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Abstract

Precision medicine describes healthcare in which patient-level data are used to inform treatment
decisions. Within this framework, dynamic treatment regimes (DTRs) are sequences of decision
rules that take individual patient information as input, and then output treatment recommendations.
The primary purpose of DTR research is to estimate the optimal dynamic treatment regimes: the
sequence of treatment rules that will optimize some pre-defined outcomes across a population.
The focus of this thesis is on developing methods for estimating optimal DTRs in the presence of
interference, where one patient’s outcome can be affected by others’ treatment. DTR estimation
methods typically rely on the assumption of no interference. In many social network contexts,
such as friendship or family networks, and for many health concerns, such as infectious diseases,
this assumption is questionable. Moreover, the existing doubly robust regression-based DTR
estimation methods are primarily focused on continuous outcomes. DTR estimation methods
for binary or ordinal outcomes are more complicated due to less information being provided by
these discrete outcomes. Consequently, very few DTR estimation methods focus on binary or
ordinal outcomes, let alone methods when interference is present. To address these problems, for
continuous outcomes, we directly establish novel interference-aware DTR estimation methods,
and for binary or ordinal outcomes, we develop methods for DTR estimation first in cases without
interference and then in ones affected by it.

This thesis contains three main components: (1) a doubly robust method to estimate the
optimal DTRs for individuals where the treatments of their connected neighbours in the same
social network are taken into account in the decision rules; (2) a doubly robust method to estimate
the optimal DTRs for binary outcomes using sequential weighted generalized linear models;
(3) a doubly robust method to estimate the optimal DTRs for ordinal outcomes in the presence
of household interference. In (1), we study the DTR estimation method of dynamic weighted
ordinary least squares (dWOLS), which boasts easy implementation and double robustness, but
relies on the no interference assumption. We define a network propensity function and build
on it to establish an implementation of dWOLS that remains doubly robust under interference
associated with network links. The method’s properties are shown via simulation and applied
to household pairs data from the Population Assessment of Tobacco and Health (PATH) Study.
On the basis of the theories of dWOLS and using our interference-aware version, we focus on
developing innovative DTR estimation methods for both binary and ordinal outcomes, in particular,
the methods in the presence of interference. In (2), considering binary outcomes, we propose a
new method for DTR estimation without interference, the dynamic weighted generalized linear
model (dWGLM), which accommodates binary outcomes while offering relatively straightforward
implementation and robustness to model misspecification. We introduce the method and its
underlying theory, and illustrate both in an analysis of e-cigarette usage and smoking cessation,
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using the observational data from the PATH study. Finally, in (3), we further extend these
regression-based DTR methods to the ordinal outcome case, and also propose a robust method —
the dynamic weighted proportional odds model (dWPOM). Moreover, in the presence of household
interference, exploring the possible correlation between treatments in the same household, we
investigate the covariate balancing weights, which rely on the joint propensity score, and methods
for estimating the joint propensity score. Examining different types of balancing weights, we
verify the double robustness of dWPOM with our adjusted weights via simulation studies. Lastly,
we also illustrate dWPOM in the analysis of data from PATH. For each participant’s household,
we derive the household treatment configuration recommendations for achieving the best outcome
of the pair: both individuals quit or attempt to quit smoking.
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Chapter 1

Introduction

To optimize the quality of health care, precision medicine focuses on tailoring treatments to the
specific characteristics of each patient. As a formal framework of precision medicine, dynamic
treatment regime (DTRs) are sequences of decision rules that take individual patient data as input
and then output treatment recommendations. DTR estimation from observational data typically
relies on the assumption of no interference (Cox [1958]): that is, the outcome of one individual
is unaffected by the treatment assigned to others. In many social network contexts, such as
friendship or family networks, this assumption is questionable. This thesis is concerned with DTR
estimation methods in the presence of interference. Several innovative interference-aware DTR
estimation methods are developed, providing robust estimation and easy implementation. A range
of treatment assignment mechanisms is suggested for a variety of interference scenarios. These
developments are illustrated in an examination of smoking cessation in household networks in
which we apply the proposed methodologies in real-world data from the Population Assessment of
Tobacco and Health study.

This chapter starts with a brief review of precision medicine and DTR estimation frameworks,
and introduces relevant interference studies from the causal inference literature. Then it shows our
real-world dataset analyzed with our methods, summarizes the contributions of the research, and
ends with a brief overview of the thesis’ structure.

1.1 Precision Medicine and Dynamic Treatment Regimes

Improving health outcomes by tailoring treatments to individual patient characteristics is a
centuries-old approach and is a central component of medical practice. Today’s efforts at tailoring
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treatment grew from several past research breakthroughs. After Sir Austin Bradford Hill’s 1946
success demonstrating the efficacy of streptomycin for treating tuberculosis, in what was the first
randomized controlled clinical trial, the use of statistical inference as a scientific method to study
medical treatment began to increase dramatically (Stusser [2010] as cited in the review paper by
Kosorok and Laber [2019]). However, until both clinicians and biostatisticians became aware of
patient heterogeneity, the main goal of clinical trials was to assess treatments for specific diseases.
Heterogeneity between patients refers to the variation between them that is attributable to their
unique characteristics (Chakraborty and Moodie [2013], Grutters et al. [2013], Kosorok and Laber
[2019]). The patient characteristics that potentially explain patient heterogeneity include genetic
profiles, physiological or demographic characteristics, and environment or lifestyle factors (Tsiatis
[2019]). Heterogeneity in the response to treatment has been observed in a number of areas, and
research provides strong evidence that the patient’s characteristics should be considered in creating
a specific patient’s treatment regime. For example, treatment response has been observed to be
heterogeneous among adults suffering from major depression (Trivedi et al. [2006]), children with
attention-deficit or hyperactivity disorder, and autism spectrum disorders (Pelham Jr and Fabiano
[2008], Jones et al. [2010]). Additionally, in the analysis of data on smokers in North America, the
observed “patient heterogeneity” is in degree of addiction to nicotine (Gravely et al. [2020]), age
group (Hyland et al. [2006]), and intention to quit smoking (Kasza et al. [2021]). In recent years,
precision medicine, which refers to the principle of tailoring treatments to individual patients’
characteristics in order to optimize their personal care, has grown in popularity. Specifically,
precision medicine became a national priority in the U.S.A. when President Obama announced the
PrecisionMedicine Initiative in 2015. Conceptually, precision medicine is identical to personalized
medicine, as well as stratified medicine, in that it is based on identifying patients or subgroups of
patients with distinct mechanisms of disease, or particular responses to treatments (Kosorok and
Moodie [2015], Lonergan et al. [2017]).

One feature of precision medicine, the dynamic treatment regimes, formalizes evidence-based
clinical decision-making. This formal framework is sometimes referred to as an adaptive treatment
strategy, adaptive intervention, or treatment policy in different contributions to the literature. In
the context of multi-stage treatment decisions, a DTR is a sequence of decision rules by which, at
each stage, patient information (such as age and health status) is taken as input and used to create
a treatment recommendation as output. The decision rule is primarily based on patient-specific
characteristics, so DTRs are also called individualized treatment rules (ITRs) (Lavori and Dawson
[2004]). By administering ITRs based on the characteristics of the patient, treatment strategies
can be tailored to improve the patient’s response. Therefore, the primary interest in this area of
research is to use data to identify optimal DTRs or ITRs: sequences of treatment rules that yield the
best expected clinical outcomes. The term “dynamic” is used to refer to multiple or single-stage
rules that incorporate patient’s previous history information, and is opposite to “non-dynamic”
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or “static”, which refer to any rules, single- or multi-stage, that do not vary with pre-treatment
observations. Therefore, DTRs are also known as adaptive treatment strategies (ATS) (Lavori
and Dawson [2000], Murphy [2005]). In many cases, static regimes are impractical because any
reasonable treatment rules should take account of the patient’s response status; therefore, the static
regimes have less relevance to precision medicine. In addition, the word “regime” refers to any set
of dynamic or static treatment rules, which are functions that map from patients’ covariates to a
treatment that is from a set of feasible options.

There are many real-world medical applications of DTRs. In cancer prevention programs,
such as programs for smoking reduction, cessation aids, including gum or patches, e-cigarettes,
and support services, can be viewed as elements of sequential treatments. Decisions to switch to
different therapies can be made dependent on patient-level characteristics. From a personalized
medicine perspective, Yan and Chakraborty [2018] suggested that the Singapore government
consider delivering ‘personalised’ smoking-reduction strategies through digital means (such as
mobile-based applications). Moreover, Strecher et al. [2008] conducted a two-stage randomized
study of smoking cessation, and Chakraborty et al. [2010] analysed these randomized study data to
identify the optimal DTR for smoking cessation. In the context of smoking cessation, an example
of a DTR could be:
Decision:
Use e-cigarettes if the smoker has a plan to quit; otherwise do not use e-cigarettes.
Note that this simple DTR provides only a single treatment rule dependent on one piece of
information about patients whereas, in general, a DTR provides multi-stage treatment rules based
on a series of pieces of patient-level information.

A DTR can also be applied to oncology studies, for example, on acute leukaemia (Davidian
and Laber [2019]). A patient’s treatment often involves multiple courses of chemotherapy, and a
physician could use a DTR that maximizes the patient’s disease-free or overall survival time. In a
setting of two decision points, for instance, the first decision is to choose induction chemotherapy
for inducing a positive response, such as a partial or complete remission. Then, the second
decision should be made to prescribe maintenance or salvage treatments based on the patient’s
response to the first decision point treatments, symptom severity, and so on. In the context of
leukaemia, Wahed and Tsiatis [2004] proposed optimal estimators for the survival distribution and
related quantities, for treatment policies in a two-stage clinical decision problem. As an artificial
illustration, suppose that there exist only two available induction chemotherapy options (denoted
as C1 and C2), two maintenance treatments for patients who respond (denoted as M1 and M2),
and two salvage chemotherapies for those who do not respond (denoted as S1 and S2). Then, an
example of DTRs for this acute leukaemia case could be:
Decision 1:
If the patient’s age is 45+ and his or her white blood cell (WBC) count is < 9.8 × 103/`;, give the
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induction chemotherapy C1; otherwise, give C2.
Decision 2:
If the patient responds and current WBCs are at < 11.5 × 103/`;, give the maintenance treatment
M1; otherwise, give M2.
If the patient does not respond and current WBCs are at < 11.2 × 103/`;, give the salvage
chemotherapy S1; otherwise, give S2.

Before moving on to the goal and estimation of DTRs, we emphasize four crucial points that
should be carefully considered for conducting DTRs research in practice. 1) The decision points
or disease stage must be determined, leaving no ambiguity, thereby supporting optimal treatment
decisions. The decision points may be consistent with milestones in the disease progression,
diagnosis, or an evaluation of responses (e.g., in acute leukemia), or with the occurrence of events
that require a treatment decision (e.g., myocardial infarction in cardiovascular disease), or they
may coincide with planned clinic visits at which decisions are made according to a schedule (e.g.,
treating HIV infections). Therefore, the timing of decisions may be fixed or random, and different
individuals can even experience different numbers of decisions. 2) The individual dynamic
characteristics for treatment decision rules must be decided upon, thereby clarifying which features
or covariates should be utilized to make a treatment decision. In particular, for multiple-stage
decision problems, the decision rules for each stage may differ to enable the appropriate choice
of covariates. Typically, these covariates on which the treatment decision rules rely are called
tailoring variables or prescriptive variables (Gunter et al. [2007], see Carini et al. [2014] for
definitions and details of prognostic and predictive biomarkers). 3) Feasible treatment options
must be decided upon for each stage, requiring that an attainable treatment space or domain be
determined as well. In practice, not all treatments are applicable to all patients at all times; for
example, if patients respond well to a specific treatment in an earlier stage of the disease, this
treatment may be repeated in later stages. 4) Treatment decisions that involve the chosen types
of treatment rules must be specified. There are many types of treatment rules, such as those
governed by deterministic or stochastic policies. Moreover, treatment rules may also differ between
complicated ones such as nonparametric machine (deep) learning-based decision functions and
simpler ones such as linear functions.

After reviewing the above four key points for conducting DTR research, we will introduce
certain common settings in DTR estimation frameworks, and then review some standard DTR
estimation methods. Finally, we end this section with a brief review of data sources for DTR
estimation.

Our goal is to estimate the optimal DTR, the treatment rule, or sequence of treatment rules,
which, conditional on patient information, will optimize the pre-defined outcome or outcomes. In
this process, identifying the treatment or sequence of treatments corresponds to single-decision or
multi-stage problem settings. In terms of an approach to estimating optimal DTRs, on the one hand,
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the goal for single-decision settings is to estimate an individualized treatment rule that maximizes
the expectation of the potential outcome under that rule. Under the general DTR estimation
framework, both regression-based estimators, which are obtained from a regression representation
of the optimal treatment regimes, and classification-based (or direct-search) estimators, which are
built on importance sampling and directly identified by maximizing the regimes’ value function,
are widely employed estimators. Value function indicates the expected outcome (value) that results
from following a certain treatment regimen, given the patients’ covariate information. On the other
hand, the multi-stage setting is more complex, because of prognostic effects and delayed treatment
effects (Thall et al. [2007], Kosorok and Moodie [2015]); for example, a patient’s current treatment
may not only affect intermediate outcomes but also future ones. Thus, treatment decisions should
be made by considering both the immediate (proximal) and delayed (distal) efficacy of a specific
treatment. Multi-stage settings are classified as having either a finite time horizon or an infinite
time horizon, depending on whether the number of decision points is finite (small) or indeterminate
(infinite or large). Infinite time settings, in which sequential decisions need to be made over a long
time, are necessary for some scenarios, for instance, in the mobile-health treatment of diabetes or
other chronic diseases. Still, many realistic treatment-decision problems are typically restricted to
finite time settings, such as when treating HIV infections or acute leukaemia. Different settings
involve distinct analytical frameworks and methods. A Markov decision process is typically used
to model decision-making over infinite time horizons; however, backwards induction is commonly
used in numerous methods that are developed for making sequential treatment decisions in the
finite time horizon. This thesis focuses on finite time horizon settings; certain standard DTR
estimation methods in such settings are introduced next.

In finite time horizon settings, various techniques of reinforcement learning are used to
estimate optimal dynamic treatment regimes, either through “indirect” methods (that have an
intermediate step before the optimal decision rule is estimated), such as regression and policy-
learning methods, or direct methods (focusing directly on the regimens themselves), such as
value-search methods. For example, the fundamental regression-based approaches are &-learning,
A-learning and G-estimation, where G-estimation is a special A-learning (advantage learning)
method developed by Robins (Robins [2004]) to estimate the parameters of interest (Schulte et al.,
2014). Both &-learning and A-learning are backwards step-wise approaches usually employed in
multi-stage treatment-decision problems. A-learning, which employs a doubly robust estimating
equation to estimate the contrast function, provides a more-robust way to estimate DTR than
&-learning. The doubly robust procedures provide consistent estimation of the parameters of
interest even if one nuisance model is misspecified. Note that we will provide more details of
these regression-based methods and rigorously define the term “doubly robust” in Chapter 2.
Also used are value-search methods containing an (augmented) inverse probability of treatment
weighting (IPTW, Zhang et al. [2012]) and outcome weighted learning (OWL, Zhao et al. [2012]).
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Directly maximizing the value function over a restricted class of regimes, Zhang et al. [2013]
estimate optimal DTRs by augmented inverse probability weighting. OWL recasts the IPTW
estimator into a classification framework, and essentially changes the treatment selection problem
into a two-class classification problem by considering a general class of surrogate loss functions.
In particular, Zhao et al. [2015] consider the hinge loss and propose a weighted support vector
machine (SVM) to estimate the decision rules. Usually, these value-search methods also face some
technical challenges and obstacles, such as computational issues and products of indicators across
time (Kosorok and Laber [2019]). The above-mentioned methods are fundamental approaches
for estimating optimal DTRs, and they are restricted to certain basic settings, such as continuous
outcomes wherein larger values are preferred, and binary treatments, which are referred to as
treatments or controls. Note that this thesis primarily focuses on the regression-based indirect
methods, and also starts from these basic set-ups or contexts: binary treatments and continuous
outcomes. Beyond these basic set-up regression-based methods, various extensions have been
proposed for lessening their drawbacks or for fitting these approaches into more-complex contexts.
For example, Dynamic weighted ordinary least squares (dWOLS, Wallace and Moodie [2015])
is both an easy-to-use (like &-learning) and doubly robust (like G-estimation) approach for
estimating optimal DTRs. Building on dWOLS, many extensions are also being studied, such as
multiple-value and continuous treatments in Schulz and Moodie [2021], survival outcomes in
Simoneau et al. [2020] , measurement error in Spicker andWallace [2020], and so on. Additionally,
Moodie et al. [2014] first extended &-learning to discrete utilities (i.e., both Bernoulli and Poisson
utilities), and employed a generalized additive model to implement more-flexible modeling. Later,
for binary outcome studies, considering cancer and graft-versus-host disease treatment cases,
to maximize the binary outcome of two-year disease-free survival, Moodie and Krakow [2020]
implemented &-learning in a multistage treatment decision analysis, employing logistic regression
in each stage.

Datasets for the estimation and inference of optimal dynamic treatment regimes can come from
a rich range of sources, for example, experimental data from randomized clinical trials (RCTs),
and non-experimental data from electronic health records, cohort studies, censuses, or surveys.

Randomized clinical trials are a gold standard for data collection because they resist unmeasured
confounders and can support efficient estimation. A well-known gold standard study design
for estimation or evaluation of multi-stage decision regimes is a sequential multiple assignment
randomized trial (SMART) design (Lavori and Dawson [2004], Murphy [2005]). In a SMART,
a patient is randomized at key decision points in the treatment process where there is clinical
equipoise (i.e., no one better intervention is present for either the control or experimental group),
and thus, each patient may be randomized multiple times throughout the trial. Some practical
SMART designs include Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial
on the major depressive disorder (Rush et al. [2004]), adaptive pharmacological and behavioral
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treatments for children with ADHD (Pelham Jr et al. [2008]) and clinical antipsychotic trials
of intervention effectiveness for schizophrenia (Stroup et al. [2003]). Compared with an RCT,
non-experimental data collection is typically less expensive, can be done relatively quickly, and
will result in a larger sample size. However, non-experimental data induce some challenges, such
as in identifying the frequency and timing of data collection and unmeasured confounders for
every treatment stage.

For an RCT, sometimes randomization at each decision point is impossible or nonoptimal, so
various hybrid designs are studied. Hybrid designs have both randomization and observational
components and often entail a pragmatic motivation. In addition, when patients’ information comes
from both randomized trials and real-world data, there are two main approaches for integrative
analysis: meta analysis and pooled patient data analysis. See the related recent work by Hatt et al.
[2022], Yang et al. [2020], Cheng and Cai [2021] and Athey et al. [2020].

1.2 Interference

The move towards personalized medicine is being affected by interference (Hudgens and Halloran
[2008], VanderWeele and Christakis [2019]), in which outcomes from one individual’s treatment
are affected by the choice of treatment for another individual. Before formally introducing
interference and interference structures, we introduce some notation standards used in the causal
inference literature. Suppose we are interested in the causal effect of a certain treatment, or
intervention, �, on some outcome. . Let. ∗(0) denote a potential outcome that would be observed
if treatment was set to � = 0; therefore, in binary treatment settings, i.e., � is in the set {0, 1},
each individual has two potential outcomes . ∗(0), . ∗(1). Counterfactual outcomes are ones that
would have been observed, had the treatment been different. For example, if our treatment actually
was � = 1, then our counterfactual outcome would be . ∗(0); alternatively, if our actual observed
treatment was � = 0, then our counterfactual outcome would be . ∗(1). Before the treatment
decision is made, any possible outcome is a potential outcome: . ∗(0) or . ∗(1), whereas after
the study, there is an observed outcome, . = . ∗(�), and an unobserved counterfactual outcome
that is represented thus: . ∗(1 − �). Typically, the terms potential outcomes and counterfactual
outcomes are used interchangeably.

In principle, it is impossible to simultaneously observe both . ∗(0) and . ∗(1) at an individual
level. Researchers, therefore, focus on the average treatment effect (ATE), or the causal treatment
effect at the population level, which is defined as follows:

X∗ := E[. ∗(1) − . ∗(0)] = E[. ∗(1)] − E[. ∗(0)] . (1.1)
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Average treatment effect X∗ represents the difference between the average potential outcome if all
individuals in the population were to receive treatment 1 and that if all of them were to receive
treatment 0. Using observational data, one major and fundamental objective of causal inference
then is to estimate the average treatment effect, under some conditions and certain assumptions. In
much of the causal literature, the following identifiability assumptions are made: (I) consistency,
that is, . = �. ∗(�) + (1 − �). ∗(1 − �); (II) strong ignorability, that is, denoting pre-treatment
covariates by ^, then we have {. ∗(0), . ∗(1)} |= � | ^, where |= denotes independence; and (III)
positivity, P(� = 0 | ^ = x) > 0 for any 0, x. Applying these three identifiability assumptions,
from equation (1.1), we have

X∗ = E[. ∗(1)] − E[. ∗(0)]
= E^ [E{. ∗(1) | ^}] − E^ [E{. ∗(0) | ^}]
(II)
= E^ [E(. ∗(1) | ^, � = 1)] − E^ [E(. ∗(0) | ^, � = 0)]
(I)
= E^ [E(. | ^, � = 1)] − E^ [E(. | ^, � = 0)] , (1.2)

where E^ denotes that expectation is with respect to the marginal distribution of ^. By the
positivity assumption, the conditional expectations E(. ∗(0) | ^, � = 0) and E(. | ^, �) are well
defined. Therefore, the result in equation (1.2) illustrates that the ATE can be expressed as an
expression of observed data when consistency, strong ignorability, and positivity hold. Especially,
X∗ depends on the regression of observed outcomes on covariates and treatment received (Imbens
and Rubin [2015], Hernán and Robins [2020], Tsiatis [2019]).

In addition, most causal inference literature also relies on a key assumption known as the stable
unit treatment value assumption (SUTVA, Rubin [1980], and see Rubin [1990] and Imbens and
Rubin [2015] for discussion). The SUTVA requires that the potential outcomes of one individual
are unaffected by changes in the treatment exposures of all other individuals. Formally, in the
SUTVA: (1) there are no multiple “versions” of a treatment option; (2) the probabilities (values)
of an individual’s potential outcomes depend only on the treatment assignment administered to
that individual, not the assignments to other individuals.

The first criterion (1), also known as stability, means that nominally identical treatments are
in fact identical. In other words, an individual’s potential outcome under their treatment is the
outcome that will actually be observed for that person under their treatment. This criterion may
be violated by variable levels of treatment or technical errors. For instance, a surgical procedure
(i.e., the treatment) can be performed by different surgeons, and an individual’s outcome could
depend on the surgeon. Ultimately, a judgment that there are no multiple versions of a treatment is
subjective, and in many instances, it may be violated to some extent. The second criterion (2),
called the no interference assumption, is that the observation on one unit should be unaffected by
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the particular assignment of treatments to other units. While often reasonable, this assumption is
violated in many cases, such as in the contexts of infectious diseases and social network contact
structures (Ogburn and VanderWeele [2014], Ogburn et al. [2017]). In the real world, everyone is
embedded in their own social networks, and frequently affected by others. Interference occurs
when one individual’s exposure affects the outcome of another individual’s outcome. Therefore,
identifying network interference effects is necessary for real-world problem analysis.

In the case of vaccination, for example, an unvaccinated (i.e., untreated) individual in a mainly
vaccinated population may be less likely to contract an infectious disease than the same individual
in a mainly unvaccinated population. In the context of school attendance, Kenyan students assigned
to undergo a deworming program (i.e., treatment) may interact with others who were not assigned
deworming treatment. In one study, deworming significantly improved the outcome of school
participation among untreated students in both treatment schools and adjacent schools (Miguel and
Kremer [2004]). In a social media example, game invitations were sent by friends; in a friendship
network, one’s behavior might affect one’s friends, and one individual is more likely to consider
the game that their friends invite them to play (Su et al. [2019]). Hong and Raudenbush [2006]
found that a student’s reading score is expected to be affected by the treatment assignment of
the other students in their class, but not by the treatment assignment of students in other classes.
Sobel [2006] considered the Moving to Opportunity (MTO) study, whereby families in housing
projects were randomly assigned to three groups. Under MTO, family A, for example, may move
if they are assigned to the same group as family B whose members are friendly with family A.
However, if family B is assigned to a different group, family A may not move. In Hong et al. and
Sobel’s examples, although an individual’s treatment assignment stays the same, the assignment
of other units varies. Consequently, the individuals will have different results. This phenomenon
is called a spillover effect (indirect effect, interference (Cox [1958]), peer effect (Manski [1993])
and dissemination effect (Crawford et al. [2019]) are the well-known terms in other subjects). It is
distinguished from the direct effect, that is, the contrast between the average potential outcome
when an individual receives treatment and that when the individual receives control, all other
things being the same. However, spillover effects describe how individuals are affected by the
treatments of others with whom they are connected.

Interference studies depend on causal mechanisms or interference structures. On one hand, in
explaining causal mechanisms, Ogburn and VanderWeele [2014] used causal diagrams to illustrate
three distinct causal pathways by which one individual’s treatment may affect another’s outcome.
The first pathway is termed direct interference, which occurs when one individual’s treatment
directly affects another’s outcomes, but is unmediated with respect to the first individual’s outcome.
The second pathway, called interference by contagion, is present when individuals’ outcomes may
have an impact on other people with whom they are in contact. This causal path is different from
direct interference because it is mediated through the outcomes of the exposed individuals. The
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third pathway is referred to as allocational interference. In this case, individuals are allocated
to a group, and their interactions within that group can affect other individuals’ outcomes in
many ways. Thus, for allocational interference, individuals in a certain group are assigned to
receive individual or group-level treatments, and their outcomes also depend on treatments of
those who else are assigned in the same group. The causal estimands of interest differ according
to these causal mechanisms of interference, and Ogburn and VanderWeele [2014] have described
their differences and provided criteria for the identification of causal effects. As far as causal
mechanisms of interference are concerned, throughout this thesis, we will primarily focus on
direct interference.

On the other hand, in explorations of interference structures, clustered interference, spatial
interference and network interference are commonly considered three of the main structures
(Puelz et al. [2019]). First, clustered interference, analogous to the above-mentioned allocational
interference, refers to individuals who can be divided into well-defined clusters or groups and
may be affected by the treatments of others within the same cluster. For example, schools and
households are frequently studied clusters in much of the literature. Therefore, many researchers
assume partial interference (Sobel [2006], Perez-Heydrich et al. [2014]); that is, when individuals
can be partitioned into clusters, it is plausible to assume that interference occurs within those
clusters but not across the clusters. Second, spatial interference assumes that interactions pass
through neighbouring individuals, and it is a more complicated structure than the structure of
clusters. For example, an experiment in Medellin, Colombia was conducted to investigate the
effects of “hot-spot policing” on crime (Collazos et al. [2021]), and the corresponding spillover
effects were investigated by Puelz et al. [2019]. Third, network interference refers to interference
between individuals in a network of influence (Kao [2017]), and its structure can be represented
by an adjacency matrix # with (8, ;) entry #8; for 8, ; ∈ {1, ..., =}. Under a network interference
structure, many researchers assume that any spillover effects on individual 8 may only emanate
from individual ; when #8; = 1, and not from those for which #8; = 0.

Generally, under a network interference structure, an individual’s response may be affected
only by their first-degree neighbours’ exposure or by more than their first-degree neighbours’
exposure. These two different interference viewpoints, which distinguish the range of interfering
individuals, led to the ideas of local interference and global interference. Local interference, also
known as neighbourhood interference, restricts the interfering individuals to only first-degree
neighbours. Under local interference, one individual’s outcome is assumed to be affected only
by their first-degree neighbours’ treatments. Therefore, focusing on local interference, many
researchers assume that any spillover effects on individual 8 may only emanate from individual ;
when #8; = 1, and not from those for which #8; = 0. To simplify the problem, these researchers
have considered some interference measures, which are functions of neighbours’ treatments, often
termed exposure mappings, such as the number of treated neighbours or the proportion of treated
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neighbours (Aronow et al. [2017], Leung [2019], Forastiere et al. [2021], and Li and Wager
[2020]). Different from local interference, an individual’s outcome may be affected broadly by
the treatment assignment of the whole population (global treatment assignment). Under global
interference, researchers allow individuals to interfere in largely arbitrary and unknown ways. For
instance, Sävje et al. [2021] investigated average treatment effects in the presence of arbitrary and
unknown interference. In addition, Tchetgen Tchetgen et al. [2021] considered the case where
interference exists between any two individuals if there is a path of connected units linking the two.
As an illustration of global and local interference, supposing a finite population of = individuals,
for example, in Figure 1.1, where = = 9 individuals form a mini-network, individuals 2, 3, and 4
are the only first-degree neighbours of individual 1. Local interference refers to cases in which the
outcome for individual 1 depends on his or her own treatment as well as that of individuals 2, 3,
and 4, whereas global interference refers to cases in which the outcome of individual 1 (more
generally, each individual) depends on the global treatment assignment of all = individuals. Under
either a global or a local interference structure, dependence involves the relationships of a network,
so it is often called network interference.

Moreover, both clustered interference and spatial interference can be expressed as special cases
of network interference. That is, for clustered interference, adjacency matrix # can be expressed
as a block-diagonal matrix where each block corresponds to a cluster. For spatial interference, if
the spatial distance between two units is less than a creation threshold, then the corresponding
adjacency-matrix entry for these two units is 1; otherwise, it is 0. In addition, in a social network,
an individual of primary interest or a node whose characteristic we expect to illustrate is called
an ego, and those to whom the ego is linked or nodes that share ties with the ego are the alters
or contacts. Treating the ego has a “direct effect” on the ego, and treating an alter may have a
“spillover (indirect) effect” on the ego (Ogburn et al. [2017], VanderWeele and Christakis [2019]).
As shown in Figure 1.1, individual 1 represents the ego, in whom we are interested in particular,
and individuals 2, 3, and 4 represent his or her alters.

Having introduced interference and its causal mechanisms and structures, let us move on to
review some influential interference studies. Interference studies are conducted in a large number
of scientific explorations, such as in economics (Manski [2013], Arpino et al. [2017]), education
(Hong and Raudenbush [2006]), political science (Bowers et al. [2013]), and sociology (Aronow
[2012]). We here primarily review the methodological developments of interference studies in
the causal inference literature. Such studies can be broadly divided into two types, depending on
whether or not clusters exist. Moreover, within each type, studies can be further classified based
on whether they are randomized experimental studies or observational studies.

In the first type, the studies focus on clustered interference and are built on the partial
interference assumption, which allows for but does not assume the existence of interference
within clusters. The overall goal of the studies is to draw inferences about treatment effects that
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Figure 1.1: An illustration of a mini-network

quantify interference within clusters. For the experimental design studies with partial interference,
two-stage randomization was proposed to estimate the treatment effects (Hayes et al. [2000],
Longini Jr et al. [2002]). In the estimation, the crucial concept is treatment saturation (or policy,
stochastic intervention) i (Tchetgen and VanderWeele [2012]), which means that i percent of
individuals in a cluster receive treatment. Let `i be the expected potential outcome under treatment
saturation i, and `0i be the expected potential outcome when an individual receives treatment 0
under treatment saturation i for 0 = 0, 1. Then, within the same treatment saturation group, with
a saturation value (for example) i1, the direct treatment effects can be identified as `1i1 − `0i1 .
For different treatment saturation groups with saturation values i1 and i0, the spillover effects can
be defined as `1i0 − `1i1 or `0i0 − `0i1 . To conclude, under the partial interference assumption
of no spillover effects across clusters, within one cluster, one can identify the direct treatment
effect using variations in the treatment status, and across clusters, one can identify the spillover
effect using variations in treatment saturation and keeping the same treatment status.

Other studies have focused on the partial interference assumption and observational studies
(no randomization). This area extends classic SUTVA approaches for observational studies in the
presence of partial interference, and assumes strong ignorability (also known as no unmeasured
confounding (NUC)). Themost-related work follows Tchetgen and VanderWeele [2012]’s Bernoulli
treatment allocation strategy framework, in which each individual in a cluster independently
receives treatment with the same, fixed probability. Similarly, following the seminal work of
Hudgens and Halloran [2008], the direct and spillover effects of treatment under policy U are the
main areas of interest. For instance, various inverse probability weighted (IPW) estimators with
interference are studied in Liu et al. [2016], and an IPW estimator with an extension of the work of
Tchetgen and VanderWeele [2012] is found in Barkley et al. [2020]. In addition, Liu et al. [2019]
constructed doubly robust (DR) estimators of direct and spillover effects, and further extended the

12



work of Park and Kang [2020] to study efficient semiparametric estimation. Note that, in Liu et al.
[2019], the DR estimators are consistent and asymptotically normal, and employ both a propensity
score model and outcome regression model, where one of these two models (not necessarily both)
is correctly specified.

The second type of interference research is seen in studies where the social network does
not consist of clusters, and is an extension of the partial interference assumption. Considering
randomization experiments, researchers such as Bowers et al. [2013] and Bowers et al. [2016]
have proposed randomization-based inference approaches to estimate both direct and spillover
effects for a specified causal model. These studies rely on certain causal model assumptions.
Also, when network interference or dependence is present, the independence assumption invoked
in standard frequentist inference is dubious. Thus, addressing randomized network-dependent
data, researchers such as Basse et al. [2019], Athey et al. [2018], Sävje et al. [2021] have
conducted conditional permutation or randomization tests just for detecting interference, but
without any causal model assumptions. There is also a parallel study area focusing on dealing with
observational network data, with no randomization. Thus, the challenges of this area are the lack of
both randomization and independent replicates. Notable works, such as by Tchetgen Tchetgen et al.
[2021] and Forastiere et al. [2021], consider an arbitrary form of interference: that the outcome
of an individual may depend on treatment received by other individuals with whom a network
path through connected individuals exists. Tchetgen Tchetgen et al. [2021] generalized Robins’
g-computation algorithm to infer causal effects on a network. Forastiere et al. [2021] developed
the aggregation of spillover of treatment to construct direct and spillover effects. Recently, the
causal estimands in Forastiere et al. [2021] have also been extended to capture different aspects
of interference heterogeneity such as multi-valued treatments in Tortù [2020] and covariate
dependence in Bargagli Stoffi et al. [2020].

1.3 Main Illustration: Smoking Cessation in Couples

Having reviewed some work on interference studies in the literature, we now present a motivating
example for this thesis: that is, smoking cessation in couples. In doing so, we also introduce and
illustrate a real data set — Population Assessment of Tobacco and Health (PATH), which features
both a continuous outcome and a binary outcome.

As mentioned in Section 1.1, smoking cessation plays an important role in cancer prevention;
therefore, smoking cessation research is common. Some studies have focused on the idea that a
desire to quit smoking alone may not be a sufficient motivation in itself. For example, Hubbard
et al. [2016] and Foulstone et al. [2017] have addressed smoking cessation in the couples of
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families. Meanwhile, a growing body of literature suggests that e-cigarettes (vaping) can be useful
as a cessation aid (e.g., Benmarhnia et al. [2018], Hajek et al. [2019]).

On the one hand, for the family-based smoking cessation studies, Foulstone et al. [2017] studied
the longitudinal influence of spousal tobacco usage and relationship satisfaction on the probability
of smoking cessation. They concluded that both relationship satisfaction and a partner’s smoking
status are important considerations in smoking cessation, and discovered that the probability
that both members of a couple would quit smoking is positively affected by the current smoking
cessation of one partner. Moreover, entrenched smokers in couple relationships find it easier
to quit smoking if their partners are involved in the interventions. Cobb et al. [2014] analyzed
data from 4,500 spouse pairs aged 45 to 64 years from the Atherosclerosis Risk in Communities
Study cohort, and found that people who smoke are less likely to quit if their spouse currently
smokes. They suggested that smoking cessation programs and clinical advice should consider
targeting couples (families) rather than individuals. Hubbard et al. [2016] also held the opinion
that family-based interventions are effective components of cessation programmes, yet the value
of family-based interventions remains under-researched.

On the other hand, some evidence suggests that e-cigarette usage helps to reduce nicotine
dependency or smoking. Polosa et al. [2014] firstly showed that the use of e-cigarettes substantially
decreased cigarette consumption without causing significant side effects in chronic schizophrenic
patients who smoke but are not intending to quit. The findings of Selya et al. [2017] support that the
use of e-cigarettes may act as a smoking reduction method among highly nicotine-dependent young
adult cigarette smokers. Moreover, in a randomized trial of e-cigarettes versus nicotine-replacement
therapy (Hajek et al. [2019]), researchers found that, compared with nicotine-replacement therapy,
e-cigarettes are more effective for smoking cessation when both products were accompanied by
behavioral support.

Only a small number of studies have not only examined smoking cessation in couple or family
networks, where interference may be present, but also investigated any e-cigarette usage in the
participants. However, the Population Assessment of Tobacco and Health study offers a rare
opportunity to investigate such contexts. Launched in 2011, the PATH study aims to inform the
U.S. Food and Drug Administration’s regulatory activities under the Family Smoking Prevention
and Tobacco Control Act, which is a federal statute in the U.S.A. and gives the Food and Drug
Administration the power to regulate the tobacco industry. The PATH Study is a collaboration
between the National Institute on Drug Abuse, the National Institutes of Health, the Center for
Tobacco Products, and the Food and Drug Administration.

The PATH Study, which sampled over 150,000 mailing addresses across the United States
to create a national sample of tobacco users and non-users, is a longitudinal cohort study on
tobacco-use behaviors, attitudes, beliefs, and tobacco-related health outcomes among the country’s
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adults and youth. Its primary objectives include the following: (1) to identify and explain
between-person differences and within-person changes in tobacco-use patterns, including the rate
and length of use by specific product type and brand, product or brand switching over time, uptake
of new products; (2) to determine between-person differences and within-person changes in risk
perceptions regarding harmful and potentially harmful constituents, new and emerging tobacco
products, filters and other design features of tobacco products, packaging, and labeling; (3) to
characterize the natural history of tobacco dependence, cessation, and relapse, including readiness
and self-efficacies to quit, motivations for quitting, the number and length of quit attempts.

In the PATH study, data were gathered in waves, starting from 2011, with each subsequent
wave beginning approximately one year after the previous one. During Wave 1, households
were selected by a stratified four-stage sampling design. Within a selected household, up to two
adults aged 18+ and up to two youths were selected. For each wave, data collected included
demographic variables (e.g., age, sex, education, race, non-Hispanic indicator), smoking variables
(e.g., frequency of smoking, cigarettes per day), e-cigarette variables (e.g., frequency of use, age
when started using), predictors of cessation (e.g., plan to quit, interest in quitting, quit attempts),
and cigarette dependence related variables (Strong et al., 2017).

Our purpose of analyzing PATH data is to illustrate the statistical methodology for determining
an optimal DTR in a longitudinal survey setting where possible interference of treatment of one
family member (the alter) may influence the result of treatment of other member (the ego). In the
PATH analysis, we randomly choose one member in a household as the ego, then their spouse is
automatically assigned as alter. In this case, ‘treatment’ is the use of e-cigarettes (vaping) by a
cigarette smoker, and the outcome measure is a measure of dependence on cigarettes (continuous
outcome) (Strong et al. [2017]) or cessation of smoking (binary outcome).

For the PATH data, we particularly address four research problems of interest as follows.
Examining the first four waves of PATH data, and studying the cigarette dependence as a continuous
outcome,

• (1) assuming no interference, we estimate the optimal DTR for smokers, in terms of a
sequence of use or non-use of e-cigarettes, for reducing cigarette dependence;

• (2) allowing for interference where treatments of alters are assumed to be fixed, we estimate
the optimal DTR for egos, in terms of their use or non-use of e-cigarettes, for reducing
cigarette dependence in the egos.

Then, further considering the binary outcome of smoking cessation,

• (3) assuming no interference, we estimate the optimal DTR for smokers, in terms of a
sequence of use or non-use of e-cigarettes, to achieve smoking cessation.
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• (4) finally, allowing for interference, we estimate the optimal DTR for the individuals of
interest and their spouses, in terms of their use or non-use of e-cigarettes, for achieving both
individuals in the same household quit or attempt to quit smoking.

In our analysis of PATH data for continuous outcomes in the context of reducing cigarette
dependence, problem (1) is addressed by the dWOLS method, proposed in Wallace and Moodie
[2015], in the real data analysis in Chapter 3. Extending dWOLS in the presence with interference,
we also solve problem (2) in Chapter 3 PATH analysis. Moreover, for binary outcomes in the
context of achieving smoking cessation, we develop a new methodology for DTR estimation with
binary outcomes to answer question (3) in Chapter 4. Building on existing interference study
methodologies, we also develop novel methodologies to answer question (4) in Chapter 5.

1.4 Contributions and Organization of Thesis

Although a multitude of estimation methods have been developed to handle problems related to
sequential treatment decisions, optimal DTR estimation research problems remain as this field is
in its infancy. In fact, considerable research is required before these methods can be applied to
real-world situations. In this thesis, on the one hand, we contribute to the current dWOLS theory,
illustrated in several contexts, by providing additional support of the double robustness property’s
mechanism and confirming the optimal dWOLS weights. Building on this solid foundation,
on the other hand, we further contribute to optimal DTR estimation with interference, in both
specific household interference and general network interference. Then, we develop the doubly
robust optimal DTR estimation with binary outcomes, and the doubly robust DTR estimation with
ordinal outcomes in the presence of household interference. To illustrate the research focus in
practice, and to emphasize its applicability to an area of critical interest, considering continuous,
binary and ordinal outcomes, we have used data from the Population Assessment of Tobacco and
Health Study, and applied our extended dWOLS method to obtain optimal DTRs for individuals in
couples where interference is present. This thesis contains six chapters, with an Appendix offering
additional materials, structured as follows:

In Chapter 2, we provide the relevant technical and theoretical background, including notations,
and briefly summarizes two existing methodologies for estimating optimal DTRs in the case of no
interference: &-learning and dWOLS. Double robustness to the misspecification of treatment-free
models or treatment models is explained. Crucially, we first provide two different proofs of the
double robustness of dWOLS, and a theorem of the optimal dWOLS weights in the context of
yielding the minimum variance of the estimators of interest. These two proofs of the double
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robustness form the basis for our work on dWOLS with interference and DTR estimation for
binary outcomes.

As previously stated, it is typical to assume no interference when estimating DTRs from
observational data. However, considering interference in DTRs will provide a novel and practical
way to investigate treatment assignment, aiming not only at the improvement of individual outcomes
but also at greater treatment efficiency in terms of treatment assignment for the whole population.
Concentrating on continuous outcomes, in Chapter 3, we investigate the DTR estimation method
of dynamic weighted ordinary least squares, which boasts easy implementation and the so-called
double robustness property, but has typically relied on the assumption of no interference. We
define a network propensity function and build on it to establish an implementation of dWOLS that
remains doubly robust under interference associated with network links. The method’s properties
are demonstrated via simulations, where different types of interference scenarios are studied.
Investigating cigarette dependence within two-person household networks, and using real data
analysis, we apply estimation and decision methodologies to the PATH data, with the outcome
being the measure of nicotine dependence. The work in this chapter, reorganized as a research
paper, Jiang et al. [2022b], has been published in The Canadian Journal of Statistics.

Multiple methods have been proposed for optimal DTR estimation with continuous outcomes
as these outcomes are more sensitive than discrete outcomes in the implementation of a specific
DTR. However, optimal DTR estimation with binary outcomes is more complicated due to less
information being provided by the discrete outcomes, and thus has received comparatively little
attention. Studying binary outcomes, in Chapter 4, we develop the dynamic weighted generalized
linear model (dWGLM), a doubly robust and easy-to-use method for estimating an optimal DTR
with binary outcomes. In our methodology, we propose two-step (or two-phase) weighted logistic
regression for the consistent estimation of parameters of interest. We also provide a balancing
weight criterion for any generalized linear models, and the underlying theory is suitable for any 6
link function. Thus, from this viewpoint, dWOLS is a special case of dWGLM, where the link
function is the identity link: 6(`) = `. Furthermore, we also offer binary pseudo-outcomes for
sequential treatment decisions. In practice, we illustrate the method in an analysis of e-cigarette
usage and smoking cessation, using observational data from the PATH study. We have summarized
this chapter as a research paper, Jiang et al. [2022a], which has been posted to the arXiv.

Further, building on the work of Chapter 3 and Chapter 4, considering the special PATH
household interference case and individuals’ binary outcomes, in Chapter 5, we further investigate
robust DTR estimation with ordinal outcomes in the presence of household interference. First,
we study the interference, which is the scenario where not only the individuals’ outcome can
be affected by their neighbours’ treatments, but also there exists a possible association between
their treatments. We provide an analytical framework to estimate joint propensity scores in the
association aware treatments case. Second, we propose a double robust DTR estimation method
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Figure 1.2: Connections among the optimal DTR estimation methods and those methods with
interference. (dWOLS in blue is an existing method, and other methods in purple are proposed in
this thesis).

for ordinal outcomes, namely, the dynamic weighted proportional odds model (dWPOM), by using
sequential proportional odds models with ordinal outcome-specific balancing weights. Third,
by modeling the household utility, which is the joint outcome of the individuals in the same
household, our method can output optimal decisions for each individual in that household for
maximizing the household utility. This chapter is being prepared for publication.

Finally, in Chapter 6, we summarize the whole thesis and particularly outline the methodologies
that were proposed in this thesis. Furthermore, we also discuss the potential future research areas
in this chapter, including heterogeneous treatment effects estimation, novel robust DTR estimation
methods, and multiple-agent reinforcement learning under interference. In particular, in Appendix
I, we provide some thoughts about extending --learning (Section I.1) and outcome weighted
learning (Section I.2) to cases where there is interference.

To clearly see the structure of this thesis, Figure 1.2 sets out an overview of the contributions of
this research and the relations among the methodology chapters (Chapters 2, 3, 4), using different
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colours to distinguish between previously existing methods and those developed in this thesis
work. In blue, dWOLS, proposed by Wallace and Moodie [2015] and further explored in Chapter
2, has been the foundation for the whole thesis. Other methods, in purple, are our contributions in
this thesis. From the left-hand side, vertically, dWOLS is extended to dWGLM and dWPOM,
which are robust optimal DTR estimation methods for binary outcomes and ordinal outcomes,
respectively. Horizontally, each of these three methods is also extended and improved to address
the interference problem. Here, the “first glance” of Figure 1.2 is just a simplified overview of a
more-detailed version provided in the conclusion section of Chapter 6, which summarizes the
details of connections among these methods and the contributions of this thesis.
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Chapter 2

A Review of Optimal DTR Estimation

In this chapter, we start by introducing single decision treatment regimes, then briefly summarize
&-learning and dWOLS for multiple-stage treatment decisions in the case of no interference. For
dWOLS, using the algebra of partitioned regression, and with the use of appropriate weights to
compensate for lack of balance, we show that the estimators of heterogeneous treatment effects
are consistent if either the treatment-free model or the treatment model is correctly specified,
that is, so-called double robustness. In addition, we also present novel insights on the double
robustness of dWOLS by investigating the estimation equation systems of dWOLS. Both the
algebra of partitioned regression and the estimation equation insights serve as alternative proofs of
the dWOLS theorem that was presented in Wallace and Moodie [2015]. Moreover, the algebra of
partitioned regression and the estimation-equation insights function as a foundation for studying
dWOLS under interference (Chapter 3) and with binary outcomes (Chapter 4), respectively. Finally,
in this chapter, the variance of dWOLS estimators is investigated, and we propose the formation of
the optimal weights of dWOLS in the context of the most-efficient estimation.

2.1 Single Decision Treatment Regimes

In the single decision setting, the goal is to identify an optimal treatment regimen or an
individualized treatment rule, 3>?C , which satisfies E[. ∗(3>?C)] ≥ E[. ∗(3)] for any other regime
3. In order to estimate an optimal regime in practice, it must be possible to identify an optimal
regime from data {(^8, �8, .8)}=8=1, which comprise = independent and identically distributed triples
(^, �,. ) where ^ denotes baseline patient characteristics; � ∈ � denotes the assigned treatment
that is an option in�, the set of all available treatment options; and . ∈ R denotes a continuous
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outcome variable coded such that larger values are preferred. (Kosorok and Laber [2019], Tsiatis
[2019]). Typically, as noted in Chapter 1, under the causal inference analysis framework and the
identifiability assumptions, namely consistency, SUTVA, strong ignorability, and positivity, we
haveE[. ∗(0) | ^ = x] = E[. ∗(0) | � = 0, ^ = x] = E[. | � = 0, ^ = x]. Formally, for a single-
stage decision, the optimal treatment rule is identified from 3>?C (x) = arg max

0∈�
E[. ∗(0) | ^ = x],

a function that maps an individual’s covariates to an optimal treatment option, which maximizes
the conditional expectation of the corresponding potential outcome. Therefore, under above
assumptions, it is equivalent to 3>?C (x) = arg max

0∈�
&(x, 0), where &(x, 0) = E[. |^ = x, � = 0],

which is known as the Q-function (“&” represents “quality of action”, and will be explained in
&-learning section). A regression of . on (^, �) provides an estimator of &(x, 0) that is denoted
&̂= (x, 0). Then, this is optimized to obtain 3̂ (x) = arg max

0∈�
&̂= (x, 0). Additionally, &(x, 0) could

also be estimated either semiparametrically or nonparametrically.

In randomization trials, the assumption of strong ignorability automatically holds, and so
does the assumption of positivity if randomization probabilities are positive; however, in the
observational studies where individuals choose (or are given) treatments in a naturalistic and
unknown way, the strong ignorability assumption may not hold. Usually, to overcome this
obstacle, we need to collect additional covariates (denoted as `) as much as possible, such that
� is independent of . ∗(0) conditional on both ^ and `. Some researchers called this general
no unmeasured confounding condition: {. ∗(0) : 0 ∈ �} |= � | ^, ` such that ^ ∪ ` is a
sufficient adjustment set (Zeng [2021], Miao et al. [2018], Knüppel and Stang [2010]). Building
on this general no unmeasured confounding condition, there are two well known approaches
to estimate E[. ∗(0) |^]. The first estimation method is based on G-computation. Under the
above-mentioned assumptions and no unmeasured confounding, one can estimate E[. ∗(0) |^, `]
using E[. |^, `, � = 0]. To identify the causal estimand of interest E[. ∗(0) |^], we first estimate
E[. |^, `, � = 0] then estimate the conditional distribution of ` given ^; lastly, we can calculate

E[. ∗(0) |^] =
∫
E[. ∗(0) |^, `] 5 (` |^)3` =

∫
E[. |^, `, � = 0] 5 (` |^)3`.

Therefore, the subsequent estimation process uses data to estimate the conditional mean
E[. |^, `, � = 0] and conditional density 5 (` |^). The second way to estimate E [. ∗(0) | ^] is
using the inverse probability weighted expectation of . among subjects with � = 0. Building on
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the spirit of importance sampling, this method relies on the fact that

E

[
. I(� = 0)

P(� = 0 | ^, `) | ^
]
= E

[
. ∗(0)I(� = 0)
P(� = 0 | ^, `) | ^

]
= E

[
E[. ∗(0) | ^, `]E[I(� = 0) | ^, `]

P(� = 0 | ^, `) | ^
]

= E [. ∗(0) | ^] ,

where the first equation depends on the consistency assumption, and the second equation relies on
the general no unmeasured confounding condition and the law of total expectation, with I(� = 0)
denoting an indicator function of � = 0. For these two methods, to acquire a consistent estimator
of E [. ∗(0) | ^], one needs to correctly specify either the conditional mean (for the former) or
the treatment propensity model (for the latter). In light of this, some researchers have constructed
inverse probability-weighted augmentation estimators to achieve double robustness and local
efficiency using semiparametric efficiency theory (Rotnitzky [2008], Tsiatis [2006], Davidian
[2021]).

Alternatively, from the viewpoint of the patients’ heterogeneity, an essential goal of DTR
estimation is to estimate heterogeneous treatment effects (HTEs). Rather than consider the
average treatment effect X∗ := E[. ∗(1) −. ∗(0)], we try to estimate individualized or personalized
treatment effects. For instance, if we can observe the 8Cℎ patient’s covariates ^8 = x, we are
interested in understanding how treatment effects are influenced by the observed covariates ^8.
Doing so brings us to the conditional average treatment effect (CATE), defined as

X∗(x) := E[. ∗8 (1) − . ∗8 (0) | ^8 = x] .

It is important to note that CATE is different from the – in general unknowable – individual
treatment effect (ITE), which is defined as X∗

8
:= . ∗

8
(1) − . ∗

8
(0) for individual 8; rather, CATE is

the expectation of the ITE conditional on the values of the covariates (Lei and Candès [2021]),
that is, X∗(x) = E[X∗

8
| ^8 = x]. CATE is still an average treatment effect but with an average over

a targeted group of samples as characterized by their covariates ^8, so CATE is also known as
individualized average treatment effect (IATE). It is important to note that, considering binary
treatments, we can also define DTR or ITR as a function of CATE, that is,

3>?C (x) := I [X∗(x) > 0] = I
(
E[. ∗8 (1) − . ∗8 (0) | ^8 = x] > 0

)
.

For CATE estimation, the first common method is carried out using conditional outcome modeling
(COM), also called G-computation, parametric G-formula, or standardization in the literature.
That is, we estimate the outcome model to predict `(0, x) := E[. | � = 0, x] from data; for
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instance, if the estimator is ˆ̀(0, x), then the conditional outcome modeling estimator for CATE
is the difference of ˆ̀(0, x) between inputting 0 = 1 and 0 = 0, given the covariates x. The
task is just to estimate the single outcome model, so the COM estimator is also referred to
as S(ingle)-learner. Typically, treatment � is often a one-dimensional variable, but when the
covariates x are high-dimensional, then the COM estimator of CATE X̂∗(x) = ˆ̀(1, x) − ˆ̀(0, x),
in which only the input � is changed between terms of ˆ̀(�, x), may be biased toward zero
(Künzel et al. [2019]). It is reasonable that a learner (e.g., a neural network) could neglect � but
concentrate on x as its input, if x is high-dimensional but � is one-dimensional. This may result
in an CATE estimate of zero. Therefore, the so-called grouped COM comes into being, where the
data are split into two groups based on the treatment value used, such that the treatment variable
will not be ignored. Each collection of data for the groups is then trained for the corresponding
estimator; that is, with � = 1 data, estimate `1(x), and � = 0 data are used to estimate `0(x).
The corresponding estimators are ˆ̀1(x) and ˆ̀0(x), respectively. To increase the data efficiency,
building on the grouped COM, Künzel et al. [2019] proposed --learning and the corresponding
CATE estimator, --learner. --learner contains three steps: first estimate `0 (x) via appropriate
regression methods for both treated (0 = 1) and untreated (0 = 0) groups. Second, for each one
in the untreated group, specify individual treatment effect estimates, î0,8 = ˆ̀1(x8) − . ∗8 (0), and
fit a model ĝ0(x) to predict î0,8 from the corresponding untreated group. An estimator ĝ1(x) for
the treated group is obtained analogously. Third, --learner is constructed as the combination of
the two treatment effect estimators in the weighted sense such that Fĝ0(x) + (1 − F)ĝ1(x), with
weights (F) that are bounded in (0, 1). Note that the choice of weights for the --learner will be
discussed at the end of this chapter.

In addition, building on these foundations, other popular CATE estimation methods have
been proposed recently, either within a semiparametric or nonparametric framework; for example,
robust strategies such as '-learner (Nie and Wager [2021]), and DR-learner (Kennedy [2020]);
and deep-learning-based (SNet series) methods, such as TARNet (SNet-1, Shalit et al. [2017]),
DragonNet (SNet-2, Shi et al. [2019]), and DR-CFR (SNet-3, Hassanpour and Greiner [2019]).
See the work of Curth and van der Schaar [2021], which investigates the estimation of HTE using
supervised learning methods and CATE estimation using meta-learners.

2.2 Multiple Decision Treatment Regimes

Analogously to the single-stage case, a statistical framework that involves concepts of causal
inference is still required in the multi-stage case. However, due to the time-dependent nature of
sequential decision making, making optimal decisions in multiple-decision treatment regimes is
more complex than making them in single-decision settings. The sequential decision problem
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is derived from reinforcement learning (RL), and the goal is to identify the best sequence of
decision rules (policy) such that the average long-term reward is maximized if such rules are
implemented. Note that the current decision will not only affect the current reward but also impact
the future status on which further decisions will be based, and thus influence future rewards. For
the multi-stage treatment decision problem, current treatment decisions will both affect the current
outcomes and potentially affect the future ones. This phenomenon has been termed delaying the
treatment effects. The best decision for a certain stage is not necessarily the optimal decision for
the whole decision process; thus, to make sequential optimal decisions, at each decision point,
not only do we need to consider immediate outcomes but also future outcomes. The result is a
so-called adaptive treatment decision and requires the agent (decision maker) to be “farsighted”
when making decisions.

