
. . .

1


∈ R(n+m+1)×(n+m),

so
ϑ̃(t) = Rθ̃(t).

This allows us to express the prediction error in another form which shall be useful:

eθ̂(t)(i) = ∆y(i)−∆ϕ(i− 1)⊤θ̂(t)

= ∆ϵ(i)−



ϵ(i− 1)− ϵ(i− 2)
...

ϵ(i− n)− ϵ(i− n− 1)
∆u(i− 1)

...
∆u(i−m)



⊤ 

â1(t)
...

ân(t)

b̂1(t)
...

b̂m(t)


(using ∆y(i) =
∆y(i)− r + r = ∆ϵ(i))

= ϵ(i)− ϵ(i− 1)−



ϵ(i− 1)
...

ϵ(i− n)
0

∆u(i− 1)
...

∆u(i−m)



⊤ 

â1(t)
...

ân(t)
0

b̂1(t)
...

b̂m(t)


+



0
ϵ(i− 2)

...
ϵ(i− n− 1)

0
...
0



⊤ 

0
â1(t)
...

ân(t)

b̂1(t)
...

b̂m(t)


= ϵ(i)− φ(i− 1)⊤ϑ̂(t) (5.3)

= φ(i− 1)⊤ϑ∗ +∆w(i− 1)− φ(i− 1)⊤ϑ̂(t) (using (5.2))

= ∆w(i− 1)− φ(i− 1)⊤Rθ̃(t), t ≥ t0, i > t0. (5.4)

Beside Assumptions 3.1 - 3.3, which are assumed to hold, we will enforce some additional
assumptions on the set of admissible parameters S to ensure that the pole placement control
law is well behaved:

63

Assumption 5.1 The polynomials Aθ(z
−1) and Bθ(z

−1) corresponding to each θ in S
are coprime.

Assumption 5.2 The polynomial Bθ(z
−1) corresponding to each θ in S is nonzero at

z = 1.

Assumption 5.3 For each n̄ ∈ {0, . . . , n} and m̄ ∈ {1, . . . ,m}, the set of all θ ∈ S
with Aθ(z

−1) of degree n̄ and Bθ(z
−1) of degree m̄ is compact.

Remark 5.1 Assumption 5.1 ensures that a controller can be constructed to place all the
closed-loop poles at will.

Remark 5.2 Assumption 5.2 ensures that the plant does not have a zero at z = 1, which
is necessary to achieve step tracking using a bounded input.

Remark 5.3 Assumption 5.3 is used to ensure that the pole placement control law is
uniformly bounded for all admissible plant models.

Remark 5.4 The components Si that make up Ŝ can be chosen such that each element of
Si satisfies Assumptions 5.1 - 5.3, so henceforth we will assume that this is the case.

5.1 Control Law

Recall that the plant model corresponds to a system with transfer function

Bθ∗(z
−1)

Aθ∗(z−1)
=

b∗1z
−1 + . . .+ b∗mz

−m

1− a∗1z
−1 − . . .− a∗nz

−n
.

Recall from Remark 3.2 that we allow some of these coefficients to be zero, thus let n̄ ∈
{0, . . . , n} be the degree (in z−1) of the polynomial Aθ∗(z

−1) and let m̄ ∈ {1, . . . ,m}
be the degree of Bθ∗(z

−1). Also recall that we desire a pole placement controller with
an integrator, so we augment the plant with an integrator and design a pole placement

64

controller to stabilize it. The augmented plant has transfer function

1

1− z−1
× b∗1z

−1 + . . .+ b∗mz
−m̄

1− a∗1z
−1 − . . .− a∗nz

−n̄

=
b∗1z

−1 + . . .+ b∗mz
−m̄

1− (1 + a∗1)z
−1 − (a∗2 − a∗1)z

−2 − . . .− (a∗n̄ − a∗n̄−1)z
−n̄ + anz−n̄−1

.

The denominator of this system has degree n̄+ 1 and the numerator has degree m̄. Let

A∗
θ(z

−1) := 1 + α1z
−1 + . . .+ αn̄+m̄+1z

−n̄−m̄−1

be a Schur polynomial of degree at most n̄+m̄+1 (trailing coefficients may be zero) which
is the desired characteristic polynomial. Next, for each θ ∈ Ŝ, let the polynomials

Lθ(z
−1) := 1− lθ1z

−1 − . . .− lθm̄z
−m̄

and
Pθ(z

−1) := −pθ1z−1 − . . .− pθn̄+1z
−n̄−1

satisfy the equation

(1− z−1)Aθ(z
−1)Lθ(z

−1) +Bθ(z
−1)Pθ(z

−1) = A∗(z−1). (5.5)

To express this polynomial equation in matrix form, let M ∈ R(n̄+m̄+1)×(n̄+m̄+1) be the
matrix whose leftmost column is



1
−1− a1
a1 − a2

...
an̄−1 − an̄

an̄
0
...
0




n̄+ 1

 m̄− 1

∈ Rn̄+m̄+1,

65

the (m̄+ 1)th column is 

0
b1
...
bm̄
0
...
0



 m̄ n̄

∈ Rn̄+m̄+1,

and each of the remaining columns is the column to their left, shifted down one row, and
padded with a zero. In this fashion, M is precisely the transpose of the Sylvester matrix of
the polynomials (1− z−1)Aθ(z

−1) and Bθ(z
−1). Then (5.5) can be equivalently expressed

as

M



l1
...
lm̄
p1
...

pn̄+1


= −



α1 + 1 + a1
α2 + a2 − a1

...
αn̄ + an̄ − an̄−1

αn̄+1 − an̄
αn̄+2
...

αn̄+m̄+1


.

A Sylvester matrix is invertible if and only if its two polynomials are coprime [2, Sec-
tion 7.2]. Assumptions 5.1 and 5.2 ensure that (1− z−1)Aθ(z

−1) and Bθ(z
−1) are coprime,

therefore M is nonsingular, and a unique solution exists. In addition, due to Assumption
5.3, and since this is an analytic function of θ ∈ Ŝ such that Aθ∗(z

−1) and Bθ∗(z
−1) are

of degree n̄ and m̄, respectively, it follows that the coefficients of Lθ(z
−1) and Pθ(z

−1) are
uniformly bounded for θ ∈ Ŝ. Finally, using the parameter estimate θ̂(t), the control law
is 1

∆u(t) =



pθ̂(t)1
...

pθ̂(t)n̄+1

lθ̂(t)1
...

lθ̂(t)m̄



⊤ 

ϵ(t− 1)
...

ϵ(t− n̄− 1)
∆u(t− 1)

...
∆u(t− m̄)


, t ≥ t0 + 1.

1u(t0) is given as part of the initial condition ϕ(t0), so the control law only holds for t ≥ t0 + 1.

66

Notice that since n̄ ≤ n and m̄ ≤ m, all the elements of the rightmost vector are elements
of φ(t− 1). Thus, by padding the left vector with some extra zeros:

n−n̄︷ ︸︸ ︷ m−m̄︷ ︸︸ ︷
fθ :=

[
pθ1 . . . pθn̄+1 0 . . . 0 lθ1 . . . lθm̄ 0 . . . 0

]
,

we can express the control law as

∆u(t) = fθ̂(t)φ(t− 1), t ≥ t0 + 1. (5.6)

5.2 State Space Representation

We can now form an update equation for φ(t). Start by defining, for every k ∈ N,

Āk :=


0

1
. . .
.

1 0

 ∈ Rk×k, b̄k :=


1
0
...
0

 ∈ Rk;

then begin the state-space construction with

φ(t+ 1) =

[
Ān+1 0
0 Ām

]
φ(t) +

[
b̄n+1

0

]
ϵ(t+ 1) +

[
0
b̄m

]
∆u(t+ 1), t ≥ t0.

Now incorporate the control law (5.6):

φ(t+ 1) =

([
Ān+1 0
0 Ām

]
+

[
0
b̄m

]
fθ̂(t+1)

)
φ(t) +

[
b̄n+1

0

]
ϵ(t+ 1), t ≥ t0. (5.7)

Finally, substitute in the plant dynamics from (5.2): with 2

Aθ1θ2 :=

[
Ān+1 0
0 Ām

]
+

[
b̄n+1

0

]
ϑ1

⊤ +

[
0
b̄m

]
fθ2 ,

we end up with

φ(t+ 1) = Aθ∗θ̂(t+1)φ(t) +

[
b̄n+1

0

]
∆w(t), t ≥ t0. (5.8)

2Here ϑ1 is dependent on θ1.

67

Alternatively, from (5.3), substitute ϵ(t + 1) = eθ̂(t+1)(t + 1) + ϑ̂(t + 1)⊤φ(t) into (5.7)
to yield another representation:

φ(t+ 1) = Aθ̂(t+1)θ̂(t+1)φ(t) +

[
b̄n+1

0

]
eθ̂(t+1)(t+ 1), t ≥ t0. (5.9)

This form is useful because Aθθ represents the closed-loop system dynamics if θ̂(·) = θ∗ =
θ ∈ Ŝ. This matrix has n+m+1 eigenvalues. Due to the use of the certainty equivalence
pole placement control law, n̄ + m̄ + 1 of these eigenvalues correspond to the roots of
A∗(z−1), and the remaining n+m− n̄− m̄ lie at the origin. Since A∗(z−1) is Schur, there
exists a λS ∈ (0, 1) such that all the roots of A∗(z−1) lie within the open disc of radius
λS. This, plus the compactness of S and the uniform boundedness of the control law
coefficients ensures that there exists a γ̂ such that

∥Ak
θθ∥ ≤ γ̂λkS, k ≥ 0, θ ∈ Ŝ. (5.10)

Thus if θ̂ were fixed, (5.9) becomes a stable system with input eθ̂.

5.3 Closed-loop Stability

Before presenting the main result on stability, we return to the issue of dwell time. For any
fixed θ ∈ Ŝ, the control law ensures that Aθθ is a stable matrix; its eigenvalues determined
by A∗(z−1). Now we must impose a dwell-time constraint to ensure that the time-varying
Aθ̂(t)θ̂(t) is stable. Generally, we would require that the dwell time τD satisfy a requirement

such as (4.20) in the d-step-ahead case. Instead, we are going to choose A∗(z−1) = 1, so
all the eigenvalues of Aθθ lie at the origin; thus

∥An+m+1
θθ ∥ = 0, θ ∈ Ŝ.

