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Abstract

A sieve method is in effect an application of the inclusion-exclusion counting principle,
and the estimation methods to avoid computing the explicit formula. Sieve methods have
been used in number theory for over a hundred years. These methods have been modified to
make use of the structure of integer-like objects; producing better estimates and providing
more use cases. The first part of the thesis aims to analyze and use the analogues of number
theoretic sieves in combinatorial contexts. This part consists of my work with Yu-Ru Liu in
Chapters 2 and 3. We focus on two sieve methods: the Turán sieve (introduced by Liu and
Murty in 2005) and the Selberg sieve (independently generalized by Wilson in 1969 and
Chow in 1998 with slightly different formulations). Some comparisons and applications of
these sieves are discussed. In particular, we apply the combinatorial Turán sieve to count
labelled graphs and we apply the combinatorial Selberg sieve to count subspaces of finite
spaces.

Finding sufficient conditions for Hamiltonicity in graphs is a classical topic, where the
difficulty is bracketed by the NP-hardness of the associated decision problem. The second
part of the thesis, consisting of Chapter 4, aims to characterize Hamiltonicity by means of
induced subgraphs. The results in this chapter are based on the paper “Minimal induced
subgraphs of two classes of 2-connected non-Hamiltonian graphs.” Discrete Mathematics,
345(7):112869, 2022, co-authored with Joseph Cheriyan, Sepehr Hajebi, and Sophie Spirkl.
We study induced subgraphs and conditions for Hamiltonicity. In particular, we charac-
terize the minimal 2-connected non-Hamiltonian split graphs and the minimal 2-connected
non-Hamiltonian triangle-free graphs.
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Chapter 1

Introduction

The following thesis comprises of two parts. The first part, consisting of my work with
Yu-Ru Liu in Chapters 2 and 3, is to extend sieve methods from number theory to combi-
natorial contexts. The second part of the thesis consists of Chapter 4. The results in this
chapter are based on the paper “Minimal induced subgraphs of two classes of 2-connected
non-Hamiltonian graphs.” Discrete Mathematics, 345(7):112869, 2022, co-authored with
Joseph Cheriyan, Sepehr Hajebi, and Sophie Spirkl. Results are numbered in the order
they appear in the non-introduction chapters. Summations are over a variable p or q de-
note the summation over the primes which satisfy the conditions given. Summations over
other variables indicate a summation over the positive integers fulfilling the condition un-
less specified otherwise. Throughout the thesis log denotes the natural log unless specified
otherwise.

For f : N → R and g : N → R+, we say that f(n) is O(g(n)) if there exists some
constant positive real number A such that

|f(n)| ≤ Ag(n)

for all sufficiently large n. Writing

u(n) = h(n) +O(g(n))

means that there exists a function f : N→ R such that f(n) is O(g(n)) and

u(n) = h(n) + f(n).

We write f(x)� g(x) or g(x)� f(x) if f(x) is O(g(x)). We say f(n) is o(g(n)) if

lim
n→∞

f(n)

g(n)
→ 0.
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Writing
u(n) = h(n) + o(g(n))

means that there exists a function f : N→ R such that f(n) is o(g(n)) and

u(n) = h(n) + f(n).

We say that a certain property holds for almost all integers if for integers n ≤ N , the
number of exceptions is o(N). We write f(n) ∼ g(n) if

lim
n→∞

f(n)

g(n)
→ 1.

1.1 The Turán sieve

Here we give a general overview of the content of Chapter 2. Technical definitions are given
in the chapter itself. Let ω(n) denote the number of distinct prime factors of n. Turán [29]
showed the following result.

Theorem 8 (Turán [29]). For positive real numbers N , we have∑
n≤N

(ω(n)− log logN)2 � N log logN.

Turán uses the above result to produce the normal order of ω(n). One can view ω(n)
as a random variable with log logN as its expected value. Hence the sum in Theorem 8
can be viewed as a variance. This probabilistic approach leads the proof of Theorem 8 to a
sieve formulation, of which a combinatorial version was developed by Liu and Murty [23],
stated as follows.

Let (S, T ) be a bipartite graph. For any s ∈ S and any t ∈ T , we write s ∼ t if there
is an edge between s and t. For any s ∈ S, let the degree of s be denoted by ω(s). Denote
the degree of t ∈ T with deg(t). Let n(t1, t2) denote the number of common neighbours of
t1, t2 ∈ T . Write X = |S|. Liu and Murty [23] show the following.

Corollary 12 (The Turán sieve, Liu and Murty [22]). We have

#{s ∈ S : ω(s) = 0} ≤ X2 ·
∑

t1,t2∈T n(t1, t2)(∑
t∈T deg(t)

)2 −X.
where the sum over t1, t2 is of ordered pairs, including pairs where t1 = t2.
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In the same paper, Liu and Murty [23] provide an upper bound for the same context.

Theorem 13 (The simple sieve, Liu and Murty [22]). We have

#{s ∈ S : ω(s) = 0} ≥ X −
∑
t∈T

deg(t).

This sieve counts the number of isolated vertices in one part of a bipartite graph. Note
that if S is the set of positive integers up to a real number x and T is the set of prime
numbers up to a real number z, then ω(s) is the number of distinct prime factors of s which
are less than or equal to z. This allows us to use the Turán sieve to count the primes.
In Section 2.1, we describe Turán’s second moment method for the analysis of ω(n). In
Section 2.2, we provide an exposition of the combinatorial Turán sieve developed by Liu
and Murty. In Section 2.3, we will apply the Turán and simple sieves to count labelled
graphs.

1.2 The Selberg sieve

We give a general overview of the content in Chapter 3, technical definitions are given in
the chapter itself. For real numbers x and z with x ≥ z, let Φ(x, z) be the number of
integers less than or equal to x which are not divisible by primes less than z. We denote
by (a, b) the greatest common divisor of a and b, and [a, b] the least common multiple of a
and b. It can be proved that

Φ(x, z) =
∑
n≤x

∑
d|(n,P (z))

µ(d),

where µ is the Möbius function and P (z) is the product of all primes less than z. Selberg
[27] noted that for λ1 = 1 and λd arbitrary real numbers,

∑
d|m

µ(d) ≤

∑
d|m

λd

2

,

for any positive integer m. Choosing appropriate λd and conducting a careful analysis
leads to a good estimate of Φ(x, z). In particular, let φ be the Euler phi function, defined
as

φ(n) = #{k ∈ N : 1 ≤ k ≤ n and (k, n) = 1}.
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We have

Φ(x, z) ≤ x

V (z)
+O

 ∑
d1,d2|P (z)

|λd1||λd2|

 ,

where

V (z) =
∑
d≤z

µ2(d)

φ(d)

and

λd = d
∑
δ≤z
d|δ

µ(δ/d)µ(δ)

φ(δ)V (z)
.

Let π(x) denote the number of primes less than or equal to some real number x. One can
make use of the above estimate to show the following.

Theorem 14 (Chebycheff 1850). We have that

π(x)� x

log x
.

The derivation of this estimate as outlined above was conducted by Selberg [27] to
demonstrate its potential as an alternative to the Brun sieve.

The derivation of the sieve can be generalized to work on a poset structure analogous
to that of the divisibility poset. We will use � to denote the ordering relation of the
poset. A few properties not found generally in posets are required for the extension. In
particular, the existence of the meet (gcd) and join (lcm) is required. We also need the
number of elements below a fixed element to be finite for the purposes of well-defined
summation. Such a poset is called a locally finite lattice. Finally one needs an analogous
Möbius function on a locally finite lattice, and such an extension was already found by
Rota [25]. The Möbius function µ : L×L→ Z is defined as the function with the following
three properties:

1. For d ∈ L, we have µ(d, d) = 1.

2. Let d, n ∈ L. If d ≺ n, then ∑
d�e�n

µ(d, e) = 0.

3. If d � e, then µ(d, e) = 0.

4



Rota [25] showed that the above definition has many of the properties that we have for
the Möbius function on the natural numbers. The generalization of the Selberg sieve was
done by Wilson [32] (independently by Chow [7]) to produce the following result.

Theorem 20 (Selberg sieve on lattices, Wilson [32]). Let (L,�) be a locally finite lattice.
Let S ⊆ L be a set of x distinct elements with the property that for any d ∈ L, the number
of elements n ∈ S satisfying d � n is of the form

x

f(d)
+R(d)

where f is a multiplicative function and R is some suitable error function. Let T be a set
of atoms in (L,�) and write w to be the join of T . Let M(S, T ) be the set of elements in S
for which the meet with w is 0 (the bottom of the lattice). Let N : L→ N be defined such
that for lattice elements d, e ∈ L with d ≺ e, we have N(d) < N(e). For any real number
z, assume that the set {n ∈ L : N(n) < z} is finite. Let

g(n) =
∑
d�n

µ(d, n)f(d).

Define

V (z) =
∑

N(d)≤z
g(d)6=0

µ2(0, d)

|g(d)|

and

λ(0, d) =
f(d)

V (z)

∑
d�δ
g(δ)6=0
N(δ)≤z

µ(d, δ)µ(0, δ)

|g(δ)|
.

We have
|M(S, T )| ≤ x

V (z)
+

∑
d1,d2�w

|λ(0, d1)||λ(0, d2)||R(d1 ∨ d2)|,

where d1 ∨ d2 is the join of d1 and d2.

To apply the combinatorial Selberg sieve, we need to translate the problem into a poset
setting. In Section 3.1, we demonstrate the main ideas of the Selberg sieve by estimating
the primes. In Section 3.2, we provide an exposition of the Selberg sieve on lattices given
independently by Wilson and Chow. In Section 3.3, we will use the Selberg sieve on lattices
to count finite subspaces.
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Figure 1.1: The graph on the left has a Hamiltonian path highlighted in red, and the
graph on the right has a Hamiltonian cycle highlighted in red.

1.3 Hamiltonian graphs and induced subgraphs

Graphs in this chapter are finite and without loops or parallel edges. For a graph G
and X ⊆ V (G), G[X] denotes the induced subgraph of G with vertex set X, and G \ X
denotes G[V (G)\X]. A Hamiltonian path (resp. Hamiltonian cycle) in a graph G is a (not
necessarily induced) subgraph H of G which is a path (resp. cycle), and V (H) = V (G). A
graph is Hamiltonian if it has a Hamiltonian cycle.

A separating triangle T in a graph G is a 3-cycle T where G \ T is not connected. The
approach of studying Hamiltonicity structurally was first exhibited by Whitney [31], who
showed the following.

Theorem 1 (Whitney [31]). Every planar triangulation with no separating triangle is
Hamiltonian.

Tutte [30] notes that Theorem 1 implies that all 4-connected planar triangulations are
Hamiltonian. This result demonstrated the promise of finding sufficiency conditions that
are based on structural properties. For us, a more specific class of structural conditions is of
interest. The claw is the complete bipartite graph K1,3. The paw is the graph composed of
a triangle and one pendent leaf attached to the triangle. The net is the unique graph with
degree sequence (3, 3, 3, 1, 1, 1), and equivalently the graph with vertex set {a, b, c, a1, b1, c1}
and edge set {ab, bc, ac, aa1, bb1, cc1}. The snare is the graph obtained from a net by adding
a vertex and making it adjacent to every vertex of the net. To demonstrate the type of
desired result, consider the following theorem of Goodman and Hedetniemi.

Theorem 2 (Goodman and Hedetniemi [15]). If G is 2-connected and contains no induced
subgraph isomorphic to either claw or paw, then G is Hamiltonian.

Proof. Suppose for a contradiction that G has no Hamiltonian cycle. Let C be the longest
cycle in G and u be a vertex not in V (C) which is adjacent to a vertex in C. Let v denote
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the neighbour of u on C. Consider the vertices x, y which are adjacent to v on the cycle
C. If xu ∈ E(G), then we would have a longer cycle (C \ xv) + xu + uv. So xu /∈ E(G).
Similarly yu /∈ E(G). Now consider the graph G[{u, v, x, y}]. If xy /∈ E(G), then this
graph is an induced claw. If xy ∈ E(G), then this graph is an induced paw.

The following result was obtained by Duffus, Gould, and Jacobson.

Theorem 3 (Duffus, Gould, and Jacobson [13]; see also Shepherd [28]). If G is connected
and contains no induced subgraph isomorphic to the claw or the net, then G contains a
Hamiltonian path.

Duffus, Gould, and Jacobson also showed the following.

Theorem 4 (Duffus, Gould, and Jacobson [13]; see also Shepherd [28]). If G is a 2-
connected graph and contains no induced subgraph isomorphic to the claw or the net, then
G is Hamiltonian.