Because a good policy on which an agent makes decisions must know how the future reward
depends on the current state and action, two core value functions in RL, state-action value function
and state value function, have come up. These two value functions indicate the expected return
increment at a certain time given a current state and action. In addition, the Bellman equation
(or the dynamic programming equation) for these two value functions is a recursive equation
connecting the future values, and it indicates that the value functions at a certain stage depend only
on future decision rules. Thus, the Bellman equations for the optimal policy provide a backward
way to identify the optimal policy; that is, if we know the future optimal actions, we can make
optimal decisions based on these optimal actions for the current stage and thus learn the optimal
policy. See Sutton and Barto [2018], a seminal introductory text in RL, for more details in the
context of optimal control and Bellman optimality. Building on this fundamental background in
RL, in this section, we present two (regression-based) backward induction methodologies for DTR
estimation in a multi-stage setting with no interference.

2.2.1 &-learning

&-learning, a well-known value-based method from reinforcement learning, is an approximate
dynamic programming algorithm and is used to determine the optimal action-selection policy
related to &-functions. Typically, in precision medicine literature, &-learning is a regression
based approach used to identify optimal DTRs, and can be implemented in the DTR context with
different variations, such as &-learning for estimating optimal DTRs from observational data
(Moodie et al. [2012]), and &-learning with difference forms of outcomes (Moodie et al. [2014]).

Following the standard DTR literature notation, we denote that there are  treatment stages,
and the beginning of each stage is one decision point. Let 0 9 be the 9 Cℎ treatment decision and�9

denote the set of available treatment options at decision 9 ; we study a binary treatment coded as 0
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or 1, that is, 0 9 ∈ �9 = {0, 1}. Let. denote the observed patient outcome that is measured at some
point after the treatment stage, i.e., after 0 has been given. Let x be the covariate value for the
individual itself, and h 9 be a covariate matrix containing patient information (history) prior to the
9 Cℎ treatment decision; history can include previous treatments 01, ..., 0 9−1, and previous outcomes.
Let hU9 , h

V

9
and hk

9
be three subsets of covariate contained in h 9 , that are employed in different

three models that are respectively parameterized by ", #, and 7. Over- and underline notation
denote the past and future respectively. For instance, the vector of the first 9 treatment decisions
(01, 02, ..., 0 9 ) can be written a 9 , while the vector of treatment decisions from stage 9 + 1 onwards
(0 9+1, 0 9+2, ..., 0 ) can be written as a

9+1. Then, history can be expressed as h 9 = (x 9 , a 9−1).
Equipped with this notation, we now formally define a dynamic treatment regime.

Definition 2.1. Dynamic Treatment Regime
With  treatment decision points (where  ≥ 1), at decision stage 9 , a treatment decision rule
3 9 (h 9 ) is a function that maps an individual’s history to a treatment option in�9 , for 9 = 1, ...,  .
Then, a dynamic treatment regime 3 ∈ D, where D denotes the class of all possible treatment
regimes, is a sequence of such treatment decision rules to be applied in order; that is, with  
decision points:

3 = {31(h1), ..., 3 9 (h 9 ), ..., 3 (h )}.

As stated previously, precision medicine aims to identify an optimal treatment regimen through
various DTR estimation methods. Relying on the above notations and the definition of DTRs, we
now formally define the optimal treatment regime:

3>?C = arg max
3∈D

E {. ∗(3)} = arg max
3∈D

V(3),

where value of a treatment regimeV(3) = E {. ∗(3)} is expected outcome if all individuals in the
population were to receive treatment according to a DTR 3.

To proceed with DTR estimation for either observational or randomized data in multi-stage
decision settings, we use the following identifiability assumptions: (1) consistency (Rubin [1980]):
the potential outcome under some sequence of treatments is equal to the observed outcome if those
treatments were those actually received; (2) there are no unmeasured confounders for any possible
treatment regimes (or sequential randomization assumption Robins [1986]), i.e., conditional on
current patient history, the current stage treatment is independent of future potential outcome or
covariates; (3) no interference between individuals (Cox [1958]): the outcome of one patient is
unaffected by the treatment assignment of other patients, and (4) positivity (Robins [2004]): at
each decision point, there is a non-zero probability of being assigned to each of the treatment
levels, no matter what the past treatment and covariate history.
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Generally, for each stage 9 ≤  in a  stage treatment decision problem, the fundamental
concept in the &-learning is the Q (quality) function, & 9

(
h 9 , 0 9

)
, which is the optimal outcome

(reward) increment given the current state history h 9 (including patients’ all information collected
by stage 9) and treatment assignment 0 9 . Therefore, if we know & 9

(
h 9 , 0 9

)
, then the optimal

DTR at stage 9 is 3>?C
9
(h 9 ) = arg max

0 9∈�9

&(h 9 , 0 9 ). Moreover, the bellman equation, for the

final stage  , is & (h , 0 ) = E [. |N = h , � = 0 ], and for all earlier stage 9 <  , is

& 9

(
h 9 , 0 9

)
= E

[
max
� 9+1

& 9+1
(
N 9+1, � 9+1

)
|N 9 = h 9 , � 9 = 0 9

]
. Typically, max

� 9+1
& 9+1

(
N 9+1, � 9+1

)
is defined as the ( 9 + 1)Cℎ pseudo-outcome and represents the potential outcome which a patient
with the given history would have if they go on to receive optimal treatments from the 9 Cℎ stage,
that is receive a

opt
9+1 = (0

>?C

9+1, 0
>?C

9+2, ..., 0
>?C

 
). Thus, the 9 Cℎ &-function is the expected value of

( 9 + 1)Cℎ pseudo-outcome given current history and treatment, and these quality functions could be
commonly estimated by linear regressions (e.g., ordinary least square) or some supervised learning
methods, such as random forest, (n−) support vector regression (SVR) and neural networks. In
particular, if the&-functions are linearlymodeled such that& 9

(
h 9 , 0 9 ; # 9 ,7 9

)
= #>9 h

V

9
+7>9 0 9h

k

9
,

then the optimal treatment 3>?C
9
(h 9 ) = I(7>9 h

k

9
> 0) for 9 ≤  . We note that the interactions

between treatment and covariates should always be included in the regression. To enhance the
prediction accuracy and interpretability of model, regularization terms, for example, least absolute
shrinkage and selection operator (Lasso), could be included in the models.

Now suppose we have an i.i.d. (independently and identically distributed) sample of = records,
with the 8-th record consisting of (h18, h28, ..., h 8; 0 8, . 8). Note that the first letter of subscript
refers to the stage, and the second letter refers to the number of the record. The subscript of
h 98, for example, means 9 Cℎ stage and 8-th record. Then, considering the standard ordinary least
squares (OLS) for estimating &-functions, &-learning has following 4 steps:

• Step 1: For the stage  regression, we can compute(
#̂ , 7̂ 

)
= arg min

# ,7 

=∑
8=1
[. 8 −& (h 8, 0 8; # ,7 )]2 , (2.1)

that is OLS regressing . on history N and � . Then, in an application, the  Cℎ optimal
treatment rule would be to ?A4B2A814 � = 1 8 5 7̂

>
 N

k

 
> 0; 0=3 ?A4B2A814 � =

0 >Cℎ4AF8B4, where 7̂> comes from (2.1) and the i.i.d. observational data set.

• Step 2: We construct the 9 Cℎ stage pseudo-outcome by using estimated parameters from the

26



( 9 + 1)Cℎ regression step.

�̃9 (N 9+1, #̂ 9+1, 7̂ 9+1) = max
� 9+1

& 9+1(N 9+1, � 9+1; #̂ 9+1, 7̂ 9+1) = #̂
>
9+1h

V

9+1 + (7̂
>
9+1h

k

9+1)
+,

where G+ = G ∗ I(G > 0).

• Step 3: Stage 9 regression : uses OLS regression of the 9 Cℎ pseudo-outcome on history h 9
and 0 9 . (

#̂ 9 , 7̂ 9

)
= arg min

# 9 ,7 9

=∑
8=1

(
�̃98 −& 9

(
h 98, 0 98; # 9 ,7 9

))2
,

Then, in an application, the 9 Cℎ optimal treatment rule would be to ?A4B2A814 � 9 =

1 8 5 7̂>9 N
k

9
> 0; 0=3 ?A4B2A814 � 9 = 0 >Cℎ4AF8B4.

• Step 4: repeat above two steps until stage 1 is reached.

In practice, a treatment regime would be applied beginning at stage 1, and using 7̂
>
1 , then

the second stage using 7̂
>
2 , until the final stage  using 7̂

>
 . That is, the estimated optimal DTR

is 3̂>?C = {3̂1(h1), ..., 3̂ 9 (h 9 ), ..., 3̂ (h )}>?C = {I(7̂
>
1 h1 > 0), ..., I(7̂>9 h 9 > 0), ..., I(7̂> h >

0)}. An illustration of &-learning in a three-stage example is presented in Appendix A, and this
example can help clarify the whole processes of regression-based approaches. &-learning has
certain advantages. For example, it is simple to implement in standard software and easy to
explain to clinical collaborators. Additionally, &-learning can easily be combined with continuous
treatments (doses) and also with many useful tools such as standard variable selection methods
(e.g., Likelihood Ratio Testing) and residual diagnostics.

However, optimal DTRs estimated with &-learning can be very poor if the outcome regression
model is misspecified. Compared with the direct search approach, the objective function of
&-learning is for model fitting but not directly for value maximization. Moreover, &-learning
is also associated with certain challenges: the main one generally arises during optimal DTR
inference because of the nonsmoothness of the maximum operator when pseudo-outcomes are
being constructed. Identifying the optimal treatment rules necessitates using a max operation; thus,
analysing all the large sample properties of corresponding estimators is subject to this requirement.
Specifically, due to need for the maximum operator, the pseudo-outcomes may not be normally
distributed even if all original variables are multivariate normally distributed. In addition, there
exist some individuals who do not respond to latter stage treatments; in which case, the statistical
inference for earlier stages’ parameters from &-learning is non-standard (Chakraborty and Moodie
[2013]). Some work has been proposed to address these issues, such as robust&-learning (Ertefaie

27



et al. [2021]), and inference for non-regular parameters in DTRs (Chakraborty et al. [2010],
Chakraborty et al. [2013]).

2.2.2 Dynamic Weighted Ordinary Least Squares

A major limitation of &-learning is that it requires correct specification of all the &-functions;
however, other methodologies have been developed that allow more flexibility in modeling. One
example is dynamic weighted ordinary least squares. In the following parts, we first introduce the
dWOLS model in the single decision problem, and then present dWOLS in a multi-stage case.

For the single-stage model, we let x8 = (G18, G28, . . . , G%8) be a vector of % covariate variables
of the individual 8. Suppose that the true outcome model can be split into two components and be
semiparametric such as E

[
. ∗
8
(08) | x8

]
= 5

(
xV
8
; #

)
+ 7>08xk8 , for some function 5 and unknown

parameter # and 7, where 8 denotes individual. One is the 5 function, which we usually call the
treatment-free function, and it is the expected outcome under no treatment. The second is the
gamma function, which we commonly call the blip function, and it is the impact of treatment on
outcome. xV

8
and xk

8
are subsets of x8, and xk

8
in the blip function often termed the prescriptive

or tailoring variables. Note that the treatment-free function has no relationship with treatment;
therefore, to choose the optimal treatment, we really need to choose a treatment to maximize the
blip function.

Dynamic weighted ordinary least squares (Wallace andMoodie [2015]) is applied by specifying
three models: (1) the treatment-free model: 5 (xV; #); (2) the blip model: W(xk , 0;7) = 07>xk;
(3) the treatment model: E[�|x;"], which is the propensity score model (Rosenbaum and Rubin
[1983]) when the treatment is a binary variable.

Under dWOLS, we estimate 7 via weighted ordinary least square of outcome on covariates in
treatment-free and blip models, with balancing weights, for example, F = |0 − E[�|x; "̂] |; (the
balancing weights will be discussed later in this section). The fundamental property of dWOLS
is double robustness (Wallace and Moodie [2015]); that is, parameters 7 can be consistently
estimated if at least one of the treatment or treatment-free models is correctly specified.

dWOLS draws heavily on the method of G-estimation (Robins [2004]), with both approaches
grounded in structural nested mean models (SNMMs, Robins [1994]). In multi-stage settings,
an SNMM is used to model the effect of a treatment at each stage as a function of the available
patient history. This is called the blip function (Robins [2004], Chakraborty and Moodie [2013]):

Definition 2.2. Blip function
A function describing the expected difference in potential outcome when receiving a treatment 0 9
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at the 9 Cℎ stage ( 9 <  ) instead of the reference treatment 0A4 5
9

(such as a control or standard
care, taking the value 0 in our setting) at 9 Cℎ stage and subsequently receiving optimal treatment
from the ( 9 + 1)Cℎ stage, given covariate history h 9 .

Mathematically, the blip function is defined at each stage 9 <  as

W 9
(
h 9 , 0 9

)
= E

[
. ∗(a 9−1, 0 9 , a

>?C

9+1) − .
∗(a 9−1, 0

A4 5

9
, a>?C

9+1) |N 9 = h 9
]
,

where . ∗(a) is the potential outcome under treatment sequence a. A related concept is the regret
function (Murphy [2003]): ` 9

(
h 9 , 0 9

)
= E

[
. ∗(a 9−1 , a

>?C

9
) − . ∗(a 9 , a>?C9+1) |N 9 = h 9

]
, with

` (h , 0 ) = E[. ∗(a −1, 0
>?C

 
) − . ∗(a ) | N = h ], which is the expected loss arising from

receiving treatment 0 9 at the 9 Cℎ stage rather than the optimal treatment 0>?C
9

. Then, the relationship
between the blip function and regret function is ` 9 (h 9 , 0 9 ) = W 9 (h 9 , 0>?C9

) − W 9 (h 9 , 0 9 ), so the
regret function will equal 0 if the individual was optimally treated, and be positive otherwise
(representing the expected increase in outcome had the patient received optimal treatment).

Models for the blip and the regret functions are examples of SNMMs and as such are amenable
to analysis by several established methods. Typically, the blip model depends on a relatively small
subset of the variables in h 9 , denoted as hk9 , which is the tailoring variables. The blip model forms
one component of the outcome model (E [. ∗(a) |N = h] = ∑ 

9=1 [ 5 9
(
h 9 ; #

)
+ W 9 (hk9 , 0 9 ;7 9 )],

where 5 9 denotes the expected contribution of covariates in the absence of treatment (called
the treatment-free model) for stage 9 . The optimal treatment rule at each decision point is
that which maximizes the expected outcome. As the treatment-free model does not depend
on treatment, the optimal treatment is therefore that which maximizes the blip (or minimizes
the regret), namely: “0>?C

9
= 1, 8 5 W 9 (hk9 , 1;7 9 ) > 0; 0>?C

9
= 0, >Cℎ4AF8B4.” Similar to &-

learning, the estimated optimal DTR is 3̂>?C = {3̂1(h1), ..., 3̂ 9 (h 9 ), ..., 3̂ (h )}>?C = {I(7̂
>
1 h1 >

0), ..., I(7̂>9 h 9 > 0), ..., I(7̂> h > 0)}. It is therefore sufficient to estimate 7 9 (the parameters in
the blip); the parameters of the treatment-free model are nuisance parameters.

If the blip and treatment-free models are correctly specified, their parameters may be estimated
in the manner of a typical regression problem. Standard methods may also be applied if the
treatment and tailoring covariates are independent. The latter condition, though common in
randomized trials, is typically problematic in observational studies, for example, when sicker
patients are prescribed more aggressive therapies. However, various methods - including dWOLS
and G-estimation - offer robustness to mis-specification of the treatment-free component even
when treatments are covariate dependent. In addition to the blip and treatment-free models,
these methods require specification of a third model - the treatment model. This establishes the
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relationship between treatment and covariates: E
[
� 9 |N 9 = h 9 ;" 9

]
.

Estimation via dWOLS follows a recursive procedure, one stage at a time. Beginning at the
final stage (stage  ), and working backwards to stage 1, at each stage (e.g., stage 9), we specify
the blip model such as a linear model W 9

(
h 9 , 0 9 ;7 9

)
= 7>9 0 9h

k

9
, and the treatment-free model

(such as a linear model again, which could also be a more general function of the parameter vector
# 9 ) : 5 9 (h 9 ; # 9 ) = #>9 h

V

9
, where vector hV

9
(often termed predictive variables) is a subset of the

history h 9 . Then, dWOLS proceeds as follows:

• Step 1: Construct the stage 9 pseudo-outcome: set Ỹ9 = H if 9 =  , otherwise, use prior
estimates 7̂

9+1
= (7̂ 9+1, ..., 7̂ ) to form Ỹ9 = H +

∑ 
:= 9+1 `: (h: , 0: ; 7̂: ).

• Step 2: Specify the stage 9 treatment model E
[
� 9 |h 9 ;" 9

]
. The treatment model parameters

" 9 (estimated, for example, via logistic regression) are used to compute a weight F 9 , such
as F 9 =

��0 9 − E [
� 9 |h 9 ; "̂ 9

] ��.
• Step 3: Specify the stage 9 treatment-free and blip models, and conduct WOLS to estimate
7̂ 9 and form treatment-rules: regress Ỹ9 on (hV9 , h

k

9
) with weights F 9 to find parameter

estimators 7̂ 9 to construct the 9 Cℎ stage optimal treatment rule, which is ?A4B2A814 0 9 =
1 8 5 7̂>9 N

k

9
> 0; Cℎ4= ?A4B2A814 0 9 = 0 >Cℎ4AF8B4.

• Step 4: Return to Step 1 and analyze stage 9 − 1 if there are more stages to analyze.

Assuming that the blip model is linearly set and correctly (or at worst, over-) specified, dWOLS
leads to doubly robust blip parameter estimators: if at least one of the treatment or treatment-free
models is correctly specified, the blip parameter estimators will be consistent. This property
is a consequence of the weight function establishing covariate balance: in effect removing any
dependence between treatment and covariates in the weighted dataset (Wallace and Moodie
[2015]). As a sequence of weighted regressions, dWOLS is easily implemented in most software
environments (with a dedicated package in R, Wallace et al. [2017b]).

The double robustness property of dWOLS is appealing, particularly in the case of randomized
trials data, where the treatment model will often be known precisely. We illustrate this property
with the single decision case. To overcome the misspecification of the treatment-free model,
the crucial part of dWOLS is to identify the weights for the weighted least squares. Wallace
and Moodie [2015] has proposed a covariate balancing theorem for the weights. We denote the
propensity score as c(x) := P(� = 1 | x), and suppose the weight F(0, x) is a function of � = 0
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and x. Then, a weighted least squares regression of . on (xV, axk) will yield consistent estimates
of 7 if the weights satisfy

c(x)F(1, x) = (1 − c(x))F(0, x). (2.2)

As indicated previously, the double robustness of dWOLS relies on that of G-estimation, which
was originally developed in causal inference for longitudinal data where the focus was on SNMM.
One crucial condition of the consistency estimation of 7 from G-estimation is no unmeasured
confounding (NUC). NUC guarantees the independence of treatment and potential outcomes; thus,
from the generalized estimating equation (GEE) in G-estimation, because of the (conditional)
independence under UNC, the expectation of the whole GEE is the product of two independent parts
of GEE, one part related to a (possibly counterfactual) treatment-free outcome, the other related to
the treatment. Therefore, the GEE in the G-estimation is unbiased if either the treatment-free or
treatment model is correctly specified. The rationale behind this is that the estimating functions are
obtained from semiparametric efficiency theory and they turn out to be some influence function for
parameters of interest when either model is correctly specified (Tsiatis [2006], Kennedy [2017]).
Moreover, note that, in G-estimation, the treatment (propensity score) model does not necessarily
need to be correctly specified in the sense of capturing the data-generating mechanism, but rather
it must contain and model correctly the impact of all confounding variables (Chakraborty and
Moodie [2013]). Relying on the NUC condition and recasting G-estimation in a WOLS manner,
Wallace and Moodie [2015] provided a class of weights, which are associated with the treatment
part in the GEE of G-estimation, and these weights can balance the covariate. Wallace and Moodie
[2015] presented a heuristic proof for this theorem. Building on this proof, in Chapter 3, we extend
the theorem and proof in the presence of interference.

Our first new proof for the balancing weights used in dWOLS is based on the algebra of the
partition regression. Firstly, we note that if the treatment-free model, where 5 (xV; #) = #>xV in
the linear case, is correctly identified, we can acquire unbiased estimators of 7 (i.e., E[7̂] −7 = 0)
via weighted linear regression for any set of weights. We then show that if we apply weights that
satisfy c(x)F(1, x) = (1 − c(x))F(0, x), we also have E[7̂] − 7 = 0, even if the treatment-free
model is incorrectly specified. During this process, considering weighted OLS system equations,
we first derive conditional expectation of #̂ (i.e., E[ #̂ | 0, x]), and then E[7̂ | 0, x]. Further,
taking expectation of E[7̂ | 0, x] with respect to the distribution of � given x, we have the
expectation of 7̂, conditional on x; thus, we derive the bias of 7̂ (i.e., E[7̂] − 7). Finally, the
key factor in the bias of 7̂ is denoted as E = {B(x) (� − xV [A(x)xV]−1A(x))} 5 (xV, #), that
is, (B.7) in Appendix B, where B(x) = (xk)>'(x), A(x) = (xV)>'(x) [2� − Pk'(x)] and
Pk = xk [(xk)>'(x)xk]−1(xk)> are expressions that are related to '(x), so that 7̂ is unbiased
if and only if E = 0. The details of this proof are provided in Appendix B. There we apply the
spirit of the Frisch-Waugh-Lovell Theorem that is often employed in econometrics, and use an
expectation of ratio-approximation techniques. We note that this proof lays the foundation for
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studying dWOLS in the presence of interference (i.e., as in Chapter 3), in particular, a foundation
for the Invalid dWOLS Theorem (E.1) in Appendix E.

In addition, in Appendix C, we also demonstrate the double robustness of dWOLS from
the estimation equation perspective. In the proof, we study the estimation equations systems of
dWOLS, and through solving the system of estimating equations, we solve for estimators ( #̂, 7̂).
We show that 7̂ solving the system of estimating equations of dWOLS is a consistent estimator for
the true value 7, if at least one of either the treatment-free model or treatment model is correctly
specified. This perspective and thought process inspire us to propose doubly robust estimation
methods for extending dWOLS to the case of binary outcomes (i.e., as in Chapter 4). Note that,
based on the strong heredity principle (Chipman [1996]), dWOLS requires that the treatment-free
model must include the main effects for all covariates in the blip model, that is, the tailoring
variables should be the subset of the predictive variables (xk ⊆ xV). In Appendix C, we separately
consider two different cases: (1) xk = xV = x, and (2) xk ⊂ xV = x.

Furthermore, before finishing this chapter, we introduce a theorem that identifies the optimal
dWOLS weights that yield the minimum variance of blip-parameter (i.e., 7) estimators. Consistent
with the theorem framework and formats in Wallace and Moodie [2015], we have

Theorem 2.1. The optimal dWOLS balancing weights
A weighted least squares regression of . on (xV, 0xk) will yield the most efficient consistent
estimates of 7 if the weights satisfy

F(1, x) ∝ [1 − c(x)], 0=3 F(0, x) ∝ c(x). (2.3)

Proof of Theorem 2.1: See Appendix D.

One option for the optimal weight in (2.3), F(1, x) = [1 − c(x)], 0=3 F(0, x) = c(x), called
the “overlap weight”, has been extensively discussed by Li et al. [2018]. Overlap weights satisfy
the dWOLS balancing weights criterion (2.2), and have three main advantages that are presented
in Li et al. [2018]: (1) they include relatively few extreme weights; (2) there is no need to
choose an artificial cutoff point when the weight values have to be trimmed; and (3) they provide
the minimum variance of the sample estimator of weighted ATE among all balancing weights
(Theorem 2 and Corollary 1 in Li et al. [2018]). Demonstrating via simulation studies, Wallace
and Moodie [2015] suggested the use of “absolute value” weights for efficient estimation. These
weights, in the form F = |� − E(� | x) |, are identical to the overlap weights. That is, when
� = 1, F = |� − E(� | x) | = 1− c(x), and when � = 0, F = |� − E(� | x) | = |0− c(x) | = c(x).
Moreover, in the --learning, which was introduced as a CATE method at the beginning of this
chapter, Künzel et al. [2019] also observed that the propensity score worked fairly well as a
weight if the number of untreated individuals is much larger or smaller than the number of treated
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individuals. Recall that the --learner is a combination of the two different estimators for the
CATE, and includes a weight of F: Fĝ0(x) + (1 − F)ĝ1(x), where ĝ0(x) is one CATE estimator
that corresponds to the untreated group, and ĝ1(x) is the other estimator and is based on the
treated group. If F = c(x), as suggested by Künzel et al. [2019], then the --learning CATE
estimator is c(x)ĝ0(x) + [1 − c(x)] ĝ1(x). That is, the --learner that employs the overlap weights
is recommended by Künzel et al. [2019].

Theorem 2.1 provides the rationale behind the choice of optimal weights for dWOLS and
guarantees that the variance of 7̂ is the smallest, that is, corresponding to the asymptotically
efficient estimator. When we employ the dWOLS method for DTR estimation, we can simply
analyze the overlap weights instead of considering a family of dWOLS weights. In the proof of
Theorem 2.1, the variance of 7̂ was derived using a matrix formulation of the weighted OLS. The
weights satisfy weight criterion (2.2), the biases of these 7̂ are zero, and thus the optimal weights
corresponds to the one that involves the smallest variance of 7̂. Accordingly, to find the optimal
weights, we use the Cauchy-Schwarz inequality to find the lower bound of the variance of 7̂, and
then identify the corresponding weights.

In this chapter, we have provided a general review of optimal DTR estimation, starting from
single-stage treatment decisions and moving to multiple-stage ones. In particular, this chapter
presented the &-learning and dWOLS methods and discussed the theoretical foundations of
dWOLS from two different perspectives: direct proof of dWOLS in Appendix B, and estimation
equation proof of dWOLS in Appendix C. We provided a theorem that identifies the optimal
dWOLS weights, and showed that the overlap weights (or absolute value weights) are one choice
of the optimal dWOLS weights. If at least one of the treatment-free or treatment model is correctly
specified, then with the optimal weights, dWOLS provides consistent estimation with lowest
variance among all the standard dWOLS weights. These contributions build a solid basis for
investigating dWOLS in the presence of interference.
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Chapter 3

Optimal DTR Estimation in the Presence of
Interference

Building on the&-learning and dWOLS methods introduced in Chapter 2, in Chapter 3, we explore
the estimation of DTRs in the presence of interference. In the presence of interference, our first
step is to examine Su et al. [2019]’s &-learning methods and to propose a weighted version of
their methods. Then, focusing on dWOLS, we investigate the impact of interference on analyses
where it is ignored, and demonstrate how dWOLS may be used to account for it. We also develop
a modification to dWOLS based on network propensity functions, which can offer modeling
flexibility and efficiency gains compared to the original dWOLS methodology in this setting. We
then apply our work to a real-world study of smoking cessation: the Population Assessment of
Tobacco and Health study.

This chapter is organized as follows. In Section 3.1, we introduce recent advances in precision
medicine under interference, as well as causal inference assumptions under interference. Next, in
Section 3.2, we examine the &-learning method under interference. In Section 3.3, we highlight
the impact of interference on estimation using dWOLS and propose various solutions, including
our extension based on network propensity functions. Three simulation studies, described in
Section 3.4, investigate the consequences of failing to account for interference and demonstrate
how interference may be accommodated in dWOLS analysis. In Section 3.5, we illustrate our
methodology using data from the PATH study. We conclude this chapter with a discussion in
Section 3.6.
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3.1 Preliminaries

Various researchers have studied violations of the no-interference assumption in broader contexts
(Hayes et al., 2000; Sobel, 2006; Tchetgen and VanderWeele, 2012; Leung, 2020), such as
diverse interference studies in Section 1.2. However, despite some recent increased awareness
of interference issues within the specific context of precision medicine or DTRs, for example,
Su et al., 2019 and Sherman et al., 2020, there is little methodological work addressing such
problems. In the interference-aware DTRs framework, treatments are already dependent on
patient-level characteristics, and so accounting for the treatments of those connected to each
patient provides an additional - but related - challenge. Su et al. [2019] assume treatments
are independently assigned between individuals. To characterize the network interference, they
consider neighbours’ covariates, treatment, and covariate-treatment interactions at a single decision
point of the &-learning and A-learning models; the outcome considered is a network mean. Their
result, using a double summation switching technique, is that under their model the optimal
treatment at the individual level is dependent only on that individual’s own covariates and the
degree of that individual (number of neighbours). Because their models do not include interactions
between others’ treatment assignments and one’s own treatment assignment, the optimal treatment
rules also do not rely on the neighbours’ treatments. Su et al. [2019]’s &-learning model will be
discussed in Section 3.2 and a weighted version of their model will be investigated in the same
section. In another approach, assuming a treatment is randomized, and depends on the unit’s
own and neighbour’s covariates, and assuming network exogeneity, Viviano [2020] proposed a
methodology for estimating treatment allocation policy under network interference. This work
considered a semi-parametric model to estimate a network’s empirical welfare, which is a function
of policy. Additionally, to identify the optimal policy, an exact optimization algorithm was
employed to solve optimization questions with capacity constraints.

Following standard network analysis convention, a network is a set of nodes connected by
edges and is usually represented by a graph. The total number of nodes is the size of the network,
and the degree of a node is the number of connections it has to other nodes. Building on this
framework, we will establish new approaches within an undirected network� in which individuals
(or patients) whose covariates are independent and identically distributed are indexed by 8. We
denote the set of neighbours of node (individual) 8 in the network � by N8 and let xN8 consist
of the covariate values of the neighbours of node 8. We also establish four network interference
assumptions for 8 = 1, ..., =:

Interference Assumption 1. The distribution of potential outcomes of a unit 8, conditional on
the treatments on all units, depends only on its treatment and the treatments of units in its
neighbourhood N8 (Forastiere et al., 2021), that is, . ∗8 (A = a) = . ∗

8
(A = a†) for all (a, a†), such

that 08 = 0†8 0=3 0; = 0
†
;
for all ; ∈ N8 . Under this neighborhood interference assumption, the
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potential outcome of a unit 8 can be denoted as . ∗
8
(A) = . ∗

8
(�8, �N8 ), a function of both a scalar

�8 and a vector �N8 , where �8 is the treatment of unit 8, and �N8 represents treatments of units in
the neighbourhood of unit 8.

InterferenceAssumption 2. NoUnmeasuredConfounding (NUC) of individual and neighborhood
treatment: . ∗

8
(08, 0N8 ) |= (�8, �N8 ) | (x8, xN8 ).

Interference Assumption 3. Stability (or Consistency): . >1B
8
(08, 0N8 ) = I(�8 = 08, �N8 =

0N8 ). ∗8 (�8, �N8 ).

Interference Assumption 4. Positivity: P[�8 = 08, �N8 = 0N8 | (x8, xN8 )] > 0, for all (�8, �N8 )
such that P[(^8,XN8 ) = (x8, xN8 )] > 0.

Under these four network interference assumptions, we have E[. ∗(0, 0N) | (x, xN )] = E[. |
(x , xN), (�, �N) = (0, 0N )]. When potential outcomes depend on neighbours’ treatment, then
the optimal DTR that maximizes the outcomes will rely on neighbours’ treatment. Thus, the value
function – the expected outcome that is achieved applying a certain treatment regime, namely, in a
single-stage decision setting, 3 (x , xN, 0N) that maps covariates (x , xN) and neighbours’ treatments
(0N) to a treatment configuration (0, 0N ) – is V

[
3 (x , xN, 0N)

]
= E

(
. ∗ [3 (x , xN, 0N)]

)
=

E [. ∗(0, 0N )] . Again, our primary goal is identifying the optimal DTRs, that is an optimal regime
3>?C ∈ D satisfies that (e.g., for a single-stage case, just a piece of decision rule)

3>?C (x , xN, 0N) = arg max
3∈D

E
{
. ∗ [3 (x , xN, 0N)]

}
:= arg max

3∈D
V[3 (x , xN, 0N)] .

That is, we want to identify a treatment regimen that maximizes the objective function, which
is the expectation of potential outcome and denoted asV(3). Therefore, an optimal treatment
regime is a function that maps the covariates and neighbours’ treatments, that is, (x , xN, 0N), to an
optimal treatment configuration (0, 0N )>?C : 3>?C (x , xN) = (0, 0N )>?C . The corresponding value
function of 3>?C is V[(0, 0N )>?C] = E[. ∗ [(0, 0N )>?C]] = E

[
E[. ∗ [(0, 0N )>?C] | (x , xN)]

]
=

E

[
max
(0,0N)

E[. ∗(0, 0N ) | (x , xN)]
]
= E

[
max
(0,0N)

E[. | (x , xN ),A = (0, 0N )]
]
.

It is simpler to assume that we are optimizing for the individual (the ego), rather than for
both the ego and the neighbours. That is, the goal is to identify the optimal treatment for the
ego only, and we assume that the neighbours’ treatments are pre-determined and thus fixed
throughout the study period. We term this assumption as the neighbours’ invariant treatments
(NIT) assumption. Under NIT, the corresponding optimal value function is thenV[(0, 0N )>?C] =
E

[
max
(0,0N)

E[. | (x , xN ),A = (0, 0N )]
]
= E

[
max
0
E[. | (x , xN ),A = (0, 0N )]

]
. As a result, in

this single-stage case, treatment decision rules for egos will depend both on their own covariates,
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and their neighbours’ covariates as well as the treatments. Looking ahead to the multi-stage
case, each decision rule of a DTR will also have such covariates and neighbours’ treatment
information as an input. Building on these important background details, we now formally define
a dynamic treatment regime in the presence of interference. We adopt notation that generalizes the
covariate to a “history” variable h, which also possibly include neighbours’ history information,
and continue to suppose that there are two treatment options in set� = {0, 1}. In the presence
of interference, an treatment regimen 3 are sequence decision rules that each of them maps an
individual’s history and their neighbours’ history and treatments to a treatment option in a set
of available treatments. Formally, under the invariant treatments of neighbours assumption, a
dynamic treatment regime in the presence of interference is defined as follows.

Definition 3.1. Dynamic Treatment Regime with Interference
With  treatment decision points, where  ≥ 1, at decision stage 9 , a treatment decision rule
3 9 (h 9 , �N) is a function that maps an individual’s, or possibly their neighbours’, history and their
neighbours’ treatments to a treatment option in�9 , for 9 = 1, ...,  . Then, a dynamic treatment
regime 3 ∈ D is a sequence of such treatment decision rules to be applied in order; that is, with
 decision points:

3 = {31(h1, �N), ..., 3 9 (h 9 , �N), ..., 3 (h , �N)}.

We will study interference in the following part of Chapter 3 in a simpler case where we
optimize for the ego, but not for the ego and its neighbours. Thus we assume that the neighbours’
treatments are fixed throughout the study period. Building on this invariant treatments of
neighbours assumption, we will devise interference-aware DTR estimation approaches. Extending
this assumption, furthermore, in Chapter 5, we will examine household interference and optimize
for a pair in the same household, that is, optimizing for both ego and alter.

3.2 &-learning with Interference

In the previous section, we have built extended causal assumptions under interference, and have
discussed that, under the interference scenario, the optimal treatment regimes depend on both the
individual’s information and their neighbours’ treatments. We also rigorously defined DTR in
the presence of interference. In this section, we will investigate &-learning in the presence of
interference.
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3.2.1 Methodology

We suppose independent treatments with the same treatment rule applying to all individuals,
and suppose that our goal is to identify an optimal regime 3>?C ∈ D that satisfies 3>?C =
arg max
3∈D

E {. ∗(3)}, and this goal is equivalent to finding the optimal treatment that maximizes
1
=

∑=
8=1 E

{
. ∗
8

[
3

(
x8, xN8 , 0N8

)
, 0N8

]
| x8, xN8

}
, where 8 = 1, 2, ...= are egos. For a single-decision

problem, under four network interference assumptions in Section 3.1, our goal is to identify the
treatment that maximizes

1
=

=∑
8=1
E

{
. ∗8

[
08, 0N8

]
| x8, xN8 , 08 = 3

(
x8, xN8 , 0N8

)
, �N8 = 0N8

}
. (3.1)

Generally, for the  - stage treatment decisions, the & functions of &-learning with network
interference are defined as:

& 

(
h , 0 , 0

 
N

)
= E [. | h , 0 , 0N ] ;

and for 9 <  ,

& 9

(
h 9 , 0 9 , 0

9

N

)
= E

[
max
� 9+1

& 9+1
(
h 9+1, � 9+1, �

9+1
N

)
| h 9 , 0 9 , 0N

]
,

where 0 9N denotes the neighbours’ treatments at 9 Cℎ stage for 9 = 1, 2, ... , and 0 9N = 0N is based
on the assumption that the neighbours’ treatments are fixed throughout the study period. The use
of network-based regression models in a single-decision setting of &-learning with interference
was pioneered by Su et al. [2019]. Their model can be expressed as:

E[.8 | x8, xN8 , 08, 0N8 ] =U + #>x
V

8
+ W1

=∑
;≠8

#8;#
>xV

;
+ [08 + W2

=∑
;≠8

#8;[0;

+ 087>xk8 + W3

=∑
;≠8

#8;0;7
>xk

;
,

(3.2)

where #8; = 1 if 8 and ; are connected in a social network and #8; = 0 otherwise, and xV and xk

are sub-vectors of x, of lengths ?V and ?k , respectively.

According to Su et al.’s model (3.2), after some algebra for the objective function (3.1), the
goal is to identify an optimal treatment that maximizes:
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1
=

=∑
8=1

(
U + #>xV

8
+ W1

=∑
;

#8;#
>xV

;

)
+ 1
=

=∑
8=1

3
(
x8 , xN8

, 0N8

) [(
1 + W2

=∑
;

#8;

)
[ +

(
1 + W3

=∑
;

#8;

)
7>xk

8

]
.

Then, for the binary treatments, the optimal treatment rule for subject 8 is:

3>?C
(
x8 , xN8

, 0N8

)
= I

{[(
1 + W2

=∑
;

#8;

)
[ +

(
1 + W3

=∑
;

#8;

)
7>xk

8

]
> 0

}
. (3.3)

Note that the optimal treatment rule in equation (3.3) depends on x8, and xN8 , but not 0N8 .
Thus, for Su et al.’s model (3.2), the optimal decision rule is 3>?C

(
x8, xN8 , 0N8

)
= 3>?C

(
x8, xN8

)
,

with parameters W2, [, W3, and 7. Then, the estimation of these parameters is as follows.

For model (3.2), we can also write

n8 = .8 − U − #>xV
8
− W1#

>
∑
;≠8

#8;x
V

;
− [08 − W2[C8 − 087>xk8 − W37

>
∑
;≠8

#8;0;x
k

;
,

where C8 =
∑=
;=1 #8;0; , the number of treated neighbours of the ego. With weighted least squares,

the normal equations are proportional to the partial derivatives of
∑=
8=1 F8n

2
8
with respect to the

parameters or parameter vectors U, #, [, 7, W1, W2, and W3. In the model, we suggest use the
“absolute value” weights, that is, F = |�−P(� = 1 | x) |, proposed by Wallace and Moodie [2015].
Nevertheless, any standard dWOLS balancing weight is an option.

Based on Su et al.’s iterative approach, we now propose a weighted iterative method, with the
standard dWOLS weights in each least squares regression. From the model (3.2), equivalently, the
error, n8 = .8 −U + #>xV8 + W1

∑=
;≠8 #8;#

>xV
;
+ [08 + W2

∑=
;≠8 #8;[0; + 087>x

k

8
+ W3

∑=
;≠8 #8;0;7

>xk
;
,

is not linear in the parameters. It is convenient to solve the normal equations by an iterative
method, as follows.

• Step 1: Estimate the treatment model parameters ", and compute “absolute value” weight:

F8 = |�8 − E [�8 |x8; "̂] | .

• Step 2: Fix values of W1, W2, and W3, and let

D
V

8
= xV

8
+ W1

∑
;≠8

#8;x
V

;
, I

[

8
= 08 + W2

∑
;≠8

#8;0; , 0=3 E
k

8
= 08x

k

8
+ W3

∑
;≠8

#8;0;x
k

;
.
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Write n8 = .8 − U − #>DV
8
− [I[

8
− 7>Ek

8
, and by weighted least squares find Û(W), #̂(W),

[̂(W) and 7̂(W).

• Step 3: Fix the values of U, #, [ and 7 at these estimated values, and let

A8 = U + #>xV8 + [08 + 087
>xk

8
, B8 =

∑
;≠8

#8;#
>xV

;
,

C8 =
∑
;≠8

#8;[0; , 0=3 D8 =
∑
;≠8

#8;0;7
>xk

;
.

Write n8 = .8 − A8 − W1B8 − W2C8 − W3D8, and by weighted least squares find Ŵ1, Ŵ2, Ŵ3,
which are new estimates of parameters W1, W2, and W3, respectively.

• Step 4: Repeat these two steps until the estimates converge.

In addition to our weighted iterative method for Su et al.’s model (3.2), we have now proposed
&-learning for pairs case in the presence of household interference.

For the  -stage process, the quality function for a pair case, that is, an ego and alter case,
could be defined as

& 

(
h , 0

46>

 
, 00;C4A 

)
= E

[
. | h , 046> 

, 00;C4A 

]
,

and for 9 <  ,

& 9

(
h 9 , 0

46>

9
, 00;C4A9

)
= E

[
max
� 9+1

& 9+1
(
h 9+1, �

46>

9+1, �
0;C4A
9+1

)
| h 9 , �46>9 = 0

46>

9
, �0;C4A9 = 00;C4A9

]
.

In the presence of household interference, we propose a linear model for the &-functions such
that:

& 9

(
h 9 , 0

46>

9
, 00;C4A9 ; # 9 ,7 9

)
= #>9 h

V

9
+ 7>9 0

46>

9

(
hk
9

00;C4A
9

)
, (3.4)

a similar process can be defined for the case of the model (3.2), where 00;C4A
9

is replaced by
C 9 , the number of treated neighbours of the ego at 9 Cℎ stage. Following the assumption of
invariant treatments of neighbours introduced (i.e., NIT assumption) in Section 3.1, then we have
00;C4A
9

= 00;C4A for 9 = 1, 2, ... . It is important to note that, compared with Su et al.’s model (3.2),
model (3.4) includes 00;C4A in the interaction terms (i.e., model contains term 046>00;C4A), and thus
the decision rules will also depend on 00;C4A .
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Figure 3.1: Treatment decision parameter ([, k, W2, and W3) estimates for = = 100, = = 1, 000, and
= = 1, 000 simulated datasets under the BA model network.

3.2.2 Simulation Studies

In the previous subsection, &-learning with network interference and household interference are
investigated. In this subsection, we demonstrate &-learning, for example, model (3.2) under
network interference and household interference via simulation. We first consider network
interference with a general fixed network, generated from the Barabási-Albert model, then, we
examine pairs’ (ego and alter) case. Note that in this simulation, we consider the pairs’ household
interference case as a special case of network interference, that is, each individual only has one
neighbour in the network.

Barabási-Albert model generates random scale-free networks, that is, networks for which the
degree distribution follows a power law for large : . These scale-free networks are characterized
by the presence of large hubs, or nodes that are highly connected to other nodes in the network.
In particular, the degree distribution resulting from the BA model is a power law of the form
P(:) ∼ :−3 (Albert and Barabási, 2002). Many observed networks, such as the world wide web,
citation networks, and some social networks are approximated by scale-free networks. Thus, we
employ the BA model in this social network simulation studies. In this simulation, we set the
power of the BA model as 1, that is, linear preferential attachment, and set < = 6, which refers to
the number (<) of edges to add in each time step of generating the graph. We generate data as
follows:
Patient Information: -8 ∼ * (0, 1.5); treatment P(�8 = 1 | -8 = G8) = U0 + U1G8, where true
U0 = 0.5, 0=3 U1 = 0; outcome .8 ∼ # (`8, 1) where `8 = U + #>xV8 + W1

∑
;≠8 #8;#

>xV
;
+ [08 +

W2
∑
;≠8 #8;[0; +087>x

k

8
+ W3

∑
;≠8 #8;0;7

>xk
;
, where our interest is in estimating the decision

parameters (from equation 3.3) [ = k = 1, W2 = 0.5, 0=3 W3 = 0.1.
The results of Figure 3.1, under a BA modeled network interference, illustrate that the decision

parameters, that is [, k, W2, 0=3 W3, are consistently estimated.
For the pair case, Figure 3.2 shows the &-learning results under interference. The results in

Figure 3.2 show that the decision parameters, that is [, k, W2, 0=3 W3, are consistently estimated.
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Figure 3.2: Treatment decision parameter estimates for = = 100 and = = 1000 simulated datasets
under the pair case.

Considering network interference, Su et al. proposed a novel single-stage &-learning method.
Building on their models and iterative approach to estimating the parameters in the &-learning
model, we have studied the weighted version of their methods and demonstrated them in our
simulation studies. We employed the standard dWOLS weights in each least squares regression.
Due to the limitation of Su et al.’s modeling, that is, their model does not take into account
interactions between an individual’s own treatment assignment and that of their neighbours, the
optimal DTR depends only on the individuals and their neighbours’ covariates, not on their
neighbours’ treatments. In addition, Su et al. provide only a single-stage &-learning method,
and do not address the more-complicated multi-stage version. However, in this section, we
have proposed a multi-stage &-learning approach with both network interference and household
interference. In particular, examining household interference where there is a pair (ego and alter)
case, and aiming to include neighbours’ treatment in the optimal treatment rules, we have proposed
a model (3.4) for interference-aware &−learning. Moreover, in equation (2) in their paper, Su et al.
consider maximizing the expectation of the network means, but we focus on the egos’ outcomes.
Note that when we have interference between ego and alters, we will not in general be able to
optimize the outcome of each one individually. When there are spillover effects, the best treatment
for the ego, from the ego’s point of view, may not be the best treatment for the ego from the point
of view of the alters (neighbours of the ego).

As an “appetizer” or “starter course” to DTR estimation with interference, the study of &-
learning with interference in this section is intended to present how complications and challenges
arise when the dynamic treatment regimes are in the presence of interference, and how they are
addressed in the methods recently proposed by various researchers. In the following section, we
will further explore dWOLS methods with interference, in particular, the balancing property when
we incorporate the neighbour’s treatment in the outcome model.
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3.3 dWOLS and Interference

After exploring &-learning with interference, in this section, we will investigate the dWOLS
method with interference.

As previously discussed, dWOLS, like most DTR analysis tools, relies on several assumptions
common to causal inference methodology: positivity, no unmeasured confounders, and SUTVA
(Kosorok and Laber, 2019). If the assumption of no interference does not hold, dWOLS may
result in biased estimators of treatment parameters, leading to non-optimal treatment regimes. For
example, the optimal treatment decision for an individual may depend on the treatment of those
they are connected with. Within our modeling framework, this would necessitate the inclusion of
the treatments received by the ego’s neighbours in the blip model. Under an assumption of no
interference, this term will be omitted, and no guarantees of consistency of the remaining blip
parameters can be made.

3.3.1 Analytical framework

Before introducing our proposed estimation method, we introduce the following analytical
framework. A fixed network of a certain size is established first, being either an observed network,
such as a set of family groups or a set of spatially located units connected by proximity, or a single
realization of a random graph (a network generated by a stochastic model). There is no restriction
on the pattern of neighbour sharing, such as the ruling out of isolated nodes, triangles or other
forms. For our purposes we suppose that each node represents an individual. The covariate values
for each of the individuals are assumed independent and identically distributed, independently
of the network configuration. The individual treatments are also assumed independent from
individual to individual, and depend on the individual’s covariate values but are independent of
the network configuration. Thus, the propensity for the individual treatment and treatments of
neighbours is calculable, conditional on the network and all covariate values.

Because of neighbour sharing, the treatments of neighbours are clearly not necessarily
independent from individual to individual, conditional on the network and all covariate values. The
outcomes, however, are assumed to rely not only on own covariates and treatment but also on those
of neighbours. Thus, if the model for the outcomes is correctly specified, the coefficient estimating
function terms for individuals are unbiased conditionally on the network, and all covariate and
treatment values. When the treatment-free part of the outcome model is not correctly specified,
but the dWOLS balancing weights are applied to the estimating function terms, the combination of
estimating function terms used for the coefficients in the (correctly specified) linear treatment part
(the blip function Definition 2.2 in Page 28) is unbiased when the expectation is taken over the
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distribution of the covariate values, the individual treatments and the outcome, while the network
remains fixed. This unbiasedness is what guarantees the consistency of estimators of the blip
function parameters (Yuan and Jennrich, 1998) and hence the optimal rule, under appropriate
regularity conditions, if the asymptotic framework is an increasing number of replications (on the
same network) of covariates, treatments and outcomes.

We will show via simulation that a failure to account for interference can lead to badly
mis-identified treatment rules, but when interference is suspected, this can be addressed at the
analysis stage. We discuss two methods to accomplish this. First, the most direct (and intuitive)
approach, which we will refer to as ‘standard’ dWOLS, is to add the spillover effect term - that is,
the treatment covariates for any alters - to the blip model. However, these spillover terms must
also be added to the treatment-free component, regardless of whether they are truly present in
the underlying model. (For a specific illustration of this in the case of single decision treatment
regimes, see the Invalid dWOLS Theorem and an example in Appendix E.) As an alternative,
we propose a new weighting criterion (or balancing condition). This new approach, which we
refer to as dWOLS with network weights, restores the double robustness of dWOLS without the
need to include superfluous terms in the treatment-free model. In addition, we will show via
simulation that this approach can also offer more flexible modeling and provides greater robustness
for estimation of spillover effects.

3.3.2 Network Propensity Function and TwoMethods to Account for Inter-
ference

We assume that data are observed from a network where each node is treated independently
according to the same randomization rule. We will relax this assumption for pairs in Theorems
3.1 and 3.2, and in Appendix F.1, we extend our methods to cases in which the treatments of ego
and alter are not independent. First, we denote B8,0 as the set of treated, that is, having 0 = 1,
neighbours of 8, and then define the “network propensity function” or “network propensity scores”
under network interference:

Definition 3.2. The network propensity function of individual 8 is the joint probability of individual
8 receiving treatment 08, and the treatments of his or her neighbours are in the set B8,0. That is,

c8,08 ,B8,0 (x8,N8, xN8 ) = P(08 ∩ B8,0 | x8,N8, xN8 ).

Furthermore, we define the standard propensity as c8 = c8 (x8) = P(�8 = 1 | x8), where
all �1 . . . , �= are independent, given the covariates x8, for 8 = 1 . . . , =, and x8 represents the
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covariate values for node 8 itself. We conclude that the network propensity function under network
interference can be written as:

c8,08 ,B8,0 (x8,N8, xN8 ) = P(08 ∩ B8,0 | x8,N8, xN8 )

= c8 (x8)08 (1 − c8 (x8)) (1−08) ×
∏
;∈B8,0

c; (x;)
∏

;∈N8\B8,0

(1 − c; (x;)).

Having established these new network propensity functions, we recover the double robustness
of dWOLS in the presence of interference in two ways in the following theorems. First, we define
network interference term:

Definition 3.3. The network interference term results from a exposure interference function C that
maps from 0N to a scalar (C : {0, 1} |N | ↦→ C (0N ) ∈ R), where 0N are the treatments of units in
the neighbourhood.

That is, network interference term maps the configuration of the neighbour’s treatment onto
an exposure interference term, e.g., number or proportion of treated neighbours. Suppose that
the network interference term or this mapping function is correctly specified (Aronow et al.,
2017). We define weights F8 = F8 (x8,N8, xN8 , 08, B8,0), and assume that the treatment-free model
contains a linear term in C (0N ), and the blip function is linearly and correctly specified as
W(xk , 0, C (0N );7) = (7>(1) , k(2) ) (0x

k , 0C (0N ))>; then, we have the following theorem:

Theorem 3.1. Balancing Property 1 with Network Interference

When the true outcome model satisfies E[. |x, 0, C (0N )] = 5 (xV, C (0N ); #) +
W(xk , 0, C (0N );7), a weighted ordinary least squares regression based on the corresponding
linear model will yield consistent estimators of 7 if at least one of the treatment and treatment-free
models is correctly specified, and the weights satisfy c(x)F(1, x) = (1 − c(x))F(0, x) or its
sufficient but not necessary condition

F8 (x8,N8, xN8 , 08, B8,0)c8,08 ,B8,0 (x8,N8, xN8 ) = �(x8, xN8 , | N8 |), (3.5)

where � is a function that depends only on the x-variables (x8, xN8 ) and the degree (| N8 |); given
these variables, �(x8, xN8 , | N8 |) is a constant.

Proof of Theorem 3.1: See Appendix F.2.

Theorem 3.1 expresses that if the true outcome model includes two parts: treatment-free and
blip part, and both include the interference term, then both standard dWOLS weights and new
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proposed network propensity weights will give us a consistent estimator of 7. Equation (3.5) is our
proposed network weights criterion. The product of network weights and the network propensity
function is constant, given the covariates and degree of a network. In addition, in this theorem, we
showed that the network propensity weights criterion is the sufficient but not necessary condition
of the standard dWOLS weights criterion. Any network weights also satisfy the standard dWOLS
weight criterion, but not the other way around.

For The second modeling method, we build up a new estimation framework. We consider
two blip functions in terms of the network interference term. Suppose that the treatment-free
model does not contain a linear term in C (0N ), considering this interference term C (0N ) and its
products with the subset of variates (xb) to constitute a part of the treatment explanatory variable
space, so that the blip functions are: Wb (C (0N ), xb ; /) = />C (0N )xb , and Wk (0, C (0N ), xk;7) =
(7>
(1) , k(2) ) (0x

k , 0C (0N ))>, and assume these two blip functions are correctly specified. The Wb
model is only related to the spillover effects, basically, it is the interference term (function of
neighbours’ treatments) and tailoring variables xb , and Wk model is the original blip functions,
depending on interference term and tailoring variables xk . Further, we propose the second theorem
of balancing property with network interference:

Theorem 3.2. Balancing Property 2 with Network Interference

When the true outcome model satisfies E[. | x, 0, C (0N )] = 5 (xV; #) + Wb (C (0N ), xb ; /) +
Wk (0, C (0N ), xk;7), a weighted ordinary least squares regression based on the corresponding
linear model will yield consistent estimators of 7 as well as / if at least one of the treatment and
treatment-free models is correctly specified, and the weights satisfy

F8 (x8,N8, xN8 , 08, B8,0)c8,08 ,B8,0 (x8,N8, xN8 ) = �(x8, xN8 , | N8 |). (3.6)

Proof. Let G = (�8, �N8 ) be the treatment assignment of unit 8’s group, where �8 is the treatment
of unit 8 and �N8 are treatments of the units in the neighborhood of unit 8. Therefore, there are
2|N8 |+1 possibilities for the treatments assignments of G; for each unique assignment of treatments
to 8’s group, there is one corresponding weight. It is sufficient to perform a standard regression on
a weighted dataset (HF, xF, 0F), wherein

(x8, xN8 )F |= (08, 0N8 )F (3.7)

and to satisfy (3.7) it is sufficient to find weights such that:

P[(�8, �N8 )F = (08, 0N8 )F |XF8 = (x8, xN8 )F]
P[(�8, �N8 )F = (08, 0N8 )F]

= �(x8, xN8 , | N8 |). (3.8)
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We follow the strategy of first considering the numerators and denominators separately, then
observing that weights could guarantee, for any given treatment assignments (e.g., (08, 0N8 ) ∈
{0, 1}( |N8 |+1)), both numerators and denominators are separately equal.

Let : be the summation of all the products of weights and corresponding propensity scores, which
is : =

∑
(08 ,0N8 ) F8 (x8,N8, xN8 , 08, B8,0)c8,08 ,B8,0 (x8,N8, xN8 ) = 2|N8 |+1�(x8, xN8 , | N8 |), where

summation is over possible values of (08, 0N8 ), 8 fixed. For ∀(08, 0N8 ) ∈ {0, 1}( |N8 |+1) ,

P[(�8, �N8 )F = (08, 0N8 )F | XF8 = (x8, xN8 )F]

=
1
:
P[(�8, �N8 ) = (08, 0N8 ) | X8 = (x8, xN8 )]F8 (x8,N8, xN8 , 08, B8,0)

=
1
:
�(x8, xN8 , | N8 |) =

1
2|N8 |+1

.

Let ; =
∯

5x8 ,xN8 (X): 3X, where 5x8 ,xN8 (X) is the joint probability distribution function of
X8 = (x8, xN8 ).

P[(�8, �N8 )F = (08, 0N8 )F]

=
1
;

∯
5x8 ,xN8 (X)P[(�8, �N8 ) = (08, 0N8 )]F8 (x8,N8, xN8 , 08, B8,0) 3X

=
1
;

∯
5x8 ,xN8 (X)�(x8, xN8 , | N8 |) 3X

The equation holds if weights are of the specified form.

