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Abstract

A powered machine that is wearable over all or part of the human body can be re-
ferred to as a powered exoskeleton. The role of powered exoskeletons is usually to provide
ergonomic structural support while using motor power to synchronize to and assist with
intended movements. One specific category of exoskeletons is the lower limb exoskeleton.

There is a variety of applications for lower limb exoskeletons, including assistance, reha-
bilitation, and augmentation. A challenge in developing any of these forms of exoskeletons
is the design of controllers which are able to perform well under a variety of scenarios,
such as change in speed while walking or stair climbing, as well as with a variety of users.
There are many different controllers that have been developed accordingly. One of these
approaches involves estimating joint torques and applying these directly as control torques.
This can be done in one of two ways: estimating the torques based on a few subjects and
applying these prescribed torques to everyone, or estimating and applying joint torques in
real-time. Many existing controllers which estimate and apply joint torques in real-time,
only do so with a portion of the joint torques. For instance, this can be done by computing
and applying joint torques which result from gravity only.

The challenge with the estimating and applying joint torques in real-time is developing
an accurate model to represent the dynamics of the system and accurately measuring all
required state signals. The signals which are most problematic for measurement is ground
contact force measurements. As forceplates are not useful for continuous overground mea-
surements and instrumented insoles can be unreliable, an alternative approach is required.
To fill this gap and generate a robust real-time joint torque estimator, a hybrid inverse
dynamic-neural network model is proposed. In addition, a data-driven solution is proposed
and comprises of an end-to-end neural network for direct joint torque estimation.

The hybrid model computes joint torques with the use of kinematic information only.
Eliminating the need for kinetic measurements allows ease with implementation in sce-
narios where forceplates are not available; this is done with a neural network for ground
contact force estimation. The hybrid model was validated with 11 subjects during tread-
mill walking, including several different gait patterns. In comparison to the end-to-end
direct torque estimator, the hybrid model has slightly worse performance at the knee and
hip joints during treadmill walking which includes speed changes, asymmetrical walking,
and start-stops. However, when testing these two approaches with a participant wearing
an exoskeleton, the hybrid model outperforms the end-to-end network. This validates the
versatility of the hybrid model to generalize to many different conditions and subjects.

The hybrid model was then implemented as a controller in a lower limb exoskeleton.
A second pre-defined direct torque controller was also developed. The pre-defined torques
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are recorded from the response of a feedback controller used on one participant. These
torques are then applied as the direct torque control as a function of walking speed and
gait phase. Both these controllers can be considered to be feedforward control approaches
as the applied torques are not explicitly encoded by feedback errors. These controllers
were tested individually and in combination for treadmill and overground walking with
nine participants. A combination of the two controllers, with more contributions from the
hybrid control, produces the overall best results in terms of spatiotemporal metrics. At a
joint-level, all the tested controllers have similar performance in terms of range of motion
and joint angle correlation to natural walking. The controller consisting of a combination
of both hybrid and direct torque control, with more weight on the hybrid model, was also
able to decrease the activation of four out of six muscles measured in the lower limbs,
which includes knee flexors and extensors, and ankle dorsi- and plantarflexors, on average
when compared to walking with the exoskeleton in passive mode. The decrease in muscle
activity indicates that this control approach is able to provide assistance as well as improve
the spatiotemporal performance.

As the joint-level performance was not meaningfully improved by this controller con-
sisting of a combination of both approaches, this control alone would be insufficient for
users who require assistive as well as corrective torques from the exoskeleton. For example,
those who have suffered from an incomplete spinal cord injury or post-stroke hemiparesis
do not have the ability to walk with a natural gait, therefore can benefit from corrections
from the exoskeleton to achieve a natural gait.

The addition of corrective torques in the form of a position feedback control (FB) to
the previously defined feedforward control (FF) is designed to provide both assistive and
corrective torques to the user. In a pilot study with two participants for both treadmill and
overground walking, the feedforward control alone has the best spatiotemporal performance
while the feedback alone has the best joint-level performance. A combination of the two
controllers will produce a balance of these two characteristics. All three of these controllers
(FF, FB, FF-FB) were able to produce some reduction in muscle activation of the knee
extensor and ankle dorsiflexor muscles, compared to passive exoskeleton walking. This
indicates that all the controllers provide some level of assistance. However further testing
is required to validate this hypothesis as well as optimize the method for combining these
two control approaches.

This thesis demonstrated that the application of biological joint torques as an exoskele-
ton controller can be further improved with the addition of other control strategies. It is
possible that combining biological torques with other control approaches, including those
not explored in this thesis, will be more suitable for those suffering from physical impair-
ments such as hemiparesis or severe muscle weakness.
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Chapter 1

Introduction

Exoskeletons are intended to help the user perform a specified task. In the case of lower
limb exoskeletons, these tasks include but are not limited to walking, stair climbing, and sit-
to-stand movements. Those suffering from neuromuscular disorders can use exoskeletons
for rehabilitation or assistive purposes [77, 10]. Exoskeletons can also be used by able-
bodied subjects, in which the purpose of the exoskeleton is augmenting the user’s abilities
[21].

In assistive exoskeletons, the key to improving performance is in the control methods
[12, 103]. Gait assistance exoskeletons can be classified into two categories: those intended
for full mobilization and for partial assistance. Full mobilization exoskeletons are intended
for users who have no motor control in their lower limbs, in complete spinal cord injuries
for instance, thus there is no need for these exoskeletons to collaborate with the user.
Meanwhile partial assistance devices are intended for users with less severe neuromuscular
impairments, such as incomplete spinal cord injuries (iSCI) or hemiparesis resulting from
a stroke.

The main challenge with partial assistive control methods arises when coordinating the
assistance with the user’s intentions [70, 77]. The controller is intended to aid more than
it is hindering the user; there should be a synergy in the user-applied and exoskeleton-
applied joint torques. An ideal controller would generate a torque profile that aligns with
the intended movements of the user in terms of magnitude, sign, and timing. There are
many different approaches to producing these motor commands.

Five common classifications of controllers includes position control, torque control,
impedance control, physiological approaches, and direct joint torque estimation [12]. These
approaches can be limited by signal quality, providing assistance during only certain phases
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of the gait cycle, requirements for subject-specific tuning or requirements for detailed
dynamic identification.

One shortcoming of many controllers is the lack of design for each user’s needs. As all
individuals have a unique gait in terms of both kinematics and kinetics, an ideal controller
would adapt to each user. Dynamic modelling is able to highlight these differences in gait.

1.1 Objectives and outline

The main goal of this research is to develop an online joint torque estimator intended for
use as a lower limb exoskeleton controller. The performance of this controller is evaluated
alone as well as in combination with other common control approaches such as direct torque
control and position feedback control. The main objectives of this thesis are the following:

1. Develop and validate a real-time accurate joint torque estimator for treadmill walking

2. Implement and test a feedforward exoskeleton controller based on the obtained torque
estimator in 1

3. Compare the controller from 2 to a pre-defined feedforward direct torque control
in experimental scenarios in order to identify an ”ideal” feedforward torque control
approach

4. Utilize the identified feedforward torque control identified in 3, in combination with
position feedback control, to investigate the ability of the controller to correct and
assist in walking

In Chapter 2, an overview of gait analysis and dynamic modelling of lower limbs is
provided. Current strategies and limitations of joint torque estimation are discussed. A
review of current applications of direct joint torque estimation implemented for lower limb
exoskeleton control is also presented in Chapter 2. The developed hybrid model (inverse-
dynamic model augmented with a neural network) as well as an end-to-end data-driven
model for joint torque estimation are proposed and validated in Chapter 3. This study in-
volves treadmill walking with various conditions (ie. speed changes, varied strides lengths,
asymmetrical walking, start-stopping), which was used for the development and validation
of these models. As the results from this study demonstrate that the hybrid model is bet-
ter able to generalize to conditions differing from able-bodied walking, exoskeleton walking
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for instance, the hybrid model was used in a controller for the lower limb exoskeleton in
Chapter 4. In Chapter 4, first a series of experiments were conducted to evaluate the per-
formance of the hybrid model (as a feedforward controller) alone and in combination with
direct torque control (computed from desired trajectories). This experiment identified an
ideal feedforward torque control strategy for the exoskeleton for assistance. Finally, the
resulting ”ideal” control from these experiments was then augmented with a position feed-
back control scheme to ensure both corrective and assistive torques from the exoskeleton
in Chapter 5. Some concluding remarks are presented in Chapter 6. An overview of the
main contributions are shown in Figure 1.1.
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Figure 1.1: Overview of the main contributions included in (A) Chapter 3, (B) Chapter 4,
and (C) Chapter 5.
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1.2 Contributions

The main contributions of this research are summarized below:

1. (Chapter 3) Propose and validate an accurate ground reaction force estimator based
on kinematic measurement

2. (Chapter 3) Propose and validate a hybrid inverse dynamics approach to joint
torque estimation in absence of ground reaction force measurements

3. (Chapter 3) Propose and validate an end-to-end neural network for joint torque
estimation

4. (Chapter 4) Evaluate the performance of an online joint torque estimator imple-
mented as a feedforward control in a lower limb exoskeleton, in standalone mode and
in combination with a pre-defined feedforward torque control in able-bodied users

5. (Chapter 5) Evaluate the performance of the ”ideal” feedforward torque control
determined previously in combination with a position feedback controller in able-
bodied users
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Chapter 2

Background

2.1 Human movement and gait analysis

Human movement studies is a research discipline involving the relationships between human
movement and its effects on the human body. One main area of this research involves the
study of human gait and locomotion. Gait analysis involves the study of locomotion in
terms of body movements, body mechanics, and muscle activity [45]. This analysis has
applications in biomechanics, rehabilitation, and patient assessment. For instance, gait
analysis can be used as a tool for diagnosis of various neurological conditions, such as
multiple sclerosis or Parkinson’s disease [40], to quantify progression through rehabilitation
following major surgeries [72], or in sports performance [57].

Common analysis modalities rely on physiological, kinematic, and kinetic measure-
ments. Physiological measurements can include electromyography (EMG), electrocardio-
gram, or electroencephalogram signals which measure the activity of muscles, the heart,
and the brain, respectively. These signals can provide a measurement of work load, or
effort level as well as give insight into intended movements. EMG in particular is used in
the analysis and classification of pathological gait [107].

Kinematic measurements can be resolved with motion capture systems, which are ei-
ther lab-based or ambulatory systems. Lab-based systems involve fixed cameras [19, 17]
while ambulatory systems involve wearable sensors. Wearable sensors used in gait analysis
include inertial measurement units (IMU) [58, 3], barometric sensors [71], infrared sensors
[5], or time-of flight sensors [13]. In some cases, sensors can be implanted in a smart pros-
thetic [8]. Kinematic analysis approaches are able to give a measure of joint or segment
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positions, velocities, and accelerations which provides information about how the body is
moving and highlight any abnormalities. There are many different metrics that can be used
in gait analysis. Kinematic metrics can include joint ROM, segment or joint velocity, or
joint angles as a function of gait phase [20]. Spatiotemporal metrics involve a combination
of both spatial and temporal measurements to determine metrics such as cadence, step
length, stance time, step width, and toe clearance [15]. Such metrics give clinicians the
ability to quantify a patient’s stability [30, 42], or fall risk [59].

External kinetic information, such as ground reaction forces (GRF) can be measured
with force plates or force sensors, meanwhile internal kinetic information, such as joint
moments or forces, cannot be directly measured without the use of implanted sensors.
Implantable sensors are able to measure internal force and moments [46, 29, 6, 34], however
require invasive procedures. For this reason, internal kinetics are commonly computed with
various analytical techniques, including dynamic modelling [101].

Dynamic modeling of human movement has applications in biomechanics, for instance,
in the analysis of human movement [25, 54], outcome evaluation of total joint arthroplasty
and prosthetic limbs [102, 36], injury biomechanics [94], developing predictive simulations of
movement, rehabilitation engineering, human motor control studies, and robotics [97, 108].

2.1.1 Dynamic modelling

There are several approaches for estimating kinetic information that cannot be directly
measured, such as joint torques and forces. A few of the main approaches include sEMG,
ID, and machine learning techniques.

Using electrodes, muscle activity can be measured with EMGs then mapped to muscle
forces and in turn to joint torques. This mapping can be expressed via neural networks
[66, 95] or forward dynamic models [16, 11] such as the Hill model [48]. As this approach
relies on the quality of measured EMG signals, it is susceptible to many external factors.
Signal quality can decrease as a result of improper sensor placement[18], fatigue [105], or
skin-electrode conductivity changes [1].

In contrast, an ID-based approach measures external forces and body kinematics in
order to compute joint torques. Having the body simplified to a kinematic chain allows
the joint torques to be determined by ensuring all kinetic relationships within the model
are satisfied [2]. There are four contributing factors that must be considered in the dynamic
relationship: gravity, inertia, Coriolis, and external forces (see Figure 2.1). The general
form of this dynamic relationship is

M(q)q̈ + C(q̇, x)q̇ +G(q) = τjoint + JTF + τu (2.1)
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where M , C, and G are the inertia matrix, Coriolis matrix, and gravity vector respec-
tively. q is the vector of states describing the system, typically including joint angles and
sometimes global position measurements of one selected segment. τjoint is the vector of
joint torques acting on each segment, τu includes all unmodeled dynamics, and JTF is the
contribution of the external forces on the joint torques. F is a vector of external forces and
J the Jacobian matrix which contains information to relate the joint angles and torques to
the location and magnitudes of these forces. As the Jacobian matrix relates the position
of the joints to the location of the external force, measurements of the location of exter-
nal forces is required. This can be done with the ZMP. During walking, the ZMP is the
location in which the GRF at the contact of the foot with the ground does not produce
any moment in the horizontal direction. The unmodeled dynamics, elasticity for instance,
is assumed to be negligible.

The inertia, Coriolis, and gravity matrices and vectors depend on both the state of the
model as well as the BSIP. The BSIP are a set of parameters which describe the size, mass,
and mass distribution of each segment.

Joint reaction 
force

Rz

Ry

ay

az

Gravity

Inertia + Coriolis
q, ሶ𝑞, ሷ𝑞

Foot center 
of mass

Figure 2.1: Schematic of contributions of Inertia, Coriolis and Gravity on the foot segment
during running [44].