Shepherd [28] offers a simpler proof of the above two results by characterizing the
structure of claw-free, net-free graphs. We say that S ⊆ V (G) is a separator of G if G \ S
is not connected. We say that S ⊆ V (G) is a minimal separator if no proper subset of
S is a separator. Let G be a connected, claw-free, net-free graph. Shepherd shows the
following. For any minimal separator S and any v ∈ S, the graph G \ (S \ {v}) has a
cut vertex v, and G \ S has two components. Moreover, the components are composed of
vertex sets S1, . . . , Sm and T1, . . . , Tn respectively, where Si is a clique of distance i from v
in G \ (S \ {v}) and Tj is a clique of distance j from v in G \ (S \ {v}). There are no edges
from Si to Tj, and edges between different Si only exist when the indices are consecutive.
Similarly edges only exist between different Tj when the indices are consecutive. Moreover,
if G is a graph with the above property for any minimal separator S and any vertex v in
S, then G is connected, claw-free, and net-free. This characterization allows Shepherd to
prove Theorem 3 and Theorem 4 by careful analysis of the minimal separators in the graph
G.

We say that a graph H is an HP-obstruction if H is connected, has no Hamiltonian
path, and every induced subgraph of H either equals H, or is not connected, or has a
Hamiltonian path. The theorem of Duffus, Gould, and Jacobson can be viewed in this
fashion as characterizing all HP-obstructions.

Theorem 5 (Duffus, Gould, and Jacobson [13]; see also Shepherd [28]). There are exactly
two HP-obstructions: the claw and the net.

7



Figure 1.2: From left to right: a claw graph and a net graph.

A graph H is an HC-obstruction if H is 2-connected, has no Hamiltonian cycle, and
every induced subgraph of H either equals H, or is not 2-connected, or has a Hamilto-
nian cycle. Following the same line of thought, we are interested in understanding HC-
obstructions. In [3], Brousek gave a complete characterization of HC-obstructions that do
not contain the claw as an induced subgraph. Let P be the class of graphs obtained by
taking two disjoint triangles {u1, u2, u3} and {v1, v2, v3}, joining ui and vi by a path with
at least 3 vertices or a triangle for each i. Brousek showed the following.

Theorem 6 (Brousek [3]). The graphs in P are HC-obstructions. Moreover, they are the
only HC-obstructions which are claw-free.

Chiba and Furuya [6] further studied induced subgraphs of non-minimal 2-connected
non-Hamiltonian graphs. Let N(v) = {u ∈ V (G) : uv ∈ E(G)}. A vertex v is locally
connected in G is G[N(v)] is connected. We define the closure of a claw-free graph G as
the graph obtained from G by recursively adding edges between vertices in a the neigh-
bourhood of a locally connected vertex. This is well-defined as a result of Ryjáček [26].
We denote by N3,1,1 the graph with the vertex set {a, b, c, a1, b1, c1, a2, a3} and edge set
{ab, bc, ac, aa1, bb1, cc1, a1a2, a2a3}. Chiba and Furuya showed the following.

Theorem 7 (Chiba and Furuya [6]). Let G be a 2-connected {K1,3, N3,1,1}-free graph. Then
G is Hamiltonian if and only if the closure of G is not one of the graphs depicted in Figure
1.3.

Ding and Marshall [12] obtained a complete characterization in the case when “induced
subgraph” is replaced by “induced minor” in the definition of an HC-obstruction.

Let us describe our main results. A clique in a graph G is a set K of pairwise adjacent
vertices. A stable set in a graph G is a set S of pairwise non-adjacent vertices. A split

8



Figure 1.3: The four types of graphs which are the closures of the non-Hamiltonian 2-
connected {K1,3, N3,1,1}-free graphs. The ellipses represent complete graphs of at least 3
vertices, including the explicitly drawn vertices.

...

Figure 1.4: From left to right: the snare, the 2-nova, a theta, and a triangle-free wheel.
Squiggly edges represent paths of length at least one.

graph is a graph G with a partition (S,K) of V (G) such that S is a stable set and K is a
clique in G.

An n-sun is a graph obtained from a cycle C with 2n vertices v1, . . . , v2n that occur in
this order along C by adding all edges v2iv2j for distinct i, j ∈ {1, . . . , n}. An n-nova is
obtained from an n-sun by adding a vertex w and edges wv2i for all i ∈ {1, . . . , n}. Our
first theorem, the following, gives a complete characterization of HC-obstructions that are
split graphs.

Theorem 22 ([5]). The snare and all n-novae for n ≥ 2 are HC-obstructions. Moreover,
these are the only HC-obstructions which are split graphs.

A theta is a graph consisting of two non-adjacent vertices u and v and three paths
P1, P2, P3 from u to v and each of length at least two, such that the sets V (P1)\{u, v}, V (P2)\
{u, v}, V (P3) \ {u, v} are disjoint and have no edges between them. The vertices u and v
are the ends of the theta. A closed theta is a graph obtained from a theta with ends u, v
by adding the edge uv.

A graph is triangle-free if it contains no three-vertex clique. A wheel is a pair (W, v)
such that W is a cycle, and v is a vertex with at least three neighbours in W 1.

1In a standard definition of a wheel, the cycle W is required to be of length at least four. Note that
this does not matter for our purposes as we are only concerned with triangle-free wheels.

9



Figure 1.5: From left to right: a 4-sun and 4-nova.

Theorem 23 ([5]). All thetas, triangle-free closed thetas, and triangle-free wheels are HC-
obstructions, and they are the only HC-obstructions which are triangle-free.

10



Chapter 2

The Turán sieve

In this Chapter we will first outline the proof of Turán, explain the extension of this method
to sieve by Liu and Murty, and then apply the method to a labelled graph counting problem.

2.1 The normal order of the omega function

For a natural number n, let ω(n) denote the number of distinct prime factors of n. That
is, for n = pe11 · · · p

e`
` with pi distinct primes and ei positive integers for all 1 ≤ i ≤ `, we

have ω(n) = `. The asymptotic behaviour of ω is well-known. Indeed for any ε > 0, for
almost all n ∈ N, we have

(1− ε) log log n < ω(n) < (1 + ε) log log n.

This result was proved by Hardy and Ramanujan [19] in 1917.

In 1934, Turán [29] provided an alternative proof of the above result by viewing ω(n)
as a random variable and computing a variance-like term. More precisely, Turán showed
the following theorem.

Theorem 8 (Turán [29]). For positive real numbers N , we have∑
n≤N

(ω(n)− log logN)2 � N log logN.

We will demonstrate in Corollary 10 how Turán’s theorem implies the result of Hardy
and Ramanujan. To prove Theorem 8, we need an estimate on the reciprocals of primes.

11



Lemma 9 (Mertens, 1874). For positive real numbers N , we have∑
p≤N

1

p
= log logN +O(1).

A proof of Lemma 9 can be found in many standard analytic number theory books, for
example, in Introduction to Analytic Number Theory by Apostol [1, Theorem 4.12]. We
now prove Theorem 8 following Turán’s original method.

Proof of Theorem 8. Consider the “variance” term∑
n≤N

(ω(n)− log logN)2 =
∑
n≤N

ω2(n)− 2 log logN
∑
n≤N

ω(n) + (log logN)2
∑
n≤N

1. (2.1)

For all x ∈ R, we write [x] to denote the largest integer which is at most x. The last
summation on the right hand side of (2.1) becomes∑

n≤N

1 = [N ] = N +O(1).

By Lemma 9, the second summation in (2.1) becomes∑
n≤N

ω(n) =
∑
p≤N

[
N

p

]
= N

∑
p≤N

1

p
+O(N) = N log logN +O(N),

where p is a prime. For the first summation in (2.1), write∑
n≤N

ω2(n) =
∑
n≤N

∑
p|n

∑
q|n

1 =
∑
p,q≤N

∑
n≤N
p|n,q|n

1,

where p and q are primes. By considering the cases of p = q and p 6= q, we can write∑
n≤N

ω2(n) =
∑
p,q≤N
p 6=q

[
N

pq

]
+
∑
p≤N

[
N

p

]
.

If pq > N , then [N/pq] = 0. So we can write∑
n≤N

ω2(n) =
∑
pq≤N

[
N

pq

]
−
∑
p2≤N

[
N

p2

]
+
∑
p≤N

[
N

p

]
.

12



We remark that the first summation on the right includes cases of p = q. Since the series∑
p

1
p2

converges, we have ∑
p2≤N

[
N

p2

]
= O(N).

Combining the above estimates with Lemma 9, we have∑
n≤N

ω2(n) =
∑
pq≤N

[
N

pq

]
+O(N log logN). (2.2)

To bound
∑

pq≤N

[
N
pq

]
, we note that∑

p≤
√
N

1

p

2

≤
∑
pq≤N

1

pq
≤

(∑
p≤N

1

p

)2

. (2.3)

By Lemma 9, we have ∑
p≤N

1

p
= log logN +O(1).

Also we note that∑
p≤
√
N

1

p
= log log

√
N +O(1) = log

(
1

2
logN

)
+O(1) = log logN +O(1).

By squaring the above two bounds, we obtain from (2.3) that∑
pq≤N

1

pq
= (log logN)2 +O(log logN).

It follows from (2.2) that∑
n≤N

ω2(n) = N(log logN)2 +O(N log logN).

Combining the above estimates with (2.1), we have∑
n≤N

(ω(n)− log logN)2

=
∑
n≤N

ω2(n)− 2 log logN
∑
n≤N

ω(n) + (log logN)2
∑
n≤N

1

=N(log logN)2 − 2N(log logN)2 +N(log logN)2 +O(N log logN)

=O(N log logN).

13



This completes the proof of Theorem 8.

Corollary 10 (Hardy and Ramanujan [19]). For any positive real numbers A and δ, the
inequalities

log log n− A(log log n)1/2+δ < ω(n) < log log n+ A(log log n)1/2+δ

hold for almost all n ∈ N.

Proof. Fix a positive real number N . Consider positive integers n with n ≤ N . Note that
if

|ω(n)− log logN | ≥ (A/4)(log logN)
1
2
+δ,

then
(ω(n)− log logN)2 ≥ (A/4)2(log logN)1+2δ.

Let
ε(N) = #{n ≤ N : |ω(n)− log logN | ≥ (A/4)(log logN)

1
2
+δ}.

By Theorem 8, we have

ε(N)(A/4)2(log logN)1+2δ ≤
∑
n≤N

(ω(n)− log logN)2 � N log logN.

Therefore, we have

ε(N)� N

(A/4)2(log logN)2δ
,

which is o(N). This proves that for almost all n ≤ N , we have

log logN − (A/4)(log logN)1/2+δ < ω(n) < log logN + (A/4)(log logN)1/2+δ.

Note that the number of positive integers n ≤
√
N is o(N). So it suffices to only

consider positive integers n with
√
N ≤ n ≤ N . For

√
N ≤ n ≤ N we have

log log n ≤ log logN ≤ log log n+ log 2.

By the above two inequalities, for almost all n ≤ N , we have

ω(n) > log log n− (A/4)(log log n+ log 2)1/2+δ, (2.4)

and
ω(n) < log log n+ log 2 + (A/4)(log log n+ log 2)1/2+δ. (2.5)

14



Choose N ∈ N large enough such that for any n ≥
√
N we have

2(log log n)
1
2
+δ > (log log n+ log 2)

1
2
+δ

and
(A/2)(log log n)

1
2
+δ > log 2.

Using these inequalities with (2.4) and (2.5), for almost all n ≤ N , we have

log log n− (A/2)(log log n)1/2+δ < ω(n) < log log n+ A(log log n)1/2+δ.

Hence the corollary follows.

2.2 The Turán sieve

Turán’s approach on the theorem of Hardy and Ramanujan concealed in it an elementary
sieve method. We now follow in the approach of Liu and Murty [22] to formulate the sieve
in a combinatorial setting.

Let (S, T ) be a bipartite graph. For any s ∈ S and any t ∈ T , we write s ∼ t if there
is an edge between s and t. For any s ∈ S, let the degree of s, denoted by ω(s), be

ω(s) = #{t ∈ T : s ∼ t},

Denote the degree of t ∈ T with deg(t). So we have

deg(t) = #{s ∈ S : s ∼ t}.

We are interested in counting the number of isolated vertices in S, i.e.,

#{s ∈ S : ω(s) = 0}.

Denote the size of S as X, so |S| = X. Note that we have∑
s∈S

ω(s) =
∑
t∈T

deg(t).

Hence the average degree of s ∈ S is

1

X

∑
t∈T

deg(t).

15



Following the approach of Turán, we compute the “variance” as follows.

∑
s∈S

(
ω(s)− 1

X

∑
t∈T

deg(t)

)2

=
∑
s∈S

ω2(s)− 2
∑
s∈S

ω(s)

(
1

X

∑
t∈T

deg(t)

)
+
∑
s∈S

(
1

X

∑
t∈T

deg(t)

)2

=
∑
s∈S

ω2(s)− 2

X

(∑
t∈T

deg(t)

)2

+
1

X

(∑
t∈T

deg(t)

)2

=
∑
s∈S

ω2(s)− 1

X

(∑
t∈T

deg(t)

)2

.

