Even Pairs and Prism Corners in Square-Free Berge Graphs

Maria Chudnovsky *
Princeton University, Princeton, NJ 08544
Frédéric Maffray ${ }^{\dagger}$
CNRS, Laboratoire G-SCOP, University of Grenoble-Alpes, France

Paul Seymour ${ }^{\ddagger}$
Princeton University, Princeton, NJ 08544
Sophie Spirkl
Princeton University, Princeton, NJ 08544

20th December 2017

Abstract

Let G be a Berge graph such that no induced subgraph is a 4-cycle or a line-graph of a bipartite subdivision of K_{4}. We show that every such graph G either is a complete graph or has an even pair.

1 Introduction

All graphs in this paper are finite and simple. For a graph G and $X \subseteq V(G), G \mid X$ denotes the induced subgraph of G with vertex set X. Two disjoint sets X, Y of vertices in a graph are complete to each other if every vertex in X is adjacent to every vertex in Y, and anticomplete to each other if no vertex in X is adjacent to a vertex in Y. We say that v is complete to $X \subseteq V(G)$ if $\{v\}$ is complete to X, and v is anticomplete to $X \subseteq V(G)$ if $\{v\}$ is anticomplete to X. For $X, Y \subseteq V(G)$, we say that X touches Y if either $X \cap Y \neq \emptyset$ or there exists $x \in X, y \in Y$ so that $x y \in E(G)$. Let $v \in V(G)$; we say that v touches $X \subseteq V(G)$ if $\{v\}$ touches X; and we say that v is a neighbor of X if $v \notin X$, but v touches X.

For a vertex $v \in V(G)$, we let $N_{G}(v)=N(v)$ denote the set of neighbors of v in G. A clique in a graph is a set of pairwise adjacent vertices, and for a graph $G, \omega(G)$ denotes the size of the largest clique in G. By a path in a graph we mean an induced path, and the length of a path is the number of edges in it. A path is odd if its length is odd, and even otherwise.

Let $k \geq 4$ be an integer. A hole of length k in a graph is an induced subgraph isomorphic to the k-vertex cycle C_{k}, and an antihole of length k is an induced subgraph isomorphic to C_{k}^{c} (here G^{c} denotes the complement of G). A hole (or antihole) is odd if its length is odd. A graph is called Berge if it has no holes of odd length, and no antiholes of odd length. A hole of length four is called a square, and a graph is square-free if it does not contain a square.

An even pair in a graph is a pair of vertices $\{u, v\}$ such that every path from u to v is even, and in particular, u and v are non-adjacent. (We remind the reader that by a path we always mean an

[^0]induced path.) The contraction operation for even pairs is defined as follows. The graph G^{\prime} is obtained from G by contracting $\{u, v\}$ if

- $V\left(G^{\prime}\right)=(V(G) \backslash\{u, v\}) \cup\{w\} ;$
- $G^{\prime} \backslash\{w\}=G \backslash\{u, v\}$; and
- $N_{G^{\prime}}(w)=N_{G}(u) \cup N_{G}(v)$.

It is not difficult to see that if G is Berge and G^{\prime} is obtained from G by contracting an even pair $\{u, v\}$, then G^{\prime} is Berge, and that $\omega\left(G^{\prime}\right)=\omega(G)[3]$. Moreover, given a coloring of G^{\prime} with $\omega(G)$ colors, one can obtain a coloring of G with $\omega(G)$ colors by assigning u and v the color of w, and keeping the colors of the remaining vertices unchanged. A graph G is called even contractile if there is a sequence of graphs G_{1}, \ldots, G_{t} where $G_{1}=G, G_{t}$ is the complete graph with $\omega(G)$ vertices, and for $i \in\{1, \ldots, t-1\}, G_{i+1}$ is obtained from G_{i} by contracting an even pair of G_{i}. If the even pair to be contracted at every stage can be found algorithmically, as for instance in Theorem 1.3, this leads to a polynomial time coloring algorithm. For this reason, and because of their role in the understanding of the structure of Berge graphs, much attention has been devoted to determining which Berge graphs are even contractile, or have even pairs.

A prism K in a graph G is an induced subgraph consisting of two disjoint triangles $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ and three disjoint paths P_{1}, P_{2}, P_{3}, where P_{i} has ends a_{i} and b_{i}, and for $1 \leq i<j \leq 3$ the only edges between $V\left(P_{i}\right)$ and $V\left(P_{j}\right)$ are $a_{i} a_{j}$ and $b_{i} b_{j}$. The vertices in $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ are called corners of the prism. A vertex $v \in V(G) \backslash V(K)$ is major for K if v has at least two neighbors in each of the triangles of K. A vertex $v \in V(G)$ is rough for the prism K if there exist $\{i, j, k\}=\{1,2,3\}$ such that either v is an end of the path P_{k}, or v has a neighbor in $\left\{a_{i}, b_{i}\right\}$ and in $\left\{a_{j}, b_{j}\right\}$ and either

- there is a path Q, called the normal path, from v to an interior vertex of P_{k} such that the set of interior vertices of Q is anticomplete to $\left\{a_{i}, a_{j}, b_{i}, b_{j}\right\}$; or
- P_{k} has length one and v is adjacent to both a_{k} and b_{k};
P_{k} is called a base path for v in K.
We say that a vertex v is a corner (major, rough) in G if there is a prism K in G such that v is a corner (major, rough) for K. A vertex is smooth if it is not rough.

