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Abstract

For a graph G, its Tutte symmetric function XBG generalizes both the Tutte polynomial
TG and the chromatic symmetric function XG. We may also consider XB as a map from the
t-extended Hopf algebra G[t] of labelled graphs to symmetric functions.

We show that the kernel of XB is generated by vertex-relabellings and a finite set of modular
relations, in the same style as a recent analogous result by Penaguiao on the chromatic symmetric
function X . In particular, we find one such relation that generalizes the well-known triangular
modular relation of Orellana and Scott, and build upon this to give a modular relation of the
Tutte symmetric function for any two-edge-connected graph that generalizes the n-cycle relation
of Dahlberg and van Willigenburg. Additionally, we give a structural characterization of all local
modular relations of the chromatic and Tutte symmetric functions, and prove that there is no
single local modification that preserves either function on simple graphs.

1 Introduction

The Tutte symmetric function, introduced by Stanley [24], is a simultaneous extension of the Tutte
polynomial and the chromatic symmetric function of a graph. Both of these latter functions have
been and continue to be very well-studied. The Tutte polynomial is a universal deletion-contraction
polynomial for graphs, containing information on many important functions such as the chromatic
and flow polynomials, and very recently an entire handbook has been published cataloguing and
chronicling its relevant applications to graphs, and more generally to matroids [11]. The chromatic
symmetric function extends the chromatic polynomial by providing further information on graphs,
such as counting acyclic orientations by number of sinks [23], while also providing deep connections
to algebraic geometry [5, 21, 22]. Current research on the chromatic symmetric function focuses
on the Stanley-Stembridge conjecture that unit interval graphs are e-positive [7, 9, 10, 12], and the
conjecture that the function distinguishes nonisomorphic trees [3, 13].

In contrast, the Tutte symmetric function has received very little attention since its creation.
Although it has been shown to be equivalent to other graph functions such as the W -polynomial
[17], the polychromate [16, 20], and the (r, q)-chromatic function [14], little is known about its
expansions in symmetric function bases or what structural information it encodes about a graph
beyond what the chromatic symmetric function already does. Recently the authors, Aliste-Prieto,
and Zamora considered a vertex-weighted version [2], and used this to find a deletion-contraction
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relation and a spanning tree formula that are reminiscent of similar well-known results for the Tutte
polynomial. In this same work, the authors also explored how to construct pairs of graphs with
equal Tutte symmetric function.

In this paper, we build on [2]. After giving background on symmetric function theory and graph
colorings in Section 2, we proceed in Section 3 to consider X and XB as maps from formal linear
combinations of vertex-labelled graphs to symmetric functions, and give a structural characteriza-
tion of all combinations in Ker(XB) that are universal in the sense that they remain in Ker(XB)
even upon adding arbitrary vertices and edges uniformly to all graphs in the combination. In other
words, we characterize all ways to locally modify subgraphs of any larger graph in a way that
preserves XB. We also provide such a characterization for Ker(X), which allows us to prove that
there is no single local modification that will transform a graph into another distinct graph with
the same chromatic symmetric function (much less Tutte symmetric function).

Finally, in Section 4, we determine Ker(XB) as the span of an explicit set of generators;
equivalently, we give a finite number of local modifications such that any two graphs with the same
Tutte symmetric function are related by a finite number of these modifications. Notably, one of
these relations is a generalization of the triangular relation of Orellana and Scott [18], which may
be used to derive a simple relation for X or XB that is applicable to a broader range of cases.
Additionally, we give a related modular relation that applies to any two-edge-connected graph,
yielding a result that also generalizes the n-cycle modular relation for the chromatic symmetric
function given by Dahlberg and van Willigenburg [10].

+ − −

Figure 1: A relation in the kernel of XB also valid for X

2 Background

2.1 Fundamentals of Partitions and Symmetric Functions

A set partition of a set S is a collection of nonempty, pairwise nonintersecting blocks B1, . . . , Bk

satisfying B1 ∪ · · · ∪ Bk = S. We will specify that a union of blocks is a set partition by writing
⊔ for disjoint union, using the notation B1 ⊔ · · · ⊔ Bk. We will frequently consider partitions of
the set {1, 2, . . . , n} = [n]. When n is clear, for shorthand, we will write p(i11 . . . i1k1 , i21 . . . i2k2 ,
. . . , im1 . . . imkm) to denote the partition of [n] whose blocks are all singletons except for {i11, . . . i1k1},
{i21 . . . i2k2}, . . . , {im1, . . . , imkm}. For example, when n = 6, we write p(13, 26) to mean the set
partition {1, 3} ⊔ {2, 6} ⊔ {4} ⊔ {5}.