Let n(t1, t2) denote the number of common neighbours of t1, t2 ∈ T . Hence

n(t1, t2) = #{s ∈ S : s ∼ t1, s ∼ t2}.

We have ∑
s∈S

ω2(s) =
∑
s∈S

∑
t1,t2∈T
s∼t1
s∼t2

1 =
∑

t1,t2∈T

∑
s∈S
s∼t1
s∼t2

1 =
∑

t1,t2∈T

n(t1, t2).

Note that the summations are over the ordered pairs of t1, t2 including pairs where t1 = t2.

Combining the above equations, we obtain the following result of Liu and Murty [22,
Theorem 1].

Theorem 11 (Liu and Murty [22]). We have

∑
s∈S

(
ω(s)− 1

X

∑
t∈T

deg(t)

)2

=
∑

t1,t2∈T

n(t1, t2)−
1

X

(∑
t∈T

deg(t)

)2

.

To estimate the number of isolated vertices in S, notice that we have

#{s ∈ S : ω(s) = 0} ·

(
1

X

∑
t∈T

deg(t)

)2

≤
∑
s∈S

(
ω(s)− 1

X

∑
t∈T

deg(t)

)2

.

We combine the above inequality with Theorem 11 to obtain the following corollary of Liu
and Murty [22, Corollary 1].
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Corollary 12 (The Turán sieve, Liu and Murty [22]). We have

#{s ∈ S : ω(s) = 0} ≤ X2 ·
∑

t1,t2∈T n(t1, t2)(∑
t∈T deg(t)

)2 −X.
where the sum over t1, t2 is of ordered pairs, including pairs where t1 = t2.

An easy lower bound is obtained by simply taking the size of S and subtracting the
number of edges. This is stated in Liu and Murty [22, Proposition 1] as follows.

Theorem 13 (The simple sieve, Liu and Murty [22]). We have

#{s ∈ S : ω(s) = 0} ≥ X −
∑
t∈T

deg(t).

Note that if S is the set of positive integers up to a real number x and T is the set of
prime numbers up to a real number z, then ω(s) is the number of distinct prime factors
of s which are less than or equal to z. This allows us to use the Turán sieve to count the
primes.

2.3 Labelled graphs with no fixed size clique

An undirected labelled graph or a graph on n vertices is a pair G = (V,E), where V =
{1, 2, . . . , n} and E is a set of unordered pairs of V . We only consider the cases with no
loops. In other words, E has no pairs of an element and itself. Consider all graphs on
n vertices. Fix a positive integer r. A r-clique in a graph is a subgraph with r vertices
{v1, v2, . . . , vr} where every pair of vertices in {v1, v2, . . . , vr} is an edge. We proceed to
estimate the number of labelled graphs with no r-clique. The problem is uninteresting for
r = 1 and r = 2, so we may assume r ≥ 3.

Erdős, Kleitman, and Rothschild [14] showed that most triangle-free graphs on n ver-
tices are bipartite and extended this idea to r-clique-free graphs. Using this, they deter-
mined the asymptotics of the number of n vertex graphs with no r-clique for the case of
fixed r. They showed that if Gr(n) is the number of n vertex graphs with no r-clique, then

log2(Gr(n)) =
n2

2

(
1− 1

r − 1

)
+ o(n2).
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Note that this implies that almost all n vertex graphs have an r-clique for fixed r.

Let the model G(n, p) be graphs on n vertices where the edges are chosen independently
and with probability p. Thus G(n, 1/2) are graphs on n vertices where any edge has 1/2

chance of existing. To model G(n, 1/2), we note that every graph on n vertices has a 1/2(n2)

chance of appearing, so we can simply multiply the number of graphs by 1/2(n2) to obtain
the probability of an n vertex graph possessing the properties sieved for. In particular,
Bollobás and Erdős [2] showed that for any r < (2 − ε) log2 n, one can almost surely find
an r-clique in a random graph on n vertices with probability 1/2. It was shown in the
same article that for any r > (2 + ε) log2 n, there is almost surely no r-clique. However the
method given relies on the Borel-Cantelli Lemma and thus provide no concrete bounds on
the number (probability) of graphs on n vertices with no r-clique.

The following estimation uses techniques similar to those found in Kuo, Liu, Ribas,
and Zhou [21]. We proceed to apply the Turán sieve to estimate the number of graphs on
n vertices with no r-clique. Take S to be the set of all graphs on n vertices and T to be
the set of all subsets of {1, 2, . . . , n} with size r. For a graph s ∈ S and a size r subset
t = {v1, v2, . . . , vr}, we write s ∼ t if for all 1 ≤ i < j ≤ r, the edge vivj is in the graph s.
In other words, s ∼ t if and only if the r-clique formed by t is contained in the graph s.
We have that ω(s) = 0 if and only if s contains no r-clique.

We now apply the Turán sieve to estimate the number of r-clique free graphs. We have(
n
2

)
unordered pairs of {1, 2, . . . , n}, so

X = 2(n2).

The size of T is the number of size r subsets in {1, 2, . . . , n}, so

|T | =
(
n

r

)
.

For a fixed t ∈ T , there are
(
r
2

)
edges, so

deg(t) = 2(n2)−(r2).

It follows that ∑
t∈T

deg(t) =

(
n

r

)
2(n2)−(r2).

We compute n(t1, t2) with t1, t2 ∈ T . Suppose the subsets t1 and t2 have an intersection
of size k. We have

(
r
2

)
edges from each of t1 and t2 and

(
k
2

)
edges in the intersection. We
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take the convention that
(
k
2

)
= 0 when k = 0 or k = 1. This matches with the values

obtained when counting edges. Therefore we have that

n(t1, t2) = 2(n2)−2(
r
2)+(k2).

There are
(
n
r

)(
r
k

)(
n−r
r−k

)
choices for ordered pairs of (t1, t2) with size k intersection. Therefore

∑
t1,t2∈T

n(t1, t2) =
r∑

k=0

(
n

r

)(
r

k

)(
n− r
r − k

)
2(n2)−2(

r
2)+(k2).

Combining the above equations with the Turán sieve stated in Corollary 12, we obtain

#{s ∈ S : ω(s) = 0} ≤ X2 ·
∑

t1,t2∈T n(t1, t2)(∑
t∈T deg(t)

)2 −X
= 22(n2)

∑r
k=0

(
n
r

)(
r
k

)(
n−r
r−k

)
2(n2)−2(

r
2)+(k2)(

n
r

)2
22(n2)−2(

r
2)

− 2(n2)

= 2(n2)

(∑r
k=0

(
r
k

)(
n−r
r−k

)
2(k2)(

n
r

) − 1

)
. (2.6)

By the simple sieve stated in Theorem 13, we have

#{s ∈ S : ω(s) = 0} ≥ 2(n2) −
(
n

r

)
2(n2)−(r2) = 2(n2)

(
1−

(
n
r

)
2(r2)

)
. (2.7)

We consider r as a function of n, say r = r(n). Note that the simple sieve provides a
nontrivial bound when

1−

(
n
r(n)

)
2(r(n)2 )

> 0.

In fact if we choose a function r(n) such that

lim
n→∞

(
n
r(n)

)
2(r(n)2 )

= 0, (2.8)

then almost all n vertex graphs have no r(n)-clique.
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We will use upper and lower bounds for the binomial coefficient
(
n
k

)
, which can be found

in many texts, for example, in The Art of Computer Programming, volume 1 by Knuth
[20, Section 1.2.6, exercise 67]. Consider the bound(

n

r

)
≤
(en
r

)r
,

where e is the base of the natural logarithm. It follows that(
n
r

)
2(r2)
≤
(
en
r

)r
2
r(r−1)

2

=
1

2
r(r−1)

2
−r log2 n+r log2( re)

=
1

2r(
r−1
2
−log2 n+log2( re))

.

Choose r(n) ≥ 2 log2 n+ 1, we obtain(
n
r

)
2(r2)
≤ 1

2r(log2 n−log2 n+log2( re))
=

1

2r(log2(
r
e))

.

In this case, the limit condition of (2.8) holds. Therefore for r(n) ≥ 2 log2 n + 1, we
conclude that almost all n-vertex graphs have no r(n)-clique. This is best possible when
compared to the result stated earlier by Bollobás and Erdős [2].

A similar analysis can be conducted for the bound obtained by the Turán sieve in (2.6).
We can see that if

lim
n→∞

∑r
k=0

(
r
k

)(
n−r
r−k

)
2(k2)(

n
r

) − 1 = 0, (2.9)

then almost all n vertex graphs have an r(n)-clique.

We proceed to compute r = r(n) which fulfil the condition in (2.9). Since the simple
sieve implies that almost all n vertex graphs have no r(n)-clique with r(n) ≥ 2 log2 +1, we
may assume that 0 ≤ r(n) ≤ 2 log2 n + 1. By Vandermonde’s identity [16, Table 169], we
have (

n

r

)
=

r∑
k=0

(
r

k

)(
n− r
r − k

)
.

Hence we can write∑r
k=0

(
r
k

)(
n−r
r−k

)
2(k2)(

n
r

) − 1 =

∑r
k=0

(
r
k

)(
n−r
r−k

)
2(k2)∑r

k=0

(
r
k

)(
n−r
r−k

) − 1 =

∑r
k=2

(
r
k

)(
n−r
r−k

)
(2(k2) − 1)∑r

k=0

(
r
k

)(
n−r
r−k

) .

Therefore we can rewrite the limit in (2.9) as

lim
n→∞

∑r
k=2

(
r
k

)(
n−r
r−k

)
(2(k2) − 1)(

n
r

) = 0.
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Note that (
n

r

)
≥ nr

rr
.

Also, we have that for 2 ≤ k ≤ r,(
r

k

)
≤ 2r and 2(k2) − 1 ≤ 2(r2).

For n sufficiently large, we have r − 2 < n/2. For 2 ≤ k ≤ r, we have(
n− r
r − k

)
≤
(

n

r − 2

)
.

Combining the above inequalities, we obtain∑r
k=2

(
r
k

)(
n−r
r−k

)
(2(k2) − 1)(

n
r

) ≤
(r − 2)2r

(
n
r−2

)
2(r2)

r−rnr
≤ rr+12(r2)+r

(
n

r − 2

)
n−r.

We have (
n

r − 2

)
≤
(

en

r − 2

)r−2
.

We write

rr+12(r2)+r
(

n

r − 2

)
n−r ≤ rr+12(r2)+r

(
en

r − 2

)r−2
n−r = rr+12(r2)+rer−2n−2(r − 2)−(r−2).

Note that as r ≥ 4, we have

rr+1 ≤ (2r − 4)r+1 = ((r − 2)2)r+1,

so

rr+12(r2)+rer−2n−2(r − 2)−(r−2) ≤ (r − 2)r+12(r2)+2r+1er−2n−2(r − 2)−(r−2)

= (r − 2)32(r2)+2r+1er−2n−2

= (r − 2)32(r2)+2r+12(r−2) log2 en−2

≤ r32r
2/2+3r/2+(r−2) log2 e+1n−2

≤ r32r
2/2+7r/2n−2
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For r ≥ 7 we have that
r32r

2/2+7r/2n−2 ≤ r32r
2

n−2.

So for any fixed ε > 0, we can choose r(n) =
√

(2− ε) log2 n, and we obtain

r32r
2

n−2 ≤ (
√

(2− ε) log2 n)3n2−εn−2 =
(
√

(2− ε) log2 n)3

nε
.

The last term clearly goes to 0 as n grows. Hence the limit (2.9) in approaches 0 in this
case. Therefore almost all n vertex graphs have a clique of size

√
(2− ε) log2 n.

The Turán sieve is based on a probabilistic principle, and as a result many estimates in
the asymptotic case can be obtained using other probabilistic methods. The advantage of
the Turán sieve when compared to these probabilistic methods is that it provides concrete
constructable bounds. When compared to the methods of Erdős, Kleitman, and Rothschild
which require r to be fixed in relation to n, the Turán sieve allows for far more flexibility
for varying r. Unfortunately we were unable to reach the best bounds asymptotically from
below when compared to Bollobás and Erdős [2], being off by a square root. However, the
method has the advantage of producing concrete bounds for given n and r.
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Chapter 3

The Selberg sieve

To introduce the Selberg sieve, we give the following which are standard methods and
applications; we present them as in the text An Introduction to Sieve Methods and their
Applications by Cojocaru and Murty [9, Chapter 5, Chapter 7].