A prism is odd if P_{1}, P_{2}, P_{3} are all odd, and even if they are all even. It is easy to see that if G is Berge, then every prism is either even or odd. Everett and Reed made the following conjecture:

It is not true that every major vertex is a rough vertex, because major vertices need not have neighbors in the interior of paths, but in the case of odd prisms, the following holds:

Lemma 1.1. If K is an odd prism in a Berge graph G, and v is major for K, then v is rough for K.
Proof. If there is an i, say $i=1$, so that v does not have a neighbor in P_{i}, then v is adjacent to $a_{2}, a_{3}, b_{2}, b_{3}$ because v is major, and thus $v-a_{2}-a_{1}-P_{1}-b_{1}-b_{3}-v$ is an odd hole in G, a contradiction. Thus, v has a neighbor in every path P_{i} of K.

Because v is major, if there is some k such that v is adjacent to neither a_{k} nor b_{k}, then v is adjacent to some vertex in the interior of P_{k}, and to $a_{i}, a_{j}, b_{i}, b_{j}$; hence it is a rough vertex with base path P_{k}.

Otherwise, v is adjacent to at least one of $\left\{a_{i}, b_{i}\right\}$ for each i. There is at least one path P_{k} of K such that v is adjacent to both its ends. But P_{k} is odd, and so $v-a_{k}-P_{k}-b_{k}-v$ is an odd hole unless v has a neighbor in the interior of P_{k} or P_{k} has length one. Thus, v is rough for K with base path P_{k}.

For a prism K, a subset of its vertex set is local if it is contained in one path or one triangle of K. A vertex $v \in V(G) \backslash V(K)$ is a local neighbor of K if v has a neighbor in K and the set of neighbors of v in $V(K)$ is local.

Conjecture 1.2 ([3]). If a Berge graph has no odd prism and no antihole of length at least six, then it is even contractile.

Conjecture 1.2 is still open, but the following weaker statements have been proved:
Theorem 1.3 ([7]). If a Berge graph has no prism and no antihole of length at least six, then it is even contractile.

Theorem 1.4 ([5]). If a square-free Berge graph has no odd prism, then either it is a complete graph or it has an even pair.

A graph H is a subdivision of a graph G if H is obtained from G by repeatedly subdividing edges. H is a bipartite subdivision of G if H is a subdivision of G, and H is bipartite. The line-graph $L(G)$ of G is the graph with vertex set $E(G)$, and such that $e, f \in E(G)$ are adjacent in $L(G)$ if and only if e and f share an end in G. A graph G is called flat if it is Berge and it contains no induced subgraph isomorphic to the line-graph of a bipartite subdivision of K_{4}.

Hougardy [4] made the following related conjecture:
Conjecture 1.5 ([4]). If G is a minimal Berge graph with no even pair, then G is either an even antihole of length at least six, or the line-graph of a bipartite graph.

Here we prove the following result, in the spirit of Theorem 1.4.
Theorem 1.6. If G is a square-free flat graph, then either G is a complete graph or G has an even pair.

In view of Conjecture 1.2 and Theorem 1.6 one might hope that the common generalization holds, i.e. that every flat graph with no antihole of length at least six is either a complete graph or has an even pair. This is not the case, as the graph on the left in Figure 1 shows. It is the line-graph of the bipartite series-parallel graph on the right; thus it is flat, and it contains no antihole of length at least six, but it does not have an even pair.

Figure 1: G and a bipartite series-parallel graph H with $G=L(H)$
To prove Theorem 1.6 we use an idea first suggested by the second author [6] to approach Conjecture 1.2. A vertex is simplicial if its neighbor set is a clique. Note that a graph that is the disjoint union of cliques has no non-simplicial vertices. The second author conjectured that

Conjecture 1.7 ([6]). Every Berge graph with no odd prism and no antihole of length at least six either is a disjoint union of cliques or has a vertex that is not a corner and not simplicial.

He further suggested that
Conjecture 1.8 ([6]). If G is a Berge graph with no antihole of length at least six, and $v \in V(G)$ is not a corner and not simplicial, then the neighbor set of v includes an even pair of G.

Our first result is a variant of Conjecture 1.7.
Theorem 1.9. Let G be a square-free flat graph. Then either G is a disjoint union of cliques, or some $v \in V(G)$ is smooth and not simplicial.

We then closely follow the outline of the proof of Theorem 1.3 and show the following variant of Conjecture 1.8 .

