
ON SYMMETRIC INTERSECTING FAMILIES OF VECTORS

SEAN EBERHARD, JEFF KAHN, BHARGAV NARAYANAN, AND SOPHIE SPIRKL

Abstract. A family of vectors in [k]n is said to be intersecting if any two of its elements agree on at least

one coordinate. We prove, for fixed k ≥ 3, that the size of a symmetric intersecting subfamily of [k]n is

o(kn), which is in stark contrast to the case of the Boolean hypercube (where k = 2). Our main contribution

addresses limitations of existing technology: while there are now methods, first appearing in work of Ellis and

the third author, for using spectral machinery to tackle problems in extremal set theory involving symmetry,

this machinery relies crucially on the interplay between up-sets, biased product measures, and threshold

behaviour in the Boolean hypercube, features that are notably absent in the problem considered here. To

circumvent these barriers, introducing ideas that seem of independent interest, we develop a variant of the

sharp threshold machinery that applies at the level of products of posets.

1. Introduction

We pursue a line of investigation initiated by Babai [2] and Frankl [10] about forty years ago concerning

the role of symmetry in extremal set theory. Our starting point is the Erdős–Ko–Rado theorem [9], which

asserts that for n, k ∈ N with k < n/2, the largest families of k-subsets of [n] are precisely the trivial ones,

namely those that consist of all k-sets containing some fixed element of [n] = {1, 2, . . . , n}. Many variants and

generalisations of this theorem (involving different intersection conditions and different discrete structures

such as permutations, vectors and graphs) have since been established. A common theme in this line of

enquiry is that the extremal constructions are often highly asymmetric, depending only on a small number of

‘coordinates’; see [17, 11, 1, 21], for example. It is therefore natural to ask what happens when one further

imposes a symmetry requirement on the family under consideration, the most natural such requirement being

that the family be invariant under some transitive subgroup of the symmetric group Sn. Indeed, this direction

was proposed by Babai [2] a few decades back, and has since been rather fruitful; see [10, 5] for some classical

results, and [8, 7, 14] for more recent developments.

Here, we study intersecting families of vectors. A family A ⊂ [k]n is said to be intersecting if any two of

its elements agree on at least one coordinate. Consideration of the orbits of the natural Z/kZ action on [k]n,

i.e., the orbits of the map that shifts each coordinate cyclically by one, shows that any intersecting subfamily

of [k]n has size at most kn−1; furthermore, this bound is tight for the trivial family obtained by specifying

the value of some fixed coordinate. These observations go back to Berge [3] and Livingtson [18], and many

(more substantial) generalisations are now known; see [21, 12, 13, 24, 22] for a sample of the literature.

Here, again, as in our discussion of families of sets, the above extremal examples are highly asymmetric

(membership being determined by a single coordinate), though now with a small caveat: in the Boolean

hypercube [2]n with n odd, the family of vectors with more 1’s than 2’s is intersecting, of the maximum

possible size 2n−1, and invariant under all of Sn. However, this has no counterpart for k ≥ 3, where, even

without symmetry, it is known that the only extremal examples are the trivial ones (see [18]). In fact, a little
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thought suggests a more interesting possibility: might it be true that (for k ≥ 3) symmetric, intersecting

families must be much smaller? Our main purpose here is to show that this is indeed the case.

Before stating a precise result, we repeat, a little more formally the definition of symmetry. As above,

we use [n] for {1, 2, . . . , n}, and Sn for the symmetric group on [n], which acts on [k]n in the natural

way, namely (σ(x))i = xσ(i) for σ ∈ Sn and x ∈ [k]n. The automorphism group of A ⊂ [k]n is, as usual,

Aut(A) = {σ ∈ Sn : σ(A) = A}, and we say A ⊂ [k]n is symmetric if Aut(A) is a transitive subgroup of Sn.

Our main result is then as follows.

Theorem 1.1. There is a universal constant c > 0 such that the following holds : for each fixed k ≥ 3, if

A ⊂ [k]n is symmetric and intersecting, then |A| = O(kn/nc/k).

Perhaps surprisingly, even the simple and natural statement that A as in the theorem must have size

o(kn) seems resistant to elementary proof, and it may be that the more important point of this work is

its contribution to methodology. Giving us a starting point, Ellis and the third author [8], in resolving a

conjecture of Frankl [10] on symmetric 3-wise intersecting families, introduced the use of spectral machinery

for tackling problems in extremal set theory involving symmetry; this framework has since been successfully

adapted — see [7, 14] — to resolve other old extremal problems in the Boolean hypercube involving symmetry

constraints. Note, though, that this approach depends crucially on the interplay between up-sets, biased

product measures, and ‘sharp threshold’ behaviour, all features absent from the problem under consideration

here; for example, all of [8, 7, 14] start with the elementary observation that the p-biased measure of an

up-set in [2]n is monotone increasing in p, but even this fact that has no useful analogue in [k]n for k ≥ 3.