We also remark that the balance property and consistency results hold when the explanatory
variable in Wb is not the full configuration of neighbours’ treatments but a reduced variable that
is a function of the neighbours’ treatments C (0N), such as the number of treated neighbours.
Asymptotically, in the weighted distribution, C (0N), as a function of the treatment configuration,
is independent of the ego’s explanatory variables (x), and therefore as a scalar variable it is
uncorrelated with those explanatory variables; the coefficients of C (0N) and its products with
variables in x will be estimated consistently. �

The double robustness of dWOLS relies critically on the specification of weights that are
included in a linear regression model, and Theorems 3.1 and 3.2 provide details with respect
to the balancing condition of the weights in the presence of interference. Therefore, dWOLS
is still doubly robust in the presence of interference if either the treatment-free or treatment
models are correctly specified when the balancing condition weights in Theorems 3.1 and 3.2
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are employed. Furthermore, the network weights proposed in Theorem 3.2 will also guarantee
to provide consistent spillover estimators (/̂). In addition, we reemphasise that only if the blip
functions are correctly specified will the blip parameters’ estimators be meaningful (see Wallace
et al., 2017a for assessing the blip model specifications). However, even if the blip functions are
not correctly specified, the balancing weights would still achieve a kind of balancing similar to
what randomization testing provides, as long as the treatment model is correct. See the proof of
Theorem 3.2, where the balancing condition does not depend on the exposure mapping function.

Note that these theorems apply to a wide variety of network contexts, as indicated by the
flexibility of the exposure interference function (C), which maps configuration of the neighbour’s
treatment onto an exposure interference term. For example, C (0N ) can be the number of treated
neighbours, i.e., C8 (0N8 ) =

∑=
;=1 #8;0; , where # denotes the adjacency matrix of the network.

Alternatively, C could simply be an indicator function (indicating the existence of a treated
neighbour, i.e., C8 = I(

∑=
;=1 #8;0; > 0)) or represent the proportion of neighbours who are treated

(C8 =
∑=
;=1 #8;0;/

∑=
;=1 #8;). This C function is analogous to the “exposure mapping” in Aronow

et al. [2017], Leung [2019], and Forastiere et al. [2021], in which the exposure mapping function
illustrates the idea of dimension reduction, i.e., C (0N ) is a low-dimensional summary of neighbours’
treatment assignments. Additionally, the exposure mapping function is application-specific, and
needs to be identified by consideration of the specific interference structure. To estimate the full
blip model and guarantee identifiability of the interference term, the exposure mapping function C
cannot take only one value for every configuration of neighbours’ treatments, that is, it cannot be
true that C (0N) ≡ 2 for every 0N, where 2 is a fixed value. An illustrative example of the balancing
weights conditions (3.5) and (3.6) and the demonstration of choice and computation of the network
weights are provided in Appendix F.3.

3.3.3 Implementation and Choice of Network Weights

In the presence of interference, our proposed methods, namely standard dWOLS and dWOLS with
network weights, are implemented by carrying out a weighted ordinary least squares where the
weights of these two methods are, respectively, the standard dWOLS weights and weights formed
from the network propensity scores. Furthermore, we propose using the “absolute value” weights
(or overlap weights in Li et al., 2018; Schulz and Moodie, 2021) so that the network weights for
individual 8 in a network are:

F8 = |08 − E[�8 |-8 = G8] | ×
∏
;

|0; − E[�; |-; = G;] |, (3.9)
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where ; ∈ N8. Moreover, examples of both the standard absolute value weights and the network
absolute value weights will be presented in the simulation section.

Under the network weight definition, the larger the degree of the node, the smaller the weights.
For a network in which the nodes all have the same degree, the weights would be comparable,
but for variable degree distributions they would not. The principle of using network weights is
to balance the treatment distribution with respect to the covariates. Therefore, for estimation
we choose a set of egos with the same degree. Within that set, when the joint distribution of
the treatment of the ego and the number of treated neighbours is balanced with respect to their
covariates, then the weights are comparable. A possible extension to this approach would be to
consider the network as the union of subsets of constant degree, and to combine the estimating
function systems corresponding to each degree value in an efficient manner. Accordingly, in the
different ego-degree mixture cases, we suggest using stabilized (rescaled) weights - dividing the
network weight by the average value of the network weight over all nodes of the same degree - to
reduce the variability of weights overall and boost estimation efficiency.

Just as standard dWOLS establishes covariate balance of patient-level covariates between
treatments, the network weights extend this idea to provide balance of patient-level covariates under
the treatments of their neighbours. In this sense, the network weights function as a full factorial
design, which is (normally) expensive but more efficient than one-factor-at-a-time experiments
(Montgomery, 2017). Compared with standard dWOLS, the inclusion of network weights affords
two key advantages. First, incorporating the alter’s treatment model into the analysis can offer
considerable gains in efficiency of our blip parameter estimators. We note this does not necessarily
require additional modeling, as in practice it will often be reasonable to assume the same treatment
model for all individuals. Second, the use of network weights offers more flexibility in modeling
in the case where the treatment-free model contains interference terms, i.e., covariates relating to
the alter. In this scenario, the treatment-free model can itself be decomposed into two sub-models:
one containing only terms related to the ego, and one containing terms relating to the alter. We
require that either the part of the treatment-free model associated with the ego or the treatment
model is correctly specified; then the blip parameter (7) estimators are consistent. Furthermore, if
these two models are correct, but the part of the treatment-free model related to the alter sub-model
is incorrect, then the spillover effects estimators can also be consistently estimated from dWOLS
with network weights, whereas standard dWOLS cannot accomplish this.

3.3.4 Value and Regret Functions in the Presence of Interference

Finally, if the neighbours’ treatments are pre-determined, that is, alters’ treatments
are fixed throughout the study period, then the optimal value function that was
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mentioned in Section 3.1 is V[(0, 0N )>?C] = E

[
max
(0,0N)

E[. | (x , xN ),A = (0, 0N )]
]
=

E
[
max
0
E[. | (x , xN ),A = (0, 0N )]

]
. Building on the regression model in Theorem 3.1 or

3.2, an outcome regression estimator for V[(0, 0N )>?C] is V̂ [(0, 0N )>?C] = V̂ [(0̂>?C , 0N )] =
=−1 ∑=

8=1

(
.8 + Wk (08, C (0N8 ), x

k

8
; 7̂)

[
0̂
>?C

8
− 08

] )
, where 0̂>?C

8
= I

(
Wk (1, C (0N8 ), x

k

8
; 7̂) > 0

)
and

8 = 1, ..., = are egos in the network. Consequently, a consistent estimator for the total re-
gret, the total value loss arising from receiving the observed treatment regimen (0, 0N ) rather
than the estimated optimal treatment regimen (0̂>?C , 0N ), is L̂ [(0, 0N )] = V̂ [(0, 0N )>?C] −
V[(0, 0N )] = =−1 ∑=

8=1

(
Wk (08, C (0N8 ), x

k

8
; 7̂)

[
I
(
Wk (1, C (0N8 ), x

k

8
; 7̂) > 0

)
− 08

] )
, where

V[(0, 0N )] = =−1 ∑=
8=1.8. Note that the total regret aims to compare the difference between

the estimated optimal treatment regimes and originally observed treatment regimes, and can be
computed from data even though we do not know the true optimal treatment regimes. Therefore,
the larger the total regret, the greater the improvement of the estimated optimal treatment regime
over the originally observed treatment regime.

3.4 Simulation Studies

We now investigate the impact of interference and demonstrate the use of both standard and
network weighted dWOLS via a series of simulation studies. Five studies are for single-stage
decision problems: three with respect to a network of couples (Studies 1a - 1c) and two with
respect to broader network scenarios (Studies 2a and 2b). Two further simulation studies are for
multiple-stage decision problems: one for a network of couples (Study 3a) and the other for a
spatial network (Study 3b).

3.4.1 Single-stage Decision for a Couples Case

Our first simulations (Study 1a) consider the case of a single-stage treatment decision with
interference for isolated couples (that is, each individual is connected to precisely one other
person). Following the causal diagram in Figure 3.3a (where .46> does not depend on -0;C4A), we
generate data as follows. Patient information: -8 ∼ # (2, 1); -0;C4A8 ∼ # (2, 1); treatment P(�8 =
1 | -8) = expit[−0.25-8 + sin(-8)] and P(�0;C4A8

= 1 | -0;C4A8 ) = expit[−0.25-0;C4A8 + sin(-0;C4A8 )],
where expit(G) = [1+4G?(−G)]−1; outcome.8 ∼ # (`8, 1) where `8 = -8+ log( |-8 |) +-3

8
+�0;C4A

8
+

�0;C4A
8

-8 + �8 (k0 + k1-8 + k2�
0;C4A
8
+ k3-8�

0;C4A
8
), where we note that both the treatment-free

and blip components depend on the spillover term �0;C4A
8

. Our interest is in estimating the blip
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-46> �46> .46>

�0;C4A-0;C4A

(a) DAG 1

-46>

XN

�46> .46>

GN

(b) DAG 2

Figure 3.3: Directed Acyclic Graphs (DAGs) of simulations in 3.1 and 3.2. For the dashed line
(from -0;C4A to .46>), it is supposed that a possible interference path is due to .46> depending on
-0;C4A . This interference path does not exist in Studies 1a and 2a but it is present in Studies 1b, 2b
and 1c.

parameters k0 = −3.5, k1 = 1.5, k2 = 3, and k3 = 2. We consider three methods. In Method 1 (a
‘naive’ analysis) we study the impact of interference on an analysis that fails to take it into account,
omitting the 00;C4A terms entirely from the working models. InMethod 2 (standard dWOLS), we
consider the original dWOLS methodology (with weights based only on the treatment model)
but with 00;C4A terms included in the blip and treatment-free models. Finally, in Method 3, we
demonstrate dWOLS with network weights, constructed from the standard dWOLS weights (those
that depend on the ego’s treatment model) and the corresponding network factor for the alter.

For each simulation, we conduct analyses in the following four scenarios: a) both the treatment
and treatment-free models are mis-specified; b) the treatment-free model is mis-specified but the
treatment model is correctly specified; c) the treatment model is mis-specified but the treatment-free
model is correctly specified; and d) both the treatment and treatment-free models are correctly
specified. Model mis-specification is implemented via the omission of non-linear terms in the
treatment and treatment-free models. Note that ‘treatment model’ refers to the model used for
both the ego and alter’s treatment. Model set-ups of Methods 1 - 3 are: (1) Method 1, a ‘naive’
analysis, where we ignore the interference entirely; (2) standard dWOLS, and (3) dWOLS with
network weights. For Scenarios a) and b) where the treatment-free model is mis-specified, we
consider outcome models:

• Method 1:
E[. |^ = x] = V0 + V1G + 0(k0 + k1G), with weight F = |0 − E(� | x) |.

• Method 2:
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Table 3.1: Mean optimal treatment rate and its standard errors of Methods 1, 2, and 3 when neither
(scenario a), one (scenarios b and c) or both (scenario d) treatment and treatment-free outcome
models are correct in Study 1a (ME: Method).

Mean optimal treatment rate (MOTR) % Standard errors of MOTR
Scenario = = 200 = = 500 = = 1000 = = 200 = = 500 = = 1000

0

ME1 63.34 67.67 69.53 0.1515 0.0836 0.0471
ME2 78.64 80.93 80.11 0.1265 0.0864 0.0683
ME3 78.20 80.11 80.76 0.1248 0.0829 0.0724

1

ME1 68.84 70.31 70.75 0.0850 0.0413 0.0287
ME2 81.62 86.84 88.64 0.1301 0.1052 0.0838
ME3 80.89 85.03 88.09 0.1372 0.1040 0.0876

2

ME1 70.47 71.03 70.81 0.0637 0.0397 0.0284
ME2 97.44 98.51 98.84 0.0280 0.0152 0.0103
ME3 97.32 98.47 98.79 0.0290 0.0156 0.0110

3

ME1 70.29 70.63 70.93 0.0642 0.0413 0.0285
ME2 97.35 98.30 98.93 0.0289 0.0155 0.0098
ME3 97.30 98.18 98.89 0.0293 0.0166 0.0098

E[. |^ = x] = V0 + V1G + V20
0;C4A + V3G0

0;C4A + 046> (k0 + k1G + k20
0;C4A + k3G0

0;C4A), and
with weight F = |046> − P(�46> = 1 | x46>) |.

• Method 3:
E[. |^ = x] = V0 + V1G + V20

0;C4A + V3G0
0;C4A + 046> (k0 + k1G + k20

0;C4A + k3G0
0;C4A), and

with network weight F=4C (G) = |046> − E(�46> | G46>) | ∗ |00;C4A − E(�0;C4A | x0;C4A) |.

Our initial results (Table 3.1) summarize the impact of interference on treatment recommenda-
tions. The total regret values for each scenario and method, which result from the value functions,
are indicated in Table 3.2. As expected, when the analysis does not account for interference in
any way (Method 1), the rates at which recommended treatments align with those that are truly
optimal (i.e., mean optimal treatment rate =−1 ∑=

8=1 I
(
0
>?C

8
= 0̂8

)
) are poor. Both proposed methods,

meanwhile, demonstrate marked improvements. The improvement in treatment recommendation
stems from accurate parameter estimation: both standard dWOLS and dWOLS with network
weights demonstrate the expected double robustness (Figure 3.4).

Further to these initial results, we extend the preceding simulations to more complex scenarios.
These include the case where the treatment-free model contains additional interference terms
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Table 3.2: Total regret and its standard errors of Methods 1, 2, and 3 when neither (scenario a),
one (scenarios b and c) or both (scenario d) treatment and treatment-free outcome models are
correct in Study 1a (ME: Method).

Total Regret Standard Errors of Total Regret
Scenario = = 200 = = 500 = = 1000 = = 200 = = 500 = = 1000

0

ME1 2.35 0.23 1.11 0.19 0.14 0.11
ME2 3.31 1.87 2.27 0.28 0.12 0.11
ME3 2.29 2.01 2.01 0.24 0.12 0.10

1

ME1 0.91 0.22 0.18 0.28 0.13 0.10
ME2 1.75 1.25 0.60 0.34 0.15 0.09
ME3 1.90 1.23 1.04 0.21 0.14 0.09

2

ME1 0.82 0.39 0.56 0.21 0.14 0.09
ME2 2.00 1.65 2.22 0.24 0.12 0.11
ME3 2.01 1.67 2.25 0.24 0.11 0.09

3

ME1 0.97 1.35 1.38 0.21 0.14 0.10
ME2 1.79 2.67 1.81 0.20 0.16 0.09
ME3 1.85 2.64 1.80 0.20 0.15 0.09
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Figure 3.4: Blip function parameter estimates via Method 2 (standard dWOLS, top row) and
Method 3 (dWOLS with network weights, bottom row) when neither model (scenario a), treatment
model only (scenario b), treatment-free model only (scenario c), or both models are correctly
specified.
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(Study 1b), and where the true ego and alter treatment models are not identical (Study 1c).
These additional simulations demonstrate the potential for further efficiency gains (Figure F.1
in Appendix Section F.5), and greater modeling flexibility (consistent estimation of spillover
parameters, Figures F.2 and F.4 in Appendix Section F.5), when using network weights compared
with standard dWOLS. Full details are included in Appendix Section F.5.

3.4.2 Single-stage Decision for Egos in a Social Network

We next consider treatment decisions for egos in a social network (that is, where each individual
may have more than one neighbour). In particular, we consider five types of fixed network: (i)
a ring consisting of points on a circle, (ii) a square lattice, (iii) an Erdős-Rényi (ER) network
realization, (iv) a Barabási-Albert (BA) network realization and (v) the Longleaf Pines (Rathbun
and Cressie, 1994) spatial network. The ring and the square lattice are simple network structures
with constant degree. An Erdős-Rényi network (Erdős and Rényi, 1960) is a random graph� (=, ?)
with = vertices, where each pair of vertices is independently connected with a fixed probability
?. The degree distribution is binomial (= − 1, ?), and if _ = ?/= this leads in the limiting case
to the Poisson random graph model with mean degree _. Similar to our approach in simulation
Section 3.2.2, the BA network is also generated from the Barabási-Albert model. Finally, we
consider interference (e.g., Puelz et al., 2019) in a spatial network, i.e. one in which each node
has a spatial location. Let 3 (8, 9) denote the spatial distance between nodes 8 and 9 . We assume
that 9 ∈ N8 if 3 (8, 9) < d. Thus the entries of the adjacency matrix of the spatial network are
#8 9 = I(3 (8, 9) < d). For illustration, we analyse a real point process dataset of the Longleaf Pines
in the R spatstat package (Baddeley and Turner, 2005), where an edge in the spatial network
exists if the spatial distance is less than 5 meters.

For the five types of fixed network, we consider an interference term of the form C8 (0N8 ) =∑=
;=1 #8;0; , that is, the number of treated neighbours of an ego 8. Further, we consider a model

such that: E[. |x, 0, C] = 5 (xV, C; #) +W(xk , 0, C;7), and apply weights from (3.9) to guarantee the
robustness of the blip estimates when one of the treatment-free or treatment model is misspecified.

The data generated for Study 2a follow the causal diagram in Figure 3.3b, in a case where .46>
does not depend on XN . Data are generated as follows. Patient information -8 ∼ # (2, 1); the
treatment model is P(�8 = 1 | -8 = G8) = expit[−0.25G8 + sin(G8)]; the outcome .8 ∼ # (`8, 1)
where `8 = 1 + -8 + -2

8
+ C8 (�N8 ) + C8 (�N8 )-8 + �8 [k0 + k1-8 + k2C8 (�N8 ) + k3-8C8 (�N8 )]. Our

interest is in estimating the blip parameters k0 = −5, k1 = 0.9, k2 = 1, 0=3 k3 = 0.3. We set
= = 1000 nodes in the ring. For the square lattice, we set = = 900, and 784 of the egos have degree
4 (i.e., 4 neighbours). In the degree distribution of the 2000-node Erdős-Rényi network (generated
from the � (= = 2000, ? = 1/400) model), 339 nodes have degree 4. These are set as egos.
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Next, for the 1000-node Barabási-Albert network (generated from the model with parameters
= = 1000, < = 5, where < refers to the number of edges to add in each time step of generating
the graph), the 806 nodes with the highest degree (i.e., 5) are designated as egos. Lastly, for the
584-node Longleaf Pines spatial network, the spatial figures and degree summary are shown in
Appendix F.6, and 98 nodes with 2-degree are designated as egos.

Similar to our previous simulation Study 1a, we conduct three analyses, where Method 1
denotes a failure to account for interference entirely, Method 2 employs standard dWOLS, and
Method 3 uses dWOLS with network weights. The three working models are therefore:

• (I) Method 1: E[. |G, 0; #,7] = V0 + V1G + 0(k0 + k1G), with weight F(G8) = |08 −
E[�|-8 = G8] |.

• (II) Method 2: E[. |G, 0, C; #,7] = V0 + V1G + V2C + V3GC + 0(k0 + k1G + k2C + k3GC), with
weight F(G8) = |08 − E[�|-8 = G8] |.

• (III) Method 3: E[. |G, 0, C; #,7] = V0 + V1G + V2C + V3GC + 0(k0 + k1G + k2C + k3GC), with
network weight F8 = |08 − E[�8 |-8 = G8] | ∗

∏
; |0; − E[�; |-; = G;] |, where ; ∈ N8.

Although the studied network structures are different (i.e., rings, square lattices, Erdős-Rényi,
Barabási-Albert, Longleaf Pines spatial network), if we select egos that have the same degree, the
results are similar. We present the conclusions in the general case but show the corresponding
figures in the case of Erdős-Rényi network. Similar to the results of Section 3.4.1, we find that a
failure to account for interference is severely damaging to optimal treatment assignment rates and
the total regrets (values), while the two dWOLS implementations offer considerable improvements.
The results have the same pattern as those in Table 3.1: the optimal treatment rates of Methods 2
and 3 are similar, and are markedly superior to those of Method 1. Again, these improvements
are attributable to the double robustness of our blip parameter estimators when using standard
weights and network weights.

To highlight the advantages of network weights in particular, we also extend the preceding
simulations to a more complex scenario, namely the case where the treatment-free model contains
additional interference terms (Study 2b). These additional simulations illustrate the potential
for efficiency gains (Figure F.6 in Appendix F.7), and greater modeling flexibility (Figure F.7 in
Appendix F.7), when using network weights compared with standard dWOLS. That is, compared
with Method 2, Method 3 appears to have better results: efficiency gains of blip estimators of 7
and consistent spillover estimators of /. Full details are included in Appendix F.7. Finally, to
check the variability of the balancing weights, based on these simulations, the histograms of both
the standard absolute value weights and the network absolute value weights are also shown in
Appendix F.7.
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Figure 3.5: Erdős-Rényi 2000 nodes. Blip function parameter estimates via Method 2 (standard
dWOLS, top row) and Method 3 (dWOLS with network weights, bottom row) when neither model
(scenario a), treatment model only (scenario b), treatment-free model only (scenario c), or both
models are correctly specified.
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Figure 3.6: DAGs of Simulations in 3.3 (Studies 3a and 3b): dWOLS with interference two-stage
decision problems. Note that XN,1 and XN,2 (or GN,1 and GN,2) denote the first and second stage
covariates (or treatments) of ego’s neighbours.

3.4.3 Multiple-stage Decisions

For the multiple-stage decision problem, dWOLS uses backward induction, solving the multiple-
stage problems recursively beginning with the final stage. As we move backwards through the
stages we construct pseudo-outcomes, which are the potential outcomes if the patients were treated
- possibly contrary to fact - optimally at subsequent stages. In expressing the optimal sequence for
an individual, we assume that the network (structure) is fixed, and the alters’ treatments are known
and predetermined. Formally, for a  − stage decision problem in the present of interference,
starting from the  Cℎ (last) stage, one can estimate the blip parameters 7 via WOLS with our
proposed network weights, and establish the corresponding  Cℎ stage optimal treatment decision
rule 0̂>?C

 
. Then moving to the previous stages 9 =  −1, ..., 1, dWOLS with interference is applied

to the pseudo-outcome: Ỹ9 = H +
∑ 
:= 9+1

[
W: (hk: , 0̂

>?C

:
, C: (0N ); 7̂: ) − W: (h

k

:
, 0: , C: (0N ); 7̂: )

]
.

In simulation Study 3, we illustrate a multistage decision problem via two-stage simulations for
both a network of couples case (Study 3a) and a spatial network case (Study 3b). The data generating

58



process of this two-stage problem follows the causal diagram Figure 3.6. Patient information:
-1 ∼ # (2, 1), -2 ∼ # (1+0.5-1, 1); treatment: P(�1 = 1 | G1) = expit[−0.25G1+sin(G1)],P(�2 =

1 | G2) = expit[−0.25G2 + sin(G2)]; the blip functions: Wk9
(
hk
9
, 0 9 , C (0N , 9 );7 9

)
= 0 97

>
9 x

k

9
, with

xk
9
= (1, G 9 , C (0N , 9 ), G 9 C (0N , 9 ))>, where 7 9 = (k0 9 , k1 9 , k2 9 , k3 9 )> = (−2, 1, 1, 0.5)>, and

W
b

9

(
hb
9
, C (0N , 9 ); / 9

)
= C (0N , 9 )/>9 x

b

9
, with xb

9
= (1, G 9 )> , where / 9 = (b0 9 , b1 9 )> = (−1, 0.5)> for

9 = 1, 2.Outcome: . ∼ # (`, 2), where ` = log( |-1 |)+sin(-2)+log( |g(XN ,1) |)+log( |g(XN ,2) |)+∑2
9=1 W

b

9

(
hb
9
, C (0N , 9 ); / 9

)
+ ∑2

9=1 W
k

9

(
hk
9
, 0 9 , C (0N , 9 );7 9

)
. Note that the treatment-free model

contains non-linear terms of both egos’ covariates and the summary of their neighbours’ covariates.
In particular, in Study 3b, a general spatial network case, we consider the fixed 584 nodes
Longleaf Pines spatial network in Section 3.4.2, and designate 98 nodes with 2-degree as egos;
for an ego 8 in the network, we consider g(XN8 ) =

∑=
;=1 #8;-;/

∑=
;=1 #8; , and let XN8 ,1 and XN8 ,2

(respectively GN8 ,1 and GN8 ,2) denote the first and second stage covariates (respectively treatments)
of the neighbours of ego 8, while the interference term is determined by exposure mapping
C (0N8 ) =

∑=
;=1 #8;0; , i.e., the number of treated neighbours. In Study 3a we consider a network

of couples where each ego has only one neighbour; therefore, both XN8 and 0N8 are scalars, and
g(XN8 ) and C (0N8 ) are the only alter covariate and treatment of the ego 8, respectively. We generate
1000 pairs in this study.

The results of Study 3a are presented in Figure 3.7 (See Appendix F.8 for the results of Study
3b). Although the treatment-free models are misspecified in both stages, dWOLS with network
weights provides apparently consistent estimators of blip parameters as anticipated.

3.5 Real Data Analysis from Population Assessment of To-
bacco and Health Study

In Chapter 1, we have introduced the dataset from the PATH study, and in this section, we will
apply our interference-aware dWOLS methods in the analysis of PATH data.

3.5.1 Variables Selection and Models Specification

At the beginning of the study, e-cigarettes were beginning to see widespread use in the United
States, and usage increased considerably between Waves 1 and 2, and between Waves 2 and 3.
Wave 4, meanwhile, coincided with the emergence of products that saw widespread use particularly
among younger people (Huang et al., 2019). A growing body of literature suggests that e-cigarettes
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Figure 3.7: Two-stage decision blip parameter estimates for the 1000 couples case (Study 3a).
Second stage blip estimates are presented in the top row, and those of the first stage are shown in
the bottom row. In both rows, the plots display estimates of k0, k1, k2, k3, b0, b1 from left to right.
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(vaping) can be a useful cessation aid (Villanti et al. [2018]; Hajek et al. [2019]); thus, we set the
treatment variable as the use of e-cigarettes by a cigarette smoker. Due to the long follow-up, with
approximately one year between the start of each wave, we define e-cigarette use reported at the
wave of the measured outcome as indicative of the pre-wave treatment (i.e., e-cigarette use). In
addition, the e-cigarette usage variable is determined by participants being asked during the study
whether they “now use e-cigarettes (a) Every day (b) Some days (c) Not at all.” If participants
answer either “Every day” or “Some days,” then they are deemed to use e-cigarettes and are coded
� = 1; otherwise, if they respond “Not at all,” they are coded � = 0.

Our outcome of interest is a measure of participants’ dependence on cigarettes (Strong et al.,
2017). Cigarette dependence may be measured in both smokers and recent former smokers
via a scale constructed by combining the responses to “level of agreement” questions, with
scores ranging from 15 (lowest dependence) to 76 (highest dependence). Someone who has quit
smoking more than 12 months earlier and is no longer eligible for the questionnaire is assigned
a score of 7. The cigarette dependence scale is treated as a continuous cigarette-dependence
outcome. Furthermore, we constructed a four-wave outcome measure �8 5 5 �4?14, which is
cigarette dependence, Wave 1, minus cigarette dependence, Wave 4; therefore, the larger value of
�8 5 5 �4?14 is preferred.

We restrict attention to households where, in Wave 1, two adults were interviewed, both were
cigarette smokers, and both were followed up at Waves 2, 3 and 4. Each pair has been given a
unique identification number and, for our purposes, one of each pair is randomly designated the
ego and the other the alter, with the ego the unit of analysis. The survey weight for the ego was
taken to be the adult all-waves longitudinal weight for Wave 1 to Wave 4. There are 769 pairs, and
thus 769 egos, each randomly selected from a couple. We assume for the sake of illustration that
drop-out is uninformative.

Analyzing the PATH data for pairs of adults who are smokers, we study the effects of the alter
adopting e-cigarettes on the success of the ego in reducing cigarette dependence through their own
adoption of e-cigarettes. Additionally, we investigate the optimal treatment regime for the ego and
alter, in terms of their use or non-use of e-cigarettes, for reducing cigarette dependence in the ego.

We formulate our analysis as a three-stage decision problem and define the 9 Cℎ stage ( 9 = 1, 2, 3)
to be the time from Wave 9 up to but not including Wave 9 + 1. We first define the final-stage
observed outcome . as the decrease in cigarette dependence between Wave 1 and Wave 4 (with a
larger change being preferred).

For the 9 Cℎ stage, we select the Wave 9 variables: age, education, sex, non-Hispanic, race
and “plan to quit” denoted, respectively, as the components of xV

9
= (G 91, G 92, G3, G4, G5, G 96)>

(Benmarhnia et al., 2018). The non-Hispanic, race, and “plan to quit” variables are indicator
functions for the related yes or no questions. The age variable is an indicator of “less than 35” or
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(a) PATH causal graph depicting an example of
how confounding and causal association flow. E-
cigarettes use (�286) is defined as the administered
treatment; Cigarettes dependence (�86�4?) is out-
come; (0C�286 and �86%� refer to “satisfaction”
variables from e-cigarettes and cigarettes per day,
respectively.
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(b) Confounding association is blocked by condition-
ing on full confounders (-46>), causal association
(blue dashed lines) flows from �286 to its children -
�86�4? and (0C�286 (mediator), and non-causal as-
sociation is blocked by (not conditioning on) �86%�
(collider).

Figure 3.8: Directed acyclic graphs of PATH analysis. Note: Subscript ego or alter stands for the
variables are from ego or alter respectively. %;0=&46> (“plan to quit") and �2860;C4A as moderators
are selected as tailoring variables.
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not, and the sex variable is set as an indicator of “Male”. In particular, the education covariates are
set as a three-category variable that is determined by the education question, that is, designating
“less than high school” as 1, “between high school and bachelor degrees” as 2, then “bachelor or
advanced degree” as 3. We propose a dependency structure as depicted in the directed acyclic
graph of Figure 3.8. Here, we note the existence of e-cigarettes “satisfaction” variables that
are dependent on e-cigarette use (the treatment) and in turn influence cigarette dependence (the
outcome) and thus act as mediators. In addition, some smoking variables that are descendants of
both e-cigarette use and cigarette dependence function as colliders. To identify the total effect of
e-cigarette use on cigarette dependence we should not condition on these mediators and colliders or
any descendants of the treatment (Pearl, 2000). We adjust for all measured potential confounders
xV
9
to block the confounding association path.
The tailoring variables are those associated with the efficacy of the treatment and are to be

selected from the set of moderator variables (Almirall et al., 2014). Le Grande et al. [2021] suggest
the importance of age as a moderator (or a stratification variable) in the relationships of prior wave
predictors of quitting or reducing smoking. In addition, “plan to quit” - a variable that measures
motivation to quit or reduce consumption - may also influence the efficacy of the treatment of the
ego. Finally, the use of e-cigarettes by the alter (denoted 00;C4A) is naturally of interest due to the
possibility of interference. We therefore select, at each stage, the variables age (“less than 35” or
“35+”), “plan to quit” and the alter’s treatment, as tailoring variables xk

9
= (G 91, G 96, 00;C4A9+1 )

>.

Accordingly, we set up the blip model as W
(
0 9+1, x

k

9
;7 9

)
= 0 9+1

(
k 90 + 7>91x

k

9

)
, and the

treatment-free model as 5
9
(xV

9
; # 9 , / 9 ) = V 90 + #>91x

V

9
+ b 9000;C4A9+1 .

We conduct three sets of analyses corresponding to those carried out in the simulations of Section
3.4.1. For Method 2 (M2) and Method 3 (M3), the outcome model is employed with both standard
dWOLS weights and the network weights. That is, in M2, for the standard dWOLS weights, F 9 =���0 9+1 − E [

� 9+1 |xU9
] ��� , where the propensity scores are estimated by maximum likelihood under a

logistic regression model, ;>68C (E
[
� 9+1 |xU9

]
) = U 90 + ">91x

U
9
, for xU

9
= (G 91, G 92, G3, G4, G5, G 96)>,

and in M3, for the network weights, F=4C
9
=

���0 9+1 − E [
� 9+1 |xU9

] ��� ∗ ���00;C4A9+1 − E
[
�0;C4A
9+1 |x

U,0;C4A
9

] ���.
Crucially, we note that the outcome model with weight F 9 =

���0 9+1 − E [
� 9+1 |xU9

] ��� corresponds
to that of M2 in simulation Study 1 in Section 3.4.1, while the outcome model using network
weights corresponds to that of M3. In addition, for Method 1 (M1), in which we do not consider
interference, we exclude the interference term (00;C4A) in both the treatment-free model and the
blip model, and employ the standard dWOLS weights. Finally, we note that because survey
weights multiply the estimating function terms for the regression models, the sample estimating
functions are assumed to be sampling-design-unbiased estimates of their population counterparts.
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Under the conditions for double robustness, the dWOLS or network weights are constructed to
ensure unbiased population-level estimating functions for estimation of the blip parameters, and
the design-unbiasedness of the corresponding sample estimating functions makes the sample
estimating functions unbiased with respect to the combination of model and sampling design.
Accordingly, in the terminology of survey methods, the estimators of the blip function parameters
will be model-design consistent (Lumley, 2004).

3.5.2 Assessing Balance

Before moving on to present the PATH data analysis results, to make sure sufficient overlap when
the alter’s treatment is fixed, we also checked the overlap of the ego’s propensity distributions for
treated and untreated groups, given the alter’s treatment.

To check the balancing performance of the weights, we measure covariate mean balance for
each covariate by the absolute standardized mean difference:�����∑#

8=1 x8�8F8∑#
8=1 �8F8

−
∑#
8=1 x8 (1 − �8) F8∑#
8=1 (1 − �8) F8

����� /√B2
1/#1 + B2

0/#0,

where B2
0 is the variance of the unweighted covariate in group 0 = 0, 1 and #0 is the sample size

in group 0, that is, Equation 12 in Li et al. [2018]. For example, the distributions of the fitted
propensity scores for Stage 3 (i.e., Wave 3 to Wave 4), by values of the ego’s treatments when
the alter’s treatment is fixed at 1, are given in Figure 3.9 (left plot), and by values of the ego’s
treatments when the alter’s treatment is fixed at 0 are given in Figure 3.10 (left plot). In addition,
the propensities of the cases for Stages 1 and 2 appear the same degree of overlap. Based on three
weighting schemes in the PSweight package (Zhou et al. [2020]), in Figures 3.9 and 3.10 (right
plot) we present the standardized mean difference for each covariate, and assess the weighted
covariate balance in a single plot.

For Figures 3.9 and 3.10 (right plots), the covariates are imbalanced across the treated and
untreated groups prior to any weighting, conditional on alter’s treatment being 1 and 0, respectively.
Inverse probability weighting can generally improve covariate balance, but overlap weights
(absolute value weights) provide the best balance (in terms of overlap) across all covariates. For
Stages 1 and 2, similarly, the balancing results appear the same pattern.
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Figure 3.9: Conditional on alter’s treatment is 1, the left plot is the density of estimated propensity
scores with respect to the treatment variable for decision Stage 3. Group 0 stands for the untreated
group and Group 1 for the treated group. The right plot presents the maximum pairwise absolute
standardized difference plot using different weights for Stage 3, conditional on alter’s treatment is
1. (ATE specifies the inverse probability weights for estimating the average treatment effect among
the combined population. ATT specifies the weights for estimating the average treatment effect
among the treated. ATO specifies the overlap weights for the average treatment effect among the
overlap population.)
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Figure 3.10: Conditional on alter’s treatment is 0, the left plot is the density of estimated propensity
scores with respect to the treatment variable for decision Stage 3. Group 0 stands for the untreated
group and Group 1 for the treated group. The right plot presents the maximum pairwise absolute
standardized difference plot using different weights for Stage 3, conditional on alter’s treatment
is 0. (ATE specifies the inverse probability weights for estimating the average treatment effect
among the combined population. ATT specifies the weights for estimating the average treatment
effect among the treated. ATO specifies the overlap weights for the average treatment effect among
the overlap population.)
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Table 3.3: Analysis and optimal DTRs of PATH data. Optimal DTRs are indicator functions of
7 estimates. If 00;C4A is not pre-determined, optimal DTRs also rely on spillover / estimates:
first by determination of �0;C4A , and then by determination of the ego treatment, with a view to
optimization for the ego.

Wave Methods Optimal DTRs Spillover effects estimates b̂

1 ∼ 2
M1 I[3.46 − 5.81G11 − 0.20G16] ×
M2 I[7.18 + (−6.16, 1.87,−7.56) · xk1 ] I[3.72]
M3 I[11.32 + (−19.12,−1.17,−5.04) · xk1 ] I[3.00]

2 ∼ 3
M1 I[−2.01 − 0.96G21 − 7.01G26] ×
M2 I[−3.47 + (−0.16, 7.62, 4.55) · xk2 ] I[1.72]
M3 I[2.34 + (1.85, 0.30, 4.96) · xk2 ] I[1.14]

3 ∼ 4
M1 I[−0.45 + 0.86G31 + 3.08G36] ×
M2 I[−3.87 + (2.16, 2.64, 7.93) · xk3 ] I[−0.30]
M3 I[−9.23 + (3.25, 7.28, 8.42) · xk3 ] I[0.17]

Note: Method 1 (M1) does not include an interference term, so has no (×) b estimates, and its decision
rules only depend on age (G 91) and plan to quit (G 96). I(G) = I(0,∞) (G) is the indicator that G is in the set
(0,∞), and D · E means the dot product of vectors D and E.

3.5.3 PATH Analysis Results

Following the balancing checking of ego’s covariates, we will now present the results of the
PATH analysis. The blip function and spillover effect estimates from Methods 1, 2 and 3, and
corresponding optimal DTRs are summarized in Table 3.3. The blip function coefficient estimates
from Methods 2 and 3 exhibit some difference, whereas the spillover estimates are largely similar.
We summarize the recommended use of e-cigarettes based on the results of Method 3 (network
weights). If 00;C4A is pre-determined; in the first stage, if the ego is 35 years or older, do not use
e-cigarettes; otherwise, use e-cigarettes. In the second stage, use e-cigarettes. In the last stage,
if 00;C4A = 1 and ?;0=@D8C = 1, use e-cigarettes; if 00;C4A = 1, ?;0=@D8C = 0, and the ego is 35
years or older, use e-cigarettes; if 00;C4A = 0, ?;0=@D8C = 1 and the ego is 35 years or older, use
e-cigarettes; otherwise do not. The value function captures the performance of the treatment
regimes. For example, while the mean of the observed value or outcome (i.e., �8 5 5 �4?14) is
4.75, the means of the outcomes of DTRs from Methods 1, 2, and 3 are 10.68, 12.04 and 14.83,
respectively.

We note that this recommendation presumes that the alter’s treatment is known, whereas in
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practice we may wish to make a recommendation to both the ego and alter simultaneously. If
desired, the results of our analysis may be applied in this setting by comparing the four expected
outcomes that arise from both ego and alter having two treatment options.

3.6 Conclusion and Discussion

Dynamic treatment regimes are an essential tool in the analysis and implementation of precision
medicine. However, little work has been done to study, or address, the obstacles interference can
pose to DTR estimation. Even though many current methods such as G-estimation and dWOLS
have focused on model robustness, none have sought to directly investigate interference and how it
may be accounted for.

In this chapter, using the method of dynamic weighted ordinary least squares, we have
demonstrated the impact a failure to account for interference can have on optimal DTR estimation.
We have shown how interference may be accommodated using the dWOLS method, first, through
the explicit inclusion of interference terms in dWOLS’ constituent models, and second, by
extending dWOLS through the use of network weights to more directly account for interference.

While both standard dWOLS and dWOLS with network weights afford consistent parameter
estimation in the presence of interference, we have shown through simulation that the latter can
afford greater flexibility in modeling, in addition to providing efficiency gains. Although this
estimation does require the correct identification of the network interference term C (0N ), which is
application-specific, we note that any approach that accounts for interference must incorporate
some form of additional information or modeling. It is important to recognize that we have only
considered a setting where there is a specific form for the function C. Future work could conduct
sensitivity analyses that investigate the effects of misspecification of this function.

Future work should also consider alternative approaches to estimation of the treatment model.
Here, we have used a logistic model for two primary reasons. First, absolute value weights (i.e.,
overlap weights) based on a logistic propensity score model have the small-sample exact balance
property (Theorem 3 in Li et al. [2018]). Second, logistic regression is a method with widespread
recognition and understanding, and comparably straightforward to implement (which itself is
one of the motivations for using the dWOLS method). However, extensions that employ fancier
machine learning tools such as BART (Bayesian Additive Regression Tree, Chipman et al., 2010),
Super Learner [Van der Laan et al., 2007] or deep neural networks for estimating propensity scores
(see the discussion in Herren and Hahn, 2020) could be studied.

Our treatment models have also been grounded in some key assumptions, in particular that
treatment is conditionally independent of the treatments of other individuals, given the covariates
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of all. In observational studies, the treatment assignment could depend on the covariates, treatment
and outcomes of neighbours. If so, the blip function should therefore also rely on this information,
through interaction terms such as 0g(xN), where g has to be equivalent to a fixed, known
function. We study interference where the treatments of neighbours can affect only the outcome;
consequently, relaxing of the independent treatments assumption should be addressed in future
work. In addition, we also assume that individuals’ propensities depend on their own covariate
values, which could depend to a limited degree on network characteristics.

In the estimation of our simulations, the data used belong to egos that have the same number of
neighbours in the network; however, we again note that we can consider the network as the union
of subsets of constant degree, and combine the estimating function systems corresponding to
different degree values in an efficient manner, for example, by using stabilized (rescaled) weights
to reduce the variability of weights overall. In addition, an important next step is the multiple-stage
decision problem with time-varying of the network structure. In such a problem, the network
structure information at each stage (such as number of neighbours) could be different.

Through our analysis of the PATH study, we have demonstrated how our proposed methods
may be applied in practice. We acknowledge that our analysis, intended primarily as an illustration,
has been limited by a number of simplifying assumptions. In addition to the assumption of
non-informative dropouts (which may, in principle, be accommodated through an analysis using
the inverse probability of censoring weights), our results should be set in the broader context of a
changing e-cigarette landscape as new products emerge and trends develop. More fundamentally,
we note that in this context a prescription has not been clearly identified [Villanti et al., 2018].
For all these reasons, we do not intend the results to be seen as an actual recommendation for a
treatment strategy. Nevertheless, the analysis serves as an informative demonstration of both the
underlying principles of interference in such contexts, and of our proposed methodology.

A more in-depth analysis of these, and related, data within the context of interference is
certainly well-warranted. In the estimation process, various checks of robustness such as analyses
of sensitivity to model and estimation uncertainty would have to be carried out in order for the
results to be useful. For example, one possible robustness check is to specify two pairs of adults
as one network and see if they obtain, up to statistical uncertainty, the same DTR.

We observe that, as illustrated in the PATH analysis, our strategy for constructing treatment
decisions may depend on whether we may assume that the alters’ treatments are pre-determined or
whether they should be considered part of the treatment allocation process. Even though we have
largely operated within the former framework, it is certainly possible to apply our methods to the
latter. In the couples case, for example, we may seek to maximize the average outcome across a
couple, comparing the four possible treatment combinations (both treated, neither treated, and one
or the other treated). How this would extend to more complex networks is a more challenging, but
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interesting, problem.

Finally, we note that, as this is one of the first pieces of work on the specific topic of interference
in DTRs, there are many questions that remain unanswered. In addition to the limitations outlined
above, we also observe in particular that extensions to outcomes and treatments of different types
(such as binary for the former and continuous for the latter) would be a natural next step for this
research. With recent extensions to dWOLS for continuous treatments (Schulz and Moodie, 2021)
and survival outcomes (Simoneau et al., 2020), there is already a strong foundation upon which
this work can build.
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Chapter 4

Optimal DTR Estimation for Binary
Outcomes

In Chapter 3, considering continuous outcomes, we developed the methods for DTR estimation in
the presence of network interference. From here on, we investigate optimal DTR estimation in the
context of binary outcomes. In Chapter 4, we study DTR estimation for binary outcomes without
interference. Building on Chapter 4, Chapter 5 studies DTR estimation in situations of binary
outcomes with interference.

4.1 Introduction

Most optimal DTR estimation methodologies focus on continuous outcomes. These include
regression-based methods such as &-learning (Sutton and Barto [2018]), G-estimation (Robins
[2004]) and dynamic weighted ordinary least squares (dWOLS, Wallace and Moodie [2015]), and
value-search methods such as (augmented) inverse probability of treatment weighting (Zhang
et al. [2013]) and outcome weighted learning (Zhao et al. [2012]). As a continuous-outcome
problem counterpart, the discrete-outcome problem is more challenging, yet valuable in real-world
applications. Binary outcomes, such as treatment failure or success, are crucial measures in many
medical or health studies. However, to date, optimal DTR estimation for binary outcomes has
received little attention.

Although most methodologies target continuous outcomes, there are some existing studies
regarding non-continuous outcomes. Some theoretical developments in the DTR literature have
focused on discrete-outcome settings, including &-learning with discrete outcomes (Bernoulli and
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Poisson) utilities (Moodie et al. [2014]), an extension of G-estimation to the case of non-additive
treatment effects for discrete outcomes (Wallace et al. [2019]), and the extension of dWOLS to
time-to-event data with survival outcomes subject to right-censoring (Simoneau et al. [2020]).

For binary outcomes, the recently proposed DTR estimation approaches are reliant on either
&-learning, which offers relatively straightforward implementation, or G-estimation, which is
doubly robust in the sense of offering a consistent estimator of a treatment effect if at least one
of two nuisance models is correctly specified. For example, considering cases of cancer and
graft-versus-host disease treatment, to maximize the probability of the binary outcome of two-year
disease-free survival, Moodie and Krakow [2020] implemented &-learning in a multi-stage
treatment decision analysis, employing logistic regression at each stage. This method was shown
to be easy to implement, but suffered from problems of sensitivity to misspecification of the
outcome model. Wang et al. [2017], meanwhile, proposed a G-estimation based method for binary
multiplicative structural nested mean models. They constructed a locally semiparametric efficient
estimator, and demonstrated that such estimators boast the aforementioned double robustness
property. Recently, analyzing micro-randomized trial data with binary outcomes, Qian et al. [2019]
defined the causal excursion effect, which refers to a log relative risk between two excursions
from a treatment protocol, and also provided a semiparametric and locally efficient estimator
of the causal excursion effect. Based on the research of Robins (Robins et al. [1994], Robins
[2004]), these two semiparametric methods are doubly robust. However, their drawbacks include
complexity of theory and implementation which may prove challenging for many practitioners.

In contrast to &-learning and G-estimation, dynamic weighted ordinary least squares offers an
approach to DTR estimation that is doubly robust while also relatively straigthforward to implement.
In the case of identifying a multi-stage DTR (that is, a sequence of treatment decisions at fixed time
points), dWOLS proceeds via a sequence of weighted ordinary least squares regressions. Building
on this methodology, we propose the dynamic weighted generalized linear model (dWGLM); an
extension of dWOLS to the case of binary outcomes that offers similar properties in terms of
robustness and ease of implementation.

Chapter 4 is organized as follows: Section 4.2 introduces the proposed doubly robust regression-
based DTR estimation framework with binary outcomes, where we take the term doubly robust to
include cases of approximate consistency of the estimator; Section 4.3 describes simulation studies,
demonstrating the double robustness of our methods; Section 4.4 illustrates our methodology using
observational data from the Population Assessment of Tobacco and Health study, and Section 4.5
concludes this chapter with a discussion.
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4.2 Methodology

4.2.1 Preliminaries

Using the same necessary notation and settings in multi-stage decision estimation in the previous
section, we assume that a DTR contains a total of  treatment stages in a multiple-stage treatment
decision problem. Let . denote the patient outcome, a binary variable that takes values in {0, 1};
it is observed after the assignment of all the treatments. We also assume that . = 1 is preferred.
Following the notations that were introduced in Section 2.2, again, over- and under-bar are used to
represent the past and future, respectively. 0̄ 9 indicates a vector of the first 9 treatment decisions
and 0

9+1 denotes the vector of treatment decisions from Stage 9 + 1 onwards.
Consistent with regression-based DTR estimation approach in Section 2.2, a fundamental

component is the blip function. Denoting. ∗(a) as the potential (or counterfactual) binary outcome
under treatment regime a, we then define the optimal blip-to-reference function for Stage 9 as:

W 9
(
h 9 , 0 9

)
= 6

(
P

[
. ∗

(
0̄ 9 , 0

>?C

9+1

)
= 1 | N 9 = h 9

] )
−6

(
P

[
. ∗

(
0̄ 9−1, 0

A4 5

9
, 0

>?C

9+1

)
= 1 | N 9 = h 9

] )
,

(4.1)
which is the difference in the 6 link function transformation of the mean of the binary outcome
when using a reference treatment 0A4 5

9
(such as a control) instead of 0 9 at Stage 9 , in individuals

with history h 9 who are subsequently optimally treated (i.e., receiving 0>?C
9+1 ). Note that, for

binary outcomes, there are several options for the link function 6 : (0, 1) → (−∞, +∞), and if 6 is
the canonical (logit) link for the binomial, i.e., 6(?) = ;>6(?/(1 − ?)), the equation (4.1) blip
function then denotes the log odds ratio of expected potential binary outcomes for patients who
are treated versus untreated. When 6 is the identity link 6(?) = ?, the blip function represents the
risk difference of expected potential binary outcomes for patients who are treated versus untreated.
Other choices of link function could be the probit link 6(?) = Φ−1(?), where Φ is the cumulative
distribution function (C.D.F.) of the standard normal distribution, and the complementary log-log
function 6(?) = ;>6(−;>6(1 − ?)). Further, the robit link, 6(?) = �−1

a (?) where �a (G) is the
C.D.F. of the Student’s t-distribution with center zero, scale parameter one, and a degrees of
freedom, could be considered. Some appealing properties of the robit link have been identified.
For example, the robit link can be considered as a generalization of probit link and an approximate
generalization of logit link, and it provides a robust estimation in that the coefficient estimates are
less influenced by individual outlying data points (Liu [2004]).

The outcome probabilities can be framed in the context of blip functions such that 6[P(. =
1)] = 6[P(. >?C = 1)] −∑ 

9=1

[
W 9

(
h 9 , 0

>?C

9

)
− W 9

(
h 9 , 0 9

) ]
. A corresponding concept to blips is

regrets (Murphy [2003]). In the generalized linear model (GLM) framework, the regret function
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(for Stage 9) can be defined as

` 9
(
h 9 , 0 9

)
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] )
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0̄ 9 , 0
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= 1 | N 9 = h 9

] )
,

which is the 6 (link) function transformation of expected loss or regret arising from prescribing
treatment 0 9 at Stage 9 instead of the optimal treatment 0>?C

9
, assuming optimal treatment is

received in the later stages. Thus, similar to the continuous outcome case, the blip and regret
functions can be related such that ` 9

(
h 9 , 0 9

)
= W 9

(
h 9 , 0

>?C

9

)
− W 9

(
h 9 , 0 9

)
, showing that, if the

individual was optimally treated, the regret function will equal 0. Otherwise, the regret function
will be positive. The positive value of regrets represents the expected improvement in outcome
had the patient received optimal treatment compared to the observed treatment. The concept of
regrets provide a distinct view to consider the effects of the treatment in terms of the optimal
treatment, and it also simplifies some expressions in later sections.

Building on the concept of the blip and regret functions, the main goal of DTR estimation is to
identify the optimal treatment decision that maximizes the blip function or equivalently minimizes
the regret function. For instance, we consider the outcome model that can be decomposed into
two components: 6(E [. ∗(a) |N = h]) = ∑ 

9=1

[
5 9

(
hV
9
; #

)
+ W 9 (hk9 , 0 9 ;7 9 )

]
, where 5 9

(
hV
9
; #

)
and W 9 (hk9 , 0 9 ;7 9 ) are treatment-free and blip models, respectively, and hV

9
and hk

9
are subsets of

covariates in h 9 . It is important to note that, analogously to the continuous outcome modeling
in Section 2.2, our GLM modeling for binary outcomes follows the same mechanism: the
optimal treatment is that which maximizes the blip or minimizes the regrets. That is, given the
tailoring variable hk

9
, typically a small subset of h 9 , the optimal treatment decision for Stage 9 is

“0>?C
9
= 1, 8 5 W 9 (hk9 , 1;7 9 ) > 0; 0>?C

9
= 0, >Cℎ4AF8B4." Therefore, to make the optimal treatment

decision, it is sufficient to estimate the parameters in the blip model, and consider the parameters
in the treatment-free model as nuisance parameters.

4.2.2 &-learning with Binary Outcomes

We first introduce &-learning for binary outcomes as motivation and elucidation, then provide
our proposed method. To identify the optimal DTRs, &-learning recursively solves treatment
decision problems starting from the last stage, and at each stage, the &-function is defined as
follows (Moodie et al. [2014], Moodie and Krakow [2020]):

& (h , 0 ) = 6 (P [. ∗(0 ) = 1 | N = h , � = 0 ]) ;
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and

& 9

(
h 9 , 0 9

)
= 6

(
E

[
max
� 9+1

6−1 [
& 9+1

(
N 9+1, � 9+1

) ]
| N 9 = h 9 , � 9 = 0 9

] )
for 9 <  .

Suppose the&-functions aremodeled linearly such that& 9

(
h 9 , 0 9 ; # 9 ,7 9

)
= #>9 h

V

9
+7>9 0 9h

k

9
,

where hV
9
and hk

9
are subsets of covariates in h 9 . Note that the pseudo-outcome-probability,

because of the monotone increasing property of the 6−1 function,

max
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N 9+1, � 9+1
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= 6−1
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max
� 9+1

& 9+1
(
N 9+1, � 9+1
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,

refers to the "best possible" probability of the outcome a patient could have based on the
proposed outcome models in the preceding stage. Then the treatment decisions are made
according to the estimates of 7 in each stage. For example, in Stage 9 , "� 5 7̂

>
9 h

k

9
>

0, CA40C; >Cℎ4AF8B4, ;40E4 D=CA40C43." However, we note that we should correctly specify
all &-function models, including the treatment-free models, to acquire consistent estimators of 7.

4.2.3 Balancing Property

In the previous subsection, &-learning provides a comparatively simple to follow method via a
generalized linear model with binary outcomes, such as logistic regression, but it lacks robustness to
misspecification of treatment-free models. Our proposed approach, which will be described in this
section, inspired by dWOLS, employs balancing weights to overcome the possible misspecification
of these models.

dWOLS employs a series of sequential weighted regressions to consistently estimate the
parameters of interest in the outcome model. The double robustness of dWOLS relies on balancing
weights, which are a function of the propensity score and thus determined by the underlying
treatment model. Consistent with the notation in Section 2.2, we denote the standard propensity
score as c(x) := P(� = 1 | x). Then the balancing weights criterion introduced in dWOLS
establish independence between the covariates and treatment in the weighted dataset. Thus, the
bias in estimating the blip parameter, introduced due to the dependence between covariates and
treatment is removed. We denote by F3 a choice of dWOLS balancing weights that satisfy the
criterion (1 − c(x))F(0, x) = c(x)F(1, x) as proposed in Theorem 1 of Wallace and Moodie
[2015].

Suppose that xV and xk are two subsets of the covariates included in x, and that the true
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outcome model is 6 (P[. = 1|x, 0]) = 5 (xV; #) + W(xk , 0;7), where W(xk , 0;7) is in the linear
form 7>0xk but 5 is an arbitrary function, and 6 is the link function for binary outcomes. Then,
the following theorem holds, where the term approximately consistent is explained below.

Theorem 4.1. A technique approximating balance for GLM with binary outcomes

When the true outcome model satisfies 6 (P[. = 1|x, 0]) = 5 (xV; #) + W(xk , 0;7), where 6 is
the link function, a weighted generalized linear model based on the corresponding linear predictor
will yield approximately consistent estimators of 7 if the weights satisfy

(1 − c(x))F(0, x)^(0, x) = c(x)F(1, x)^(1, x), (4.2)

where ^(0, x) = 6−1′(#∗>xV + 7∗>0xk) and 6−1′(`) is the first derivative
of the inverse link function (i.e., 6−1′(`) =

36−1 (`)
3`

), and #∗ and 7∗

are defined through E
(
(1 − c(x))xF3 (0, x)

[
6−1( 5 (xV)) − 6−1(#∗>xV)

] )
= 0 and

E
(
c(x)xF3 (1, x)

[
6−1( 5 (xV) + 7∗>x) − 6−1(#∗>xV + 7∗>x)

] )
= 0, respectively.

Proof of Theorem 4.1: See Appendix G.1. In addition, building on the systems of estimating
equations in this proof, Appendix G.2 presents the proof of the uniqueness of #∗.

The balancing weights criterion (equation 4.2) is similar to that used in dWOLS, both being
built on propensity scores. However, equation (4.2) contains extra factors ^(0, x). This ^(0, x)
is related to the 6 link function, and it is derived, as shown in the proof G.1, from the system
of estimation functions of the GLMs for the purpose of addressing the misspecification of the
treatment-free model. Table 4.1 provides some examples of link functions and their corresponding
^ functions. It is important to emphasize that one may employ simply a linear predictor for
any form of the true treatment-free model in a GLM. Even if the true treatment-free model is
non-linear, the estimator of 7 is guaranteed to be “approximately consistent”, where the use of
“approximately” originates from the error term in the Taylor series approximation of the inverse
link function being close to zero. (see proof of Theorem 4.1 in Appendix G.1).