In doing so, choosing τD to be n +m + 1 is sufficient. Then, if Φ is the state transition
matrix of Aθ̂(t)θ̂(t), it shall have finite support, so for any choice λ̃ ∈ (0, λ), there exists a
γ̂ ≥ 1 such that

∥Φ(t2, t1)∥ ≤ γ̂λ̃t2−t1 , t2 ≥ t1 ≥ t0.

Therefore, if θ̂(t) is any piecewise-constant signal with dwell time at least n+m+ 1, then
the system (5.9) is exponentially stable, which reveals the convolution bound, albeit in
terms of internal signals rather than exogenous ones: with t̄0 ≥ t0,

∥φ(t)∥ ≤ γ̂λ̃t−t̄0∥φ(t̄0)∥+ γ̂
t−1∑
i=t̄0

λ̃t−i−1|eθ̂(i+1)(i+ 1)|.

68

Thus, as in Section 4.4, a stability proof relies on finding a meaningful bound on the term

t−1∑
i=t̄0

λ̃t−i−1|eθ̂(i+1)(i+ 1)|. (5.11)

However, this time the prediction error definition is subtly different due to the data filter.

Now we present the main stability proof of this chapter. First notice that the overall
system state is uniquely defined by φ(t), W (t), θ̂(t) and τ(t). Since W (t) is a matrix, we
vectorize it so that the overall system state vector may be expressed as

x(t) :=


φ(t)

vec
(
W (t)

1
2

)
θ̂(t)
τ(t)

 .
Now split the state up into components x̄(t) and x̃(t):

x̄(t) :=

[
φ(t)

vec
(
W (t)

1
2

)]
, x̃(t) :=

[
θ̂(t)
τ(t)

]
.

The following theorem shows that x̄(t) is exponentially stable uniformly in x̃(t), and admits
a convolution bound.

Theorem 5.1 For every λ ∈ (0, 1), λ̄ ∈ (
√
λ, 1), and with A∗(z−1) = 1 and τD =

n + m + 1, there exists a γ ≥ 1 so that for every θ∗ ∈ S, t̄0 ≥ t0, φ(t̄0) ∈ Rn+m+1,
W (t̄0) ∈ R(n+m+1)×(n+m+1) positive semidefinite and symmetric, τ(t̄0) ∈ {0, . . . , n+m},
θ̂(t̄0) ∈ Ŝ, r ∈ R, and w ∈ l∞, when the supervisory controller given by (3.4) - (3.6) and
(5.6) is applied to the plant (5.1), the following bound holds:

∥x̄(t)∥ ≤ γλ̄t−t̄0∥x̄(t̄0)∥+ γ

t−1∑
i=t̄0

λ̄t−i−1|∆w(i)|, t ≥ t̄0. (5.12)

Remark 5.5 If w is actually a constant signal, then the second term in (5.12) disappears,
and x̄(t) (hence, ϵ(t)) goes to zero in an exponential fashion.

69

Proof of Theorem 5.1

Fix λ ∈ (0, 1) and λ̄ ∈ (
√
λ, 1), and let θ∗ ∈ S, t̄0 ≥ t0, φ(t̄0) ∈ Rn+m+1, θ̂(t̄0) ∈ Ŝ,

W (t̄0) positive semidefinite and symmetric, τ(t̄0) ∈ {0, . . . , n+m}, r ∈ R and w ∈ l∞ be
arbitrary.

To prove this, we split up time in the same fashion as Section 4.4 into those for which
∥θ̃(t)∥ is small and those for which it is not. Before proceeding, recall from (5.10) that Aθθ

is a stable matrix. Specifically, with A∗(z−1) = 1, it is deadbeat. So from standard linear
systems theory there exists a σ > 0 and γ̄ ≥ 1 so that the state transition matrix Φθ∗θ̂(t)

corresponding to Aθ∗θ̂(t) satisfies

∥Φθ∗θ̂(t)(t2, t1)∥ ≤ γ̄
√
λ
t2−t1

(5.13)

for t2 ≥ t1 ≥ t0 for which ∥θ̃(t+ 1)∥ = ∥θ̂(t+ 1)− θ∗∥ ≤ σ. With δ ≤ σ chosen sufficiently
small, we now partition the time line of t ≥ t̄0 into two parts:

� intervals of the form {t, . . . , t̄} satisfying ∥θ̃(t)∥ < δ ≤ σ, t ∈ {t+ 1, . . . , t̄} in which
case we can obtain a bound on ∥φ(t)∥ in terms of exogenous inputs and ∥φ(t)∥, and

� times t ≥ t̄0 for which ∥θ̃(t + 1)∥ ≥ δ in which case we obtain a bound on ∥φ(t)∥ in
terms of the exogenous inputs and ∥φ(t̄0)∥.

Part 1: A bound on ∥φ(t)∥ on intervals {t, . . . , t̄}, t0 ≤ t < t̄ < ∞ for which
∥θ̃(t)∥ < δ, t ∈ {t+ 1, . . . , t̄}

For intervals of this sort, (5.13) holds. It follows from (5.8) that

∥φ(t)∥ ≤ γ̄
√
λ
t−t

∥φ(t)∥+ γ̄

t−1∑
i=t

√
λ
t−i−1

|∆w(i)|, t ∈ {t, . . . , t̄} . (5.14)

Part 2: A bound on ∥φ(t)∥ for ∥θ̃(t)∥ ≥ δ and t ≥ t̄0

Here we will obtain a bound on ∥φ(t)∥ in terms of ∥φ(t̄0)∥ and the exogenous inputs
(this differs from Part 1). To construct the bound we analyze (5.9) on the whole interval

70

{t̄0, . . . , t}. We now aim to find a bound for (5.11) in a very similar fashion as seen in
Section 4.4 by making use of Lemma 3.1. But first we must define this constant

k̄ := 1 + ∥S∥.

We shall use the following preliminary result; here we use Morse’s terminology of a projec-
tion operator, which is more commonly termed a characteristic function.

Claim 5.1 For every fixed t̄0 ≥ 0 and t ≥ t̄0, there exists a projection operator ψ : {t ∈
Z : t ≥ t̄0} → {0, 1} that satisfies√√√√ t−1∑

i=t̄0

λt−i−1(1− ψ(i))|eθ̂(t)(i+ 1)|2 ≤

√√√√ t−1∑
i=t̄0

λt−i−1|∆w(i)|2 + k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥

and
∞∑

i=t̄0

|ψ(i)| ≤ n+m. (5.15)

Proof: Same as for Claim 4.2, with τD = n+m+ 1. □

Now we apply Lemma 3.1 to find a bound for (5.11). We begin by fixing t ≥ t̄0 + 1
such that ∥θ̃(t)∥ ≥ δ. Now apply Lemma 3.1 with X := {θ̃(t), θ̃(t − 1), . . . , θ̃(t̄0 + 1)}
(notice the decreasing order). The lemma gives us a construction of basis vectors, and by

reversing their order, they can be expressed as
{
θ̃(i1), θ̃(i2), . . . , θ̃(in̄)

}
with n̄ ≤ n + m,

and t̄0 + 1 ≤ i1 < . . . < in̄ = t. The lemma also provides a set of coefficients α(i,j), but
we are going to let gj(i) be a suitably defined shifted version of the α(i,j)’s, such that they
satisfy

gj(i) = 0, i = ij + 1, . . . , t, j = 1, . . . , n̄− 1, (5.16)

|gj(i)| ≤

(
1 +

2∥Ŝ∥
δ

)n̄

, i = 1, . . . , ij, j = 1, . . . , n̄, (5.17)

and such that the approximation error

c̄(i) := θ̃(i)−
n̄∑

j=1

gj(i)θ̃(ij), i = t̄0 + 1, . . . , t (5.18)

71

satisfies ∥c̄(i)∥ ≤ δ. Thus, each θ̃(i) for i = t̄0 + 1, . . . , t is approximated by a linear
combination of these basis vectors.

Now we apply (5.18) to (5.4) to express the prediction error in terms of these basis
vectors:

eθ̂(i+1)(i+ 1) = ∆w(i)− φ(i)⊤Rθ̃(i+ 1)

= ∆w(i)− φ(i)⊤R
n̄∑

j=1

gj(i+ 1)θ̃(ij)− φ(i)⊤Rc̄(i+ 1)

= ∆w(i) +
n̄∑

j=1

gj(i+ 1)
(
∆w(i)− φ(i)⊤Rθ̃(ij)−∆w(i)

)
− φ(i)⊤Rc̄(i+ 1)

= ∆w(i) +
n̄∑

j=1

gj(i+ 1)eθ̂(ij)(i+ 1)−
n̄∑

j=1

gj(i+ 1)∆w(i)− φ(i)⊤Rc̄(i+ 1)

=
n̄∑

j=1

gj(i+ 1)eθ̂(ij)(i+ 1) +

(
1−

n̄∑
j=1

gj(i+ 1)

)
∆w(i)− φ(i)⊤Rc̄(i+ 1),

i = t̄0, ..., t− 1. (5.19)

This converts the problem of finding a bound for (5.11) to that of finding a bound for

t−1∑
i=t̄0

λt−i−1|gj(i+ 1)eθ̂(ij)(i+ 1)|, j = 1, ..., n̄.

To do so, we make use of Lemma 3.3, Claim 5.1, (5.16) and (5.17). We see that for each
j ∈ {1, . . . , n̄}, there exists a projection operator ψj : {t ∈ Z : t ≥ t̄0} → {0, 1} satisfying

72

(5.15) such that

t−1∑
i=t̄0

λt−i−1(1− ψj(i))|gj(i+ 1)eθ̂(ij)(i+ 1)|

≤

(
1 +

2∥Ŝ∥
δ

)n+m ij−1∑
i=t̄0

λt−i−1(1− ψj(i))|eθ̂(ij)(i+ 1)| (using (5.16) and (5.17))

≤

(
1 +

2∥Ŝ∥
δ

)n+m
√√√√ 1

1− λ

ij−1∑
i=t̄0

λij−i−1(1− ψj(i))|eθ̂(ij)(i+ 1)|2 (using Lemma 3.3)

≤ 1√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m
√√√√ t−1∑

i=t̄0

λt−i−1|∆w(i)|2 + k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥


(using Claim 5.1)

≤ 1√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m(t−1∑
i=t̄0

√
λ
t−i−1

|∆w(i)|+ k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥

)
(using Lemma 3.3) .