An integer partition is a tuple λ = (λ1, . . . , λk) of positive integers such that λ1 ≥ · · · ≥ λk.
The integers λi are the parts of λ. If

∑k
i=1 λi = n, we say that λ is a partition of n. The number

of parts equal to i in λ is given by ri(λ).
We may use simply partition to refer to either a set or integer partition. We write π ⊢ [n] or

λ ⊢ n to mean respectively that π is a partition of [n], and λ is a partition of n, and we write
|λ| = |π| = n. The number of blocks or parts is the length of a partition, and is denoted by l(π) or
l(λ). When π is a set partition, we will write λ(π) to mean the integer partition whose parts are
the sizes of the blocks of π.
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A function f(x1, x2, . . . ) ∈ C[[x1, x2, . . . ]] is symmetric1 if f(x1, x2, . . . ) = f(xσ(1), xσ(2), . . . )
for every permutation σ of the positive integers N. The algebra of symmetric functions Λ is
the subalgebra of C[[x1, x2, . . . ]] consisting of those symmetric functions f that are of bounded
degree (that is, there exists a positive integer n such that every monomial of f has degree ≤ n).
Furthermore, Λ is a graded algebra, with natural grading

Λ =

∞⊕

d=0

Λd

where Λd consists of symmetric functions that are homogeneous of degree d [15, 25].
Each Λd is a finite-dimensional vector space over C, with dimension equal to the number of

partitions of d (and thus, Λ is an infinite-dimensional vector space over C). Some commonly-used
bases of Λ that are indexed by partitions λ = (λ1, . . . , λk) include:

• The monomial symmetric functions mλ, defined as the sum of all distinct monomials of the
form xλ1

i1
. . . xλk

ik
with distinct indices i1, . . . , ik.

• The power-sum symmetric functions, defined by the equations

pn =
∞∑

k=1

xnk , pλ = pλ1pλ2 . . . pλk
.

• The elementary symmetric functions, defined by the equations

en =
∑

i1<···<in

xi1 . . . xin , eλ = eλ1eλ2 . . . eλk
.

We also make use of the augmented monomial symmetric functions, defined by

m̃λ =

(
∞∏

i=1

ri(λ)!

)
mλ.

Given a symmetric function f and a basis b of Λ, we say that f is b-positive if when we write
f in the basis b, all coefficients are nonnegative.

2.2 Fundamentals of Graphs and Colorings

A graph G = (V,E) consists of a vertex set V and an edge multiset E where the elements of E
are (unordered) pairs of (not necessarily distinct) elements of V . An edge e ∈ E that contains the
same vertex twice is called a loop. If there are two or more edges that each contain the same two
vertices, they are called multi-edges. A simple graph is a graph G = (V,E) in which E does not
contain loops or multi-edges (thus, E ⊆

(
V
2

)
). If {v1, v2} is an edge (or nonedge), we will write it

as v1v2 = v2v1. The vertices v1 and v2 are the endpoints of the edge v1v2. We will use V (G) and
E(G) to denote the vertex set and edge multiset of a graph G, respectively.

Two graphs G and H are said to be isomorphic if there exists a bijective map f : V (G) → V (H)
such that for all v1, v2 ∈ V (G) (not necessarily distinct), the number of edges v1v2 in E(G) is the
same as the number of edges f(v1)f(v2) in E(H).

1The choice of coefficient ring is irrelevant for the work in this paper so long as it is a field of characteristic 0.
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The complement of a simple graph G = (V,E) is denoted G, and is defined as G = (V,
(V
2

)
\E),

so in G every edge of G is replaced by a nonedge, and every nonedge is replaced by an edge.
For a vertex v ∈ V (G), its degree d(v) is the number of times v occurs as an endpoint of an

edge in E(G) (thus a loop at v adds 2 to the degree).
A subgraph of a graph G is a graph G′ = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E|V ′ , where E|V ′ is

the set of edges with both endpoints in V ′. An induced subgraph of G is a graph G′ = (V ′, E|V ′)
with V ′ ⊆ V . The induced subgraph of G using vertex set V ′ will be denoted G|V ′ . A stable set
of G is a subset V ′ ⊆ V such that E|V ′ = ∅. A clique of G is a subset V ′ ⊆ V such that for every
pair of distinct vertices v1 and v2 of V ′, v1v2 ∈ E(G).

A path in a graph G is a nonempty sequence of edges v1v2, v2v3, . . . , vk−1vk such that vi 6= vj
for all i 6= j. The vertices v1 and vk are the endpoints of the path. A cycle in a graph is a nonempty
sequence of distinct edges v1v2, v2v3, . . . , vkv1 such that vi 6= vj for all i 6= j. Note that in a simple
graph every cycle must have at least 3 edges, although in a nonsimple graph there may be cycles
of size 1 (a loop) or 2 (multi-edges).

A graph G is connected if for every pair of vertices v1 and v2 of G there is a path in G with v1
and v2 as its endpoints. The connected components of G are the maximal induced subgraphs of G
which are connected. The number of connected components of G will be denoted by c(G).

The complete graph Kn on n vertices is the unique simple graph having all possible edges, that
is, E(Kn) =

(V
2

)
where V = V (Kn). The path graph Pn is the graph that consists of only an

n-vertex path, and the cycle graph Cn is the graph that consists only of an n-vertex cycle.
Given a graph G, there are two commonly used operations that produce new graphs. One is

deletion: given an edge e ∈ E(G), the graph ofG with e deleted is the graphG′ = (V (G), E(G)\{e}),
and is denoted G\e or G− e. Likewise, if S is a multiset of edges, we use G\S or G− S to denote
the graph (V (G), E(G)\S).