We use estimating function theory to assess the consistency of the blip estimators. If the
estimating function is unbiased, the estimator will be consistent in an appropriate framework, i.e.,
an appropriate rule for the growth of the sample size. If an estimating function is approximately
unbiased with a small quantifiable bias, the estimate in the limiting case will be approximately
unbiased with a small quantifiable bias as well. Thus, our term “approximately consistent”
means the second case where the estimators are derived from the estimating functions which are
approximately unbiased with a small quantifiable bias. That is, in the proof of Theorem 4.1 in
Appendix G.1, by the Taylor expansion of the inverse link function (6−1), we can connect the
two estimation equations of two different treatment groups, and thus construct the corresponding
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Table 4.1: Examples of link functions and their corresponding ^ functions (q and Φ denote the
PDF and CDF of the standard Gaussian random variable, and 5a and �a denote the PDF and CDF
of the Student’s t-distribution with center zero, scale parameter one, and a degrees of freedom).

Link function 6(`) 6−1(`) ^(`) = 6−1′(`)
Identity ` ` 1
Logit log( `1−` )

exp(`)
1+exp(`)

exp(`)
1+exp(`) [1 −

exp(`)
1+exp(`) ]

Probit Φ−1(`) Φ(`) q(`)
Complementary log-log log[−log(1 − `)] 1 − exp[−exp(`)] exp[` − exp(`)]
Robit �−1

a (`) �a (`) 5a (`)

balancing weights criterion. Accordingly, the linear Taylor expansion induces an error term, and
omitting this error term leads to an estimating function that is approximately unbiased. However,
this error term will be small when a linear predictor tends to vary in an interval where 6−1 is
approximately linear. In some applications, to acquire a more accurate estimation, it may be
possible to choose the range of covariates so that the linear predictor varies in such an interval.

Therefore, from the standpoint of robust estimation of the GLMwith 6 link, we call this ^(0, x)
an “adjustment” factor in the balancing weights criterion for binary outcomes. The “adjustment”
factor is a ^ function of the linear predictor #∗>xV + 7∗>0xk , where #∗ and 7∗ are roots of the
estimating functions of the GLMs with standard dWOLS weights F3 , and the ^ function is the the
first derivative of the inverse link function, that is, ^(`) = 6−1′(`) = 36−1 (`)

3`
. Consequently, to

construct the balancing weights for GLM with binary outcomes, two crucial steps are required: (1)
identify the “adjustment” factor by conducting a weighted GLM (e.g., logistic regression) with the
standard dWOLS weights; (2) compute the balancing weights based on the estimated “adjustment”
factor, propensity score, and weights criterion 4.2. These two steps are illustrated in our proposed
method of optimal DTR estimation with binary outcomes in the next section.

4.2.4 Dynamic Weighted Generalized Linear Model

Inspired by the easy implementation of &-learning and the double robustness property of G-
estimation and dWOLS, our proposed method, the dynamic weighted generalized linear model
(dWGLM), estimates the blip parameters in terms of binary treatments and outcomes. Note that,
for the multiple-stage decision problems, because of prognostic effects and delayed treatment
effects (Kosorok and Laber [2019]), the current treatment decisions will not only affect the
intermediate outcomes but also affect the future ones; thus, the decisions should be "farsighted".
Backward induction is used in &-learning for sequential decision problems. Thus the sequential
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decision problems can be divided into a set of single-stage problems, each of which aims to
optimize the stage specific pseudo-outcomes: the potential outcomes if the patients were treated -
possibly contrary to fact - optimally at subsequent stages. Similar to the process of &-learning
with binary outcomes, dWGLM involves a series of weighted generalized linear models of either
the observed outcome H (at Stage  ) or binary pseudo-outcomes Ỹ9 (for stages 9 <  ) on subject
histories. These binary pseudo-outcomes are random variables from the Bernoulli distribution with
success probability P(Ỹ9 = 1) = 6−1

[
6[P(. = 1 | h , 0 ; #̂ , 7̂ )] +

∑ 
:= 9+1 `:

(
h: , 0: ; 7̂:

)]
.

In continuous outcome G-estimation and dWOLS settings, the pseudo-outcome definition relies
on the final observed outcome H, that is, Ỹ9 = H + ∑ 

:= 9+1 `:
(
h: , 0: ; 7̂:

)
. For the binary

case, however, we concentrate on probabilities of the outcome being one rather than directly
using the observed binary outcome H. Therefore, we employ the last stage model to estimate
P(. = 1 | h , 0 ), and then combine the regrets to acquire the pseudo-outcome probabilities. We
also emphasize that, in keeping with the goal of GLM, we mainly focus on modeling the probability
that the pseudo-outcome equals one, i.e., P(Ỹ9 = 1 | h 9 , 0 9 ), for each stage ( 9 = 1, 2, ...,  ).
Moreover, to improve the efficiency of 7 estimators, we construct the Ỹ multiple times (say '
times) in each stage, and implement the estimation ' times in each stage. Therefore, for the
multistage decision analysis, the dWGLM procedure could be implemented by the following steps
at each stage of the analysis, starting from the last stage  and working backwards towards the
first stage:

• Step 1: Construct the stage 9 pseudo-outcome: set Ỹ9 = H if 9 =  . Otherwise, use prior es-
timates #̂ and 7̂

9+1
= (7̂ 9+1, ..., 7̂ ) to randomly generate Ỹ9 , which takes the value 1 with

probability P(Ỹ9 = 1) = 6−1
[
6[P(. = 1 | h , 0 ; #̂ , 7̂ )] +

∑ 
:= 9+1 `: (h: , 0: ; 7̂: )

]
, '

times, to yield Ỹ1
9
, Ỹ2

9
, ..., Ỹ'

9
.

• Step 2: Specify the stage 9 treatment modelE
[
� 9 |hU9 ;" 9

]
. The treatment model parameters

" 9 (estimated, for example, via logistic regression) are used to compute a weight F 9 , such
as F 9 =

���0 9 − E [
� 9 |hU9 ; "̂ 9

] ���.
• Step 3: Specify the stage 9 treatment-free and blip models, and perform a weighted
generalized linear model of ỸA

9
on the terms in the treatment-free and blip models, using

weights from Step 2 to get estimates #̂>;3,A9 , 7̂>;3,A9 for A = 1, ..., '; that is, for each A = 1, ..., ',
use the model

6(E[ỸA
9
| 0 9 , h 9 ; # 9 ,7 9 ]) = #>9 h

V

9
+ 7>9 0 9h

k

9
. (4.3)
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• Step 4: Use #̂
>;3,A

9 , 7̂>;3,A9 from Step 3 to compute

^A (0 9 , h 9 ) = 6−1′( #̂>;3,A
>

9 hV
9
+ 7̂>;3,A

>

9 0 9h
k

9
),

where 6−1 is identified based on the link function in Step 3. Then, construct the new weights

F
=4F,A
9
(0 9 ; h 9 ) = |0 9 − E[� 9 |hU9 ] | ∗ ^A (1 − 0 9 , h 9 ). (4.4)

• Step 5: Perform a weighted GLM with the new weights (i.e., F=4F,A
9
(0 9 ; h 9 )) to get revised

estimates #̂A9 , 7̂
A

9 for each A . Estimate 7 9 by 7̂ 9 = '
−1 ∑

A 7̂
A

9 , then use parameter estimators
7̂ 9 to construct the 9 Cℎ stage optimal treatment rule, which is ?A4B2A814 0 9 = 1 8 5 7̂>9 N

k

9
>

0; Cℎ4= ?A4B2A814 0 9 = 0 >Cℎ4AF8B4.

• Step 6: Return to Step 1 and analyze Stage 9 − 1 if there are more stages to analyze.

Our proposed dWGLM approach thus contains at each stage a two-step GLM estimation
process for binary outcomes. Each step uses GLM for binary outcomes (e.g., logistic regression)
to estimate the parameters of interest. The first step could employ logistic regression with the
dWOLS balancing weights, and acquire estimates (#̂ and 7̂). Building on these estimates and
the weights function (equation 4.4) which satisfies weights criterion (4.2), we can obtain new
balancing weights for binary outcomes. Thus, the second step will utilize the logistic regression
again with the new balancing weights to estimate the parameter of interest.

dWGLM is doubly robust against misspecification of either the treatment or the treatment-free
model. If we misspecify the treatment model but correctly specify the treatment-free model,
the estimator of blip parameters will be consistent. Alternatively, if the treatment-free model
is misspecified, but we employ the balancing weights that are derived from a correct treatment
model, the approximate consistency of the blip parameters will also be ensured. In addition, we
note that the blip parameters are only meaningful if the blip model is correctly defined. Similar to
our approach in Chapter 3, dWOLS with interference, to specify the optimal treatment strategy,
we also need to correctly specify the blip model. For continuous outcomes, Wallace et al. [2017a]
develop methods for assessing the blip model specification, and similar problems for binary
outcomes can be further investigated.
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4.3 Simulation Studies

We now demonstrate the implementation and double robustness of dWGLM via two simulation
studies that address problems in both single-stage decision and multi-stage decision settings. In the
single-stage setting (Study 1), we consider four different scenarios to verify the double robustness
property of our method. In each scenario, we also consider two different link functions and
compare out dWGLMwith proposed new weights with two alternatives: &-learning and GLMwith
standard “absolute value” weights. To test the robust estimation ability of our methods, in Study 2,
with its multi-stage decision settings, we examine two different data-generating processes that
can be employed in different real situations. One (Study 2a) is analogous to Wallace and Moodie
[2015]’s two-stage setting, while the other (Study 2b), which follows Moodie et al. [2012]’s setting,
distinguishes between the components that are tailoring variables and those that are predictive
variables including potential confounders. In each of Study 2a and 2b, we also test different
misspecification cases to demonstrate the double robustness of dWGLM.

4.3.1 Single-stage Decision for Binary Outcomes

Our first simulations (Study 1) consider the case of a single-stage treatment decision with binary
outcomes. The data-generating process is as follows. Patient information: -8 ∼ * (0, 2), where
subscript 8 indicates patient-level data; treatment P(�8 = 1 | -8) = expit[−2-8 + sin(-8) + -2

8
],

where expit(G) = [1 + 4G?(−G)]−1; outcome 6[P(.8 = 1)] = -8 + log( |-8 |) + cos(c-8) + -3
8
+

�8 (k0 + k1-8), where both probit (6(G) = Φ−1(G)) and logit (6(G) = G/(1 − G)) links are
considered. Note that the treatment-free function is set as a nonlinear function that 5 (G) =
G + log( |G |) + cos(cG) + G3, and its plot against G is shown in Figure 4.1. The blip function is
set in the form W(G, 0;7) = 0(k0 + k1G) with k0 = −1, k1 = 2, so that the optimal treatment
is given by 0>?C = I(k0 + k1G > 0) (or 0>?C = I(G > 0.5)). Our interest is then in estimating
the blip parameters k0, k1. In this study, we consider three estimation methods. In Method 0
(&-learning in Moodie and Krakow [2020]) we propose GLMwith no weights for binary outcomes.
In Method 1 (GLM with standard dWOLS weights), we consider GLM but with the original
dWOLS “absolute value” weights (e.g., F = |0 − E(�|x) |). Finally, in Method 2, which is our
proposed method dWGLM, we consider GLM with the proposed weights (4.4), constructed from
the standard dWOLS weights and the estimates from the model of (4.3).
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Figure 4.1: Nonlinear treatment-free function and its linear approximation

For each simulation, we conduct analyses in the following four scenarios: 1) both the treatment
and treatment-free models are mis-specified; 2) the treatment-free model is mis-specified but the
treatment model is correctly specified; 3) the treatment model is mis-specified but the treatment-
free model is correctly specified; and 4) both the treatment and treatment-free models are correctly
specified. Model mis-specification is implemented via the omission of non-linear terms in the
treatment and treatment-free models.

Our simulation demonstrates the expected results as shown in Figure 2, which presents the
results of the GLM with logit link, and those of the GLM with probit link appears a similar pattern.
In the first two scenarios, where the treatment-free model is incorrectly specified, both Methods 0
and 1 provide biased estimators of blip function parameters. However, Method 2, the proposed
dWGLMmethod with new balancing weights (4.4) offers blip estimators that are close to unbiased
(and therefore likely to be close to consistent) in Scenario 2 and blip estimators with a small bias
in Scenario 1. For the last two scenarios (Scenarios 3 and 4), because the treatment-free models
were correctly specified, all of these three methods perform well in estimating the blip parameters;
that is, they all provide close to consistent blip function parameter estimators. We note that, for
dWGLM, comparing Scenario 1 with Scenario 2 (or Scenario 3 with Scenario 4), we observe a
gain in efficiency due to the correct specification of the treatment model.
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Figure 4.2: Blip function parameter estimates via Method 0 (M0 &-learning, top row), Method 1
(M1GLMmodel with standard dWOLSweights, middle row) andMethod 2 (dWGLM, bottom row)
with logit link when neither model (scenario 1), treatment model only (scenario 2), treatment-free
model only (scenario 3), or both models are correctly specified (scenario 4).
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4.3.2 Two-stage Decision for Binary Outcomes

Our second set of studies will demonstrate the implementation of our strategies in simulated
datasets for a two-stage treatment decision process. In Study 2a, we consider the outcome model
of form: logit[P(. = 1)] = logit[P(. >?C = 1)] −∑ 

9=1

[
W 9

(
h 9 , 0

>?C

9

)
− W 9

(
h 9 , 0 9

) ]
, and examine

the double robustness of the proposed dWGLM in the two-stage ( = 2) decision problem. A
causal diagram of this two-stage decision is shown in Figure 4.3. Writing the column vector
7 9 = (k0 9 , k1 9 )>, the data-generating process is as follows.

• Patient information: -1 ∼ # (2, 1), -2 ∼ # (1 + 0.5-1, 2);

• Treatment: P(�1 = 1 | G1) = expit[−5 + G1 + G2
1], P(�2 = 1 | G2) = expit[−2.5G2 + G2

2 +
sin(G2)];

• Blip functions: W 9
(
hk
9
;7 9

)
= 0 97

>
9 x

k

9
, with xk

9
= (1, G 9 )> , k0 9 = −2 and k1 9 = −1

for 9 = 1, 2. The regret function is thus ` 9
(
hk
9
;7 9

)
=

(
0
>?C

9
− 0 9

)
7>9 x

k

9
, where 0>?C

9
=

I(7>9 x
k

9
> 0);

• Outcome: logit[P(. = 1)] = logit[P(. >?C = 1)] − `1

(
hk1 ;71

)
− `2

(
hk2 ;72

)
, where

logit[P(. >?C = 1)] = G1 + log( |G1 |) + cos(cG1).

-1 -2

�1

.

�2

Figure 4.3: Directed acyclic graph of Simulations 3.2 (Study 2a).

In this two-stage decision problem, to evaluate the double robustness property of our dWGLM
approach, we consider various forms of model misspecification. In particular, we emphasize
the following two cases: 1) the treatment-free models were misspecified for both stages by only
considering linear terms, but the treatment models were specified correctly; 2) the treatment-free
model was misspecified for the second stage, but the treatment model was specified correctly; in
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(a) Case 1 (b) Case 2

Figure 4.4: Two-stage decision simulation Study 2a. The top row is the blip parameter estimates
via dWGLM for Stage 2, and the bottom is the blip parameter estimates for Stage 1. The left two
columns (a) and the right two columns (b) are estimates from Case 1 and 2, respectively.

contrast, the treatment model was misspecified for the first stage, yet the treatment-free model was
correctly identified.

For the two-stage binary-outcome problem where the binary outcome was generated by the
model of the form logit [P (. = 1)] = logit

[
P

(
. >?C = 1

) ]
− ∑ 

9=1
[
` 9

(
h 9 , 0 9

) ]
, the simulation

results are as expected. The blip function parameter estimates are shown in Figure 4.4. For Case 1,
in both Stage 1 and Stage 2, the treatment-free models are incorrectly specified, but the treatment
models are all correctly specified. The blip parameter estimates from both stages of Case 1 are
plotted in Figure 4.4a. The top row shows the blip parameter estimates via dWGLM for Stage
2, and the bottom gives the blip parameter estimates for Stage 1. Both stages’ blip parameter
estimates appear to be consistent. In Case 2, where only the treatment model is correctly specified
in Stage 2 and only the treatment-free model is correctly specified in Stage 1, our results show that
the blip parameters (plotted in Figure 4.4b) are also consistently estimated. Therefore, these results
are as expected: the blip estimators appear consistent, and the double robustness of dWGLM in
this study is verified.
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X1

Figure 4.5: DAG of Simulations 3.2 (Study 2b).

In Study 2b, motivated by real observational data where treatment assignment is confounded
by covariates, and based on the simulation study in Moodie et al. [2012], we distinguish between
tailoring variables and predictive variables that include potential confounders, where the tailoring
variables are denoted as $ 9 , and the predictive variables are denoted as - 9 . The datasets feature
some covariates recorded at each stage, where the second stage covariates are potentially affected
by first stage variables (both treatment and non-treatment covariates). A causal diagram of this
two-stage decision is shown in Figure 4.5; therefore, the data generating process is as follows.

The covariates are -1 ∼ # (3, 1), -2 ∼ # (−0.5 + 0.5-1, 1), and the treatment model is
P(� 9 = 1 | - 9 ) = expit(U0 9 + U1 9- 9 ) for 9 = 1, 2. The binary tailoring variables satisfy
P($1 = 1) = 0.5, and P($2 = 1 | $1, �1) = expit(X1$1 + X2�1). The outcome variable satisfies

P(. = 1 | -1, $1, �1, -2, $2, �2; )) = expit[<(G1, G2, >1, >2, 01, 02)],

where <(G1, G2, >1, >2, 01, 02) = \0 + \1-1 + \2$1 + \3�1 + \4$1�1 + \5-2 + \6�2 +
\7$2�2 + \8�1�2 + i1(-1) + i2(-2), and i1 and i2 may be non-linear functions such
as i1(-1) = -3

1 and i2(-2) = log( |-2 |). We concentrated on the setting where ) =

(0, 1, 0,−0.5,−0.1, 1, 0.25, 0.5, 0.35)>, % = (0.5, 0.6)>, and "1 = (U01, U11)> = (−2.5, 1.25)>,
"2 = (U02, U12)> = (−0.5, 1.25)>. We note that these choices of the parameters pertain to
regular settings in the sense of Chakraborty et al. [2010], but other choices that correspond to the
non-regular settings can be further studied.

For the second stage, the true treatment-free function is 52(G1, >1, 01, G2, >2, 02) = \0 + \1-1 +
\2$1 + \3�1 + \4$1�1 + \5-2 + i1(-1) + i2(-2), and true blip function is W2(>2, 02, 01) =
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Figure 4.6: Estimates of blip parameters in Study2b. Two-stage decision (Stage 2, top row) blip
function parameter estimates via dWGLM with logit link (left to right columns are for k0, k1, and
k2, respectively) when only the treatment model is correctly specified.

\6�2 + \7$2�2 + \8�1�2. Thus, for the second stage, the true blip parameters are 72 =

(\6, \7, \8)> = (0.25, 0.5, 0.35)>. However, the true first stage decision rule parameters are more
complicated because$2 depends on �1. Building on the work of Moodie et al. [2014], in Appendix
G.3, we derive the true first-stage decision rule parameters (i.e., 71 = (k10, k11)>) as a function
of the data-generating parameters. That is, for the true blip parameters 71 = (k10, k11)>, we have
the coefficient of �1 as

k10 = \3 + |q3 |+ − |q4 |+ + :3
(
|q1 |+ − |q3 |+

)
− :4

(
|q2 |+ − |q4 |+

)
,

and the coefficient of $1�1 as

k11 = \4 + (:1 − :3)
(
|q1 |+ − |q3 |+

)
− (:2 − :4)

(
|q2 |+ − |q4 |+

)
.

Figure 4.6 shows the blip estimates from the simulation Study 2b, and we can conclude that
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the blip parameters appear to be consistently estimated; therefore, the results from Study 2b, with
a parameterization that resembles that of a real dataset, are also as expected.

4.4 Real Data Analysis from PATH Study

In Chapter 3, we have applied our interference-aware dWOLS methods in the analysis of PATH
data. In this section, assuming no interference, we will examine the PATH dataset again to apply
our dWGLM, which is proposed for DTR estimation with binary outcomes.

In analyzing the PATH data, our interest in this chapter is in estimating the optimal DTR
for each smoker, in terms of a sequence of use or non-use of e-cigarettes to achieve smoking
cessation. Analogously to the PATH analysis in Section 3.5, we now consider the subset of
respondents who are smokers in Wave 1. Using the first four waves of data, we formulate our
analysis as a three-stage decision problem and define the 9 Cℎ stage ( 9 = 1, 2, 3) to be the time from
Wave 9 up to but not including Wave 9 + 1. As in Chapter 3, we continue to set the treatment
variable as the use of e-cigarettes by a cigarette smoker. As previously discussed, due to the long
participant-follow-up of approximately one year, we define e-cigarette use reported at the wave of
the measured outcome as indicative of the pre-wave treatment. In addition, the binary outcome in
our analysis is the indicator of smoking cessation (of traditional cigarettes only) or not based on
the question “Do you now smoke cigarettes (a) Every day (b) Some days (c) Not at all?” in the
study. If participants respond (c), then their binary outcomes are coded as . = 1; if they respond
(a) or (b), then their binary outcomes are coded as . = 0.

Building on previous PATH analyses such as that in Benmarhnia et al. [2018], for the 9 Cℎ stage,
we also select the Wave 9 variables age (“less than 35” or “35+”), education, sex, non-Hispanic,
race and “plan to quit”, denoted, respectively, as the covariates xV

9
= (G 91, G 92, G3, G4, G5, G 96)> in

the treatment-free model. We note that the questionnaire will no longer ask the question regarding
“plan to quit” to participants who have already quit smoking; thus, we assign the value of that
question to 1 (i.e., they have a plan to quit smoking) for those participants. In addition, as discussed
in Section 3.5, the tailoring variables that are related to the efficacy of the treatment should be
selected from a set of moderator variables (Almirall et al. [2014]). Building on previous work of
studying moderators in the relationships of prior wave predictors of quitting smoking, we select
at each stage the variables age and “plan to quit” as tailoring variables, i.e., xk

9
= (G 91, G 96)>

(Le Grande et al. [2021]). The covariates in the treatment propensity models are chosen based
on the work of Benmarhnia et al. [2018], and xU

9
= xV

9
= (G 91, G 92, G3, G4, G5, G 96)>. Therefore, in

estimation, the blip model is set up as W
(
xk
9
;7 9

)
= 0 9+1

(
k 90 + 7>91x

k

9

)
, and the treatment-free

model as 5
9
(xV

9
; # 9 ) = V 90 + #>91x

V

9
. Four sets of analyses corresponding to those carried out in the
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Table 4.2: Analysis and optimal DTRs of PATH data. Optimal DTRs are indicator functions of 7
estimates.

Wave Estimates 7̂ Methods
M0 M1 M2 M3

1 ∼ 2
k̂0 0.0188 0.0236 -0.0013 -0.0041
k̂1 -0.0841 -0.0710 -0.0250 -0.0055
k̂2 0.1142 0.0428 -0.0219 0.0014

2 ∼ 3
k̂0 0.0602 0.0975 0.1244 0.0380
k̂1 -0.0714 -0.1114 -0.1229 -0.0345
k̂2 0.0315 0.0693 0.1198 0.0150

3 ∼ 4
k̂0 -0.0469 0.0035 -0.1553 0.0088
k̂1 0.2535 0.2478 0.4581 0.1547
k̂2 0.2937 0.2621 0.1745 0.1261

simulations of Section 4.3.1 are conducted. At each stage of Method 0 (M0), i.e., the &-learning
approach, a logistic regression is implemented. Method 1 is similar to M0 but uses the dWOLS
balancing weights in each logistic regression estimation. Then, Method 2 (M2), our proposed
doubly robust method, uses the logistic regression model with the new weights based on the
equation (4.4). To perform a sensitivity analysis for the link function, we also consider Method 3
(M3), which is analogous to M2 as it includes two-step robust estimation in each stage, but which
uses the probit link function. We note that only M0 does not use any balancing weights in the
estimation process, but M1, M2, and M3 do use weights for the purpose of balancing.

Our proposed new weights (equation 4.4) are built to provide an unbiased estimator of the
blip parameters through estimating weighted population-level estimating equations. Similar to
the PATH data analysis in Chapter 3, we also employ the sampling design weights in each stage.
Regarding the combination of model and sampling design, the sample estimating functions are
unbiased with respect to the sample design of the population-level estimating functions; thus, the
estimators of the blip function parameters are model-design consistent (Lumley [2004]).

As shown in Section 4.2.3, our use of balancing weights is to ensure consistent blip estimators.
M2 and M3, which employ the proposed balancing weights, are expected to provide consistent
blip estimators, but M1, which uses standard dWOLS weights, and M0, which does not use
any balancing weights, are not. The blip parameter estimates from Methods 0, 1, 2, and 3 are
summarized in Table 4.2. The results of M0 and M1 are similar, especially k̂0 and k̂1 in Stage 1
(Wave 1 ∼ 2), and k̂1 and k̂2 in Stage 3 (3 ∼ 4). Both M2 and M3 employ the proposed balancing
weights, but they use different link functions and return different estimates. The difference
between estimates from M1 and M2 shows the difference in results obtained with our method
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when employing two different weights: the original dWOLS weights that are for the continuous
outcome model and our proposed balancing weights that are for the binary outcomes. We also
see differences between M2 (using the logit link) and M3 (using the probit link). Compared with
the estimates of M2, those of M3 are attenuated; this is expected because the standard normal
distribution has a lighter tail than the logistic distribution. For example, given a certain probability
larger than 0.5, the value of the inverse of the logistic function is greater than that of the inverse
of the standard normal distribution; thus the coefficient estimates obtained with the probit link
function will tend to be smaller compared with those obtained with the logit link function if the
covariates are the same. Although the estimates of M2 and M3 are different, their patterns that
decide the treatment recommendations are similar.

Building on the blip parameter estimates, the corresponding optimal treatment regime will be
0̂
>?C

9
= I(7̂>9 x

k

9
> 0), for 9 = 1, 2, 3; for instance, for Wave 1 ∼ 2, Method 2 (i.e., dWGLM) outputs

I[−0.0013−0.0250G11−0.0219G16 > 0]; forWave 2 ∼ 3, Method 2 outputs I[0.1244−0.1229G11+
0.1198G16 > 0], and for Wave 3 ∼ 4, it outputs I[−0.1553 + 0.4581G11 + 0.1745G16 > 0]. These
results from Method 2 can be interpreted as the following treatment recommendations about the
use of e-cigarettes. In the first stage, do not use e-cigarettes. In the second stage, use e-cigarettes.
In the last stage, if a smoker’s age is less than 35 and he or she has no plan to quit, do not use
e-cigarettes; otherwise, use e-cigarettes. Finally, we note that, through the three-stage treatment
decision analysis of the PATH data, our intention is mainly to illustrate that our dWGLM can be
applied in practice, but not to put forward the results as authentic recommendations for a treatment
strategy.

4.5 Conclusion and Discussion

Dynamic treatment regimes are a mechanism by which treatment decisions are made based
upon individual-level information, used in optimizing long-term expected outcomes. Many
approaches for optimal DTR estimation are limited to continuous outcomes. The few used to
address binary outcomes are limited in their robustness to model mis-specification or complexity
of implementation. Our dWGLM method, motivated by its continuous-outcome predecessor
dWOLS, provides double robustness to model misspecification while being comparatively easy to
implement. Our method can be viewed as a series of weighted GLM analyses. Meanwhile, to make
optimal sequential decisions, some care in constructing stage-specific binary pseudo-outcomes
is also needed. We offer a new balancing weight criterion to overcome the misspecification of
treatment-free models, and the method for each decision stage involves just a two-step or two-phase
logistic regression. Note that our new balancing weight criterion is feasible for any GLM, and the
corresponding theory is also suitable for any 6 link function. From this viewpoint, dWOLS is a
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special case of dWGLM, where the link function is an identify link: 6(`) = `. In practice, using
observed data from the Population Assessment of Tobacco and Health study, we illustrated our
dWGLM in an analysis of e-cigarette usage and smoking cessation.

Our dWGLM approach is doubly robust for estimating the parameter of interest, a property
demonstrated via simulation. It is important to acknowledge that our approach relies on the
suitability of the local linear approximation to the inverse link function (6−1). We utilize Taylor
expansion of 6−1 about #>^ evaluated at 5 (^) (Equation G.6 in Appendix G.1) in the proof
of Theorem 4.1, and the error term is close to zero if a linear predictor tends to vary in an
interval where 6−1 is close to linear. At the end of Appendix G.1, we discuss the accuracy of
approximation that can be decided by the range of covariates in our method and the inverse
link function. Therefore, a possible extension would be to conduct sensitivity analyses to study
different link functions as well as treatment-free functions in GLM.

In future work of this chapter, we note that some machine learning (ML) methods can be
employed in our dWGLM analytical framework. For example, tree-based methods (e.g., Bayesian
additive regression trees, Chipman et al. [2010]) are commonly used in estimating the treatment
model, and some ensemble methods (e.g., Super Learner, Van der Laan et al. [2007]) can be
used for last stage estimation to provide a more accurate prediction of P(. = 1 | h , 0 ), and
thus to produce accurate pseudo outcome prediction. For another example, Moodie et al. [2012]
employs a generalized additive model in &-learning. The ML methods, of course, are chosen
based on the purpose of the estimation. For the last stage outcome model, the ML method
is required for precise prediction; however, for the treatment model, correct modeling of the
data generating mechanism is not necessary, but rather all confounders must be included to
correctly model the impact of the treatment (Ertefaie et al. [2013]). Further, due to regularization
and overfitting, the “prediction-focused” ML estimators may be biased (Chernozhukov et al.
[2018]); thus, orthogonalization and data splitting should be carefully investigated to control the
regularization and the overfitting bias. Therefore, one important extension to our work is to employ
different ML models in the corresponding process to produce accurate optimal treatment regimes.
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Chapter 5

Optimal DTR Estimation with Household
Interference for Ordinal Outcomes

Considering continuous outcomes in Chapter 3, we have developed a doubly robust method for
estimating DTRs in the presence of network interference. As a follow-up to the interference-aware
DTR method in Chapter 3, with the aim of examining cases where each individual has a binary
outcome, our goal is to develop a corresponding optimal DTR estimation method. To achieve
this, as stated in Chapter 4, our first task was to examine DTR estimation for binary outcomes
without interference. Then, building on Chapter 4, this chapter (Chapter 5) continues the study of
DTR estimation with interference for binary outcomes. We propose two ways to examine this
DTR estimation with interference problem by the case of pairs where ego and alter have binary
outcomes. First, as in Chapter 3, we assume that all alters’ treatments are fixed, and taking those
treatments as tailoring variables, we aim to estimate optimal DTRs for the egos. Second, assuming
that all alters’ treatments also need to be determined by decision rules, we estimate optimal DTRs
for couples in the same household. For this goal, we consider a composite ordinal outcome for
a household based on the binary outcomes for the ego and the alter. In particular, motivated
by the PATH data, we will emphasize household interference in which there is an association
between the treatments of connected individuals and household utility, defined by combining
the binary outcomes of the two individuals of interest in each household. We also outline the
corresponding application for assigning treatment strategies for a pair in the same household,
based on the individual-level and household-level covariates.
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5.1 Introduction

Since COVID-19 appeared, research on this contagious disease has become popular, causing the
number of interference studies in the causal inference area to gradually expand. Meanwhile, it
has gradually become necessary to account for interference in optimal DTR estimation. Recently,
some researchers, such as Jiang et al. [2022b], Su et al. [2019], have focused on optimal DTR
estimation in the presence of interference, mainly considering how other patients’ treatments
may affect the outcome of individuals of interest. In such cases, treatment-decision rules should
involve others’ information such as treatments and covariates. To conduct robust optimal DTR
estimation, in Chapter 3, we proposed network balancing weights to apply dWOLS in cases of
interference where there was an ego and alters, and the covariates or treatments of the alters
could affect the treatment or outcome of the ego. We considered the interference in different
network scenarios such as the Erdős-Rényi network, the Barabási-Albert network and the Longleaf
Pines spatial network. In particular, we examined two-person household networks in the PATH
study, where a couple in the same family is regarded as a household network. These recently
developed interference-aware DTR estimation methods, and even the standard DTR estimation
methods, however, focus extensively on continuous outcomes. To the best of our knowledge, few
publications have considered optimal DTR estimation for discrete outcomes, such as binary and
ordinal outcomes, in the presence of interference.

Our work described in this chapter (Chapter 5) is intended to address this knowledge gap, and
builds on the material in Chapters 3 and 4. In Chapter 4, we proposed a novel doubly robust and
easily-implemented DTR estimation method, dWGLM, in preparation for the work in Chapter 5.
To study DTR estimation under binary outcomes and household interference, the straightforward
way is similar to the approaches in Chapter 3. That is, aiming to optimize outcomes of egos, and
building on interference-aware dWOLS presented in Chapter 3 and the dWGLMmethod described
in Chapter 4, we have developed an approach to making treatment decisions for egos, taking into
account the alters’ treatment information (see Appendix H.1.2). Alternatively, we can also treat
the problem in a different way. That is, motivated by the PATH data where interference exists
in the household of interest, we target making treatment decisions for both individuals of a pair
in the same household, and we concentrate on optimizing household utility models. This novel
viewpoint is one of the main contributions of this chapter (Chapter 5).

Considering the binary outcomes for both individuals of a pair in the same household, we
build a combination of the binary outcomes as a utility for the household. The household utility
that depends on both members’ binary outcomes is constructed as an ordinal outcome. Then,
corresponding proportional odds models (POMs) are employed to estimate the parameters of
interest. To further study the interference in the household case, we also extend the independent
treatment assignment assumption to cases in which a correlation exists between the treatments of a
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pair in a household. We provide an estimation method for estimating a household’s joint propensity
score. Building on the household joint propensity score, in the single-stage setting, we then
propose adjusted balancing weights for POMs in the case of household ordinal outcomes under
household interference. We also explain the corresponding estimation process for multi-stage
decision problems. In addition, to maximize the utility of the whole household, we propose the
optimal treatment decision rules for a couple in the household, which map from the space of the
couple’s covariates into the space of feasible treatment combinations.

This chapter is organized as follows. In Section 5.2, we propose the estimation process of the
joint propensity functions when correlations between the treatments of individuals in the same
household are present, and construct the corresponding balancing weights. Further, we provide
some measures in Section 5.3 to assess the balance of the proposed weights. In Section 5.4,
we introduce the proposed doubly robust regression-based DTR estimation framework for the
case of a household with ordinal utilities under household interference. In addition, we explain
the analytical framework of optimal treatment decision rules for a couple in the household. We
demonstrate in Section 5.5, through simulations of both single- and multi-stage treatment decisions,
that our method is doubly robust against misspecification of either treatment-free or treatment
models. Section 5.6 presents the implementation of our methods on PATH data. Section 5.7
concludes with a discussion of future research.

5.2 Correlated Treatments in a Household

In this section, we first recall the dWOLS balancing weights in the presence of household
interference. Next, we propose novel balancing weights that take account of the correlations
between treatments of individuals in the same household. In addition, considering the case
where there exist correlations between treatments of individuals, we demonstrate the possible
data-generation process and propose an estimation process based on the methods currently regarded
as the most efficient — alternating logistic regressions.

Considering Chapter 3’s network propensity function, we define the joint propensity function
for a household case:

Definition 5.1. In the household case where there is a pair (B, A), for 0B = 0, 1 and 0A = 0, 1
the joint propensity function is the joint probability of one individual in the household receiving
treatment 0B and the other receiving treatment 0A , that is,

c0
B0A (xB, xA) = P(�B = 0B, �A = 0A | xB, xA).
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Moreover, building on Chapter 3’s network interference weights criterion, we have the standard
balancing weights criterion that

c00F(0, 0, x) = c01F(0, 1, x) = c10F(1, 0, x) = c11F(1, 1, x), (5.1)

where x represents the household-level covariates for determining the balancing weights. For
simplicity and without loss of generality, x represents (xB, xA). (We are not assuming xB and
xA to be independent.) In terms of a weighted dataset (0B, 0A)F and (xB, xA)F, the balancing
weights criterion balances the weights in the sense that (0B, 0A)F |= (xB, xA)F , that is, the weighted
treatment configuration is independent of the weighted covariate configuration. From the balancing
weights criterion (5.1), balancing weights are constructed by resorting to joint propensity functions
c0

B0A (xB, xA). In Chapter 3, we assumed that the treatments of B and A are conditionally independent,
that is, that the joint propensity functions are equal to the product of marginal propensities;
mathematically, c0B0A (xB, xA) = P(�B = 0B, �A = 0A | xB, xA) = P(�B = 0B | xB)P(�A = 0A | xA).
In this chapter, however, we assume that there possibly exists an association between �B and �A ,
and we need to focus on estimating the joint propensity functions. Building on the interference
weights criterion and the idea of constructing (so-called) overlap weights for multiple treatments
in Li [2019], we might propose the inverse probability based interference balancing weights for
the correlated treatment in a household:

F(0B, 0A) ∝ 1
c0

B0A
× 1∑

0B ,0A 1/c0B0A , for 0B = 0, 1; 0A = 0, 1. (5.2)

The proposed weights satisfy the weights criterion (5.1) and thus provide a balancing guarantee
between treatments and covariates configurations. The weight is proportional to the inverse of the
joint propensities and divided by a “normalization” factor

∑
0B ,0A 1/c0B0A .

On the other hand, considering the balancing weights criterion in the form c00F(0, 0, x) =
c01F(0, 1, x) = c10F(1, 0, x) = c11F(1, 1, x) = c00c10c01c11, we might also propose overlap-
type balancing weights:

F(0B, 0A) ∝ c
00c10c01c11

c0
B0A

, for 0B = 0, 1; 0A = 0, 1. (5.3)

The overlap-type weight for one treatment pair realization is proportional to the product of the
joint propensities for the other possible realizations. To estimate the balancing weights, from
either (5.2) or (5.3), the key is to precisely estimate the joint propensity function c0B0A (xB, xA).
Again, it is important to note that, if the treatments of members of the household are mutually
independent, that is, each individual independently receives treatment, then the joint propensity is
the product of marginal propensities. However, assuming the independence of the treatment is
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-B �B .B

-A �A .A

(a) DAG 1

-B �B .B

-A �A .A

(b) DAG 2

Figure 5.1: Directed acyclic graphs of interference analysis, with and without association between
�B and �A conditional on (xB, xA).

not reasonable in many cases; for example, an individual could receive treatment based on the
treatment status of the other household member. In a case where the treatments are correlated,
the joint propensity functions are not equal to the product of the marginal propensities. To build
accurate balancing weights and thus make robust estimations of optimal DTRs, we take into
account the dependence among treatments observed in the same household. As presented in
Figure 5.1, the directed acyclic graphs for the data-generating process, the red path between �B
and �A in DAG 5.1 indicates an association (conditional on xB and xA) of the treatments between
the individuals who are interfering with each other in the same household.

With regard to estimation methods for joint propensity, for our pairs case, one straightforward
way is to model three probabilities (Baker [1995]); for example, those for (�B, �A) = (0, 1), (1, 0)
and (1, 1). Thus, the remaining probability (i.e., P(�B = 0, �A = 0)) equals to one minus
the probabilities of the three other possibilities. However, this method would not easily be
extended to a larger number of individuals in the same cluster. Therefore, we focus on an
alternative general way to model the marginal probabilities and the associated structures. For
these structures, the odds ratio, which has some desirable properties and is employed as the
correlation coefficient, is studied as a measure of association between pairs of binary variables
(Lipsitz et al. [1991], Yi and Thompson [2005]). To generate the correlated treatments for a
household, the idea is to specify the joint distribution (or joint propensity) of the two binary
variables by specifying the marginal distributions of those two binary variables and the odds
ratio. Then, building on the joint propensity, we can generate the treatment configuration as
(0, 0), (0, 1), (1, 0) or (1, 1). Formally, suppose there are ℎ = 1, ...� households, and one pair is
in each household, that is, the pair (B, A)ℎ belongs to the ℎCℎ household. Based on Lipsitz et al.
[1991]’s parameterization of correlated binary data, letting Gℎ = (�Bℎ, �

A
ℎ
)> be the treatment vector
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�B
ℎ

�A
ℎ 1 0

1 ?ℎBA ?ℎB − ?ℎBA
0 ?ℎA − ?ℎBA 1 − ?ℎB − ?ℎA + ?ℎBA

Table 5.1: Contingency table for binary treatment variables (�B
ℎ
, �A

ℎ
) in the ℎCℎ household.

for the ℎCℎ household, we define ?ℎB (") := P(�B
ℎ
= 1 | xℎB,") and ?ℎA (") := P(�A

ℎ
= 1 | xℎA ,")

and �ℎBA := I(�B
ℎ
= 1, �A

ℎ
= 1) = �B

ℎ
�A
ℎ
, where I(G) is an indicator function. Also, we define

?ℎBA := P(�ℎBA = 1) = P(�B
ℎ
= 1, �A

ℎ
= 1). Through cross-classifying each individual’s treatment

at household ℎ, we can form a 2 × 2 contingency table (Table 5.1), and the odds ratio for the pair
of correlated binary variables (�B

ℎ
, �A

ℎ
) is

gℎBA :=
P

(
�B
ℎ
= 1, �A

ℎ
= 1

)
P

(
�B
ℎ
= 0, �A

ℎ
= 0

)
P

(
�B
ℎ
= 1, �A

ℎ
= 0

)
P

(
�B
ℎ
= 0, �A

ℎ
= 1

) = ?ℎBA (1 − ?ℎB − ?ℎA + ?ℎBA)
(?ℎB − ?ℎBA) (?ℎA − ?ℎBA)

. (5.4)

If the odds ratio is known, based on equation (5.4), then we can then solve for ?ℎBA in terms of the
two marginal probabilities (?ℎB and ?ℎA) and the odds ratio (gℎBA) such that:

?ℎBA =


1ℎBA −

√
12
ℎBA
− 4gℎBA (gℎBA − 1) ?ℎB?ℎA
2 (gℎBA − 1) (gℎBA ≠ 1) ,

gℎBA ?ℎB?ℎA (gℎBA = 1) ,
(5.5)

where 1ℎBA = [1 − (1 − gℎBA) (?ℎA + ?ℎB)]. Note that ?ℎBA is always bounded in [0, 1], so there
is only one feasible choice between the two solutions of the quadratic equation leading to (5.5)
(Mardia [1967]). Therefore, in the dependent binary treatment-generating process, first, we
generate the marginal propensity based on the individual covariates. Second, we generate the
odds ratio, which is typically based on a log-linear regression model (Lipsitz et al. [1991]), such
that ;>6gℎBA (o) = o>xℎBA , where xBA suppressing the ℎ are some pair-level covariates that may
influence the odds-ratio between �B and �A , and o represents the corresponding coefficients.
We can consider these pair-level covariates xBA to be functions of xB, xA . Third, based on the
marginal propensity and odds ratio, we generate the joint probability (joint propensity) of the
binary treatments configuration. Finally, we generate a treatment configuration for each household
according to its joint propensity.

After seeing the data-generating process for the correlated treatments, let us now review some
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notable methods for estimating joint propensity score. In the estimation process, the first step
is to identify marginal models for multivariate binary data; Liang and Zeger [1986] proposed a
first-order generalized estimating equation method to provide efficient estimates of regression
coefficients. Suppose that there are ℎ = 1, 2, .., � households and household ℎ contains a treatment
record of a pair Gℎ = (�Bℎ, �

A
ℎ
)>, and we are interested in inference about the parameters of

the marginal probabilities such that ?ℎC (") = P(�Cℎ = 1 | xℎC ,") in terms of covariates xℎ and
marginal parameter " for C = B, A. The optimal estimating equation for parameter " is

* (") =
�∑
ℎ=1

J>ℎ\
−1
ℎ {Gℎ − ?ℎ (")} = 0 (5.6)

where Jℎ = m?ℎ (")/m">, and \ℎ is the working covariance matrix of Gℎ. The working
covariance matrix \ℎ has the form as \ℎ = Λ

1/2
ℎ
2>AA (Gℎ)Λ1/2

ℎ
, where the diagonal matrix

Λℎ = 3806{?ℎC (1 − ?ℎC)}, and correlation matrix 2>AA (Gℎ).
Then the second step is to model the association between pairs of responses. Prentice [1988]

utilized second-order estimating equations, which also offered efficient estimates of association
parameters; however, as the cluster size grows, the computation cost becomes huge. Lipsitz
et al. [1991] considered the odds ratio to model the association between binary responses, and
then modified the estimating equations of Prentice to estimate the pairwise odds ratios. Define
gBA := P(�B=1,�A=1)P(�B=0,�A=0)

P(�B=1,�A=0)P(�B=0,�A=1) , as in Lipsitz et al.’s odds ratio model mentioned in the above
generating process, i.e., ;>6gBA (o) = o>xBA . The pairwise odds ratios are assumed to be non-
negative and are modeled through a generalized linear model with the log link and parameters
o.

Carey et al. [1993] proposed alternating logistic regressions (ALR), simultaneously regressing
the response on covariates and modeling the association among responses in terms of odds ratios.
Two logistic regressions are iterated: one to estimate regression coefficients using first-order
generalized estimating equations (5.6), the other to update the odds ratio parameters o using an
offset.

These estimation methods provide the estimators of both marginal probabilities (?ℎB ("̂) and
?ℎA ("̂)) and the odds ratios (ĝℎBA). Then the estimator of joint propensity c11(xℎB, xℎA) = ?ℎBA
can be built based on ?ℎB ("̂), ?ℎA ("̂), and ĝℎBA by equation (5.5). Further, we have other
estimators: ĉ10(xℎB, xℎA) = ?ℎB ("̂) − ĉ11(xℎB, xℎA), ĉ01(xℎB, xℎA) = ?ℎA ("̂) − ĉ11(xℎB, xℎA), and
ĉ00(xℎB, xℎA) = 1 − ?ℎB ("̂) − ?ℎA ("̂) + ĉ11(xℎB, xℎA). Therefore, building on equation 5.2 and
equation (5.3), we have IPW-type estimator of weights F̂(0B, 0A) = 1/ĉ0B0A∑

0B ,0A 1/ĉ0B0A , and overlap-type

estimator of weights F̂(0B, 0A) = ĉ00 ĉ10 ĉ01 ĉ11

ĉ0
B0A , for 0B = 0, 1; 0A = 0, 1.
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In this section, new balancing weights in the presence of interference were proposed. New
weights are constructed according to the joint propensity function. Thus, considering the possible
correlations between the treatments of individuals, we have reviewed a possible data-generation
process of the correlated treatments, and estimation methods for estimating joint propensity
function. In the next section, we will assess the balance of the proposed weights, and in particular
compare them with the weights that do not consider the correlations between individuals, that is,
weights that assume individuals independently receive the treatment.

5.3 Balance Assessment

In the previous section, new balancing weights that satisfy the interference weights criterion
(5.1) were proposed. In the presence of interference, the balancing weights are employed to
balance the covariates and treatment configurations. In the non-interference literature, numerous
recommendations have been made for balance assessment; however, very limited research has
been done to access balance in the presence of interference. In this section, considering household
interference, we will describe how to assess the performance of the balancing weights.

As mentioned at the beginning of the previous section, the balancing weights criterion
(5.1) ensures the balance such that (0B, 0A)F |= (xB, xA)F. Equivalently, conditional on the
balancing score, as a function of covariates, treatments are independent of those covariates, that is,
(0B, 0A) |= (xB, xA) | c0

B0A (Rosenbaum and Rubin [1983]). Specifically, as shown in Chapter 3 in
the proof of Theorem 3.2, the balancing weights criterion (5.1) is equivalent to

P[(�B, �A)F = (1, 1)F | (xB, xA)F]
P[(�B, �A)F = (1, 1)F] =

P[(�B, �A)F = (1, 0)F | (xB, xA)F]
P[(�B, �A)F = (1, 0)F]

=
P[(�B, �A)F = (0, 1)F | (xB, xA)F]

P[(�B, �A)F = (0, 1)F]

=
P[(�B, �A)F = (0, 0)F | (xB, xA)F]

P[(�B, �A)F = (0, 0)F] ,

and this implies (0B, 0A)F |= (xB, xA)F.
Motivated by the balancing check work in the settings of multiple treatments in Li [2019], and

the balance that is derived from the interference weights criterion (5.1), we propose two methods
to check for balance or overlap in assessing the performance of balancing weights. In particular,
we compare weights that are assumed to have been independently assigned to each individual with
the pairwise weights corresponding to correlation within the household. Denote the treatment
configuration of (0B

ℎ
, 0A

ℎ
) as /ℎ = Iℎ having four possible “treatment and interference” levels
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Iℎ = 1, 2, 3, 4. Consider the pair sharing the same household ID to have the same “treatment
and interference” levels. Note that the goals for reassigning the levels of both treatment and
interference are (1) to fit the balancing check analytical framework in Li [2019]; (2) to simplify
some notation, such that just one �−vector of /ℎ, for example, can represent an � × 2 matrix of
the treatment configurations (�B, �A)ℎ, for ℎ = 1, 2, ..., �. First, the interference weights criterion
(5.1) directly implies pairwise balance, that is, 5I (xB, xA)FI (xB, xA) = 5I′ (xB, xA)FI′ (xB, xA) for
different I and I′ in {1, 2, 3, 4}, where 5 (xB, xA), the joint density of the covariates, is assumed to
exist with respect to a base measure, and 5I (xB, xA) and 5I′ (xB, xA) are the group specific densities
multiplied by the pairwise treatment propensities. Thus, we can assess balance by checking the
pairwise absolute standardized differences (ASD), i.e., �(� (I, I′) = | | (x̄BI, x̄AI) − (x̄BI′, x̄AI′) | |2/Y

2
^ ,

where x̄BI =
∑#I
ℎ=1 xB,ℎFI/

∑#I
ℎ=1 FI denotes the weighted mean of the individual B’s covariate

xB from household ℎ that belongs to the Ith group, and Y2
^ =

∑4
I=1 Y

2
^,I/4 denotes the pooled

standard deviation with Y2
^,I = B3 (xBI)2 + B3 (xAI)2, with B3 (xBI), B3 (xAI) denoting the unweighted

standard deviation of covariates (xB, xA) from the Ith group. In addition, Euclidean distance
‖p −q‖2 =

√∑=
8=1

∑&

?=1
(
p8? − q8?

)2 for two points (p, q) in Euclidean =×&-space. Then, we can
specify <0GI≠I′ |�(� (I, I′) | as the balance metric for the whole set of covariates. Alternatively,
the interference weights criterion (5.1) also indicates the weighted covariate balance between each
group and the target population, 5I (xB, xA)FI (xB, xA) = 5I′ (xB, xA)FI′ (xB, xA) = 5 (xB, xA)T (x),
in the context of a tilting function T (x), which is a pre-specified function of covariates. For
example, T (x) = 1 corresponds to the inverse probability based balancing weights (5.2), and
T (x) = c00c10c01c11 corresponds to the overlap-type balancing weights (5.3). Thus, we define
the population standardized difference (PSD) for each covariate pair and each treatment interference
level (I) as %(� (I) = | | (x̄BI, x̄AI) − (x̄B, x̄A) | |2/Y2

^ , where x̄B =
∑�
ℎ=1 x

B
ℎ
T (xℎ)/

∑�
ℎ=1 T (xℎ) is

defined as the average value of covariate in the target population. Similarly, we consider the
balance metric <0GI |%(� (I) | for the overall covariate.

In summary, in this section, we provide some methods to assess the performance of the
proposed weights in terms of balance in covariates, in the presence of household interference. Two
different measures, �(� (I, I′) and %(� (I), are proposed to assess balance in the presence of
interference, and thus test the performance of the weights from the cases where we have assumed
both independence of treatment and the correlation between treatments in the same household.
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5.4 Proportional Odds Model for Household Ordinal Utilities

5.4.1 Single-stage Decisions with Household Ordinal Utilities

From another perspective, in the presence of interference, the proper outcomes should be related
to both individuals of a couple in the same household (Lewis et al. [2006]); thus, both covariates
and treatments of individuals in the same household need to be considered in a household outcome
model. First, let us examine the household utility function, which can be defined as a combination
of the individuals’ outcomes in the same household. For example, for a pair (B, A), we have
the utility that* (. B, . A) is equivalent to lB. B + lA. A , where the combination weights (lB and
lA) can be set based on the specific analytical goals. For instance, we might set lB = lA if
outcomes of both B and A are equally considered. Additionally, the ego and alter case, where
we aim to optimize the outcome of egos, is another example, which corresponds to ego and
alter having weights of 1 and 0, respectively. For the binary outcome pairs (. B, . A), where
(. B, . A) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, for simplicity and the goal of studying DTR with ordinal
outcomes, we will specify that all the combination weights are equal to one (lB = lA = 1), that is,
the utility is summation of outcomes from a pair (. B + . A). Adding 1 to each sum, there are three
possibilities 1, 2, or 3 of* (. B, . A) for a pair in the same household, and these can be considered
ordinal outcomes for the household. That is, in this setting of a household’s utility, the utilities of
households,* (. B, . A) = 1, 2, 3, can be interpreted in an ordered way: for a pair in a household,
(1) neither, (2) one, or (3) both of them incur a benefit such as smoking cessation, and the largest
value (i.e., 3) is preferred. Building on household utility, we consider that the utility model can be
captured in the form of a function of

5 (xV) + 3b (0B, xb) + 3k (0A , xk) + 38=C (0B0A , xq), (5.7)

where xV, often termed predictive variables, function to increase the precision of estimates, and
xb , xk , xq, the so-called prescriptive or tailoring variables, are used to adapt treatment decisions
to pairs in a household. That is, the model has a treatment-free function 5 (xV) and some decision
functions 3b (0B, xb), 3k (0A , xk), and 38=C (0B0A , xq). In practice, in the household-level model
(5.7), covariates xb and xk can be individual-level covariates from each individual in the same
household. These two covariates that contain individuals’ characteristics indicate the “personalized”
side of the model (5.7). Covariates xq can be household-level covariates, and thus they represent
households’ characteristics. xq are special tailoring variables for our household-interference
treatment decisions case. Given the above utility model, the goal is to identify an optimal household
treatment decision rule 3∗(xB, xA) : �B ×�A −→�

B ×�A that maximizes the utility* (. B, . A), for
binary outcomes . B and . A , where�B and�A denote the support of xB and xA , respectively. In our
household case, the treatment decision rule 3 (xB, xA) takes as input both individuals’ covariates
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and outputs a treatment configuration for a couple in the same household.

Let * be an ordinal outcome with � = 3 categories. Then P(* ≤ 2) is the cumulative
probability of* less than or equal to a specific category 2 = 1, ..., � − 1. The log-odds of being
less than or equal to a particular 2 category can be defined as

;>6
P(* ≤ 2)
P(* > 2) = ;>68C [P(* ≤ 2)], for 2 = 1, ..., � − 1,

where the logit link function is defined as ;>68C (?) = ?/(1 − ?). Note that the denominator
P(* > 2) of the above equation will be zero if 2 = �; thus, 2 = 1, ..., � − 1. The proportional
odds model (POM) that specifies the cumulative log-odds for a particular category assumes
that each explanatory variable exerts the same effect on each cumulative logit regardless of
the cutoff 2, and is proposed by McCullagh [1980] to be ;>68C [P(*ℎ ≤ 2 | xℎ)] = Z2 − )>xℎ,
where coefficients Z2 are category-specific intercepts and ) are coefficients of covariates xℎ. The
intercepts Z2 are the only part that varies across the equations, and the effects of covariates xℎ
are assumed to be constant for all 2, i.e., )2 = ). In the POM Z2 represents the cumulative
log-odds of the utility being in category 2 or lower for those in the reference exposure group,
whereas ) represents a cumulative log-odds ratio: the odds of “at least 2” under two different
conditions of xℎ. Because ) values are not dependent on the cutoff 2, the odds ratio is constant
across each split of outcome domain; hence ;>68C [P(*ℎ ≤ 2 | xℎ)] = Z2 − )>xℎ is named the
“proportional odds model”. The sign of ) in the model fit (i.e., in Z2 − )>xℎ, −) is used) provides a
certain relationship between covariates and outcome that, if ) > 0, an increase in xℎ is associated
with an increase in *ℎ. Based on the POM, we can calculate P(*ℎ = 2) for each 2. When
2 = 1, for instance, P(*ℎ = 1 | xℎ) = P(*ℎ ≤ 1) = expit(Z1 − )>xℎ), then, for 2 = 2, ..., � − 1,
P(*ℎ = 2 | xℎ) = P(*ℎ ≤ 2 | xℎ) − P(*ℎ ≤ 2 − 1 | xℎ). Building on the typical POM and our
treatment decision set-up, we propose a proportional odds model for household ordinal utilities as
follows, for 2 = 1, 2; ℎ = 1, 2, ...�,

;>68C [P(*ℎ ≤ 2 | 0Bℎ, 0
A
ℎ, xℎ)] = Z2 − #>xV

ℎ
− 0Bℎ/

>xb
ℎ
− 0Aℎ7

>xk
ℎ
− 0Bℎ0

A
ℎ5
>xq

ℎ
. (5.8)

According to the general utility model (5.7), the treatment-free functions are identified in the
above POM model as a linear form 5 (xV) = Z2 − #>xV, and the decision functions are specified as
3b (0B, xb) = −0B/>xb , 3k (0A , xk) = −0A7>xk and 38=C (0B0A , xq) = −0B0A5>xq, respectively.