A fundamental function in number theory is the prime counting function. Let π(x)
denote the number of primes less than or equal to some real number x. In 1896, Hadamard
[17] and de la Vallée Poussin [11] independently proved the prime number theorem, which
states that

π(x) ∼ x

log x
.

The prime numbers represent a prototypical object suitable for sieving. In this chapter,
we will introduce the Selberg sieve by deriving an upper bound for π(x). In particular, we
will show the following.

Theorem 14 (Chebycheff 1850). We have that

π(x)� x

log x
.

The method of conducting this estimate with the Selberg sieve was shown by Selberg
[27] in 1947. Our exposition follows the textbook of Cojocaru and Murty in [9, Chapter 5,
Chapter 7], which can also be found in Dalton [10].
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3.1 Bounding the number of primes

Before we describe and apply the sieve method, we need to introduce some common no-
tation. We denote the greatest common divisor of a and b as (a, b). Integers a, b with the
property that (a, b) = 1 are called coprime. The least common multiple of two integers a
and b is denoted by [a, b]. We often need to refer to the primes less than a number z, so
we write P (z) denote the product of primes less than z.

Let Φ(x, z) be the number of positive integers at most x which are not divisible by
primes less than z. So we have

Φ(x, z) = #{n ∈ N : n ≤ x and (n, P (z)) = 1}.

Note that Φ(x, z) is an upper bound for the number of primes between z and x.

A useful function when considering arithmetical properties of positive integers is the
Möbius function, denoted µ : N → {−1, 0, 1}. It is defined on the positive integers as
follows. Let n ∈ N. For n = 1, we take µ(1) = 1. If n > 1 is square-free, that is
n = p1 · · · p` for distinct primes p1, . . . , p`, then µ(n) = (−1)`. Otherwise µ(n) = 0.

Lemma 15. For any n ∈ N, we have

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1.

Proof. For n = 1 the equation holds by definition. Consider the case that n > 1 and write
n = pe11 · · · p

e`
` . Since no divisor with a squared prime factor contributes to the sum, we

can replace n with a square-free N = p1 · · · p`. Write

∑
d|n

µ(d) =
∑
d|N

µ(d) =
∑

d|p1···p`

µ(d) =
∑̀
i=0

(
`

i

)
(−1)i = (1− 1)` = 0.

The second to last equality is obtained by the binomial theorem.

One item to note is that the Möbius function is multiplicative, that is, for positive
integers n,m which are coprime, we have µ(n)µ(m) = µ(nm).

By Lemma 15, we observe that

Φ(x, z) =
∑
n≤x

∑
d|(n,P (z))

µ(d). (3.1)
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The equality follows since the inner sum only contributes when (n, P (z)) = 1, which is
equivalent to n not having prime divisors less than z.

An important observation made by Atle Selberg [27] is that for λ1 = 1 and λd arbitrary
real numbers, we have ∑

d|m

µ(d) ≤

∑
d|m

λd

2

for any m ∈ N. For convenience, we take λd = 0 for all d > z. Using Selberg’s observation,
we can choose λd to minimize the bound on Φ(x, z) in (3.1). This yields

Φ(x, z) =
∑
n≤x

∑
d|(n,P (z))

µ(d)

≤
∑
n≤x

 ∑
d|(n,P (z))

λd

2

=
∑
n≤x

 ∑
d1,d2|(n,P (z))

λd1λd2


=

∑
d1,d2|P (z)

λd1λd2
∑
n≤x

[d1,d2]|n

1.

This produces the estimate

Φ(x, z) ≤ x
∑

d1,d2≤z

λd1λd2
[d1, d2]

+O

 ∑
d1,d2|P (z)

|λd1||λd2 |

 . (3.2)

We will focus on minimizing the main term in the bound. Note that [d1, d2](d1, d2) =
d1d2. Hence we can write ∑

d1,d2≤z

λd1λd2
[d1, d2]

=
∑

d1,d2≤z

λd1λd2
d1d2

(d1, d2). (3.3)

We want to optimize this sum by choosing the sequence λd, but the gcd would be difficult
to deal with in the summation. Hence we look for a technique to eliminate this factor. To
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do this, we introduce a new arithmetic function with the desired summation properties.
For a positive integer n, we recall the Euler phi function, φ(n), is defined as

φ(n) = #{k ∈ N : 1 ≤ k ≤ n and (k, n) = 1}.

One can show that the Euler phi function is multiplicative, that is for m,n ∈ N with
(m,n) = 1, we have that φ(mn) = φ(m)φ(n).

The desired summation property is the following.

Lemma 16. For n ∈ N, we have ∑
δ|n

φ(δ) = n.

Proof. Consider the list of fractions 1/n, 2/n, . . . , n/n and write them in the lowest terms.
Hence the numerator and denominator are coprime. The denominators contain all positive
divisors of n. Note that for any divisor d|n, there are φ(d) terms in the list of fractions.
This shows a bijection from {1, . . . , n} to {φ(d) : d|n}. Therefore∑

δ|n

φ(δ) = n.

Note that using Lemma 16 and the property that φ is multiplicative, we can obtain the
following formula for φ. For n = pk11 p

k2
2 · · · p

k`
` with ki ≥ 1 and pi distinct primes, we have

φ(n) = n
∏̀
i=1

(
1− 1

pi

)
. (3.4)

We rewrite (3.3) as ∑
d1,d2≤z

λd1λd2
d1d2

(d1, d2) =
∑

d1,d2≤z

λd1λd2
d1d2

∑
δ|(d1,d2)

φ(δ)

=
∑
δ≤z

φ(δ)
∑

d1,d2≤z
δ|(d1,d2)

λd1λd2
d1d2

=
∑
δ≤z

φ(δ)

∑
d≤z
δ|d

λd
d


2

.
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Let

uδ =
∑
d≤z
δ|d

λd
d
.

We look to optimize ∑
d1,d2≤z

λd1λd2
d1d2

(d1, d2) =
∑
δ≤z

φ(δ)u2δ . (3.5)

The sequence uδ is not unconstrained. It is subject to the original restrictions on λd, that
is, the constraints λ1 = 1 and λd = 0 for all d > z. Note that this implies uδ = 0 for any
δ > z.

To convert the other restriction we need to rewrite the relation between uδ and λd. The
following result allows us to do this. We say that D ⊆ Z is a divisor closed set if for every
n ∈ D, we have that d|n implies that d ∈ D.

Lemma 17. (Dual Möbius inversion formula) Let D be a divisor closed set of natural
numbers. Let f, g be complex valued functions on the natural numbers. We have

f(n) =
∑
n|d
d∈D

g(d)

if and only if

g(n) =
∑
n|d
d∈D

µ

(
d

n

)
f(d).

Given the additional assumption that the series are absolutely convergent.

Proof. Consider the forward direction first. We have∑
n|d
d∈D

µ

(
d

n

)
f(d) =

∑
n|d
d∈D

µ

(
d

n

)∑
d|e
e∈D

g(e)

=
∑
s=d/n
n|d
d∈D

∑
d|e
e∈D

g(e)µ(s)

=
∑
n|e
e∈D

g(e)
∑
s| e
n

µ(s)

= g(n).
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The last equality is obtained by Lemma 15.

For the backwards direction, we have∑
n|d
d∈D

g(d) =
∑
n|d
d∈D

∑
d|e
e∈D

µ
(e
d

)
f(e)

=
∑
n|e
e∈D

f(e)
∑
n|d
d|e

µ
(e
d

)

=
∑
n|e
e∈D

f(e)
∑
e
d
| e
n

d|e

µ
(e
d

)

=
∑
n|e
e∈D

f(e)
∑
s| e
n

µ (s)

= f(n).

The last equality is obtained by Lemma 15.

Applying the Dual Möbius inversion formula for uδ produces

λδ
δ

=
∑
δ|d

µ

(
d

δ

)
ud. (3.6)

Thus we have the restriction that ∑
δ≤z

µ(δ)uδ = 1. (3.7)

To optimize the quadratic form in (3.5), let V (z) be a function to be defined later. We
write ∑

δ≤z

φ(δ)u2δ =
∑
δ≤z

φ(δ)

(
uδ −

µ(δ)

φ(δ)V (z)

)2

+
2

V (z)

∑
δ≤z

µ(δ)uδ −
1

V 2(z)

∑
δ≤z

µ2(δ)

φ(δ)

=
∑
δ≤z

φ(δ)

(
uδ −

µ(δ)

φ(δ)V (z)

)2

+
2

V (z)
− 1

V 2(z)

∑
δ≤z

µ2(δ)

φ(δ)
.

By choosing

V (z) =
∑
d≤z

µ2(d)

φ(d)
,
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we obtain ∑
δ≤z

φ(δ)u2δ =
∑
δ≤z

φ(δ)

(
uδ −

µ(δ)

φ(δ)V (z)

)2

+
1

V (z)
. (3.8)

Since the functions are real, the above form has a minimum when

uδ =
µ(δ)

φ(δ)V (z)
. (3.9)

By (3.6) and (3.9), we obtain

λδ = δ
∑
δ|d

µ

(
d

δ

)
ud = δ

∑
d≤z
δ|d

µ(d/δ)µ(d)

φ(d)V (z)
.

Combining (3.2), (3.3), (3.5), and (3.8), we obtain the estimate

Φ(x, z) ≤ x

V (z)
+O

 ∑
d1,d2|P (z)

|λd1||λd2|

 . (3.10)

It remains to bound the error term.

Our goal is to show that |λδ| ≤ 1. This is true by definition for δ = 1. Note that

V (z)λδ = δ
∑
d≤z
δ|d

µ(d/δ)µ(d)

φ(d)

= δ
∑
t≤ z

δ

µ(t)µ(δt)

φ(δt)

= δ
∑
t≤ z

δ
(t,δ)=1

µ2(t)µ(δ)

φ(δ)φ(t)

= µ(δ)
∏
p|δ

(
1 +

1

p− 1

) ∑
t≤ z

δ
(t,δ)=1

µ2(t)

φ(t)
.

For δ not square-free, we have µ(δ) = 0 and hence V (z)λδ = 0. Let δ = p1 · · · pn be
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square-free. We have∏
p|δ

(
1 +

1

p− 1

)

=
n∏
i=1

(
1 +

1

pi − 1

)
=1 +

n∑
i=1

1

pi − 1
+

∑
1≤i<j≤n

1

(pi − 1)(pj − 1)
+

∑
1≤i<j<k≤n

1

(pi − 1)(pj − 1)(pk − 1)
+ · · ·

=1 +
n∑
i=1

1

φ(pi)

∑
1≤i<j≤n

1

φ(pipj)
+

∑
1≤i<j<k≤n

1

φ(pipjpk)
+ · · ·

=
∑
s|δ

1

φ(s)
.

For s|δ, we have ∣∣∣∣∣∣∣∣
1

φ(s)

∑
t≤ z

δ
(t,δ)=1

µ2(t)

φ(t)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
st≤ zs

δ
(t,δ)=1

µ2(st)

φ(st)

∣∣∣∣∣∣∣∣ .
Combining the above, we obtain

∏
p|δ

(
1 +

1

p− 1

) ∑
t≤ z

δ
(t,δ)=1

µ2(t)

φ(t)
=

∣∣∣∣∣∣∣∣
∑

s|δ

1

φ(s)

 ∑
t≤ z

δ
(t,δ)=1

µ2(t)

φ(t)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
s|δ

∑
st≤ zs

δ
(t,δ)=1

µ2(st)

φ(st)

∣∣∣∣∣∣∣∣ .
Note that for distinct s1, s2 which are divisors of δ and for any t1, t2 ≤ z/δ with t1, t2 both
coprime to δ, we have that s1t1 6= s2t2. Thus we have∣∣∣∣∣∣∣∣

∑
s|δ

∑
st≤ zs

δ
(t,δ)=1

µ2(st)

φ(st)

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∑
d≤z

µ2(d)

φ(d)

∣∣∣∣∣ ,
as the product st in the left sum is never in the sum more than once. Combining the above,
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we obtain ∣∣∣∣∣∣∣∣µ(δ)
∏
p|δ

(
1 +

1

p− 1

) ∑
t≤ z

δ
(t,δ)=1

µ2(t)

φ(t)

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∑
d≤z

µ2(d)

φ(d)

∣∣∣∣∣ .
Thus we have |V (z)||λδ| ≤ |V (z)|. We conclude |λδ| ≤ 1 for any δ.

Combining the fact that |λδ| ≤ 1 with (3.10), we have

Φ(x, z) ≤ x

V (z)
+O(z2). (3.11)

We now find an appropriate lower bound for V (z). Note

V (z) =
∑
d≤z

µ2(d)

φ(d)
≥
∑
d≤z

µ2(d)

d
≥
∑
d≤z

1

d
−

∑
d≤z

d not square-free

1

d
.