This situation is reminiscent of difficulties occasioned by a lack of useful notions of monotonicity in some

probabilistic contexts; see the ‘all blue’ problem of [19] for one particularly egregious example.

Here, one could, for example, try working in [k]n with the natural product order, but one is then confronted

with the following obstacles: compressing an intersecting family ‘upwards’ preserves the intersection condition

but not the automorphism group, while replacing a family by its ‘up-closure’ preserves symmetries but not

the intersection condition; furthermore, there appears to be no natural analogue in [k]n of the biased product

measures on [2]n that are at the heart of the arguments of [8, 7, 14].

Our (at first unpromising-looking) way around these barriers is to embed [k]n in a larger ‘covering space’,

a suitable product of posets, in which up-closure avoids the above difficulties, and on which appropriate

analogues of biased product measures may be constructed that still provide the leverage we need. Having

transferred our problem to this larger space, we deduce Theorem 1.1 using a suitable variant of the sharp

threshold theorem of Friedgut and Kalai [15], based, like the original, on the work of Bourgain, Kahn, Kalai,

Katznelson, and Linial [4].

The paper is organised as follows. In Section 2, we prove our variant of the Friedgut–Kalai sharp threshold

theorem for products of posets; the proof of Theorem 1.1 follows in Section 3. Finally, we conclude in Section 4

with a brief discussion of what might come next.

Remark. After a preliminary version of this manuscript was circulated, it was brought to our attention that

Theorem 1.1, with an estimate of o(kn) in place of O(kn/nc/k), may be deduced from the results of Dinur,

Friedgut and Regev [6] on independent sets in graph powers (from which it follows that any intersecting

family in [k]n is ‘essentially contained’ in an intersecting ‘junta’). While the main takeaway of this paper

might not be new, we believe that the methodology we adopt — which we see as our main contribution — is

interesting in its own right, having the potential to be brought to bear on other problems in extremal set

2



theory. Secondary benefits of our technique include both effective bounds, as well as short proofs not reliant

on the powerful machinery of [6, 16].

2. Biased measures on products of posets

We now present a general construction that is at the heart of our approach. In what follows, the reader

may find it helpful to keep p-biased product measures on the Boolean hypercube in mind.

Let (W,�) be a finite poset. We say that A ⊂ W is an up-set if x ∈ A and x � y imply y ∈ A. Recall,

for probability measures µ0 and µ1 on W , that µ1 (stochastically) dominates µ0 if µ1(A) ≥ µ0(A) for every

up-set A ⊂W . We extend this, saying that µ1 dominates µ0 with strength κ if

µ1(A)− µ0(A) ≥ κ (†)

for every up-set A ⊂ W other than ∅ and W . Given probability measures µ0 and µ1 on W , we consider

the interpolation from µ0 to µ1 — our analogue of biased product measures — obtained by taking µt =

(1− t)µ0 + tµ1 to be the measure at ‘time’ t ∈ [0, 1]. We need the following variant of the Friedgut–Kalai [15]

theorem; in what follows, as usual, if µ is a probability measure on W , then µn is the corresponding product

measure on Wn.

Theorem 2.1. Assume that A ⊂Wn is a symmetric up-set, µ0 and µ1 are probability measures on W , and

µ1 dominates µ0 with strength κ > 0. If 0 ≤ p < q ≤ 1 and µnp (A), µnq (A) ∈ [ε, 1− ε], then

q − p ≤ Cκ−1 log(1/2ε)/ log n,

where C > 0 is a universal constant.

Proof. We begin with a variant of the Margulis–Russo formula [20, 23], namely

d

dp
µnp (A) =

n∑
i=1

(µi−1p × (µ1 − µ0)× µn−ip )(A).

Next, recall that the influence IA,p(i) of a coordinate i is the probability that, for x ∼ µnp , changing the

value of xi can affect whether x ∈ A, i.e., the probability that the ‘slice’

Ai(x) = {w ∈W : (x1, . . . , xi−1, w, xi+1, . . . , xn) ∈ A}

is neither W nor ∅. By (†),
(µi−1p × (µ1 − µ0)× µn−ip )(A) ≥ κIA,p(i),

implying

d

dp
µnp (A) ≥ κ

n∑
i=1

IA,p(i).