Building on the household ordinal outcome (5.8), we define the household blip function as
W [(�B, �A), xℎ; /,7, 5] = �B/>xbℎ + �

A7>xk
ℎ
+ �B�A5>xq

ℎ
, which represents the effects of the

treatment configuration (�B, �A) for a household compared with the null treatment configuration
(0, 0). The goal is obviously to estimate blip parameters /, 7, 5; building on these blip-parameter
estimates and given the household tailoring variables, the optimal treatment decisions for a pair in
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�B
ℎ

�A
ℎ 1 0

1 />xb
ℎ
+ 7>xk

ℎ
+ 5>xq

ℎ
/>xb

ℎ

0 7>xk
ℎ

0

Table 5.2: Blip values for different treatment configurations (�B
ℎ
, �A

ℎ
)

the household can be made. Given the four choices of (�B, �A) = (1, 1), (1, 0), (0, 1) or (0, 0), as
Table 5.2 presents, the corresponding blip value W [(�B, �A), xℎ; /,7, 5] is />xbℎ + 7

>xk
ℎ
+ 5>xq

ℎ
,

/>xb
ℎ
, 7>xk

ℎ
, and 0, respectively. The goal is to maximize the outcome across a couple, which is

equivalent to maximising the blip function. Taking into account the blip values of all possible
treatment configurations, an optimal treatment rule must choose the configuration that corresponds
to the maximum blip value. Therefore, we have the following treatment decision rules for a
household:

Decision 1. The optimal household decision rules:

• Rule 1: 3∗(xb , xk , xq) = (1, 1), if />xb
ℎ
+ 7>xk

ℎ
+ 5>xq

ℎ
> 0 and 7>xk

ℎ
+ 5>xq

ℎ
> 0, and

/>xb
ℎ
+ 5>xq

ℎ
> 0.

• Rule 2: 3∗(xb , xk , xq) = (1, 0), if 7>xk
ℎ
+ 5>xq

ℎ
< 0 and />xb

ℎ
> 7>xk

ℎ
and />xb

ℎ
> 0.

• Rule 3: 3∗(xb , xk , xq) = (0, 1), if />xb
ℎ
+ 5>xq

ℎ
< 0 and 7>xk

ℎ
> />xb

ℎ
and 7>xk

ℎ
> 0.

• Rule 4: 3∗(xb , xk , xq) = (0, 0), if />xb
ℎ
+ 7>xk

ℎ
+ 5>xq

ℎ
< 0 and />xb

ℎ
< 0 and 7>xk

ℎ
< 0.

Further, if we know the blip parameters /,7, and 5, then we have W∗ [3∗(xb , xk , xq); /,7, 5] =
�B∗/>xb + �A∗7>xk + �B∗�A∗5>xq, where W∗ means the arguments (�B, �A) in the W function
follow the optimal household decision rules Decision 1, and 3∗(xb , xk , xq) and (�B∗, �A∗) are
the corresponding optimal treatments for the pair (8, A). Thus, we can define the regret function,
which is the expected loss or regret a medical practitioner experiences when forced to prescribe
treatments (�B, �A) instead of the optimal treatments (�B∗, �A∗), as `[3∗, (�B, �A); /,7, 5] =
W∗ [3∗(xb , xk , xq); /,7, 5] − W [(�B, �A), x; /,7, 5] = (�B∗ − �B)/>xb + (�A∗ − �A)7>xk +
(�B∗�A∗ − �B�A)5>xq. By using the regret function, the notations in the multistage treatment
decision will become simpler, and we will make use of the function to develop the DTR key
concepts in the household interference case.
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As a result, based on the proposed cumulative probability model (5.8), we can also calculate
each category’s utility probability:

P(*ℎ = 1 | 0Bℎ, 0
A
ℎ, xℎ) = expit[Z1 − #>xV

ℎ
− 0Bℎ/

>xb
ℎ
− 0Aℎ7

>xk
ℎ
− 0Bℎ0

A
ℎ5
>xq

ℎ
]

P(*ℎ = 2 | 0Bℎ, 0
A
ℎ, xℎ) = expit[Z2 − #>xV

ℎ
− 0Bℎ/

>xb
ℎ
− 0Aℎ7

>xk
ℎ
− 0Bℎ0

A
ℎ5
>xq

ℎ
]

− expit[Z1 − #>xV
ℎ
− 0Bℎ/

>xb
ℎ
− 0Aℎ7

>xk
ℎ
− 0Bℎ0

A
ℎ5
>xq

ℎ
]

P(*ℎ = 3 | 0Bℎ, 0
A
ℎ, xℎ) = 1 − expit[Z2 − #>xV

ℎ
− 0Bℎ/

>xb
ℎ
− 0Aℎ7

>xk
ℎ
− 0Bℎ0

A
ℎ5
>xq

ℎ
] .

(5.9)

5.4.2 Balancing Property

In the previous section, we investigated the POM for the household ordinal utilities and proposed
the corresponding decision rules. To achieve the robust blip parameter estimation on which the
decision rules depend, we need to develop the balancing weights. The motivation behind the
balancing weights or balancing properties comes from the estimation equation systems of the
POM. The key concept is the propensity score function, but in our household interference case,
it is the joint propensities function. Following and extending the balancing-weight derivation
process introduced in Chapter 4, we denote by FB3 a choice of “standard” interference-aware
balancing weights that satisfy the criterion, that is,

c00FB3 (0, 0, x) = c01FB3 (0, 1, x) = c10FB3 (1, 0, x) = c11FB3 (1, 1, x). (5.10)

One option of the “standard” interference-aware balancing weights is the overlap weights (5.3).
Then we have the balance property as follows:
Theorem 5.1. Balancing Property with Household Interference for Ordinal Outcomes

When the true ordinal-outcome model satisfies ;>68C [P(* ≤ 2 | 0B, 0A , x)] = Z2 − 5 (xV; #) −
0B/>xb − 0A7>xk − 0B0A5>xq, for 2 = 1, 2, a weighted proportional odds model based on the
corresponding linear model will yield approximately consistent estimators of /, 7 as well as 5 if at
least one of the treatment and treatment-free models is correctly specified, and the weights satisfy

c00F(0, 0, x)^(0, 0) = c01F(0, 1, x)^(0, 1) = c10F(1, 0, x)^(1, 0) = c11F(1, 1, x)^(1, 1),
(5.11)

where
^(0B, 0A) = expit ([2) [1 − expit ([1)] [1 − expit ([2) + expit ([1)] , (5.12)

with [1(0B, 0A , x) = Z∗1 + #
∗>xV + /∗>0Bxb +7∗>0Axk +5∗>0B0Axq, [2(0B, 0A , x) = Z∗2 + #

∗>xV +
/∗>0Bxb +7∗>0Axk +5∗>0B0Axq, and Z∗1 , Z

∗
2 , #

∗, /∗, 7∗ and 5∗ are the solutions of the estimation
functions of the POM (5.8) with standard interference-aware balancing weight satisfying (5.10).
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Proof: See Appendix H.2.

Similar to our balancing properties in dWOLS and dWGLM, the balancing properties of POM
rely on the propensity score; however, the inference of household interference depends on the
joint propensity functions, which have been discussed in Section 5.2, in terms of estimation and
construction of the balancing weights. The key factor of the balancing criterion (5.11) is the ^,
as presented in Chapter 4, called the “adjustment” factor. It adjusts for the nonlinearity of the
link function, and it is special for the POM. Based on (5.12), we can conclude that the adjustment
factor is the product of three terms: expit([2), 1 − expit([1), and 1 − expit([2) + expit([1),
where the first term expit([2) represents the estimated cumulative probabilities of categorical
utilities 1 and 2, the second 1 − expit([1) represents the estimated cumulative probabilities of
categorical utilities 2 and 3, and the third term 1 − expit([2) + expit([1) represents the estimated
cumulative probabilities of categorical utilities 1 and 3. Alternatively, these three terms of ^
(5.12) also can be expressed as expit([2) = 1 − P(* = 3), 1 − expit([1) = 1 − P(* = 1), and
1 − expit([2) + expit([1) = 1 − P(* = 2). Then the “adjustment” factor of (5.12) can be written
as ^(0B, 0A , x) = Π3

2=1 [1 − P(* = 2)]. Note that the “adjustment” factor of (5.12) is specific
to the POM with our � = 3 case, but for � > 3, the corresponding “adjustment” factor can be
derived as ^(0B, 0A , x) = Π�

2=1 [1− P(* = 2)]. Again, as stressed in Section 4.2.3 in the context of
dWGLM, the term “approximately consistent” refers to a case where the estimators are derived
from the estimating functions which are approximately unbiased with a small quantifiable bias.
This quantifiable bias will be small when a linear predictor tends to vary in an interval where 6−1

is approximately linear.

In this section, considering household interference, for a single-stage decision problem, we
have proposed a proportional odds model for household ordinal utilities, that is model (5.8).
Based on our model (5.8), we have also provided the treatment assignment mechanisms for the
household interference case, for the purpose of optimising the combined outcomes of a pair in the
same household. Further, based on the nonlinearity of the link function, we developed adjusted
balancing weights for the model (5.8), for which the parameters of interest will be consistently
estimated even if the treatment-free model is misspecified.

5.4.3 Multiple-stage Decisions with Household Ordinal Utilities

Having investigated the process for estimating the single-stage optimal treatment configurations
for household ordinal utilities, we now continue to the sequential treatment decision in the case of
optimal treatment regimes estimation with interference for household ordinal utilities.

For the multistage treatment decision setting, backward induction is utilized in most methods
for sequential decision problems. Therefore, the multistage treatment decision problems can be
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broken down into a group of single-stage decision problems. Then, for each stage, we employ
a weighted POM to consistently estimate the blip parameters, i.e., /, 7, and 5. Accordingly,
we name our novel approach for DTR estimation with ordinal outcomes the dynamic weighted
proportional odds model, namely dWPOM.

If we acquire parameter estimates #̂, 7̂, and 5̂, then we have estimated optimal treatment blip
Ŵ [3̂∗(xb , xk , xq); /̂, 7̂, 5̂] = �̂B∗/̂

>
xb + �̂A∗7̂>xk + �̂B∗ �̂A∗5̂>xq, where the estimated optimal

decisions 3̂∗(xb , xk , xq) = ( �̂B∗, �̂A∗) also depend on estimates #̂, 7̂, and 5̂, and can be calculated
by decision rules in Decision 1. Further, we can generate household level ordinal pseudo-utility
based on the ordinal pseudo-utility probability that:

P(Ũℎ = 1 | 3̂∗ℎ, xℎ) = expit
(
Ẑ1 − #̂

>
xV
ℎ
− Ŵℎ [3̂∗ℎ; /̂, 7̂, 5̂]

)
,

P(Ũℎ = 2 | 3̂∗ℎ, xℎ) = expit
(
Ẑ2 − #̂

>
xV
ℎ
− Ŵℎ [3̂∗ℎ; /̂, 7̂, 5̂]

)
− expit

(
Ẑ1 − #̂

>
xV
ℎ
− Ŵℎ [3̂∗ℎ; /̂, 7̂, 5̂]

)
,

P(Ũℎ = 3 | 3̂∗ℎ, xℎ) = 1 − expit
(
Ẑ2 − #̂

>
xV
ℎ
− Ŵℎ [3̂∗ℎ; /̂, 7̂, 5̂]

)
.

(5.13)

Therefore, building on equation (5.13) and the estimates, we can compute the ordinal pseudo-utility
probability, which is employed in the multiple-stage treatment decision settings. This ordinal
pseudo-utility probability represents the probability of the potential outcome that a household
with the given history would have if they go on to receive the optimal treatment configuration in
the current stage. Similar to our approach in Chapter 4, to increase the estimation efficiency, we
still generate the ordinal pseudo-utility probability R times, and conduct R times estimation for
the parameters of interest. Then, the final estimates of parameters are the averages of these R
estimates.

For the multistage decision analysis, the dWPOM procedure could be implemented by the
following steps at each stage of the analysis, starting from the last stage  and working backwards
towards the first stage (subscript 9 indicates the number of stages):

• Step 1: Construct the stage 9 ordinal pseudo-utility: set Ũ9 = D , where D is the
observed value of* , if 9 =  . Otherwise, use prior estimates #̂ , /̂ 9+1 = (/̂ 9+1, ..., /̂ ),
7̂
9+1
= (7̂ 9+1, ..., 7̂ ), and 5̂

9+1 = (5̂ 9+1, ..., 5̂ ) to randomly generate Ũ9 , which takes the

ordinal value 2 with the ordinal probability P(Ũ9 = 2), R times, to yield Ũ1
9
, Ũ2

9
, ..., ŨR

9
.

• Step 2: Estimate the stage 9 joint propensity model c0B0A (h 9 B, h 9A) (e.g., via alternating
logistic regression), then compute the corresponding the association-concerned interference
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balancing weights, such as

F(0B9 , 0A9 ) =
c00c10c01c11

c
0B
9
0A
9

for 0B9 = 0, 1; 0A9 = 0, 1.

• Step 3: Specify the stage 9 treatment-free and blip models, and perform a weighted
cumulative link mixed model of Ũr

9
on the terms in the treatment-free and blip models,

using weights from Step 2 to get estimates ˆZ∗1 9
r, ˆZ∗2 9

r, #̂∗r9 , /̂∗
r

9 , 7̂∗
r

9 , and 5̂∗
r

9 for r = 1, ...,R;
for example, for each r = 1, ...,R, use the POM, for 2 = 1, 2,

;>68C [P(Ũr
9
≤ 2 | 0B9 , 0A9 , h 9 ; / 9 ,7 9 , 5 9 )] = Z2 9 − #>9 h

V

9
− 0B9/>9 h

b

9
− 0A97>9 h

k

9
− 0B90A95>9 h

q

9
.

• Step 4: Use estimates from Step 3 (i.e., ˆZ∗1 9
r, ˆZ∗2 9

r, #̂∗r9 , /̂∗
r

9 , 7̂∗
r

9 , and 5̂∗
r

9 ) to compute

^r(0B9 , 0A9 , h 9 ) = expit ([̂2) [1 − expit ([̂1)] [1 − expit ([̂2) + expit ([̂1)] ,

where [̂2 = [̂2 (0B9 , 0A9 , h 9 ) = Ẑ2 − #̂
>
hV
9
− /̂
>
0B
9
hb
9
− 7̂

>
0A
9
hk
9
− 5̂

>
0B
9
0A
9
hq
9
, with values

( Ẑ2, #̂, /̂, 7̂, 5̂) = ( ˆZ∗
2 9

r
, #̂∗

r

9 , /̂
∗
r

9 , 7̂
∗
r

9 , 5̂
∗
r

9 ), for 2 = 1, 2. Then, for 0B
9
, 0A

9
= 0, 1, construct

the new weights

F=4F,r(0B9 , 0A9 ) =
c00c10c01c11

c
0B
9
0A
9

×
^r(0, 0, h 9 )^r(1, 0, h 9 )^r(0, 1, h 9 )^r(1, 1, h 9 )

^r(0B
9
, 0A

9
, h 9 )

. (5.14)

• Step 5: Perform a weighted POM with the new weights (i.e., F=4F,r(0B
9
, 0A

9
)) to get revised

estimates /̂
r

9 , 7̂
r

9 , and 5̂
r

9 for each r, and estimate / 9 , 7 9 , and 5 9 by /̂ 9 = R−1 ∑
A /̂

r

9 ,
7̂ 9 = R−1 ∑

A 7̂
r

9 , and 5̂ 9 = R−1 ∑
A 5̂

r

9 , respectively, then use parameter estimators /̂ 9 , 7̂ 9 ,
and 5̂ 9 to construct the 9 Cℎ stage optimal treatment rule, which is based on Decision 1.

• Step 6: Return to Step 1 and analyze stage 9 − 1 if there are more stages to analyze.

5.5 Simulation Studies

In this section, we provide two simulation studies (Study 1 and 2) to illustrate our proposed methods
for estimating optimal DTR with ordinal outcomes under household interference. Furthermore,
we also demonstrate and verify the double robustness of our method in both studies. In Study 1,
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we consider single-stage treatment decision problems, and in Study 2, we investigate a multi-stage
decision problem by means of a two-stage case.

To assess the performance of methods, we construct three measures: (1) mean optimal
treatment rate, (2) regret value, and (3) value functions for ordinal outcomes. First, based on the
data-generating parameters, we can calculate the authentic optimal treatments for each household.
Then, we can construct the recommended treatments from the estimated rules based on the
estimated decision parameters. The mean optimal treatment rate is then the percentage of the
estimated recommended treatments that are in accord with the authentic optimal treatments.
Second, the regret value measures the difference between the blip value under the true optimal
regime and under the estimated regime. Finally, we construct value functions for ordinal outcomes,
which mainly compare the estimated optimal treatments with the observed treatments. In the later
section, we will give the formal definition of the value functions for ordinal outcomes building on
the concept of the odds ratio. It is important to note that, because of the specific nature of ordinal
outcomes, for the single-stage settings in Study 1, we mainly focus on the consistent estimation.
Therefore, we consider both the mean optimal treatment rate and regret value in Study 1. For the
multi-stage settings in Study 2, we primarily concentrate on the long-term treatment effects of
DTR. Then, we examine value functions for ordinal outcomes to compare different methods.

5.5.1 Single-stage Treatment Decision for a Couples Case

In this single-stage decision setting (Study 1), to examine the double robustness of the proposed
method, we specifically examine four scenarios:

• Scenario 1: neither the treatment-free model nor the treatment model is correctly specified.

• Scenario 2: the treatment-free model is correctly specified but the treatment model is
misspecified.

• Scenario 3: the treatment model is correctly specified but the treatment-free model is
misspecified.

• Scenario 4: both treatment-free model and treatment model are correctly specified.

Scenario 1 fails to specify a correct model, so consistent estimation of the blip parameters
cannot be guaranteed. However, Scenarios 2, 3, and 4 correctly specify at least one of the
treatment-free and treatment models, so the estimator of blip parameters should be close to
consistent based on our theory. In addition, note that we have only linear terms in our POM, while
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the true models can contain non-linear terms. If the true models contain non-linear terms, then we
have misspecified the model. Moreover, in a real application, it is more challenging to correctly
specify the treatment-free model than the treatment model, so we particularly highlight the results
of Scenario 3.

In each scenario, five different methods are investigated. Method 0 (M0) employs the proposed
proportional odds model (5.8) without any balancing weights. Method 1 (M1) considers the
same POM and uses the interference balancing weights in Chapter 3, but assumes independence
between the treatments. That is, F = |�B − P(�B = 1 | xB) | ∗ |�A − P(�A = 1 | xA) |. However,
Methods 2 and 3 (M2 and M3) both consider the same POM, yet use the proposed interference
balancing weights, which allow dependence between the treatments within the same household. In
particular, M2 employs the inverse probability-based weights (5.2) and M3 uses the overlap-type
weights (5.3). Furthermore, to contrast the performance of the weights in M2 and M3 with the
weights that include the adjustment factor, i.e., (5.12), we also consider Method 4 (M4), that is,
using the same POM (5.8) with the adjusted overlap weights (5.14).

Note that, from the perspective of methodology, M0 is &-learning, and M1, M2, M3, and M4
belong to our proposed dWPOM yet with different balancing weights. M1 uses a no-treatment-
association dWPOM, but M2, M3, and M4 use treatment-association aware dWPOMs. Methods
M2 and M3 employ inverse probability type and overlap type weights, respectively. However, M4
utilizes adjusted overlap type weights. The adjusted weights (5.14) satisfy the weight criterion
in Theorem 5.1, so M4 is expected to provide close to consistent blip parameter estimators in
Scenarios 2, 3, and 4.

In the generation of ordinal outcomes for the households, based on the mixed cumulative
logit model (5.8), the ordinal outcome is a function of household treatment assignments and
covariates xV, xb , xk and xq. In this study, we take � = 3000 households with � = 500
Monte Carlo replicates. For each individual, covariates are generated as G1 ∼ * [0, 1] that
is uniformly distributed on [0, 1], G2 ∼ # (0, 1) that is normally distributed with mean 0 and
variance 1, and G3 ∼ �4A (0.5), G4 ∼ �4A (0.75) that are Bernoulli distributed with success
probability 0.5 and 0.75, respectively. Supposing each household contains two individuals denoted
as (B, A), we let xV and xq include both individuals’ covariates, but xb and xk each include
only the single individual’s covariates. For example, in this simulation, denoting xB and xA as
the covariates of (B, A), respectively, we let xV = (1, GB1, G

B
2, G

B
3, G

B
4, 1, G

A
1, G

A
2, G

A
3, G

A
4), x

b = (1, GB1),
xk = (1, GA1), and xq = (1, GB3 + G

A
3), where G

B + GA are the household-level data which is the
sum of two individuals’ information. In Study 1, the true treatment-free function is set as
5 (xV) = cos(GB1 + G

A
1) − (G

B
1 + G

A
1)

3 − log|1/GB1 | − 2 ∗ (GA1)
2 + (GB3 + G

A
3)

3. It is important to note
that this true treatment-free setting relies on various non-linear functions, including both even
and odd functions. It also consists of both household-level information, such as GB1 + G

A
1 and

GB3 + G
A
3, and individual-level information, including GB1 and G

A
1. In addition, the true blip function is
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W [(�B, �A), x; /,7, 5] = �B ∗ (−0.5 + GB1) + �
A ∗ (−0.5 + GA1) + �

B ∗ �A ∗ [−1 + 0.5 ∗ (GB3 + G
A
3)],

where the tailoring variables are set as xb = (1, GB1)
>, xk = (1, GA1)

>, and xq = (1, GB3 + G
A
3)
>. The

corresponding parameters of interest, that is, the true tailoring parameters, are set as follows:
/ = (−0.5, 1)>, 7 = (−0.5, 1)>, and 5 = (−1, 0.5)>. Therefore, the true mean of the latent
household outcome is ` = 5 (xV)+�B ∗ (−0.5+GB1)+�

A ∗ (−0.5+GA1)+�
B ∗�A ∗ [−1+0.5∗ (GB3+G

A
3)].

Further, as introduced in the method section 5.4.1, Z2 represents the cumulative log odds
of being in category 2 or lower and corresponds to the threshold of the latent continuous data
generating process. Our three categorical outcomes case is similar to the case that generates binary
outcomes in a latent continuous process, where the observed binary outcome simply indicates
whether or not the unseen continuous outcome has exceeded a specified threshold. Our present case
needs two thresholds (Z1 and Z2) to classify the latent continuous outcomes into three categories.
The following is the process to generate the three categorical outcomes in our study. In Step 1, we
set reference probabilities for the three-category outcome p = (?1, ?2, ?3) = (0.65, 0.25, 0.1), and
compute the cumulative reference probabilities. In Step 2, with the logistic distribution, we map
cumulative reference probabilities to thresholds, which are Z1 = 0.619, Z2 = 2.197. In Step 3, based
on individual and household covariates and treatments, we calculate household-level thresholds
such that (Z1 − `, Z2 − `). In Step 4, for each household, based on household-level thresholds, we
can compute cumulative probabilities and thus acquire the category probabilities. Finally, in Step
5, we generate household-level category outcomes based on the category probabilities in Step 4.

The treatments generation process follows the methods that are introduced in Section 5.2.
The marginal propensity model for each individual is set as P(� = 1 | x) = expit(−1.15 +
0.5 ∗ exp(G1) − 0.25 ∗ G2

2 + 0.25 ∗ G3 + 0.6 ∗ G4), and the odds ratio model is set as g =

exp[−0.25 + 0.25 ∗ (GB1 + G
A
1) + 0.5 ∗ (GB3 + G

A
3)]. Based on the marginal propensity and odds ratio

models, the joint probabilities can be generated. Therefore, the treatment configuration (�B, �A)
can be generated by the corresponding joint propensities.

The treatment decision rules in Decision 1 rely on the estimates of blip parameters, that is,
/̂, 7̂, and 5̂. Figure 5.2 presents the distribution of blip parameter estimates from Methods 0, 1, 2,
3, and 4 in Scenario 3, where the treatment model is correctly specified but the treatment-free
model is misspecified. Moreover, the distributions of the blip parameter estimates in Scenarios 1,
2 and 4 are presented in Appendix H.3. From these result figures, in particular Figure 5.2, the
approximate consistent estimation of blip parameters (/,7, and 5) from M4 is as expected. That
is, the estimates of Method 4 from Scenarios 2, 3 and 4 appear consistent, and this verifies the
double robustness of our proposed adjusted weights (5.14) in the simulation setting. However,
in Scenario 3, M0, M1, M2, and M3 offer biased blip parameter estimators. Even though M1,
M2, and M3 estimators are biased, the bias is relatively smaller than for the M0 estimator which
does not employ any balancing weights. Moreover, in this Scenario 3, compared with M1, where
independence of the treatments is assumed, M2 and M3, which address the association between
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treatments, provide less biased estimators. This result confirms that if a correlation exists between
treatments in the same household in truth, failing to take that into account will lead to biased
estimation. Furthermore, as Figures H.3 and H.4 in Appendix H.3 indicate, in both Scenarios 2
and 4, where treatment-free models are correctly specified, all the methods, even for M1, provide
unbiased estimators of blip parameters. Thus, we find that all the methods in the case where the
treatment-free model is correctly specified do not have much distinction.

Furthermore, as mentioned at the beginning of this section, we construct two main measures,
the mean optimal treatment rate (MOTR) and value functions for ordinal outcomes, to evaluate the
performance of each method that corresponds to different balancing weights. MOTR measures the
rate at which the recommended treatment configurations align with those that are truly optimal.
The agreement between the estimated optimal treatment regimes and the actual optimal treatment
regimes is measured with this metric. In practice, however, despite not knowing the true optimal
treatment regimes, value functions aim to compare the difference between the estimated optimal
treatment regimes and the observed treatment regimens.

First, we consider the mean optimal treatment rate. The estimated recommended treatment
configuration for a pair could be that both, one or neither of the treatments are the same as the true
optimal treatments; therefore, there are two different quantities: one is the mean optimal treatment
rate for the household, and the other is the mean optimal treatment rate for the individual. The
household MOTR represents the average decision accuracy for the pair in the same household.
Formally, if the true treatment decision for ℎCℎ household is (0B∗

ℎ
, 0A∗

ℎ
), the optimal treatment

rate for the household can be expressed as �−1 ∑�
ℎ=1 I

(
0B∗
ℎ
= 0̂B

ℎ
, 0A∗

ℎ
= 0̂A

ℎ

)
. In this case, decision

accuracy requires estimated pairs’ treatment configurations to be consistent with the true optimal
treatment configuration, i.e., both individuals’ treatments are in accordance with the true treatments.
Alternatively, the individual MOTR describes the average decision accuracy for individuals, and
can be denoted as (2�)−1 ∑�

ℎ=1

[
I
(
0B∗
ℎ
= 0̂B

ℎ

)
+ I

(
0A∗
ℎ
= 0̂A

ℎ

) ]
. In both cases, the higher MOTR

value indicates greater decision accuracy and thus the superiority of the corresponding method.

Second, in a single-stage setting, to compare the effects of the optimal treatment configuration
with those of the estimated one, we consider the value of the regret function when the estimated
treatment configuration is implemented. According to the definition of the regret function which
is defined in Section 5.4.1, with the estimated treatment configuration input, the regret value is as
follows:

`[3∗, 3̂∗; /,7, 5] = W∗ [3∗(xb , xk , xq); /,7, 5] − W∗ [3̂∗(xb , xk , xq); /,7, 5]
= (�B∗ − �̂B∗)/>xb + (�A∗ − �̂A∗)7>xk + (�B∗�A∗ − �̂B∗ �̂A∗)5>xq.

The regret value measures the difference between the value under the optimal regime (i.e.,
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Figure 5.2: Blip function parameter estimates, /̂ (top row), 7̂ (middle row), and 5̂ (bottom row)
via Method 0 (M0, &-learning), Method 1 (M1, no treatment-association dWPOM), Method 2
(M2, treatment-association aware dWPOM with IPW-type weights), Method 3 (M3, treatment-
association aware dWPOM with overlap-type weights) and Method 4 (M4, treatment-association
aware dWPOM with adjusted overlap-type weights), when the treatment model is correctly
specified but the treatment-free model is misspecified (Scenario 3).
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Table 5.3: Methods’ performance measure estimates and their standard errors (in parenthesis) from
Methods 0, 1, 2, 3, and 4, when the treatment model is correctly specified but the treatment-free
model is misspecified (Scenario 3) in Study 1. � denotes the number of households.

� Performance Method
M0 M1 M2 M3 M4

500
Household MOTR0.383 (0.18) 0.438 (0.18) 0.446 (0.18) 0.445 (0.18) 0.421 (0.17)
Individual MOTR 0.584 (0.12) 0.628 (0.11) 0.635 (0.11) 0.634 (0.11) 0.617 (0.10)
Regret values 0.188 (0.09) 0.164 (0.09) 0.165 (0.10) 0.165 (0.10) 0.174 (0.14)

1000
Household MOTR0.432 (0.17) 0.517 (0.17) 0.520 (0.17) 0.520 (0.17) 0.508 (0.18)
Individual MOTR 0.620 (0.11) 0.683 (0.10) 0.688 (0.10) 0.688 (0.10) 0.679 (0.10)
Regret values 0.162 (0.10) 0.126 (0.10) 0.127 (0.10) 0.126 (0.10) 0.138 (0.12)

3000
Household MOTR0.475 (0.14) 0.591 (0.13) 0.608 (0.14) 0.609 (0.14) 0.610 (0.16)
Individual MOTR 0.654 (0.08) 0.738 (0.07) 0.747 (0.07) 0.747 (0.07) 0.753 (0.07)
Regret values 0.142 (0.06) 0.094 (0.05) 0.086 (0.05) 0.087 (0.05) 0.095 (0.07)

5000
Household MOTR0.517 (0.13) 0.634 (0.11) 0.654 (0.11) 0.652 (0.10) 0.684 (0.12)
Individual MOTR 0.680(0.07) 0.759 (0.06) 0.774 (0.06) 0.772 (0.05) 0.802 (0.06)
Regret values 0.126 (0.05) 0.081 (0.03) 0.073 (0.03) 0.072 (0.03) 0.062 (0.04)

10000
Household MOTR0.555 (0.13) 0.667 (0.09) 0.691 (0.09) 0.689 (0.09) 0.746 (0.11)
Individual MOTR 0.708 (0.07) 0.780 (0.05) 0.799 (0.05) 0.797 (0.05) 0.837 (0.06)
Regret values 0.111 (0.04) 0.072 (0.03) 0.062 (0.03) 0.064 (0.03) 0.038 (0.03)

3∗(xb , xk , xq) = (�B∗, �A∗)) and that under the estimated regime (i.e., 3̂∗(xb , xk , xq) =
( �̂B∗, �̂A∗)). A smaller regret value indicates that the estimated regime is closer to the opti-
mal regime; therefore, the smaller the regret value corresponds to the better method.

Setting different numbers of household � as 500, 1000, 3000, 5000, and 10000 in Scenario 3,
Table 5.3 presents above mentioned three performance measures for all methods: (1) household
MOTR, (2) individual MOTR, and (3) the regret value. As expected, in all the cases, compared
with the &-learning (M0), dWPOM (M1 — M4) methods provide higher both household and
individual MOTR, and less regret value. From Table 5.3, in the larger household sample cases,
that is, � ≥ 3000, compared with either M0 (&-learning) or M1, M2, and M3 (dWPOM with
different types of weights), M4 which is dWPOM with adjusted weights provides the highest in
both household and individual MOTRs, and the lowest regret values. As well, M0 which does not
use any balancing weights outputs the lowest MOTRs and the highest regret values. These results
verify that the estimated treatment configuration from M4 is the closest to the optimal treatment
configuration. Thus, in these large household sample cases, M4 outperforms among all these
methods, and M0 performs the worst. In the smaller household sample cases, � < 3000, M0 still
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provides the worst MOTRs and regret values. M4 does not always provide the highest MOTRs and
the lowest regret values; however, in these cases, either M2 or M3, which are treatment-association
aware dWPOM, offer the best MOTR or regret values, compared with M1 which assumes
independent treatment. Note that M2, M3, and M4 all belong to treatment-association aware
dWPOM; therefore, these results indicate that treatment-association aware dWPOM performs
better than no treatment-association dWPOM if an association exists between treatments.

To conclude, in Study 1, we investigated a single-stage DTR estimation problem by simulations.
The double robust property of the adjusted weights proposed in Theorem 5.1 was verified in the
case of the simulation settings. In addition, we also demonstrated that the estimation will be
biased if there is a treatment association that is not taken into account.

5.5.2 Multiple-stage Treatment Decision for a Couples Case

For multi-stage settings with ordinal outcomes, the technique of dWPOM is explained in Section
5.4. We now conduct a simulation study (Study 2) to illustrate our estimation of a two-stage
treatment decision problem with ordinal outcomes under household interference. The causal
diagram for two-stage treatment decisions with household ordinal outcomes in the presence of
interference is presented in Figure 5.3, and the simulation’s data-generating process is according
to this causal diagram. Again, the red path between �B and �A in DAG 5.3 indicates that the
individuals who are interfering with each other in the same household receive the correlated
treatments.

To generate data, we denote covariates as G 9 ?C , where 9 = 1, 2 indicates the 9 Cℎ stage, ? = 1, 2
represents the dimension of covariates, and C = B, A corresponds to individual B or A in the
same household. In Stage 1, the covariates of B and A are G11B ∼ # (0, 1), G11A ∼ # (0, 1),
G12B ∼ �4A (0.5), G12A ∼ �4A (0.5), that is, G11 of B and A are normally distributed with mean 0 and
variance 1, and G12 of B and A are Bernoulli distributed with success probability 0.5 in Stage 1.
Similarly, in Stage 2, the covariates of B and A are G21B ∼ 0.5 ∗ # (G11B, 1), G21A ∼ 0.5 ∗ # (G11A , 1),
G22B ∼ �4A (0.1 + 0.5 ∗ G12B), G22A ∼ �4A (0.1 + 0.5 ∗ G12A). To generate correlated treatments
of a pair, for the stage 9 = 1, 2, the marginal propensity model for each individual is set as
P(� 9 = 1 | x 9 ) = expit(−1 + 1.15 ∗ exp(G 91) − 0.5 ∗ G 92), and the odds ratio model is set
as g = exp[−0.15 + 0.25 ∗ (G 92B + G 92A)]. The true treatment-free function is set as 5 (xV) =∑2
9=1 5 9 (x

V

9
) = cos[c ∗ (G11B + G11A)] + 0.5 ∗ exp(G21B + G21A) + 0.2 ∗ (G12B + G12A)3, and for 9 = 1, 2,

the true blip functions (W 9 [(�B9 , �A9 ), x 9 ; /,7, 5]) are set as:

�B9 ∗ (−0.25 + 0.5 ∗ G 91B) + �A9 ∗ (−0.25 + 0.5 ∗ G 91A) + �B9 ∗ �A9 ∗ [−0.5 + 0.25 ∗ (G 92B + G 92A)],

where true blip parameters are / = (−0.25, 0.5)>, 7 = (−0.25, 0.5)>, and 5 = (−0.5, 0.25)>.

113



�B1 - B2 �B2- B1

-A1 �A1 -A2 �A2

. B

. A

Figure 5.3: The DAG of interference analysis: dWPOM for household ordinal outcomes two-stage
decision problems.

To generate household-level ordinal outcomes, following same outcome-generating procedure
in Study 1, we set Z1 = 0.405, Z2 = 1.735. Building on individual and household covariates
and treatments, we calculate household-level thresholds such that (Z1 − `, Z2 − `), where
` = 5 (xV) +∑2

9=1 W 9 [(�B9 , �A9 ), x 9 ; /,7, 5]. Then, we can compute cumulative probabilities and
thus acquire the category probabilities.

In this simulation study, examining two-person household interference, we focus only on
interference-aware &-learning and our proposed dWPOM with adjusted weights. As previously
stated, our value functions for ordinal outcomes are evaluated by computing the odds ratio. We
now define value functions for ordinal outcomes by first introducing the odds of a particular
outcome. From the proposed POM, we can predict ordinal outcomes when the estimated optimal
treatments have been implemented. Building on these predicted ordinal outcomes, we can compute
the odds: the probability that the preferred outcome will occur is divided by the probability that
the preferred outcome will not occur. That is, we calculate the ratio of the number of the preferred
outcome to the number of the outcome that is not preferred. For instance, in our three ordinal
outcome case (* = 1, 2, 3), the preferred outcome is 3, and the odds of * = 3 being among the
predicted ordinal outcomes is the ratio of the number of* = 3 to the number of* = 1 and* = 2.
Now, we have odds of* = 3 among the predicted ordinal outcomes, estimated by implementing
the estimated DTRs. Then, from among the observed ordinal outcomes, we can compute the other
odds of* = 3, which correspond to implementing the observed DTRs. Finally, we can define the
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value functions for ordinal outcomes: the ratio of the odds of* = 3 among the predicted ordinal
outcomes to the odds of* = 3 among the observed ordinal outcomes. Similarly, if our preferred
outcome is “* = 2 or * = 3”, meaning that at least one individual quits smoking, we can also
compute the corresponding value functions.

In addition, we highlight the approximate consistent estimation of the proposed dWPOM
method if at least either the treatment-free or treatment model is correct, by considering various
types of model misspecification at the two stages. As stated previously, the treatment-free model
is harder to correctly specify; thus, in this study, we specifically consider two cases: (1) in both
Stages 2 and 1, the treatment-free models are misspecified, but the treatment models are correctly
specified; (2) in Stage 2, the treatment-free model is misspecified, but the treatment model is
correctly specified, while in Stage 1, alternatively the treatment model is misspecified, but the
treatment-free model is correctly specified. Note that the true treatment-free models and treatment
models contain non-linear covariate terms, and if we consider only the linear covariate terms in a
model, we will mis-specify that model.

For Case (1), the distributions of the blip estimates (i.e., /̂, 7̂, 5̂) are presented in Figures 5.4
and 5.5, which correspond to Stage 1 and Stage 2, respectively. The distributions of the blip
estimates from Case (2) are presented in Appendix H.4 Figures H.5 and H.6. In Figure 5.5, which
depicts blip estimates from Case (1) in Stage 2, all the blip estimates from our dWPOM appear
to be symmetrically distributed and centred at the true blip parameter values, but &-learning
provides biased estimators. From Figure 5.4, which corresponds to Case (1) in Stage 1, for our
dWPOM, blip estimates /̂, 5̂ are also symmetrically distributed and centred at the true parameters’
values, but the blip estimates q̂0, q̂1 appear to be slightly off the true values. We suspect that this
misalignment results from the fact that the estimation is only approximately consistent, because of
the omission of remainder terms in the Taylor expansion (see proof of Theorem 5.1 in Appendix
H.2).

Moreover, the value function for ordinal outcomes, which is the odds ratio of outcome
* = 3 from interference-aware &-learning in Case (1), is 1.25, but that from interference-aware
dWPOM is 1.36, which is greater than &-learning’s. This result indicates that the proposed
interference-aware dWPOM performs better than interference-aware &-learning.

5.6 Real Data Analysis from Population Assessment of To-
bacco and Health Study

In accordance with real-world data discussed in previous chapters, investigating household ordinal
outcomes we now apply our approach, dWPOM, to the data in the Population Assessment of
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Figure 5.4: Blip function parameter estimates in Stage 1 of Study 2, /̂ (top row), 7̂ (middle
row), and 5̂ (bottom row) via &-learning and treatment-association aware dWPOM with adjusted
overlap-type weights in Case (1), where the treatment-free models are misspecified, but the
treatment models are correctly specified in both Stages 2 and 1.
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Figure 5.5: Blip function parameter estimates in Stage 2 of Study 2, /̂ (top row), 7̂ (middle
row), and 5̂ (bottom row) via &-learning and treatment-association aware dWPOM with adjusted
overlap-type weights in Case (1), where the treatment-free models are misspecified, but the
treatment models are correctly specified in both Stages 2 and 1.
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Tobacco and Health study. As in both Chapters 3 and 4, in this chapter, it is our aim to estimate
the optimal DTR for a pair in the same household, based on a sequence of rules of e-cigarette use
or non-use, for achieving the smoking cessation of the pair in the household. We maintain the
basic setup introduced in Chapter 3 and consider the subset of participants who smoke in Wave
1. Similarly, our analysis makes use of the first four waves of data with a three-stage decision
problem, defining the 9 Cℎ stage, for 9 = 1, 2, 3, as the time from Wave 9 to but not including Wave
9 + 1.

In this analysis, again, the treatment variable is the use of e-cigarettes by cigarette smokers.
Because the participants were followed for approximately one year, we define e-cigarette use
reported at the wave of the measured outcome as indicative of the pre-wave treatment. Consistent
with the e-cigarette usage variable in PATH analysis of Chapters 3 and 4, the e-cigarette usage
variable is determined by the question “now use e-cigarettes (a) Every day (b) Some days (c) Not
at all.” Answers of either “Every day” or “Some days” imply � = 1, and answers of “Not at all”
indicate � = 0.

Based on our analysis purpose, the binary outcome variable is an indicator for whether
participants have given up smoking (traditional cigarettes) or have tried to quit smoking or
using tobacco product(s). The binary outcome variable of each participant is decided by two
questionnaire questions in the study: one is based on the question “Do you now smoke cigarettes
(a) Every day (b) Some days (c) Not at all ?”, and the other is “In the past 12 months have you
tried to quit smoking or using tobacco product(s)? (1) Yes (2) No ”. For the former question,
if participants respond (c), then their first preliminary binary outcome is coded as .1 = 1; if
they respond (a) or (b), then their first preliminary binary outcome is coded as .1 = 0. For the
latter question, if participants respond (1), then their second preliminary binary outcome is coded
as .2 = 1; if they respond (2), then their first preliminary binary outcome is coded as .2 = 0.
Participants’ final binary outcome is coded as . = 1 as long as either their first outcome is 1,
i.e., .1 = 1, or their second outcome is 1, i.e., .2 = 1. Accordingly, the household utility is the
sum of the final binary outcomes of a pair in the same household; then adding 1 to the sum, the
corresponding household ordinal outcome, which could be either 1, 2, or 3, can be constructed.

As for the household covariates choice in our POM, similarly to previous PATH analyses
(e.g., Section 3.5), for the 9 Cℎ stage, we first select the individual-level Wave 9 variables: age
(“less than 35” or “35+”), education, non-Hispanic, race and “plan to quit”. Then, building on
these individual-level covariates, we can construct household or joint covariates for our household
POM. For instance, the individual-level age variable is an indicator of “less than 35”; for the
household-level age variable, we thus have three possibilities for a pair in the same household:
both, one of them, or neither of them is less than 35. Therefore, we thus construct the single
age variable with three categories for the household model. Similarly, with three possible
values for each variable, we construct the non-Hispanic, race, and “plan to quit” variables at the
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household level. In addition, the individual-level education covariates are set as variables with
three categories : 1 = “less than high school”, 2 = “between high school and bachelor degrees”,
then 3 = “bachelor or advanced degree”. Building on individual-level education covariates, we
can construct household-level education covariates as three category variables, that is, both, one
of them, or neither of them hold a bachelor’s or advanced degree.

Again, because the questionnaire will no longer ask the question regarding “plan to quit” to
participants who have already quit smoking, we assign the value of that question to 1, that is,
they have a plan to quit smoking, for those participants. In addition, the participants who have
quit smoking also will not be asked the quit attempt question in the following wave. Thus, the
second binary outcome .2 that is mentioned above is also affected. To address this problem, we
assume that those who have quit smoking in the previous wave made a quit attempt between
these two waves, but we called them “quit maintenance”, rather than calling them “quit attempt”.
For example, someone who has quit still uses e-cigarettes to maintain smoking quitting. By
assuming this, on one hand, we follow the same rules as the “plan to quit” question. On the other
hand, we construct a “novel” second binary outcome .2 that encompasses the outcomes for the
two participant situations: participants made a quit attempt if they need to quit, and they have
maintained the quit if they need to maintain quitting.

Therefore, for the household covariates, we have denoted, age, education, non-Hispanic, race,
and “plan to quit”, as the covariates xV

9
= (G 91, G 92, G3, G4, G 95)> in the Stage 9 treatment-free

model, respectively. We note that, compared with the previous chapters’ PATH analysis, we omit
the sex variable in the household covariates, because it has not been very significant when we
focus on the household-level model. Individuals B and A are respectively the first and second
listed members of the household pair in the data set. In addition, building on previous work of
studying moderators in the relationships of prior wave predictors of quitting smoking, we select
at each stage the variables age and “plan to quit” as tailoring variables, that is, xb

9
= (1, GB

91)
>,

xk
9
= (1, GA

91)
>, and xq

9
= (1, GB

95 + G
A
95)
>. Therefore, in estimation, the blip model is set up as

W [(0B
9+1, 0

A
9+1), x 9 ; / 9 ,7 9 , 5 9 ] = 0B9+1/

>
9 x

b

9
+ 0A

9+17
>
9 x

k

9
+ 0B

9+10
A
9+15

>
9 x

q

9
, and the treatment-free

model as 5 (xV
9
; # 9 ) = #>9 x

V

9
. Accordingly, solving the sequential decision problem by backward

induction, for the Stage 9 = 3, 2, 1 and 2 = 1, 2, we have the POM

;>68C [P(ŨA
9
≤ 2 | 0B9 , 0A9 , x 9 ; / 9 ,7 9 , 5 9 )] = Z2 9 − #>9 x

V

9
− 0B9/>9 x

b

9
− 0A97>9 x

k

9
− 0B90A95>9 x

q

9
.

(5.15)

To construct the balancing weights for the proposed POM, as introduced in Section 5.2, we
primarily estimate the marginal propensity scores, the pairwise odds ratios (gBA), and the joint
propensity scores (c11(xB, xA) = P(�B = 1, �A = 1 | xB, xA)). We first choose covariates at the
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individual level for the marginal treatment propensity models, based on the previous PATH studies
of Benmarhnia et al. [2018] and Jiang et al. [2022b], as xU

9
= (G 91, G 92, G3, G4, G5 9 , G6)>, namely,

age, education, non-Hispanic, race, “plan to quit”, and sex. Then, we employ logistic regression
to acquire marginal treatment propensity scores. The pairwise odds ratios are modeled through a
generalized linear model with the log link and covariates xBA = [1, (GB95 + G

A
95)]
>, which represents

the number of individuals in the same household who have a plan to quit. That is, with parameter
o, ;>6gBA (o) = o>xBA .

Following the methods that were introduced in Section 5.2, we can further estimate the joint
propensity score, and the corresponding weights. In particular, we compare four different weights,
which are (I) no balancing weights, (II) no-association overlap weights, where the joint propensity
functions are equal to the product of marginal propensities, (III) association-aware overlap weights
(5.3), and (IV) adjusted association-aware overlap weights (5.14). These four different weights
correspond to M0, M1, M3, and M4 in simulation Study 1, respectively, and we omit M2, which
is dWPOM with inverse probability type weights and similar to M3. In this PATH analysis, we
call them Methods I (&-learning), II, III, and IV. It is important to note that Method IV employs
the adjusted balancing weights, and is our desired treatment-association aware dWPOM.

Building on weighted population-level estimating equations, our adjusted association-aware
overlap weights (Method IV), in theory, guarantee the consistent estimators of the blip parameters.
Consistent with the previous PATH analysis, in this PATH households analysis, we also utilise
the sampling design weights in each stage. Because the sampling design weights of households
are not available, and our purposes are illustrative, we have used the average of the two weights
of the individuals in the same household as the household weights. The rationale behind this is
that the individual level weights are modifications of the household level weights obtained by
multiplying by a within-household raising factor (often equal to 1) followed by adjustment for
response propensity and calibration to population benchmarks; if (say) individual B is male and
individual A is female, their adjustment factors will be similar.

Table 5.4 summarizes the blip estimates and their bootstrap standard errors (in parenthesis)
fromMethods I, II, III, and IV in this PATH analysis. It is important to note that, for both members
of a couple to either quit or attempt to quit smoking, the optimal DTRs for the household are
functions of blip parameter estimates and the couple’s tailoring variables, that is, the decision
rules in Decision 1. Method IV, which employs the adjusted balancing weights, is expected to
provide consistent estimation of these blip parameters. Thus, we particularly focus on the results
from Method IV, while accounting for those from other methods.

Because the household case with four treatment configurations is more complicated than in the
previous individual-level analysis, based on Rule 1, we give several examples of how the results
may be interpreted. For Method IV, in Stage 3 (Wave 3 ∼ 4), for example, the blip estimate is
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Table 5.4: Blip estimates and their bootstrap standard errors (in parenthesis) from the analysis of
PATH data. Optimal DTRs are functions of blip parameter estimates based on decision rules in
Decision 1. Est. stands for the blip parameters’ estimates.

Wave Est. Methods
I (&-learning) II III IV

1 ∼ 2

b̂0 -0.100 (0.037) -0.124 (0.044) 0.218 (0.072) 0.107 (0.047)
b̂1 0.180 (0.043) 0.130 (0.055) -0.188 (0.052) -0.150 (0.068)
k̂0 -0.167 (0.040) -0.321 (0.049) -0.140 (0.047) -0.070 (0.050)
k̂1 0.251 (0.044) 0.257 (0.058) 0.017 (0.052) -0.273 (0.059)
q̂0 0.102 (0.079) 0.376 (0.078) 0.009 (0.081) -0.001 (0.099)
q̂1 0.001 (0.047) 0.106 (0.048) 0.087 (0.050) 0.045 (0.058)

2 ∼ 3

b̂0 0.341 (0.036) 0.116 (0.046) 0.081 (0.045) -0.031 (0.045)
b̂1 -0.276 (0.043) 0.188 (0.062) -0.044 (0.056) 0.200 (0.058)
k̂0 -0.078 (0.037) 0.052 (0.052) 0.205 (0.048) 0.004 (0.048)
k̂1 0.068 (0.045) 0.101 (0.067) 0.054 (0.058) 0.064 (0.062)
q̂0 0.377 (0.097) 0.663 (0.110) 0.360 (0.108) 0.358 (0.126)
q̂1 -0.317 (0.060) -0.568 (0.065) -0.414 (0.067) -0.507 (0.076)

3 ∼ 4

b̂0 0.966 (0.040) 1.067 (0.041) 1.233 (0.040) 0.785 (0.047)
b̂1 -0.419 (0.055) -0.268 (0.055) -0.391 (0.054) 0.304 (0.060)
k̂0 0.808 (0.038) 1.527 (0.047) 1.217 (0.043) 0.690 (0.044)
k̂1 0.448 (0.044) -0.507 (0.054) 0.138 (0.049) 0.987 (0.052)
q̂0 -1.612 (0.137) -0.150 (0.150) -1.479 (0.147) -1.151 (0.228)
q̂1 0.331 (0.069) 0.085 (0.076) 0.004 (0.076) -0.091 (0.115)
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�B (0.785+ 0.304 ∗ 064B) + �A (0.690+ 0.987 ∗ 064A) + �B ∗ �A (−1.151− 0.091 ∗ %&), where %&
represents the plans of quitting for a couple in the same household, and 064B and 064A are ages
of B and A. When we plug in four possibilities of (�B, �A) = (1, 1), (1, 0), (0, 1), (0, 0), the blip
estimates are 0.785+0.304∗064B+0.690+0.987∗064A −1.151−0.091∗%&, 0.785+0.304∗064B,
0.690 + 0.987 ∗ 064A , and 0, respectively.

Example 1: If we have household tailoring variables such that 064B = 1 064A = 0, and
%& = 0, the blip estimates are 0.785 + 0.304 + 0.690 − 1.151 = 0.628, 0.785 + 0.304 = 1.089,
0.690, and 0, respectively. The largest blip estimate is 1.089, and corresponds to the treatment
configuration (�B = 1, �A = 0). Therefore, in Stage 3 (Wave 3 ∼ 4), if individual B is less than 35
but A is not, and both of them have no plan to quit, then the treatment recommendation for this
household should be (�B = 1, �A = 0).

Example 2: If we have household tailoring variables such that 064B = 0, 064A = 1, and
%& = 2 (individual B is over 35 but A is not, and both of them have plans to quit), the blip estimates
are 0.785 + 0.690 + 0.987 − 1.151 − 0.091 ∗ 2 = 1.192, 0.785, 0.690 + 0.997 = 1.687, and 0,
respectively; then the treatment recommendation should be (�B = 0, �A = 1).

Example 3: If we have household tailoring variables such that 064B = 0, 064A = 0, and
%& = 2, the blip estimates are 0.785 + 0.690 − 1.151 − 0.091 ∗ 2 = 0.142, 0.785, 0.690, and 0;
then the treatment recommendation should be (�B = 1, �A = 0).

5.7 Conclusion and Discussion

In this chapter, considering household interference and household utility, we proposed a double
robust DTR estimation method for ordinal outcomes to consistently estimate optimal DTRs.
This method, namely, dWPOM, uses sequential weighted POM with adjusted balancing weights.
Through simulation studies, where we investigated different forms of balancing weights, we
demonstrated the double robustness property of our dWPOM approach, which utilizes the proposed
adjusted balancing weights. In the presence of household interference, our dWPOM addresses
household ordinal utility problems in this chapter and provides optimal treatment recommendations
for both individuals in the same household. We emphasize that our dWPOM can also be employed
in the standard DTR estimation case with individual-level ordinal outcomes, and enable the
consistent estimation of individual’s blip parameters if the adjusted balancing weights are used.
To address the ordinal outcomes challenge, we consider a POM, which employs the logit link in
a cumulative link mixed model (CLMM, Tutz and Hennevogl [1996]). We note that any POM
related tools or techniques, such as those for variable selections or model diagnosis of POMs, can
be employed in our dWPOM.
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Moreover, we also made a methodological contribution to the interference study. In addition to
considering the effects of neighbours’ treatments on an individual’s outcome, we also considered
a possible association between their treatments. Building on this, we presented the estimation
process for joint propensity scores in the case where there exists an association between treatments
of individuals in the same household, then estimated the corresponding balancing weights that
satisfy the balancing criterion. Our simulation studies revealed that if there exists an association
between treatments but we fail to consider it, then the DTR estimation will lead to bias. It is
straightforward to extend our household interference case to the partial interference one, where
treatments of individuals blocked by clusters can affect outcomes of the individuals in the same
cluster, while also accounting for the association between these treatments of individuals in the
same cluster. However, the association-aware estimation has an extra cost: modeling association
between pairs of binary treatments, such as through a pairwise odds ratio model in our household
case. For the cluster partial-interference case, to extend our work, we suggest considering the
log-linear model to estimate the “higher-order” odds ratio association (Yi and Thompson [2005]).
Note that, in these association cases, the final purpose is to estimate the joint propensity scores;
therefore, we recommend employing machine learning methods, such as random forest or deep
neural network, to directly train the model for the joint propensity scores. In addition, in the
presence of household interference, balancing check methods are proposed in Section 5.3. Some
projects about balancing checks can be further investigated in the interference case, such as
conducting related simulation studies and extending theory to partial or general interference cases.
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Chapter 6

Summary and Future Work

6.1 Summary

Precision medicine and interference are the major topics covered in this thesis. Precision medicine
leads health professionals to concentrate on individual patients’ specific characteristics. The
primary focus of precision medicine is on decision support, often in the form of dynamic treatment
regimes, which are sequences of decision rules. At each decision point, the decision rules determine
the next treatment according to the patient’s baseline characteristics and accrued information
available up to that point. Implementing DTRs based on patient-specific characteristics provides
an avenue for improving the outcomes for all patients being treated or untreated for the same
condition. Considering interference, whereby one patient’s outcome can be affected by others’
treatment, will provide a novel and practical way to investigate treatment assignment, aiming not
only at the improvement of individual outcomes but also at greater treatment efficiency in terms of
treatment assignment for the whole population. Interference reflects the complicated nature of
real-world scientific problems, so it is necessary to develop novel methods to address complex
health scenarios.

By mapping individual patient characteristics to recommended treatments, dynamic treatment
regimes operationalize clinical decision-making for precision medicine. For the finite time horizon
DTR estimation, we have demonstrated the use of a backward induction (dynamic programming)
approach to estimating optimal DTRs, a type of sequential decision-making approach which
provides treatment decision rules for optimizing all the patient’s outcomes. In particular, focusing
on regression-based estimation methods, we studied the dWOLS method, which is straightforward
to implement and provides interpretability and accessibility to users across a wide range of fields.
dWOLS affords a simpler way to estimate optimal DTRs compared with G-estimation and also
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guarantees a kind of robustness of the estimation. We have proved the double robustness property
of dWOLS in different ways. Built on the theory of dWOLS, this thesis develops the theoretical
aspects of a dWOLS framework that accounts for varying types of outcomes and for interference.