Thus, the reliability of this model is linked with the accuracy of the kinetic and kine-
matic measurements as well as the ability of the model to represent the body. Modelling
requires many assumptions and simplifications which allow computations to be possible,
however can affect the accuracy of the model’s representation. Kinematic information such
as joint angles, are typically measured with motion capture systems [64] or wearable inertial
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measurement units (IMUs)[89, 56]. Ground contact forces and their respective locations
are typically measured with forceplates[64] or instrumented insoles[35].

In the case of overground walking studies, the use of forceplates is undesirable as they
are costly and not easily portable. Instrumented insoles, which are portable and less costly,
can be subject to measurement inaccuracies, calibration inconsistencies, and challenges
with real-time processing [27]. Due to these challenges with forceplates and instrumented
insoles, approaches to estimate joint torques without the need of forceplates or instru-
mented insoles have been developed. These methods are generally either model-based or
ANN based.

In [88], a dynamic model-based approach has been used to estimate the GRF in com-
bination with the smooth transition assumption to eliminate the indeterminacy problem
during double support. The indeterminacy occurs as during double support the force
and moment equilibrium equations are insufficient to determine the forces in the system.
The transition function is, however, determined through trial and error with experimental
data. Therefore, it may not generalize well to other walking conditions or subjects. In
addition, this transition has temporal dependencies restricting the real-time application of
this method. With a focus on upper limb torque estimation, [26] demonstrated a whole
body ID approach also without the use of force measurement. A similar approach as with
[88] for GRF estimation was taken. The double support indeterminacy was, however, re-
solved with optimizing the force distribution between the left and right legs by minimizing
the sum of squared net joint moment (i.e., minimizing the energetic cost). Due to the tem-
poral dependencies and computationally expensive optimizations, none of these methods
are suited for real-time applications.

There have been many uses of ANNs in the prediction of gait kinetics. Some approaches
predict GRFs [81, 76] based on kinematic data. Meanwhile, other methods predict joint
torques directly [31, 65, 76] by using various combinations of kinematic and kinetic data.
These approaches are typically trained and tested on normal, asymmetrical, or varied stride
length walking at a constant speed which restricts generalizability to different walking
conditions such as varying speed.

To address the shortcomings of the existing techniques, i.e. not being able to provide
a real-time estimation of joint torque and/or generalize to different walking conditions,
Chapter 3 presents a real-time ID joint torque estimator which requires only kinematic
measurements.
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2.2 Lower limb exoskeletons

Lower limb exoskeletons can be classified into three main categories based on their intended
purpose: assistance, rehabilitation, and augmentation. Assistive exoskeletons are intended
for those with neurological or neuromuscular impairments that cause limited mobility or
strength. These exoskeletons are designed in order to supplement the user’s efforts in
order to accomplish the desired movement. A rehabilitation exoskeleton is used for aiding
a patient in regaining strength and mobility following a neuromuscular injury. A healthy
subject using an exoskeleton to further enhance their abilities would be considered an
augmentation exoskeleton. Figure 2.2 shows images of different lower limb exoskeletons.

A B C

Figure 2.2: Image of exoskeletons used for (A) rehabilitation, (B) assistance, and (C)
augmentation.

Improvements in the control methods will greatly improve the overall performance of as-
sistive exoskeletons [12]. Specifically in partial assistive control, where the user contributes
to some of the overall movements, challenges arise when coordinating the assistance with
the user’s contributions. Many of the existing approaches to resolve the challenges asso-
ciated with partial assistive control can be classified into five categories: position control,
torque control, impedance control, physiological approaches, and direct joint torque esti-
mation.

A position control strategy utilizes a desired trajectory for the exoskeleton to follow. In
many cases, the desired trajectories are constructed to approximate a healthy gait pattern.
These gait patterns can be created as a function of gait progression [106, 22, 4], which
allows the user some temporal freedom; however, these controllers do not allow for any
spatial freedom. As gait naturally has some variability, imposing a strict gait pattern
does not always feel comfortable to the user. However, some research has shown that it is
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possible to adapt desired position trajectories based on user intention [99, 109].

A torque control consists of applying a predefined torque profile. Similar to the position
control, torque control can also be a function of gait phase to allow for better synchro-
nization with the user. The torque profiles can change over time, be optimized online
[112] or offline [62]. The success of this controller relies heavily on an accurate gait phase
estimation as well as a well tuned torque profile. Other control approaches are reliant on
accurate detection of gait events [28].

Impedance control can be similar to a position control strategy however, in impedance
control, torques will only be applied when the user deviates significantly from the intended
movements. This approach is commonly applied in rehabilitation as it induces active
participation from the user which in turn promotes neuroplasticity and recovery of motor
control. There are several approaches to implementing an impedance control which can be
through the use of stiffness modulation [51], a force field [70], or virtual energy regulation
[79]. However, these approaches have more complex design and their suitability for different
users and levels of injury has not been shown yet.

A physiological approach can also be taken in which EMG signals are converted into mo-
tor commands [33]. Many different approaches have evolved within this category, however,
they are all subject to the same challenges. EMG signals are sensitive to skin conductance,
fatigue, and sensor placement, which in turn can deteriorate the quality of the computed
motor commands. In addition, users with certain neuromuscular impairments can have a
decreased ability to contract their muscles which results in a high signal-to-noise ratio that
is problematic for these types of controllers.

Direct joint torque estimation involves estimating, and applying to the exoskeleton,
the required joint torques to achieve a certain movement. Some approaches rely on an ID
model [9] while others apply a simplified model, such as considering only some components
of the body dynamics [52], a spring-loaded inverted pendulum (SLIP) model [114] or a
2-degree of freedom (DoF) compass gait model [41]. These models can be implemented
without timing problems as they do not rely on gait phase or time. However, the challenge
to successfully implement these models is determining an accurate representation of the
system in terms of kinematics and dynamics.

It can be said that there are two domains in which the exoskeleton can be controlled:
position and torque domains. In general, with a position control, the movement of the
exoskeleton is controlled such that it approaches a desired set of kinematic values which
can include position, velocity, or acceleration of any point on the exoskeleton. Position
and impedance control are both derived in the position domain. Meanwhile in the torque
domain, the motions of the exoskeleton are not being directly controlled. The controller
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instead computes torques directly which in turn result in the movement of the exoskeleton.
The benefit to not imposing restrictions on the movements is that it gives the controllers
the potential to be better suited for a variety of users without tuning.

As all individuals have their own unique walking pattern, this suggests that reference
trajectories for position domain controllers should also be unique to the individual. How-
ever, a controller based on joint torque estimation as well as direct joint torque control does
not impose any form of desired position trajectories, these controllers can accommodate
for unique walking patterns without modifications to the controllers.

2.2.1 Control based on direct joint torque estimation

There have been many different dynamics-based approaches to estimating joint torques as
a form of exoskeleton control. Some strategies apply only a component of the joint torques
while others use simplified or detailed models of the human lower body to estimate and
apply all components of joint torques.

In quasi-static movements, the gravitational effects dominate the dynamics which leads
to some approaches be developed such that all other dynamics are ignored. For instance,
a gravity compensation control strategy is implemented in the knee [39, 111] as well as in
the knee and hip [53] joints of an exoskeleton during squatting. The control approach was
able to reduce the participant’s energy expenditure during periodic squatting. Similarly,
in [113] and [52], gravity compensation, in combination with other control approaches, is
applied in the stance leg during stair ascent and walking, respectively.

Although in these studies, gravity compensation is shown to assist, this control approach
is not ideal for more dynamic movements such as walking as inertia and Coriolis will have
a greater effect and if compensated for can have a greater assistive potential.

A joint torque estimation approach in [92] considers both the gravitational effects as
well as the effects of GRFs on the computed joint torques. In this approach, the force
mapping and gravity terms are considered. In including the force mapping, any external
loads being carried by the user are considered in the torque computations. Similarly in [78],
a gravity compensator with GRF information is implemented in walking. As with gravity
compensators alone, this approach is intended for quasi-static movements. This approach
is also subject to challenges with GRF measurement if implemented for overground walking
conditions.

In other approaches, simplified models are implemented. For instance, in [112], a
spring-loaded inverted pendulum model (SLIP) model is implemented in order to estimate
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joint torques in order to be applied as assistive torques to a lower limb exoskeleton. This
approach was only implemented during stance phase, leaving swing phase unassisted. A
compass-gait model is implemented in [41] in which the system is simplified to 2 DoFs and
is controlled across a periodic limit cycle.

In [9], the whole dynamics as shown in equation 2.1, including gravity, inertia, and
Coriolis, as well as measured ground contact forces, are considered in estimating the joint
torques. The gait cycle is separated into four sections, each having separate dynamical
equations describing the joint torques. As the joint torque estimation switches between four
models, there are discontinuities in the estimation, which renders this approach undesirable
for implementation as an exoskeleton controller. A similar approach which considers all
components in the Lagrangian equation (equation 2.1) is taken in [63]. In this case, the
foot contact forces and COP are measured using instrumented insoles then considered in
the torque computations. The use of instrumented insoles can be challenging in terms of
accuracy and real time processing.

2.3 Concluding remarks

There is a need for an accurate and real-time approach to joint torque estimation that can
be implemented in any setting, including those without force measurements. Having an
accurate method of joint torque estimation which requires only kinematic measurements
will facilitate biomechanical analysis in settings where force measurement is challenging
such as continuous overground walking. In order to address this, in Chapter 3, a combina-
tion of a model-based and data-driven model are developed to compute joint torques using
kinematic data alone.

This joint torque estimation model will allow for applications in exoskeleton control.
This control approach, as explored in Chapter 4, will be time-independent and allow the
user to have full control of their joint trajectories, without being forced to follow a pre-
defined path. Control of joints is a result of the torques being essentially amplifications
of the user’s movements. The combination of an accurate joint torque estimation, direct
joint torque control, and a position feedback controller has the potential to provide both
corrective and assistive torques that are synchronized with the user’s intentions. This is
explored in Chapter 5.
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Chapter 3

Accurate Real-Time Joint Torque
Estimation for Dynamic Prediction
of Human Locomotion

This section describes a proposed hybrid torque estimator developed by integrating an
inverse dynamic model with an artificial neural network. This section also contains a
comparative data-driven end-to-end torque estimator as well as experimental procedure
and validation. The content of this chapter is under revision in the IEEE Transactions of
Biomedical Engineering with the same title and authorship of H. Dinovitzer, M. Shushtari
and A. Arami.

3.1 Methods

3.1.1 Experimental setup

Eleven participants (age 27±4.1 years, 6 female, mass: 69.9±14.0 kg, height: 1.74±0.072
m) were included in the experiment. Data collection protocols and procedures were ap-
proved by the Clinical Research Ethics Committee at the University of Waterloo (ORE#41794),
and conformed with the Declaration of Helsinki.

The experimental setup consists of a split-belt instrumented treadmill (Bertec, US)
with separate force plates under each foot/belt. The force plates measure ground reaction
forces and torques as well as ZMP at a sampling frequency of 1000 Hz. An 8-Vero camera
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optoelectronic motion capture system (Vicon Motion Systems, UK) was used to collect
kinematic data at a sampling frequency of 100 Hz. Sixteen markers were placed on each
participant according to [32, 60]. Fig. 3.1B shows the marker placement.

A lower limb exoskeleton (Indego, Parker Hannifin, US), shown in Fig. 3.1C, was used
for one additional trial on one participant. This exoskeleton has 4 active DoF with actuators
at the knee and hip joints while having a rigid ankle joint. In addition, the exoskeleton
has a rigid foot plate which has been placed under the shoe insole.

3.1.2 Experimental procedure

Anatomical measurements of the participants were taken according to the relationships
developed by Pavol et. al in order to determine individualized measurements of body
segment inertial parameters (BSIP) [82]. These relationships are applicable to average
able-bodied adults, which is the population used for this experiment. In order to test the
robustness of the proposed torque estimator at different walking conditions, an experiment
was designed with five consecutive walking conditions, as shown in Fig. 3.2 [98]. The first
condition is constant speed walking at 0.8 m/s, with normal strides, followed by short
strides, long strides, and ends with normal strides again, for 45 seconds each. The next
condition consists of constant acceleration where the treadmill speed starts at 0.1 m/s,
reaches 1.9 m/s, followed by constant deceleration (the treadmill speed returns to 0.1
m/s). The acceleration for this condition is ±0.02 m/s2. The third condition contains
sharp speed jumps between 0.4, 0.8 and 1.2 m/s. The acceleration during the speed jumps
is 0.4 m/s2. The fourth condition involves asymmetrical walking, where the two belts have
different speeds. The final condition consists of several repetitions of starting and stopping
walking at a speed of 0.8 m/s, with an acceleration of 0.2 m/s2.

During the exoskeleton test on one participant, the exoskeleton was in zero torque
mode while the participant walked for two minutes at 0.85m/s on the treadmill. In order
to consider the dynamics of the exoskeleton, it was assumed that there is no relative motion
between the exoskeleton and the participant. With this, the BSIP were updated to consider
each segment’s added mass and inertia while the rest of the dynamic equations remain the
same. However, in dynamic modelling, has been shown to be mostly affected by total mass
and height of the system, rather than the mass distribution [114].
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Figure 3.1: (A) Schematic of a human model with coordinate system used for derivation of
dynamic equations, (B) motion capture marker placement and (C) lower limb exoskeleton
(Indego, Parker Hannifin, USA) used during experiments.

3.1.3 Hybrid torque estimator

The proposed hybrid torque estimator includes a model-based and a data-driven component
(see Fig. 3.3). The model-based component relies on a dynamic formulation to estimate
the joint torques based on the measured kinematics and estimated kinetic obtained from
the data-driven component.

Dynamic model extraction

The Newton-Euler dynamics of any system can be described using a general coordinate
system. The base link of the system is selected such that the dynamic equations are derived
relative to this link. In the case of modeling a human, the trunk segment can be selected
in order to simplify the torque equation derivations.

Several simplifications were made in modeling the human body. Only movements in
the sagittal plane were considered as these movements constitute the majority of motion
during forward walking [2]. It is also assumed that the segment lengths can accurately be
measured prior to experimentation and that all the joints act as pin joints. Finally, it was
assumed that the BSIP remain constant and can be estimated by [82].

The human body has been simplified into a 7-segment model, the trunk and upper
limbs were considered as one segment [38], with 9 DoF, see Fig. 3.1A. These DoFs include
ankle, knee, and hip flexion-extension movements for both legs as well as the trunk position
and orientation with respect to the global frame.
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Figure 3.2: Left and right treadmill belt speeds during the experiment with the walking
conditions denoted by shaded areas [98].