On the other hand, as in [15], symmetry and [4] give

n∑
i=1

IA,p(i) = Ω(min(µnp (A), 1− µnp (A)) log n);

so, combining, we have
d

dp
µnp (A) = Ω(κmin(µnp (A), 1− µnp (A)) log n).

The stated inequality now follows by elementary calculus. �
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3. Proof of the main result

As in Theorem 1.1, we assume A ⊂ [k]n is symmetric and intersecting, and wish to show that |A| = o(kn).

In outline, the proof of this fact goes as follows.

(1) Enlarge [k]n to a space Wn, where W is a suitably chosen ‘covering poset’, equipped with an

appropriate µ0 and µ1.

(2) Use the fact that A is intersecting to conclude that its up-closure in Wn has µt-measure at most 1/2

for a suitable time t (in the interpolation from µ0 to µ1).

(3) Deduce from Theorem 2.1 that A must have been vanishingly small in the original space [k]n.

Proof of Theorem 1.1. Write [k](r) for the collection of r-subsets of [k], and let (W,�) be the poset

W = [k](1) ∪ [k](k−1),

with � defined by inclusion. We embed [k] in W by identifying [k] with [k](1) in the obvious way.

Let µ0 and µ1 be, respectively, the uniform (probability) measures on [k](1) and [k](k−1), and, as in

Section 2, set µt = (1− t)µ0 + tµ1, noting that µ1/2 is the uniform measure on W .

Claim 3.1. µ1 dominates µ0 with strength 1/k.

Proof. Let A ⊂W be a proper, nontrivial up-set. If A ⊂ [k](k−1) or A ⊃ [k](k−1), then it is clear that

(µ1 − µ0)(A) ≥ 1/k.

The only other possibilities are the ‘stars’

A = {{i}} ∪ ([k](k−1) \ {[k] \ {i}}),

for which we have

(µ1 − µ0)(A) = 1− 2/k ≥ 1/k. �

We now extend the notion of an intersecting family to Wn by saying that A ⊂Wn is intersecting if for

any x, y ∈ A, there is some i ∈ [n] such that xi ∩ yi 6= ∅.

Claim 3.2. If A ⊂Wn is intersecting, then µ1/2(A) ≤ 1/2.

Proof. Note that if x ∼ µ1/2, then we also have xc ∼ µ1/2, where xc = (x̄1, x̄2, . . . , x̄n) is the point-wise

complement of x. Since at most one of x and xc can belong to A, we have

2µ1/2(A) = E[|A ∩ {x, xc}|] ≤ 1. �

We may now finish as follows. Given A ⊂ [k]n symmetric and intersecting as in Theorem 1.1, let B be its

up-closure in Wn and notice that B is again symmetric and intersecting. Claim 3.2 thus gives µ1/2(B) ≤ 1/2,

so, applying Theorem 2.1 with p = 0, q = 1/2, ε = µ0(B) and κ = 1/k, we have

1/2 ≤ Cκ−1 log(1/2ε)/ log n,

or, rearranging,

|A|
kn

= µ0(B) ≤ n−κ/2C

2
= o(1). �
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4. Conclusion

The most obvious question raised by the present work is that of estimating more accurately — beyond the

o(kn) of Theorem 1.1 — how large a symmetric, intersecting subfamily of [k]n can really be (for k ≥ 3). The

best examples A that we know are set-intersecting, in the sense that there is a symmetric, intersecting family

B of subsets of [n] and an ` ∈ [k] such that x ∈ [k]n belongs to A if and only if there is some B ∈ B such that

xi = ` for all i ∈ B. For instance, if n = q2 + q + 1 with q a prime power, then we may take B to be the set

of lines of the classical projective plane PG(2, q) (see [25], for instance), yielding an A of size roughly kn−
√
n.

Note that the family consisting of all strings with 1’s in more than half the coordinates, the counterpart of

the exceptional example for [2]n mentioned in the introduction, does much worse.

It seems possible (but maybe impossible to prove) that the largest symmetric intersecting families in [k]n

are set-intersecting. Failing that, it would be very interesting to at least show that there are constants c, δ > 0

(possibly depending on k) such that for any symmetric intersecting A ⊂ [k]n, we have

logk |A| ≤ n− cnδ.

Finally, we expect that the main technical contribution of this paper — dealing with intersection problems

by situating them in a suitable covering space — will be applicable to further questions in extremal set theory;

we hope to return to this circle of ideas in future work.
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11. , Erdős-Ko-Rado theorem with conditions on the maximal degree, J. Combin. Theory Ser. A 46

(1987), 252–263. 1
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