Much of this thesis is dedicated to estimating the optimal DTRs in the presence of interference.
In Chapter 1, building on the causal inference analytical framework, two crucial topics of the thesis
are introduced: DTR estimation and interference estimation. Chapter 2 continues to dive into the
regression-based DTR estimation methods in terms of single-stage and multiple-stage decision
estimation. In particular, we further investigated the dWOLS theory, which is a “foundation
stone” of the whole thesis, paving a solid base for the subsequent studies of DTR estimation
with interference. For the investigation of DTR estimation with interference, Chapter 3 is a
“pillar” of the whole thesis. It provides our general extension of dWOLS to either a household
interference case in which a pair in a family influences each other’s outcome, or the network
interference case where any possible neighbours can affect an individual’s outcome. We have
offered a balancing weights criterion to ensure the double robustness of dWOLS in the presence
of network interference. To study DTR estimation for binary outcomes with interference, we first
proposed an extension of dWOLS to the case of binary outcomes in Chapter 4. Then, in Chapter 5,
we have addressed the challenge of estimating DTR for individual binary outcomes in the presence
of interference, and have proposed a robust DTR estimation method under household interference,
where ordinal outcomes (household utility) are constructed from individuals’ binary outcomes.
Chapter 4 presents a novel method of DTR estimation for binary outcomes, a dynamic weighted
generalized linear model (dWGLM), and the simulation studies to verify the double robustness of
dWGLM. In Chapter 5, three contributions are noteworthy: (1) the dWGLM method is extended
to optimize individuals’ binary outcomes in the presence of interference; (2) the presented method,
namely, a dynamic weighted proportional odds model, can also be considered as the generalization
of dWOLS to ordinal outcomes; (3) in the presence of household interference, new covariates
balancing weights which account for treatment association are proposed. Moreover, as part of the
PATH analysis, we also provided corresponding answers to the PATH questions that are posed in
the introduction chapter (Section 1.3 in Chapter 1). That is, taking interference into account, we
illustrated how to offer treatment recommendations for individuals or households, in terms of a
sequence of use or non-use of e-cigarettes, for either reducing cigarette dependence or smoking
cessation.

As mentioned in Chapter 1, we provided a brief look at Figure 1.2 to summarize our proposed
optimal DTR estimation methods and their extensions that address the interference problem. Here,
we present in detail the same figure, labelled Figure 6.1, to see the structure and contributions
of the whole thesis. Starting from the left, and by examining the continuous outcomes, we note
that dWOLS is a fundamental doubly robust method for estimating optimal DTRs in this thesis.
Following the arrow down from dWOLS, we extended it to binary and ordinal outcomes cases
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Figure 6.1: Connections among the optimal DTR estimation methods and those methods with
interference. (dWOLS in blue is an existing method, and other methods in purple are proposed in
this thesis).
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and developed dWGLM and dWPOM, which retain the two main advantages of dWOLS: its ease
of implementation and its robustness to the misspecification of nuisance models. In Chapter 5,
even though dWPOM was presented in the case of household interference, the use of dWPOM in
the case of non-interference is also straightforward. From dWOLS to the right, we extended the
dWOLS theory to take into account network interference in Chapter 3. In Chapter 5 Appendix
H.1, considering the household interference case, we presented covariate balancing theorems
of dWOLS and dWGLM to consistently estimate the parameters of interest. These two cases
aim to optimize individual outcomes, and the treatment decisions for individuals, while taking
into account their neighbour’s treatments, are provided. In the main context of Chapter 5, we
demonstrated the theory of dWPOM for optimizing the household utility in the presence of
household interference. The corresponding treatment decision rules take a couple’s covariates as
input, and output a treatment configuration for the couple.

From the perspective of DTR estimation, dWOLS, dWGLM, and dWPOM are a series of
doubly robust DTR estimation methods, which are also comparatively easy to implement, to deal
with continuous, binary, and ordinal outcomes, respectively. For making sequential treatment
decisions, they rely on pseudo-outcomes and use backwards induction. However, to conduct
a robust estimation of the parameters of interest, dWGLM and dWPOM employ a “two-phase”
estimation: the first phase is standard WGLM or WPOM with standard covariates balancing
weights to construct an “adjustment” factor, such as in equations (4.2) and (5.12); then, the second
phase is a similar WGLM or WPOM but with the new weights, which are standard covariates
balancing weights multiplied by the “adjustment” factor. In fact, dWOLS is a special case of
dWGLM, where the link function is the identity function, and dWGLM, or precisely, dynamic
weighted logistic regression can also be considered a special case of dWPOM, where the ordinal
outcomes contain just two categories. All these “two-phase” estimation inspirations are from the
investigation of the estimation equation systems of the dWOLS in Appendix C, which was also
mentioned as a foundation in Chapter 2.

Furthermore, from the perspective of the interference study, in Chapter 3, assuming the
independence between treatments, we provided the general network interference covariate
balancing weights, which depend on the joint propensity function. Motivated by our real dataset
from the PATH study and considering the household interference case, in Chapter 5, we examined
the correlations between treatments of individuals in the same household and provided methods
for estimating the weights that are suitable for this case. In addition, to evaluate the performance of
these balancing weights, we proposed some empirical measures for assessing covariate balancing
in Section 5.3.

Briefly, the core of dWOLS is the weights, which are employed in ordinary least squares,
and the key to this thesis can be simply considered as to how to construct a “right” weight for
distinct realistic scenarios, such as ordinal outcomes, network interference or both, to robustly

127



estimate optimal DTRs. In the contribution of regression-based DTR estimation methods, for
conducting robust estimation, we provide balancing weights criteria for generalized linear models
and proportional oddsmodels, which especially deal with binary and ordinal outcomes, respectively.
As previously discussed, these weight criteria are built on the standard dWOLS weight criterion
and incorporate an extra “adjustment” factor. In the presence of interference, these weight criteria
rely on the joint propensity functions. Therefore, in the contribution of interference studies,
we provided an estimation framework for network propensity functions in terms of network
interference. In particular, for household interference, we also presented an estimation process for
the joint propensity score for a couple whose treatments are possibly correlated with each other.

6.2 Future Work

Some possible future extensions of each project are detailed in each chapter’s discussion section.
However, as a conclusion to the thesis, we would like to put forward some thoughts about further
exploration directions in the area of DTR estimation and interference. These include the possibility
of novel DTR estimation methods as well as DTR approaches with interference.

First, in estimating the optimal DTRs, at each stage, the key task is to estimate heterogeneous
treatment effects–that is, to estimate the conditional average treatment effect (CATE) function,
which has been introduced in Chapter 2. One possible direction is to relax Robinson [1988]’s
partially linear treatment effect model for robust estimation of CATE, wherein a linear specification
of CATE is applied. We can study more flexible modeling of both outcome and treatment models,
that is, ML methods that can adaptively discover a good representation for the CATE, for example,
Hassanpour and Greiner [2019]’s DR-CFR (SNet-3) deep learning approaches to estimating
heterogeneous treatment effects.

It is crucial to note that the ML methods that are usually effective in the prediction do not
necessarily perform well in the estimation or inference of causal parameters of interest. The
so-called “naive” or “prediction-focused” ML estimators are biased, with the bias having two
main sources: regularization and overfitting (Chernozhukov et al. [2018]). However, using
orthogonalization can overcome regularization bias, and data splitting can control the overfitting
bias. For recent CATE estimation methods, '-learner (Nie and Wager [2021]), based on
orthogonalization, can provide a CATE estimator whose error bounds match the best available
bounds for the oracle method. In contrast, another popular estimator, --learner, which is not
orthogonalization-type, has been proven efficient when the numbers of individuals in distinct
treatment groups are significantly different (Künzel et al. [2019]). On one hand, we can develop
--learner based &-learning methods for robust DTR estimation. On the other hand, we can
also apply the orthogonalization technique in estimating causal effects with interference, and
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extend --learner in the presence of household interference. In addition, within the proposed
ML estimator-based approaches, one area to study is the relationship between overfitting (or data
splitting) and cross-fitting.

Then, regarding dynamic treatment regimes with interference, we have provided the optimal
DTR estimation in Chapter 3. However, the following areas remain to be investigated: (1) how
to determine the order in which patients are prescribed treatments; (2) how to balance the needs
of the individual against the needs of the population. (3) how to assign treatment if resources
are limited. These research directions require proposing the corresponding method to address
the problem. One possible way is multi-agent reinforcement learning (MARL, Busoniu et al.
[2008]). Many DTR methods have originated from reinforcement learning approaches that address
sequential decision problems, such as &-learning. Recently, MARL has gradually become popular
in the multi-agent sequential decision case. In a stochastic environment in which multiple agents
are simultaneously learning, multi-agent reinforcement learning solves the problem of how each
agent should act optimally.

Therefore, one area is to consider multi-DTR estimation, where treatment decision rules are
addressed in a network interference setting. Combining game theory knowledge (stochastic games)
with multiple DTRs could help achieve equilibrium in centralized training with decentralized
execution settings (Kraemer and Banerjee [2016]). In this context, equilibrium means roughly
that no player wants to unilaterally deviate to an alternative strategy. In multiple DTR problems,
one decision from a DTR will typically affect decisions from other DTRs, so the communications
between DTRs need to be examined. Two main ways of communicating in common multi-agent
reinforcement learning: centralized and decentralized, will be studied. Considering the interference
between individuals, the projects can improve DTRs for public health by considering multi-agent
sequential decisions, such as COVID-19 vaccination decisions.

Moreover, motivated by PATH data household interference, we have considered a pair (B, A) in
the same household, four treatment configurations (0B, 0A) for 0B = 0, 1 and 0A = 0, 1, and the
corresponding outcome models `0B0A (x) := E[. ∗(0B, 0A) |x]. In this project, we may in future
extend the --learner method to account for household interference. To date, we have constructed
estimators ˆ̀11(x), ˆ̀10(x), ˆ̀01(x), and ˆ̀00(x) of the regression functions `11(x), `10(x), `01(x),
and `00(x), respectively, using corresponding (�B, �A) = (1, 1), (1, 0), (0, 1), (1, 1) datasets.
Second, building on the estimators for four treatment configurations, we have imputed the
unobserved potential outcomes for each individual in a certain treatment combination group.
Third, relying on estimated unobserved potential outcomes, for each treatment configuration, we
have established the estimates of interest and fit the corresponding models for the estimator of
interest. Finally, the estimators of interest have been constructed by weighted estimators of each
treatment configuration, where the household interference weights proposed in Jiang et al. [2022b]
or treatment-association aware weights in Chapter 5 are suggested. --learner performs well when
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the number of units in one treatment group is much larger than another. The extended method is
expected to fit the case in PATH, where the numbers of units in the four treatment configurations
are quite different. This project contributes to the CATE estimation with interference, and is
the basis of my DTR estimation with interference research direction. Appendix I.1 presents our
proposed Net-learner algorithm, which summarizes the above ideas and addresses the household
interference problem.

Additionally, further investigations could include work following the estimation of DTRs, such
as sensitivity analysis for estimated treatment regimes. If treatment regimes are sensitive to small
changes in estimated parameters, optimization by point estimation is not sufficient. Therefore,
additional studies can be conducted to include conduction sensitivity analysis and the estimation
of intervals for optimal treatment regimes. Furthermore, dWOLS and its extended methods with
interference in our thesis are predicated on a key assumption; that is, there is no unmeasured
confounding. Observational data used to estimate a dynamic treatment regime can introduce bias
due to unmeasured confounding. Utilizing instrumental variables or proxy variables (Miao et al.
[2018]; Tchetgen et al. [2020]) is a typical way to address unmeasured confounding problems. In
addition, sensitivity analyses are also useful for evaluating the impact of unmeasured confounders
on the study’s conclusions. Some researchers have conducted fundamental work for unmeasured
confoundings, such as Rose et al. [2022]’s sensitivity analysis for unmeasured confounding in
DTRs. Stensrud and Sarvet [2022] have proposed superoptimal regimes, which use natural
treatment values as extra inputs of the treatment decision functions. Because superoptimal regimes
use this extra observed information (natural treatment values) more than conventional regimes
do, the performance of superoptimal regimes has proved superior to that of conventional optimal
regimes. More examples can be found in recent work by Cui and Tchetgen [2021a] and Cui and
Tchetgen [2021b].

With regard to theoretical results in this thesis, the main contribution is to develop methods
for consistently estimating the blip parameters. These doubly robust methods provide the point
estimates of the parameters of interest. Nevertheless, theoretical properties will still need to
be established in the future, such as identifying (1) appropriate uncertainty estimates and their
properties; (2) the properties of the point estimate of the blip parameters: the possible asymptotic
frameworks and the corresponding consistency and asymptotic normality results.

Note that variance estimation of blip parameters resulting from dWOLS is provided in the
appendix of Wallace and Moodie [2015]. In the presence of interference, derivation of an estimator
of the blip parameter variance is the next step of work. In addition, for complete statistical
inference, we must derive asymptotic variance for dWGLM and dWPOM estimators, and propose
methods for constructing valid hypothesis tests in the presence of a nuisance parameter.

In Appendix D, we identify the optimal dWOLS weights in terms of minimizing the blip
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parameter variance. A further important step would be to identify the optimal network weights to
minimize blip parameter variance when the egos’ degrees vary.

The above-mentioned areas are potential next explorations that may afford more-accurate
treatment recommendations in precision medicine. Current methods should also be closely
examined and if possible, improved so that they provide greater accuracy in recommending
treatment regimes. As accounting for interference has become part of optimal DTR estimation
research, we hope that the field of DTR estimation research will gradually expand, and treatment
assignment in practice will become more accurate, optimal, and efficient.
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Appendix A

&-learning and dWOLS Three-stage
examples

Example A.1. Assuming that the observed outcome is . with history (N3, �3), the &-learning
focused mainly on the quality functions (&-functions) which are defined as:

&3 (h3, 03) = E [. |N3 = h3] ;

&2 (h2, 02) = E
[
max
�3

&3 (N3, �3) |N2 = h2, �2 = 02

]
;

&1 (h1, 01) = E
[
max
�2

&2 (N2, �2) |N1 = h1, �1 = 01

]
.

Stage 3: When the true &-functions are not known, one has to estimate them from the data. If we
propose a linear working model for the quality functions such as:

&3 (h3, 03) = E [. |N3 = h3] = #>3 h
V

3 + 7
>
3 03h

k

3 .

We can regress the observed outcome . on the history N3 to acquire the estimated parameters #̂3
and 7̂3. Then the optimal decision rule could be decided by estimated parameters 7̂3 and history
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N3; it is to ?A4B2A814 �3 = 1 8 5 7̂>3 N
k

3 > 0; 0=3 ?A4B2A814 �3 = 0 >Cℎ4AF8B4.

Stage 2: For the second stage, we use estimated parameters #̂3 and 7̂3 to construct a pseudo-
outcome �̃2(N3, #̂3, 7̂3) = max�3 &3(N3, �3; #̂3, 7̂3), this pseudo-outcome means the expected
potential outcome that a patient with the given history would have if he/she goes on to receive
optimal third-stage treatment. Then, we still propose the linear model for stage two such that:

&2 (h2, 02) = E
[
max
�3

&3 (N3, �3) |N2 = h2, �2 = 02

]
= #>2 h

V

2 + 7
>
2 02h

k

2 .

Through regressing the pseudo-outcome �̃2 = max�3 &3(N3, �3; #̂3, 7̂3) on history N2, we
can obtain estimated parameters #̂2 and 7̂2, and the second stage optimal treatment rule is to
?A4B2A814 �2 = 1 8 5 7̂>2 N

k

2 > 0; 0=3 ?A4B2A814 �2 = 0 >Cℎ4AF8B4.

Stage 1: Following the same logic as in the second stage, we build a pseudo-outcome (i.e.,
�̃1(N2, #̂2, 7̂2) = max�2 &2(N2, �2; #̂2, 7̂2)), then propose the linear model as follows:

&1 (h1, 01) = E
[
max
�2

&2 (N2, �2) |N1 = h1, �1 = 01

]
= #>1 h

V

1 + 7
>
1 01h

k

1 ,

using a regression and acquiring estimated parameters, then we have the first stage optimal
treatment rule which is to ?A4B2A814 �1 = 1 8 5 7̂>1 N

k

1 > 0; 0=3 ?A4B2A814 �1 = 0 >Cℎ4AF8B4.

Example A.2. We now illustrate the dWOLS in a three-stage example.

We assume that the observed outcome is . = H with history (N3, �3). Like &-learning,
dWOLS also uses backward induction; therefore, we start with the third (last) stage.

Stage 3: The pseudo-outcome of the last stage is identical to the observed outcome Ỹ3 = . . Also,
suppose we propose the linear model for both the blip model and the treatment-free model as

E
[
Ỹ3 |N3 = h3; #3,73

]
= #>3 h

V

3 + 7
>
3 03h

k

3 ,

and employ the weight F3 that satisfy the criterion (2.2) such as F3 = |03 − E [�3 |N3] |.
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We can compute (
#̂3, 7̂3

)
= arg min

#3,73

=∑
8=1

F3

(
Ỹ38 − #>3 h

V

38 + 7
>
3 03h

k

38

)2
,

using weighted ordinary least squares (WOLS) regressing Ỹ3 on
(
hV3 , h

k

3

)
with weights

F3 = |03 − E [�3 |N3] |. Therefore, the third stage optimal treatment rule is to
?A4B2A814 �3 = 1 8 5 7̂>3 N

k

3 > 0; Cℎ4= ?A4B2A814 �3 = 0 >Cℎ4AF8B4.

Stage 2: The pseudo-outcome of the second stage is Ỹ2 = . + `3

(
h3, 03; 7̂3

)
= . + (7̂>3 03h

k

3 )
+−

7̂
>
3 03h

k

3 . We propose the linear model for both the blip model and the treatment-free model such
as

E
[
Ỹ2 |N2 = h2; #2,72

]
= #>2 h

V

2 + 7
>
2 02h

k

2 ,

and employing the weight F2 = |02 − E [�2 |N2] | compute(
#̂2, 7̂2

)
= arg min

#2,72

=∑
8=1

F2

(
Ỹ28 − #>2 h

V

28 + 7
>
2 02h

k

28

)2
,

using weighted ordinary least squares (WOLS) regressing Ỹ2 on
(
hV2 , h

k

2

)
with

weights F2 = |02 − E [�2 |N2] |. Thus, the second stage optimal treatment rule is to
?A4B2A814 �2 = 1 8 5 7̂>2 N

k

2 > 0; Cℎ4= ?A4B2A814 �2 = 0 >Cℎ4AF8B4.

Stage 1: For the first stage, the process is similar. Note that the the pseudo-outcome
Ỹ1 = . +

∑2
:=2 `:

(
h: , 0: ;7:

)
= . + [(7̂>2 02h

k

2 )
+ − 7̂>2 02h

k

2 ] + [(7̂
>
3 03h

k

3 )
+ − 7̂>3 03h

k

3 ]. Apply
WOLS regressing Ỹ1 on

(
hV1 , h

k

1

)
with weights F1 = |01 − E [�1 |N1] |. We finally obtain that the

first stage optimal treatment rule is to ?A4B2A814 �1 = 1 8 5 7̂>1 N
k

1 > 0; Cℎ4= ?A4B2A814 �1 =
0 >Cℎ4AF8B4.
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Appendix B

dWOLS alternative proof — single stage

This section provides one alternative proof of dWOLS. We refer to this proof as a direct proof of
dWOLS because it employs the algebra of partitioned regression directly.

We have an i.i.d. model: - is a vector of ? covariates (Note that the covariates - in appendix
sections are not in boldface, but are nevertheless the same as the covariates in boldface ^ in
the body of the thesis); � is the treatment assignment, taking values 1 or 0; . � is the potential
outcome under treatment � (same as the notation . ∗(�) in the body of the thesis); the values
of these are independent from individual to individual; realized values are G, 0 and H0; we can
think of G being determined first, then 0 conditional on G, then H0 conditional on G and 0. For a
straightforward consistency argument, we assume not only that -8 for individuals are i.i.d. but
also that the components have finite variance. We assume that, conditional on - and �, the . �
have constant finite variance f2. We write

P(� = 1 | G) = c(G);

for each G, c(G) is between 0 and 1.
For individual 8, where 8 = 1, 2, . . . , = we can write

E[. 08 | G8, 08] = 5 (GV
8
, V) + 08Gk8 k,

where GV
8
and Gk

8
are the row vectors of covariate values for the 8-th individual.

Suppose the values of G and 0 are determined for all individuals, and let =1 and =0 be the numbers
of individuals with 08 = 1 and 08 = 0, respectively. Let their G and Hmatrices/vectors be (GV1 , G

k

1 , H
1
1),

dimensions (=1 × ?V, =1 × ?k , =1 × 1) and (GV0 , G
k

0 , H
0
0), dimensions (=0 × ?V, =0 × ?k , =0 × 1),
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respectively. Note that for the unbiased estimator of k to hold, - need not be random.

If we were applying ordinary least squares, we would use the following system of normal
equations:

(Gk1 )
>(H1

1 − G
V

1 V − G
k

1k) = 0;

(GV1 )
>(H1

1 − G
V

1 V − G
k

1k) + (G
V

0 )
>(H0

0 − G
V

0 V) = 0.

However, if we are applying weighted least squares where the weights are dependent on 0 and
G, we would write:

(Gk1 )
>,1(H1

1 − G
V

1 V − G
k

1k) = 0; (B.1)

and
(GV1 )

>,1(H1
1 − G

V

1 V − G
k

1k) + (G
V

0 )
>,0(H0

0 − G
V

0 V) = 0. (B.2)

where,1 is the =1 × =1 diagonal matrix of the weights F(1, G8) for the individuals with 08 = 1,
and,0 is the =0 × =0 diagonal matrix of the weights F(0, G8) for the individuals with 08 = 0.

From (B.1),
k̂ = [(Gk1 )

>,1G
k

8
]−1(Gk1 )

>,1(H1
1 − G

V

1 V). (B.3)

Plugging k̂ into (B.2) gives

(GV1 )
>,1(H1

1 − G
V

1 V − %
k

1,1(H1
1 − G

V

1 V)) + (G
V

0 )
>,0(H0

0 − G
V

0 V) = 0,

where
%
k

1 = G
k

1 [(G
k

1 )
>,1G

k

8
]−1(Gk1 )

>,

of dimension =1 × =1. Solving for V̂ gives

V̂ = [(GV1 )
>,1(� − %k1,1)GV1 + (G

V

0 )
>,0G

V

0 ]
−1 [(GV1 )

>,1(� − %k1,1)H1
1 + (G

V

0 )
>,0H

0
0] . (B.4)

Let the “denominator” of (B.4) be denoted by �.

Taking expectation in (B.4) with respect to the conditional distribution of . 0, given - = G and
� = 0, and noting that (� − %k1,1)Gk1 is the 0 vector, gives

E( V̂ | G, 0) = �−1 [(GV1 )
>,1(� − %k1,1) 5 (GV1 , V) + (G

V

0 )
>,0 5 (GV0 , V)] . (B.5)

This is not equal to V unless 5 (GV1 , V) is G
V

1 V and 5 (G
V

0 , V) is G
V

0 V.

155



Taking expectation in (B.3) with respect to the conditional distribution of . 0, given - = G and
� = 0, gives

E(k̂ | G, 0) = k + [(Gk1 )
>,1G

k

1 ]
−1(Gk1 )

>,1( 5 (GV1 , V) − G
V

1�
−1�), (B.6)

where � is the “numerator” of (B.5). This is equal to k if 5 (GV1 , V) is G
V

1 V and 5 (G
V

0 , V) is G
V

0 V, or
if the weights can be defined in such a way as to make the second term of (B.6) disappear when
expectation with respect to the distribution of �, given G, is taken.

A vector I1 which has the elements of the vector I for the individuals with 08 = 1 and 0 entries
otherwise has expectation

(I1c(G1), I2c(G2), . . . , I=c(G=))>.

Similarly, a vector I0 which has the elements of the vector I for the individuals with 08 = 0
and 0 entries otherwise has expectation

(I1(1 − c(G1)), I2(1 − c(G2)), . . . , I= (1 − c(G=)))>.

Using these facts, one can show that, with respect to the distribution of � given G:

E((GV0 )
>,0G

V

0 ) = (G
V)>W0(� − Π)GV,

where Π is the = × = diagonal matrix of the c(G8) values andW0 is the = × = diagonal matrix of
the F(0, G8) values.

E((GV1 )
>,1G

V

1 ) = (G
V)>W1ΠG

V,

whereW1 is the = × = diagonal matrix of the F(1, G8) values. Similarly,

E((GV0 )
>,0 5 (GV0 , V)) = (G

V)>W0(� − Π) 5 (GV, V);

E((GV1 )
>,1 5 (GV1 , V)) = (G

V)>W1Π 5 (GV, V);

E((Gk1 )
>,1G

k

1 ) = (G
k)>W1ΠG

k;

E((Gk1 )
>,1 5 (GV1 , V)) = (G

k)>W1Π 5 (GV, V);
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E((GV1 )
>,1G

k

1 ) = (G
V)>W1ΠG

k .

E((GV1 )
>,1%

k

1,1G
V

1 ) = E((G
V

1 )
>,1G

k

1 [(G
k

1 )
>,1G

k

1 ]
−1(Gk1 )

>,1G
V

1 ),
which is approximately

(GV)>W1ΠG
k [(Gk)>W1ΠG

k]−1(Gk)>W1ΠG
V.

E((GV1 )
>,1%

k

1,1 5 (GV1 , V)) = E((G
V

1 )
>,1G

k

1 [(G
k

1 )
>,1G

k

1 ]
−1(Gk1 )

>,1 5 (GV1 , V)),

which is approximately

(GV)>W1ΠPkW1Π 5 (GV, V).

where
Pk = Gk [(Gk)>W1ΠG

k]−1(Gk)>.

Now supposeW0(� − Π) is identically equal toW1Π = '(G) (a diagonal matrix) for all G.
Then

Pk = Gk [(Gk)>'(G)Gk]−1(Gk)>,

and from (B.6), the expectation of k̂, conditional on G, is approximately k plus

[(Gk)>'(G)Gk]−1(Gk)>'(G) ( 5 (GV, V) − GVD−1C),
where the difference between the true expectation and its approximation will be of order
$? (1/=); and where D = (GV)>'(G) (� − Pk'(G))GV + (GV)>'(G)GV, and C = (GV)>'(G) (� −
Pk'(G)) 5 (GV, V) + (GV)>'(G) 5 (GV, V).

The factor (Gk)>'(G) ( 5 (GV, V) − GVD−1C) is equal to

{B(G) (� − GV [A(G)GV]−1A(G))} 5 (GV, V) (B.7)

where B(G) = (Gk)>'(G) andA(G) = (GV)>'(G) (2� −Pk'(G)), and we denote expression (B.7)
as E, that is, E := {B(G) (� − GV [A(G)GV]−1A(G))} 5 (GV, V).
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Now suppose GV = Gk = G. Then %k = G(G>'(G)G)−1G> and A(G) = 2G>'(G) − G>'(G) =
G>'(G). The part of E (B.7) in brace brackets is

G>'(G) − G>'(G)G [G>'(G)G]−1G>'(G) = 0.

What if it is not true that GV = Gk = G? Consider the case where Gk is a subset of GV, and
without much loss of generality, suppose that the rest of GV is orthogonal in the weighted sense to
Gk , as would be approximately true if, in the model for G, Gk and the rest of GV were uncorrelated
in an appropriately weighted sense.

Accordingly, suppose GV = (Gk | I), where I is of dimension = × (?V − ?k) and is orthogonal
in the weighted sense to Gk , so that

E[I>'(G)Gk] = 0, (B.8)

the right-hand side being a (?V − ?k) × ?k matrix of zeros.

Now we have Lemma:

Lemma B.1. Suppose Gk is a subset of GV, and GV = (Gk | I) where I is of dimension =× (?V− ?k)
and is orthogonal in the weighted sense to Gk , so that E[I>'(G)Gk] = 0. Then expression E (B.7)

{B(G) (� − GV [A(G)GV]−1A(G))} 5 (GV, V)

is 0.

Proof. First, for

A(G) =
(
(Gk)>
I>

)
'(G) (2� − %k'(G)),

we use the specific form of A, which is

A(G) = 2
(
(Gk)>
I>

)
'(G) −

(
(Gk)>'(G)

I>'(G)%k'(G)

)
.

Because of (B.8), I>'(G)%k = 0, and therefore

A(G) =
(
(Gk)>'(G)
2I>'(G)

)
,
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and

A(G)GV =
(
(Gk)>'(G)Gk (Gk)>'(G)I
2I>'(G)Gk 2I>'(G)I

)
=

(
(Gk)>'(G)Gk 0

0 2I>'(G)I

)
.

It follows that

B(G)GV [A(G)GV]−1A(G) =

(Gk)>'(G) (Gk | I)
(
[(Gk)>'(G)Gk]−1 0

0 [2I>'(G)I]−1

) (
(Gk)>'(G)
2I>'(G)

)
.

Again using (B.8), it can be shown that the right-hand side reduces to B(G), and hence that the
expression in E (B.7) is 0. �

Therefore, we have shown that the expression in E (B.7) is 0 under a couple of assumptions,
namely that GV = Gk = G or more generally that Gk is a subset of GV, and the rest of GV is orthogonal
to Gk .
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Appendix C

Study the double robustness of dWOLS
from estimation equation perspective

In this section, we demonstrate the double robustness of dWOLS from an estimation equation
perspective in two different cases.

Let us consider the true model: E[. |�, -] = 5 (- V) + W(�, -k;7), where . ∈ R, and - ∈ R?
is a vector of ? covariates (again, the covariates - in appendix sections are not in boldface, but
are nevertheless the same as the covariates in boldface ^ in the body of the thesis); - V ∈ R?V

and -k ∈ R?k are two (potentially identical) subsets of the variables contained in -; � ∈ {0, 1}
is the treatment assignment. Their realized values are H, G, GV , Gk and 0, and we write the
propensity score as P(� = 1 | G) = c(G). We assume that W(�, -k;7) is correctly specified, and
set W(�, -k;7) = 7>�-k .

Given the posited outcome regression model &(-, �; #,7) = #>- V + 7>�-k , the weighted
OLS estimator for (#>,7>) is obtained by solving the system of estimating equations:∑=
8 *8 ( #̂, 7̂; �8, -8) = 0, that is,

=∑
8

(
-
V

8

�8-
k

8

)
F(�8, -8)

(
.8 − 7>�8-k8 − #>- V

8

)
=

=∑
8

[
*18 (#, k; �8, -8)
*28 (#, k; �8, -8)

]
= 0. (C.1)

C.0.1 Case 1 of dWOLS

We first assume that - V = -k = -; that is, the covariates in the treatment free and blip part are the
same. Then, we assume that for each 8 independently, -8 for individuals is i.i.d. and is generated
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first; thereafter, �8 followed by .8. On the one hand, we consider

=∑
8

(*18 −*28) =
=∑
8

(1 − �8)-8F(�8, -8)
(
.8 − 7>�8-8 − #>-8

)
(C.2)

=

=∑
8

(1 − �8)-8F(�8, -8)
(
.8 − #>-8

)
= 0, (C.3)

where the second equality follows because the only non-zero terms (in equation (C.2)) will be
those for which �8 = 0. Thus, equation (C.3) (or

∑=
8 (*18 −*28)) does not depend on 7. We note

that
∑=
8 (*18 −*28) = 0 can be solved for #, and its solution is

#̂ = (
=∑
8

(1 − �8)F(�8, -8)-8->8 )−1
=∑
8

(1 − �8)F(�8, -8)-8.8 .

The expectation of
∑=
8 (*18 −*28) conditional on (�1, . . . .�=) and (-1, ...-=), that is,

∑=
8 (1 −

�8)-8F(�8, -8)
(
5 (-

8
) − #>-

8

)
, is not zero unless the true treatment-free model 5 (-; #) is

linear in - with true coefficient #. However, the expectation of
∑=
8 (*18 − *28) conditional

on (-1, ...-=) is
∑=
8 (1 − c(-8))-8F(0, -8)

(
5 (-

8
) − #>-

8

)
, and if the unconditional expectation

of
∑=
8 (1 − c(-8))-8F(0, -8)

(
5 (-

8
) − #>-

8

)
, =E

[
(1 − c(-))-F(0, -)

(
5 (-) − #>-

) ]
is 0 for

# = #∗, then, according to the large sample theory approximation, #̂ tends to #∗ as =→∞.White
[1982].

On the other hand, we consider
∑=
8 *28 =

∑=
8 �8-8F(�8, -8)

(
.8 − 7>�8-8 − #>-

8

)
, where the

only non-zero terms are those for which �8 = 1, then 7̂ can be solved in terms of #̂ from
∑=
8 *28 = 0.

We particularly note that, from the dWOLS weights criterion (1 − c(-))F(0, -) = c(-)F(1, -),
the expectation of

∑=
8 *28 conditional on (-1, ...-=), that is,

∑=
8 c(-8)-8F(1, -8)

(
5 (-

8
) − #>-8

)
,

equals
∑=
8 (1 − c(-8))-8F(0, -8)

(
5 (-8) − #>-8

)
, where the unconditional expectation of

∑=
8 (1 −

c(-8))-8F(0, -8)
(
5 (-8) − #>-8

)
is 0 for # = #∗ and for any 7. The equation

∑=
8 *28 = 0 with #

set equal to #̂ will approach the equation
∑=
8 *28 = 0 with # set equal to #∗ as =→∞.

We find estimators ( #̂>, 7̂>) through solving the system of estimating equations∑=
8 *8 ( #̂, 7̂; �8, -8) = 0. Supposing the treatment-free model 5 (- V; #) is mis-

specified, we now show that ( #̂>, 7̂>) solving the estimating equations (C.1) converges
in probability to (#∗>,7>), where #∗ is the solution to (unconditional expectation)
E

[
(1 − c(-))-F(0, -)

(
5 (-) − #∗>-

) ]
= 0. Because #̂

?
→ #∗, then from the theory of

M-estimation (Huber [2004], Geer and van de Geer [2000], and Tsiatis [2019]), under regularity
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conditions, this follows if the system of estimating functions corresponding to estimating equations
(C.1) has mean zero when evaluated at (#∗>,7>); that is,

E[* (#∗,7; �, -)] = E
[(

-

�-

)
F(�, -)

(
. − #∗>- − 7>�-

) ]
= E

[
*1(#∗, k; �, -)
*2(#∗, k; �, -)

]
= 0;

equivalently,

E

[
*1(#∗, k; �, -) −*2(#∗, k; �, -)

*2(#∗, k; �, -)

]
= E

[(
1 − �
�

)
-F(�, -)

(
. − #∗>- − 7>�-

) ]
= 0.

(C.4)

Applying iterated conditional expectations conditioning on

(�, -), E

[(
1 − �
�

)
-F(�, -)

(
. − #∗>- − 7>�-

) ]
in (C.4) is

E

[(
1 − �
�

)
-F(�, -)

(
5 (-) − #∗>-

) ]
. Then, taking conditional expectation with

respect to � given - , gives

E

[
(1 − c(-))-F(0, -)

(
5 (-) − #∗>-

)
c(-)-F(1, -)

(
5 (-) − #∗>-

) ]
. (C.5)

By definition of #∗, the first expectation in (C.5) is zero; then the second expectation in (C.5)
is also zero if the dWOLS weights criteria ((1 − c(-))F(0, -) = c(-)F(1, -)) are fulfilled and
the propensity score is correctly specified.

In the case of - = - V = -k , we conclude that 7̂ solving the system of estimating equations
(C.1) is a consistent estimator for the true value 7, if either the treatment-free model or treatment
model is correctly specified.

C.0.2 Case 2 of dWOLS

Suppose -k is a subset of - = - V, and without loss of generality that - = - V = (-k>, />)>,
where / is a vector with length (?V − ?k) that is orthogonal to -k in the weighted sense that
E[/'(-)-k>] = 0(?V−?k)×?k where '(-) := (1 − c(-))F(0, -) = c(-)F(1, -). Let the
treatment-free part of the expectation of . conditional on - be 5 (-), and let the working model
for this quantity be #>- = #>- V. Let the blip function be W(�, -k;7) = �(7>-k + %>/),
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where the true value of %> is known to be 0. Then,
=∑
8

*18 =

=∑
8

(
-
k

8

/8

)
F(�8, -8)

(
.8 − 7>�8-k8 − #>-8

)
= 0, (C.6)

=∑
8

*28 =

=∑
8

�8-
k

8
F(�8, -8)

(
.8 − 7>�8-k8 − #>-8

)
= 0, (C.7)

is the system to be solved to find #̂ and 7̂.

If we replace (C.7) by

=∑
8

*
†
28 =

=∑
8

�8

(
-
k

8

/8

)
F(�8, -8)

(
.8 − 7>�8-k8 − %

>�8/8 − #>-8

)
= 0 (C.8)

and (C.6) by

=∑
8

*
†
18 =

=∑
8

(
-
k

8

/8

)
F(�8, -8)

(
.8 − 7>�8-k8 − %

>�8/8 − #>-8

)
= 0 (C.9)

the system (C.8), (C.9) is equivalent to (C.9) and

=∑
8

(*†18 −*
†
28) =

=∑
8

(1 − �8)
(
-
k

8

/8

)
F(�8, -8)

(
.8 − 7>�8-k8 − %

>�8/8 − #>-8

)
= 0. (C.10)

Now
∑=
8 (*

†
18 − *

†
28) =

∑=
8 (1 − �8)

(
-
k

8

/8

)
F(�8, -8)

(
.8 − #>-

8

)
= 0 is solvable for #̂. It is

unbiased for # = #∗ where #∗ solves E['(-)- ( 5 (-) − #>-)] = 0. On the other hand,∑=
8 *
†
28 = 0, with # replaced by #̂, is solvable for 7̂†, %̂†. It is unbiased for any 7, % as long as

# = #∗. Thus, we have ( #̂, 7̂†, %̂†)
?
→ (#∗,7, %), where % = 0. Now we just need to show that 7̂†

and 7̂ , respectively, obtained from
∑=
8 *
†
28 = 0 and

∑=
8 *28 = 0, are asymptotically equivalent. To

see this, we write

7̂ =

[
=∑
8

�8F(�8, -8)-k8 -
k

8

>
]−1 [

=∑
8

�8F(�8, -8)-k8 (.8 − #̂
>
-8)

]
,

163



and (
7̂
†

%̂
†

)
=

[
=∑
8

�8F(�8, -8)
(
-
k

8

/8

)
-
k

8

>
]−1 [

=∑
8

�8F(�8, -8)
(
-
k

8

/8

)
(.8 − #̂

>
-8)

]
.

Dividing top and bottom by = in each case and letting =→∞, the weak law of large numbers and
continuous mapping theorem imply that the right-hand sides approach (respectively)(

E
[
'(-)-k-k>

] )−1
E

[
'(-)-k (. − #∗>- )

]
,

and (
E

[
'(-)-k-k>

]
0

0 E ['(-)//>]

)−1 (
E

[
'(-)-k (. − #∗>- )

]
E

[
'(-)/ (. − #∗>- )

] )
=

©«
(
E

[
'(-)-k-k>

] )−1
E

[
'(-)-k (. − #∗>- )

]
(E ['(-)//>])−1 E

[
'(-)/ (. − #∗>- )

] ª®¬ .
Therefore, 7̂† and 7̂ are asymptotically equivalent, and this finishes the whole proof.
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Appendix D

Proof of dWOLS optimal weights

In this section, we will prove the theorem (Theorem 2.1) of optimal dWOLS balancing weights
which is presented at the end of Chapter 2.

Denote - (0) = - (� − �), which is a ? × = matrix, where - is a ? × = matrix and � − � is a
= × = diagonal matrix; - (1) = -� with a = × = diagonal matrix �; . (F) = F(�, -). with = × =
diagonal matrix F(�, -); and - (0F) = - (� − �)F(�, -) and - (1F) = -�(�, -).

Denote +1 = *1 − *2 and +2 = *2 where *1 and *2 are matrix versions of *1 and *2 in
Appendix C. Then we have:

+ (#,7; �, -) =
[
+1
+2

]
=

(
- (0)

- (1)

)
F(�, -)

(
. − �->7 − ->#

)
=

(
0
0

)
;

or (
- (0)

- (1)

) (
. (F) − - (1F)7 −

[
- (0F) + - (1F)

]>
#

)
=

(
- (0)

- (1)

)
n (F) =

(
0
0

)
,

where n (F) = . (F) − - (1F)7 −
[
- (0F) + - (1F)

]>
#.

Note that - (0)- (1F) = 0 0=3 - (1)- (0F) = 0. Then

+1 = -
(0)

(
. (F) − - (0F)>#

)
= 0,

and we can solve #̂ = (- (0)- (0F)>)−1- (0). (F) . Also,

- (1)
(
. (F) − - (1F)>7 − - (1F)>#

)
= 0,
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and we can solve #̂ + 7̂ =
(
- (1)- (1F)>

)−1 (
- (0). (F)

)
. Thus we have

7̂ − 7 =
[(
- (1)- (1F)>

)
- (1) − - (0)- (0F)>- (0)

]
Y(F) .

Further, by law of total expectation or the law of iterated expectations, we have

Var(7̂ − 7) = E
(
Var[(7̂ − 7) | �, -]

)
,

where Var(7̂ − 7 | �, -) = &,2(�, -)&>f2
Y and & =

[(
- (1)- (1F)>

)
- (1) − - (0)- (0F)>- (0)

]
.

Let E
[
- (0F) | -

]
= - ((1 − c(-))F(0, -) = -'(-) and E

[
- (1F) | -

]
= -'(-), then we

have

&,2(�, -)&>/f2
Y =

[(
- (1)- (1F)>

)−1
- (1),2(�, -)- (1)>

(
- (1)- (1F)>

)−1
]

−
[(
- (1)- (1F)>

)−1
- (1),2(�, -)- (0)>

(
- (0)- (0F)>

)−1
]

−
[(
- (0)- (0F)>

)−1
- (0),2(�, -)- (1)>

(
- (1)- (1F)>

)−1
]

+
[(
- (0)- (0F)>

)−1
- (0),2(�, -)- (0)>

(
- (0)- (0F)>

)−1
]
.

Note that - (1),2(�, -)- (0)> = -�,2(�, -) (� − �)-> = 0, so the middle terms are 0 and we
have:

&,2(�, -)&>/f2
Y =

[(
- (1)- (1F)>

)−1
- (1),2(�, -)- (1)>

(
- (1)- (1F)>

)−1
]

+
[(
- (0)- (0F)>

)−1
- (0),2(�, -)- (0)>

(
- (0)- (0F)>

)−1
]
. (D.1)

To evaluate two terms in (D.1) in the limiting case, note for example that - (1),2(�, -)- (1)>
is -�,2(�, -)�->, a ? × ? matrix whose ; −<th entry is a sum ∑=

8=1 -
(;)
8
�8,

2 (�8, -8) �8- (<)8
,

and similarly for the other terms in (D.1). If the ? × 1 vectors -8 are i.i.d., then by the LLN we
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have a limiting result

E

(
1
=

=∑
8=1

-
(;)
8
�8,

2 (�8, -8) �8- (<)8
| -8

)
=

1
=

=∑
8

-
(;)
8
' (-8), (1, -8) - (<)8

, (D.2)

converges to ; − <th element of E [-'(-), (1, -)->] , where '(-) is 3806('(-8)),, (1, -)
is 3806(, (1, -8)) and similarly for the other factors in (D.1). Therefore, it can be shown that in
the limit the ? × ? matrix =&,2(�, -)&>/f2

n converges to

E
(
-1' (-1) ->1

)−1
E (-1 [, (1, -1) +, (0, -1)] '(-1)-1) E

(
-1' (-1) ->1

)−1
, (D.3)

where -1 is the ? × 1 matrix of covariates for the first subject.
To optimize this, we note that, (1, -1) +, (0, -1) is equal to ' (-1) /[c (-1) (1 − c (-1))] ,

and limiting result of equation (D.3) is[
E('(-1)-1-

>
1 )

]−1
E{[('2(-1)/(c(-1) (1 − c(-1))]-1-

>
1 }

[
E('(-1)-1-

>
1 )

]−1
. (D.4)

Denoting -⊗2
1 = -1-

>
1 , by the Cauchy-Schwarz inequality, we have

{E['(-1)-⊗2
1 ]}

2 =

[
E

{
'(-1)-1√

c(-1) (1 − c(-1))

√
c(-1) (1 − c(-1))->1

}]2

≤ E
{

'2(-1)
c(-1) (1 − c(-1))

-⊗2
1

}
E[c(-1) (1 − c(-1))-⊗2

1 ],

or equivalently,

{E['(-1)-2
1 ]}
⊗2(E[c(-1) (1 − c(-1))-⊗2

1 ])
−1 ≤ E

{
'2(-1)

c(-1) (1 − c(-1))
-⊗2

1

}
,

with equality when

'(-1)√
c(-1) (1 − c(-1))

∝
√
c(-1) (1 − c(-1)).

Then the lower bound of equation (D.4) is attained by (E[c(-1) (1 − c(-1))-⊗2
1 ])

−1.
Therefore, the optimal '(-) is ∝ c(G) (1 − c(G)), and it corresponds to the optimal weights,

which are F(1, G) ∝ (1 − c(G)), and F(0, G) ∝ c(G).
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Appendix E

Invalid dWOLS Theorem

In a different approach to the proof of the consistency result for dWOLS presented in Wallace and
Moodie [2015], we first consider the theorem in the case where xk is a subset of xV: Suppose
xk is a subset of xV, and xV = (xk | I) where I is of dimension = × (?V − ?k) and is orthogonal
to xk , in the sense that E[I>'(x)xk] = 0, where '(x) := c(x)F(1, x) = (1 − c(x))F(0, x).
Then a weighted least squares regression of . on

(
xV, axk

)
using the weights F(a, x) will yield

consistent estimators of 7 if either the treatment-free model or the treatment model is correctly
specified.

The entire proof is presented in Appendix B. To summarize, first, we note that if the treatment-
free model, where 5 (xV; #) = #>xV in the linear case, is correctly identified, we can acquire
unbiased estimators of 7 (i.e., E[7̂] − 7 = 0) via weighted linear regression for any set of
weights. We then show that if we apply weights that satisfy c(x)F(1, x) = (1 − c(x))F(0, x), we
also have E[7̂] − 7 = 0, even if the treatment-free model is incorrectly specified. During this
process, considering weighted OLS system equations, we first derived conditional expectation
of #̂ (i.e., E[ #̂|0, x]), and then E[7̂ |0, x]. Further, taking expectation of E[7̂ |0, x] with
respect to the distribution of � given x, we have the expectation of 7̂, conditional on x;
thus, we derived the bias of 7̂ (i.e., E[7̂] − 7). Finally, the key factor in the bias of 7̂ is
denoted as E = {B(x) (� − xV [A(x)xV]−1A(x))} 5 (xV, #), that is, B.7 in Appendix B, where
B(x) = (xk)>'(x), A(x) = (xV)>'(x) [2� − Pk'(x)] and Pk = xk [(xk)>'(x)xk]−1(xk)>
are expressions that are related to '(x), so that 7̂ is unbiased if and only if E = 0. Either (i)
xV = xk = x or (ii) xV = (xk | I) where E[I>'(x)xk] = 0 can be shown to imply that E = 0 if we
apply weights that are satisfied by c(x)F(1, x) = (1 − c(x))F(0, x) = '(x).

Another scenario (iii), in which xk = (xV | ℎ) where E[ℎ>'(x)xV] = 0, is addressed in the
following Invalid dWOLS Theorem:
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Theorem E.1. Invalid dWOLS Theorem Suppose xV is a subset of xk , and xk = (xV | ℎ)
where the dimension of ℎ is = × (?k − ?V) and where ℎ is orthogonal to xV in the sense that
E[ℎ>'(x)xV] = 0. With weight criteria that c(x)F(1, x) = (1 − c(x))F(0, x) = '(x) , a
weighted least squares regression of . on

{
xV, axk

}
will yield consistent estimates of 7 if and

only if E[ℎ>'(x) 5 (xV, #)] = 0.

The proof contains two steps. First, we prove that E[ℎ>'(x)xV] = 0, expression E (B.7) is 0
if and only if ℎ>'(x) 5 (xV, V) = 0. That is the case in which xV = xk = x. Thus for the proof of
asymptotic unbiasedness of 7̂ when the treatment-free part is of general form (Section 2.2), it
must be true that xV includes all components of xk . In the second step, we prove the theorem
using the argument presented in the first step.

Proof. Step 1: For xk = (xV | ℎ), where ℎ dimension is = × (?k − ?V) then

Pk = xk [(xk)>'(x)xk]−1(xk)> := (xV, ℎ)�−1
(
(xV)>
ℎ>

)
,

where �−1 =

[(
(xV)>
ℎ>

)
'(x) (xV, ℎ)

]−1
=

(
[(xV)>'(x)xV]−1 0

0 [ℎ>'(x)ℎ]−1

)
.

Thus

A(G) = (xV)>'(x) (2� − Pk'(x))

= 2(xV)>'(x) − [(xV)>'(x)xV, 0?V×(?k−?V)]�−1
(
(xV)>
ℎ>

)
'(x).

For the second term of A(G), denoted as E(G),

E(G) = [(xV)>'(x)xV, 0?V×(?k−?V)]
(
[(xV)>'(x)xV]−1 0

0 [ℎ>'(x)ℎ]−1

) (
(xV)>
ℎ>

)
'(x)

= [�?V×?V , 0?V×(?k−?V)]
(
(xV)>
ℎ>

)
'(x)

= (xV)>'(x).
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Then, E(G)xV = (xV)>'(x)xV and A(G)xV = 2(xV)>'(x)xV − E(G)xV = (xV)>'(x)xV.

B(G)xV [A(G)xV]−1A(G) =
(
(xV)>
ℎ>

)
'(x)xV [(xV)>'(x)xV]−1(xV)>'(x)

=

(
(xV)>'(x)xV
0(?k−?V)×?V

)
[(xV)>'(x)xV]−1(xV)>'(x)

=

(
(xV)>'(x)
0(?k−?V)×=

)
.

The sufficient and necessary condition for B(G)xV [A(G)xV]−1A(G) 5 (xV, V) = B(G) 5 (xV, V) =
(xk)>'(x) 5 (xV, V), that is E (B.7) = 0, is ℎ>'(x) 5 (xV, V) = 0.

Step 2: Appendix B shows that with weight criteria that c(x)F(1, x) = (1 − c(x))F(0, x)
a weighted least squares regression of . on

(
xV, axk

)
will yield consistent estimates of k if

expression E (B.7) is 0; then apply the conclusion in Step 1, to show that E (B.7) is 0 if and only
if ℎ>'(x) 5 (xV, V) = 0. �

To prove the Invalid dWOLS Theorem, we show that E = 0 iff ℎ>'(x) 5 (xV, #) = 0. To
illustrate this, we use the following example: for a single-stage treatment decision, suppose
covariates x1 are common to the treatment-free and blip models, and we extend the blip model by
correctly incorporating a covariate (�0;C4A) that indicates the alter’s treatment. The true outcome
model can therefore be expressed as: E[. |x1, 0, 0

0;C4A] = 5 (x1; #) + W(x1, 0, 0
0;C4A ;7), where 5

is nonlinear. For illustration, we propose the following model:

E[. |x1, 0, 0
0;C4A] = V0 + #>1 x1 + 0

(
k0 + 7>1 x1 + k20

0;C4A
)
, (E.1)

where the treatment-free model is given by V0 + #>1 x1, and the blip function W(x1, 0, 0
0;C4A) is

modeled as 0
(
k0 + 7>1 x1 + k20

0;C4A
)
.

First, suppose �0;C4A depends only on the covariate for the alter, and that covariate is independent
of x1 for the ego. For a model such as (E.1), we can consistently estimate the blip parameters of 7.
Second, suppose that �0;C4A also depends on the covariate for the ego (the possible interference
path is due to �0;C4A depending on x1). The Invalid dWOLS Theorem shows that estimators of
7 will not be consistent, and the inconsistency will affect the estimation of optimal treatment
decision rules. That is, if a component of xk is missing from xV, and this component depends on
xV, we have inconsistency. In a model such as (E.1), it is the dependence of the interference term
00;C4A on x1 for the ego that invalidates the double robustness of dWOLS.
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Appendix F

Appendix of Chapter 3

F.1 Chapter 3 Appendix A1: Extension to the pair case where
the treatments of ego and alter are not independent.

For pairs, our method can be extended to the case where the treatments of ego and alter are
not independent. To see this, define the network propensities for the pairs as, for 0A = 0, 1 and
0B = 0, 1, c0A ,0B (x46>, x0;C4A) = P(�46> = 0A , �0;C4A = 0B | x46>, x0;C4A) = c(0

A )
1 c

(0B)
2 _(0

A ,0B) where
c
(0A )
1 , c(0

B)
2 , and _(0A ,0B) all depend on (x46>, x0;C4A), and c(0

A )
1 and c(0

B)
2 are marginal probabilities

that �46> = 0A and �0;C4A = 0B, respectively. Then the _(0A ,0B) functions describe the dependence
between treatments of ego and alter, and this is exchangeable if _(0A ,0B) = _(0B ,0A ) . Balancing
weights (F0A ,0B ) that depend on (x46>, x0;C4A) are given by:

046> = 0, 00;C4A = 0 : F0,0 = c
(1)
1 c

(1)
2 /_

(0,0)

046> = 0, 00;C4A = 1 : F0,1 = c
(1)
1 c

(0)
2 /_

(0,1)

046> = 1, 00;C4A = 0 : F1,0 = c
(0)
1 c

(1)
2 /_

(1,0)

046> = 1, 00;C4A = 1 : F1,1 = c
(0)
1 c

(0)
2 /_

(1,1)

The function _(0A ,0B) is a factor that accounts for the association, and _(0A ,0B) is identically
equal to 1 if the treatments of ego and alter are independent for each value of the covariates.
The balancing weights F0A ,0B satisfy the balancing property required in Theorem 3.2, i.e.,
c0,0F0,0 = c0,1F0,1 = c1,0F1,0 = c1,1F1,1.
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F.2 Chapter 3 Appendix A2: Proof of Theorem 3.1

We now prove Theorem 3.1. First, the terms related to C (0N ) are treated as explanatory variables,
and the explanatory variables in the blip component are the same as the explanatory variables
in the treatment-free component (xV = xk). According to the argument outlined in Chapter 3
Appendix A1, the standard dWOLS weights provide consistent estimation.

Second, we show that the network balancing condition (3.5) implies the appropriate analogue
of c(x)F(1, x) = (1 − c(x))F(0, x).

We add xN8 , B8,0 to x8, so that the new full set of covariates is considered to be (x, xN , B0),
then define c0 (x, xN , B0) = c0,B0 (x,N , xN ). The network weights satisfy network balancing
conditions (i.e., F (x,N , xN , 0, B0)c0,B0 (x,N , xN ) are the same �(x, xN , |N |) for 0 = 1, 0).
Therefore, we conclude that F (x,N , xN , 0, B0) can be written as F0 (x, xN , B0) for 0 = 0, 1, and
that F0 (x, xN , B0)c0 (x, xN , B0) are the same for F and c subscripts 0 = 0, 1.

Lastly, we show that the network weights have the balancing property for the propensities of 08
if the dependence is on a dimension-reducing function of those explanatory variables (i.e., C (0N8 )).
For any network weights that satisfy network balancing conditions (3.5), if c8,08 ,B8,0 (x8,N8, xN8 ) is
actually a function of B8,0 through C (0N8 ), then F8 (x8,N8, xN8 , 08, B8,0) also will be a function of
B8,0 through C (0N8 ).

We conclude that, therefore, if the balance condition is satisfied for the configuration of
neighbours’ treatments it would be satisfied for the function of the neighbours’ treatments, because
the constant term in the network balancing conditions (3.5) should depend only on the (x, xN )
values and the degree.

F.3 Chapter 3 Appendix A3: An illustrative example of the
balancing weights conditions

This section provides an example illustrating the balancing weights conditions (3.5) and (3.6) and
the choice and computation of the network weights.

Suppose |N8 | = 1 for all 8; this is the scenario of isolated pairs or couples. There are four
possibilities for treatments of one pair: (08, 0N8 ) ∈ {(1, 1), (1, 0), (0, 1), (0, 0)}. For X = (x, xN),
let c1(X) = P(� = 1|X), [1(X) = P(�N = 1|X), thus c0(X) = P(� = 0|X) = 1 − c1(X), and
[0(X) = P(�N = 0|X) = 1 − [1(X). Let cAB denote the network propensity in this pairs case
such that cAB = P(� = A, �N8 = B |X) where A, B = 0, 1. Therefore, we can create weights
that satisfy, c01F01(x8, xN8 ) = c00F00(x8, xN8 ) = c10F10(x8, xN8 ) = c11F11(x8, xN8 ); if the
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two treatment assignments (for ego and alter) are independent, then, [c0(X)[1(X)]F01(X) =
[c0(X)[0(X)]F00(X) = [c1(X)[0(X)]F10(X) = [c1(X)[1(X)]F11(X).

We now demonstrate the choice and computation of the network weights. In the case
of no interference, Wallace and Moodie [2015] recommend the “absolute value” weights,
that is F(0; G) = |0 − E[�|^ = x] |. For binary treatments, these weights are identical to
overlap weights (Li et al. [2018]; Schulz and Moodie [2021]), which are bounded, yield
minimum variance of the nonparametric estimator among all balancing weights, and lead
to exact balance for means of included covariates in a logistic propensity score model. Let
v = ( |01 − E[�1 |^1 = x1] |, ..., |0= − E[�= |^= = x=] |)>; thus, each entry is the dWOLS weight
under no interference, and so the network weight for a network of size = is w = v�4G?[T · ;>6(v)],
where � denotes component-wise multiplication, and T is the adjacency matrix. Therefore, for
8 = 1, 2, ..., =, the 8Cℎ component of w is F8 that is expressed in equation (3.9).