Now we create a new projection operator Ψ : {t̄0, . . . , t− 1} → {0, 1} whose support is
precisely the union of the supports of ψj, j ∈ {1, . . . , n̄}:

Ψ(i) := 1−
n̄∏

j=1

(1− ψj(i));

since n̄ ≤ n+m, it satisfies
t−1∑
i=t̄0

|Ψ(i)| ≤ (n+m)2, (5.20)

and the signal

ê(i+ 1) := (1−Ψ(i))
n̄∑

j=1

gj(i+ 1)eθ̂(ij)(i+ 1), i = t̄0, ..., t− 1,

73

satisfies

t−1∑
i=t̄0

λt−i−1 |ê(i+ 1)|

≤ n+m√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m(t−1∑
i=t̄0

√
λ
t−i−1

|∆w(i)|+ k̄
√
λ
t−t̄0∥W (t̄0)

1
2∥

)
. (5.21)

By defining these new signals

c̃(i) := Ψ(i− 1)
n̄∑

j=1

gj(i)θ̃(ij), ḡ(i) :=

[
b̄n
0

](
1 + (Ψ(i− 1)− 1)

n̄∑
j=1

gj(i)

)
,

i = t̄0 + 1, . . . , t,

we can modify (5.19) to express it as

eθ̂(i+1)(i+ 1) = ê(i+ 1) + Ψ(i)
n̄∑

j=1

gj(i+ 1)eθ̂(ij)(i+ 1) +

(
1−

n̄∑
j=1

gj(i+ 1)

)
∆w(i)

− φ(i)⊤Rc̄(i+ 1)

= ê(i+ 1) + Ψ(i)
n̄∑

j=1

gj(i+ 1)
(
∆w(i)− φ(i)⊤Rθ̃(ij)

)
+

(
1−

n̄∑
j=1

gj(i+ 1)

)
∆w(i)− φ(i)⊤Rc̄(i+ 1) (using (5.4))

= ê(i+ 1)− (c̃(i+ 1) + c̄(i+ 1))⊤R⊤φ(i)

+

(
1 + (Ψ(i)− 1)

n̄∑
j=1

gj(i+ 1)

)
∆w(i), i = t̄0, ..., t− 1.

By substituting this into (5.9) we obtain:

φ(i+ 1) =

(
Aθ̂(i+1)θ̂(i+1) −

[
b̄n
0

]
(c̃(i+ 1) + c̄(i+ 1))⊤R⊤

)
φ(i)

+

[
b̄n
0

]
ê(i+ 1) + ḡ(i+ 1)∆w(i), i = t̄0, ..., t− 1. (5.22)

Recall that Aθ̂(i+1)θ̂(i+1) is a stable matrix, so this is a stable system subject to a perturba-
tion of the sort considered in Lemma 3.2. If the perturbation is sufficiently small then the

74

perturbed system will also be stable. Using (5.17), (5.20), n̄ ≤ n+m and ∥θ̃(·)∥ ≤ 2∥S∥,
it is clear that

t−1∑
i=t̄0

∥c̃(i+ 1)∥ ≤ 2∥Ŝ∥(n+m)3

(
1 +

2∥Ŝ∥
δ

)n+m

,

which is independent of t. Also, we know that ∥c̄(i)∥ ≤ δ, i = t̄0 + 1, . . . , t. Thus,

i2−1∑
i=i1

∥∥∥∥[b̄n0
]
(c̃(i+ 1) + c̄(i+ 1))⊤R⊤

∥∥∥∥
≤ 2∥Ŝ∥∥R∥(n+m)3

(
1 +

2∥Ŝ∥
δ

)n+m

+ δ∥R∥(i2 − i1), t̄0 ≤ i1 < i2 ≤ t.

Hence, this ‘perturbation’ is small on average. Since Aθ̂(t)θ̂(t) has stability margin3 λ̃ < λ,

we can apply Lemma 3.2 and it follows that if we fix δ ∈ (0, σ] such that δ < λ−λ̃
∥R∥γ̂ , then

(5.22) is a stable system with margin λ. Now define

γ3 := 1 + (n+m)

(
1 +

2∥Ŝ∥
δ

)n+m

,

and observe that ḡ(i) ≤ γ3. From Lemma 3.2, we conclude that there exists a γ4 ≥ 1 so
that for every t ≥ t̄0 for which ∥θ̃(t)∥ ≥ δ, we have

∥φ(t)∥ ≤ γ4λ
t−t̄0∥φ(t̄0)∥+ γ3γ4

t−1∑
i=t̄0

λt−i−1|∆w(i)|+ γ4

t−1∑
i=t̄0

λt−i−1|ê(i+ 1)|.

Now define the constants

γ5 := γ3 +
n+m√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m

,

γ6 := k̄γ4
n+m√
1− λ

(
1 +

2∥Ŝ∥
δ

)n+m

.

3Stability margin refers to the eigenvalues of the matrix lying within the open disk of some specified
radius.

75

Finally, using (5.21) and knowing that λ <
√
λ, for every t ≥ t̄0 such that ∥θ̃(t)∥ ≥ δ we

have

∥φ(t)∥ ≤ γ4
√
λ
t−t̄0∥φ(t̄0)∥+ γ6

√
λ
t−t̄0∥W (t̄0)

1
2∥+ γ4γ5

t−1∑
i=t̄0

√
λ
t−i−1

|∆w(i)|. (5.23)

Part 3: A bound on ∥φ(t)∥ on the whole interval

We claim that there exists positive constants c1, c2, c3 such that for any t̄0 ≥ 0,

∥φ(t)∥ ≤ c1
√
λ
t−t̄0∥φ(t̄0)∥+ c2

√
λ
t−t̄0∥W (t̄0)

1
2∥+ c3

t−1∑
i=t̄0

√
λ
t−i−1

|∆w(i)|, t ≥ t̄0. (5.24)

Case 1: If ∥θ̃(i)∥ < δ for all i ∈ {t̄0 + 1, . . . , t}, then using (5.14), clearly (5.24) is satisfied
with c1 = γ̄, c2 = 0, c3 = γ̄.

Case 2: If ∥θ̃(t)∥ ≥ δ, using (5.23), (5.24) is satisfied with c1 = γ4, c2 = γ6, c3 = γ4γ5.

Case 3: If ∥θ̃(t)∥ < δ and there exists any t̄ ∈ {t̄0 + 1, . . . , t− 1} such that ∥θ̃(t̄)∥ ≥ δ,
then using (5.14) and (5.23) together, one can see that (5.24) is satisfied with c1 = γ̄γ4, c2 =
γ̄γ6, c3 = γ̄γ4γ5 + γ̄.

Combining each case and using the knowledge that γ̄ ≥ 1 and γ4 ≥ 1, (5.24) holds in all
cases for

c1 = γ̄γ4, c2 = γ̄γ6, c3 = γ̄γ4γ5 + γ̄.

Part 4: A bound on ∥W (t)∥

From (3.5), we see that

W (t) = λt−t̄0W (t̄0) +
t−1∑
i=t̄0

λt−i−1

[
∆ϕ(i)

∆y(i+ 1)

] [
∆ϕ(i)

∆y(i+ 1)

]⊤
, t ≥ t̄0.

By defining the constant
j̄ := 2 + sup

θ∈S
∥ϑ∥,

76

we can find

∥W (t)
1
2∥ ≤

√
λ
t−t̄0∥W (t̄0)

1
2∥+

√√√√ t−1∑
i=t̄0

λt−i−1

∥∥∥∥[∆ϕ(i)
∆y(i+ 1)

]∥∥∥∥2

=
√
λ
t−t̄0∥W (t̄0)

1
2∥+

√√√√√√√√√√√√√
t−1∑
i=t̄0

λt−i−1

∥∥∥∥∥∥∥∥∥∥∥∥∥



∆ϵ(i+ 1)
...

∆ϵ(i− n+ 1)
∆u(i)

...
∆u(i−m+ 1)



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+

√√√√√√√√√√√√√
t−1∑
i=t̄0

λt−i−1



∥∥∥∥∥∥∥∥∥∥∥∥∥



ϵ(i+ 1)
...

ϵ(i− n+ 1)
∆u(i)

...
∆u(i−m+ 1)



∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥



ϵ(i)
...

ϵ(i− n)
0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥



2

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+

(
t−1∑
i=t̄0

λt−i−1 (2∥φ(i)∥+ |ϵ(i+ 1)|)2
) 1

2

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+

(
t−1∑
i=t̄0

λt−i−1 (2∥φ(i)∥+ ∥φ(i)∥∥ϑ∗∥+ |∆w(i)|)2
) 1

2

(using (5.2))

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+ j̄

√√√√ t−1∑
i=t̄0

λt−i−1∥φ(i)∥2 +

√√√√ t−1∑
i=t̄0

λt−i−1|∆w(i)|2

≤
√
λ
t−t̄0∥W (t̄0)

1
2∥+ j̄

t−1∑
i=t̄0

√
λ
t−i−1

∥φ(i)∥+
t−1∑
i=t̄0

√
λ
t−i−1

|∆w(i)|, t ≥ t̄0.

Thus, ∥W (t)
1
2∥ is bounded by a filtered version of ϕ(t) with a pole at z =

√
λ, which by

(5.24) is itself a convolution with a pole at z =
√
λ. Together, this would yield a convolution

bound with a double-pole at z =
√
λ. Instead, by using the fact that λ̄ ∈ (

√
λ, 1), one can

77

find a γ7 ≥ 1 such that a first order convolution bound holds:

∥W (t)
1
2∥ ≤ γ7λ̄

t−t̄0∥φ(t̄0)∥+ γ7λ̄
t−t̄0∥W (t̄0)

1
2∥+ γ7

t−1∑
i=t̄0

λ̄t−i−1|∆w(i)|, t ≥ t̄0.

By combining this with (5.24), and using the equivalence of norms:

∥W (t)
1
2∥ ≤ ∥W (t)

1
2∥F =

∥∥∥vec(W (t)
1
2

)∥∥∥ ≤
√
n+m+ 1 ∥W (t)

1
2∥,

one can find a γ8 to create the convolution bound:

∥x̄(t)∥ ≤ γ8λ̄
t−t̄0∥x̄(t̄0)∥+ γ8

t−1∑
i=t̄0

λ̄t−i−1|∆w(i)|, t ≥ t̄0. □

5.3.1 A Bound on the Tracking Error

An immediate consequence of the convolution bound of Theorem 5.1 is a bound on the
tracking error.