The other operation is the contraction of an edge e = v1v2, denoted G/e. If v1 = v2 (e is a
loop), we define G/e = G\e. Otherwise, we create a new vertex v∗, and define G/e as the graph
G′ with V (G′) = (V (G)\{v1, v2}) ∪ v∗, and E(G′) = (E(G)\E(v1 , v2)) ∪ E(v∗), where E(v1, v2)
is the set of edges with at least one of v1 or v2 as an endpoint, and E(v∗) consists of each edge
in E(v1, v2)\e with the endpoint v1 and/or v2 replaced with the new vertex v∗. Note that this
is an operation on a (possibly nonsimple) graph that identifies two vertices while keeping and/or
creating multi-edges and loops.

Let G = (V (G), E(G)) be a (not necessarily simple) graph. A map κ : V (G) → N>0 is called a
coloring of G. This coloring is called proper if κ(v1) 6= κ(v2) for all v1, v2 such that there exists an
edge e = v1v2 in E(G). The chromatic symmetric function XG of G is defined as [23]

XG(x1, x2, . . . ) =
∑

κ proper

∏

v∈V (G)

xκ(v) =
∑

π stable

m̃λ(π)

where the first sum ranges over all proper colorings κ of G, and the second sum ranges over all
(set) partitions of V (G) into stable sets. Note that if G contains a loop then XG = 0, and XG is
unchanged by replacing each multi-edge by a single edge.

The Tutte (or bad-coloring) symmetric function XBG is defined as an element of Λ[t] (the ring
of symmetric functions with coefficients in C[t]) as [2, 23]

XBG(t;x1, x2, . . . ) =
∑

κ

(1 + t)e(κ)
∏

v∈V (G)

xκ(v) =
∑

π

(1 + t)e(π)m̃λ(π)

where the first sum ranges over all colorings of G (not just the proper ones) letting e(κ) be the
number of edges of G whose endpoints receive the same color from κ, and the second sum ranges
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over all (set) partitions of V (G) (not just the stable ones), letting e(π) be the number of edges of
G whose endpoints lie in the same block of π.

Note that unlike XG, the Tutte symmetric function is affected by multi-edges and is not an-
nihilated by loops. Furthermore, it is easy to verify that setting t = −1 in the Tutte symmetric
function recovers the chromatic symmetric function.

2.3 Vertex-Weighted Graphs and their Colorings

A vertex-weighted graph (G,w) consists of a graph G and a weight function w : V (G) → N>0. For
any S ⊆ V (G) we will denote w(S) =

∑
v∈S w(v).

Given a vertex-weighted graph (G,w) and a non-loop edge e = v1v2 ∈ E(G) we define its
contraction by e to be the graph (G/e,w/e), where w/e is the weight function such that (w/e)(v) =
w(v) if v is not the contracted vertex v∗, and (w/e)(v∗) = w(v1) + w(v2) (if e is a loop, we define
the contraction of (G,w) by e to be (G\e, w)).

The chromatic symmetric function may be extended to vertex-weighted graphs as

X(G,w) =
∑

κ proper

∏

v∈V (G)

x
w(v)
κ(v) =

∑

π stable

m̃λ(π)

where again the sum ranges over all proper colorings κ of G, and λ(π) is the integer partition whose
parts are {w(πi) : πi is a block of π}. In this setting the chromatic symmetric function admits the
deletion-contraction relation2 [8]

X(G,w) = X(G\e,w) −X(G/e,w/e). (1)

Similarly, the Tutte symmetric function may be extended as

XB(G,w) =
∑

κ

(1 + t)e(κ)
∏

v∈V (G)

x
w(v)
κ(v) =

∑

π

(1 + t)e(π)m̃λ(π)

and it may be shown that this function satisfies the deletion-contraction relation [2]

XB(G,w) = XB(G\e,w) + tXB(G/e,w/e). (2)

3 Characterizing the Modular Relations of the Chromatic and

Tutte Symmetric Functions

Consider G as the Hopf algebra of graphs with vertex set [n] for some n ≥ 1 (taken together
with a zero graph). Then G is a vector space over C freely generated by these graphs, and its
elements are formal sums of such labelled graphs. By extending it linearly, we may view the
chromatic symmetric function X as a linear transformation from G to Λ. Thus, determining the
extent to which the chromatic symmetric function distinguishes graphs is essentially equivalent to
determining the kernel of the map X.

In [19], Penaguiao determined exactly which elements of G generate the kernel of X : G → Λ.
In the next section, we provide a similar argument to find a generating set for the kernel of XB :
G[t] → Λ[t] as a map3.

2This deletion-contraction relation was used in equivalent form for the Hopf algebra of vertex-weighted graphs by
Chmutov, Duzhin, and Lando [6], and for the W -polynomial by Noble and Welsh [17].

3Here G[t] consists of (equivalently) polynomials in t with coefficients in G, or formal linear combinations of
vertex-labelled graphs with coefficients in C[t].
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Before this, we first introduce in this section new terminology and structural theorems that will
aid in our description and its proof. For brevity, if G is a graph and E is a set of edges whose
endpoints are a subset of V (G), we will use G ⊎E to mean (V (G), E(G) ⊎E), where ⊎ represents
the disjoint union of multisets in which we add all copies of each element from both sets (so if an
edge uv occurs m times in E(G) and n times in E, it occurs m+ n times in E(G) ⊎ E).

Definition 1. Let H1, . . . ,Hk be graphs with vertex set [n]. Given a linear combination L =
c1(t)H1 + · · ·+ ck(t)Hk ∈ G[t] and a graph G on [N ] with N ≥ n, we define the extension of L by
G as

Ext(L;G) = c1(t)(G ⊎ E(H1)) + · · ·+ ck(t)(G ⊎ E(Hk)).