F.4 Chapter 3 Appendix A4a: Model set up of Methods 1 - 3
and regrets values of each scenario in Study 1

In Simulation 3.1 Study 1, we investigated three methods: (1) Method 1, a ‘naive’ analysis, where
we ignore the interference entirely; (2) standard dWOLS, and (3) dWOLS with network weights.
For Scenarios a) and b) where the treatment-free model is mis-specified, we consider outcome
models:

• Method 1:
E[. |- = G] = V0 + V1G + 0(k0 + k1G), with weight F = |0 − E(� | G) |.

• Method 2:
E[. |- = G] = V0 + V1G + V20

0;C4A + V3G0
0;C4A + 046> (k0 + k1G + k20

0;C4A + k3G0
0;C4A), and

with weight F = |046> − P(�46> = 1 | G46>) |.

• Method 3:
E[. |- = G] = V0 + V1G + V20

0;C4A + V3G0
0;C4A + 046> (k0 + k1G + k20

0;C4A + k3G0
0;C4A), and

with network weight F=4C (G) = |046> − E(�46> | G46>) | ∗ |00;C4A − E(�0;C4A | G0;C4A) |.
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Table F.1: Total regret and its standard errors of Methods 1, 2, and 3 when neither (scenario a),
one (scenarios b and c) or both (scenario d) treatment and treatment-free outcome models are
correct in Study 1a (ME: Method).

Total Regret Standard Errors of Total Regret
Scenario = = 200 = = 500 = = 1000 = = 200 = = 500 = = 1000

0

ME1 2.35 0.23 1.11 0.19 0.14 0.11
ME2 3.31 1.87 2.27 0.28 0.12 0.11
ME3 2.29 2.01 2.01 0.24 0.12 0.10

1

ME1 0.91 0.22 0.18 0.28 0.13 0.10
ME2 1.75 1.25 0.60 0.34 0.15 0.09
ME3 1.90 1.23 1.04 0.21 0.14 0.09

2

ME1 0.82 0.39 0.56 0.21 0.14 0.09
ME2 2.00 1.65 2.22 0.24 0.12 0.11
ME3 2.01 1.67 2.25 0.24 0.11 0.09

3

ME1 0.97 1.35 1.38 0.21 0.14 0.10
ME2 1.79 2.67 1.81 0.20 0.16 0.09
ME3 1.85 2.64 1.80 0.20 0.15 0.09
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F.5 Chapter 3 Appendix A4b: Study 1b and Study 1c and their
results

Study 1a demonstrates the dangers of failing to account for interference, and suggests that while
standard dWOLS can account for it, our proposed network weights provide a competitive alternative.
We now demonstrate some of the advantages of network weights over standard dWOLS. First, we
consider scenarios where the treatment-freemodel is more complex in terms of covariates relating to
the alter (Studies 1b and 1c). We consider an outcomemodel of the formE[. |-, -0;C4A , �, �0;C4A] =
- + log( |- |) + -3 + exp(-0;C4A) + �0;C4A (1 + -) + �(−3 + 1.2- + 3�0;C4A + 2-�0;C4A), where we
note that we now have a non-linear term in -0;C4A (In Figure 3.3a DAG 1, .46> depends on -0;C4A).
Like the treatment models setting in Study 1a, both the ego’s and the alter’s treatment models
are correctly specified (or not) at the same time (Study 1b). Building on the idea of splitting
the treatment-free model into ego and alter components, we divide scenarios (a) and (b) into
six new scenarios. The resulting eight scenarios are summarized in Table F.3. Note that, if one
of either TF-ego or TF-alter is mis-specified, then the treatment-free model is mis-specified;
therefore, scenarios 1, 3 and 5 belong to scenario (a), and scenarios 2, 4 and 6 belong to scenario
(b). We surmise that (I) Methods 2 and 3 offer consistent 7 estimators in scenarios 2, 4 - 8,
but the variances of 7̂ from Method 3 are smaller than those from Method 2 (Figure F.1). (II)
An efficiency gain of Method 3 (network weights) produces much higher optimal treatment
rates, specifically in scenarios 2, 5, and 6 (Table F.2). (III) The network weights provide greater
robustness in modeling: Method 3 appears to offer consistent estimators of spillover effect terms
(�0;C4A , �0;C4A-) in scenarios 2, 6 (where the treatment model is correct), but Method 2 does not
in these two scenarios (Figure F.2).

Study 1c We also consider the scenario where the ego’s treatment model is correctly specified
but the alter’s is not, or vice-versa (Study 1c). In this scenario, the true outcome model is the same
as in Study 1b where the non-linear term exp(-0;C4A) is included. However, the true treatment
models are set as: P(�8 = 1 | -8) = expit[−0.25-8 + sin(-8)], and P(�0;C4A8 = 1 | -0;C4A8 ) =
expit[−0.1-0;C4A8 + 0.2sin(-0;C4A8 ) + log( |-0;C4A8 |)]. We note that the true P(�0;C4A = 1|-0;C4A)
model is more complex than the ego’s. In real analysis, we propose the same treatment model for
both ego and alter. Therefore, for the case where the P(�0;C4A = 1|-0;C4A) model is incorrect but
the P(�46> = 1|-46>) is correct, we propose models that only include G, sin(G) terms; for the case
where both treatment models are misspecified, we just include the linear term of covariates in the
model. Results are summarized in the following, where we observe that Methods 2 and 3 also
offer consistent 7 estimators in scenarios 2, 4 - 8 (Figure F.3). The efficiency gain of Method
3 (network weights) still appears to provide higher (but not by much) optimal treatment rates,
specifically in scenarios 2,5, and 6. The greater robustness property of network weights still exists
in scenarios 2 - 8, but also appears in scenario 1: Method 3 offers consistent estimators of spillover
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Figure F.1: Study 1b. Blip function parameter (7) estimates for 1000 simulated datasets via
Methods 2 and 3 when none (scenario 1), one (scenarios 2,3,4,5 and 6), two (scenario 7) or three
(scenario 8) of treatment-free ego (TF-ego), treatment-free alter (TF-alter), and treatment models
are correct. Note that Method 2 (ME2) is above and Method 3 (ME3) is below.
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Figure F.2: Study 1b. Spillover effects parameter (denoted as /) estimates for 1000 simulated
datasets via Methods 2 and 3 when no (scenario 1), one (scenarios 2,3,4,5 and 6), two (scenario 7)
or three (scenario 8) treatment-free ego (TF-ego), treatment-free alter (TF-alter), and treatment
models are correct. Note that Method 2 (ME2) is above and Method 3 (ME3) is below.
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Table F.2: Mean optimal treatment rate and total regret and their standard errors of Methods 1, 2,
and 3 in Study 1b (ME: Method, MOTR: Mean optimal treatment rate, SE: Standard errors).

Scenario (= = 1000) MOTR % SE of MOTR Total regret SE of total regret

a

ME1 63.91 0.0841 -0.24 0.11

1 ME2 81.50 0.0922 2.57 0.14
ME3 81.53 0.0841 1.41 0.16

3 ME2 87.70 0.0746 2.75 0.10
ME3 87.19 0.0756 2.43 0.10

5 ME2 81.33 0.1208 1.45 0.12
ME3 87.40 0.0889 1.79 0.12

b

ME1 66.78 0.0324 2.84 0.12

2 ME2 81.02 0.1200 1.83 0.13
ME3 83.92 0.1027 3.07 0.13

4 ME2 87.93 0.0759 2.75 0.11
ME3 87.43 0.0790 2.43 0.10

6 ME2 82.05 0.1177 3.25 0.14
ME3 87.28 0.0916 3.64 0.13

c
ME1 67.00 0.0311 -0.63 0.12

7 ME2 98.68 0.0117 2.18 0.11
ME3 98.62 0.0124 2.19 0.11

d
ME1 66.80 0.0315 2.36 0.14

8 ME2 98.59 0.0116 2.61 0.12
ME3 98.53 0.0124 2.62 0.11

Table F.3: Summary of analyses 1 to 8 in Study 1b. (Note: TF-ego refers to the treatment-free
model related to ego; TF-alter means the treatment-free model related to the alter, and Treatment
stands for the treatment model. Scenarios 1, 3 and 5 belong to scenario (a), and scenarios 2, 4 and
6 belong to scenario (b))

Scenarios 1 (a) 2 (b) 3 (a) 4 (b) 5 (a) 6 (b) 7(c) 8 (d)
TF-ego 7 7 7 7 3 3 3 3

TF-alter 7 7 3 3 7 7 3 3

Treatment 7 3 7 3 7 3 7 3

7: incorrectly specified 3: correctly specified
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Table F.4: Summary of analyses 1 to 8 in Study 1c. (Note: Treatment stands for the ego’s treatment
model. Treatment-alter stands for the alter’s treatment model. We consider the case where alter’s
treatment models are always mis-specified)

Scenarios 1 (a) 2 (b) 3 (a) 4 (b) 5 (a) 6 (b) 7(c) 8 (d)
TF-ego 7 7 7 7 3 3 3 3

TF-alter 7 7 3 3 7 7 3 3

Treatment 7 3 7 3 7 3 7 3

Treatment-alter 7 7 7 7 7 7 7 7

7: incorrectly specified 3: correctly specified

Figure F.3: Study 1c (the alter’s treatment models are always mis-specified). Blip function
parameter (7) estimates for 1000 simulated datasets via Methods 2 and 3 when no (scenario 1),
one (scenarios 2,3,4,5 and 6), two (scenario 7) or three (scenario 8) of the treatment-free ego
(TF-ego), treatment-free alter (TF-alter), and treatment models are correct. Note that Method 2
(ME2) is above and Method 3 (ME3) is below.

effect terms in scenarios 2, 6 (where the ego’s treatment model is correct); however, Method 2
does not in these two scenarios (Figure F.4).
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Figure F.4: Study 1c (the alter’s treatment models are always mis-specified). Spillover effects
parameter (denoted as /) estimates for 1000 simulated datasets via Methods 2 and 3 when
no (scenario 1), one (scenarios 2,3,4,5 and 6), two (scenario 7) or three (scenario 8) of the
treatment-free ego (TF-ego), treatment-free alter (TF-alter), and treatment models are correct.
Note that Method 2 (ME2) is above and Method 3 (ME3) is below.
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Figure F.5: Longleaf Pines spatial figures and degree summary. The first row presents the Longleaf
Pines point pattern in the real world space, and the density of the Longleaf Pines (the numbers
correspond to the numbers of pines). The second row is the Longleaf pines spatial network where
any two pines less than 5 meters apart are linked, and the degree distribution of the Longleaf Pines
spatial network.

F.6 Chapter 3 Appendix A5a: Longleaf Pines spatial net-
works.

The Longleaf Pines spatial figures and degree summary are shown in Figure F.5. In total 584
nodes (pines) are in the Longleaf Pines spatial network; in simulation Study 2a and Study 2b, 98
nodes with degree equal to 2 are designated as egos.
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F.7 Chapter 3 Appendix A5b: Study 2b and its results, and
additional simulations for extreme or sparse network
weights.

Analogously to Study 2a, we highlight advantages of network weights over standard dWOLS
weights by considering the case where the treatment-free model is more complex in terms of
covariates relating to the alter. In Study 2b, we consider an interference term C8 (0N8 ) =

∑=
;=1 #8;0; ,

and an outcome model of the form E[. |-,XN, �, �N] = 1 + - + -2 + exp(g(XN)) + C (�N) +
C (�N)- + �[k0 + k1- + k2C (�N) + k3-C (�N)]), where we note that we now have a non-linear
term in g8 (XN8 ) =

∑=
;=1 #8;-;/

∑=
;=1 #8; (i.e., in Figure 3.3b DAG 2,.46> depends on XN ). Building

on the idea of splitting the treatment-free model into ego and alter components, we divide scenarios
(a) and (b) into six new scenarios. The resulting eight scenarios are summarized in Table F.3.
It appears that (I) Methods 2 and 3 offer consistent 7 estimators in scenarios 2, 4 - 8, but that
the variances of 7̂ from Method 3 are smaller than those from Method 2 (Figure F.6). (II) The
efficiency gain of Method 3 (network weights) produces much higher optimal treatment rates,
specifically in scenarios 2, 5, and 6 (Table F.2). (III) The greater robustness in modeling property
of network weights is seen: Method 3 always offers consistent estimators of spillover effect terms
(C (�N), C (�N)-) in scenarios 2, 6 (where the treatment model is correct), but Method 2 does not
in these two scenarios (Figure F.7).

Histograms of network absolute value weights and the standard absolute value weights
We now demonstrate the distributions of the network absolute value weights and the standard
absolute value weights, which depends on the degree of the egos. From Figure F.8, for the standard
absolute value weights, more values are distributed between 0.4 and 0.7. However, the network
absolute value weights (with ego’s degree equal to 5 in a BA network) are centred around 0.015.

Additional simulations for extreme or sparse network weights
This section presents the additional simulation figures from the case of the same setting as in
Study 2b — the Erdős-Rényi network with 2000 nodes but not restricted to a narrow band of
degrees of egos (the network weights are extreme and/or sparse). Similarly, Table F.3 indicates
what is correctly specified in each of Scenarios 1 to 8.

To study the case where the network weights are extreme and/or sparse, we chose the Erdős-
Rényi network with 2000 nodes, and did not restrict to a narrow band of degrees of egos. The
network weights distributions are shown in Figure F.9, where two cases were investigated: (I) the
egos’ degrees are either 1 or 4, and (II) the egos’ degrees are either 2 or 5.

In simulation Study 2b, which highlights advantages of network weights over standard dWOLS
weights by considering the case where the treatment-free model is more complex in terms of
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Figure F.6: Study 2b (Erdős-Rényi 2000 nodes). Blip function parameter (7) estimates for 1000
simulated datasets via Methods 2 and 3 when no (scenario 1), one (scenarios 2,3,4,5 and 6), two
(scenario 7) or three (scenario 8) of the treatment-free ego (TF-ego), treatment-free alter (TF-alter),
and treatment models are correct. Note that Method 2 (ME2) is above and Method 3 (ME3) is
below.
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Figure F.7: Study 2b (Erdős-Rényi 2000 nodes). Spillover effects parameter (denoted as /)
estimates for 1000 simulated datasets via Methods 2 and 3 when no (scenario 1), one (scenarios
2,3,4,5 and 6), two (scenario 7) or three (scenario 8) of the treatment-free ego (TF-ego), treatment-
free alter (TF-alter), and treatment models are correct. Note that Method 2 (ME2) is above and
Method 3 (ME3) is below.
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Figure F.8: Histograms of network absolute value weights from BA network with ego’s degree is
5 (left) and the standard absolute value weights (right).

Figure F.9: Histograms of network absolute value weights from ER network (2000 nodes) where
the ego’s degrees are 1 and 4 (left) and 2 and 5 (right).
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covariates relating to the alter, we had investigated eight scenarios (Table F.3) where the egos’
degrees are the same and thus the network weights are well-behaved (are centred around a constant
value). However, in this simulation, the egos’ degrees vary and the network weights have more
extreme values and more near-zero values.

Most results from these scenarios concerning apparently consistent estimation appear similar
to those of Study 2b. That is, for both cases (Cases I and II), both Method 2 and Method 3
provide apparently consistent estimators of blip parameters 7 and Method 3 provides apparently
consistent estimators of spillover parameters / as expected. However, in scenarios where the
alter’s treatment-free component exp(g(XN)) is misspecified, the more highly variable network
weights are associated with low efficiency of the estimators of 7 from both Methods 2 and 3
(Figures F.10 and F.11). Nevertheless, using rescaled weights (dividing the network weight by the
average value of the network weight over all nodes of the same degree) in these mixture cases, we
observe that Method 3 performs well, and better than Method 2 (Figures F.12 and F.13) in terms
of efficiency. Note that these rescaled weights still satisfy the balancing property and reduce the
variability of weights overall, making for more efficient estimation.

Figure F.10 shows 7 estimates and Figure F.11 shows / estimates from the simulation
where the egos’ degrees are either 1 or 4. When the treatment model is correct, in both
Methods 2 and 3 the 7 parameters appear consistently estimated, even when the treatment-free
models are incorrectly specified. However, variances of the estimators of 7 from both
Methods 2 and 3 become larger because the egos’ degrees can vary. Figure F.12 and Figure
F.13 show the blip estimates from the simulation where the egos’ degrees are either 1 or 4
and the network weights are rescaled by dividing the network weight by the average value
of the network weight over all nodes of the same degree). Both the 7 and / parameters
appear consistently estimated when this is predicted by the theory. The variances of the
estimators of7 fromMethod 2 are larger comparedwith those of the estimators of7 fromMethod 3.

F.8 Chapter 3 Appendix A5c: Results of Study 4b.

In this section, Figure F.14 shows the blip estimates from simulation Study 3b, the two-stage
decision estimation for the Longleaf Pine spatial network case. Both the 7 and / parameters are
consistently estimated, even though the treatment-free models are incorrectly specified in both
stages.
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Figure F.10: (Erdős-Rényi 2000 nodes with egos’ degrees either 1 or 4). Blip function parameter
(7) estimates for 1000 simulated datasets via Methods 2 and 3 when no (scenario 1), one
(scenarios 2,3,4,5 and 6), two (scenario 7) or three (scenario 8) of the treatment-free ego (TF-ego),
treatment-free alter (TF-alter), and treatment models are correct. Note that Method 2 (ME2) is
above and Method 3 (ME3) is below.
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Figure F.11: (Erdős-Rényi 2000 nodes with egos’ degrees are either 1 or 4). Spillover effects
parameter (denoted as /) estimates for 1000 simulated datasets via Methods 2 and 3 when
no (scenario 1), one (scenarios 2,3,4,5 and 6), two (scenario 7) or three (scenario 8) of the
treatment-free ego (TF-ego), treatment-free alter (TF-alter), and treatment models are correct.
Note that Method 2 (ME2) is above and Method 3 (ME3) is below.
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Figure F.12: (Erdős-Rényi 2000 nodes with egos’ degrees are either 1 or 4, and using rescaled
weight). Blip function parameter (7) estimates for 1000 simulated datasets via Methods 2 and
3 when no (scenario 1), one (scenarios 2,3,4,5 and 6), two (scenario 7) or three (scenario 8) of
the treatment-free ego (TF-ego), treatment-free alter (TF-alter), and treatment models are correct.
Note that Method 2 (ME2) is above and Method 3 (ME3) is below.
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Figure F.13: (Erdős-Rényi 2000 nodes with egos’ degrees are either 1 or 4, and using rescaled
weight). Spillover effects parameter (denoted as /) estimates for 1000 simulated datasets via
Methods 2 and 3 when no (scenario 1), one (scenarios 2,3,4,5 and 6), two (scenario 7) or three
(scenario 8) of the treatment-free ego (TF-ego), treatment-free alter (TF-alter), and treatment
models are correct. Note that Method 2 (ME2) is above and Method 3 (ME3) is below.
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Figure F.14: Two-stage decision blip parameter estimates for the Longleaf Pine network with 98
egos (Study 3b). Second stage blip estimates are presented in the top row, and those of the first
stage are shown in the bottom row. In both rows, the plots display estimates of k0, k1, k2, k3, b0, b1
from left to right.
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Appendix G

Appendix of Chapter 4

G.1 Proof of Theorem 4.2.1: Balancing property for binary
outcomes

This section presents the proof of Theorem 4.2.1. Building on the proof, the two-step estimation
process of the proposed methods is also shown at the end.

Proof. Let us consider the true model: 6(E[. |�, -]) = 5 (- V) + W(�, -k;7), where . ∈ {0, 1},
and - ∈ R? is a vector of ? covariates; - V ∈ R?V and -k ∈ R?k are two (potentially
identical) subsets of the variables contained in -; � ∈ {0, 1} is the treatment assignment.
Their realized values are H, G, GV, Gk and 0, respectively, and we write the propensity score as
P(� = 1 | G) = c(G). Note that the link function that relates the predictor to the expected value of
the random variable . is denoted as 6(∗). We assume that W(�, -k;7) is correctly specified, and
set W(�, -k;7) = 7>�-k .

In the case that 5 (- V) is linear, as the estimation model assumes, let a latent continuous
outcome defining the observed outcome be .2 = #>- V + 7>�-k + n , where the error term n

could be assumed to follow a logistic distribution conditional on the explanatory variables. This
generates the standard logistic model. However, it is not necessary that n has a logistic distribution.
It could have a standard normal distribution, yielding a probit model, or another reasonable
distribution. The cumulative distribution function of n is the inverse link function, i.e., 6−1(∗).
Define the binary outcome . as a dichotomization of the latent continuous outcome .2, such that
. = I (.2 ≥ 0) = I

(
n ≥ −#>- V − 7>�-k

)
, where I is the indicator function.
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Thus P(. = 1 | G) = P (.2 ≥ 0 | G) = 1 − 6−1(−#>- V − 7>�-k). For example, the
logistic model is P(. = 1 | G) = P (.2 ≥ 0 | G) = 1 − exp(0−#>-V−7>�-k)

1+exp(0−#>-V−7>�-k) =
exp(#>-V+7>�-k)

1+exp(#>-V+7>�-k) .
Therefore,

P(. = H | G) =
exp

[
H(#>- V + 7>�-k)

]
1 + exp

(
#>- V + 7>�-k

) for H = 0, 1,

and the log-likelihood for logistic regression is

! (#,7 | H, G) = log
∏
8

exp
[
H8 (#>- V8 + 7

>�8-
k

8
)
]

1 + exp
(
#>- V

8
+ 7>�8-k8

)
=

∑
8:H8=1
(#>- V

8
+ 7>�8-k8 ) −

∑
8

log
(
1 + exp

(
#>- V

8
+ 7>�8-k8

))
.

Thus, the score function system components are

∑
8

©«H8 −
exp

(
#>- V

8
+ 7>�8-k8

)
1 + exp

(
#>- V

8
+ 7>�8-k8

) ª®®¬ -
V

8
(G.1)

and

∑
8

©«H8 −
exp

(
#>- V

8
+ 7>�8-k8

)
1 + exp

(
#>- V

8
+ 7>�8-k8

) ª®®¬ �8-
k

8
. (G.2)

Given posited outcome regression model&(-, �; #,7) = 6−1(#>- V+7>�-k), the weighted
GLM estimator for (#>,7>)> is obtained from solving the system of estimating equations:∑=
8 *8 ( #̂, 7̂; �8, -8) = 0, that is,

=∑
8

(
-
V

8

�8-
k

8

)
F(�8, -8)

[
.8 − 6−1(7>�8-k8 + #

>- V
8
)
]
=

=∑
8

[
*18 (#, k; �8, -8)
*28 (#, k; �8, -8)

]
= 0 (G.3)

Based on the strong heredity principle (Chipman [1996]), it is required that the treatment-free
model must include the main effects for all covariates in the blip model, that is, the tailoring
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variables should be a subset of the predictive variables (-k ⊆ - V). For simplicity, and without
loss of generality, we assume that -k = - V = - , that is, the covariates in the treatment free and
blip components are the same. Then, we assume that for each 8 independently, -8 for individuals
are independent and identically distributed and are generated first, thereafter �8 followed by .8.
On the one hand, we consider

=∑
8

(*18 −*28) =
=∑
8

(1 − �8)-8F(�8, -8)
[
.8 − 6−1(7>�8-k8 + #

>- V
8
)
]

(G.4)

=

=∑
8

(1 − �8)-8F(�8, -8)
[
.8 − 6−1(#>- V

8
)
]
= 0 (G.5)

where the second equality follows because the only non-zero terms (in equation (G.4)) will be
those for which �8 = 0. Thus, the left hand side of equation (G.5) (or

∑=
8 (*18 −*28)) does not

depend on 7. We note that
∑=
8 (*18 −*28) = 0 can be solved for #, and its solution is denoted by #̂.

The expectation of
∑=
8 (*18 − *28) conditional on (�1, . . . .�=) and (-1, ...-=), that is,∑=

8 (1 − �8)-8F(�8, -8)
[
6−1( 5 (-8)) − 6−1(#>- V

8
)
]
, is not zero unless the true treatment-

free model 5 (-; #) is linear in - with true coefficient #. However, the expectation of∑=
8 (*18 −*28) conditional on (-1, ...-=) is

∑=
8 (1−c(-8))-8F(0, -8)

[
6−1( 5 (-8)) − 6−1(#>- V

8
)
]
,

and if the (unconditional) expectation of
∑=
8 (1 − c(-8))-8F(0, -8)

[
6−1( 5 (-8)) − 6−1(#>- V

8
)
]
,

i.e., =E
[
(1 − c(-))-F(0, -)

[
6−1( 5 (-)) − 6−1(#>- V)

] ]
, is 0 for # = #∗ and if #∗ is unique,

then, according to large sample theory, #̂ tends to #∗ as = → ∞ (White [1982]). Note that the
uniqueness of #∗ is shown in Appendix G.2.

On the other hand, if we consider

=∑
8

*28 =

=∑
8

�8-8F(�8, -8)
[
.8 − 6−1(7>�8-8 + #>-8)

]
, (G.6)

where the only non-zero terms are those for which �8 = 1, then 7̂ can be solved in terms of #̂
from

∑=
8 *28 = 0. In order to show that 7̂ is consistent, we would need to show that the expectation

of
=∑
8

�8-8F(�8, -8)
[
6−1(7>�8-8 + #∗

>
-8) − 6−1(7>�8-8 + 5 (-8))

]
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equals or is close to 0 for general 7. If this is not the case, then the expectation of the equation∑=
8 *28 = 0with # = #̂ and7 = 7̂may approach the equation

∑=
8 *28 = 0with # set equal to #∗ and

7 set equal to a similar limiting value 7∗ as =→∞. The vector 7∗ will satisfy the condition that
the expectation of

∑=
8 �8-8F(�8, -8)

[
6−1(7∗>�8-8 + #∗

>-
8
) − 6−1(7∗>�8-8 + 5 (-8))

]
equals

or is close to 0, but 7∗ will in general be different from the true 7.
Let 6−1′ denote the derivative of the inverse link function 6. Then the expectation of

∑=
8 (*18 −

*28) conditional on (-1, ...-=), that is,
∑=
8 (1− c(-8))-8F(0, -8)

[
6−1( 5 (-8)) − 6−1(#>-8)

]
, can

be written using a Taylor series expansion (function 6−1( 5 (-8)) at the point #>-8) as
=∑
8

(1 − c(-8))-8F(0, -8)
[
6−1′(#>-8) ( 5 (-8) − #>-8) + O[( 5 (-8) − #>-8)2]

]
, (G.7)

where the big O describes the error term in an approximation to the 6−1 function. The nota-
tion O[( 5 (-8) − #>-8)2] means the absolute-value of the error of 6−1( 5 (-8)) − 6−1(#>-8) −
6−1′(#>-8) ( 5 (-8) − #>-8) is at most some constant times ( 5 (-8) − #>-8)2 when 5 (-8) − #>-8
is close enough to 0. Further, the expectation of

∑=
8 *28 conditional on (-1, ...-=) is

=∑
8

c(-8)-8F(1, -8)
[
6−1(7>-8 + 5 (-8)) − 6−1(7>-8 + #>-8)

]
,

which can be written as
=∑
8

c(-8)-8F(1, -8)
[
6−1′(#>-8 + 7>-8) ( 5 (-8) − #>-8) + O[( 5 (-8) − #>-8)2]

]
. (G.8)

Define ^∗(�, -) = 6−1′(#∗>- + 7∗>�- ), where 7∗ is an assumed limiting value for 7̂.
Then if weights are defined to satisfy a new balancing criterion (1 − c(-))F(0, -)^∗(0, -) =
c(-)F(1, -)^∗(1, -), and if the distribution of - is such that the inverse link function is close to
linear for the range of 5 (-) − #∗>- (so that the Taylor expansion error term is small), the fact that
the expectation of G.7 is 0 for # = #∗ means that the expectation of G.8 is close to 0 for # = #∗.
This argument is what was needed to establish the approximate consistency of the corresponding
new estimator of 7.

Therefore, in single-stage decision settings, the algorithm for estimation of 7 is concluded as
follows:
Step 1: Conduct a weighted GLM (e.g., logistic regression) to obtain #̂ and 7̂. Here the weights
are from standard dWOLS weights, such as F(0; G) = |0 − E[�|- = G] |.
Step 2: Compute the new weights that satisfy (1 − c(-))F(0, -)^(0, -) = c(-)F(1, -)^(1, -),
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where ^(�, -) = 6−1′( #̂>- + 7̂>�- ), and 6−1′ is identified based on the link function in Step 1.
For example, the weights can be

F=4F (0; G) = |0 − E[�|- = G] | ∗ ^(1 − �, -).

Step 3: Use the new weights from Step 2, and conduct weighted GLM again, to get a new estimator
˜#, and using this, an approximately consistent estimator ˜7 of 7.

�

Remark: In the proof of Theorem 4.2.1, we show that the consistency of ˜7 depends on the
small error term of the first order Taylor expansion of 6−1 about #>- , evaluated at 5 (-). This
error term will be small when #>- tends to vary in the range where 6−1 is approximately linear.
In practice, as mentioned in the Methodology section, it may be possible to choose the range
of - so that #>- varies in such range, and our estimation will be more precise. Moreover, the
constraint of covariates may have an advantage in terms of the overlap (positivity) assumption
for the treatment distributions, and thus the possibility of designing the study to constrain the
distribution of #>- is worth exploring more.

G.2 Proof of the uniqueness of #∗

In Appendix G.1, in the proof of Theorem 4.2.1, we rely on the uniqueness of #∗ and large sample
theory in White [1982], and conclude that #̂ tends to the unique #∗ as =→∞. Now we are going
to prove the uniqueness of #∗.

Proof. Note that #∗ is defined as

E
[
(1 − c(-))-F3 (0, -)

[
6−1( 5 (-)) − 6−1(#∗>-)

] ]
= 0,

and is the root of an analogue of a (vector) score function:

Y(-; #) = E
[
(1 − c(-))-F3 (0, -)

[
6−1( 5 (-)) − 6−1(#>-)

] ]
.

That is, Y(-; #∗) = 0 with the dWOLS weights that satisfy (1− c(-))F3 (0, -) = c(-)F3 (1, -).
For the continuous outcome where the link function is 6(`) = `, the parameter #∗ from
Y(-; #∗) = 0 can be solved explicitly. In the general case, assuming that differentiation with
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respect to # can be carried through the expectation, then the analogue of the Hessian matrix is

N(#) = mY(-; #)
m#

= −E
[
m
{
(1 − c(-))-F3 (0, -)

[
6−1(#>-)

]}
m#

]
= −E

[
'(0, -)-^(0, -)->

]
,

where ^(�, -) = 6−1′(#>- + 7>�-) and '(0, -) = (1 − c(-))F3 (0, -). Then we have the
following key corollary to show the uniqueness of #∗.

The matrix N(#) is negative semi-definite for any # ∈ R? if the link function is monotone
increasing, that is, ^(0, -) = 6−1′(#>-) > 0 for any #>- .

Proof: for any u ∈ R?, we have

u>N(#)u = −E[
?∑
A

(GADA)2'(0, -)^(0, -)],

where '(0, -) is positive. Further, if the first derivative of 6−1 is always positive, then the above
expression u>N(#)u ≤ 0 for all u ∈ R? and # ∈ R? with equality holding when u = 0. Thus, the
matrix N(#) is negative definite for all # and the corresponding log-likelihood function analogue
is strictly concave.

Therefore #∗ satisfying Y(-; #∗) = 0 would be the unique root. Note that for the linear
treatment-free case, i.e., 5 (-) = #>0 - , then we have #∗ = #0.

Note that our dWGLM approach involves two-step regression to consistently estimate the
parameter of interest. Each step uses GLM for binary outcomes (e.g., logistic regression) to
estimate the parameter. The above argument can be used to show that the first step (logistic)
regression provides unique first stage estimates #̂ and 7̂ for the parameters # and 7. Building
on these first stage estimates and weights equation (4.4), we can get new weights, which
satisfy weights criterion (4.2) and are always positive. Using the same argument as for the
uniqueness of #∗, we can prove the uniqueness of the limiting value #̃∗ of the second step
parameter denoted as #̃∗ when the new weights F=4F are used. Note that, #̃∗ is defined through
E

(
(1 − c(-))-F=4F (0, -)

[
6−1( 5 (-)) − 6−1( #̃∗

>
-)

] )
= 0.

�
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G.3 Derivation of the First-stage True DTR Parameters

In this section, we derive the true values of the first-stage decision rule parameters in terms of
the data generating parameters (Moodie et al. [2014]). Following the notations in Section 4.3.2
(Study 2b), let 52 = \0 + \1-1 + \2$1 + \3�1 + \4$1�1 + \5-2 + i1(-1) + i2(-2), then we have
P(Ỹ1 = 1) = 4G?8C

(
52 + |\6 + \7$2 + \8�1 |+

)
, which equals to

4G?8C
(
52 +$2�1 |q1 |+ +$2(1 − �1) |q2 |+ + (1 −$2)�1 |q3 |+ + (1 −$2) (1 − �1) |q4 |+

)
,

where |G |+ = G ∗ I(G > 0), and q1 = \6 + \7 + \8, q2 = \6 + \7, q3 = \6 + \8, q4 = \6 for
binary variables $2 and �1 in {0, 1}. Furthermore, E($2 | $1, �1) = 4G?8C (X1$1 + X2�1) =
1 − E(1 −$2 | $1, �1), thus, &1(�1, �1) = E(Ỹ1 | �1, �1), which equals to

4G?8C
(
52 + E($2 | �1, �1) [�1 |q1 |+ + (1 − �1) |q2 |+]

+ E(1 −$2 | $1, �1) [�1 |q3 |+ + (1 − �1) |q4 |+]
)
.

Moreover,

4G?8C (X1$1 + X2�1) = $1�14G?8C (X1 + X2) +$1(1 − �1)4G?8C (X1)
(1 − 1) + (1 −$1)�14G?8C (X2) + (1 −$1) (1 − �1)4G?8C (0)
:= $1�1:1 +$1(1 − �1):2 + (1 −$1)�1:3 + (1 −$1) (1 − �1):4,

where :1 = 4G?8C (X1 + X2), :2 = 4G?8C (X1), :3 = 4G?8C (X2), :4 = 4G?8C (0), and �2
1 = �1, (1 −

�1)2 = 1 − �1, �1(1 − �1) = 0. Therefore, we have

;>68C [E(Ỹ1 | ℎ1, 01)] = 52 + |q4 |+ +
(
|q3 |+ − |q4 |+

)
�1

+$1�1:1
(
|q1 |+ − |q3 |+

)
+$1(1 − �1):2

(
|q2 |+ − |q4 |+

)
+ (1 −$1)�1:3

(
|q1 |+ − |q3 |+

)
+ (1 −$1) (1 − �1):4

(
|q2 |+ − |q4 |+

)
.

Therefore, for the true blip parameters 71 = (k10, k11)>, the above equation gives the
coefficient of �1 as

k10 = \3 + |q3 |+ − |q4 |+ + :3
(
|q1 |+ − |q3 |+

)
− :4

(
|q2 |+ − |q4 |+

)
,

and the coefficient of $1�1 as

k11 = \4 + (:1 − :3)
(
|q1 |+ − |q3 |+

)
− (:2 − :4)

(
|q2 |+ − |q4 |+

)
.
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Appendix H

Appendix of Chapter 5

H.1 The double robustness of dWOLS and dWGLM in the
presence of household interference

In this section, considering two-person household interference and aiming to optimize outcomes
of egos, we propose an approach to making treatment decisions for egos, taking into account
the alters’ treatment information. However, we emphasize that our model can also easily be
extended to the household utility case where the optimal decisions for both individuals in the same
household are to be made (See the method proposed in Chapter 5). Note that, in the following
subsections, we demonstrate the models and proof with the notation of a pair or couple (B, A). For
the ego and alter case, without loss of generality, we just need to consider B = 46>, A = 0;C4A , and
0B = 0, 0A = 00;C4A ; then the essence and results are the same. This section is divided into two
subsections: one is for the ego’s continuous outcome and the other is for the ego’s binary outcome.
The double robustness of our methods relies on the balancing property; therefore, for simplicity,
in this section, we primarily present the balancing property theorem for each case and provide
the corresponding proof. In particular, in the second subsection (binary outcome case), we also
present a dWGLM in the presence of household interference.

H.1.1 The double robustness of dWOLS in the presence of household in-
terference

In this section, considering continuous outcomes and household interference, which is illustrated
in DAGs 5.1, we demonstrate the double robustness of dWOLS in a new outcome model scenario.
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Let us consider a pair (B, A) in the same household, and the true continuous-outcome model:

E[. | �B = 0B, �A = 0A , x] = 5 (xV; #) + 0B/>xb + 0A7>xk + 0B0A5>xq, (H.1)

where, as previously discussed, xV are often termed predictive variables to function as increasing
the precision of estimates, and xb , xk , xq are so-called tailoring variables for adapting treatment
decisions to individuals in the same household. They are four (potentially identical) subsets of the
variables contained in ^ℎ, covariates that contain individual information of both B and A in the same
household ℎ; (�B, �A) where �B, �A ∈ {0, 1} is the treatment assignment. Here and subsequently
we assume that the variables in xb , xk , and xq are contained in those of xV. The realized values are
H, xℎ, 0B and 0A , and we write the joint propensity score as P(�B = 0B, �A = 0B | x) = c0B0A (x).
We assume that the interference-based blip function W [(�B, �A), x] is correctly specified, and set
W [(�B, �A), x] = �B/>xb + �A7>xk + �B�A5>xq.
Theorem H.1. Balancing Property with Household Interference for Continuous Outcomes

When the true outcome model satisfies E[. | �B = 0B, �A = 0A , x] = 5 (xV; #) + 0B/>xb +
0A7>xk + 0B0A5>xq, a weighted ordinary least squares regression based on the corresponding
linear model will yield consistent estimators of /, 7 as well as 5 if at least one of the treatment
and treatment-free models is correctly specified, and the weights satisfy

c00F(0, 0, x) = c01F(0, 1, x) = c10F(1, 0, x) = c11F(1, 1, x).

Proof: Given the posited interference-aware outcome regression model
&(-, �B, �A ; #, /,7, 5) = #>- V + �B/>xb + �A7>xk + �B�A5>xq, the weighted OLS
estimator for (#>, />,7>, 5>) is obtained by solving the system of estimating equations:∑�
ℎ *ℎ ( #̂, /̂, 7̂, 5̂; �B

ℎ
, �A

ℎ
, -ℎ) = 0, that is,

�∑
ℎ

©«
-
V

ℎ

�B
ℎ
-
b

ℎ

�A
ℎ
-
k

ℎ

�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®¬
F(�Bℎ, �

A
ℎ, -ℎ)

(
.ℎ − #>- V

ℎ
− �B/>-b

ℎ
− �A7>-k

ℎ
− �B�A5>-q

ℎ

)

=

�∑
ℎ


*1ℎ (#, /,7, 5; �B

ℎ
, �A

ℎ
, -ℎ)

*2ℎ (#, /,7, 5; �B
ℎ
, �A

ℎ
, -ℎ)

*3ℎ (#, /,7, 5; �B
ℎ
, �A

ℎ
, -ℎ)

*4ℎ (#, /,7, 5; �B
ℎ
, �A

ℎ
, -ℎ)

 = 0 (H.2)

We first assume that - V = -b = -k = -q = -; that is, the covariates in the treatment-free and
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blip part are the same. Then, we assume that for each household ℎ independently, -ℎ for each
household is generated first; thereafter, �ℎ = (�Bℎ, �

A
ℎ
) is generated followed by .ℎ. On one hand,

denoting nℎ = .ℎ − #>-ℎ − �B/>-ℎ − �A7>-ℎ − �B�A5>-ℎ, we consider

�∑
ℎ

(*1ℎ −*2ℎ −*3ℎ +*4ℎ) =
�∑
ℎ

(1 − �Bℎ) (1 − �
A
ℎ)-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)nℎ

=

�∑
ℎ

(1 − �Bℎ) (1 − �
A
ℎ)-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

(
.ℎ − #>-ℎ

)
= 0, (H.3)

where the second equality follows because the only non-zero terms (in equation (H.3)) will be
those for which (�B

ℎ
, �A

ℎ
) = (0, 0). Thus, equation (H.3) (i.e., ∑�

ℎ (*1ℎ −*2ℎ −*3ℎ +*4ℎ)), which
only involves with #, can be solved for #, and its solution is

#̂ =

(
�∑
ℎ

(1 − �Bℎ) (1 − �
A
ℎ)F(�

B
ℎ, �

A
ℎ, -ℎ)-ℎ-

>
ℎ

)−1 �∑
ℎ

(1 − �Bℎ) (1 − �
A
ℎ)F(�

B
ℎ, �

A
ℎ, -ℎ)-ℎ.ℎ.

Similarly, we have both

�∑
ℎ

(*2ℎ −*4ℎ) =
�∑
ℎ

(1 − �Aℎ)�
B
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)nℎ

=

�∑
ℎ

(1 − �Aℎ)�
B
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

(
.ℎ − />�Bℎ-ℎ − #>-ℎ

)
= 0, (H.4)

and

�∑
ℎ

(*3ℎ −*4ℎ) =
�∑
ℎ

(1 − �Bℎ)�
A
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)nℎ

=

�∑
ℎ

(1 − �Bℎ)�
A
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

(
.ℎ − 7>�Aℎ-ℎ − #>-ℎ

)
= 0, (H.5)

where the second equality follows because the only non-zero terms in Equations (H.4) and (H.5)
will be those for which (�B

ℎ
, �A

ℎ
) = (1, 0) and (�B

ℎ
, �A

ℎ
) = (0, 1), respectively.
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Conditional on both treatments and covariates, i.e., (�B1, �
A
1, ..., �

B
�
, �A

�
) and (-1, ...-�), the

expectation of
∑�
ℎ (*1ℎ−*2ℎ−*3ℎ+*4ℎ) is

∑�
ℎ (1−�Bℎ) (1−�

A
ℎ
)-ℎF(�Bℎ, �

A
ℎ
, -ℎ)

(
5 (-

ℎ
) − #>-ℎ

)
,

and it is not zero unless the true treatment-free model 5 (-; #) is linear in - with true
coefficient #. However, the expectation of

∑�
ℎ (*1ℎ − *2ℎ − *3ℎ + *4ℎ) conditional on

(-1, ...-=) is
∑�
ℎ c

00(-ℎ)-ℎF(0, 0, -ℎ)
(
5 (-

ℎ
) − #>-

ℎ

)
, and if the unconditional expectation of∑�

ℎ c
00(-ℎ)-ℎF(0, 0, -ℎ)

(
5 (-

ℎ
) − #>-

ℎ

)
, �E-

[
c00(-)-F(0, 0, -)

(
5 (-) − #>-

) ]
, is 0 for

# = #∗, then, according to the large sample theory approximation, #̂ tends to converge to #∗ as
� →∞ (White [1982]).

In addition, we consider
∑�
ℎ (*2ℎ − *4ℎ) =

∑�
ℎ (1 −

�A
ℎ
)�B

ℎ
-ℎF(�Bℎ, �

A
ℎ
, -ℎ)

(
.ℎ − />�Bℎ-ℎ − #>-ℎ

)
, where the only non-zero terms are those for

which (�B
ℎ
, �A

ℎ
) = (1, 0), then /̂ can be solved in terms of #̂ from

∑�
ℎ (*2ℎ −*4ℎ) = 0. Similarly,

considering
∑�
ℎ (*3ℎ −*4ℎ) =

∑�
ℎ (1 − �Bℎ)�

A
ℎ
-ℎF(�Bℎ, �

A
ℎ
, -ℎ)

(
.ℎ − 7>�Aℎ-ℎ − #>-ℎ

)
, we can

solve 7̂ in terms of #̂ from
∑�
ℎ (*3ℎ −*4ℎ) = 0.

Note that, from the dWOLS weights criterion c00F(0, 0, -ℎ) = c10F(1, 0, -ℎ), the expectation
of

∑�
ℎ (*2ℎ−*4ℎ) conditional on (-1, ...-�), that is,

∑�
ℎ c

10(-ℎ)-ℎF(1, 0, -ℎ)
(
5 (-

ℎ
) − #>-ℎ

)
,

equals
∑�
ℎ c

00(-ℎ)-ℎF(0, 0, -ℎ)
(
5 (-

ℎ
) − #>-ℎ

)
, where the unconditional expectation of∑�

ℎ c
00(-ℎ)-ℎF(0, 0, -ℎ)

(
5 (-

ℎ
) − #>-ℎ

)
is 0 for # = #∗ and for any /. The equation∑�

ℎ (*2ℎ − *4ℎ) = 0 with # set equal to #̂ will approach the equation
∑�
ℎ (*2ℎ − *4ℎ) = 0

with # set equal to #∗ as � → ∞. Correspondingly, building on weights criterion
c00F(0, 0, -ℎ) = c01F(0, 1, -ℎ), the equation

∑�
ℎ (*3ℎ − *4ℎ) = 0 with # set equal to #̂

will approach the equation
∑�
ℎ (*3ℎ −*4ℎ) = 0 with # set equal to #∗ as � →∞.

Finally, we consider

�∑
ℎ

(*4ℎ) =
�∑
ℎ

�Bℎ�
A
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

(
.ℎ − #>- V

ℎ
− �B/>-b

ℎ
− �A7>-k

ℎ
− �B�A5>-q

ℎ

)
,

where the only non-zero terms are those for which (�B
ℎ
, �A

ℎ
) = (1, 1). Then 5̂ can be solved in terms

of /̂ , 7̂ , and #̂ from
∑�
ℎ *2ℎ = 0. Analogously to previous analysis, from the dWOLSweights crite-

rion c00F(0, 0, -ℎ) = c11F(1, 1, -ℎ), the expectation of
∑�
ℎ *4ℎ conditional on (-1, ...-ℎ), that is,∑�

ℎ c
11(-ℎ)-ℎF(1, 1, -ℎ)

(
5 (-

ℎ
) − #>-ℎ

)
, equals

∑�
ℎ c

00(-ℎ)-ℎF(0, 0, -ℎ)
(
5 (-

ℎ
) − #>-ℎ

)
,

where the unconditional expectation of
∑�
ℎ c

00(-ℎ)-ℎF(0, 0, -ℎ)
(
5 (-

ℎ
) − #>-ℎ

)
is 0 for # = #∗

and for any 5. The equation
∑�
ℎ *4ℎ = 0 with # set equal to #̂ will approach the equation∑�

ℎ *4ℎ = 0 with # set equal to #∗ as � →∞.
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We find estimators ( #̂>, /̂>, 7̂>, 5̂>) through solving the system of estimating equations∑�
ℎ *ℎ ( #̂, 7̂; �ℎ, -ℎ) = 0. Supposing the treatment-free model 5 (- V; #) is mis-specified,

we now show that ( #̂>, /̂>, 7̂>, 5̂>) solving the estimating equations (H.2) converges in
probability to (#∗>, />,7>, 5>), where #∗ is the solution to (unconditional expectation)
E

[
c00(-))-F(0, 0, -)

(
5 (-) − #∗>-

) ]
= 0. Because #̂

?
→ #∗, then from the theory of

M-estimation (Huber [2004], Geer and van de Geer [2000], and Tsiatis [2019]), under regularity
conditions, this follows if the system of estimating functions corresponding to estimating equations
(H.2) has a mean of zero when evaluated at (#∗>, />,7>, 5>); that is,

E[* (#∗, /,7, 5; �B, �A , -)] = E


©«

-

�B-

�A-

�B�A-

ª®®®¬F(�
B, �A , -)n


= E


*1(#∗, /,7, 5; �B, �A , -)
*2(#∗, /,7, 5; �B, �A , -)
*3(#∗, /,7, 5; �B, �A , -)
*4(#∗, /,7, 5; �B, �A , -)

 = 0;

where n =
(
. − #∗>- − />�B- − 7>�A- − 5>�B�A-

)
.

Equivalently,

E


*1 −*2 −*3 +*4

*2 −*4
*3 −*4
*4

 = E

©«
(1 − �B) (1 − �A)
(1 − �A)�B
(1 − �B)�A
�A�B

ª®®®¬ -F(�
B, �A , -)n

 = 0. (H.6)

Applying iterated conditional expectations, conditioning on

(�B, �A , -), E


©«
(1 − �B) (1 − �A)
(1 − �A)�B
(1 − �B)�A
�A�B

ª®®®¬ -F(�
B, �A , -)n

 in (H.6) is

E


©«
(1 − �B) (1 − �A)
(1 − �A)�B
(1 − �B)�A
�A�B

ª®®®¬ -F(�
B, �A , -)

(
5 (-) − #∗>-

) . Then, taking conditional expectation

203



with respect to (�B, �A) given - , we have

E


c00(-)-F(0, 0, -)

(
5 (-) − #∗>-

)
c10(-)-F(1, 0, -)

(
5 (-) − #∗>-

)
c01(-)-F(0, 1, -)

(
5 (-) − #∗>-

)
c11(-)-F(1, 1, -)

(
5 (-) − #∗>-

)
 . (H.7)

By definition of #∗, the first expectation in (H.7) is zero; then the second to the fourth
expectations in (H.7) are also zeros if the interference-aware dWOLS weights criterion, that
is, c00F(0, 0, -) = c01F(0, 1, -) = c10F(1, 0, -) = c11F(1, 1, -), is fulfilled and the joint
propensity score is correctly specified.

In the case of - V = -b = -k = -q = - , we conclude that /̂, 7̂, 5̂ solving the system of
estimating equations (H.2) is a consistent estimator for the true values /, 7 5, respectively, if
either the treatment-free model or the joint propensity model is correctly specified. The case
where -b , -k , and -q are subsets of - V can be handled analogously to the case where xk is a
subset of xV in Chapter 3.

H.1.2 The double robustness of dWGLM in the presence of household
interference

In the case of binary outcomes, we assume that the true model is

6 [P(. = 1 | x, �B, �A ; #, /,7, 5)] = 5 (xV) + �B/>xb + �A7>xk + �B�A5>xq, (H.8)

for an arbitrary treatment-free function 5 (xV). However, for estimation we employ an interference-
aware generalized linear model in which:

6 [P(. = 1 | x, �B, �A ; #, /,7, 5)] = #>xV + �B/>xb + �A7>xk + �B�A5>xq,

where 6 is the link function for the binary outcomes.

Analogously to the non-interference binary outcome analysis of Chapter 4, we have the
following theorem:

Theorem H.2. Balancing Property with Household Interference for Binary Outcomes

When the true outcome model satisfies P[. = 1 | �B = 0B, �A = 0A , x] = 5 (xV; #) + 0B/>xb +
0A7>xk + 0B0A5>xq, a weighted ordinary least squares regression based on the corresponding
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linear model will yield (approximately) consistent estimators of /, 7 as well as 5 if at least one of
the treatment and treatment-free models is correctly specified, and the weights satisfy

c00F(0, 0, x)^(0, 0) = c01F(0, 1, x)^(0, 1) = c10F(1, 0, x)^(1, 0) = c11F(1, 1, x)^(1, 1),

where ^(0B, 0A) = 6−1′([) and 6−1′([) is the first derivative of the inverse link function (i.e.,
6−1′([) = 36−1 ([)

3[
), [(0B, 0A) = #∗>xV + /∗>0Bxb + 7∗>0Axk + 5∗>0B0Axq, and #∗, /∗, 7∗ and

5∗ are defined through

E


c00(x)xF803 (0, 0, x)

[
6−1( 5 (x)) − 6−1([(0, 0))

]
c10(x)xF803 (1, 0, x)

[
6−1( 5 (x) + /∗>xb) − 6−1([(1, 0))

]
c01(x)xF803 (0, 1, x)

[
6−1( 5 (x) + 7∗>xk) − 6−1([(0, 1))

]
c11(x)xF803 (1, 1, x)

[
6−1( 5 (x) + /∗>xb + 7∗>xk + 5∗>xq) − 6−1([(1, 1))

]
 = 0,

where F803 represents interference-aware dWOLS weights, which satisfy c00F(0, 0, x) =
c01F(0, 1, x) = c10F(1, 0, x) = c11F(1, 1, x).

Based on the weights derivation of the binary outcomes in Chapter 4 (Theorem 4.1), we can
conclude that the corresponding interference-aware binary-outcome overlap-type weights needed
for (approximate) consistency are:

F(0B, 0A , x) ∝ c
00c10c01c11

c0
B0A

× ^(0, 0, x)^(1, 0, x)^(0, 1, x)^(1, 1, x)
^(0B, 0A , x) , for 0B = 0, 1; 0A = 0, 1.

If there is no association between treatments, then the overlap-type weights can be simplified as:
F(0B, 0A ; x) = |0B − E[�|xB; "̂] | ∗ |0A − E [�A |xA ; "̂] | ∗ ^A (1 − 0B, x , 1 − 0A).

Proof: To prove Theorem H.2, the whole process is similar to the proof of Theorem H.1, but
the spirit depends on the proof of Theorem 4.1 in Appendix G.1. Given the posited outcome
regression model &(-, �B, �A ; #, /,7, 5) = 6−1(#>- V + �B/>-b + �A7>-k + �B�A5>-q), the
weighted GLM estimator for (#>, />,7>, 5>)> is obtained by solving the system of estimating
equations:

∑�
ℎ *ℎ ( #̂, /̂, 7̂, 5̂; �B

ℎ
, �A

ℎ
, -ℎ) = 0, that is,
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�∑
ℎ

©«
-
V

ℎ

�B
ℎ
-
b

ℎ

�A
ℎ
-
k

ℎ

�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®¬
F(�Bℎ, �

A
ℎ, -ℎ)

[
.ℎ − 6−1

(
#>- V

ℎ
− �B/>-b

ℎ
− �A7>-k

ℎ
− �B�A5>-q

ℎ

)]

=

�∑
ℎ


*1ℎ (#, /,7, 5; �B

ℎ
, �A

ℎ
, -ℎ)

*2ℎ (#, /,7, 5; �B
ℎ
, �A

ℎ
, -ℎ)

*3ℎ (#, /,7, 5; �B
ℎ
, �A

ℎ
, -ℎ)

*4ℎ (#, /,7, 5; �B
ℎ
, �A

ℎ
, -ℎ)

 = 0

First, denoting nℎ = .ℎ − 6−1
(
#>- V

ℎ
− �B/>-b

ℎ
− �A7>-k

ℎ
− �B�A5>-q

ℎ

)
and again for

simplicity assuming - V = -b = -k = -q = - , we consider

�∑
ℎ

(*1ℎ −*2ℎ −*3ℎ +*4ℎ) =
�∑
ℎ

(1 − �Bℎ) (1 − �
A
ℎ)-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)nℎ

=

�∑
ℎ

(1 − �Bℎ) (1 − �
A
ℎ)-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

[
.ℎ − 6−1 (

#>-ℎ
) ]
= 0,

which is only related to #. Thus, it can be solved for #̂. According to large sample
theory, #̂ tends to converge to #∗ as � → ∞ (White [1982]), where #∗ is defined as
�E-

[
c00(-)-F(0, 0, -)

(
6−1( 5 (-)) − 6−1(#∗>- )

) ]
= 0 .

Then, we consider

�∑
ℎ

(*2ℎ −*4ℎ) =
�∑
ℎ

(1 − �Aℎ)�
B
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)nℎ

=

�∑
ℎ

(1 − �Aℎ)�
B
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

[
.ℎ − 6−1 (

/>�Bℎ-ℎ + #
>-ℎ

) ]
= 0,
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and

�∑
ℎ

(*3ℎ −*4ℎ) =
�∑
ℎ

(1 − �Bℎ)�
A
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)nℎ

=

�∑
ℎ

(1 − �Bℎ)�
A
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

[
.ℎ − 6−1 (

7>�Aℎ-ℎ + #
>-ℎ

) ]
= 0,

which can be solved for /̂ and 7̂, respectively, in terms of #̂.
To show that /̂ and 7̂ are (approximately) consistent, wewould need to show that the expectation

of

�∑
ℎ

(1 − �Aℎ)�
B
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

[
6−1(/>�Bℎ-ℎ + #

∗>-ℎ) − 6
−1(/>�Bℎ-ℎ + 5 (-ℎ))

]
,

and

�∑
ℎ

(1 − �Bℎ)�
A
ℎ-ℎF(�

B
ℎ, �

A
ℎ, -ℎ)

[
6−1(7>�Aℎ-ℎ + #

∗>-ℎ) − 6
−1(7>�Aℎ-ℎ + 5 (-ℎ))

]
,

equals or is close to 0 for general / and 7.
Again, let 6−1′ denote the derivative of the inverse link function 6. Then

the expectation of
∑�
ℎ (*1ℎ − *2ℎ − *3ℎ + *4ℎ) conditional on (-1, ...-�), that is,∑�

ℎ c
00-ℎF(0, 0, -ℎ)

[
6−1( 5 (-ℎ)) − 6−1 (

#>-ℎ
) ]
, can be written using a Taylor series expansion

(function 6−1( 5 (-ℎ)) at the point #>-ℎ) as

�∑
ℎ

c00-ℎF(0, 0, -ℎ)
[
6−1′(#>-ℎ) ( 5 (-ℎ) − #>-ℎ) + O[( 5 (-ℎ) − #>-ℎ)2]

]
, (H.9)

where the big O describes the error term in an approximation to the 6−1 function. The notation
O[( 5 (-ℎ) − #>-ℎ)2] means the absolute-value of the error of 6−1( 5 (-ℎ)) − 6−1(#>-ℎ) −
6−1′(#>-ℎ) ( 5 (-ℎ)−#>-ℎ) is at most some constant times ( 5 (-ℎ)−#>-ℎ)2 when 5 (-ℎ)−#>-ℎ
is close enough to 0. Further, the expectations of

∑�
ℎ (*2ℎ −*4ℎ) and

∑�
ℎ (*3ℎ −*4ℎ) conditional

on (-1, ..., -�) are
=∑
ℎ

c10-ℎF(1, 0, -ℎ)
[
6−1(/>-ℎ + 5 (-ℎ)) − 6−1(/>-ℎ + #>-ℎ)

]
,
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and
=∑
ℎ

c01-ℎF(0, 1, -ℎ)
[
6−1(7>-ℎ + 5 (-ℎ)) − 6−1(7>-ℎ + #>-ℎ)

]
,

which can be written as
=∑
ℎ

c10-ℎF(1, 0, -ℎ)
[
6−1′(#>-ℎ + />-ℎ) ( 5 (-ℎ) − #>-ℎ) + O[( 5 (-ℎ) − #>-ℎ)2]

]
. (H.10)

and
=∑
ℎ

c01-ℎF(0, 1, -ℎ)
[
6−1′(#>-ℎ + 7>-ℎ) ( 5 (-ℎ) − #>-ℎ) + O[( 5 (-ℎ) − #>-ℎ)2]

]
.