Corollary 5.1 For every λ ∈ (0, 1), λ̄ ∈ (
√
λ, 1), and with A∗(z−1) = 1 and τD =

n + m + 1, there exists a c ≥ 1 so that for every θ∗ ∈ S, φ(t0) ∈ Rn+m+1, τ(t0) ∈
{0, . . . , n+m}, θ̂(t0) ∈ Ŝ, r ∈ R, and w ∈ l∞, when the supervisory controller given by
(3.4) - (3.6) and (5.6) is applied to the plant (5.1), the following bound holds:√√√√ t∑

j=t0

|ϵ(j)|2 ≤ c∥x̄(t0)∥+ c

√√√√ t−1∑
j=t0

|∆w(j)|2, j ≥ t0.

Proof: By applying Parseval’s Theorem to the second term of (5.12):√√√√ t∑
j=t0

|ϵ(j)|2 ≤ γ∥x̄(t0)∥

√√√√ t∑
j=t0

(
λ̄t−t̄0

)2
+ γ

√√√√ t∑
j=t0

(
j−1∑
i=t0

λ̄t−i−1|∆w(i)|

)2

≤ γ√
1− λ̄2

∥x̄(t0)∥+
γ

1− λ̄

√√√√ t−1∑
j=t0

|∆w(j)|2. □

78

5.4 Robustness

Consider now a more complicated scenario: the plant is dependent on the time-varying
parameter vector θ∗(t), subjected to an additive disturbance w(t), and there are some
unmodeled dynamics which enter the system via w̄(t):

y(t+ 1) = ϕ(t)⊤θ∗(t) + w(t) + w̄(t). (5.25)

We adopt a common model of acceptable time-variations used in adaptive control: with
ζ > 0 and η > 0, we let s(S, ζ, η) denote the subset of l∞(Rn+m) whose elements θ∗ satisfy
θ∗(t) ∈ S for every t ≥ t0 as well as

t2−1∑
i=t1

∥θ∗(i+ 1)− θ∗(i)∥ ≤ ζ + η(t2 − t1), t2 > t1 ≥ t0.

We also adopt a common model of unmodeled dynamics:

m(t+ 1) = βm(t) + β∥ϕ(t)∥,
w̄(t) ≤ µm(t) + µ∥ϕ(t)∥. (5.26)

As argued in [35], this model subsumes the classical additive uncertainty, multiplicative
uncertainty, and uncertainty in a coprime factorization, which is common in the robust
control literature, e.g. see [57], and is commonly used in the adaptive control literature,
e.g. see [24]. The only limitation is that the perturbations correspond to strictly causal
terms.

We will now show that if the time-variations are slow enough and the size of the
unmodeled dynamics are small enough, then the closed-loop system retains exponential
stability as well as the convolution bound. Before presenting this result, we must first
define the new vector

ϕ̄(t) :=



y(t)
...

y(t− n+ 1)
y(t− n)
u(t)
...

u(t−m+ 1)
u(t−m)


∈ Rn+m+2,

79

which is the same as ϕ(t), except that it contains copies of y and u one additional step
into the past. The motivation for this choice will be clear later.

Theorem 5.2 For every ζ > 0, β ∈ (0, 1), λ ∈ (0, 1), λ̄ ∈ (
√
λ, 1), and with A∗(z−1) = 1

and τD = n + m + 1, there exists a η > 0, λ̂ ∈ (max{β, λ̄}, 1) and γ′ ≥ 1 so that for
every t̄0 ≥ t0, θ

∗ ∈ s(S, ζ, η), ϕ̄(t̄0) ∈ Rn+m+2, W (t̄0) ∈ R(n+m+1)×(n+m+1) positive
semidefinite and symmetric, θ̂(t̄0) ∈ Ŝ, τ(t̄0) ∈ {0, . . . , n+m} , r ∈ R, and w ∈ l∞,
when the supervisory controller given by (3.4) - (3.6) and (5.6) is applied to the plant
(5.25) with w̄(t) satisfying (5.26), the following bound holds:

∥∥∥∥∥∥∥
 ϕ̄(t)

vec
(
W (t)

1
2

)
m(t)


∥∥∥∥∥∥∥ ≤ γ′λ̂t−t̄0

∥∥∥∥∥∥∥
 ϕ̄(t̄0)

vec
(
W (t̄0)

1
2

)
m(t̄0)


∥∥∥∥∥∥∥+ γ′

t−1∑
i=t̄0

λ̂t−i−1|w(i)|+ γ′|r|,

t ≥ t̄0.

Proof of Theorem 5.2

It is proven in [49] that this robustness property holds for a wide class of ‘partially’ expo-
nentially stable systems which admit a convolution bound - that is, systems of the form
(5.1) whose overall state can be decomposed as

x(t) =

 ϕ(t)
z1(t)
z2(t)

 ,
with z2(t) confined to some space X , and with

[
ϕ(t)
z1(t)

]
obeying a convolution bound. In

Theorem 5.1, we find a convolution bound in terms of

x̄(t) =

[
φ(t)

vec
(
W (t)

1
2

)]
,

but to be able to apply the results of [49], this must be converted into a convolution
involving ϕ(t), not φ(t). However, this actually is not sufficient, since the update equation
for the matrix W (t+1) is a function of both ϕ(t) and ϕ(t− 1). This is why we introduced

80

ϕ̄(t), as it encodes the same information as both ϕ(t) and ϕ(t − 1). Now we are going to
apply Theorems 1 and 3 of [49] using

z1(t) ⇐ vec
(
W (t)

1
2

)
, z2(t) ⇐

[
θ̂(t)
τ(t)

]
,

ϕ(t) ⇐ ϕ̄(t), r(t) ⇐ r,

X ⇐ Ŝ × {0, . . . , n+m} .

Observe that the plant model (5.1) may be rewritten as

y(t+ 1) = ϕ̄(t)⊤


In×n 0n×m

01×n 01×m

0m×n Im×m

01×n 01×m

 θ∗ + w(t), t ≥ t0,

which satisfies equation (1) of [49]. The equation forW (t+1) is a function ofW (t), y(t+1),
y(t), ϕ(t) and ϕ(t− 1), so it may be written in the form

W (t+ 1) = h1
(
W (t), y(t+ 1), ϕ̄(t)

)
.

Similarly, the equations for θ̂(t+ 1) and τ(t+ 1) may be written as[
θ̂(t+ 1)
τ(t+ 1)

]
= h2

(
W (t), θ̂(t), τ(t), y(t+ 1), ϕ̄(t)

)
.

Lastly, the control law is a function of θ̂(t) and φ(t), so it takes the form

u(t) = h(θ̂(t), ϕ̄(t), r).

Together, these satisfy equations (2a) - (2c) of [49].4 All that remains before we can apply
the results of that paper is to convert the convolution bound of Theorem 5.1 into one
involving the term [

ϕ̄(t)

vec
(
W (t)

1
2

)]
.

4While the original version of [49] does not allow for y(t+1) in the controller description, the updated
version does so (with minimal changes to the proof).

81

The method for doing so is based on the technique shown in the appendix of [50]. Fix
λ ∈ (0, 1), λ̄ ∈ (

√
λ, 1). Let θ∗ ∈ S and t̄0 ≥ t0 be arbitrary. Then, from Theorem 5.1,

there exists a γ ≥ 1 such that

∥x̄(t)∥ ≤ γλ̄t−t̄0∥x̄(t̄0)∥+ γ
t−1∑
i=t̄0

λ̄t−i−1|∆w(i)|, t ≥ t̄0. (5.27)

We are going to first find a bound for ϕ̄(t) in terms of ∥x̄(t̄0)∥ and the exogenous inputs.

Then we convert this into the desired convolution bound involving

[
ϕ̄(t)

vec
(
W (t)

1
2

)]
.

Step 1: A bound on ϕ̄(t) for t ≥ t̄0 + 2max{n,m}+ 2

For each n̄ ∈ {0, . . . , n} and m̄ ∈ {1, . . . ,m}, let S(n̄,m̄) denote the set of all θ∗ ∈ S for
which the polynomial Aθ∗(z

−1) is of degree n̄ and Bθ∗(z
−1) is of degree m̄; from Assumption

5.3 this set is compact.

Now fix n̄ ∈ {0, . . . , n} and m̄ ∈ {1, . . . ,m} and let θ∗ ∈ S(n̄,m̄) be arbitrary. Then the
plant’s transfer function can be written as

b∗1z
−1 + . . .+ b∗m̄z

−m̄

1− a∗1z
−1 − . . .− a∗n̄z−n̄

,

which is of order N := max{n̄, m̄}. Now we construct a state-space model of the plant; we
choose one of dimension N which is in observable canonical form:

z(t+ 1) =


a∗1 1
a∗2 0 1
...

.

a∗n̄ 0 1
0(N−n̄)×N


︸ ︷︷ ︸

=:A

z(t) +


b∗1
...
b∗m̄

0N−m̄


︸ ︷︷ ︸

=:B

u(t) +


1
0
...
0

w(t)

y(t) =
[
1 0 . . . 0

]︸ ︷︷ ︸
=:C

z(t). (5.28)

Observe that we can view u as the output of a first order system:

u(t+ 1) = u(t) + ∆u(t+ 1). (5.29)

82

Since ϵ(t) = y(t)− r, by combining (5.28) with (5.29) we obtain the augmented (N + 1)th

order state-space system

[
z(t+ 1)
u(t+ 1)

]
=

[
A B

01×N 1

]
︸ ︷︷ ︸

=:Ā

[
z(t)
u(t)

]
︸ ︷︷ ︸

=:z̄(t)

+


0
...
0
1


︸ ︷︷ ︸
=:B̄1

∆u(t) +


1
0
...
0


︸ ︷︷ ︸
=:B̄2

w(t)

ϵ(t) =
[
1 0 . . . 0

]︸ ︷︷ ︸
=:C̄

[
z(t)
u(t)

]
− r, t ≥ t̄0. (5.30)

Since (5.28) is controllable and observable (Assumption 5.1) and does not have a zero at
z = 1 (Assumption 5.2), it follows that

(
C̄, Ā

)
is observable; hence there exists a unique

H̄ such that the eigenvalues of Ā+ H̄C̄ are all zero. It is well known that H̄ is an analytic
function of θ∗ ∈ S(n̄,m̄). Now rewrite (5.30) as

z̄(t+ 1) =
(
Ā+ H̄C̄

)
z̄(t) + B̄1∆u(t) + B̄2w(t)− H̄ϵ(t)− H̄r, t ≥ t̄0.