Definition 2. A linear combination L ∈ G[t] of graphs with vertex set [n] is a modular relation
for XB if for every graph G with vertex set [N ] for N ≥ n, we have that Ext(L;G) ∈ Ker(XB).

Analogously, a linear combination l ∈ G of graphs with vertex set [n] is a modular relation for
X if for every graph G with vertex set [N ] for N ≥ n, we have that Ext(l;G) ∈ Ker(X).

The intuitive method used by Penaguaio and used in this paper to determine the kernel of a
function f from a graph algebra to a vector space is to use local modifications of certain small
(constant-size) subgraphs of any larger graph G to give a combination

∑
ciGi of graphs such

that f(G) = f(
∑

ciGi), regardless of the size or structure of the rest of the graph G (or how it
connects to the subgraphs). It then suffices to find enough such modifications to transform any
linear combination of graphs to one in which each graph lies in the preimage of some fixed basis
of the image space. The concept of modular relations gives a formal framework for describing all
such local graph modifications. Thus, to aid in finding a generating set for the kernel of XB, we
proceed now to give a structural characterization of its modular relations. We will need an auxiliary
definition:

Definition 3. An element L ∈ G[t] is said to be written in Tutte standard form when we write it
as

L =
k∑

i=1

ci(1 + t)niHi

with ci ∈ C, ni a nonnegative integer, and Hi a graph for all i such that for i1 6= i2, (ni1 ,Hi1) 6=
(ni2 ,Hi2).

Note that some of the Hi can be identical. It is clear that each L may be written uniquely
in Tutte standard form (up to the order of the terms). We now characterize modular relations of
XB4:

Theorem 4. Let L =
∑k

i=1 ci(1 + t)niHi be an element of G[t] with each Hi a graph with vertex
set [n], written in Tutte standard form. Then L is a modular relation for XB if and only if for
every partition π ⊢ [n] we have

B(L;π) :=

k∑

i=1

ci(1 + t)ni+eHi
(π) = 0 (3)

where we recall that eHi
(π) is the number of edges of Hi with both endpoints in the same block of

π.
4The following theorem and proof may be easily modified to accommodate vertex weights, although we will not

need this in what follows.
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Proof. First, we show that if B(L;π) = 0 for all π ⊢ [n], then L is a modular relation for XB. Let
G be any graph with vertex set [N ] for N ≥ n. For π ⊢ [N ], let π′ ⊢ [n] be the partition whose
blocks are the nonempty intersections of blocks of π with [n]. Then

XB(Ext(L;G)) =

k∑

i=1

ci
∑

π⊢[N ]

(1 + t)ni+eG⊎E(Hi)
(π)m̃λ(π) =

k∑

i=1

ci
∑

π⊢[N ]

(1 + t)ni+eG(π)+eHi
(π′)m̃λ(π)

=
∑

π⊢[N ]

(1 + t)eG(π)m̃λ(π)

(
k∑

i=1

ci(1 + t)ni+eHi
(π′)

)
= 0

so Ext(L;G) ∈ Ker(XB) for all G, and so L is a modular relation for XB.
Now, we show that if B(L;π) = 0 does not hold for all π ⊢ [n], then L is not a modular

relation for XB. Thus it suffices to find a graph G with V (G) = [N ] for some N ≥ n such
that Ext(L;G) /∈ Ker(XB). In what follows, let π∗ = π∗

1 ⊔ · · · ⊔ π∗
l(π∗) be a particular choice

of π ⊢ [n] such that B(L;π∗) 6= 0 and let a be some particular nonnegative integer such that
[(1 + t)a]B(L;π∗) 6= 0. Let M = l(π∗)(1 + maxi{ni + eHi

(π∗)}), and note that a < M
l(π∗) . We

construct the counterexample graph G as follows:
The vertex set of G will be [n+Ml(π∗)]. We will view V (G) as the disjoint union of the base

vertex set [n] and clouds C1, . . . , Cl(π∗), where Ci = [n+M(i− 1) + 1, n+Mi]. The edges of E(G)
consist of a single instance each of

• All possible edges connecting a vertex of Ci to a vertex of π∗
j with i 6= j.

• All possible edges connecting a vertex of Ci to a vertex of Cj with i 6= j.

We claim that Ext(L;G) /∈ Ker(XB). More specifically, if λ∗ = (λ(π∗)1 +M, . . . , λ(π∗)l(π∗) +
M), we claim that [(1 + t)am̃λ∗ ]XB(Ext(L;G)) 6= 0. We evaluate this as

[(1 + t)am̃λ∗ ]XB(Ext(L;G)) =
k∑

i=1

ciNi(a)

whereNi(a) is the number of partitions π ⊢ [n+Ml(π∗)] with λ(π) = λ∗ such that ni+eG⊎Hi
(π) = a.

It suffices to show that for each i the only partition π ⊢ [n + Ml(π∗)] with type λ∗ and
eG⊎Hi

(π) ≤ a is the partition with blocks π∗
1 ∪ C1, . . . , π

∗
l(π∗) ∪ Cl(π∗), since if so

[(1 + t)am̃λ∗ ]XB(Ext(L;G)) =
k∑

i=1

ciNi(a) = [(1 + t)a]B(L;π∗) 6= 0.