We can bound the summation of d which contains a square by∑
d≤z

d not square-free

1

d
≤ 1

4

∑
d≤ z

4

1

d
≤ 1

4

∑
d≤z

1

d
.

Since ∑
d≤z

1

d
� log z,

we have

V (z) ≥
∑
d≤z

1

d
−

∑
d≤z

d not square-free

1

d
≥
∑
d≤z

1

d
− 1

4

∑
d≤z

1

d
� log z.

Therefore using (3.11) we obtain

Φ(x, z)� x

log z
+ z2.

Recall that Φ(x, z) is an upper bound for the number of primes between z and x, so
we have that

π(x) ≤ Φ(x, z) + z.
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It follows that
π(x)� x

log z
+ z2.

By choosing

z =

(
x

log x

)1/2

,

we obtain the desired estimate of
π(x)� x

log x
.

3.2 The Selberg sieve in a lattice

In this section, we will extend the Selberg sieve in the previous section to a lattice setting.
This work was conducted independently by Wilson [32] and Chow [7].

A partially ordered set or poset is a set P with a binary relation � with the following
three properties:

1. For every a ∈ P , we have a � a.

2. For every a, b ∈ P , we have that if a � b and b � a, then a = b.

3. For every a, b, c ∈ P , if a � b and b � c, then a � c.

A lattice is a poset where meets and joins exist, as defined below. We write (L,�) to
denote the set of elements and the relation of the lattice respectively. For d, e ∈ L, we
write d ≺ e to denote d � e and d 6= e. We write d � e for the negation of d � e. If we
have both d � e and e � d, then we say that e and d are not comparable. The bottom of the
lattice (L,�), denoted 0, is the unique element for which 0 � ` for all ` ∈ L. An element
of the lattices a is called an atom if 0 ≺ a and there is no element n in the lattice such that
0 ≺ x ≺ n. Let n,m be elements of the lattice (L,�). The meet of n and m is the unique
element n∧m ∈ L such that n∧m � n and n∧m � m, and for any ` ∈ L with ` � n and
` � m, we have ` � n∧m. The join of n and m is the unique element n∨m ∈ L such that
n � n ∨m and m � n ∨m, and for any ` ∈ L with n � ` and m � `, we have n ∨m � `.
Let A be a subset of L. We write ∧A and ∨A to be the meet and join of A respectively.
We call a partially ordered set a lattice if the meet and join of any two elements exists.
We call a lattice L locally finite if for any element e, the number of elements d ∈ L such
that d ≺ e is finite. Finally, a function f : L→ R is multiplicative on L if f(n) ≥ 1 for all
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n ∈ L with equality holding only when n = 0 and f(m ∨ n)f(m ∧ n) = f(m)f(n) for all
m,n ∈ L.

A useful example to keep in mind is the positive integers under the partial order of
divisibility. More precisely, we consider the lattice (N, |). That is, the lattice elements
defined as the positive integers with divisibility defining the partial order. For a prime p,
there are no integers n with n > 1 and n 6= p such that 1|n and n|p. So every prime is
an atom in the division lattice of the integers. Note that 1|n for any positive integer n.
Thus the integer 1 plays the role of the bottom element 0 ∈ L in the lattice of the positive
integers. In this context the meet is the greatest common divisor, and the join is the least
common multiple. In other words, for positive integers a and b, we have a∧ b = (a, b), the
gcd of a and b, and we have a ∨ b = [a, b], the lcm of a and b.

0

w

T

S
M(S, T )

Figure 3.1: The Hasse diagram of an instance of a lattice with S, T selected, along with
associated w in the lattice. The set M(S, T ) is labelled as well.

Fix S to be a subset of the lattice (L,�). Let T be a set of atoms and write w as the
join of T . Let

M(S, T ) = {s ∈ S : ∀t ∈ T, t � s}.

This is equivalent to counting the elements in S for which the meet with w is 0 (the bottom
element of L). Note that if we define ω(s) as the number of t ∈ T such that s � t, then
we are counting the number of s ∈ S such that ω(s) = 0. Figure 3.1 provides an example
of a lattice with the associated sets for this setting.

Consider the lattice formulation in the context of the natural number, where we count
the number of primes in the divisor lattice. We have S = {1, . . . , [x]} and T is the set of
the primes less than or equal to z. The integer w is the product of all of the primes in T
and M(S, T ) is the set of integers coprime to w. As a numerical example, consider sieving
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the set of primes {2, 3} in the positive integers up to 24. We have

S = {1, . . . , 24}, T = {2, 3}, w = 6.

We aim to count the number of integers in S for which the gcd (meet) with 6 is 1. This
would be the set

M(S, T ) = {1, 5, 7, 11, 13, 17, 19, 23}.

The Möbius function µ : L×L→ Z is defined as the function with the following three
properties:

1. For d ∈ L, we have µ(d, d) = 1.

2. Let d, n ∈ L. If d ≺ n, then ∑
d�e�n

µ(d, e) = 0.

3. If d � e, then µ(d, e) = 0.

In the context of the divisor lattice (N, |), consider µ(1, n) for n ∈ N. We have that
µ(1, 1) = 1. By Property 2, we have

µ(1, 1) + µ(1, p) = 0

for any prime p, so µ(1, p) = −1. We claim that µ(1, p1 · · · pk) = (−1)k, where p1, . . . , pk
are distinct prime numbers. We will show this by strong induction, so suppose that the
formula is true for products of less than k distinct primes. Note by Property 2 that

0 =
∑

1|e|p1···pk

µ(1, e)

=
∑

1|e|p1···pk−1

µ(1, e) +
∑

pk|e|p1...pk

µ(1, e)

=
∑

1|e|p1...pk−1

µ(1, epk),

where the last equality holds as the first sum is 0 by Property 2 of the Möbius function. We
separate the term where e = p1 · · · pk−1 in this sum and apply induction to the remaining
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terms to obtain

0 = µ(1, p1 · · · pk) +
k−2∑
i=0

(
k − 1

i

)
(−1)i+1

= µ(1, p1 · · · pk)−
k−2∑
i=0

(
k − 1

i

)
(−1)i − (−1)k−1 + (−1)k−1

= µ(1, p1 · · · pk)−
k−1∑
i=0

(
k − 1

i

)
(−1)i + (−1)k−1

= µ(1, p1 · · · pk)− (1− 1)k−1 + (−1)k−1

= µ(1, p1 · · · pk) + (−1)k−1 = 0.

Note the second the last line is obtained by the binomial theorem. This completes the proof
of the claim. A similar strong induction argument can be used to show that µ(1, n) = 0
when n ∈ N is not square-free. Thus µ(1, n) = µ(n) and we see that this definition of the
Möbius function corresponds with the definition found in the integers.

The following result was first shown by Rota [25].

Lemma 18 (Möbius inversion formula). Let (L,�) be a locally finite lattice. If f : L→ R
and g is defined by

g(n) =
∑
d�n

µ(d, n)f(d)

then
f(n) =

∑
d�n

g(d).

Proof. Note ∑
d�n

g(d) =
∑
d�n

∑
e�d

µ(e, d)f(e)

=
∑
e�n

f(e)
∑
e�d�n

µ(e, d)

= f(n).

The last equality is obtained by the Property 2 of the Möbius function, which implies that
the inner sum is 0 if e ≺ n, and is 1 if e = n.
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We also have a dual statement for Möbius inversion first shown by Rota [25].

Lemma 19 (Dual Möbius inversion formula). Let (L,�) be a locally finite lattice. If
r : L→ R and s is defined by

s(d) =
∑
d�e

r(e),

then
r(d) =

∑
d�e

µ(d, e)s(e).

Proof. Note ∑
d�e

µ(d, e)s(e) =
∑
d�e

µ(d, e)
∑
e�n

r(n)

=
∑
d�e

∑
e�n

µ(d, e)r(n)

=
∑
d�n

r(n)
∑
d�e�n

µ(d, e) = r(d).

The last equality again obtained by property 2 of the Möbius function.

Fix S, T where S is a set of x distinct elements in a lattice L, and T a finite set of
atoms whose join is w. Assume that for d ∈ L, the number of elements of n ∈ S satisfying
d � n is of the form

x

f(d)
+R(d)

where f is a multiplicative function on L, and R(d) is some small error term. Since every
element is above 0 in the lattice, we have f(0) = 1 and R(0) = 0.

Recall that |M(S, T )| is the number of elements of S whose meet with w is 0. We aim
to show that for any real number z, we have

|M(S, T )| ≤ x

V (z)
+ E(z),

where the functions V (z) and E(z) will be defined later. The function E(z) is intended to
be a small error term dependent on z. In order to sieve up to z, we require some method
of comparing lattice elements to the number z. This will be the norm function N : L→ N.
We require that the norm function be increasing, that is, for lattice elements d, e ∈ L with
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d ≺ e, we have N(d) < N(e). For any real number z, the set {n ∈ L : N(n) < z} must also
be finite. In the context of the integers, we can take the norm function to be the absolute
value.

We now proceed to estimate |M(S, T )|. By the definition of the Möbius function, we
observe that

|M(S, T )| =
∑
n∈S

n∧w=0

1 =
∑
n∈S

∑
d�n∧w

µ(0, d). (3.12)

Let λ : L × L → R be a function satisfying λ(d, d) = 1, λ(d1, d2) = 0 if d1 � d2, and
the remaining values arbitrary. We make the observation that

∑
d�n

µ(0, d) ≤

(∑
d�n

λ(0, d)

)2

.

This produces Selberg’s observation in this context. For convenience, take λ(0, d) = 0 if
N(d) > z. Note that this implies that some of the following summations are over elements
which are bounded in norm to less than or equal to z, as all remaining terms are 0. Write

|M(S, T )| =
∑
n∈S

∑
d�n∧w

µ(0, d)

≤
∑
n∈S

( ∑
d�n∧w

λ(0, d)

)2

=
∑
n∈S

( ∑
d1,d2�n∧w

λ(0, d1)λ(0, d2)

)
=

∑
d1,d2�w

λ(0, d1)λ(0, d2)
∑
n∈S

d1∨d2�n

1

This produces the estimate

|M(S, T )| ≤ x
∑
d1,d2

λ(0, d1)λ(0, d2)

f(d1 ∨ d2)
+

∑
d1,d2�w

|λ(0, d1)||λ(0, d2)||R(d1 ∨ d2)|.

We aim to minimize the main term. Since f is multiplicative, we have∑
d1,d2

λ(0, d1)λ(0, d2)

f(d1 ∨ d2)
=
∑
d1,d2

λ(0, d1)λ(0, d2)

f(d1)f(d2)
f(d1 ∧ d2).
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Let g be the Möbius inversion of f defined as in Lemma 18. We obtain∑
d1,d2

λ(0, d1)λ(0, d2)

f(d1)f(d2)
f(d1 ∧ d2) =

∑
d1,d2

λ(0, d1)λ(0, d2)

f(d1)f(d2)

∑
δ�d1∧d2

g(δ)

≤
∑
δ�w

|g(δ)|

(∑
δ�d

λ(0, d)

f(d)

)2

.

Let

u(γ, δ) =
∑
γ�δ�d

λ(γ, d)

f(d)
.

We look to optimize ∑
δ�w

|g(δ)|u(0, δ)2. (3.13)

Note that ∑
µ(0, δ)u(0, δ) =

∑
µ(0, δ)

∑
δ�d

λ(0, d)

f(d)

=
∑
d

λ(0, d)

f(d)

∑
δ�d

µ(0, δ)

=
λ(0, 0)

f(0)
= 1.

Therefore we can minimize (3.13) by writing

∑
δ

|g(δ)|u(0, δ)2 =
∑
g(δ)6=0

|g(δ)|
(
u(0, δ)− µ(0, δ)

|g(δ)|V (z)

)2

+
2

V (z)
− 1

V 2(z)

∑
g(δ)6=0

µ2(0, δ)

|g(δ)|

Let

V (z) =
∑

N(d)≤z
g(d) 6=0

µ2(0, d)

|g(d)|
.

We obtain ∑
δ

|g(δ)|u(0, δ)2 =
∑
g(δ)6=0

|g(δ)|
(
u(0, δ)− µ(0, δ)

|g(δ)|V (z)

)2

+
1

V (z)
.
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This can be minimized by choosing

u(0, δ) =


µ(0, δ)

V (z)|g(δ)|
if g(δ) 6= 0

0 if g(δ) = 0
.

Thus we have shown that the estimate is

|M(S, T )| ≤ x

V (z)
+

∑
d1,d2�w

|λ(0, d1)||λ(0, d2)||R(d1 ∨ d2)|.

Note the similarity of the form for this bound when compared to the integers. The main
difference comes in the error term, which can be shown to be O(z2) in the integer case.