Noting that
(
Ā+ H̄C̄

)k
= 0 for all k ≥ N + 1, the solution of the above equation is

z̄(t) =
t−1∑

i=t−N−1

(
Ā+ H̄C̄

)t−i−1 (
B̄1∆u(i) + B̄2w(i)− H̄ϵ(i)− H̄r

)
, t ≥ t̄0 +N + 1.

Since ϵ(i) and ∆u(i) are elements of φ(i), it follows that

∥z̄(t)∥ =
t−1∑

i=t−N−1

∥∥∥(Ā+ H̄C̄
)t−i−1

∥∥∥ ((1 + ∥H̄∥)∥φ(i)∥+ |w(i)|+ ∥H̄∥|r|
)
, t ≥ t̄0+N +1.

Now by applying the convolution bound (5.27) along with |∆w(i)| ≤ |w(i)|+ |w(i− 1)|, it
follows that there exists a γ(n̄,m̄) ≥ γ such that the bound

∥z̄(t)∥ ≤ γ(n̄,m̄)λ̄
t−t̄0∥x̄(t̄0 + 1)∥+ γ(n̄,m̄)

t−1∑
i=t̄0

λ̄t−i−1|w(i)|+ γ(n̄,m̄)|r|, t ≥ t̄0 +N + 1

holds uniformly for all θ∗ ∈ S(n̄,m̄). By choosing γ1 to be the maximum of all γ(n̄,m̄), it
follows that the bound

∥z̄(t)∥ ≤ γ1λ̄
t−t̄0∥x̄(t̄0 + 1)∥+ γ1

t−1∑
i=t̄0

λ̄t−i−1|w(i)|+ γ1|r|, t ≥ t̄0 +max{n,m}+ 1

83

holds uniformly for all θ∗ ∈ S. Finally, since y(t) = C̄z̄(t) and u(t) =
[
0 . . . 0 1

]
z̄(t),

we can relate ϕ̄ to z̄:

∥ϕ̄(t)∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



y(t)
...

y(t− n+ 1)
y(t− n)
u(t)
...

u(t−m+ 1)
u(t−m)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤

t∑
i=t−max{n,m}−1

∥z̄(i)∥, t ≥ t̄0 +max{n,m}+ 1.

It follows that there exists a γ2 ≥ γ1 such that

∥ϕ̄(t)∥ ≤ γ2λ̄
t−t̄0∥x̄(t̄0+1)∥+γ2

t−1∑
i=t̄0

λ̄t−i−1|w(i)|+γ2|r|, t ≥ t̄0+2max{n,m}+2. (5.31)

Step 2: Creating the desired convolution bound for t ≥ t̄0

There are three remaining steps to convert (5.31) into the desired bound. Firstly, (5.31)
involves ∥x̄(t̄0 + 1)∥ instead of the desired term. To fix this, it is easy to see that there
exists a γ3 ≥ 1 such that

∥x̄(t̄0 + 1)∥ ≤ γ3

[
ϕ̄(t̄0 + 1)

vec
(
W (t̄0 + 1)

1
2

)]
+
√
n+ 1|r|.

Thus, there exists a γ4 ≥ γ2 such that

∥ϕ̄(t)∥ ≤ γ4λ̄
t−t̄0+1

∥∥∥∥∥
[

ϕ̄(t̄0 + 1)

vec
(
W (t̄0 + 1)

1
2

)]∥∥∥∥∥+ γ4

t−1∑
i=t̄0

λ̄t−i−1|w(i)|+ γ4|r|,

t ≥ t̄0 + 2max{n,m}+ 2.

84

The next issue is the domain for which the above equation is valid, and the starting
index of t̄0+1. To remedy this, we claim that for any p ≥ 0, there exists a c̄ ≥ 1 such that

∥ϕ(t+ p)∥ ≤ c̄∥ϕ(t)∥+ c̄

p−1∑
i=0

|w(t+ p)|+ c̄|r|, t ≥ t0. (5.32)

Using the compactness of S, we have from the plant definition that |y(t+1)| ≤ ∥S∥∥ϕ(t)∥+
|w(t)|, and from the control law there exists a c̄1 such that u(t + 1) ≤ c̄1∥ϕ(t)∥ + c̄1|r|.
Thus,

∥ϕ(t+ 1)∥ ≤ (1 + ∥S∥+ c̄1)∥ϕ(t)∥+ |w(t)|+ c̄1|r|, t ≥ t0.

Iterating this reveals (5.32). Similarly, we use

∥W (t̄0 + 1)
1
2∥ ≤ γ∥W (t̄0)

1
2∥+

∥∥∥∥[∆ϕ(t̄0)
∆y(t̄0 + 1)

]∥∥∥∥
≤ γ∥W (t̄0)

1
2∥+ |y(t̄0 + 1)|+ 2∥ϕ̄(t̄0)∥

≤ γ∥W (t̄0)
1
2∥+ (2 + ∥S∥)∥ϕ̄(t̄0)∥+ |w(t̄0)|.

It follows that there exists a γ5 ≥ γ4 such that

∥ϕ̄(t)∥ ≤ γ5λ̄
t−t̄0

∥∥∥∥∥
[

ϕ̄(t̄0)

vec
(
W (t̄0)

1
2

)]∥∥∥∥∥+ γ5

t−1∑
i=t̄0

λ̄t−i−1|w(i)|+ γ5|r|, t ≥ t̄0.

Finally, the LHS of the above inequality is wrong: to fix this, use∥∥∥∥∥
[

ϕ̄(t)

vec
(
W (t)

1
2

)]∥∥∥∥∥ ≤ ∥ϕ̄(t)∥+ ∥x̄(t)∥ ,

along with (5.27). Thus, there exists a γ6 ≥ γ5 such that∥∥∥∥∥
[

ϕ̄(t)

vec
(
W (t)

1
2

)]∥∥∥∥∥ ≤ γ6λ̄
t−t̄0

∥∥∥∥∥
[

ϕ̄(t̄0)

vec
(
W (t̄0)

1
2

)]∥∥∥∥∥+ γ6

t−1∑
i=t̄0

λ̄t−i−1|w(i)|+ γ6|r|,

t ≥ t̄0.

This is the desired convolution bound, so Theorem 5.2 follows by applying Theorems 1 and
3 of [49]. □

85

5.5 Simulation Results

Now we demonstrate in simulation the results proven in Theorems 5.1 - 5.2. The perfor-
mance is compared to the adaptive controller constructed using the Projection Algorithm
using the setup of [48], as it is the only other adaptive controller which has been shown to
exhibit the same linear-like closed-loop behavior. Consider the second order plant

y(t+ 1) =


a∗1
a∗2
b∗1
b∗2


︸ ︷︷ ︸

θ∗

⊤ 
y(t)

y(t− 1)
u(t)

u(t− 1)


︸ ︷︷ ︸

ϕ(t)

+w(t),

with parameters belonging to the set

S =



a1
a2
b1
b2

 : a1 ∈ [−2, 0], a2 ∈ [−3,−1].b1 ∈ [−1, 0], b2 ∈ [−5,−3]

 ,

which satisfies Assumptions 5.1 - 5.3. Observe that each model in this set is unstable and
non-minimum phase, hence the d-step-ahead method cannot be used. Since S is convex,
we choose Ŝ = S. Both estimators use data filter

H(z) =
z − 1

z
,

initial parameter guess

θ̂(0) =


−1
−2
−0.5
−4

 ,
and both controllers use a pole placement certainty equivalence control law with integrator
to place the closed-loop poles at the origin. The Supervisory Controller’s minimum dwell
time is τD = n+m+ 1 = 5. The Supervisory estimator is also initialized with

W (0) = 0, τ(0) = τD − 1 = 4.

The plant’s initial condition is

y(0) = 0, y(−1) = 0, u(0) = 0, u(−1) = 0.

86

The reference signal is the constant setpoint r = 2. The plant parameters are

θ∗ =


a1
a2
b1
b2

 =


−0.5
−1.5
−0.75
−3

 ,
and the Supervisory Controller uses exponential forgetting factor λ = 0.9. The disturbance
w is set to have constant magnitude: |w(t)| = 0.5, but with its sign changing every 100
steps. We plot the results in Figure 5.2; the parameter estimates for Supervisory Control
lock on at just t = 6 and never change again, so thenceforth its response is just that of an
LTI pole placement controller. In contrast, the Projection Algorithm’s estimate continues
to jump around.

Figure 5.2: Performance of Supervisory Control vs the Projection Algorithm in the presence
of a piecewise constant disturbance.

The setup of the next simulation is the same as above, except now the disturbance
signal w is a Gaussian random signal with standard deviation 0.1, whose mean switches
between 0.5 and −0.5 every 100 steps. We plot the results in Figure 5.3; in this case the
tracking performance of the two estimators is very similar.

87

Figure 5.3: Performance of Supervisory Control vs the Projection Algorithm in the presence
of a random disturbance with piecewise constant mean.

The next simulation illustrates the robustness of the two estimators to time-varying
parameters. The setup is the same as above, except that the plant parameters are time
varying:

a∗1(t) = −1 + sin(0.005πt), a∗2(t)= −2− sin(0.004πt),

b∗1(t) = −0.5 + 0.5 sin(0.01πt), b∗2(t)= −4 + sin(0.007πt).

The Supervisory Controller now uses exponential forgetting factor λ = 0.75, which was se-
lected experimentally. Generally, a higher λ improves its rejection of random disturbances,
but a lower λ allows for better tracking of time-varying parameters. We plot the results in
Figure 5.4. Qualitatively, the parameter estimates for the Supervisory Controller are less
chaotic than that of the Projection Algorithm, and the tracking performance is improved.

88

Figure 5.4: Performance of Supervisory Control vs the Projection Algorithm in the presence
of a random disturbance with piecewise constant mean and time-varying parameters.

The final simulation, Figure 5.5, is precisely the same as above, except that we let the
Supervisory estimator’s dwell time be one, so θ̂ is permitted to change at every step. It
has not been proven that the system is stable in this case, however it works very well in
simulation; the tracking performance is superior than of Figure 5.4.

89

Figure 5.5: Performance of Supervisory Control without a dwell time vs the Projection
Algorithm in the presence of a random disturbance with piecewise constant mean and
time-varying parameters.