Thus, we fix an arbitrary i and show the claim. Let us consider a fixed partition p ⊢ [n+Ml(π∗)]
with type λ∗ and eG⊎Hi

(p) ≤ a. The vertices of the cloud C1 are distributed into the l(π∗) blocks
of p, so some block B1 contains at least M/l(π∗) > a vertices of C1. If this block B1 contained
any vertex v ∈ Ci with i 6= 1, then as v is connected with every vertex in C1, we would have
eG⊎Hi

(p) > a, a contradiction. Thus, B1 contains no vertices from any cloud other than C1.
Likewise, the vertices of the cloud C2 are distributed in such a way that some block B2 of π
contains at least M/l(π∗) vertices of C2. Clearly B1 6= B2, and using the same argument as above
we find that B2 cannot contain vertices from any cloud other than C2. Continuing in this manner
we find that our partition p must consist of block B1, . . . , Bl(π∗) such that all vertices of Ci are in
Bi for each i. Thus, the partition p necessarily filters the clouds each into their own block.

7



Now, if v ∈ π∗
i , and v ∈ Bj with i 6= j, then since v is connected to every vertex of Cj, we have

eG⊎Hi
(p) ≥ M > a, a contradiction, so in fact for each i, all vertices of π∗

i must go into Bi. Thus,
the only possibility for the partition p is exactly the one with blocks π∗

1 ∪C1, . . . , π
∗
l(π∗) ∪Cl(π∗), so

we are done.

We may also show the following:

Corollary 5. Let l =
∑k

i=1 ciHi be an element of G with each Hi a graph with vertex set [n] for
some positive integer n. Then l is a modular relation for X if and only if for every partition π ⊢ [n],

C(l;π) =
k∑

i=1

ciδeHi
(π),0 = 0.

Proof. If C(l;π) = 0 for all π, then for any graph G on [N ] with N ≥ n we have (again denoting
by π′ ⊢ [n] the partition whose blocks are the nonempty intersections of the blocks of π ⊢ [N ] with
[n])

X(Ext(l;G)) =

k∑

i=1

ci
∑

π⊢[N ]

(δeG⊎E(Hi)
(π),0)m̃λ(π) =

k∑

i=1

ci
∑

π⊢[N ]
eG(π)=0

(δeHi
(π′),0)m̃λ(π)

=
∑

π⊢[N ]
eG(π)=0

m̃λ(π)

(
k∑

i=1

ciδeHi
(π),0

)
= 0

so l is a modular relation for X.
Conversely, if there exists π such that C(l;π) 6= 0, then we may construct G as in the proof

of Theorem 4 and verify using the same arguments that X(Ext(l;G)) 6= 0, so l is not a modular
relation for X.

Corollary 6. Given L ∈ G[t] such that all graphs in L have vertex set [n], let L∗ ∈ G be obtained
by setting t = −1 in L. Then if L is a modular relation for XB, L∗ is a modular relation for X.

Proof. This follows since for any π ⊢ [n], if B(L;π) = 0 in the statement of Theorem 4, then also
C(L∗;π) = 0 in the statement of Corollary 5.

Among other things, these theorems allow us to formally demonstrate that there is no single
local relation that preserves the chromatic symmetric function:

Corollary 7. Let H1 and H2 be distinct simple graphs with vertex set [n]. Then H1 −H2 is never
a modular relation for X (and thus not for XB).

Proof. As H1 and H2 are distinct, there exists an edge ij and k ∈ {1, 2} such that ij ∈ Hk and
ij /∈ H3−k. Then C(H1 − H2; p(ij)) 6= 0 (where we recall p(ij) is the partition of [n] whose only
nonsingleton block is {i, j}), so we are done by Corollary 5.
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Thus, the best we can do to get a two-term “modular relation” for either X or XB is an
argument akin to Theorem 4.2 from [18] or Theorem 11 from [2] that gives such relations for
graphs with some guaranteed nice structure (in these cases, a symmetry). Note also that Corollary
7 holds and gives a nonzero element of G[t] even when H1 and H2 are isomorphic. Since in this
case clearly H1 − H2 ∈ Ker(XB), this immediately implies that the set of modular relations of
XB is a proper subset of Ker(XB) (and likewise for X).

4 The Kernel of XB

As an illustration of how to use the new terminology of Section 3 and to highlight the similarities
to our later characterization of Ker(XB), we now provide Penaguaio’s characterization of Ker(X)
[19].

Definition 8. Let G be a labelled graph.

• If H is a labelled graph such that G and H are isomorphic as unlabelled graphs, define

ℓiso(G,H) = G−H.

• Let G be the graph with V (G) = [3], and E(G) = {12, 13, 23}. Define

ℓos = G−G\{12} −G\{13} +G\{12, 13}.

2 3

1

−

2 3

1

−

2 3

1

+

2 3

1

Figure 2: ℓos

Furthermore, let Tiso ⊆ G be the set of all elements that may be written as ℓiso(G,H) for some
graphs G and H, and let Tos ⊆ G be the set of all extensions Ext(ℓos;G) for some G.