The general form of the equations describing this model dynamics are as follows [37],H11 H12 H13
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(3.1)

where

• p0 is a vector specifying the position of the base link in relation to the global coordi-
nate system

• q0 is a vector containing the angular orientation of the base link

• q is a vector of six joint angles

• τ is a vector of six joint torques

• FR and FL are vectors of ground reaction forces acting on the right and left foot,
respectively

• NR and NL are vectors of ground reaction torques acting on the right and left foot,
respectively

• Hij is the inertial component of the base link (i = 1, 2) and for the body segments
(i = 3)
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• Bi is the Coriolis and gravitational forces for the base link (i = 1, 2) and for the body
segments (i = 3)

• JRi and JLi are Jacobian matrices which transform the reaction forces (i = 1) and
torques (i = 2) to the respective joint torque contributions

• xR and xL are the position of the right and left foot with respect to the origin of p0.

Dynamic model
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𝑞, ሶ𝑞, ሷ𝑞, 𝑝0, ሶ𝑝0, ሷ𝑝0
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Figure 3.3: Overview of torque estimation components where q is joint angle, p is position,
and τ is torque.

Using the last row of (3.1), joint torques obtain as
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 fy
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(3.2)

where

• H3 is an inertia matrix, formed from augmenting H31, H32, and H33

• KR and KL are the matrices that map the ground reaction forces and torques to the
base coordinates defined in Fig. 3.1A

• bi3 are the components of B3 in (3.1)

• fi and ni are the components of Fi and Ni in (3.1)

For clarity, (3.2) will be referred to as,

τ = τdynamics + τforce. (3.3)
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where τdynamics refers to the joint torques produced as a result of the inertial, Coriolis, and
gravitational forces, and τforce is the joint torques produced as a result of mapping all the
ground reaction forces and torques to each joint. In order to simplify the computations,
each leg in the model is considered separately as in [63]. This is possible as the dynamics
of one leg has little impact on the other leg during normal walking. In addition, having
each leg considered separately reduces the amount of error that can be propagated through
the kinematic chain.

Dynamic model verification

A simulation was used to verify the dynamic equations derived to model lower limb joint
torques. In OpenSim, a 9-DoF human musculoskeletal model (see Figure 3.4) was used in
the sagittal plane [24]. The modeled skeleton walked at a constant speed of 1.23 m/s for 30
seconds during the simulation [99]. The ground contact was modeled according to [50, 47].
The simulation is torque-controlled and computes the corresponding joint kinematics and
GRF. In order to validate the dynamic model and forward kinematic model (Fig. 3.3), the
joint kinematics, foot kinematics, GRF and ZMP were extracted from the simulation and
used to estimate the joint torques.

Figure 3.4: Skeletal model used in simulations constructed in OpenSim.
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Data-driven GRF and ZMP estimation

In order to eliminate the need for forceplate measurements of GRF and ZMP to compute
τforce, a FNN is trained (force-FNN) to estimate both these values allowing the joint torque
estimation method to be applied to situations in which a forceplate is not available.

The force-FNN contains two hidden layers, having 20 and 10 neurons, and was trained
using the Levenberg-Marquardt algorithm [110] to minimize a mean squared error (MSE)
loss function computed using both GRF and ZMP estimates. As the collected dataset
consists of multiple subjects, the GRF and ZMP values were normalized by total body
weight (BW) and foot length (Lfoot), respectively. This would give the network the ability
to account for differences due to anthropometric variability across subjects. The anterior-
posterior component of ZMP has been utilized as the position for force application to
the base link as this eliminates the need for considering the ground reaction moments in
the force mapping. As the ZMP is measured relative to the heel, the forward kinematics
equations have been derived starting from the stance foot, rather than the trunk. This
ultimately produces the same relationship between the collected data and the estimated
torques.

GRF and ZMP estimation validation

A leave-one-subject-out cross validation approach was used such that the test subject
was excluded and the network was trained on the remaining dataset. The validation
subject for early stopping was randomly selected from the remaining training subjects. This
process was repeated eleven times, such that the network was tested on each participant
once. GRF and ZMP of the proposed method were compared to those measured by the
forceplates in the instrumented treadmill. RMSE, and Pearson correlation coefficient (R)
were used to compare the results. A Wilcoxon signed rank test with Bonferroni correction
was used to compare the RMSE and R of force-FNN results obtained across different
walking conditions.

3.1.4 End-to-end joint torque mapping

As a comparative approach, a data-driven end-to-end joint torque mapping was developed.
This model consists of a FNN, with two hidden layers with 15 and 8 neurons, that was
trained to directly estimate the joint torques using kinematic data only. The same features
and training procedure as with the GRF and ZMP estimator (force-FNN) were used. The
torques were normalized by BW ∗ height for each subject.
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Figure 3.5: (A) Average estimated GRF and ZMP compared to forceplate measurements.
The overall performance for the estimator as well as the performance for each walking
condition, including varied stride lengths (VS), constant acceleration (CA), speed jumps
(SJ), asymmetrical walking (AW), and start-stops (SS), are reported in terms of (B) RMSE,
and (C) Pearson correlation coefficient. Each point represents the result of an individual
subject.

3.1.5 Torque estimation validation

The same leave-one-subject-out cross validation approach to the GRF and ZMP estimator
validation were implemented with the hybrid and end-to-end torque estimators. RMSE,
and Pearson correlation coefficient (R) were used to compare the torque estimators results
to the reference torque, which was the ID-computed torques based on Vicon computations.
The Vicon ID torques are computed based on motion capture and forceplate measurements,
and are considered as the gold standard for gait analysis. These metrics of RMSE and R
are compared at different tested walking conditions. However, as the Vicon computations
are based on a different approach, which includes different assumptions and simplifications
to the model, than that being proposed in this chapter, there are expected differences
between these models regardless of the accuracy of each component of the hybrid model.

The exoskeleton experimental data was not included in the development of either FNNs,
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and is used as an additional validation condition for the two torque estimators. The ID-
algorithm used in the Vicon program was designed for use with subjects with an average
body composition. However, during the exoskeleton experiment, the inertial properties
of the human-exoskeleton system no longer match those of an average body composition.
Hence, there will be some resulting estimation errors. Nonetheless, the results from the
Vicon-estimated torques are likely to be close to the true values as [87] demonstrated that
variations in inertial parameters do not have a significant effect on lower limb ID for torque
estimation. Therefore, the Vicon torques will still be treated as the reference torques.

In analyzing the overall performance of the hybrid and end-to-end joint torque esti-
mators (walking without or with exoskeleton), one-tailed Wilcoxon signed rank tests were
implemented using a level of significance of 0.05. The performance of the hybrid and end-
to-end torque estimators were also compared at each walking condition (e.g., varied stride
length, speeds jumps, etc) without exoskeleton. For this comparison at each joint, similar
statistical tests were used while a Bonferroni correction was also applied.

3.2 Dynamics discussion

An analysis was conducted separately to demonstrate the overall performance of the torque
estimators as well as their components, the force-FNN and the dynamic model.

3.2.1 GRF and ZMP estimation

Average RMSE of 2.30±0.34% BW, 5.75±0.80% BW, and 17.01±1.89% foot length are
obtained on the test participants for horizontal GRF, vertical GRF, and the anterior-
posterior ZMP estimation, respectively. Figure 3.5A compares the average profile of the
FNN-estimated GRF and ZMP with their measured values across test subjects.

The ZMP of each foot is reported relative to the respective heel such that positive values
indicate a location in front of the heel in the y-direction. For the ZMP data, there is a
slightly larger standard deviation in the measured values compared to the FNN-estimated
values. This is particularly more evident in the loading response and the pre-swing phase
of the gait cycle. This is expected as studies have found that COP, and consequently ZMP,
during walking, particularly during the loading response and pre-swing phases, have more
variability among individuals [14, 104]. It is also noted that the normalized ZMP at heel
strike is negative at the beginning of the gait cycle. This caused by the treadmill belt
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making contact with the foot at this instant which results in a measured ground reaction
moment, in turn causing the ZMP to be measured as negative.

The mean RMSE and the correlation coefficient between the measured and estimated
values are further investigated in Figure 3.5B-C indicating an almost uniform performance
of the force-FNN across different walking conditions. When comparing the performance of
the force-FNN across all walking conditions, no significant RMSE or correlation coefficient
difference was found between any two walking conditions.

The FNN estimates horizontal GRF with a slightly lower correlation coefficient (0.91±0.023)
than the vertical GRF (0.99±0.003). This could be due to the inputs provided to the force-
FNN are not rich enough to quantify these small variations in the force profile. For instance,
footwear has been shown to cause changes in the GRF peaks during walking [96]. During
this study, participants wore their footwear of choice which has the potential to introduce
some small variability in the GRF .

As seen in Figure 3.5 there is little variation in the performance of the force-FNN across
different walking conditions, demonstrating the robustness of this network to different
walking conditions.

3.2.2 Dynamical model verification

The developed dynamical model is initially validated in Opensim. The simulated and
estimated joint torques from dynamic modeling are plotted in Figure 3.6. The RMSE and
correlation coefficient (R) between the estimated and simulated joint torques across one
gait cycle are 4.6, 5.6, and 2.1 Nm and 0.99, 0.98, and 0.99, respectively for the ankle, knee
and hip joints. The small amounts of error between the simulated and estimated torques
arise from the simplifications made to the dynamic model during derivations which do not
match those of the model being applied in the simulation. The overall estimated torques
are, however, acceptable as the errors are relatively small and the estimates follow the
same trend as the simulated values (confirmed also by high R values). This verifies that
the dynamic model represents the gait kinetics and kinematics accurately enough to be
used in the hybrid torque estimator.

Further validation of the dynamic equations in the hybrid model are performed with
experimental data from all 11 subjects. In this case, the measured GRF and ZMP are
used as an input to the dynamic model along with kinematic measurements. The resulting
computed torques are shown in Figure 3.7A. When compared to the gold standard Vicon-
computed torque estimation, the overall RMSE of all subjects for the ankle, knee and
hip joints are 0.8±0.14, 1.0±0.28, and 1.4±0.39 %BW*height while the corresponding
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Figure 3.6: Comparison of simulated and estimated joint torques using dynamic modeling
for the hip, knee, and ankle for one gait cycle. RMSE is the root mean squared error, and
R is the Pearson correlation coefficient.

correlation coefficients are 0.97±0.02, 0.69±0.12, and 0.75±0.12. As components of the
hybrid model, the GRF and ZMP estimator and the dynamical equations, have been
validated, further analysis was conducted on the hybrid model as a whole.

A

B

C

Vicon

forceplate-ID

0.85

0.9

1

0.95

0.5

1 1

0.8

0.6

0.4

Figure 3.7: (A) Average computed torques using the dynamic model with forceplate-
measured GRF and ZMP compared to a gold standard Vicon joint torque estimation
approach. The overall performance as well as the performance for each walking condition,
including varied stride lengths (VS), constant acceleration (CA), speed jumps (SJ), asym-
metrical walking (AW), and start-stops (SS), are reported in terms of (B) RMSE, and (C)
correlation coefficient. The points represent the individual subjects.
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3.2.3 Torque estimation

Figure 3.8A shows the average estimated torques from the hybrid and end-to-end model
compared with the Vicon-estimated torques across the test participants throughout the
entire experiment.

A

B C

Vicon hybrid torque-FNN

A
n
k
le

K
n
e
e

H
ip

Torque (%BW*height)

Torque RMSE (%BW*height) Correlation coefficient

SJ  SJ  

1

0.95

0.9

0.85

1

0.5

0.8

1

0.6

0.4

* * ** * *

* * * * * * * * * * *

*

Figure 3.8: (A) Average computed torques using the hybrid model, end-to-end estima-
tor compared to Vicon-computed joint torques. The overall performance as well as the
performance for each walking condition, including varied stride lengths (VS), constant ac-
celeration (CA), speed jumps (SJ), asymmetrical walking (AW), and start-stops (SS), are
reported in terms of (B) RMSE, and (C) correlation coefficient. The points represent the
individual subjects. The asterisk denotes a significant difference between the two models.

Figure 3.8B-C shows the RMSE and correlation coefficient of both models during each
of the tested conditions. The end-to-end mapping has slightly better overall performance
(RMSE=0.9±0.12, 1.0±0.22, and 1.1±0.23%, R=0.95±0.02, 0.72±0.08, and 0.84±0.08
for the ankle, knee and hip) than the hybrid model (RMSE=1.0±0.23, 1.3±0.18, and
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2.0±0.42%, R=0.94±0.01, 0.53±0.15, and 0.67±0.10 for the ankle, knee and hip) in terms
of the RMSE and correlation.

Wilcoxon signed rank tests are performed to identify any significant differences in
RMSE and correlation coefficient of the two torque estimators across the whole exper-
iment and at different walking conditions (the latter with Bonferroni correction). No
significant difference is identified between the RMSE or the correlation coefficient of the
hybrid model and the end-to-end torque estimator in the ankle joint for the overall ex-
periment (pRMS=0.46, pR=0.94). When comparing the torque estimators at each specific
walking condition, a significant difference is observed in RMSE only during constant accel-
eration condition (pRMS=0.0055), while no significant difference between the correlation
coefficients are obtained (pR>0.20). At the knee joint, there are significant differences
in RMSE and correlation coefficient for overall data (pRMS=0.039, pR=0.0078). There
are significant correlation coefficient differences when comparing the torque estimators
at variable strides (pRMS=0.15, pR=0.0078), and speed jump (pRMS=0.023, pR=0.0078).
There are significant differences in both RMSE and correlation coefficient at the knee when
comparing them at constant acceleration (pRMS=0.0078, pR=0.0078). The performance
of the two torque estimators is not statistically different during asymmetrical walking
(pRMS=0.38, pR=0.016, as compared to corrected significance level of 0.05/5) and start-
stopping (pRMS=0.20, pR=0.38) conditions. There are significant differences between the
performance of the two estimators at the hip during overall experiment and when compar-
ing at different walking conditions (pRMS=0.0078, pR=0.0078), except the RMSEs are not
significantly different at start-stopping (pRMS=0.016, comparing to a corrected significance
level of 0.05/5).

Despite the performance of end-to-end torque estimator shows statistical superiority
over the hybrid torque estimator at the hip (for all conditions) and knee (for three out
of five conditions), the difference in estimated normalized torque RMSE was in range
of ([0.28% 1.8%]) at hip and ([-0.016% 0.89%]) at knee joint. This indicates that the
performance of the two estimators are close and not meaningfully different.