90

Chapter 6

Conclusions and Future Work

The main contribution of this thesis is in demonstrating that Supervisory Control yields a
closed-loop adaptive system with ‘linear-like’ properties - namely that part of the system
state is exponentially stable, and the influence of the exogenous inputs is bounded by
a linear convolution. It is argued in Chapter 2 that this property is not shared with the
majority of competing parameter estimation routines, thus the adaptive system constructed
with the Supervisory estimator has superior robustness qualities than the other methods.
This thesis applies the Supervisory Control method in two contexts: the d-step-ahead
problem of tracking an arbitrary reference signal in Chapter 4, and the step tracking
problem of tracking a constant reference in the presence of a constant disturbance in
Chapter 5. In each case it is shown that the closed-loop system admits a convolution
bound which holds uniformly for all admissible initial conditions. This powerful result
is then leveraged in a modular fashion to show that the system is robust to a degree of
time-varying parameters and unmodeled dynamics.

Recall that this is not the first time that an adaptive system has been shown to have
this linear-like property; it is shown in e.g. [35, 36] that the ‘ideal’ Projection Algorithm es-
timator also yields such a convolution bound. However, Supervisory Control has a number
of benefits over the Projection Algorithm. Firstly, Supervisory Control tolerates a non-
convex parameter space S very naturally, whereas the Projection Algorithm as in [35, 36]
requires that S be convex, although the approach may be applied to a non-convex set at
the expense of greater complexity: this is done in e.g. [46, 47, 48, 50] by breaking up S
into several convex subregions and then running in parallel a separate parameter estima-
tor for each subregion. Secondly, in the d-step-ahead Supervisory Control approach, the
order and relative degree of the plant need not be known exactly, only an upper bound
need be known, and the sign of the high frequency gain need not be known, which are

91

advantages over [35]. Another advantage is that in many situations, Supervisory Con-
trol has superior performance in simulation. Lastly, Supervisory Control permits plants
which are nonlinearly dependent on their parameter vector: that is, systems of the form
y(t+1) = ϕ(t)⊤f(θ∗)+w(t). The advantages of this are discussed in [40], with an example
of such a system in Section X therein. For the sake of simplicity, this thesis has been
entirely restricted to linearly parameterized systems, but with a simple extension, all the
results seen here should apply to the more general case too.

With both setups, in the case of no disturbance, constant parameters, and no unmodeled
dynamics, we find a crisp bound on the tracking error. However, when the disturbance is
nonzero, nothing has been proven in the d-step-ahead case, whereas with step tracking it
has been shown that the energy of the tracking error is proportional to the initial condition
and the energy of the disturbance. Therefore, an avenue for future work would be to find
some sort of useful bound on the tracking error in the d-step-ahead context in the presence
of a disturbance.

Finally, in the pole placement context, by deliberately choosing to place the poles at
the origin, the dwell time may be minimized to ‘only’ n+m+ 1. However, in the d-step-
ahead context, the dwell-time may need to be much longer, depending on how slow are
the zeros in the set of admissible plant models. All general stability proofs to date rely
on the dwell time constraint, however it has never been proven that it is necessary. The
simulation results suggest that the system is well behaved without a dwell time, in fact the
performance is greatly improved by removing it. Recall that without the dwell time, the
estimator simplifies to being the weighted least-squares estimator of Section 2.4, except
the optimization is performed over the set Ŝ. The author suspects that the system will
be stable without the dwell time and has attempted to prove so, but without success; it
would be worthwhile to further investigate the nature of Supervisory Control without the
dwell time constraint.

92

References

[1] B.D.O Anderson, T.S. Brinsmead, F. De Bruyne, J.P. Hespanha, D. Liberzon, and
A.S. Morse. Multiple model adaptive control, part 1: finite controller coverings. In
International Jounral of Robust and Nonlinear Control, volume 10(11-12), pages 909–
929, 2000.

[2] P. J. Antsaklis and A. N. Michel. Linear Systems. McGraw-Hill, New York, 1997.

[3] D. Borrelli and A.S. Morse. Discrete-time supervisory control of families of linear
set-point controllers. In IEEE Transactions on Automatic Control, volume 42(11),
pages 1500–1515, 1997.

[4] D. Borrelli, A.S. Morse, and E. Mosca. Discrete-time supervisory control of families of
2-dof linear set-point controllers. In IEEE Transactions on Automatic Control, volume
44(1), pages 178–181, 1999.

[5] C. A. Desoer and M. Vidyasagar. Feedback Systems: Input-Output Properties. Aca-
demic Press, New York, 1975.

[6] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky. Adaptive control and the nasa x-
15-3 flight revisited. In IEEE Control Systems Magazine, volume 30(3), pages 32–48,
2010.

[7] C.E. Rohrs et al. Robustness of continuous-time adaptive control algorithms in the
presence of unmodelled dynamics. In IEEE Transactions on Automatic Control, vol-
ume 30(9), pages 881–889, 1985.

[8] R.H. Middleton et al. Design issues in adaptive control. In IEEE Transactions on
Automatic Control, volume 33(1), pages 50–58, 1988.

93

[9] A. Feuer and A.S. Morse. Adaptive control of single-input, single-output linear sys-
tems. In IEEE Transactions on Automatic Control, volume 23(4), pages 557–569,
1978.

[10] M. Fu and B.R. Barmish. Adaptive stabilization of linear systems via switching con-
trol. In IEEE Transactions on Automatic Control, volume 31(12), pages 1097–1103,
1986.

[11] G.C. Goodwin, P.J. Ramadge, and P.E. Caines. Discrete time multivariable control.
In IEEE Transactions on Automatic Control, volume 25(3), pages 449–456, 1980.

[12] G.C. Goodwin and K.S. Sin. Adaptive Filtering Prediction and Control. Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1984.

[13] W. M. Haddad and V. Chellaboina. Nonlinear Dynamical Systems and Control: A
Lyapunov-Based Approach. Princeton University Press, 2008.

[14] J. P. Hespanha, D. Liberzon, and A. S. Morse. Hysteresis-based switching algorithms
for supervisory control of uncertain system. In Automatica, volume 39(2), pages 263–
272, 2003.

[15] J.P. Hespanha. Tutorial on supervisory control. Lecture Notes for the workshop
Control using Logic and Switching for the 40th Conf. on Decision and Contr., Orlando,
Florida, 2001. Available at http://www.ece.ucsb.edu/~hespanha/published.

[16] J.P. Hespanha. Supervisory control of nonlinear systems. In Proc. of the 2007 European
Contr. Conf., 2007.

[17] J.P. Hespanha, D. Liberzon, and A.S. Morse. Logic-based switching control of a
nonholonomic system with parametric modeling uncertainty. In Systems and Control
Letters, volume 38(3), pages 167–177, 1999.

[18] J.P. Hespanha, D. Liberzon, and A.S. Morse. Supervision of integral-input-to-state
stabilizing controllers. In Automatica, volume 38(8), pages 1327–1335, 2002.

[19] J.P. Hespanha, D. Liberzon, A.S. Morse, B.D.O Anderson, T.S. Brinsmead, and F. De
Bruyne. Multiple model adaptive control, part 2: switching. In International Journal
of Robust and Nonlinear Control, volume 11(5), pages 479–496, 2001.

[20] J. Hockerman-Frommer, S.R. Kulkarni, and P.J. Ramadge. Controller switching based
on output prediction errors. In IEEE Transactions on Automatic Control, volume
43(5), pages 596–607, 1998.

94

http://www.ece.ucsb.edu/~hespanha/published

[21] P.A. Ioannou and K.S. Tsakalis. A robust direct adaptive controller. In IEEE Trans-
actions on Automatic Control, volume 31(11), pages 1033–1043, 1986.

[22] G. Kreisselmeier. Adaptive control of a class of slowly time-varying plants. In Systems
and Control Letters, volume 8, pages 97–103, 1986.

[23] G. Kreisselmeier and B.D.O. Anderson. Robust model reference adaptive control. In
IEEE Transactions on Automatic Control, volume 31(2), pages 127–133, 1986.

[24] G. Kreisselmeier and B.D.O. Anderson. Robust model reference adaptive control. In
IEEE Transactions on Automatic Control, volume 31(2), pages 127–133, 1986.

[25] C.J. Lalumiere. First order supervisory adaptive control. https://github.com/

CraigLalumiere/First-Order-Supervisory-Adaptive-Control, 2022.

[26] Y. Li and H-F Chen. Robust adaptive pole placement for linear time-varying systems.
In IEEE Transactions on Automatic Control, volume 41(5), pages 714–719, 1996.

[27] I.M.Y. Mareels and R.R. Bitmead. Nonlinear dynamics in adaptive control: Chaotic
and periodic stabilization. In IFAC Proceedings Volumes, volume 20(2), pages 419–
424, 1987.

[28] I.M.Y. Mareels and R.R. Bitmead. Adaptive dual control methods: An overview,. In
IFAC Proceedings Volumes, volume 28(13), pages 67–72, 1995.

[29] R.H. Middleton and G.C. Goodwin. Adaptive control of time-varying linear systems.
In IEEE Transactions on Automatic Control, volume 33(2), pages 150–155, 1988.

[30] D.E. Miller. On necessary assumptions in discrete-time model reference adaptive
control. In International Journal of Adaptive Control and Signal Processing, volume
10(6), pages 589–602, 1996.

[31] D.E. Miller. Classical discrete-time adaptive control revisited: Exponential stabiliza-
tion. In 2017 IEEE Conference on Control Technology and Applications (CCTA),
pages 1975–1980, 2017.

[32] D.E. Miller. A parameter adaptive controller which provides exponential stability:
The first order case. In Systems and Control Letters, volume 103, pages 23–31, 2017.

[33] D.E. Miller and E.J. Davison. An adaptive controller which provides lyapunov sta-
bility. In IEEE Transactions on Automatic Control, volume 34(6), pages 599–609,
1989.

95

https://github.com/CraigLalumiere/First-Order-Supervisory-Adaptive-Control
https://github.com/CraigLalumiere/First-Order-Supervisory-Adaptive-Control

[34] D.E. Miller and E.J. Davison. A new approach to model reference adaptive control.
In IEEE Transactions on Automatic Control, volume 48(5), pages 743–757, 2003.

[35] D.E. Miller and M.T. Shahab. Classical pole placement adaptive control revisited:
linear-like convolution bounds and exponential stability. In Math Control Signals
Syst, volume 30(4):19, 2018.

[36] D.E. Miller and M.T. Shahab. Adaptive tracking with exponential stability and con-
volution bounds using vigilant estimation. In Math. Control Signals Syst, volume 32,
pages 241–291, 2020.