The relation ℓos is so named because it was originally discovered by Orellana and Scott as the
first known modular relation for the chromatic symmetric function [18] (which is easy to verify using
Corollary 5). Penaguaio shows that any single graph in G (with coefficient 1) may be expressed as
a linear combination of complete multipartite graphs by repeatedly adding only elements of Tiso

and Tos [19]. Since the set of chromatic symmetric functions of these graphs forms a basis for Λ
(see [1]), this is sufficient to show the following:

Theorem 9 ([19], Theorem 2). Let IX ⊆ G be the set of all linear combinations of elements of Tiso,
and let OS be the set of all linear combinations of elements of Tos. Then span(IX , OS) = Ker(X).
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We give an analogous result for the Tutte symmetric function using the basis of star forests,
which we define here.

The star Sk on k vertices is the simple connected graph where one vertex has degree k − 1,
and all other vertices have degree 1. A star with three or more vertices is said to be rooted at its
vertex of largest degree. If λ is an integer partition, the star forest Sλ is the graph with connected
components Sλ1 , . . . , Sλl(λ)

. It is known (e.g. by [1]) that {X(Sλ)|λ an integer partition} is a basis
for Λ.

In our proof, we will need the following auxiliary lemma:

Lemma 10. Let G be a simple graph with vertex set [n]. Suppose that for any three distinct vertices
a < b < c of G, we have either

• {ab, ac, bc} ∩ E(G) ≤ 1, or

• {ab, ac, bc} ∩ E(G) = {ac, bc}.

Then G is a star forest, and furthermore, each induced star S of G with three or more vertices
is rooted at its largest vertex.

Proof. Note that our condition ensures that no vertex has two distinct neighbors that are greater
than it. Thus, G cannot contain a cycle, since then the least vertex in the cycle would violate this.
We may conclude then that G is a forest.

Now, let C be an arbitrary connected component of G, and let v0 be the largest vertex in C.
Suppose that there exists v ∈ V (C) − v0 such that vv0 /∈ E(G). Then, as C is a tree, there is a
unique path from v to v0 containing at least one vertex other than v and v0. Let v1 be the vertex
in this path that is adjacent to v0, and let v2 be the other vertex of the vv0 path that v1 is adjacent
to (it may be v). Then the triple {v1, v2, v0} violates our condition, since {v1v2, v1v0, v2v0} ∩E(G)
contains at least two edges, and they are not the two edges incident to the largest vertex v0. This
is a contradiction, and it follows that for every v ∈ V (C)− v0, we have vv0 ∈ E(G). Since C is a
tree, this accounts for all edges of C, and the result follows.

Since we will use star forests of the specific type given in Lemma 10 throughout our next proof,
we will give them a name. A graph G with vertex set [n] is called a bright star forest if every
induced star is rooted at its largest vertex. If G is not a bright star forest, it is called dull.

We now introduce the modular relations that will generate Ker(XB) (all defined terms are
elements of G[t]):

Definition 11. • Let G1 be the graph with vertex set [1] and edge set {11} (so G1 contains just
a loop at this vertex). Define

ℓloop = G1 − (t+ 1)G1\{11}

• Let G2 be the graph with vertex set [2] and edge set {e1 = e2 = 12} (so G has two edges
between two vertices). Define

ℓmulti = G2 − (t+ 2)G2\{e2}+ (t+ 1)G2\{e1, e2}.

10



1
− (t+ 1)

1

Figure 3: ℓloop

1 2
− (t+ 2)

1 2
+ (t+ 1)

1 2

Figure 4: ℓmulti

• Let G3 be the graph with vertex set [3] and edge set {12, 23}. Define

ℓos+ = G3 +Gc
3 −G3\{23} − (G3\{23})

c.

2 3

1

+

2 3

1

−

2 3

1

−

2 3

1

Figure 5: ℓos+

Furthermore, let Tloop ⊆ G[t] be the set of all elements that are equal to Ext(ℓloop;G) for some
choice of G and likewise for Tmulti and Tos+.

Note that unlike in the case of simple graphs, since we are considering these relations for
multigraphs, we only require the edges listed to be present, but there can be multiple copies of
these edges, as well as possibly other edges not among those listed. In particular, it is worth noting
that the relation given by ℓos+ is quite powerful, since it may be applied whenever there are three
vertices with at least two (distinct) edges among them; all three distinct edges may be present if we
don’t restrict to simple graphs. In fact, the extension of ℓos+ to the complete graph on the vertex
set [3] with all multi-edges reduced to single edges is precisely (up to isomorphism) ℓos, so we may
view ℓos+ as a generalization of this relation that is valid for XB, hence the choice of notation.

Theorem 12. Define subsets I, S1, S2 ⊆ G[t] as follows:

• Let I be the set of all linear combinations of elements of Tiso.

• Let S1 be the set of all linear combinations of elements of Tloop ∪ Tmulti.

• Let S2 be the set of all linear combinations of elements of Tos+.

Then Span(I, S1, S2) = Ker(XB).

11



Proof. First, it is easy to verify that Span(I, S1, S2) ⊆ Ker(XB). Clearly by definition I ⊆
Ker(XB), and using Theorem 4 every element of S1 and S2 may be seen to be a modular relation
for XB.

It remains to show that Ker(XB) ⊆ Span(I, S1, S2). We will do so by taking an arbitrary
element k ∈ Ker(XB) and show that there exist i ∈ I, s1 ∈ S1, s2 ∈ S2 such that k−i−s1−s2 = 0,
from which it will follow that k = i+ s1 + s2 ∈ Span(I, S1, S2).