One can compute λ(0, d) by using Lemma 19 (Dual Möbius inversion in lattices) on
n(0, δ) and λ(0, d)/f(d). We have

λ(0, d)

f(d)
=
∑
d�δ

µ(d, δ)u(0, δ) =
∑
d�δ
g(δ)6=0
N(δ)≤z

µ(d, δ)µ(0, δ)

V (z)|g(δ)|
.

Therefore

λ(0, d) =
f(d)

V (z)

∑
d�δ
g(δ)6=0
N(δ)≤z

µ(d, δ)µ(0, δ)

|g(δ)|
.

To summarize, we have shown the following the bound, which was first independently
obtained by Chow [7] and Wilson [32].

Theorem 20 (Selberg sieve on lattices, Wilson [32]). Let (L,�) be a locally finite lattice.
Let S ⊆ L be a set of x distinct elements with the property that for any d ∈ L, the number
of elements n ∈ S satisfying d � n is of the form

x

f(d)
+R(d)

where f is a multiplicative function and R is some suitable error function. Let T be a set
of atoms in (L,�) and write w to be the join of T . Let M(S, T ) be the set of elements in S
for which the meet with w is 0 (the bottom of the lattice). Let N : L→ N be defined such
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that for lattice elements d, e ∈ L with d ≺ e, we have N(d) < N(e). For any real number
z, assume that the set {n ∈ L : N(n) < z} is finite. Let

g(n) =
∑
d�n

µ(d, n)f(d).

Define

V (z) =
∑

N(d)≤z
g(d)6=0

µ2(0, d)

|g(d)|

and

λ(0, d) =
f(d)

V (z)

∑
d�δ
g(δ)6=0
N(δ)≤z

µ(d, δ)µ(0, δ)

|g(δ)|
.

We have
|M(S, T )| ≤ x

V (z)
+

∑
d1,d2�w

|λ(0, d1)||λ(0, d2)||R(d1 ∨ d2)|,

where d1 ∨ d2 is the join of d1 and d2.

3.3 Counting the subspaces of a finite vector space

It was noted by Wilson [32] that the lattice of subspaces of a finite vector space was a
context where the Selberg sieve could be applied. Since Wilson only mentioned the possible
use of the Selberg sieve without computation, we will give explicit estimates in this section.
The lattice of subspaces certainly has some properties which make the application of the
Selberg sieve possible, although we will have to make some assumptions to obtain numerical
estimates.

Let V be an n-dimensional vector space over Fq, a finite field with q elements. Let L
be comprised of the set of all subspaces of V , ordered by inclusion. For subspaces d and e
of the vector space V , we have d � e if d is a subspace of e. Thus L is a lattice where the
bottom element 0 is the 0-dimensional subspace {0}, and the top element is V .

Fix a set of vectors {t1, . . . , t`} in V where the ti are pairwise linearly independent. We
aim to compute the number of subspaces which do not contain any non-zero vector as a
linear combination of t1, . . . , t`. If we take S to be the set of all subspaces of V and T to
be the set {span{t1}, . . . , span{t`}}, then M(S, T ) is the set of subspaces with no non-zero
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vector as a linear combination of {t1, . . . , t`}. We aim to compute |M(S, T )|. For the sake
of brevity, we identify a vector ti with span{ti}. Thus we write T = {t1, . . . , t`}.

The Gaussian binomial coefficient (
n

k

)
q

is the number of subspaces of dimension k in an n-dimensional vector space over Fq. It is
well-known that(

n

k

)
q

=
(1 + q) · · · (1 + q + · · ·+ qn−1)

(1 + q) · · · (1 + q + · · ·+ qk−1)(1 + q) · · · (1 + q + · · ·+ qn−k−1)
.

The Gaussian binomial theorem (for example, see [24]) states that

n∑
k=0

(
n

k

)
q

q(
k
2)yk =

n−1∏
i=0

(1 + qiy). (3.14)

We take the convention that
(
k
2

)
= 0 if k is 0 or 1. We may now define a Möbius function

on L. The following result is well-known, for example, in Rota [25, Example 2], and by
Hall [18, Section 2.7]. The proof is provided for the sake of completeness.

Lemma 21 (Möbius function on the lattice of subspaces, [18], [25]). Let L be the lattice
of subspaces of a vector space V over Fq, ordered by inclusion. For arbitrary d, e ∈ L, we
define

µ(d, e) =

{
(−1)dim e−dim dq(

dim e−dim d
2 ), if d � e,

0, if d � e.

The function µ satisfies the three properties of Möbius functions as defined in Section 3.2.

Proof. Properties 1 and 3 of the Möbius function directly follow from the definition of µ.
To show that µ satisfies Property 2 of the Möbius function, consider d, c ∈ L with d � c.
We have ∑

d�e�c

µ(d, e) =
∑
d�e�c

(−1)dim e−dim dq(
dim e−dim d

2 )

=
dim c−dim d∑

k=0

(
dim c− dim d

k

)
q

q(
k
2)(−1)k

=
dim c−dim d−1∏

i=0

(1 + qi(−1)).
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The last equality is obtained by (3.14). Note that the first term of the product on the right
side is (1 + q0(−1)) = 0. Thus we have

∑
d�e�c

µ(d, e) =

{
0, if dim c > dim d,

1, if dim c = dim d.

The latter is only possible in the case that c = d. This proves that the function µ as
defined satisfies all three properties, and is therefore the Möbius function on the lattice of
subspaces.

Now we apply the Selberg sieve to count M(S, T ). Recall that S = L is the set of all
subspaces of V with x = |S|. The set T is some subset of 1-dimensional subspaces with
w as the join of T . Let m = dimw. For d ∈ L, the number of elements e ∈ L satisfying
d � e is of the form

x

f(d)
+R(d),

for some functions f and R. For d ∈ L, we take f to be

f(d) = x
dim d
n .

Then
f(V) = x

dimV
n = x1.

Since V is the only element which is above V itself, we should have x/f(V) = 1, which is
the case. Likewise the 0-dimensional subspace gives

f({0}) = x
dim{0}
n = 1.

Note that lattice elements d, e ∈ L are subspaces of V . So d∧ e, which denotes the largest
subspace of V which is contained in d and e, is the subspace d∩ e. Similarly d∨ e denotes
the smallest subspace containing both d and e, which is the subspace d + e spanned by d
and e. Thus for d, e ∈ L, we have

dim(d ∧ e) + dim(d ∨ e) = dim(d) + dim(e).

It follows that
x

dim(d∧e)
n · x

dim(d∨e)
n = x

dim d
n · x

dim e
n .

This implies that f is multiplicative in the lattice of subspaces.
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Using this function as f also provides the useful property that the function value is
only dependent on the dimension of the lattice element as a subspace. Recall that g is the
Möbius inversion function of f . We write

g(e) =
∑
d�e

µ(d, e)f(d)

=
∑
d�e

(−1)dim e−dim dq(
dim e−dim d

2 )f(d)

=
dim e∑
k=0

(
dim e

k

)
q

(−1)dim e−kq(
dim e−k

2 )x
k
n . (3.15)

Next we compute V (z). Choose a norm function N and a number z so that every subspace
which is below w has norm at most z, and every other element in S has norm greater than
z. Then we have

V (z) =
∑

N(d)≤z
g(d)6=0

µ2(0, d)

|g(d)|
=
∑
d�w
g(d)6=0

q2(
dim d

2 )

|g(d)|
=

m∑
k=0

g(d) 6=0 where dim d=k

(
m

k

)
q

q2(
k
2)

|g(d)|
.

Also, we have

λ(0, d) =
f(d)

V (z)

∑
d�δ
g(δ)6=0
N(δ)≤z

µ(d, δ)µ(0, δ)

|g(δ)|

=
f(d)

V (z)

∑
d�δ
g(δ)6=0
N(δ)≤z

(−1)2 dim δ−dim dq(
dim δ−dim d

2 )+(dim δ
2 )

|g(δ)|

= (−1)dim d f(d)

V (z)

∑
d�δ
g(δ)6=0
N(δ)≤z

q(
dim δ−dim d

2 )+(dim δ
2 )

|g(δ)|
.

Combine the above estimates with Theorem 20 to obtain

|M(S, T )| ≤ x

V (z)
+

∑
d1,d2�w

|λ(0, d1)||λ(0, d2)||R(d1 ∨ d2)|.
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In order to produce numerical estimates, we now make some additional assumptions.
Recall that w is the join of T and that m = dimw. We compute an illustrative example for
with m = 2. Since w has dimension 2, we have that the number of 1-dimension subspaces
of w is

(
2
1

)
q

= q + 1. We recall

V (z) =
m∑
k=0

g(d)6=0 where dim d=k

(
m

k

)
q

q2(
k
2)

|g(d)|
.

By noting that the function g is only dependent on the dimension of the input, we may
simplify V (z) as follows. Let d1 be some 1-dimensional subspace of w. Recall that we
choose z and the norm function N such that all subspaces below w are included, but no
others. We have

V (z) =

(
2

0

)
q

q2(
dim{0}

2 )

|g(0)|
+

(
2

1

)
q

q2(
dim d1

2 )

|g(d1)|
+

(
2

2

)
q

q2(
dimw

2 )

|g(w)|

=
q2(

0
2)

|g(0)|
+ (q + 1)

q2(
1
2)

|g(d1)|
+

q2(
2
2)

|g(w)|

= 1 +
q + 1

|g(d1)|
+

q2

|g(w)|
.

Since dim d1 = 1, by (3.15) we have

g(d1) =
1∑

k=0

(
1

k

)
q

(−1)1−kq(
1−k
2 )x

k
n

=

(
1

0

)
q

(−1)1q(
1
2) +

(
1

1

)
q

q(
0
2)x

1
n

= −1 + x
1
n .

Also as dimw = 2, by (3.15) we have

g(w) =
2∑

k=0

(
2

k

)
q

(−1)2−kq(
2−k
2 )x

k
n

= q − (q + 1)x
1
n + x

2
n .

Combining the above, we find that

V (z) = 1 +
q + 1

| − 1 + x
1
n |

+
q2

|q − (q + 1)x
1
n + x

2
n |
.
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Since

x =
n∑
k=0

(
n

k

)
q

,

we have

x

V (z)
=

∑n
k=0

(
n
k

)
q

1 + q+1∣∣∣∣∣−1+(∑n
k=0 (nk)q

) 1
n

∣∣∣∣∣
+ q2∣∣∣∣∣q−(q+1)

(∑n
k=0 (nk)q

) 1
n
+
(∑n

k=0 (nk)q
) 2
n

∣∣∣∣∣
. (3.16)

This completes the estimate by the Selberg sieve in this setting.

Now we will see how well x/V (z) approximates |M(S, T )|. The true value of |M(S, T )|
may be computed as follows. Consider the set of 1-dimensional subspaces of w. For any
higher dimensional subspace with non-zero meet with w, we have that it must contain some
1-dimensional subspace of w. The converse is also true. Thus to compute the number of
subspaces with non-zero meet with w, we only need to compute the number of subspaces
containing one of the 1-dimensional subspaces of w.

Suppose d ∈ L contains two distinct 1-dimensional subspaces of w. Then d contains w,
and so it contains every 1-dimensional subspace of w. We conclude that every subspace d
containing a 1-dimensional subspace of w either contains exactly one 1-dimensional sub-
space or all of the 1-dimensional subspaces of w. Note that for a single 1-dimensional
subspace, there are exactly

n−1∑
k=0

(
n− 1

k

)
q

subspaces of V which contain it. Similarly there are

n−2∑
k=0

(
n− 2

k

)
q

subspaces of V which contain w. Therefore by inclusion-exclusion, the number of elements
in L which contain at least one 1-dimensional subspace of w is(

2

1

)
q

n−1∑
k=0

(
n− 1

k

)
q

−

((
2

1

)
q

− 1

)
n−2∑
k=0

(
n− 2

k

)
q

,

which is equal to

(q + 1)
n−1∑
k=0

(
n− 1

k

)
q

− q
n−2∑
k=0

(
n− 2

k

)
q

.
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Thus we may write

|M(S, T )| =
n∑
k=0

(
n

k

)
q

− (q + 1)
n−1∑
k=0

(
n− 1

k

)
q

+ q
n−2∑
k=0

(
n− 2

k

)
q

(3.17)

This is slightly more difficult to compute when compared to the estimate in (3.16) as there
are three distinct sums of Gaussian binomial coefficients which need to be computed. For
higher m = dimw, we would need to compute m+ 1 such sums.

The ratio between |M(S, T )| and x/V (z) gets closer to 1 as n and q get larger. In
particular, the computed values have errors less than 1% for n ≥ 45. For n ≥ 50 and
q ≥ 7, the estimate is accurate to the first ten digits. This decrease in error for larger n
can be seen in Table 3.1 at the end of the section, which contains (x/V (z))/|M(S, T )| for
various values of n and q. All numbers in the table are rounded to the first ten digits, and
then truncated to five decimal places.