[37] D.E. Miller and M.T. Shahab. The inherent robustness of a new approach to adaptive
control. In 2020 IEEE Conference on Control Technology and Applications (CCTA),
pages 510–515, 2020.

[38] D.E. Miller and M.T. Shahab. Linear-like properties arise naturally in the adaptive
control setting. In International Journal of Adaptive Control and Signal Processing,
volume 35(6), pages 965–990, 2021.

[39] A.S. Morse. Global stability of parameter-adaptive control systems. In IEEE Trans-
actions on Automatic Control, volume 25(3), pages 433–439, 1980.

[40] A.S. Morse. Supervisory control of families of linear set-point controillers - part 1:
Exact matching. In IEEE Transactions on Automatic Control, volume 41(10), pages
1413–1431, 1996.

[41] A.S. Morse. Supervisory control of families of linear set-point controillers - part 2:
Robustness. In IEEE Transactions on Automatic Control, volume 42(11), pages 1500–
1515, 1997.

[42] E. Mosca, F. Capecchi, and A. Casavola. Designingpredictors for mimo switchingsu-
pervisory control. In International Journal of Robust and Nonlinear Control, volume
15(3), pages 265–286, 2001.

[43] S.M. Naik, P.R. Kumar, and B.E. Ydstie. Robust continuous-time adaptive control
by parameter projection. In IEEE Transactions on Automatic Control, volume 37(2),
pages 182–197, 1992.

[44] K.S. Narendra and Y.H. Lin. Stable discrete adaptive control. In IEEE Transactions
on Automatic Control, volume 25(3), pages 456–461, 1980.

96

[45] K.S. Narendra, Y.H. Lin, and L.S. Valavani. Stable adaptive controller design, part ii:
Proof of stability. In IEEE Transactions on Automatic Control, volume 25(3), pages
440–448, 1980.

[46] Hassaan Ali Qazi. Adaptive control of a first-order system providing linear-like be-
haviour and asymptotic tracking. Master’s thesis, University of Waterloo, 2021.

[47] M.T. Shahab and D.E. Miller. Multi-estimator based adaptive control which provides
exponential stability: The first-order case. In 2018 IEEE Conference on Decision and
Control (CDC), pages 2223–2228, 2018.

[48] M.T. Shahab and D.E. Miller. Adaptive set-point regulation using multiple estimators.
In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 84–89, 2019.

[49] M.T. Shahab and D.E. Miller. A convolution bound implies tolerance to time-
variations and unmodelled dynamics, 2019. arXiv:1910.02112.

[50] M.T. Shahab and D.E. Miller. Asymptotic tracking and linear-like behavior using
multi-model adaptive control. In IEEE Transactions on Automatic Control, volume
67(1), pages 203–219, 2022.

[51] K.S. Tsakalis and P.A. Ioannou. Adaptive control of linear time-varying plants: A
new model reference controller structure. In IEEE Transactions on Automatic Control,
volume 34(10), pages 1038–1046, 1989.

[52] L. Vu and D. Liberzon. Supervisory control of uncertain linear time-varying systems.
In IEEE Transactions on Automatic Control, volume 56(1), pages 27–42, 2011.

[53] C. Wen. A robust adaptive controller with minimal modifications for discrete time-
varying systems. In IEEE Transactions on Automatic Control, volume 39(5), pages
987–991, 1994.

[54] C. Wen and D.J. Hill. Global boundedness of discrete-time adaptive control using
parameter projection. In Automatica, volume 28(2), pages 1143–1158, 1992.

[55] B.E. Ydstie. Stability of discrete-time mrac revisited. In Systems and Control Letters,
volume 13, pages 429–43, 1989.

[56] B.E. Ydstie. Transient performance and robustness of direct adaptive control. In
IEEE Transactions on Automatic Control, volume 37(8), pages 1091–1105, 1992.

97

https://arxiv.org/abs/1910.02112

[57] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1996.

[58] K. J. Åström and B. Wittenmark. Adaptive Control. Dover Publications, New York,
second edition, 2013.

98

APPENDICES

99

Appendix A

Proof of Lemma 3.1

With δ > 0 a positive constant and X a list of vectors x1, x2, . . . , xm ∈ Rn whose first
element satisfies ∥x1∥ ≥ δ, the method for constructing the basis set is as follows. Begin
by defining the integer i1 := 1. Now let i = 1. Trivially, choosing α(1,1) = 0 satisfies

∥x1 − α(1,1)xi1∥ = 0 ≤ δ.

Now increment i, and consider the minimizer of

min
µ∈R

∥xi − µxi1∥2. (A.1)

This is a quadratic function, hence it is strictly convex, so a unique minimizer exists.
Assume that the minimum is no greater than δ2, then choose

α(i,1) = argmin
µ∈R

∥xi − µxi1∥2,

thus,
∥xi − α(i,1)xi1∥ ≤ δ.

Continue iterating until i = m or the minimum of (A.1) is larger than δ2. If the former,
then n̄ = 1 and the construction is complete. If the latter, then let i2 = i, α(i2,1) = 0,
α(i2,2) = 1, hence

∥xi2 − α(i2,1)xi1 − α(i2,2)xi2∥ = 0 ≤ δ.

Continue incrementing i, and consider the minimizer of

min
µ∈R2

∥∥xi − [xi1 xi2
]
µ
∥∥2. (A.2)

100

So long as the minimum is no more than δ2, let[
α(i,1)

α(i,2)

]
= argmin

µ∈R2

∥∥xi − [xi1 xi2
]
µ
∥∥2,

thus, ∥∥∥∥∥xi −
2∑

j=1

α(i,j)xij

∥∥∥∥∥ ≤ δ.

Continue iterating until i = m or the minimum of (A.2) is larger than δ2. If the former,
then n̄ = 2 and construction is complete. If the latter, then let i3 = i, α(i3,1) = 0, α(i3,2) = 0
and α(i3,3) = 1... continue until termination.

In doing so, for each i ∈ {1, . . . ,m}, we find a set of coefficients α(i,j) such that xi may
be approximated by a subset of the basis vectors. Now by extending the domain of the
coefficients by defining

α(i,j) = 0, i = 1, . . . , ij − 1, j = 2, . . . , n̄,

then we can write ∥∥∥∥∥xi −
n̄∑

j=1

α(i,j)xij

∥∥∥∥∥ ≤ δ. (A.3)

Finally, to prove the coefficients are bounded, first let

y(i,k) :=
k∑

j=1

α(i,j)xij , i = 1, . . .m, k = 1, . . . , n̄. (A.4)

We claim that

|α(i,k)| ≤
∥y(i,k)∥
δ

, i = 1, . . .m, k = 1, . . . , n̄. (A.5)

This clearly holds for k = 1 because then ∥y(i,1)∥ = |α(i,1)|∥xi1∥, and we have asserted that
∥xi1∥ ≥ δ. Clearly (A.5) also holds if α(i,k) = 0. Suppose α(i,k) ̸= 0; then

y(i,k) = α(i,k)

(
xik +

k−1∑
j=1

α(i,j)

α(i,k)

xij

)
.

The construction of basis vectors ensures that the bracketed term has magnitude greater
than δ, thus (A.5) is true. Next, write

∥y(i,n̄)∥ ≤ ∥y(i,n̄) − xi∥+ ∥xi∥.

101

From (A.3), ∥y(i,n̄) − xi∥ ≤ δ, hence

∥y(i,n̄)∥
δ

≤ 1 +
∥X∥
δ
. (A.6)

From (A.4) we have y(i,k−1) = y(i,k) − α(i,k)xik , k = 2, . . . , n̄, thus

∥y(i,k−1)∥
δ

≤
∥y(i,k)∥
δ

+
|α(i,k)|∥xik∥

δ

≤
∥y(i,k)∥
δ

+
∥y(i,k)∥∥xik∥

δ2
(using (A.5))

≤
(
1 +

∥X∥
δ

)
∥y(i,k)∥
δ

, k = 2, . . . , n̄.

Iterating this and using (A.5) and (A.6) yields the desired result:

|α(i,k)| ≤
∥y(i,k)∥
δ

≤
(
1 +

∥X∥
δ

)n̄+1−k

, k = 1, . . . , n̄. □

102

Appendix B

Proof of Claim 4.1

In proving this claim, we use the following lemma.

Lemma B.1 For any t ≥ 1, λ ∈ R, and signals x : {1, . . . , t} × {1, . . . , t} → R and
y : {1, . . . , t} → R that satisfy

t∑
i=1

λt−i|x(t, i)|2 ≤
t∑

i=1

λt−i|y(i)|2 (B.1)

and
j∑

i=1

λj−i|x(j, i)|2 ≤
j∑

i=1

λj−i|x(j + 1, i)|2, j = 1, . . . , t− 1, (B.2)

the following bound holds:

t∑
i=1

λt−i|x(i, i)|2 ≤
t∑

i=1

λt−i|y(i)|2.

Proof:

103

t∑
j=1

λt−j|x(j, j)|2 =
t∑

j=1

λt−j

(
j∑

i=1

λj−i|x(j, i)|2 −
j−1∑
i=1

λj−i|x(j, i)|2
)

︸ ︷︷ ︸
|x(j,j)|2

=
t∑

i=1

λt−i|x(t, i)|2 +
t−1∑
j=1

λt−j

j∑
i=1

λj−i|x(j, i)|2 −
t∑

j=2

λt−j

j−1∑
i=1

λj−i|x(j, i)|2

=
t∑

i=1

λt−i|x(t, i)|2 +
t−1∑
j=1

λt−j

j∑
i=1

λj−i|x(j, i)|2

−
t−1∑
j=1

λt−j

j∑
i=1

λj−i|x(j + 1, i)|2

≤
t∑

i=1

λt−i|x(t, i)|2 +
t−1∑
j=1

λt−j

j∑
i=1

λj−i|x(j, i)|2

−
t−1∑
j=1

λt−j

j∑
i=1

λj−i|x(j, i)|2 (using (B.2))

≤
t∑

i=1

λt−i|y(i)|2 (using (B.1)) □

Proof of Claim 4.1: Apply Lemma B.1 with

t⇐ t− t0, x(j, i) ⇐ eθ̂(j+t0)
(i+ t0), y(i) ⇐ w(i+ t0 − 1). □

104

Appendix C

Matlab Code

Here we provide Matlab code for simulating a first order system using the techniques
demonstrated in this thesis. It may also be found online at [25]. The first section is the
main loop which runs the simulation, the following sections are additional classes used by
the main loop, including both the Supervisory Estimator and the Projection Algorithm
estimator, as well as both types of control laws used in this thesis.