The performance of the end-to-end estimator is heavily governed by the richness of the
training dataset. For this reason, the model would likely require retraining on cases where
the type of gait abnormality is not covered in this experiment or individuals with atypical
anthropometry.

The hybrid model tends to have larger errors in the hip joint than the knee and ankle
joints, particularly during the stance phase. This is due to the force-FNN estimation errors
and the forward kinematic error which is more evident at the hips as the kinematic chain
originates at the foot. In addition, model simplifications including decoupling the legs, are
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also sources of error for the hip joint torque estimation.

The joint torque estimation errors in the hybrid model, that stem from errors in the
force-FNN, occur during stance phase and are more apparent in the knee and hip joints.
This is because the knee and hip joints have larger moment arms to the ZMP, which
in turn causes a larger contribution to τforce, in comparison to the ankle joint. As seen
in Figure 3.7, the torque estimation errors are remarkably reduced when using measured
rather than estimated values of GRF and ZMP.

The estimated ankle torque from the hybrid model has the best performance as it is
largely only impacted by the τforce while τdynamics is small, as seen in [63]. However, as the
moment arm for this joint is relatively small, it is less sensitive to errors in GRF and ZMP.
The remaining errors in the hybrid model can be attributed to kinematics measurement
error as well as the effects of assumptions made in creating the dynamic model.

3.2.4 Exoskeleton testing

The analysis of the exoskeleton data consists of the GRF and ZMP estimation as well as
the torque estimation.

GRF and ZMP estimation

Figure 3.9A shows the average estimated GRF and ZMP of one subject walking with a lower
limb exoskeleton. As exoskeleton data was not included in the training set for the FNNs,
a decrease in GRF and ZMP estimation performance when applied to exoskeleton data is
expected compared to walking without the exoskeleton. The decrease in estimation accu-
racy while wearing the exoskeleton is more evident in the ZMP estimates (RMSE=30.18%,
R=0.77) than the GRF estimates (RMSE=2.93 and 7.24%, R=0.89 and 0.99 for the y-
and z-directions, respectively).

There is a notable increase in the standard deviation, when compared to walking with-
out the exoskeleton, of the measured ZMP (measured by the instrumented treadmill) during
the loading response and pre-swing phase of the gait cycle as a result of the fixed ankle
and rigid insole of the exoskeleton. This leads to limited transverse and coronal plane
movements causing less consistency between the strides. The force-FNN is, therefore, not
able to capture the profile or standard deviation of the ZMP at these points. The hybrid
model is, nevertheless, minimally affected as the GRFs are small during the loading and
pre-swing phases.
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Figure 3.9: Measured and estimated (A) normalized GRF and ZMP, and (B) normalized
joint torques for the exoskeleton test averaged over one gait cycle. The standard deviations
are illustrated by the shaded area. RMSE is the root mean squared error, and R is the
correlation coefficient.

In addition, an error increase is noticeable in the estimated ZMP within 20-50% of the
gait cycle, when comparing Figure 3.9A to Figure 3.5A. It is likely that the rigid insole
and ankle joint impacts the ZMP location due to restricting the ankle flexion in addition
to toe extension at the metatarsophalangeal joint which typically occurs at this interval in
a normal gait [67, 93]. As the force-FNN was trained with normal walking, the network
is unable to capture these modifications to the ZMP location. In order to mitigate these
errors, the force-FNN should be trained on gait data collected while wearing the exoskeleton
which is beyond the scope of this study. In addition, implementing this force-FNN tests
whether the dynamic modelling aspect of the hybrid model allows for sufficiently accurate
torque estimation even with worsened ground contact force estimation.

Torque estimation

The estimated joint torques as well as the Vicon torques are shown in Figure 3.9B.

The hybrid model has significantly smaller RMSE (p<0.05) in all three joints when
compared to the end-to-end torque mapping. In addition, the hybrid model has correlation
coefficients significantly larger (p<0.05) than the end-to-end mapping in the knee and hip
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joint while no significant difference has observed at the ankle joint (p=0.42). In contrast
to the without exoskeleton walking condition, the hybrid model (RMSE=1.4±0.26 and
2.0±0.28%, R=0.87±0.03 and 0.87±0.03 for the knee and hip joints) outperforms the end-
to-end torque mapping (RMSE=1.9±0.36 and 4.4±0.30%, R=0.83±0.05 and 0.59±0.04 for
the knee and hip joints) for the knee and hip joints while having comparable performance
at the ankle joint (RMSE=1.2±0.28, R=0.96±0.009 and RMSE=1.1±0.28, R=0.96±0.01
for the hybrid and end-to-end models respectively). This demonstrates that the due to an
explicit encoding of human dynamics, the hybrid model generalizes better to conditions
differing from those included in the training data set such as addition of the exoskeleton
which modifies joint mobility as well as the mass distribution of the subject.

In the event that these models are applied to individuals with physical impairments, for
instance due to incomplete spinal cord injuries or post-stroke hemiparesis, these individuals
would also have markedly different joint mobility and may have different mass distributions
than an able-bodied person. In such cases, it is likely that the proposed hybrid torque
estimator also outperforms the end-to-end neural network based torque estimators.

3.3 Conclusion

A hybrid joint torque estimator is developed with a combination of a dynamical model and
a data-driven GRF and ZMP estimator. An end-to-end feedforward neural network is also
used as a comparative baseline. Both models are trained on the data collected from 11
participants walking on a treadmill with different speeds and gait patterns. Even though
the end-to-end network outperforms the hybrid model in walking conditions close to the
training data, the hybrid model has better generalization as it outperforms the end-to-end
model during walking with an exoskeleton as it benefits from an expressive GRF estimator
and the generalizability of a closed-form dynamical equation at the same time.

The proposed approach provides real-time estimation of torques at different joints and
can be used in control of lower limb exoskeletons. As many exoskeletons have built-in joint
angle measurements and IMUs, this is a reasonable next step for the developed hybrid
model. The estimated joint torques in this case would be a combination of the exoskeleton
applied torques and the human applied torques. Therefore, it is possible to isolate the
human applied torque as the exoskeleton applied torques are known. This can be used as
a measure of the level of exertion which can be useful as some exoskeleton controllers aim
to reduce the require human exertion.

A further analysis of the two torque estimation approaches can further highlight their
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differences. For instance a stability analysis can be beneficial for real-time implementation
in an exoskeleton controller.

29



Chapter 4

Lower Limb Exoskeleton Direct Joint
Torque Control

4.1 Control strategy

As previously mentioned, a control strategy constructed in the torque domain (for instance
feedforward control) is advantageous as it does not explicitly enforce any joint trajectories
[55]. In this experiment two different torque domain control strategies are investigated:
direct joint torque estimation and direct torque control. These controllers are both similar
to feedforward control approaches as the kinematic error is not explicitly used in the control
law). However, the feedforward torque, in both controllers, is a function of estimated gait
phase at each moment. Therefore, it can be seen as a state feedback control as well.
This chapter will determine whether a direct joint torque estimation or pre-defined torque
profile, or a combination of both, provides better control performance when used by human
participants.

4.1.1 Direct joint torque estimation

The hybrid joint torque estimator presented in Chapter 3 was modified in order to be
used in real-time with the exoskeleton-measured signals. This torque control based on
the hybrid torque estimator, developed in Chapter 3, will be called HC in the rest of this
thesis. There are a few differences in the implementation. As the exoskeleton being used
does not measure kinematic information of the ankle joint, the NN used for GRF and ZMP

30



estimation was retrained to require only knee and hip kinematic information. The training
and testing data is the same as used in Chapter 3.

In order to determine the global position and orientation of the exoskeleton, p0 and
q0 in equation 3.1, the IMUs in the exoskeleton were used. As the exoskeleton limits all
movement to the sagittal plane, all position computations consider 2D movements only.
Thus allowing simple kinematic relationships to be used rather than 3D rotation matrices.

The IMUs are located in the thigh segments and in order to determine the position
of the hips, knees and ankles, which are used in τforce and τdyn, rigid body kinematic
relationships between the segments were applied. The global Cartesian position of the
thigh IMU, Pthigh is determined by correcting the local acceleration measurements to global
coordinates by using the orientation of the local frame, θthigh, which is computed directly
by the exoskeleton. The acceleration signals are then double integrated and filtered with
a highpass Butterworth filter with a cutoff frequency of 0.1 Hz in order to remove low
frequency drift. The position of each joint is then determined with respect to Pthigh,

Phip,y = Pthigh,y − Lhip ∗ sin(θthigh)
Pknee,y = Pthigh,y + Lknee ∗ sin(θthigh)

Pankle,y = Pknee,y − Lshank ∗ sin(θthigh − θknee)

(4.1)

where Lhip, Lknee, and Lshank are the distance of the IMU to the hip, the IMU to the
knee, and the shank segment respectively. Pi is the Cartesian position of joint i. A similar
approach to equation 4.1 can be taken for the other dimensions as well.

As the HC was developed based on experimental data without the use of an exoskeleton,
this approach can be implemented with any exoskeleton. With different exoskeleton, there
will be changes in the BSIP, however, this is accounted for in the dynamical equations of
the controller.

4.1.2 Direct torque control

As an additional approach, a direct torque control was used. The torque profile was
determined based on the computed torques from a position feedback controller implemented
with one subject’s own gait trajectories used as the reference trajectory. The proportional
(Kp) and derivative (Kd) controller gains at the hip are 3 and 0.25 respectively. At the
knee, these gains are 0.9 and 0.08. Further details of the measured torques and angles are
presented in Section 4.3.1.
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The final torques were evaluated at a series of speeds ranging from 0.4 to 1.2 m/s,
then resampled to form a lookup table based on gait phase and speed. The torques were
normalized by subject BW*height. This control approach will be referred to as DTC for
the remainder of the thesis.

In order to implement this lookup table as a control algorithm, a robust gait phase
and speed estimator is needed. The gait phase estimator is a neural network trained on
eleven different participants and five walking conditions as done in [98]. The walking
speed is estimated based on the step length divided by the step time of the previous step.
The step time is determined directly from the gait phase estimator while the step length
is determined from a simple forward kinematic equation, treating both legs as a serial
manipulator. However, as the exoskeleton does not record kinematic information of the
ankle, the step length is measured as the distance between the two ankle joints.

As the final torques are a function of gait phase and walking speed, this controller
performs differently than a traditional position feedback controller as the controller is
essentially blind to the joint-level kinematics.

4.1.3 Control application

Although the HC and the DTC approaches are both constructed in the torque domain, they
will have different torque profiles and thus different performances. The DTC will produce
essentially the same torque profile at each gait cycle regardless of the user’s varying joint
kinematics. Meanwhile the HC is sensitive to different joint and segment kinematics, and
will produce torque accordingly.

In order to compare these two approaches individually and in combination, both control
methods were scaled such that their magnitudes of torques are comparable. Four different
torque controllers are being tested: DTC alone, HC alone, 75% HC with 25% DTC, and
25% HC with 75% DTC. These four controllers will be referred to as: DTC, HC, , and .

4.2 Experimental design

In this section, an in-depth description of the experimental setup and procedure are fol-
lowed by the data analysis performed. The experiment consists of testing the controllers
during treadmill and overground walking. In order to compare the performance of the
controllers, various metrics are computed. This includes spatiotemporal (walking speed,
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step time, percent stance, step length), kinematic (range of motion, angle correlation to
natural walking), and EMG-based (effort level, activation time, co-contraction) metrics.

4.2.1 Experimental setup

The experimental setup consists of a split-belt instrumented treadmill (Bertec, US), a lower
limb exoskeleton (Indego, Parker Hannifin, US), six IMUs (MTw Awinda, Xsens, NL), and
12 EMGs (Trigono, Delsys, US). The exoskeleton, IMUs, and EMGs have sampling rates
of 200, 100, and 2000 Hz, respectively. The EMG sensors were placed on both legs on
the following muscles: RF, VM, BF, TA, GM, and SO. The IMUs were placed with one
on each foot and shank, one on the right thigh and one on the torso. For the thigh and
shank, the IMUs were placed on the lateral side of each segment, approximately about
the midpoint of the distal and proximal joints. The torso IMU was placed on the Xiphoid
process and the foot IMUs were placed on the laces of the participant’s shoes. Figure 4.1
shows the experimental setup. The exoskeleton has actuated hip and knee joints while
having no direct effect on the ankle joints.

EMG

IMU

Figure 4.1: Placement of EMG and IMU sensors.

4.2.2 Experimental procedure

Nine healthy subjects (age 26±3.0 years, 2 female, mass: 74.6±8.8 kg, height: 1.82±0.065
m) participated in this experiment. Data collection protocols and procedures were ap-
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proved by the Clinical Research Ethics Committee at the University of Waterloo (ORE#41794),
and conformed with the Declaration of Helsinki.

Once all the sensors have been placed on the subjects, functional calibration and max-
imum isometric contractions were recorded. The functional calibration involves flexion-
extension movements of the hip, knee, and ankle on each leg along the sagittal plane for
five repetitions followed by the trunk also for five repetitions as done in [7, 80]. The isomet-
ric contractions were recorded while the subject contracts each of their leg muscles as hard
as possible for five seconds each while standing in a neutral position. The EMG sensors
were not moved between different trial as to ensure comparability in the measured muscle
activity.

The experiment included both overground and treadmill walking during six different
conditions. The conditions include one with passive exoskeleton, four with active exoskele-
ton (one for each controller), and one natural walking trial without the exoskeleton. The
passive exoskeleton case is when the exoskeleton applies no torques to the joints while
during the active cases, the exoskeleton applies the torques generated by the controllers to
each joint.

The participants walked on the treadmill at 0.6 and 0.8m/s for 40 seconds each, with
a transition acceleration of 0.04m/s2 for each condition. The participant then walked
overground for a total of 36m at a self-selected walking pace for each of the six conditions.

Each participant was asked to rank the exoskeleton trials from 1 to 5 where 1 is the best
in the following categories: effort level, stability, natural walking, and overall performance.
The rating was completed immediately following the treadmill and overground sessions
separately. Minimal effort would occur when the user is not required to put much force
into walking as the exoskeleton is compensating some or all of this force.

4.2.3 Data analysis

The data from the IMUs and EMGs are processed in order to compute various performance
metrics. First the gait events are detected (as described in section 4.2.4) with the IMU
signals, then joint angles are computed also from the IMU data (see section 4.2.5), and
finally the EMG data is processed to quantify muscle activity (see section 4.2.6).