(H.11)

A similar process is followed for
∑�
ℎ *4ℎ, and its expectation conditional on (-1, ...-�) is

=∑
ℎ

c11-ℎF(1, 1, -ℎ)
[
6−1(/>-ℎ + 7>-ℎ + 5>-ℎ + 5 (-ℎ))

− 6−1(/>-ℎ + 7>-ℎ + 5>-ℎ + #>-ℎ)
]
,

which can be written as
=∑
ℎ

c11-ℎF(1, 1, -ℎ)
[
6−1′(#>-ℎ + />-ℎ + 7>-ℎ + 5>-ℎ) ( 5 (-ℎ) − #>-ℎ)

+ O[( 5 (-ℎ) − #>-ℎ)2]
]
.

(H.12)

Therefore, we can define ^∗(�B, �A , -) = 6−1′(#∗>- + /∗>�B- + 7∗>�A- + 5∗>�B�A- ),
where /∗, 7∗, and 5∗ are assumed to be limiting values for /̂, 7̂ and 5̂, respectively.
Then if weights are defined to satisfy a new balancing criterion c00F(0, 0, -)^∗(0, 0, -) =
c10F(1, 0, -)^∗(1, 0, -) = c01F(0, 1, -)^∗(0, 1, -) = c00F(1, 1, -)^∗(1, 1, -), and if the distri-
bution of - is such that the inverse link function is close to linear for the range of 5 (-) − #∗>-
(so that the Taylor expansion error term is small), the fact that the expectation of (H.9) is 0 for
# = #∗ means that the expectations of (H.10), (H.11), and (H.12) are also close to 0 for # = #∗.
This argument establishes the approximate consistency of the corresponding new estimator of /,
7, and 5.
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. 46>

Figure H.1: Directed acyclic graphs of interference analysis: dWGLM with interference two-stage
decision problems.

Multiple-stage decisions

For the multiple-stage decision problem, like many DTR estimation methods, we use backward
induction, solving the multiple-stage problems recursively beginning with the final stage. The
causal diagram for the two-stage treatment decisions with binary outcomes in the presence of
interference is presented in Figure (H.1).

As we move backwards through the stages we construct pseudo-outcomes, which are the
potential outcomes if the patients were treated - possibly contrary to fact - optimally at subsequent
stages. Therefore, for the multistage decision analysis, in the presence of household interference,
the dWGLM procedure could be implemented by the following steps at each stage of the analysis,
starting from the last stage  and working backwards towards the first stage (without loss of
generality, we set B = 46>, A = 0;C4A, and 0B = 0, 0A = 00;C4A):

• Step 1: Construct the stage 9 pseudo-outcome: set Ỹ9 = H if 9 =  . Otherwise, use prior
estimates #̂ and 7̂

9+1
= (7̂ 9+1, ..., 7̂ ) to randomly generate Ỹ9 , which takes the value 1
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with probability:

P(Ỹ9 = 1) = 6−1
(
6[P(. = 1 | h , 0 , 00;C4A ; #̂ , 7̂ )]

+
 ∑

:= 9+1

[
W: (hk: , 0̂

>?C

:
, 00;C4A: ; 7̂: ) − W: (h

k

:
, 0: , 0

0;C4A
: ; 7̂: )

]ª®¬ ,
' times, namely, Ỹ1

9
, Ỹ2

9
, ..., Ỹ'

9
.

• Step 2: Specify the stage 9 treatment model E
[
� 9 |hU9 ;" 9

]
. The treatment model parameters

" 9 (estimated, for example, via logistic regression) are used to compute a weight F 9 , such
as F 9 =

���0 9 − E [
� 9 |hU9 ; "̂ 9

] ��� ∗ ���00;C4A9
− E

[
�0;C4A
9
|hU,0;C4A
9

; "̂0;C4A9

] ���.
• Step 3: Specify the stage 9 treatment-free and blip models, and perform a weighted
generalized linear model of ỸA

9
on the terms in the treatment-free and blip models, using

weights from Step 2 to get estimates #̂>;3,A9 , 7̂>;3,A9 , V̂>;3,A
9 ,0;

and k̂>;3,A
9 ,0;

for A = 1, ..., '; that is,
for each time of the total ', use the model

6(E[ỸA
9
| 0 9 , 00;C4A9 , h 9 ; # 9 ,7 9 ]) = #>9 h

V

9
+ V 9 ,0;00;C4A9 + 7>9 0 9h

k

9
+ 0 9k 9 ,0;00;C4A9 .

• Step 4: Use #̂
>;3,A

9 , 7̂>;3,A9 , V̂>;3,A
9 ,0;

and k̂>;3,A
9 ,0;

from Step 3 to compute ^A (0 9 , h 9 , 00;C4A9
) =

6−1 ′ ( #̂>;3,A
>

9 hV
9
+ V̂>;3,A

9 ,0;
00;C4A
9
+ 7̂>;3,A

>

9 0 9h
k

9
+ 0 9 k̂>;3,A9 ,0;

00;C4A
9
), where 6−1 ′ is identified based

on the link function in Step 3. Then, construct the new weights F=4F,A
9
(0 9 , 00;C4A9

; h 9 ) =
|0 9 − E[� 9 |hU9 ] | ∗

���00;C4A9
− E

[
�0;C4A
9
|hU,0;C4A
9

; "̂0;C4A9

] ��� ∗ ^A (1 − 0 9 , h 9 , 1 − 00;C4A9
).

• Step 5: Perform a weighted GLM with the new weights (i.e., F=4F,A
9
(0 9 , 00;C4A9

; h 9 )) to
get revised estimates #̂

A

9 , 7̂
A

9 , V̂A9 ,0; and k̂
A
9 ,0;

. Estimate 7 9 by 7̂ 9 = '
−1 ∑

A 7̂
A

9 and k 9 ,0;
by k̂ 9 ,0; = '−1 ∑

A k̂
A
9 ,0;

, then use parameter estimators 7̂ 9 and k̂ 9 ,0; to construct the
9 Cℎ stage optimal treatment rule, which is ?A4B2A814 0 9 = 1 8 5 7̂

>
9 N

k

9
+ k̂ 9 ,0;00;C4A9

>

0; Cℎ4= ?A4B2A814 0 9 = 0 >Cℎ4AF8B4.

• Step 6: Return to Step 1 and analyze stage 9 − 1 if there are more stages to analyze.

In this section, considering continuous and binary outcomes, and the corresponding household
interference outcome models (H.1) and (H.8), we provided two theorems for the doubly robust

210



estimation of the blip parameters in these two outcome models. These models can be utilized
to make decisions not only for the ego (individual B in the pair (B, A) case) given the fixed alter
(individual A), but also for both of them, i.e., for a pair in the same household.
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H.2 Proof of Theorem 5.1

In this Appendix section, we will prove Theorem 5.1. We assume that the ordinal outcome *ℎ
that takes the value 2 follows a multinomial distribution that*∗

ℎ
∼ <D;C8=><(0ℎ, 1), where*∗ is

“one-hot” encoded as a �−vector with a 1 at the 2th entry and 0 otherwise. Then, the likelihood
function is:

P
(
[∗ℎ = u∗ℎ

)
=

∏
2

c
D∗
ℎ2

ℎ2
, 5 >A 2 = 1, 2, ..., �,

where cℎ2 = P(*ℎ = 2). In our� = 3 case, building on the assumed POM (5.8) and denoting [1ℎ =
Z1− #>xVℎ −0

B/>xb
ℎ
−0A7>xk

ℎ
−0B0A5>xq

ℎ
and [2ℎ = Z2− #>xVℎ −0

B/>xb
ℎ
−0A7>xk

ℎ
−0B0A5>xq

ℎ
,

then we have

cℎ1 = P(*ℎ = 1 | 0B, 0A , xℎ) = 6−1 [[1ℎ]
cℎ2 = P(*ℎ = 2 | 0B, 0A , xℎ) = 6−1 [[2ℎ] − 6−1 [[1ℎ]
cℎ3 = P(*ℎ = 3 | 0B, 0A , xℎ) = 1 − 6−1 [[2ℎ],

where 6−1 is the inverse of the link function. However, we assume that the true POMmodel has [1ℎ =
Z1− 5 (xVℎ)−0

B/>xb
ℎ
−0A7>xk

ℎ
−0B0A5>xq

ℎ
and [2ℎ = Z2− 5 (xVℎ)−0

B/>xb
ℎ
−0A7>xk

ℎ
−0B0A5>xq

ℎ
,

for an arbitrary treatment-free function 5 (xV
ℎ
). Denoting the nuisance parameters as )1 = (' , #)

and the parameters of interest as )2 = (/,7, 5), the log-likelihood function is

ℓ ()1, )2; u∗) =
∑
ℎ

∑
2

D∗ℎ2 log cℎ2

=
∑
ℎ

∑
2

� (Dℎ = 2) log cℎ2 .

Denoting ) = ()1, )2) as the whole parameter in POM (5.8), then the corresponding score
function system components are∑

ℎ

∑
2

� (Dℎ = 2) (cℎ2)−1mcℎ2/m) .

We first give the unweighted score function system. In particular, for our case we have three
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components of the score estimation equation system, which are

∑
ℎ

� (Dℎ = 1) (6−1 [[1ℎ])−16−1′[[1ℎ]

©«

1
0
−- V

ℎ

−�B
ℎ
-
b

ℎ

−�A
ℎ
-
k

ℎ

−�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®®®®®¬

∑
ℎ

� (Dℎ = 2) (6−1 [[2ℎ] − 6−1 [[1ℎ])−1


6−1′[[2ℎ]

©«

0
1
−- V

ℎ

−�B
ℎ
-
b

ℎ

−�A
ℎ
-
k

ℎ

−�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®®®®®¬
− 6−1′[[1ℎ]

©«

1
0
−- V

ℎ

−�B
ℎ
-
b

ℎ

−�A
ℎ
-
k

ℎ

−�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®®®®®¬


,

−
∑
ℎ

� (Dℎ = 3) (1 − 6−1 [[2ℎ])−16−1′[[2ℎ]

©«

0
1
−- V

ℎ

−�B
ℎ
-
b

ℎ

−�A
ℎ
-
k

ℎ

−�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®®®®®¬
,

respectively. That is, the score estimation equation system is

∑
ℎ

(1ℎ

©«

1
0
−- V

ℎ

−�B
ℎ
-
b

ℎ

−�A
ℎ
-
k

ℎ

−�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®®®®®¬
+

∑
ℎ

(2ℎ

©«

0
1
−- V

ℎ

−�B
ℎ
-
b

ℎ

−�A
ℎ
-
k

ℎ

−�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®®®®®¬
= 0, (H.13)
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where (1ℎ and (2ℎ are defined as{
(1ℎ :=

[
� (Dℎ = 1) (6−1 [[1ℎ])−1 − � (Dℎ = 2) (6−1 [[2ℎ] − 6−1 [[1ℎ])−1] 6−1′[[1ℎ]

(2ℎ :=
[
� (Dℎ = 2) (6−1 [[2ℎ] − 6−1 [[1ℎ])−1 − � (Dℎ = 3) (1 − 6−1 [[2ℎ])−1] 6−1′[[2ℎ] .

Vertically, there are two major components of the POM score equation system in (H.13). One
of the components is the top two equations associated with Z1 and Z2, and the other is the bottom
equations related to (#, /,7, 5). The top two rows yield ∑

ℎ (1ℎ = 0 and
∑
ℎ (2ℎ = 0.

Further, for convenience, we denote by 1ℎ = (11ℎ, 12ℎ)> the vector
(−(1ℎ/((1ℎ + (2ℎ) ,−(2ℎ/((1ℎ + (2ℎ))>. In addition, considering the balancing weights,
we can write the weighted analogues of (H.13) as:

∑
ℎ

((1ℎ + (2ℎ) F(�Bℎ, �
A
ℎ, -ℎ)

©«

1ℎ

-
V

ℎ

�B
ℎ
-
b

ℎ

�A
ℎ
-
k

ℎ

�B
ℎ
�A
ℎ
-
q

ℎ

ª®®®®®®¬
=

∑
ℎ

©«
+0ℎ
+1ℎ
+2ℎ
+3ℎ
+4ℎ

ª®®®®®¬
= 0;

where ∑
ℎ

+0ℎ =
∑
ℎ

(
(1ℎ
(2ℎ

)
F(�Bℎ, �

A
ℎ, -ℎ) = 0

are additional equations that are used for solving Z1, Z2. Now, for simplicity, we assume that Z1
and Z2 are known. (In the implementation of the overall estimation procedure, these "known"
values would be replaced by preliminary estimates.)

If we focus on the logit link, that is, 6−1(C) = [1 + exp(−C)]−1, then we have some properties,
such as 6−1′(C) = 6−1(C) [1 − 6−1(C)] or 6−1′(C) = 6−1(C)6−1(−C), where [1 − 6−1(C)] = 6−1(−C).
Thus, we have � (Dℎ = 1) (6−1 [[1ℎ])−16−1′[[1ℎ] = � (Dℎ = 1) (1 − 6−1 [[1ℎ]), and � (Dℎ = 3) (1 −
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6−1 [[2ℎ])−16−1′[[2ℎ] = � (Dℎ = 3)6−1 [[2ℎ]. In addition, we also have

� (Dℎ = 2)
(
6−1 [[2ℎ] − 6−1 [[1ℎ]

)−1 (
6−1′[[2ℎ] − 6−1′[[1ℎ]

)
=� (Dℎ = 2)

(
6−1 [[2ℎ] − 6−1 [[1ℎ]

)−1 (
6−1 [[2ℎ] (1 − 6−1 [[2ℎ]) − 6−1 [[1ℎ] (1 − 6−1 [[1ℎ])

)
=� (Dℎ = 2)

(
6−1 [[2ℎ] − 6−1 [[1ℎ]

)−1 (
6−1 [[2ℎ] − 6−12 [[2ℎ] − 6−1 [[1ℎ] + 6−12 [[1ℎ]

)
=� (Dℎ = 2)

(
6−1 [[2ℎ] − 6−1 [[1ℎ]

)−1 (
6−1 [[2ℎ] − 6−1 [[1ℎ] + 6−12 [[1ℎ] − 6−12 [[2ℎ]

)
=� (Dℎ = 2)

(
6−1 [[2ℎ] − 6−1 [[1ℎ]

)−1 (
6−1 [[2ℎ] − 6−1 [[1ℎ]

) (
1 − 6−1 [[1ℎ] − 6−1 [[2ℎ]

)
=� (Dℎ = 2)

(
1 − 6−1 [[1ℎ] − 6−1 [[2ℎ]

)
.

Thus, we have

(1ℎ + (2ℎ = � (Dℎ = 1) (1 − 6−1 [[1ℎ]) + � (Dℎ = 2)
(
1 − 6−1 [[1ℎ] − 6−1 [[2ℎ]

)
− � (Dℎ = 3)6−1 [[2ℎ]

= [� (Dℎ = 1) + � (Dℎ = 2)] (1 − 6−1 [[1ℎ]) − [� (Dℎ = 2) + � (Dℎ = 3)]6−1 [[2ℎ]

Therefore, going through the same process in interference-aware dWOLS section, without loss
of generality, we assume that - V = -b = -k = -q = -; thus, we have

∑
ℎ


+1ℎ −+2ℎ −+3ℎ ++4ℎ

+2ℎ −+4ℎ
+3ℎ −+4ℎ
+4ℎ

 =
∑
ℎ


©«
(1 − �B

ℎ
) (1 − �A

ℎ
)

(1 − �A
ℎ
)�B

ℎ

(1 − �B
ℎ
)�A

ℎ

�A
ℎ
�B
ℎ

ª®®®¬ -F(�
B
ℎ, �

A
ℎ, -ℎ) ((1ℎ + (2ℎ)

 = 0.

∑
ℎ (+1ℎ−+2ℎ−+3ℎ++4ℎ) uses the untreated part of the sample, and can be used to estimate #. That is,

#̂ can be solved by
∑
ℎ (+1ℎ−+2ℎ−+3ℎ++4ℎ) =

∑�
ℎ (1−�Bℎ) (1−�

A
ℎ
)-ℎF(�Bℎ, �

A
ℎ
, -ℎ) ((00

1ℎ+(
00
2ℎ) = 0,

where (00
1ℎ + (

00
2ℎ is defined as

(00
1ℎ+(

00
2ℎ := [� (Dℎ = 1)+� (Dℎ = 2)] (1−6−1 [Z1−#>-ℎ])−[� (Dℎ = 2)+� (Dℎ = 3)]6−1 [Z2−#>-ℎ] .

If the treatment-free model is not correct, the estimates will actually estimate #∗,
which is defined as the solution of E-

[
c00(-)-F(0, 0, -) (S00

1 + S
00
2 )

]
= 0, that is,
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E-
[
c00(-)-F(0, 0, -) (S00

1 + S
00
2 )

] ���
#=#∗

= 0, where S00
1 + S

00
2 is defined as

S00
1 + S

00
2 :=6−1 [Z2 − 5 (-)] (1 − 6−1 [Z1 − #>-]) − (1 − 6−1 [Z1 − 5 (-)])6−1 [Z2 − #>-]

=6−1 [Z2 − 5 (-)] − 6−1 [Z2 − #>-] + 6−1 [Z1 − 5 (-)]6−1 [Z2 − #>-]
− 6−1 [Z2 − 5 (-)]6−1 [Z1 − #>-] .

Note that, conditional on treatments and covariates, E[� (D = 1)] = c1 = 6
−1 [[1] = 6−1 [Z1 −

5 (-)], which depends on the true outcome models in terms of the treatment-free function
5 (-). Similar results are derived from E[� (D = 2)] and E[� (D = 3)]. That is, E[� (D =
2)] = c2 = 6

−1 [[2] − 6−1 [[1] = 6−1 [Z2 − 5 (-)] − 6−1 [Z1 − 5 (-)], and E[� (D = 3)] = c3 =
1 − 6−1 [[2] = 1 − 6−1 [Z2 − 5 (-)]. Thus, conditional on treatments and covariates, we have
E[� (D = 1)]+E[� (D = 2)] = 6−1 [Z2− 5 (-)], andE[� (D = 2)]+E[� (D = 3)] = 1−6−1 [Z1− 5 (-)].

To sum up,
∑
ℎ (+1ℎ − +2ℎ − +3ℎ + +4ℎ) = 0 can be solved for #̂. According to large sample

theory, #̂ tends to converge to #∗, as � → ∞ (White [1982]), where #∗ is the solution of
�E-

[
c00(-)-F(0, 0, -) (S00

1 + S
00
2 )

]
= 0, with S00

1 + S
00
2 := 6−1 [Z2 − 5 (-)] (1 − 6−1 [Z1 −

#>-]) − (1 − 6−1 [Z1 − 5 (-)])6−1 [Z2 − #>-].
Then the expectation of

∑�
ℎ (+1ℎ −+2ℎ −+3ℎ ++4ℎ) conditional on (-1, ...-�), that is,

�∑
ℎ

c00-ℎF(0, 0, -ℎ)
[
(S00

1ℎ + S
00
2ℎ) (' , #)

]
, (H.14)

where, in terms of parameters of ' , and #, (S00
1ℎ + S

00
2ℎ) (' , #) is defined as:

(S00
1ℎ + S

00
2ℎ) (' , #) :=6−1 [Z2 − 5 (-ℎ)] − 6−1 (

Z2 − #>-ℎ
)
+ 6−1 [Z1 − 5 (-ℎ)]6−1 [Z2 − #>-ℎ]

− 6−1 [Z2 − 5 (-ℎ)]6−1 [Z1 − #>-ℎ],

can be written using a Taylor series expansion, function 6−1 [Z − 5 (-ℎ)] at the points Z1 − #>-ℎ
and Z2 − #>-ℎ, respectively, as

�∑
ℎ

c00-ℎF(0, 0, -ℎ)
[
KΔ + O[Δ2]

]
, (H.15)

where

K := 6−1(Z2 − #>-ℎ)
[
1 − 6−1(Z1 − #>-ℎ)

] [
1 − 6−1(Z2 − #>-ℎ) + 6−1(Z1 − #>-ℎ)

]
,
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and Δ := #>-ℎ − 5 (-ℎ), and the big O describes the error term in an approximation to the 6−1

function. To prove this, we initially focus on the first two terms of S00
1ℎ + S

00
2ℎ in expression (H.14),

that is, 6−1 [Z2 − 5 (-ℎ)] − 6−1 (
Z2 − #>-ℎ

)
= 6−1′(Z2 − #>-ℎ) (Δ) + O[Δ2]. Then the third and

fourth terms are
6−1 [Z1 − 5 (-ℎ)]6−1 [Z2 − #>-ℎ] =

(
6−1 (

Z1 − #>-ℎ
)
+ 6−1′(Z1 − #>-ℎ) (Δ) + O[Δ2]

)
6−1 [Z2 − #>-ℎ],

6−1 [Z2 − 5 (-ℎ)]6−1 [Z1 − #>-ℎ] =
(
6−1 (

Z2 − #>-ℎ
)
+ 6−1′(Z2 − #>-ℎ) (Δ) + O[Δ2]

)
6−1 [Z1 − #>-ℎ] .

Thus, the Taylor series expansion of S00
1ℎ + S

00
2ℎ in expression (H.14) is(

6−1′(Z2 − #>-ℎ) + 6−1′(Z1 − #>-ℎ)6−1 (Z2 − #>-ℎ) − 6−1′(Z2 − #>-ℎ)6−1 (Z1 − #>-ℎ)
)
(Δ)+O[Δ2] .

(H.16)
Based on the property of the 6−1 that 6−1′(C) = 6−1(C) [1− 6−1(C)], then expression (H.16) equals
6−1(Z2 − #>-ℎ)

[
1 − 6−1(Z1 − #>-ℎ)

] [
1 − 6−1(Z2 − #>-ℎ) + 6−1(Z1 − #>-ℎ)

]
(Δ) + O[Δ2].

That is, the Taylor series expansion of (S00
1ℎ + S

00
2ℎ) (' , #) is

(S00
1ℎ + S

00
2ℎ) (' , #) = KΔ + O[Δ

2] .

Therefore, we finally have expression (H.15).

Then, we consider
∑�
ℎ (+2ℎ − +4ℎ) = 0 and

∑�
ℎ (+3ℎ − +4ℎ) = 0 which can be solved for

/̂ and 7̂, respectively, in terms of Ẑ1, Ẑ2, and #̂. First, we study
∑�
ℎ (+2ℎ − +4ℎ) = 0, that

is,
∑�
ℎ (1 − �Aℎ)�

B
ℎ
-F(1, 0, -ℎ) (S1ℎ + S2ℎ) = 0, which provides /̂ in terms of Ẑ1, Ẑ2, and #̂.

To show that /̂ is (approximately) consistent, we would need to show that the expectation of∑�
ℎ (1 − �Aℎ)�

B
ℎ
-ℎF(1, 0, -ℎ) (S10

1ℎ + S
10
2ℎ) (' , #

∗, /) equals or is close to 0 for general /, where
(S10

1ℎ + S
10
2ℎ) (' , #

∗, /) is defined as

(S10
1ℎ + S

10
2ℎ) (' , #

∗, /) := 6−1 [Z2 − 5 (-ℎ) − />-ℎ] (1 − 6−1 [Z1 − #∗>-ℎ − />-ℎ])
− (1 − 6−1 [Z1 − 5 (-ℎ) − />-ℎ])6−1 [Z2 − #∗>-ℎ − />-ℎ]
= 6−1 [Z2 − 5 (-ℎ) − />-ℎ] − 6−1 [Z2 − #∗>-ℎ − />-ℎ]
+ 6−1 [Z1 − 5 (-ℎ) − />-ℎ]6−1 [Z2 − #∗>-ℎ − />-ℎ]
− 6−1 [Z2 − 5 (-ℎ) − />-ℎ]6−1 [Z1 − #∗>-ℎ − />-ℎ] .

217



Similar to the Taylor series expansion of S00
1ℎ + S

00
2ℎ in expression (H.14), we have

(S10
1ℎ + S

10
2ℎ) (' , #

∗, /) =6−1(Z2 − #∗>-ℎ − />-ℎ)
[
1 − 6−1(Z1 − #∗>-ℎ − />-ℎ)

][
1 − 6−1(Z2 − #∗>-ℎ − />-ℎ) + 6−1(Z1 − #∗>-ℎ − />-ℎ)

]
(Δ∗) + O[Δ∗2],

(H.17)

whereΔ∗ := #∗>-ℎ− 5 (-ℎ). If we denote [0
B ,0A

1 (#∗) = Z1+#>xV+/>0Bxb+7>0Axk+5>0B0Axq

and [0
B ,0A

2 (#∗) = Z2 + #>xV + />0Bxb +7>0Axk + 5>0B0Axq, then, from equation (H.17), we have

(S10
1ℎ + S

10
2ℎ) (' , #

∗, /) = 6−1 [[1,0
2 (#

∗)]
[
1 − 6−1 [[1,0

1 (#
∗)]

] [
1 − 6−1 [[1,0

2 (#
∗)]

+ 6−1 [[1,0
1 (#

∗)]
]
(Δ∗) + O[Δ∗2] .

If this is not the case, then the expectation of equation
∑=
8 (+2ℎ −+4ℎ) = 0 with # = #̂ and / = /̂

may approach the expectation of equation
∑=
ℎ (+2ℎ − +4ℎ) = 0 with # set equal to #∗ and / set

equal to a similar limiting value /∗ as =→ ∞. The vector /∗ will satisfy the condition that the
expectation of

∑=
ℎ �

B
ℎ
(1 − �A

ℎ
)-ℎF(1, 0, -ℎ)

[
6−1(−/∗>-

ℎ
− #∗>-

ℎ
) − 6−1(−/∗>-

ℎ
− 5 (-ℎ))

]
equals or is close to 0, but /∗ will in general be different from the true /.

Next, we study
∑�
ℎ (+3ℎ − +4ℎ) = 0, that is,

∑�
ℎ (1 − �B)�A-ℎF(0, 1, -ℎ) (S1ℎ + S2ℎ) = 0,

which offers 7̂ in terms of Ẑ1, Ẑ2, and #̂. To show that 7̂ is (approximately) consistent, we would
need to show that the expectation of

∑�
ℎ (1− �Bℎ)�

A
ℎ
-ℎF(0, 1, -ℎ) (S01

1ℎ + S
01
2ℎ) (' , #

∗,7) equals or
is close to 0 for general 7, where (S01

1ℎ + S
01
2ℎ) (' , #

∗,7) is defined as

(S01
1ℎ + S

01
2ℎ) (' , #

∗,7) := 6−1 [Z2 − 5 (-ℎ) − 7>-ℎ] (1 − 6−1 [Z1 − #∗>-ℎ − 7>-ℎ])
− (1 − 6−1 [Z1 − 5 (-ℎ) − 7>-ℎ])6−1 [Z2 − #∗>-ℎ − 7>-ℎ]
= 6−1 [Z2 − 5 (-ℎ) − 7>-ℎ] − 6−1 [Z2 − #∗>-ℎ − 7>-ℎ]
+ 6−1 [Z1 − 5 (-ℎ) − 7>-ℎ]6−1 [Z2 − #∗>-ℎ − 7>-ℎ]
− 6−1 [Z2 − 5 (-ℎ) − 7>-ℎ]6−1 [Z1 − #∗>-ℎ − 7>-ℎ] .

Again, consistent with the Taylor series expansion of (S00
1ℎ + S

00
2ℎ) (' , #) in expression (H.14), we

have

(S01
1ℎ + S

01
2ℎ) (' , #

∗,7) =6−1(Z2 − #∗>-ℎ − 7>-ℎ)
[
1 − 6−1(Z1 − #∗>-ℎ − 7>-ℎ)

][
1 − 6−1(Z2 − #∗>-ℎ − 7>-ℎ) + 6−1(Z1 − #∗>-ℎ − 7>-ℎ)

]
(Δ∗) + O[Δ∗2],
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or equivalently,

(S01
1ℎ + S

01
2ℎ) (' , #

∗,7) =6−1 [[0,1
2 (#

∗)]
[
1 − 6−1 [[0,1

1 (#
∗)]

][
1 − 6−1 [[0,1

2 (#
∗)] + 6−1 [[0,1

1 (#
∗)]

]
(Δ∗) + O[Δ∗2],

Similar arguments are applied to
∑�
ℎ +4ℎ = 0, that is,

∑�
ℎ �

B�A-ℎF(1, 1, -ℎ) (S1ℎ + S2ℎ) = 0,
which offers 5̂ in terms of Ẑ1, Ẑ2, #̂, /̂, and 5̂. To show that 5̂ is (approximately) consistent, we
would need to show that the expectation of

∑�
ℎ �

B
ℎ
�A
ℎ
-ℎF(1, 1, -ℎ) (S11

1ℎ + S
11
2ℎ) (' , #

∗, )2) equals
or is close to 0 for general 5, where (S11

1ℎ + S
11
2ℎ) (' , #

∗, )2) can be written as by Taylor series
expansion

(S11
1ℎ + S

11
2ℎ) (' , #

∗, )2) := 6−1 [[1,1
2 (#

∗)]
[
1 − 6−1 [[1,1

1 (#
∗)]

] [
1 − 6−1 [[1,1

2 (#
∗)]

+ 6−1 [[1,1
1 (#

∗)]
]
(Δ∗) + O[Δ∗2] .

Therefore, the expectation of
∑
ℎ


+1ℎ −+2ℎ −+3ℎ ++4ℎ

+2ℎ −+4ℎ
+3ℎ −+4ℎ
+4ℎ

 conditional on (-1, ...-=), that is,

∑
ℎ


©«
c00

c10

c01

c11

ª®®®¬ -ℎ
©«
F(0, 0, -ℎ)
F(1, 0, -ℎ)
F(0, 1, -ℎ)
F(1, 1, -ℎ)

ª®®®¬

(S00

1ℎ + S
00
2ℎ) (' , #)

(S10
1ℎ + S

10
2ℎ) (' , #, /)

(S01
1ℎ + S

01
2ℎ) (' , #,7)

(S11
1ℎ + S

11
2ℎ) (' , #, )2)


 , can be written using a Taylor series

expansion as

∑
ℎ


©«
c00

c10

c01

c11

ª®®®¬ -ℎ
©«
F(0, 0)
F(1, 0)
F(0, 1)
F(1, 1)

ª®®®¬

6−1([00

2 )
[
1 − 6−1([00

1 )
] [

1 − 6−1([00
2 ) + 6

−1([00
1 )

]
(Δ) + O[Δ2]

6−1([10
2 )

[
1 − 6−1([10

1 )
] [

1 − 6−1([10
2 ) + 6

−1([10
1 )

]
(Δ) + O[Δ2]

6−1([01
2 )

[
1 − 6−1([01

1 )
] [

1 − 6−1([01
2 ) + 6

−1([01
1 )

]
(Δ) + O[Δ2]

6−1([11
2 )

[
1 − 6−1([11

1 )
] [

1 − 6−1([11
2 ) + 6

−1([11
1 )

]
(Δ) + O[Δ2]


 ,

(H.18)
where [0B0A1 = Z1 + #>xV + />0Bxb + 7>0Axk + 5>0B0Axq and [0B0A2 = Z2 + #>xV + />0Bxb +
7>0Axk + 5>0B0Axq.

Define ^∗(�B, �A , -) = 6−1 ([2)
[
1 − 6−1 ([1)

] [
1 − 6−1 ([2) + 6−1 ([1)

]
with [1(0B, 0A , -) =

Z∗1 + #
∗>- + /∗>0B- + 7∗>0A- + 5∗>0B0A- , [2(0B, 0A , -) = Z∗2 + #

∗>- + /∗>0B- + 7∗>0A- +
5∗>0B0A- , and /∗, 7∗, and 5∗ are assumed to be limiting values for /̂, 7̂, and 5̂, respectively.

219



Then if weights are defined to satisfy a new balancing criterion

c00F(0, 0, -)^(0, 0, -) = c01F(0, 1, -)^(0, 1, -) = c10F(1, 0, -)^(1, 0, -) = c11F(1, 1, -)^(1, 1, -),

and if the distribution of - is such that the inverse link function is close to linear for the range
of 5 (-) − #∗>- (so that the Taylor expansion error term is small), the fact that the expectation
of the first (top) equation in (H.18) is 0 for # = #∗ means that the expectation of the remaining
(the second to the forth) equations (H.18) are close to 0 too for # = #∗. Again, this argument
establishes the approximate consistency of the corresponding new estimators of /, 7, and 5.

To conclude, the corresponding overlap-type weights for POM with ordinal outcomes are:

F(0B, 0A) ∝ c
00c10c01c11

c0
B0A

× ^(0, 0, x)^(1, 0, x)^(0, 1, x)^(1, 1, x)
^(0B, 0A , x) , for 0B, 0A = 0, 1.

where ^(0B, 0A , x) = 6−1 ([2)
[
1 − 6−1 ([1)

] [
1 − 6−1 ([2) + 6−1 ([1)

]
with [1(0B, 0A , x) = Z∗1 +

#∗>xV + /∗>0Bxb + 7∗>0Axk + 5∗>0B0Axq, [2(0B, 0A , x) = Z∗2 + #
∗>xV + /∗>0Bxb + 7∗>0Axk +

5∗>0B0Axq, and Z∗1 , Z
∗
2 , #

∗, /∗, 7∗ and 5∗ are the solutions of the estimation functions of POM
(5.8) with standard overlap weights (5.3).

Consequently, in single-stage decision settings, the following algorithm for estimation of /, 7,
and 5 applies:
Step 1: Conduct a weighted POM to obtain '̂ , #̂, /̂, 7̂ and 5̂ with standard overlap weights
F(0B, 0A) = c00c10c01c11

c0
B0A .

Step 2: Compute the new weights that satisfy c00F(0, 0, x)^(0, 0, x) = c01F(0, 1, x)^(0, 1, x) =
c10F(1, 0, x)^(1, 0, x) = c11F(1, 1, x)^(1, 1, x). For example, the weights can be

F(0B, 0A) = c
00c10c01c11

c0
B0A

× ^(0, 0, x)^(1, 0, x)^(0, 1, x)^(1, 1, x)
^(0B, 0A , x) , 5 >A 0B, 0A = 0, 1,

where ^(0B, 0A , x) = 6−1 ([̂2)
[
1 − 6−1 ([̂1)

] [
1 − 6−1 ([̂2) + 6−1 ([̂1)

]
with [̂1(0B, 0A , x) = Ẑ1 +

#̂
>
xV+ /̂>0Bxb + 7̂>0Axk + 5̂>0B0Axq, [̂2(0B, 0A , x) = Ẑ2+ #̂

>
xV+ /̂>0Bxb + 7̂>0Axk + 5̂>0B0Axq.

Step 3: Use the new weights from Step 2, and conduct weighted POM again, to get new
approximately consistent estimators ˜/, ˜7, ˜5 for treatment decisions.

H.3 Simulation Study 1 figures

In this section, we present the simulation (Study 1) figures, which depict the distribution of the blip
parameter estimates in Scenarios 1, 2, and 4. Figure H.2 corresponds to Scenario 1 where both the
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treatment model and treatment-free model are misspecified; Figure H.3 correspond to Scenario 2
where the treatment-free model is correctly specified but the treatment model is misspecified, and
Figure H.3 present the result from Scenario 4 in which both treatment model and treatment-free
model are correctly specified.

From Figure H.2, even though both the treatment model and treatment-free model are
incorrectly specified, M4 which utilizes adjusted overlap-type weights can still provide less biased
blip parameters’ estimators. Except for estimator 7̂, which displays little bias, estimators /̂
and 5̂ appear unbiased. From Figures H.3 and H.4, because of the correct identification of the
treatment-free model, all the methods provide consistent estimators of the blip parameters.
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Figure H.2: Blip function parameter estimates, /̂ (top row), 7̂ (middle row), and 5̂ (bottom row)
via Method 0 (M0, &-learning), Method 1 (M1, no treatment-association dWPOM), Method 2
(M2, treatment-association aware dWPOM with IPW-type weights), Method 3 (M3, treatment-
association aware dWPOM with overlap-type weights) and Method 4 (M4, treatment-association
aware dWPOMwith adjusted overlap-type weights), when both treatment model and treatment-free
model are misspecified (Scenario 1).
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Figure H.3: Blip function parameter estimates, /̂ (top row), 7̂ (middle row), and 5̂ (bottom row)
via Method 0 (M0, &-learning), Method 1 (M1, no treatment-association dWPOM), Method 2
(M2, treatment-association aware dWPOM with IPW-type weights), Method 3 (M3, treatment-
association aware dWPOM with overlap-type weights) and Method 4 (M4, treatment-association
aware dWPOM with adjusted overlap-type weights), when the treatment-free model is correctly
specified but the treatment model is misspecified (Scenario 2).
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Figure H.4: Blip function parameter estimates, /̂ (top row), 7̂ (middle row), and 5̂ (bottom row)
via Method 0 (M0, &-learning), Method 1 (M1, no treatment-association dWPOM), Method 2
(M2, treatment-association aware dWPOM with IPW-type weights), Method 3 (M3, treatment-
association aware dWPOM with overlap-type weights) and Method 4 (M4, treatment-association
aware dWPOMwith adjusted overlap-type weights), when both treatment model and treatment-free
model are correctly specified (Scenario 4).
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H.4 Additional simulation results for the two-stage decision
problem (Study 2)

In this section, we present the additional simulation results from simulation Study 2, a two-
stage DTR estimation with ordinal outcomes under interference. Consistent with the same
data-generating process in Case (1) Study 2, Case (2), in Stage 2, misspecifies the treatment-free
model but correctly specifies the treatment model. Stage 1, Case (2) misspecifies the treatment
model, but correctly specifies the treatment-free model.

The distributions of the blip estimates (i.e., /̂, 7̂, 5̂) from Case (2) are presented in Figures H.5
and H.6, which correspond to Stage 1 and Stage 2, respectively. Similar to the results for Case (1),
in Figure H.6, which depicts blip estimates from Cases (2) in Stage 2, all the blip estimates from
our dWPOM appear to be normally distributed and centred by the true blip parameters’ values,
but &-learning provides biased estimators. From Figure H.5, which corresponds to Case (1) in
Stage 1, for our dWPOM, blip estimates b̂0, k̂0, 5̂ are also normally distributed and centred by
the true parameters’ values, but the blip estimates b̂1, k̂1 appear to be slightly off the true values.
Again, we suspect that this misalignment results from the approximately consistent estimation,
essentially caused by the omission of remainder terms in the Taylor expansion.
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Figure H.5: Blip function parameter estimates in Stage 1 of Study 2, /̂ (top row), 7̂ (middle row),
and 5̂ (bottom row) via&-learning and treatment-association aware dWPOMwith adjusted overlap-
type weights in Case (2), where the treatment-free model is misspecified, but the treatment model
is correctly specified in Stage 2, and the treatment model is misspecified, but the treatment-free
model is correctly specified in Stage 1.
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Figure H.6: Blip function parameter estimates in Stage 2 of Study 2, /̂ (top row), 7̂ (middle row),
and 5̂ (bottom row) via&-learning and treatment-association aware dWPOMwith adjusted overlap-
type weights in Case (2), where the treatment-free model is misspecified, but the treatment model
is correctly specified in Stage 2, and the treatment model is misspecified, but the treatment-free
model is correctly specified in Stage 1.
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Appendix I

Appendix of Chapter 6

This appendix contains two sections. One is related to the extension of --leaner for household
interference, the other is the extension of the outcome weighted learning for the interference.

I.1 Net-learning for treatment decision with household inter-
ference

In this appendix section, we extend the --learner method to the case of household interference,
and our new method is referred to as Net-learning. Considering four potential outcome for the
pair in the same household: . ∗(1, 1), . ∗(1, 0), . ∗(0, 1), . ∗(0, 0), we assume that no unmeasured
confounding, such that . ∗(0B, 0A) |= (0B, 0A) | x. Then, we define that:

`11(x) := E[. ∗(1, 1) |x] = E[. |�B = 1, �A = 1, x],
`10(x) := E[. ∗(1, 0) |x] = E[. |�B = 1, �A = 0, x],
`01(x) := E[. ∗(0, 1) |x] = E[. |�B = 0, �A = 1, x],
`00(x) := E[. ∗(0, 0) |x] = E[. |�B = 0, �A = 0, x] .

Suppose the true outcome model can be set as the form of

E[. |�B = 0B, �A = 0A , x] = 5 (xV; #) + 0B3b (/, xb) + 0A3k (7, xk) + 0B0A38=C (5, xq). (I.1)

where xV are predictive variables, and xb , xk , xq are tailoring variables for adapting treatment
decisions to patients. We also suppose that 5 (xV; #), 3b (/, xb), 3k (7, xk) and 38=C (5, xq) can be
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any arbitrary function. Thus, we have:

`11(x) = 5 (xV; #) + 3b (/, xb) + 3k (7, xk) + 38=C (5, xq),
`10(x) = 5 (xV; #) + 3b (/, xb),
`01(x) = 5 (xV; #) + 3k (7, xk),
`00(x) = 5 (xV; #).

After some algebra, we have different effects functions, we called it decision functions on which
we make decisions based:

3b (/, xb) = `10(x) − `00(x) := E[. ∗(1, 0) − . ∗(0, 0) |x],
3k (7, xk) = `01(x) − `00(x) := E[. ∗(0, 1) − . ∗(0, 0) |x],
38=C (5, xq) = `11(x) − `10(x) − `01(x) + `00(x)

:= E[. ∗(1, 1) − . ∗(1, 0) − . ∗(0, 1) + . ∗(0, 0) |x] .

(I.2)

Based on two distinct household decision scenes, we suggest two distinct decision rules: 1.
Making a decision only for one individual while the other’s treatment is assumed to be fixed. 2.
Making a decision for both individuals in the same household. First, we have decision rule 1:

Decision 2. The optimal decision rules only for one individual:
The treatment of one individual (say, B of the pair (B, A) in the household) is already predetermined
(i.e., treatment is fixed throughout the study period), and the objective is to make the optimal
decision for the other (i.e., A).

• If �B = 1, and if 3
k
(xk) + 3

8=C
(xq) > 0, then �A∗ = 1; otherwise �A∗ = 0;

• If �B = 0, and if 3
k
(xk) > 0, then �A∗ = 1; otherwise �A∗ = 0.

Then, in the second case, we are allowed to determine both the treatment of the ego and
the treatment of the alter. That is, we can choose (�B, �A) = (1, 1), (1, 0), (0, 1) or (0, 0) to
maximize the outcome. These treatment combinations correspond to W being 3

b
(xb) + 3

k
(xk) +

3
8=C
(xq), 3

b
(xb), 3

k
(xk) and 0. Therefore, we have four treatment rules in the decsion rule 2:

Decision 3. The optimal household decision rules:

• Rule 1: (�B, �A)>?C = (1, 1) if 3
b
(xb) + 3

k
(xk) + 3

8=C
(xq) > 0 and 3

k
(xk) + 3

8=C
(xq) > 0,

and 3
b
(xb) + 3

8=C
(xq) > 0.

229



• Rule 2: (�B, �A)>?C = (1, 0) if 3
k
(xk) +3

8=C
(xq) < 0 and 3

b
(xb) > 3

k
(xk) and 3

b
(xb) > 0.

• Rule 3: (�B, �A)>?C = (0, 1) if 3
b
(xb) +3

8=C
(xq) < 0 and 3

b
(xb) < 3

k
(xk) and 3

k
(xk) > 0.

• Rule 4: (�B, �A)>?C = (0, 0) if 3
b
(xb) + 3

k
(xk) + 3

8=C
(xq) < 0 and 3

b
(xb) < 0 and

3
k
(xk) < 0.

For the estimation process, based on different treatment combinations, (�B, �A) =

(1, 1), (1, 0), (0, 1) or (0, 0), data can be divided into four groups. Building on these subgroup
dataset, we can estimate `11(x), `10(x), `01(x), `00(x) by any supervised learning algorithm and
the estimators are denoted as ˆ̀11(x), ˆ̀10(x), ˆ̀01(x) and ˆ̀00(x), respectively. Building on the
estimators, we can impute the unobserved potential outcomes for each individual in a certain
treatment combination group, and the results are shown in Table I.1.

Table I.1: Individuals’ potential outcomes and the treatment configuration of a pair in the
household.

Groups
Outcomes

. ∗(1, 1) . ∗(1, 0) . ∗(0, 1) . ∗(0, 0)

(�B, �A) = (1, 1) .11 ˆ̀10 ˆ̀01 ˆ̀00
(�B, �A) = (1, 0) ˆ̀11 .10 ˆ̀01 ˆ̀00
(�B, �A) = (0, 1) ˆ̀11 ˆ̀10 .01 ˆ̀00
(�B, �A) = (0, 0) ˆ̀11 ˆ̀10 ˆ̀01 .00

Note that, in Table I.1, .0B0A refers to the observed (potential) outcomes for the (0B, 0A)
treatment group, where 0B = 0, 1 and 0A = 0, 1. This follows the so-called consistency assumption
that .0B0A = . ∗(0B, 0A)I(�B = 0B, �A = 0A). ˆ̀0B0A are the corresponding estimated outcomes
based on the covariate in a certain treatment group of interest. For a certain treatment group
(each row in Table I.1), according to equations (I.2), one can compute individual treatment effect
estimates that îb,8 (x), îk,8 (x) and îq,8 (x) for each individual 8 in that group, then, respectively, fit
models 3̂b (x), 3̂k (x) and 3̂q (x) to predict îb,8 (x), îk,8 (x) and îq,8 (x) from the corresponding
treatment combination group (0B, 0A). For example, for individuals with covariates x11 in the
(�B, �A) = (1, 1) group (i.e., consider the first row in Table I.1),

î11
b,8 (/, xb) = ˆ̀10(x11,8) − ˆ̀00(x11,8),

î11
k,8 (7, xk) = ˆ̀01(x11,8) − ˆ̀00(x11,8),

î11
8=C,8 (5, xq) = .11 − ˆ̀10(x11,8) − ˆ̀01(x11,8) + ˆ̀00(x11,8),

(I.3)
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where the subscript of G means the individual 8’s data is from the (�B, �A) = (1, 1) dataset,
and the superscript of î functions refers to the calculation for the treatment combination group
(�B, �A) = (1, 1). Then, based on individuals data one can fit a model 3̂11

b
(x) to predict

î11
b,8
(x), similarly, acquiring models 3̂11

k
(x) and 3̂11

8=C
(x) for the treatment combination group

(�B, �A) = (1, 1). Therefore, we totally have four estimators for each decision function, and each
one is from one treatment combination group. Finally, employing the balancing interference
weights in Jiang’s, which depending on the joint propensity score P(�B, �A | x), we can acquire
the final combined decision functions:

3̂b (xb) = F113̂
11
b (xb) + F103̂

10
b (x

b) + F013̂
01
b (x

b) + F003̂
00
b (x

b)
3̂k (xk) = F113̂

11
k (xk) + F103̂

10
k (xk) + F013̂

01
k (xk) + F003̂

00
k (xk),

3̂8=C (xq) = F113̂
11
8=C (xq) + F103̂

10
8=C (xq) + F013̂

01
8=C (xq) + F003̂

00
8=C (xq).

Note that, for the above (�B, �A) = (1, 1) group case, when computing î11
8=C,8
(5, xq) in equation

I.3, we use .11 that is observed outcome rather than ˆ̀11. Therefore, when computing individual
treatment effects î11 for (�B, �A) = (1, 1) group, we use the information from all these four
treatment combinations groups: .11 is from (�B, �A) = (1, 1) group, and ˆ̀s are from other groups.
Similarly, other treatment groups’ î is also estimated with data from all four treatment groups.
This is the spirit of --learning. If we draw a line between the observed outcomes (one diagonal
line from top left to bottom right) and also draw lines between imputed potential outcomes (five
parallel lines from the bottom left to top right), we will see that these lines are intertwined together
like a net, which is centred by the diagonal line from top left to bottom right. Thus, the name of
our Net-learner is derived from this. Now, we conclude this section by outlining the Net-learner
algorithm with some discussions (see Algorithm 1).

It is important to note that --learner is suitable for cases where the propensity score varies
significantly, because it explicitly accounts for variation in the propensities. In the presence of
interference, treatment configurations are rarely uniformly distributed in the observational data,
and extreme treatment configuration distribution is common. Accordingly, the balancing weights
that are suggested in Net-learner will function similarly in --leaner. Because of the proposed
interference balancing weights, Net-learner can examine the variation of the joint propensity and
address extreme treatment configuration distribution cases.

This section has provided an extension of --learning in household interference. Our proposed
method, termed net-learner, inherits the spirit of --learning and uses all the treatment-configuration
data for an efficient estimation.
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Algorithm 1: Net-learner
Input: Outcome, patient history information, and weights
Output: Estimated decision functions
Step 1. Nuisance training:
Construct estimates ˆ̀11(x), ˆ̀10(x), ˆ̀01(x), and ˆ̀00(x) of the regression functions
`11(x), `10(x), `01(x), and `00(x), respectively, using the corresponding
(�B, �A) = (1, 1), (1, 0), (0, 1), (1, 1) dataset.

Step 2. Decision functions regression:
(2a) Construct individual treatment effects: for each treatment combination sub dataset,
building on equations (I.2), construct each individual’s treatment effects, such that, for
0B = 0, 1 and 0A = 0, 1

î0
B0A

b (xb) = ˆ̀10(x) − ˆ̀00(x),
î0

B0A

k (xk) = ˆ̀01(x) − ˆ̀00(x),
î0

B0A

8=C (xq) = ˆ̀11(x) − ˆ̀10(x) − ˆ̀01(x) + ˆ̀00(x).
(I.4)

Note that ˆ̀0B0A (x) will be substituted by the observed outcome (.0B0A ) when computing
for each corresponding (�B, �A) = (0B, 0A) group. E.g., for (�B, �A) = (0, 0) group, all
ˆ̀00(x) in equations I.4 should be substituted by observed outcomes, i.e., .00 in Table I.1.

(2b) Regress individual treatment effects on the corresponding covariates, yielding

3̂0
B0A

b (xb) = Ê=
[
î0

B0A

b (xb) | ^b = xb
]
,

3̂0
B0A

k (xk) = Ê=
[
î0

B0A

k (xk) | ^k = xk
]
,

3̂0
B0A

8=C (xq) = Ê=
[
î0

B0A

q (xq) | ^q = xq
]
.

Step 3. Weighted decision functions outputting:

3̂b (xb) =
∑
0B ,0A

F0B0A 3̂
0B0A

b ; 3̂k (xk) =
∑
0B ,0A

F0B0A 3̂
0B0A

k ; 3̂8=C (xq) =
∑
0B ,0A

F0B0A 3̂
0B0A

q .
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I.2 Interference-aware outcome weighted learning

As stated in Chapter 1, outcome weighted learning directly maximises the value function over
a restricted class of regimes, and recasts the IPTW estimation for the treatment rule into a
classification problem. In this section, we extend outcome weighted learning to the case in which
there is network interference, and in particular, household interference.

Let P denote the distribution of (^, �,. ), where treatments are randomized, and P3 denote
the distribution of (^, �,. ), where treatments are chosen according to rule 3 (^). Building on
the interference assumptions which are presented in Chapter 3, the marginal mean outcome under
a regime 3 is

V(3) = E3 (. ) =
∫
.3P3 =

∫
.
3P3

3P
3P = E

{
I
[
(�, �N) = 3 (^)

]
P(�, �N | ^)

.

}
, (I.5)

where P(�, �N | ^) is the network propensity function, which is defined in Chapter 3.
Optimal Individualized Treatment Rule

3∗ = argmax
3∈D

V(3),

or equivalently,
3∗ = argmax

(�,�N)
E(. | -, �, �N )

Maximizing the value of equations (I.5) is equivalently to minimize the risk

E

{
I
[
(�, �N) ≠ 3 (^)

]
P(�, �N | ^)

.

}
. (I.6)

For simplicity, if we only focus on the egos that are connected with the same number of alters,
that is, for all egos, |N | are equal. Then, the question in Equation (I.6) is a multi-class (2|N |+1
class) classification problem. Various methods of multi-class classifications, such as support
vector machines, decision trees, and neural networks, can be employed in this problem. In addition,
a key problem is to estimate the network propensity function, P(�, �N | ^). In the following
part, we concentrate on the household interference. First, we consider household utility, which is
defined in Chapter 5, and the mean household utility under a treatment regime 3 is defined as:
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V(3) = E3 (*) =
∫
*3P3 =

∫
*
3P3

3P
3P = E

[
I[(�B, �A) = 3 (^)]
P(�B, �A | ^) *

]
, (I.7)

where P denote the distribution of (^, �,. ), P3 is the distribution under (�B, �A) = 3 (^), and
P(�B, �A | ^) is the joint propensity score. Again, the goal is to identify the optimal treatment
regime that

3∗ = argmax
(�B ,�A )

E(* | -, �B, �A),

or equivalently minimizing the risk

E

{
I [(�B, �A) ≠ 3 (^)]
P(�B, �A | ^) *

}
. (I.8)

The question in equation (I.8) is a 22 = 4-class classification problem, and one crucial problem is
the estimation of the joint propensity score P(�B, �A | ^).

In this section, we have provided some thoughts on outcome weighted learning in the presence
of interference. In the presence of network interference, the DTR estimations for a creation
network become a multi-class classification problem, and the key is to estimate the joint propensity
functions. For household interference, the DTR estimation for a household is a four-class
classification problem. Also, the joint propensity score of the pair is the crucial component of the
weight in the outcome weighted learning.
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Glossary

“Adjustment” factor: a ^ function (^(`) = 6−1′(`) = 36−1 (`)
3`

) of the linear predictor of the GLMs
with standard dWOLS weights, used in the balancing weights criterion for binary outcomes.

Blip function: the term or component W(xk , 0) in the outcome model (single stage), expressing
the impact of the treatment on the outcome. (See Section 2.2.2 and Definition 2.2.)

Dynamic treatment regime: sequence of decision rules taking patient information as input and
outputting treatment recommendations. (See Definitions 2.1 and 3.1.)

Double robustness of dWOLS: consistency of estimators of7 if either treatment and/or treatment-
free model is correctly specified.

Ego and Alter: In a network, an individual of primary interest is called an ego, and those to
whom the ego is linked are the alters.

Household utility function: a combination of the outcomes of individuals sharing a household.

Interference: one individual’s outcome being affected by the treatment of others, conditional on
that individual’s own treatment.

Interference terms: The network interference term maps the configuration of the neighbours’
treatments onto an exposure interference term, e.g., number or proportion of treated neighbours.
(See Definition 3.3.)

Joint propensity function for a household case: the joint probability of individuals sharing a
household receiving a certain treatment configuration. (See Definition 5.1.)

Network propensity function: The joint probability of individual 8 receiving treatment 08, and
the treatments of his or her neighbours being in the set B8,0. That is, c8,08 ,B8,0 (x8,N8, xN8 ) =
P(08 ∩ B8,0 | x8,N8, xN8 ). (See Definition 3.2.)
Optimal dynamic treatment regime: sequence of treatment rules that optimizes the expected
clinical outcome across all patients.

Optimal household decision rules: decision rules that optimize a chosen household utility
function* (. B, . A). (See Decision 1.)
Treatment-free function: the term or component 5 (xV; #) in the outcome model (single stage),
expressing the expected outcome under no treatment. (See Section 2.2.2.)

Treatment model: E[�|x;"], which is the propensity score model when the treatment is a binary
variable. (See Section 2.2.2.)
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