The key observation is that for every single graph G ∈ G[t] (with coefficient 1), we may add
elements of I, S1, and S2 to it to turn it into a linear combination of bright star forests. We will
do this in a step-by-step process. First, if G has a loop at a vertex v, we add an element of I to
relabel and get a graph G0 with a loop at 1, and then subtract Ext(ℓloop;G0) to obtain a linear
combination of graphs with no loop at 1 (from here on out, we will simply use “relabel G” to
formally mean subtracting an appropriate element of I as here, and simply keeping the same name
G for the resulting graph for brevity). If G has other loops, continue this process of subtracting
terms from Tiso and Tloop until G is expressed as a linear combination L1 of loopless graphs. Now,
for each term c1G1 in L1 that has multiple edges between two vertices v1 and v2, we relabel G1 and
subtract Ext(ℓmulti;G1) to obtain a linear combination of loopless graphs with fewer edges between
v1 and v2. Continuing in this manner, by only subtracting terms from I and S1, we may reduce G
to a linear combination L2 of simple graphs.

Now, we will subtract elements of I, S1, and S2 to write L2 as a linear combination of bright
star forests. It suffices to show that we can do this for any simple graph (with coefficient 1). We will
show this by considering a partial order � on the (finite) set of all simple graphs with vertex set [n].
For an edge e in such a graph, define its right endpoint to be the larger of its two endpoints. Let
r1(G), . . . , r|E(G)|(G) be the list of right endpoints of G with multiplicity, where r1 ≤ · · · ≤ r|E(G)|.
Then for two graphs G1 and G2 with vertex set [n], we define G1 � G2 if and only if

• G1 has more edges than G2, or

• G1 and G2 have the same number E of edges, and there exists i ∈ [E] such that rj(G1) =
rj(G2) for all j < i, and ri(G1) < ri(G2).

We claim that any simple graph H with vertex set [n] that is not a bright star forest may be
written as a linear combination of graphs H1, . . . ,Hk such that H ≺ Hi for all i ∈ [k]. If H is such
a graph, then it necessarily has three vertices h1 < h2 < h3 that are in violation of the conditions
of Lemma 10. Relabelling without changing the order, we may temporarily let these be 1 < 2 < 3.

Case 1: {12, 13, 23} ∩ E(H) = {12, 13}. Then we subtract the element obtained by relabelling
each graph of Ext(ℓos+;H) by swapping 1 and 2.

1 3

2

+

1 3

2

−

1 3

2

−

1 3

2

Figure 6: Case 1 - Subtracting the extension of this term has the effect of locally changing the
configuration shown in the left graph to a linear combination of the other three.

Case 2: {12, 13, 23} ∩E(H) = {12, 23}. Then we subtract Ext(ℓos+;H).
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2 3

1

+

2 3

1

−

2 3

1

−

2 3

1

Figure 7: Case 2 - As above, the configuration in the left-hand graph is turned into a linear
combination of those in the other graphs.

Case 3: {12, 13, 23}∩E(H) = {12, 13, 23}. Then we subtract the element obtained by relabelling
each graph of Ext(ℓos+;H) by swapping 1 and 2. We further subtract elements of I and S1 to turn
multi-edges into a single edge as applicable.

1 3

2

+

1 3

2

−

1 3

2

−

1 3

2

Figure 8: Case 3 - Same as the other two cases, except that we then remove the multi-edges as
well.

Regardless of which case was used, we relabel again to restore the vertices to h1 < h2 < h3. In
all cases, we will have subtracted elements of I, S1, and S2 from H to obtain a linear combination
of three other graphs H1, H2, and H3, and it is easy to check that indeed H ≺ H1, H ≺ H2 and
H ≺ H3 all hold. Now, as long as any of the Hi still remain dull, we may apply this process again
to each such graph. Since each application of this process produces graphs that are strictly larger
in a finite poset, this process must terminate after a finite number of applications, necessarily in a
linear combination of bright star forests.

Returning to the main proof, we have now demonstrated that for any G ∈ G[t] with vertex set
[n], we may subtract elements of I, S1, and S2 to write G as a linear combination L3 of bright star
forests.

Now, for each integer partition λ ⊢ n, we choose a canonical bright star forest with vertex
set [n] by defining Rλ to be the star forest such that the stars are induced by the vertex sets
{1, . . . , λ1}, {λ1 + 1 . . . , λ1 + λ2}, . . . , {|V (G)| − λl + 1, . . . , |V (G)|}, and each star is rooted at its
largest vertex. By subtracting further elements of I, we may rewrite L3 so that every graph that
occurs is one of the Rλ, and thus L3 may be written as L4 =

∑
λ,k cλ,k(1+t)kRλ for some cλ,k ∈ C[t].