4.2.4 Gait event detection

The shank gyroscope measurements are used for toe off detection as done in [3, 91] where
the negative peaks immediately preceding the prominent positive peaks. Heel strikes are
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detected at the negative peak in vertical acceleration, in the local coordinate system, of
the foot which immediately follows the prominent positive peak in the shank gyroscope
data [90]. A sample of event detection is shown in Figure 4.2.

Figure 4.2: Shank gyroscope and foot vertical acceleration during treadmill walking. Event
detection of heel strike and toe off are shown.

The detected heel strike and toe off are used to determine stance time, and step time.
Using the detected heel strikes, all measured data is then segmented into gait cycles for
further analysis.

4.2.5 Kinematic and spatiotemporal computations

The IMUs are also used to compute joint angles, similar to [73]. A PCA is applied to the
gyroscope data of each IMU during the functional calibration movements. The computed
principal axis is then in the direction of the axis of rotation of each joint, normal to the
sagittal plane. The coefficients from the PCA are then used to transform the gyroscope
data throughout the whole experiment. The following equations describe this process,

ωTω =
[
u1 u2 u3

] d11 0 0
0 d22 0
0 0 d33

uT
1

uT
2

uT
3

 = UDUT (4.2)

ωproj = (ωTu1)u1 (4.3)

where ω is the gyroscope data (an N × 3 matrix) before transformation, U is the matrix
of normalized left eigenvectors, and D is a diagonal matrix of singular values. The prin-
cipal component of the gyroscope data following the transformation is ωproj and u1 is the
principal axis, direction of interest, corresponding to the dominant axis of rotation.

Segment orientations are computed as the integral of the transformed gyroscope data
and the initial angle is set to zero for all segments as this occurs during a neutral standing
pose. By definition, the segment angles in a standing neutral pose are zero. A strapdown
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integration was not implemented as the rotation essentially occurs about one axis, espe-
cially while wearing the exoskeleton as it limits all movements to the sagittal plane. Any
drift in the signal is removed by subtracting a moving average of the signal with a window
width of 5 seconds. This window length was selected as the window width should be at
least twice the period of the signal [75]. Signals in a gait cycle can be considered periodic
with respect to the step time. The selected window length respects this criterion. Window
lengths of 5, 3, and 2 seconds were tested. The window size of 5 seconds had the highest
correlation to gold standard measurements (R=0.95) compared to the two other windows
(R<0.91) while the range of angles was changed by less than 0.5 degrees for all window
lengths.

Based on the computed joint angles, the ROM of each joint is computed for each stride.
ROM is computed as the difference between the maximum and minimum joint angle. In
addition, the average correlation coefficient between natural walking joint kinematics and
exoskeleton walking kinematics is computed for each subject separatelyThe RMSE between
the experimental and natural walking joint angles were not computed as this metric is
largely affected by any offsets in the data. As the approach taken for computing joint
angles relies on IMU data, the computed angles have some offsets.

As walking with loads, such as a back pack or heavy exoskeleton, has been shown to have
significant effects on kinematics at a joint-level [68, 86], it is expected to see significant
changes between the exoskeleton conditions compared to natural walking. A controller
which is able to effectively assist the user should render the kinematic measures more
similar to natural walking than passive exoskeleton walking.

The step lengths are computed from the foot acceleration data with orientation cor-
rection similar to [69]. The forward acceleration with respect to the inertial/global frame
is integrated twice to compute position. Drift is corrected at each step such that velocity
and position are set to zero at foot flat. Foot flat is identified as the gyroscope signals go
to zero at this point. From the computed step lengths, the walking speed is computed for
each stride as the step length divided by step time.

4.2.6 EMG processing

The EMG data is first filtered with a bandpass filter with cutoff frequencies of 5 and 100
Hz [74]. The signal is then full-wave rectified and an envelope is computed by taking the
moving average with a window of 50 ms. Each EMG signal is normalized by its respective
MVC. The MVC of each muscle is computed as the maximum measured contraction during
either walking or during the isometric contraction data collection.
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Based on the EMG activation during each stride, a measure of effort level is computed
as the integral of the squared EMG activation [83, 23]. For the overground walking trials,
as the walking speed is not fixed between trials or subjects, the EMG measurements are
normalized by walking speedas effort level increases with walking speed. The measured
effort level e for one gait cycle is computed as

e =
1

v

∫
t

EMG2 (4.4)

where v is the walking speed, EMG is the processed muscle activity during one gait cycle,
and t is the step time.

Additionally, co-contraction between agonist-antagonist muscle pairs were also com-
pared across conditions. These pairs are RF-BF, VM-BF, TA-GM, and TA-SO. The co-
contraction is computed as the product of the two muscle activation signals [100]. Similar
to muscle effort, the co-contraction of each stride is quantified by the integral of the afore-
mentioned product signal across the step and is normalized by walking speed.

Finally, the percent of the gait cycle in which each muscle and co-contraction pair
are active are determined. The threshold for determining activity is the average activation
while the muscle is known to be inactive during non-exoskeleton walking plus two standard
deviations of the signals.

4.2.7 Statistical analysis

The first and last five steps from each condition were excluded from the analysis in order
to eliminate the transition effects from speeds changes and adjustments to different control
algorithms. The average of each metric was computed for each controller and each subject
across all gait cycles being considered. The statistical significance of each metric was tested
with a one-tailed Wilcoxon signed rank test as this test will determine which controller
has significantly better performance in the metric being tested. For spatiotemporal and
kinematic metrics, a Bonferroni correction was applied to the significance level such that
p=0.05/10 as all conditions are compared with each other. However, for the EMG metrics,
a Bonferroni correction of 4 is applied as each active condition is compared only to the
passive case. This is because one goal of the controllers is to reduce the required muscle
activity compared to the passive case rather than compared to the other active controllers.

Although an ANOVA is generally useful in the statistical analysis of experiments with
multiple conditions, such as this experiment, it was not implemented as the data is not
normally distributed.
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4.3 Results and discussion

A separate analysis of the applied torques, spatiotemporal parameters, kinematics, and
EMG were conducted to compare each of the five exoskeleton trials. Finally, the results
from the questionnaire are compared to the related analytical results.

Table 4.3 shows a summary of the results from the analysis where the controller was
shown to have the best performance. A more detailed discussion of each metric follows.

4.3.1 Applied torques

Figure 4.3A shows the joint angle lookup table used for the feedback controller in the
generation of DTC as described in Section 4.1.2. The average and standard deviation
of the measured joint angles as well as the desired angles are plotted in Figure 4.3B for
walking at 0.6m/s for 45 seconds. The average and standard deviation of the torques
generated for this walking speed are shown in 4.3B. The measured and desired joint angles
are plotted in 4.3B. Both the measured torques and angles have small standard deviations,
which indicates that using the average torque profile is sufficient for capturing the effects of
these torques. Figure 4.3D shows the complete torque lookup table of DTC, which includes
walking speeds ranging from 0.2 to 1.2 m/s.

As the controllers being tested are sensitive to differences in kinematics and walking
speed, the applied torques vary between subjects. The applied command torque profiles for
each of the controllers for subject 2, 6, and 8 walking on the treadmill at 0.8 m/s are plotted
in Figure 4.4. Each subject had similar torque profiles at 0.6m/s compared to 0.8m/s.
These three subjects were randomly selected to show variation between participants.

The standard deviation of the DTC torque profile of subject 8 (Figure 4.4C) is much
larger than that of subject 2 and 6. This is an indicator of inconsistencies with the inputs
of velocity and gait phase into the DTC lookup table. As this was collected with constant
speed treadmill walking, it is expected that the DTC torque profiles have a very small
standard deviation; therefore, this indicates inconsistencies in the gait phase and velocity
estimator. The subjects not shown in the graphs have similar torque profiles to those of
subject 2 and 6.

A more in depth analysis of the kinematics of subject 8 indicates a much smaller ROM
in the knee joint than normal walking. Thus, the walking pattern is sufficiently different
than the training data of the gait phase estimator network which leads to worsened gait
phase estimation for such gaits. This error is then propagated to the velocity estimation.
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Figure 4.3: (A) The joint angle lookup table used in the generation of DTC. The average
(B) angles and (C) torques generated while walking at 0.6m/s, the standard deviations are
shown by the shaded areas. (D) DTC profiles for each walking speed.

As subject walks at a speed of 0.8m/s on the treadmill, the estimated velocity is 1.1m/s.
However, the overall torque profile is generally similar to those of other subjects, and still
has the potential to assist in gait.

The dependence on a gait phase and velocity estimator is thus a drawback from this
approach. This suggests that a more robust gait phase estimator would be required for
use with individuals having atypical gaits, such as individuals suffering from hemiparesis
or iSCI.

The commanded torques for overground walking for the same subjects are shown in
Figure 4.5. The standard deviation of each torque profile has increased as there is more
kinematic variability in overground walking compared to treadmill walking. However, the
kinematic profiles of each subject for treadmill and overground walking appear to have
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1D-3H
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Figure 4.4: Average command torque for (A) subject 2, (B) subject 6, and (C) subject 8
for each controller while treadmill walking at 0.8m/s. The shaded area shows the standard
deviation of the torques.

many similarities in terms of average profiles. In general, the torque profiles generated by
the controllers at the hip had more similar shapes when comparing between participants
than at the knee. Further testing is required to determine whether these differences are
accurately capturing the differences in kinetics among people or a result of external factors.

4.3.2 Spatiotemporal gait analysis

The spatiotemporal gait analysis presented in this section includes an analysis of walking
speed, percent stance, step time, and step length. Metrics in the lateral direction, such
as step width and lateral sway, are not considered as the exoskeleton restricts movement
to the sagittal plane in the knee and hip joints. As this exoskeleton does not control the
ankle joint, spatiotemporal metrics which are primarily affected by the ankle angle, such
as strike foot angle, and lift off foot angle, are not considered.

The spatiotemporal metrics are computed for each subject and compared to their re-
spective metrics during natural walking. Overall, the shows the performance closest to
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1D-3H
3D-1H

Figure 4.5: Average command torque for (A) subject 2, (B) subject 6, and (C) subject 8
for each controller for overground walking. The shaded area shows the standard deviation
of the torques.

natural in terms of spatiotemporal metrics. Figure 4.6 shows the average overground walk-
ing speed for each trial. Figure 4.7 shows the percent stance time, step time, and step
length for each exoskeleton trial normalized by natural walking metric of each respective
subject. The standard deviation of the spatiotemporal metrics are shown in Figure 4.8.

1D-3H 3D-1H

Figure 4.6: Overground walking speed of each exoskeleton condition and natural walking
speed. The points show each subject separately and the error bars show the standard
deviation.

The average overground walking speed at is the fastest out of all overground exoskeleton
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Figure 4.7: Spatiotemporal analysis of overground and treadmill walking at 0.6 and 0.8
m/s. Average measures of (A) percent stance, (B) step time, and (C) step length are
reported normalized by natural walking at each condition. The points show each subject
separately and the error bars show the standard deviation.

trials. The natural overground walking speed of all participants was measured as faster
than all exoskeleton walking trials, therefore also has the most natural walking speed.
The only has a slightly slower speed. There is a significant difference between the walking
speed with and compared to walking with DTC (p<0.0039) while not with the other
conditions (p>0.0098). The average standard deviation of walking speed for overground
and treadmill walking are 0.059 and 0.035, respectively. The standard deviation of walking
speed are shown in Figure 4.8D. During overground walking, the average walking speed
variation most similar to natural is with , with a variation of 0.062. During treadmill
walking, the speed variations are much larger than natural. DTC and have the most
similar variations for 0.6 and 0.8m/s respectively. The increase in walking speed can be
considered a measure of the assistance level of the controller in combination, while more
natural speed variation can be an indicator of stability and comfort of the participants
with the controller. These results suggest the offers better assistance level and stability
for overground walking.

Overall during overground walking, the has the percent stance most similar to natural
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Figure 4.8: Spatiotemporal analysis of overground and treadmill walking at 0.6 and 0.8
m/s. Standard deviation of normalized measures of (A) percent stance, (B) step time, (C)
step length, and (D) walking speed are reported at each condition. The points show each
subject separately and the error bars show the standard deviation.

walking. The performance of is closely followed by the HC. There are no significant dif-
ferences between the different controllers (p>0.0195). However, during treadmill walking,
passive exoskeleton walking has the closest percent stance time to the natural gait with
the being the second closest. At 0.6m/s the passive exoskeleton walking has a percent
stance significantly (p<0.002) closer to natural walking compared to DTC. There are no
significant differences for the other conditions and speeds (p>0.0098). Overall, the and
are the control approaches which achieve the most natural percent stance for overground
and treadmill walking, respectively. Studies have shown that increases in percent stance
time are an indicator of decreased stability [42, 43]. On average, DTC has the highest
percent stance during overground walking. Based on participant feedback for overground
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walking, DTC was rated on average, the least stable of the controllers (see section 4.3.6).
During treadmill walking, the percent stance of the controllers are very similar; however,
the participant feedback also indicates that DTC is on average the least stable.

The standard deviation of percent stance during natural walking is 0.016 and 0.025 for
overground and treadmill walking respectively. The standard deviation of percent stance
is most similar to natural walking for all walking conditions with . However the standard
deviation of the other controllers is very similar.

The has the closest average step time to natural walking for both overground and
treadmill walking at 0.8 m/s. During treadmill walking at 0.6m/s however, DTC has
the most natural step time on average. There are no significant differences between the
conditions for overground (p>0.0059) or treadmill walking (p>0.0645). The standard
deviation of step time for overground and treadmill walking are 0.039 and 0.018 respectively.
During all walking conditions, has a variation most similar to natural walking. In general
has the most natural step time and variation during all walking conditions.

During overground walking, the average step length is most similar to natural walking
with and closely followed by and HC. Both the and are significantly closer to natural
gait than DTC (p<0.0039). Treadmill walking at 0.6 and 0.8m/s results in a more natural
step length at HC and DTC, respectively. There are no significant differences between
these conditions (p>0.0645). The standard deviation of step length for overground and
treadmill walking are 0.065 and 0.023 respectively. During overground walking, has an
average standard deviation of 0.66, which is most similar to natural walking of all the
controllers. During treadmill walking, the step length standard deviation is much larger
than natural where DTC has a slightly more natural variation. Overground walking has
the most natural step lengths with while treadmill walking with DTC.