C.1 Main Loop

n = 250; % how long to run simulation

paramRange = [1, 4; 1, 4]; % the set S

Na = 1; %1st order

Nb = 1;

% Constant Parameters

% a = [1;1];

% b = [2;1];

% Time -Varying Parameters

a = 2.5 + 1.5* cos (0.01* pi*(0:n-1));

b = 2.5 + 1.5* sin (0.003* pi*(0:n-1));

% Disturbance

105

w = 0.1* randn(n,1);

% initial condition for plant; rightmost column is t_0, others

are previous history

ic = zeros (2,2);

plant = linSystem(ic, a, b);

%% Estimator Selection

initialGuess = mean(paramRange , 2); % initial guess for

theta_hat

estimator = SupervisoryEstimator(paramRange , initialGuess ,

0.6, 1, false);

% Last 3 params are lambda , dwell time , data filter on/off

% estimator = ProjectionEstimator(paramRange , initialGuess);

%% Certainty Equivalence Controller Selection

controller = dStepAhead(size(a,1), size(b,1));

% controller = integralPolePlacement(size(a,1), size(b,1));

%% Reference

r = sin (0.2*pi*(0:n+10));

%% Main Loop

for t = 1:n-1

plant.update(w(t)); % find next y using phi and w

theta_hat = estimator.estimate(plant);

u = controller.control(theta_hat , plant , r, t+1);

plant.next_input(u);

end

C.2 Plant Model

classdef linSystem <handle

properties

phi

transferfunction

106

a

b

Na

Nb

t

t_offset

end

methods

function obj = linSystem(ic, a, b)

obj.phi = ic;

obj.a = a;

obj.b = b;

obj.Na = size(a,1);

obj.Nb = size(b,1);

obj.transferfunction = tf(b(:, 1)’, [1 -a(:, 1) ’], 1); %

True plant tf

obj.t = 1;

obj.t_offset = size(ic, 2) - 1;

end

function update(obj , w)

if (size(obj.a,2) == 1) % if constant parameters

theta = [obj.a; obj.b];

else % if time -varying parameters

theta = [obj.a(:,obj.t); obj.b(:,obj.t)];

obj.transferfunction = tf(obj.b(:, obj.t)’, [1 -obj.a

(:, obj.t) ’], 1); % True plant tf

end

A = diag(ones(obj.Na+obj.Nb -1,1), -1);

A(obj.Na+1, :) = NaN;

A(1,:) = theta ’;

B = [1; zeros(obj.Na + obj.Nb - 1, 1)];

obj.phi(:, end+1) = A*obj.phi(:,end) + B*w;

obj.t = obj.t+1;

end

function next_input(obj , u)

obj.phi(obj.Na+1, end) = u;

107

end

function print_phi(obj)

fprintf (" t, y, u\n");

fprintf("-----------------------\n");

fprintf ("%3d, %8.4f, %8.4f \n", [(1-obj.t_offset: size(

obj.phi, 2) - obj.t_offset); obj.phi(1, :); obj.phi(

obj.Na+1, :)]);

end

end

end

C.3 Supervisory Estimator

classdef SupervisoryEstimator < handle

properties

theta_hat

paramRange

W

lambda

dwellTimer

dwellTime

filter

end

methods

function obj = SupervisoryEstimator(p_range , initialGuess ,

lambda , dwellTime , filter)

obj.paramRange = p_range;

obj.theta_hat = initialGuess;

obj.W = zeros(length(initialGuess)+1, length(

initialGuess)+1);

obj.lambda = lambda;

obj.dwellTime = dwellTime;

obj.dwellTimer = dwellTime -1;

obj.filter = filter;

end

108

function t_hat = estimate(obj , plant)

if obj.filter % disturbance annihilation filter

y = plant.phi(1, end) - plant.phi(1, end -1);

phi = plant.phi(:, end -1) - plant.phi(:, end -2);

else

y = plant.phi(1, end);

phi = plant.phi(:, end -1);

end

obj.W(:,:,end +1) = obj.lambda*obj.W(:,:,end) + [phi;y]*[

phi ’ y];

w = obj.W(:,:,end);

if (obj.dwellTimer > 0) % if dwelling

obj.dwellTimer = obj.dwellTimer - 1;

obj.theta_hat(:, end +1) = obj.theta_hat (:, end);

else % if not dwelling

H = 2*[w(1,1) w(2,1); w(2,1) w(2,2)];

f = [-2*w(3,1); -2*w(3,2)];

% offset = w(3,3);

A = [-1 0; 1 0; 0 -1; 0 1];

b = [-obj.paramRange (1, 1); obj.paramRange (1, 2); -obj

.paramRange (2, 1); obj.paramRange (2, 2)];

% Optimize for positive HF

gain

options = optimoptions(’quadprog ’,’Display ’,’off’);

x = quadprog(H,f,A,b,[],[],[],[],[], options);

b = [-obj.paramRange (1, 1); obj.paramRange (1, 2); obj.

paramRange (2, 2); -obj.paramRange (2, 1)];

% Optimize for negative HF

gain

x2 = quadprog(H,f,A,b,[],[],[],[],[], options);

% Choose the best of the two

if (0.5*x2 ’*H*x2 + f’*x2 < 0.5*x’*H*x + f’*x)

109

x = x2;

end

if (0.5*x’*H*x + f’*x < 0.5* obj.theta_hat(:, end)’*H*

obj.theta_hat(:, end) + f’*obj.theta_hat (:, end))

obj.theta_hat(:, end +1) = x;

obj.dwellTimer = obj.dwellTime - 1; % Resume

dwelling

else

obj.theta_hat(:, end +1) = obj.theta_hat (:, end);

end

end

t_hat = obj.theta_hat(:, end);

end

end

end

C.4 Projection Algorithm Estimator

classdef ProjectionEstimator < handle

properties

theta_hat

paramRange

filter

end

methods

function obj = ProjectionEstimator(p_range , initialGuess ,

filter)

obj.paramRange = p_range;

obj.theta_hat = initialGuess;

obj.filter = filter;

end

function t_hat = estimate(obj , plant)

if obj.filter % disturbance annihilation filter

y = plant.phi(1, end) - plant.phi(1, end -1);

phi = plant.phi(:, end -1) - plant.phi(:, end -2);

110

else

y = plant.phi(1, end);

phi = plant.phi(:, end -1);

end

e = y - phi ’*obj.theta_hat(:, end); % prediction error

if (norm(phi)^2 == 0) % phi = 0, do nothing

obj.theta_hat(:, end +1) = obj.theta_hat (:, end);

else

obj.theta_hat(:, end +1) = obj.project(obj.theta_hat

(:, end) + phi/(norm(phi)^2)*e);

end

t_hat = obj.theta_hat(:, end);

end

function y = project(obj , theta)

y = max(min(theta , obj.paramRange (:,2)), obj.paramRange

(:,1));

end

end

end

C.5 d-Step-Ahead Control Law

classdef dStepAhead <handle

properties

Na

Nb

end

methods

function obj = dStepAhead(Na, Nb)

obj.Na = Na;

obj.Nb = Nb;

end

function u = control(obj , theta , plant , r, t)

A = diag(ones(obj.Na+obj.Nb -1,1), -1);

111

A(obj.Na+1, :) = NaN;

A(1,:) = theta ’;

phi = plant.phi(:,end);

d = 1;

while(theta(obj.Na+d) == 0)

d = d+1;

phi(obj.Na+1) = 0;

phi = A*phi;

end

u = r(t+d);

for i = 1 : obj.Na

u = u - theta(i)*phi(i);

end

for i = obj.Na+d+1 : obj.Na+obj.Nb

u = u - theta(i)*phi(i);

end

u = u/theta(obj.Na+d);

end

end

end

C.6 Pole Placement Control Law

classdef integralPolePlacement <handle

properties

Na

Nb

end

methods

function obj = integralPolePlacement(Na, Nb)

obj.Na = Na;

obj.Nb = Nb;

end

function u = control(obj , theta , plant , r, t)

112

varphi = zeros(obj.Na+obj.Nb+1, 1);

varphi(obj.Na+2:end) = plant.phi(obj.Na+1:end ,end -1) -

plant.phi(obj.Na+1:end ,end -2);

R = r(1)*ones(obj.Na+1, 1);

for i = 1:obj.Na+1

try

R(i) = r(t-i);

catch

end

end

varphi (1:obj.Na+1) = [plant.phi(1,end -1); plant.phi(1:

obj.Na ,end -2)] - R;

syms q ’real’;

A = 1-q.^(1: obj.Na)*theta (1:obj.Na);

B = q.^(1: obj.Nb)*theta(obj.Na+1: end);

l = sym(’l_’, [obj.Nb , 1], ’real’);

p = sym(’p_’, [obj.Na+1, 1], ’real’);

L = 1-q.^(1: obj.Nb)*l;

P = -q.^(1: obj.Na+1)*p;

charpoly = (1-q)*A*L + B*P;

S = solve(coeffs(charpoly , q) == [1 zeros(1, obj.Na+obj.

Nb+1)]);

result = [subs(p, S); subs(l, S)];

last_u = plant.phi(plant.Na+1,end -1);

delta_u = result ’* varphi;

u = last_u + delta_u;

end

end

end

113

	List of Figures
	Introduction
	Objective
	Notation

	A Discussion of Parameter Estimation Techniques
	The Projection Algorithm
	Ordinary Least-Squares
	Kalman Filter
	Weighted Least Squares
	Supervisory Control

	Supervisory Control Setup
	Plant Definition
	Estimator Definition
	Preliminary Technical Results

	d-Step-Ahead Adaptive Tracking
	Control Law
	State Space Representation
	Nominal Tracking
	Closed-loop Stability
	Robustness
	Simulation Results

	Pole Placement Step Tracking with Constant Disturbance Rejection
	Control Law
	State Space Representation
	Closed-loop Stability
	A Bound on the Tracking Error

	Robustness
	Simulation Results

	Conclusions and Future Work
	References
	APPENDICES
	Proof of Lemma 3.1
	Proof of Claim 4.1
	Matlab Code
	Main Loop
	Plant Model
	Supervisory Estimator
	Projection Algorithm Estimator
	d-Step-Ahead Control Law
	Pole Placement Control Law