It can be seen from the above that the Selberg sieve requires one to make many decisions
on making the estimate. Even with the many assumptions and lengthy analysis above, we
have only obtained an estimate for the m = 2 case. The ratios of the estimate to the true
value does approach 1 asymptotically, but one should note that this is mostly the effect
that the size of the lattice grows very quickly, instead of the difference between x/V (z)
and |M(S, T )| being small. For example, the absolute error at n = 16, q = 5 is on the
magnitude of 1042.

q\n 4 5 6 7 8 9 10 12
5 0.16199 0.42150 0.58826 0.70836 0.79578 0.85858 0.90302 0.95522
7 0.11336 0.44138 0.63881 0.76744 0.85239 0.90695 0.94198 0.97765
8 0.09855 0.45139 0.65870 0.78822 0.87069 0.92137 0.95276 0.98304
11 0.07077 0.47769 0.70394 0.83136 0.90610 0.94744 0.97108 0.99120
13 0.05957 0.49219 0.72604 0.85058 0.92072 0.95745 0.97764 0.99375
16 0.04813 0.51041 0.75172 0.87154 0.93579 0.96726 0.98374 0.99591

Table 3.1: The value (x/V (z))/|M(S, T )| for various of n and q, where m = 2. Values
computed by applying (3.17) and (3.16).
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3.4 Subspaces of a vector space using the Turán sieve

We now apply the Turán sieve to the same problem as Section 3.3. Recall that the lattice
S = L is constructed to be all of the subspaces of V over Fq, where the ordering is by
inclusion. The set T is some subset of one-dimensional subspaces of S. We denote w as
the join of T , and we assume that m = dimw = 2. We also assume that for d ∈ L, the
number of elements of e ∈ S satisfying d � e is of the form

x

f(d)
+R(d),

where x = |S|, f is a multiplicative function on L, and R(d) is the error term. For t ∈ T
and s ∈ S, we take t ∼ s if t is a subspace of s. We define

ω(s) = #{t ∈ T : t � s}.

To estimate the same set M(S, T ) as the Selberg sieve, we need the additional assumption
that T is the set of all atoms which are below an element w in the lattice. Recall that the
join of T is w. Combining the above two statements we have that every element s ∈ S
that has 0 meet with w is above some element in T . Therefore

|M(S, T )| = #{s ∈ S : ω(s) = 0}.

By the assumption above, we have

deg(t) =
x

f(t)
+R(t).

Using the lattice structure, we may write

n(t1, t2) =

{
x

f(t1∨t2) +R(t1 ∨ t2), if t1 6= t2,

deg(t1), if t1 = t2.

Since f is multiplicative, we have f(t1 ∨ t2) = f(t1)f(t2).

We recall by the Turán sieve that

#{s ∈ S : ω(s) = 0} ≤ x2
∑

t1,t2∈T n(t1, t2)(∑
t∈T deg(t)

)2 − x,
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where the sum is over all ordered pairs (t1, t2), including pairs where t1 = t2. We may
write

#{s ∈ S : ω(s) = 0} ≤ x

x
∑

t1,t2∈T
t1 6=t2

n(t1, t2) +
∑

t∈T deg(t)(∑
t∈T deg(t)

)2 − 1


= x

x
∑

t1,t2∈T
t1 6=t2

(
x

f(t1∨t2) +R(t1 ∨ t2)
)

+
∑

t∈T

(
x
f(t)

+R(t)
)

(∑
t∈T

(
x
f(t)

+R(t)
))2 − 1

 .

Now by choosing f(d) = x
dim d
n as before, we have

#{s ∈ S : ω(s) = 0} ≤ x

x
∑

t1,t2∈T
t1 6=t2

(
x1−

2
n +R(t1 ∨ t2)

)
+
∑

t∈T

(
x1−

1
n +R(t)

)
(∑

t∈T

(
x1−

1
n +R(t)

))2 − 1

 .

Lastly, we recall dimw = 2. This implies |T | =
(
2
1

)
q

= q + 1. It follows that

#{(t1, t2) : t1, t2 ∈ T, t1 6= t2} = 2

(
q + 1

2

)
.

Thus we produce the estimate

x

2
(
q+1
2

)
x2−

2
n + x

∑
t1,t2∈T
t1 6=t2

R(t1 ∨ t2) + (q + 1)x2−
1
n + x

∑
t∈T R(t)

(q + 1)2x2−
2
n + 2(q + 1)x1−

1
n

∑
t∈T R(t) +

(∑
t∈T R(t)

)2 − 1

 . (3.18)

To compute a similar numerical estimate to the Selberg sieve estimate in Section 3.3, we
ignore the error term and approximate (3.18) with

E(n, q) = x

(
2
(
q+1
2

)
x2−

2
n + (q + 1)x2−

1
n

(q + 1)2x2−
2
n

− 1

)
. (3.19)

Recall that

x =
n∑
k=0

(
n

k

)
q

,

so equation (3.19) suffices for numerical estimates.
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At the end of this section, we have Table 3.2, which contains E(n, q)/|M(S, T )| for
various values of n and q. All numbers in the table are rounded to the first ten digits, and
then truncated to five decimal places. The estimate from (3.19) is superior to the Selberg
sieve estimate for very small values of n. On the other hand, as n increases, the error of
the Turán sieve estimate grows faster than the size of the lattice, so the fraction does not
converge to 1. One can see that this should be the case by noting that

E(n, q) = x

(
2
(
q+1
2

)
+ (q + 1)x

1
n

(q + 1)2
− 1

)
.

As x becomes larger in relation to q, we should expect E(n, q)/|M(S, T )| ≥ E(n, q)/x to
grow at the rate of x1/n.

The greater advantage here is the ease of use. Construction of the Selberg estimate for
other m requires the computation of

V (z) =
m∑
k=0

g(d)6=0 where dim d=k

(
m

k

)
q

q2(
k
2)

|g(d)|
,

where

g(d) =
dim d∑
k=0

(
dim d

k

)
q

(−1)dim d−kq(
dim d−k

2 )x
k
n .

Notably the derivation of g(d) for larger dimensions requires successively more difficult
computations of the Möbius inversion on f . For the Turán sieve, define T (m, q) to be the
size of T given m = dimw in Fq. We obtain using the Gaussian binomial that

T (m, q) =
m−1∑
k=0

qk.

With a minor extension of the method above, we find that the Turán sieve estimate with
arbitrary m is

E(n, q,m) = x

(
2
(
T (m,q)

2

)
x2−

2
n + T (m, q)x2−

1
n

T (m, q)2x2−
2
n

− 1

)
.

For fixed n, q,m this estimate is relatively easy to derive and compute.
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q\n 4 5 6 7 8 9 10 12
5 1.15103 1.45675 2.03562 2.96445 4.39316 6.53832 9.76656 21.77040
7 1.10674 1.57346 2.45086 3.92193 6.37177 10.31796 16.80511 44.31948
8 1.09323 1.62517 2.63939 4.37478 7.36747 12.32577 20.78005 58.58711
11 1.06771 1.75667 3.14569 5.64880 10.36266 18.71488 34.28441 113.37373
13 1.05731 1.82916 3.44526 6.44175 12.36206 23.22709 44.46666 159.88985
16 1.04659 1.92195 3.85319 7.56666 15.36233 30.30719 61.31231 244.65714

Table 3.2: The value E(n, q)/|M(S, T )| for various of n and q, where m = 2. Values
computed by applying (3.17) and (3.19).
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Chapter 4

Hamiltonian graphs and induced
subgraphs

The results in this chapter are based on the paper “Minimal induced subgraphs of two
classes of 2-connected non-Hamiltonian graphs.” Discrete Mathematics, 345(7):112869,
2022, co-authored with Joseph Cheriyan, Sepehr Hajebi, and Sophie Spirkl. The aim of
this chapter is to attack the problem of characterizing Hamiltonicity from the perspective of
forbidden induced subgraphs. Of particular interest are results where classes of 2-connected
graphs produced by excluding induced subgraphs are shown to be Hamiltonian. The main
results of this chapter use the notion of HC-obstructions.

4.1 Introduction

Let us describe our main results. A clique in a graph G is a set K of pairwise adjacent
vertices. A stable set in a graph G is a set S of pairwise non-adjacent vertices. A split
graph is a graph G with a partition (S,K) of V (G) such that S is a stable set and K is
a clique in G. The left-most graph in Figure 4.1 is a split graph, with the four central
vertices comprising the clique and the three outer vertices making the stable set. Recall
that a graph H is an HC-obstruction if H is 2-connected, has no Hamiltonian cycle, and
every induced subgraph of H either equals H, or is not 2-connected, or has a Hamiltonian
cycle.

An n-sun is a graph obtained from a cycle C with 2n vertices v1, . . . , v2n that occur in
this order along C by adding all edges v2iv2j for distinct i, j ∈ {1, . . . , n}. An n-nova is
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...

Figure 4.1: From left to right: the snare, the 2-nova, a theta, and a triangle-free wheel.
Squiggly edges represent paths of length at least one.

Figure 4.2: From left to right: a 4-sun and 4-nova.

obtained from an n-sun by adding a vertex w and edges wv2i for all i ∈ {1, . . . , n}. See
Figure 4.2 for an illustration of a 4-sun and a 4-nova. The net is the unique graph with
degree sequence (3, 3, 3, 1, 1, 1), and equivalently the graph with vertex set {a, b, c, a1, b1, c1}
and edge set {ab, bc, ac, aa1, bb1, cc1}. The snare is the graph obtained from a net by
adding a vertex and making it adjacent to every vertex of the net, this graph is depicted
as the left-most graph of Figure 4.1. Our first theorem, the following, gives a complete
characterization of HC-obstructions that are split graphs.

Theorem 22 ([5]). The snare and all n-novae for n ≥ 2 are HC-obstructions. Moreover,
these are the only HC-obstructions which are split graphs.

A theta is a graph consisting of two non-adjacent vertices u and v and three paths
P1, P2, P3 from u to v and each of length at least two, such that the sets V (P1)\{u, v}, V (P2)\
{u, v}, V (P3) \ {u, v} are disjoint and have no edges between them. The vertices u and v
are the ends of the theta. A closed theta is a graph obtained from a theta with ends u, v
by adding the edge uv.

A graph is triangle-free if it contains no three-vertex clique. A wheel is a pair (W, v) such
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that W is a cycle, and v is a vertex with at least three neighbours in W 1. A triangle-free
wheel is depicted as the right-most graph in Figure 4.1.

Theorem 23 ([5]). All thetas, triangle-free closed thetas, and triangle-free wheels are HC-
obstructions, and they are the only HC-obstructions which are triangle-free.

4.2 Split graphs

In this section we prove Theorem 22. The following is well-known (see, for example, [8]):

Lemma 24. Let G be a graph and X ⊆ V (G). If G \ X has more than |X| connected
components, then G has no Hamiltonian cycle.

From this, we deduce:

Lemma 25. The snare and all n-novae for n ≥ 2 are 2-connected graphs with no Hamil-
tonian cycle.

Proof. Clearly, these graphs are 2-connected. First, consider the snare. Suppose it has
a Hamiltonian cycle; then, a Hamiltonian path of a net can be obtained by deleting one
particular vertex of the snare. This is a contradiction. Next, consider an n-nova for n ≥ 2.
The graph is non-Hamiltonian, by Lemma 24 with X = {v2i : i ∈ {1, . . . , n}}, where the
vertex labels are as in the definition.

Note that the snare has the property that every 2-connected induced subgraph is Hamil-
tonian. Similarly, every n-nova for n ≥ 2 has the property that every 2-connected induced
subgraph is Hamiltonian. Combining with Lemma 25, we have that snares and n-novae are
HC-obstructions. A notable example is a K5 deleting three edges which form a triangle;
this graph is a 2-nova. See the second figure from the left of Figure 4.1,

This naturally leads to the more focused question of resolving the problem for split
graphs. In other words, which 2-connected split graphs are HC-obstructions? This is
answered by the previously stated Theorem 22.

In view of Lemma 25, in order to prove Theorem 22, it suffices to show the following
Lemma.

Lemma 26. Let G be a 2-connected split graph (S,K) which is an HC-obstruction. We
have that G contains a snare or an n-nova (for n ≥ 2) as an induced subgraph.
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Figure 4.3: Some 2-nova contradictions from the proof of Lemma 26. The convention
taken in these diagrams is that the clique is on the left and the stable set is on the right.
Dashed lines indicate non-adjacent vertex pairs.

Proof. Take G with K made as large as possible. In other words, if s ∈ S is adjacent to
all vertices in K, then we should add s to K instead.