These spatiotemporal metrics demonstrate the effectiveness of the controllers to produce
some aspects of a natural gait in terms of both mean and standard deviation of these
metrics. A more in depth analysis of the joint-level effects of each controller will illuminate
further whether the resulting gait is similar to natural walking.

4.3.3 Joint kinematics

Figure 4.9 and 4.10 show the average and standard deviation correlation of each joint to the
recorded natural walking (of that subject) during all of the exoskeleton test conditions and
controllers. During natural overground walking, the correlation of each stride to average
profile for each joint is 0.98±0.01. During natural treadmill walking, the correlation of
the hip and knee to average normal walking joint profiles are 0.98±0.01 while the ankle
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angles exhibited a correlation of 0.90±0.04. As the average correlations are high and the
standard deviations are small, especially for the knee and hip, comparing joint angles in
the presence of different controllers to the average joint angles during natural walking is
meaningful.

The average correlation coefficients at the hip joint are high for all conditions and con-
trollers (R≥ 0.8), however, this is lower than during natural walking. During overground
and treadmill walking at 0.6m/s, HC produces the highest correlation (R= 0.93±0.04 and
0.89±0.06 respectively) to natural walking at the hip. Meanwhile DTC has the highest
correlation during 0.8m/s treadmill walking (R= 0.90±0.06). During treadmill walking
at 0.6m/s, there is a significant difference between the passive and DTC performance
(p=0.002, where the significance level is 0.05/10 as a result of the Bonferroni correction);
however, there are no other significant differences between conditions (p>0.0098).

A

C

B

Figure 4.9: Correlation to natural walking joint trajectories measured during overground
and treadmill walking for the (A) hip, (B) knee, and (C) ankle.

The average correlations at the knee joint are slightly lower, ranging between 0.8 and
0.95. Treadmill walking produces the highest correlation to natural walking at the knee
joint during the passive conditions. The second highest correlations for treadmill walking at
0.6 and 0.8m/s are during and , respectively. Meanwhile during overground walking, has
the highest knee correlation. However none of the conditions have statistically significant
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Figure 4.10: Correlation standard deviation to average natural walking joint trajectories
measured during overground and treadmill walking for the (A) hip, (B) knee, and (C)
ankle.

improvements (p>0.0059).

The ankle joint has the lowest correlations which range between 0.5 and 0.8. The
highest correlation at the ankle joint occurs during and passive walking for treadmill and
overground walking, respectively. None of the improvements in correlation are statistically
significant (p>0.0273).

The average standard deviation of correlation during exoskeleton walking is larger than
that of natural walking and is close to 0.1 for all controllers and joints. There are no
significant differences between the standard deviations at any joints between conditions or
controllers (p>0.0098). The average difference between the standard deviation of corre-
lation between conditions is small. This indicates that the controllers are equally able to
generate consistent walking patterns in terms of joint profiles.

Figure 4.11 shows the average ROM of each joint during the exoskeleton walking con-
ditions normalized by the ROM from natural walking. Similar to studies analyzing the
effects of load on gait kinematics [68, 86], in general walking with the exoskeleton tends to
increase hip and ankle ROM, while decreasing the knee ROM compared to no-load walking.
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Figure 4.11: Range of motion during overground and treadmill walking for the (A) hip,
(B) knee, and (C) ankle. The ranges are reported in terms of percent change from natural
walking range for each participant.

The ROM of the hip joint is, on average, 20% larger than that of natural walking. This
corresponds to an increase of approximately 8 degrees. During overground and treadmill
walking, passive exoskeleton walking has the most natural hip ROM. Out of the active
control cases, HC, , and have the most natural ranges for overground, treadmill at 0.6m/s,
and treadmill at 0.8m/s respectively. However, none of these conditions are significantly
better than the other one (p>0.082).

On average, the knee ROM decreases by 15% compared to natural walking, which cor-
responds to close to 9 degrees. At the knee joint during overground walking and treadmill
walking at 0.8m/s, the most natural ROM occurs during , meanwhile the most natural
range occurs during DTC for treadmill walking at 0.6m/s. There are no significant differ-
ences between any of these conditions or controllers (p>0.0098).

The ankle joint shows little change in ROM during overground walking and an average
increase during treadmill walking of close to 30%. This increase corresponds to approxi-
mately 7 degrees. The has, on average, the most natural ankle ROM during overground
walking, and the second most natural range during treadmill walking. The most natural
during treadmill walking is the passive exoskeleton condition. During treadmill walking
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Figure 4.12: Standard deviation of range of motion during overground and treadmill walk-
ing for the (A) hip, (B) knee, and (C) ankle. The standard deviations are reported in
terms of percent change from natural walking range for each participant.

at 0.6m/s, the passive condition is significantly (p<0.0039) more natural than the and .
There are no significant differences between the other controllers for treadmill (p>0.0098)
or overground (p>0.248) walking.

This analysis demonstrates that the controller which produces the most natural joint-
level kinematics depends on the joint and walking condition. Overall at the hip joint,
HC and show the best performance. Meanwhile, at the knee joint, and have the best
performance. At the ankle joint, each controller appears to have a similar performance. As
is preferable at both the knee and hip joints, it is sensible to conclude that this controller,
in agreement with the spatiotemporal analysis, produces the most natural gait.

As the controllers being tested do not directly control joint angles, any observed differ-
ences in joint trajectories provide insight into how the exoskeleton is assisting or restricting
the movements. An additional measure of whether the controllers are able to assist the
movements can be seen in EMG measures.
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4.3.4 Muscle activation

In this section, the change in muscular effort (equation 4.4) as a result of using different
controllers overall and for each muscle, followed by a measure of time of activation is
presented. The overall muscular effort is computed as the sum of each individual muscular
effort and is shown in Figure 4.13 as being normalized by effort of walking with the passive
exoskeleton. On average, the overall muscle effort with HC, , and decreases when compared
to passive exoskeleton walking for both treadmill and overground walking. With DTC,
there is negligible changes in overall effort compared to the passive case for both walking
conditions. The contributions of each muscle are analyzed individually.

Figure 4.13: Overall muscular effort, computed as the sum of all individual muscle efforts,
during the whole gait cycle normalized by passive exoskeleton walking.

The measure of effort, defined as the integral of squared EMG across the gait cycle
is computed for each muscle and normalized by the effort during passive walking (Figure
4.14).

In the RF muscle, the effort increases with DTC compared to passive exoskeleton walk-
ing during overground and treadmill walking by approximately 10 and 55% respectively.
Both and have a decrease in muscle effort ranging from 18 to 57% during all conditions;
however these decreases are not statistically significant (p>0.016). The and show the best
ability to reduce the effort in the RF muscle for both treadmill and overground walking.
The RF functions as a hip flexor as well as knee extensor; thus, the decrease in effort
indicates that these controllers are able to assist with movement at these joints.

The VMmuscle, during overground walking, shows no change in muscle effort with DTC
while decreases with all other controllers. The decrease in activation with is statistically
significant (p=0.0039) when compared to passive exoskeleton walking. During treadmill
walking, there is an increase in effort with DTC, HC, and and a small decrease with . When
comparing the four controllers, and require the least effort from the VM for overground
and treadmill walking, respectively. The VM is a knee extensor muscle, indicating that
these controllers are best able to assist with this movement.
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Figure 4.14: Muscular effort during the whole gait cycle normalized by passive exoskeleton
walking.

The BF shows an increase in effort for all controllers during overground walking. How-
ever, there appears to be an outlier with HC , , and which is artificially increasing
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the average required effort. This participant has an effort with these controllers of up to
600% larger than that of passive exoskeleton walking. Without this outlier, these three
controllers demonstrate an average decrease of 5%. During treadmill walking, there is an
average decrease during for both speeds and a decrease with and HC at 0.6m/s. How-
ever, these changes are not statistically significant (p>0.049). The overall increase or no
change in BF effort compared to passive exoskeleton walking is due to co-contraction of
this muscle with the knee extensor muscles (BF and VM) as it has an important function
for stabilizing the pelvis during stance.

In the TA muscle, there are increases in effort ranging from 10 to 30% during all condi-
tions with the exception of during overground and DTC during 0.6m/s treadmill walking.
The decreases in these two cases are less than 8%. The TA muscle is a ankle dorsiflexor.
During walking, the TA’s primary role is toe flexion during late swing and stabilizing ankle
(co-contracting with plantar flexors [61]) during stance. As the exoskeleton does not affect
the ankle joint during swing phase, the increase in activation during treadmill walking can
be attributed to needing more stabilization in order to coordinate their walking with the
exoskeleton controls.

The GM shows an average decrease in effort for all conditions ranging from 2 to 25%.
The effort inthis muscle is significantly less than passive exoskeleton for the overground
walking with (p=0.0098) and treadmill walking at 0.8m/s with and (p<0.0098). This
muscle indicates the best performance with the and . The GM is primarily an ankle
plantarflexor and a knee flexor. This is an indicator that the controllers are able to assist
during knee flexion. In addition, as the controller is able to assist with hip and knee
movements, the ankle is not required to exert as much power to attain the same walking
speeds.

At the SO muscle, all conditions decrease with the exception of HC during treadmill
walking at 0.6m/s. During this condition, there is one outlier which increases the average.
Without this outlier the average effort would be similar to that of DTC . The decreases in
and 72 DTC are statistically significant during treadmill walking at both speeds (p<0.0058)
as well as HC at 0.8m/s (p=0.0058) and DTC at 0.6m/s (p=0.0020). The SO is a uniar-
ticular muscle and its muscle’s primary function is ankle plantar flexion. Although the
exoskeleton does not directly control the ankle joint, decreases in SO effort are able to
demonstrate improved stability and improved assistance at other joints. Similar with the
GM, as the exoskeleton assists more at the knee and hip, the participants do not have to
compensate with effort at the ankle during push off.

Although many of the average muscle effort decreases, compared to passive exoskeleton
walking, that are shown in Figure 4.14 are not statistically significant, on average the
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and are better able to decrease the required muscle effort for walking compared to the
passive exoskeleton condition. For overground walking, this decrease in muscle effort is
more notable as the average walking speed at these conditions is significantly faster which
by nature tends to increase required muscle effort. Therefore this demonstrates that these
exoskeleton controllers would be able to decrease overground walking effort even more if
the speed remained constant for all trials.

Figure 4.15 show the average activation time of each muscle during each of the ex-
oskeleton controllers and walking conditions. The decrease in activation time of the GM
during treadmill walking at 0.6m/s with HC compared to passive walking are significant
(p<0.0098). This decrease corresponds to nearly 25% of the passive exoskeleton activa-
tion time. In the RF muscle, there are large increases in activation time by up to 10%
of activation time during passive exoskeleton walking however, the overall effort decreases
according to Figure 4.14, which indicates that the amount of contraction is much less dur-
ing the active cases compared to passive walking. The changes in activation time are very
small in the remaining muscles.

4.3.5 Muscle co-contraction

The average co-contraction of each muscle pair is shown in Figure 4.16 where the activity
of each muscle is normalized first by its MVC before computing co-contraction.

The muscle pairs in the thigh segment are the RF-BF and VM-BF . The RF-BF pair
shows a decrease in co-contraction during all conditions with as well as with HC and
during treadmill walking. The decreases during overground and treadmill walking are in
the range of 25% to 40% and 5% to 20% respectively. However the differences between the
effort with these controllers and passive exoskeleton walking are not statistically significant
(p>0.015). The VM-BF muscle pair shows decrease in co-contraction with all controllers
during overground walking (by 9% to 45%) and increases with nearly all controllers on the
treadmill (by 80% to 800%). The co-contraction decrease compared to passive exoskeleton
walking for and are statistically significant (p<0.0039). During treadmill walking at
0.8m/s, there is a large increase in co-contraction with HC. This behaviour is exhibited with
only six of the participants while the remaining participants have a negligible increase. The
large standard deviation of this the co-contraction could be an indicator of measurement
inaccuracies. Further data collection should be done to further understand the cause of
the extreme variations between participants.

The RF-BF pair is responsible for hip and knee stabilization by modulating joint me-
chanical impedance [49] while the VM-BF pair is only involved in knee stiffness modulation
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Figure 4.15: Percent of gait cycle with each muscle active.

and stabilization [85]. As there are decreases in both muscle pairs during overground walk-
ing with HC, , and , this indicates that the controller does not induce instability at these
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Figure 4.16: Average integrated co-contraction for each active controller normalized by
passive exoskeleton walking.

joints. The increase in stability could be due to the timing of applied torques and intended
movements being synchronized. As the is able to decrease co-activation in both pairs
during treadmill walking and in RF-BF during treadmill walking, this controller is best
able to provide stability to the participant.

The TA-GM and TA-SO are the muscle pairs in the shank segment that modulate
the ankle mechanical stiffness. There is a slight decrease in TA-GM co-contraction during
treadmill walking at 0.6m/s with DTC and HC (p>0.025) while the rest of the controllers
and walking conditions show an increase in co-contraction. With the TA-SO muscle pair,
there is a decrease in co-contraction with all controllers during treadmill walking at 0.6m/s.
The decreases with DTC and are statistically significant (p<0.0059).

The TA-GM muscle pair is involved in knee and ankle stiffness modulation and in
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turn stabilization. The TA-SO pair is only responsible for ankle stiffness modulation and
stabilization. The increase in co-contraction of both pairs during overground walking is
due to the increased walking speed compared to passive exoskeleton walking [84]. During
treadmill walking where the speed is constant, the decreases in co-contraction indicates an
increase in stability at the ankle joint.

On average, the co-contraction is lowest with the controller which indicates that less
joint stiffness modulation and stabilization from the participants is required. This is in
agreement with the increased stability detected in these controllers with a decreased percent
stance.

Figure 4.17 shows the average co-contraction activation time normalized by the passive
exoskeleton condition.
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Figure 4.17: Average percent co-contraction time.

Compared to active exoskeleton walking, there is a decrease in RF-BF co-activation
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time during overground and treadmill walking with and (p>0.015). The co-contraction
time in VM-BF decreases with all controllers during overground walking when compared to
passive exoskeleton. This decrease is significant (p<0.0039) with all controllers except for
HC (p=0.043). As the integrated co-contraction also decreases (Figure 4.16), this further
demonstrates that these controllers provide a sense of stability at the knee joint. These
two muscle pairs show no change or an increase in active time for the treadmill conditions.