Now, let k ∈ Ker(XB) be arbitrary. Then we have shown that there exist i ∈ I, s1 ∈ S1, s2 ∈
S2 such that k − i − s1 − s2 is a linear combination of terms of the form (1 + t)kRλ, and also
k − i− s1 − s2 ∈ Ker(XB). By e.g. [1], the functions X(Rλ) form a basis for Λ; it is then easy to
check that the functions {(1 + t)kX(Rλ)|k ∈ N, λ an integer partition} form a basis for Λ[t]. Thus,
if L is a finite linear combination of terms of the form (1 + t)kRλ such that L ∈ Ker(XB), then
L = 0. Thus, it must be the case that k − i− s1 − s2 = 0, and this finishes the proof.5

5It is possible to use a similar argument to show that considering X and XB as functions from the algebra of
labelled, vertex-weighted graphs, their kernels are generated by isomorphisms and those relations arising from the
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Essentially, this shows that Ker(XB), after adding generators to remove loops and multi-edges,
is generated by isomorphisms and a natural extension of the Orellana-Scott triangular relation to
XB.

The modular relation ℓos for X may be generalized to n-cycles, as by Dahlberg and van Willi-
genburg [10], so it is natural to ask if there is a cycle analogue of ℓos+ and if it may be generalized.
We go a step further, and work with a more general graph class than cycles.

A graph G is called two-edge-connected if it is connected, and also G− e is connected for every
edge e ∈ E(G). Equivalently, whenever there is a partition of V (G) into two nonempty blocks B1

and B2, there are at least two edges that have one endpoint in B1 and one endpoint in B2.

Theorem 13. Let G be a two-edge-connected graph with vertex set [n], and let ei and ej be two
(not necessarily distinct) edges of G. For S ⊆ E(G), let S also be used in a slight abuse of notation
to mean the graph with vertex set [n] and edge set S. Then

∑

S⊆E(G)
ei∈S

(−1)|S|S + (1 + t)
∑

S⊆E(G)
ej /∈S

(−1)|S|S

is a modular relation for XB.

Proof. By applying Theorem 4, it suffices to show that for each π ⊢ V (G), we have that

∑

S⊆E(G)
ei∈S

(−1)|S|(1 + t)eS(π) +
∑

S⊆E(G)
ej /∈S

(−1)|S|(1 + t)eS(π)+1 = 0.

First, we consider the case where π has more than one part. Give some arbitrary total ordering
to the edges of G. By assumption, since π has more than one part, there are at least two edges
whose endpoints do not lie in the same block of π, and thus at least one such edge that is not ei.
Among these, choose the smallest edge with respect to the ordering; let this edge be ǫ. Let Ei

denote the set of subsets of E(G) that contain ei. Then we have an involution ι : Ei → Ei given
by ι(S) = S ∪ ǫ if S does not contain ǫ, and otherwise ι(S) = S − ǫ. Clearly |S| and |ι(S)| differ by
one, and eS(π) = eι(S)(π), so the first sum may be rewritten as

∑

S⊆E(G)
ei,ǫ∈S

(
(−1)|S|(1 + t)eS(π) + (−1)|ι(S)|(1 + t)eι(S)(π)

)

=
∑

S⊆E(G)
ei,ǫ∈S

(
(−1)|S|(1 + t)eS(π) + (−1)|S|−1(1 + t)eS(π)

)
= 0.

An analogous argument shows that the second sum also goes to 0 for any π that is not equal
to the whole vertex set.

It remains to check the case where π consists of a single block. In this case the overall sum
reduces to ∑

S⊆E(G)
ei∈S

(−1)|S|(1 + t)|S| +
∑

S⊆E(G)
ej /∈S

(−1)|S|(1 + t)|S|+1

deletion-contraction relations (1) and (2) respectively [4].

14



=
∑

S⊆E(G)
ei∈S

(−1)|S|(1 + t)|S| +
∑

S⊆E(G)
ej∈S

(−1)|S|−1(1 + t)|S| = 0.

By Corollary 6, we also get the following:

Corollary 14. Let G be a two-edge-connected graph with vertex set [n], and let ei be any edge of
G. Then ∑

S⊆E(G)
ei∈S

(−1)|S|S

is a modular relation for X.

Since cycles are two-edge-connected, these results generalize the n-cycle modular relation for
the chromatic symmetric function of Dahlberg and van Willigenburg [10] (and the proof we give is
essentially a modification of their edge-swapping argument). Note that from Theorem 13 we also
obtain an analogous n-cycle relation for the Tutte symmetric function:

Corollary 15. Let n ≥ 3 be a positive integer and let C be an n-vertex cycle of a graph G.
Let v1, v2, . . . , vn be the consecutive vertices of the cycle, and let the edges be e1 = vnv1, e2 =
v1v2, . . . , en = vnv1. Then for any 1 ≤ i, j ≤ n, we have

∑

S⊆E(C)
ei /∈S

(−1)|S|XBG\S + (1 + t)
∑

S⊆E(C)
ej∈S

(−1)|S|XBG\S = 0. (4)

2 3

1

−

2 3

1

− (t+ 2)

2 3

1

+ (t+ 2)

2 3

1

+ (t+ 1)

2 3

1

− (t+ 1)

2 3

1

Figure 9: The case n = 3 of Corollary 15

For example, Figure 4 illustrates the case n = 3. Here ei = 23 and the corresponding sum
contributes to the first four terms, and ej = 12 and the corresponding sum contributes to the last
four terms.

Note that setting t = −1 in (4) also recovers the Dahlberg-van Willigenburg n-cycle result [10].
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[2] José Aliste-Prieto, Logan Crew, Sophie Spirkl, and José Zamora. A vertex-weighted Tutte
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