Case 1: Consider the case that there exists a vertex k ∈ K such that |N(k)∩S| ≥ 3,
where there are at least 3 neighbours of k in S. Denote three of the neighbours of k in
S as a, b, c. Write ka, kb, kc to be an arbitrary set of neighbours of a, b, c respectively, not
necessarily distinct and not the vertex k. Note that ka, kb, kc must necessarily exist as a
consequence of G being 2-connected. This is depicted in Figure 4.3a. In the case that
ka, kb, kc are all distinct and is each adjacent to only one of a, b, c, we have a snare. If it
is the case that one of ka, kb, kc is adjacent to all three of a, b, c, then we have an induced
2-nova. Since we chose ka, kb, kc arbitrarily, we have that no neighbour of a, b, or c can be
adjacent to all three of a, b, c. Therefore N(a) ∩N(b) ∩N(c) = {k}.

So we only have the case that one of the vertices of ka, kb, kc is adjacent to two of a, b, c.
Without loss of generality suppose that it is kb, being adjacent to a and b. In this case
consider the induced subgraph on vertices k, a, b, c, kb, kc. Note that a, k, b, kb form an even
cycle. If kc is not adjacent to a or b, then a, k, b, kb, kc is a 2-nova. This 2-nova is depicted
in Figure 4.3b. Thus it must be the case that kc is adjacent to one of a, b. Without loss of
generality suppose that it is adjacent to a.

1In a standard definition of a wheel, the cycle W is required to be of length at least four. Note that
this does not matter for our purposes as we are only concerned with triangle-free wheels.
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Note that there is also an even cycle on c, kc, a, k, so any other vertex in K must be
adjacent to a or both b and c, else we would obtain an induced 2-nova. This is depicted
in Figure 4.3c. There must be vertices in K not adjacent to a, as we assumed K to be as
large as possible. We therefore find k′ ∈ K that is adjacent to both b and c. Now there is
an even cycle c, k, b, k′. Every other vertex in K now must be adjacent to two of a, b, c as
otherwise we have an induced 2-nova. Note that the vertices k, kb, kc, k

′ are adjacent to at
least two of a, b, c. Therefore we have

N(a) \ (N(b) ∪N(c)) = ∅
N(b) \ (N(a) ∪N(c)) = ∅
N(c) \ (N(a) ∪N(b)) = ∅

N(a) ∪N(b) = K

N(a) ∪N(c) = K

N(b) ∪N(c) = K

N(a) ∩N(b) ∩N(c) = {k}

Consider a fourth vertex s ∈ S. There must be one, as otherwise we have kc, c, k, a, kb, b, k
′

a path starting and ending in K with all of the vertices in S and this can to extended to a
Hamiltonian cycle. This path is depicted in Figure 4.4a. There are at least two neighbours
of s. The neighbours of s are in the intersection of two of the neighbourhoods of a, b, c.
Suppose without loss of generality that one of the neighbours is k1 ∈ N(a) ∩ N(b). Let
k2 be a neighbour of s distinct from k1. If k2 ∈ N(a) ∩ N(b), then the graph induced on
a, k1, b, k2, s produces an induced 2-nova. This 2-nova is depicted in Figure 4.4b. Suppose
without loss of generality that k2 ∈ N(b)∩N(c). We have s, k2, b, k1 an even cycle with kc
which is an induced 2-nova.

This ends the proof of the case where there exists k ∈ K with |N(k) ∩ S| ≥ 3.

Case 2: Suppose that for all k ∈ K, we have |N(k)∩S| ≤ 2. For the sake of exposition,
let us consider the simple case that each k ∈ K has at most 1 neighbour in S. We can take
two edges incident to each s ∈ S, and connect the ends of these paths in K appropriately
to form a Hamiltonian cycle. This is depicted in Figure 4.4c.

Now that each k ∈ K has at most 2 neighbours in S, choose two edges es, fs incident
to each s ∈ S and take the graph with these edges to be H. Observe that H has maximum
degree 2. Choose H such that the graph has the least number of cycles. If H is acyclic,
then we have that H is composed of paths P1, . . . , Pt ending at vertices in K. In this
case we can connect the ends of the paths in K as in the previous paragraph to form a
Hamiltonian cycle.

55



k′

kb

kc

k

c

b

a

(a) The path which can be
extended to a Hamiltonian
cycle if there are only three
vertices in S, highlighted in
red.

k2

k

s

c

b

a

(b) A diagram for one case
that a fourth vertex is in S.
The 2-nova is induced by the
vertices k, k2, a, b, s.

(c) A diagram on the case
that |N(k) ∩ S| ≤ 1 for all
k ∈ K. By connecting the
ends of the shown paths in K
with any remaining vertices,
we construct a Hamiltonian
cycle.

Figure 4.4: Some graphs used in the proof of Lemma 26. The convention taken in these
diagrams is that the clique is on the left and the stable set is on the right.

v

s

C

(a) The vertices which form a n-nova from
the cycle C in H.

v

s

C

(b) The choice of edges for H ′ given a v ∈ K
adjacent to a cycle C in H.

Figure 4.5: Some parts of the proof of Claim 2 in Lemma 26. Dashed lines indicate
non-adjacent vertex pairs.

56



Consider one of the shortest cycles C in H. If C contains all vertices in K, then C is
a Hamiltonian cycle. If there exists a vertex v ∈ K that is not incident to any vertex of
C ∩ S in G, then we have an n-nova. This is depicted in Figure 4.5a. If v is incident to
a vertex s ∈ C ∩ S, then we can switch one of the edges incident to s, say es = st to the
edge sv instead. Call this graph H ′. This is depicted in Figure 4.5b. Now the edges of C
no longer form a cycle. If no cycles are formed by this operation, then this contradicts the
minimality of the number cycles. If a cycle C ′ is formed, then it must use the edge sv. But
as H ′ is a graph of degree at most 2, the cycle must use all of the edges of C \ {st}. But
the vertex t has degree 1 in H ′, so no cycle is formed. This contradicts the choice of H.

4.3 Triangle-free graphs

In this section, we prove Theorem 23.

Lemma 27. Thetas, closed thetas, and triangle-free wheels are 2-connected graphs with no
Hamiltonian cycle.

Proof. Again, 2-connectivity can be checked easily. Thetas and closed thetas have no
Hamiltonian cycles by Lemma 24, letting X be the set of ends of the (closed) theta. For
a triangle-free wheel H = (W, v), note that every edge e of W contains a vertex of degree
two in H, and therefore every Hamiltonian cycle of H contains e. It follows that every
Hamiltonian cycle contains all edges of W ; but these edges form a cycle that does not
contain v, and hence no Hamiltonian cycle exists.

We assume that the reader is familiar with standard definitions for graph minors and
planar graphs. A model of graph H in graph G is a collection of disjoint sets (Ah)h∈V (H)

such that G[Ah] is connected for all h ∈ V (H), and for every edge e = hh′ ∈ E(H), there
is at least one edge between Ah and Ah′ in G. We say that graph G contains H as a minor
(or contains an H-minor) if G contains a model of H. A graph is outerplanar if it has a
planar embedding with all vertices incident with the outer face.

Theorem 28 ([4]). A graph is outerplanar if and only if it contains no subdivision of K2,3

as a subgraph and no subdivision of K4 as a subgraph.

Lemma 29 ([4]). Every 2-connected outerplanar graph is Hamiltonian.

57



In view of Lemma 27, in order to prove Theorem 23, it suffices to prove the following.

Theorem 30. Let G be a triangle-free 2-connected graph. If G is not Hamiltonian then it
contains one of the following as an induced subgraph:

1. a triangle-free wheel;

2. a theta;

3. a closed theta.

Proof. If G is outerplanar, then it is Hamiltonian by Lemma 29. We consider the cases
where G has a subdivision of K4 or K2,3 as a subgraph.

Case 1: If G contains a subdivision of K4 as a subgraph, then G contains K4 as a
minor. Consider the sets A1, A2, A3, A4 of a model of K4 in G.

We claim that there exists an induced cycle in G[A1 ∪A2 ∪A3] with at least one vertex
from each of A1, A2, A3. Consider the following construction of a cycle. Choose x ∈ A1

with a neighbour x′ ∈ A3 and y ∈ A2 with a neighbour y′ ∈ A3. Let P be a shortest path
from x to y in G[A1 ∪ A2]. Let P ′ be a shortest path from x′ to y′ in G[A3]. The cycle is
formed by P, x, x′, P ′, y′, y. Let C be a shortest cycle constructed with the above method,
and fix the associated vertices for the construction x, x′, y, y′. If there is a chord in C, it
is an edge between a vertex in P and P ′. Suppose without loss of generality that it is
between a vertex in z ∈ A1 and a vertex in z′ ∈ A3, which is not the pair x and x′. We
can construct a shorter cycle with z, z′, y, y′ and the associated paths. Therefore no such
chord exists and C is an induced cycle. This is depicted in Figure 4.6a.

Note the following observation.

(1) If any vertex in G \ C has at least two neighbours in C, then we have a triangle-free
wheel or a subdivision of K2,3 (a theta).

Let x ∈ A4. Let Pi be an induced path in G[Ai ∪ A4] from x to yi ∈ Ai ∩ C for
i ∈ {1, 2, 3}. Choose the Pi to be minimal. Note that the second to last vertex zi of Pi has
yi as its only neighbour on C, as it cannot have more than one neighbour on C.

As y1, y2, y3 cannot be a triangle, suppose that y1 and y2 are non-adjacent without loss
of generality. Let Q be a shortest path between y1 and y2 contained in G[P1∪P2]. Choose a
shortest path R which has endpoints a and b non-adjacent vertices on C and whose interior
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Figure 4.6: Some depictions of steps in the proof of Theorem 30

is a subpath of Q. If no vertex in the interior of R has a neighbour in C \ {a, b}, then the
graph G[R ∪ C] is a theta. The path R is depicted in Figure 4.6b.

If there are at least two vertices a′, b′ ∈ C \ {a, b} adjacent to the interior of R, then
note that these vertices cannot be adjacent to N({a, b}) ∩ R. Otherwise there would be
vertices in G \ C with at least 2 neighbours in C and we obtain a contradiction by (1).
Note that a, a′, b′ cannot form a triangle. Therefore we can choose a shorter R.

So there is at most one vertex in C adjacent to the interior of R. If a vertex in the
interior of R has a neighbour c ∈ C \ {a, b}, then it must be adjacent to both a and b.
Otherwise we could choose a shorter R with one endpoint being c. Consider the induced
cycle C ′ = G[(C \ {c}) ∪ R] with the vertex c. As c has 3 neighbours in C ′, we have an
induced triangle-free wheel.

This completes the proof in the case that G contains a K4-minor.

Case 2: Suppose that G does not contain a K4-minor. Since it is not outerplanar,
it contains a subdivision of K2,3 as a (not necessarily induced) subgraph. Choose such a
subgraph H to have as few vertices as possible, and denote the two vertices of degree 3 as
u and v. Let the three paths between u and v be denoted P1, P2, P3.

Note that the paths P1, P2, P3 are induced except possibly the edge uv. Otherwise we
can shorten one of the paths, decreasing the number of vertices in H. There are no edges
between P1 \{u, v}, P2 \{u, v}, P3 \{u, v} as we obtain a K4 minor if there is such an edge.
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If uv is an edge, then G[V (H)] a closed theta. If not, then G[V (H)] is a theta.
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Chapter 5

Conclusion

In the first part of the thesis we consider some generalizations of number theoretic sieves
to combinatorics. In Chapter 2, we gave an exposition of Turán’s [29] proof of the Hardy-
Ramanujan theorem, demonstrating the idea of computing probabilistic parameters. This
idea was extended to a combinatorial sieve method by Liu and Murty [22], and we outline
the proof in the Chapter. Applying the Turán sieve to the problem of labelled graphs
was relatively easy, difficulties arising only when looking for asymptotic implications. In
Chapter 3, we start by outlining Selberg’s [27] sieve estimate on the prime numbers, as
explained by Cojocaru and Murty [9]. We give an exposition of Wilson’s [32] (independently
by Chow [7]) generalization of the sieve to lattices, following the flow and notation of the
earlier exposition as much as possible. Lastly we apply the Selberg sieve to count subspaces
of finite vector spaces. The examples demonstrate the differences clearly. In the Turán
sieve, there is no need for the existence of many structural conditions, and no estimates
on the Möbius function. The Selberg sieve allows for and requires many more choices in
applying the estimate. This can lead to better results with the judicious application of
analytic methods to choose estimates in reducing the errors.

The second part of the thesis is joint work with Joseph Cheriyan, Sepehr Hajebi, and
Sophie Spirkl in Chapter 4. Here we define an minimal HC-obstruction to Hamiltonic-
ity under the 2-connected induced subgraph relation. These HC-obstructions are then
characterized for two classes of graphs, split graphs and triangle-free graphs.
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