In the TA-GM and TA-SO muscle pairs for overground walking, the co-contraction time
increases slightly (by 1% to 14%) with the active controllers. During treadmill walking,
the TA-GM co-contraction time tends to increase (by 1% to 25%) with all controllers with
the exception of DTC at 0.6m/s (decrease of 10%). With the TA-SO pair, activation time
decreases for all active cases. The decrease is statistically significant for DTC (p=0.0039)
and (p=0.0039) at 0.6m/s and DTC at 0.8m/s (p=0.0078). Similar to the increase in
integrated co-contraction of these muscle pairs for overground walking, the increase in co-
contraction time can be attributed to increased walking speed. Meanwhile during treadmill
walking, the co-contraction time decreases which demonstrates the improved stability at
the ankle joint with these controllers at constant speeds.

4.3.6 Participant feedback

Figure 4.18 shows the average ranking of each exoskeleton condition where 1 is the best
and 5 is the worst in each category of effort, natural feel, stability, and overall performance.

On average, the effort level is reported highest during passive exoskeleton walking Each
of the active controllers have a similar rating on effort level. The reduction in effort level
of the active controls compared to passive walking are seen in the RF, GM, and SO, for all
walking conditions (Figure 4.14. However, there are activation increases in the remaining
muscles. Perceived effort is contributed to by many different muscles, including those
not being measured in this study. There is a relationship between perceived effort and
measured muscle activity, however, it is beyond the scope of this study as there are many
muscles not being measured.

The DTC and HC are rated on average the least natural. This is in agreement with
the kinematic and spatiotemporal analysis in Sections 4.3.3 and 4.3.2 respectively. During
overground walking, and passive walking are rated the best, on average. Correspondingly,
has the most natural step time, percent stance, and step length in terms of both magni-
tude and variation. Passive walking, tends to have less natural spatiotemporal measures,
however, the joint-level correlation it has the highest correlation and range of motion to
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Figure 4.18: Average participant feedback on effort level, natural walking, stability, and
overall performance for treadmill and overground walking with each exoskeleton condition
where 1 is the best and 5 is the worst. Each point shows the rating of each participant.

natural walking at a joint-level. During treadmill walking, and are rated the most natural.
Both these controllers have the most natural walking speed and speed variation.

The stability of these controllers is also rated the lowest DTC while has the best rating,
which is in agreement with the reported co-contractions in Figure 4.16. The nature of HC
allows the controller to completely conform to the user’s movements, thus not restricting
the movements. However, as HC is entirely dependent on the measured kinematics, it can
become unstable. Meanwhile, DTC has a stable and predictable nature. This however,
can lead to restrictive torques or asynchrony with the user. The combination of the two
control approaches is able to incorporate benefits of both approaches; synchrony from HC
and stability from DTC. However, the perceived stability of DTC is worse than its true
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nature. This could be the result of asynchrony between the user’s intentions and the control
torques which can feel like instability to the user.

Interestingly, although HC computes the current joint torque, which is subject to signal
delays, rather than that required to move to the desired positions, users did not report any
lag in the timing of HC control with their intended movements. Further testing is required
to determine whether a predictive joint torque controller would improve the performance
of HC.

In general, is rated the highest across all metrics as well as with the overall rating
reported in Figure 4.18. As participant feedback is a subjective measure, further investiga-
tions should be done to determine specifically which factors are considered in participant’s
ratings. For instance, in rating in terms of natural feeling, participants could value more
overall gait timing rather than joint level-performance, or vise versa.

4.4 Conclusion

A hybrid model, including model- and data-driven components, for direct joint torque esti-
mation was implemented in real time as an exoskeleton controller. A separate pre-defined
direct torque control was developed. These two controllers were compared individually and
in combination for both overground and treadmill walking with 9 participants.

During overground walking, a weighted sum of both control methods, with more weight
on the hybrid control, was able to generate the fastest walking speeds. This same combi-
nation of controllers was also able to produce the closest spatiotemporal measures to those
of natural gait. At the joint-level, each of the controllers had similar ability to produce
natural trajectories. On average, the weighted sum of controllers was able to decrease the
muscle activation of four out of six measured muscles when compared to activation during
passive exoskeleton walking. Co-contraction tends to decrease in the thigh segment during
overground walking with any controller. Meanwhile co-contraction tends to increase in the
shank segment during overground walking, which could be due to the increase in walking
speed [84]. During treadmill walking, only a combination of the controllers can decrease
co-contraction in one pair of thigh muscles and both shank muscle pairs.

Participant feedback, in terms of effort, feeling of natural walking, stability, and overall
performance, was also recorded. On average, the best controller identified with the spa-
tiotemporal, kinematics, and EMG analysis is also identified to have better performance
than the other controllers. Several consistencies between perceived natural walking were
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identified with the metrics for spatiotemporal and joint-level performance. Although re-
lating EMG activation and co-contraction to measures of effort and stability also shows
some consistency, further studies should be done to investigate this relationship.

Overall, the combination of controllers tends to provide the most assistance and stability
compared to the other controllers. In order to have more of an effect at a joint-level, this
controller can be augmented with a feedback controller such as a path controller which will
impose a desired trajectory at each joint.

In order to further improve the controllers, testing can be done with more varieties of
walking conditions. For instance speed changes, non-straight walking, or ramp walking. As
the hybrid controller was trained on a set of walking conditions, which doesn’t include non-
straight or ramp walking, it is possible that the network within the hybrid model should
be re-trained for these cases. In addition, exploring different weights for the combination
of the two controllers has the potential to further improving controller performance.

In this chapter, a variety of performance metrics were defined to evaluate the controller.
These metrics are intended for validating the controller, meanwhile, a different set of
performance metrics would be required for applications in rehabilitation. These metrics
would be define based on the goal of the application; however, this is beyond the scope of
this thesis.
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Chapter 5

Lower Limb Exoskeleton
Feedforward-Feedback Control

5.1 Control strategy

In this chapter, a FF-FB control approach is explored in a pilot experiment. A block
diagram of the FF-FB control is shown in Figure 5.1. Based on Chapter 4, was shown
to have preferable performance above the other tested controllers. For this reason, this
control approach will be used as the feedforward torques. A position feedback controller
is implemented based on an ideal trajectory based on each subject, with fixed gains. The
proportional (Kp) and derivative (Kd) controller gains at the hip are 3 and 0.25 respectively.
At the knee, these gains are 0.9 and 0.08. These gains were determined with human-in-
the-loop optimization. In this case, a lookup table based on gait phase and walking speed
is constructed based on previously recorded treadmill walking data of each subject. As in
Chapter 4, the gait phase estimation is based on the approach taken in [98].

During experiments, both the FF and FB controllers were tested individually. In ad-
dition, these two controllers were tested in combination. The three control conditions will
be referred to as: FF, FF-FB, and FB.

5.2 Experimental design

In this section, an in-depth description of the experimental setup and procedure are followed
by the data analysis performed. Similar to Chapter 4, the experiment includes treadmill
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Figure 5.1: Block diagram showing the feedforward-feedback structure.

and overground walking, and the controllers are evaluated in terms of spatiotemporal,
kinematics, and EMG-based performance metrics.

5.2.1 Experimental setup

The same setup was used as in Chapter 4 which includes a lower limb exoskeleton (Indego,
Parker Hannifin, US), an instrumented treadmill (Bertec, US), six IMU sensors (MTw
Awinda, Xsens, NL), and 12 EMG sensors (Trigono, Delsys, US). Two able-bodied subjects
(age 23 and 25 years, 1 female, mass: 63 and 77 kg, height: 1.7 and 1.9 m) participated in
this experiment. Data collection protocols and procedures were approved by the Clinical
Research Ethics Committee at the University of Waterloo (ORE#41794), and conformed
with the Declaration of Helsinki.

5.2.2 Experimental procedure

Similar to the experiment in Chapter 4, both treadmill and overground walking were tested.
Each participant completed one minute of walking with the passive exoskeleton, and each of
the three controllers at 0.6 and 0.8m/s. Following this, participants walked 36m overground
with these same conditions. Finally, the participants repeated the same walking conditions
with no exoskeleton.

5.2.3 Data analysis

The same approaches with gait event detection and joint angle computation with IMUs
as well as EMG processing was implemented as in Chapter 4 (sections 4.2.4 and 4.2.5,
and 4.2.6). In terms of spatiotemporal measures, the following metrics are computed and
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compared between controllers: walking speed, step length, step time, and percent stance.
At a joint-level, the correlation between joint trajectories of each stride and the respective
natural trajectories are computed as well as range of motion. Finally, the integral of
EMG squared during each stride as well as percent activation time. The same measures of
co-contracting muscle pairs are computed with the product of the two EMG signals.

A statistical analysis is performed on metrics computed for each subject separately.
Fifteen steps are randomly selected, with the exclusion of the first and last five steps,
from each controller and compared with an unpaired t-test with a Bonferroni correction.
As there are four control conditions (one passive and three active), this results in six
comparison which gives a corrected significance level of 0.05/6.

5.3 Results and discussion

Each of the controllers are compared in terms of torque profiles, spatiotemporal measures,
kinematics, and EMG. The aim of these controllers is to generate a natural gait profile,
for this reason, many of these parameters are compared to each subject’s natural walking
pattern.

5.3.1 Applied torques

Figure 5.2A shows the joint angle lookup table used for subject 1 with the FF control is
shown in Chapter 4, Figure 4.4A. The joint trajectories for subject 2 are similar. Figure
5.2B-C and Figure 5.3 shows the average applied joint torques for both subjects for tread-
mill at 0.8 m/s and overground walking respectively for all three of the controllers. The
torques are defined such that positive torques are in the direction of joint flexion.

The torque profiles are very similar between overground and treadmill walking, in-
dicating that the algorithms work similarly during these two conditions. The standard
deviations about the torque profiles of subject 2 are an indicator that the subject walks
with more variation between strides than subject 1. However, the FF torques have smaller
standard deviations than the other controllers which indicates that the control is able to
enforce the desired trajectories. The sign of the torques matches well with the signs of
the angular velocities of each joint. At the hip joint, the velocities are generally positive
from 20 to 90% of the gait cycle, this trend is also shown in the joint torques. The knee
velocities are generally positive from 10 to 80% of the gait cycle. The corresponding joint
torques within this range are either positive or close to zero. As the signs of the joint

63



torques and velocities are inline, this indicates that the torques are assisting, rather than
resisting the movements.

B

A

Figure 5.2: Average control torque for subject (A) 1, and (B) 2 for each controller for
treadmill walking at 0.8m/s. The shaded area shows the standard deviation of the torques.

A

B

Figure 5.3: (A) Average control torque for subject (A) 1, and (B) 2 for each controller for
overground walking. The shaded area shows the standard deviation of the torques.

5.3.2 Spatiotemporal gait analysis

Figure 5.4D shows the average and standard deviation of walking speed of both subjects
during all exoskeleton conditions as well as the respective natural walking speed. The
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exoskeleton reduces the average walking speed in both subjects. Both subjects walk faster
with FF and FF-FB control compared to the other exoskeleton conditions. The increase
in speed indicates that these two controllers are best able to assist the subjects.

A

B

C

D

Figure 5.4: Spatiotemporal analysis of overground and treadmill walking at 0.6 and 0.8
m/s. Average measures of (A) percent stance, (B) step time, and (C) step length for all
exoskeleton conditions and natural walking.

The walking speed of subject 1 with FB is nearly the same as passive exoskeleton
walking. While the walking speed of subject 2 increased (by 25%) compared to passive
walking. As the primary function of the FB control is to provide corrective torques, its
effects will not necessarily be demonstrated in walking speed.

The spatiotemporal analysis including percent stance, step time, and step length, are
shown in Figure 5.4A-C. During treadmill walking at 0.8m/s and overground walking,
both subjects have higher percent stance ( 62% and 62%) when wearing the exoskeleton
compared to natural walking ( 60% and 61%). Subject 1 has, on average, a percent stance
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most similar to natural walking with FF-FB control ( 61%). The step time during natural
walking is significantly different than passive and FB treadmill walking at 0.8m/s as well as
FF treadmill walking at 0.6m/s (p<0.003). None of the other conditions are significantly
different (p>0.029). Subject 2 has, on average, the closest percent stance with FF-FB to
the natural gait during overground walking and passive walking during treadmill walking.
Subject 2 passive walking has step time significantly different than natural gait step time,
and more distant than all other conditions during overground walking (p<1e-6) while more
natural during treadmill walking at 0.8m/s (p<0.0045).

Subject 1 has the step time most similar to natural walking during treadmill walking
with FF-FB and is significantly different than all other walking conditions (p<0.0034).
During overground walking, the most natural is passive walking and FF-FB being the
second most natural. FF-FB is significantly closer to natural walking than FF (p=0.0004)
but not FF (p=0.038). Subject 2 has a significantly more similar step time to natural with
FF-FB during overground walking (p<0.0007). Meanwhile during treadmill walking FF
and FB have the most natural step time at 0.6 and 0.8m/s respectively. Neither of these
controllers are significantly different than the other controllers (p>0.01).

FF-FF has step lengths significantly more similar to natural walking than all the other
controllers for treadmill walking (p<0.0034) for subject 1. During overground walking, FF
significantly the most natural step lengths (p<1e-7). Subject 2 has very similar step lengths
across all controllers during overground and treadmill walking at 0.8m/s. At 0.6m/s,
subject 1 has the most natural step lengths with FF-FB, however this is only significantly
different than passive walking (p=0.0033).

Overall, subject 1 has more natural spatiotemporal metrics of walking with FF-FB
compared to all other controllers. Meanwhile subject 2 has most natural walking with FF,
or FF-FB control depending on the metric and condition. Based on this and the walking
speed comparison, the FF-FB control appears to achieve more natural walking, however,
additional participants are needed to further investigate this claim.

5.3.3 Joint kinematics

Figure 5.5 shows the average joint angles for each of the exoskeleton controllers during
overground walking. Treadmill walking resulted in very similar joint angles. There are
some noticeable changes in the profile and range of the joint angles each controller. The
angular profiles resulting from the FB and FF-FB controllers appear to be more similar
than the FF as a result of the imposed trajectories in the FB controller. A more in depth
analysis of these features is presented in this section.
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Figure 5.5: Average joint angles during passive and active exoskeleton walking for (A)
subject 1 and (B) subject 2 during overground walking.

Figure 5.6 shows the ROM of each joint during exoskeleton and natural walking for
both subjects. As seen in Chapter 4, the weight of the exoskeleton changes the ROM
of each joints. In many cases, the passive exoskeleton ROM is most similar to natural
walking. Out of the active cases, there is no clear controller which is best able to improve
the ROM across conditions and subjects.

The Pearson correlation coefficient of the joint trajectories while wearing the exoskele-
ton to natural walking are shown in Figure 5.7.

During natural walking, the correlation of each stride to the average joint profile for
subject 1 and 2 at the hip are 0.996±0.0035 and 0.998±0.0016 respectively. At the hip,
FF control is able to significantly increase (p<0.0080) the correlation to natural walking
in subject 1 compared to all other conditions with the exception of passive overground
walking (p=0.62). Subject 2 has the most natural hip trajectories with FF control during
overground walking and FF-FB during treadmill walking. During overground walking,
FF is significantly closer to natural than all other controllers (p<0.0013). FF-FB is only
significantly more natural than FB during treadmill walking at 0.8m/s (p=0.0007) while
there is no significant difference between the other conditions (p>0.015).

During natural walking, the correlation of each stride to the average joint profile for
subject 1 and 2 at the knee are 0.999±0.00089 and 0.999±0.0012 respectively. At the knee
joint, the FB control has the highest correlation to natural walking with the exception of
treadmill walking at 0.8/s for subject 2 where the most natural is passive walking. The
knee trajectory of subject 1 is significantly more natural than passive and FF (p>0.001)
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Figure 5.6: Average measured joint range of motion at the (A) hip, (B) knee, and (C)
ankle for all exoskeleton conditions and natural walking.

for both treadmill and overground walking in addition to more natural than FF-FB during
treadmill walking at 0.6m/s (p=0.0029). Subject 2 has significantly more natural knee
trajectories with FB than all conditions during treadmill walking at 0.8m/s (p<0.0031) as
well as more natural than FF and FF-FB (p<0.0025).

During natural walking, the correlation of each stride to the average joint profile for
subject 1 and 2 at the ankle are 0.989±0.0073 and 0.986±0.0089. At the ankle joint, FB
also tends to have the most natural joint angles. This increase is significant for subject 1
when compared to passive and FF during treadmill and overground walking (p<0.0056) as
well as FF-FB during treadmill walking at 0.8m/s (p=0.001). Subject 2 has a significant
increase during overground passive and FF walking as well as FF-FB treadmill walking at
0.8m/s (p<0.002).

In general, the joint trajectories tend to be more natural, especially in terms of corre-
lation, with FB control alone. However, FF-FB is also able to increase the naturalness of
the joint angles as well, although to a lesser extent. This is due to the corrective nature
of the FB control. Therefore, in order to achieve a natural gait at a joint level, some
contributions of FF are required. However, as the FB control has less natural spatiotem-
poral performance, compared to FF, this indicates that a combination of these two control
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Figure 5.7: Average correlation of the (A) hip, (B) knee, and (C) ankle joint angles with
natural walking for all exoskeleton conditions.

approaches can achieve improved kinematic as well as spatiotemporal performance.

5.3.4 Muscle activation

Figure 5.8 shows the overall effort level, computed as the sum of all muscle effort, across
each gait cycle. There is no consistent increase or decrease in overall muscle effort between
controllers, walking conditions, or subjects. For this reason, further analysis on each muscle
individually is completed.

Figure 5.8: Overall effort level normalized by walking speed.
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Figure 5.9 shows the effort level computed for each muscle across each gait cycle. The
knee extensor muscles, RF and VM, have on average higher EMG activity with the ex-
oskeleton in passive mode. This decrease is only statistically significant for subject 1 VM
during overground walking (p<0.0015). This indicates that the active exoskeleton modes
are able to assist in knee extension. The BF muscle, a knee flexor, has on average lower
EMG activity during passive exoskeleton walking. This difference is only statistically sig-
nificant for subject 1 for all walking conditions (p<0.0045). This increase in BF activation
during active control is due to an increase in stabilization required as the exoskeleton pro-
vides some assistance to movements. This is also referred to as co-contraction and further
analyzed in Figure 5.11.

The TA muscle shows some slight decrease in activation during active conditions com-
pared to passive, although these decreases are small (less than 0.1). FF-FB activation is
significantly lower than passive walking for subject 1 during overground (p=0.0003) as well
as with subject 2 during treadmill walking at 0.6m/s (p=0.0028). This decrease in activa-
tion could be a result of the decrease in co-contraction in the shank muscles, indicating an
increase in stability at the ankle joint as this is one of the main functions of the TA muscle
during walking (see Figure 5.11). The activation of the ankle plantar flexor muscles (GM
and SO) do not show consistent changes between subjects or conditions. Any changes seen
in these muscles are small and likely not an indicator of controller assistance levels.

Figure 5.10 shows the fraction of the gait cycle in which each muscle is active. In the
knee extensor muscles (RF and VM)), there is in general a slight decrease in activation
time when comparing passive mode to the three controllers. This, in agreement with the
EMG magnitude in Figure 5.9A-B, further shows that the controllers are able to effectively
assist the subjects. However, the decrease compared to passive walking is only significant
in subject 1 during treadmill walking at 0.8m/s (p<0.0034). In the knee flexor muscle
(BF), there are only small differences between the activation time during passive mode
and active. Although the EMG amplitudes in Figure 5.9C showed increases with the
active control, since the activation time did not increase accordingly, this implies that the
controllers are not resisting the user’s movements.

In general, the TA muscle shows decreases in activation time when the controllers
are applied. In addition to the decrease in EMG amplitude reported in Figure 5.9, this
indicates an increase in stability at the ankle (see Figure 5.11). The decrease in activation
time compared to passive walking is significant only for subject 1 with overground walking
(p<0.0016). The GM and SO have very little change in activation time between the
active and passive cases. Similar to the activation magnitude, this demonstrates that the
activation time of these muscles is not an effective indicator of the performance of these
controllers.

70



A

C

B

D

E

F

Figure 5.9: Average effort level normalized by walking speed for all muscles.

5.3.5 Muscle co-contraction

Figure 5.11 shows the average co-contraction during one gait cycle for each exoskeleton
condition, normalized by walking speed. With the exception of subject 1 during overground
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Figure 5.10: Fraction of gait cycle with muscle active.

and subject 2 during treadmill walking at 0.8m/s, there is an increase in the RF-BF and
VM-BF muscle pairs co-contraction during active versus passive walking. Subjects increase
those co-contractions when the exoskeleton is controlling their joint, possibly as the user
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not feeling to be in full control of their joint movements (as with passive walking). However,
these increases are small (less than 0.02). The increases are only statistically significant
for subject 1 during treadmill walking (p<0.0046).

On average, there is a decrease in TA-GM and TA-SO co-contraction during active
versus passive controllers, however these decreases are only statistically significant for TA-
SO with subject 1 during overground walking (p<0.002). This indicates that the ankle
joint requires less stiffness modulation which indicates that the ankle is more stable during
the active cases compared to passive walking. As the exoskeleton does not directly control
the ankle joint, the decrease in co-contraction is reduced as the exoskeleton is supplying
more support to the knee and hip joints, thus relying less on the ankle.
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Figure 5.11: Average amount of co-contraction during each gait cycle, normalized by walk-
ing speed.

Figure 5.10 shows the fraction of the gait cycle in which co-contraction occurs. With
the exception of subject 1 during overground walking, there is very little change in the
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co-contraction time of the VM-BF and VM-BF muscle pairs. There is a slight decrease
in the co-contraction time of the TA-GM and TA-SO muscle pairs during active versus
passive walking; however these decreases are not statistically significant (p>0.0095) with
the exception of subject 1 TA-SO during overground walking (p<0.006). This further
demonstrates that there is a decrease in joint stiffness, and increase in stability, at the
ankle joint, which in turn requires less co-contraction in these muscle pairs.
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Figure 5.12: Fraction of gait cycle with co-contraction.

5.4 Conclusion

In this pilot study, an ideal feedforward control approach which was identified in Chapter
4, is implemented in combination with a feedback control. As the feedforward control
was shown in Chapter 4 to sychronize well with the user and provide assistive torques,
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without providing sufficient joint-level correction to obtain a natural gait, the purpose of
the feedback control is to address this downfall.

The feedback control alone is able to improve upon the joint-level performance of the
controller while sacrificing the spatiotemporal performance. Meanwhile the feedback con-
trol alone is better able to perform in terms of spatiotemporal performance rather than
joint-level. This indicates that a combination of these two controls will be able to produce
a balance of these two performance metrics. However, further testing with more subjects
will be required to determine the combination which will be best able to do this.

The controllers were able to decrease the activation in knee extensor and ankle dor-
siflexor muscles. This indicates that the active controllers are able to provide assistance.
Meanwhile, there is an increase in knee extensor and little change in ankle plantarflexor
muscles. The increase in knee extensor muscles is due to an increase in thigh co-contraction
muscle pairs. However, this increase is small. The co-contraction measured in the shank
muscles decreases with the active exoskeleton, which indicates decreased stiffness and in
turn increased stability at this joint.
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Chapter 6

Conclusion

The objective of this thesis is to develop a real-time joint torque estimator for use as a
lower limb exoskeleton controller. The joint torque estimator was developed and validated
against a gold standard approach with a variety of walking conditions and subjects. Once
implemented as a controller, it was tested in treadmill and overground walking scenarios
to evaluate its ability to assist and correct movements while walking.

The objective of an accurate a real-time approach to joint torque estimation was iden-
tified in Chapter 2.1. An approach without the use of force measurements allows for more
versatility in applications. Such approaches, which rely on kinematic data only, enable
biomechanical analysis during overground walking, and other scenarios where continuous
force measurements is a challenge.

In Chapter 3, a hybrid inverse dynamic-neural network model was proposed and vali-
dated for treadmill walking. This model includes a data-driven component for GRF and
ZMP estimation as well as an inverse dynamic model adjusted to simple anthropometric
measures of each user. An alternative end-to-end feedforward neural network was also
developed for joint torque estimation. Both the hybrid and end-to-end approaches were
validated with 11 participants during treadmill walking with a variety of speeds and gait
patterns. One additional subject, who wore a lower limb exoskeleton, was included for
verification.

The end-to-end network has less errors in joint torque estimation than the hybrid model
when comparing to a gold standard approach for walking conditions most similar to the
training data. These conditions include treadmill walking with speed changes, starts and
stops, asymmetrical walking, and varied stride lengths. However, in many cases, there is
no statistically significant difference between the estimation errors of the end-to-end and
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hybrid model. Conversely, in the case of the exoskeleton walking, the hybrid model is more
accurate. This indicates that the explicit dynamics included in the hybrid model allows
for better generalizability.

This hybrid model was then implemented as a joint torque control approach for a
lower limb exoskeleton in Chapter 4. A separate pre-defined direct torque control was also
developed such that the applied torques are a function of walking speed and gait phase
alone. These two control approaches were investigated individually and in combination
during treadmill and overground walking of 9 participants.

A combination, i.e. the weighted sum, of the two controllers, in which more weight is
placed on the hybrid control, produced the highest overground walking speed. Spatiotem-
poral parameters, such as percent stance, step time, and step length, were closest to natural
walking with this same combination of controllers. At joint-level, the controllers did not
produce meaningfully different results. On average, this controller was able to decrease the
muscle activation of four out of six measured leg muscles when compared to walking with
the exoskeleton in passive mode. Specifically, the knee extensor and ankle plantarflexor
muscles tend to show reduction in muscle activity. The decrease in overall muscle activity,
and consequently effort level, indicates that the exoskeleton is able to assist in some of the
required movements during the gait cycle. During overground walking, the co-contraction
of the thigh muscle pairs tends to decrease while the shank muscle pairs increase. This
indicates a decrease in joint stiffness and in turn an increase in stability provided from the
exoskeleton at the hip joints while a decrease in stiffness and decrease in stability from the
exoskeleton at the ankle joint. However, the decrease in stability at the ankle joint is likely
caused by the significant increase in walking speed. In contrast during treadmill walking,
the co-contraction of the shank muscles decreases, which indicates that at constant walking
speed, the controller is able to decrease the need for stabilization and increase stability in
the ankle joint. This combination of controllers with more weight placed on the hybrid
control is identified as the ideal feedforward control from this test.

In order to improve the joint-level performance of the previously identified feedforward
control, a position feedback control was added in Chapter 5. A pilot study with two
participants investigated the effect of combining these two controllers. The feedback control
was identified to have the best joint-level performance, while the feedforward control has the
best spatiotemporal performance. The combination of both controllers is able to balance
the performance of these controllers. However, further testing is required to confirm this
hypothesis. In addition, optimizing the method in which these two controllers are combined
is also an area for potential improvements. In particular, a weighted sum of the controllers
with weights varied along the gait cycle.
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All three of these controllers (FF, FB, FF-FB) were able to decrease activation in knee
extensor and ankle dorsiflexor muscles in comparison to passive exoskeleton walking. This
indicates some assistance is provided. There is a decrease in measured co-contraction of
the shank muscles, indicating a decrease in joint stiffness required. Less joint stiffness
indicates an increase in stability at the ankle joint resulting from the exoskeleton.

Further testing the performance of the controllers presented in Chapters 4 and 5 will
further illuminate the best approach to take for lower limb exoskeleton control. Additional
subjects and walking conditions will render the tests more conclusive. Having subjects
with varying anthropometrics, and physical abilities, including physical impairments, will
demonstrate whether the controllers will perform in a similar manner between subjects or
whether the ideal controller is subject-specific. In the case of limited physical abilities,
generating a set of desired joint trajectories that will feel natural to the user is another
avenue for further improvement as it cannot be directly measured. Additional walking
conditions such as speed changes, non-straight walking, or ramp walking may challenge
the proposed controllers.

This thesis has demonstrated that a combination of controllers being implemented as
a lower limb exoskeleton controller can have superior performance than a single control
alone. With this knowledge research can be done to augment existing controllers together
to reap the benefits of each controller. Various combinations of controllers has the potential
to create a controller that can be easily tuned to accommodate for the needs of the user.
For instance, with the feedforward-feedback controller being tested with this thesis, a
user requiring more assistive than corrective torques, such as a military soldier using an
exoskeleton for augmentation, can achieve this by placing more emphasis on the feedforward
control. Meanwhile, a user who has physical impairments such as hemiparesis, requires
more corrective torques to achieve a natural gait and would therefore put more emphasis
on the feedback control.
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