Theorem 1.10. Let G be a Berge graph with no antihole of length at least six, such that every proper induced subgraph of G either is a complete graph or has an even pair. Let v be a vertex of G that is smooth and not simplicial. Then the neighborhood of v includes an even pair of G.

Proof of Theorem 1.6, assuming Theorems 1.9 and 1.10. We prove this by induction on $|V(G)|$. We may assume that G is not complete. If G is the union of at least two disjoint cliques, then two vertices in different connected components form an even pair; thus we may assume that G is not a disjoint union of cliques. By Theorem 1.9, there is a smooth, non-simplicial vertex. Since G is square-free, it contains no antihole of length at least six, so by Theorem 1.10 there is an even pair in G. This proves Theorem 1.6

The proof of Theorem 1.9 appears in Sections 2 and 3 and Section 4 is devoted to the proof of Theorem 1.10

2 Prism Corners

Let G be a non-null square-free flat graph with no clique cutset. We want to show that there is a vertex in G that is smooth.

A megaprism in G is an induced subgraph P such that $V(P)$ admits a partition into twelve sets $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}, B_{4}, C_{1}, C_{2}, C_{3}, C_{4}$ with the following properties:

- $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3} \neq \emptyset$;
- A_{i} is complete to A_{j}, and B_{i} is complete to B_{j} for all distinct $i, j \in\{1,2,3\}$; the sets $A=$ $A_{1} \cup A_{2} \cup A_{3}$ and $B=B_{1} \cup B_{2} \cup B_{3}$ are called potatoes of P;
- for $i=1,2,3$, the vertex set of every component of $G \mid C_{i}$ touches A_{i} and B_{i}, every vertex in A_{i} has a neighbor in $B_{i} \cup C_{i}$, and every vertex in B_{i} has a neighbor in $A_{i} \cup C_{i}$;
- the vertex set of every component of $G \mid A_{4}$ touches A, and the vertex set of every component of $G \mid B_{4}$ touches B;
- for every edge $u v$ of $P,\{u, v\}$ is a subset of one of the sets $A \cup A_{4}, B \cup B_{4}, C_{4}, S_{1}, S_{2}, S_{3}$, where $S_{i}=A_{i} \cup B_{i} \cup C_{i}$ for $i=1,2,3$; and
- every vertex in $M=V(G) \backslash V(P)$ is major for P, that is, it is complete to two of A_{1}, A_{2}, A_{3} and to two of B_{1}, B_{2}, B_{3}.

Thus, every component of $G \mid C_{4}$ is a component of P, and we shall soon show that $C_{4}=\emptyset$. Components of $G \mid A_{4}$ and $G \mid B_{4}$ are called side components. For $i=1,2,3$, the set $S_{i}=A_{i} \cup C_{i} \cup B_{i}$ is called a strip of P with interior C_{i}. A path from A_{i} to B_{i} with interior in C_{i} is called a rung of the strip S_{i}. We call the sets $A_{i}, B_{i}(i=1,2,3) P$-ends.

The following is proved (with different terminology) in the first paragraph of the proofs of Theorems 4.2 and 5.2 of [1].

Theorem 2.1. Let G be a square-free flat graph that contains a prism with triangles $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$. Then there is a megaprism P such that the sets A, B as defined above satisfy that $\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq A$ and $\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq B$.

In Lemmas 2.2.2.6, we always assume that G is a non-null square-free flat graph with no clique cutset, and that P is a megaprism in G with notation as above.

The following was proved in [1], Theorem 5.2 (4). We include a short proof for completeness.
Lemma 2.2. M is a clique and for each potato of P, at most one of the P-ends included in this potato is not complete to M. Also, $C_{4}=\emptyset$.

Proof. Suppose that M is not a clique. Then, M contains two non-adjacent vertices x, y, each complete to two P-ends in each potato. Hence, they have common neighbors $a \in A$ and $b \in B$, and if a and b can be chosen to be not adjacent, this forms a square, a contradiction. Therefore, a and b are adjacent; thus both are in the same strip, say S_{1}, and x, y have no common neighbors in $A_{2} \cup A_{3}$. Up to symmetry, this implies that since x, y are major, x is complete to A_{2} and has no neighbors in A_{3} and y is complete to A_{3} and has no neighbors in A_{2}. Let $v \in A_{2}, u \in A_{3}$; then $x-b-y-u-v-x$ is a hole of length five, which cannot happen in a Berge graph. This proves that M is a clique.

Next, we suppose that two P-ends in the same potato contain vertices x, y that are not complete to M. Then there are major vertices u, v such that x is adjacent to u but not v, and y is adjacent to v but not u. Since x is adjacent to y and u is adjacent to v, they form a square.

Finally, since M is a clique and not a clique cutset, it follows that $C_{4}=\emptyset$.
We say that a P-end is good if it is a clique and all its vertices are complete to M. Otherwise, it is called a bad P-end.

Lemma 2.3. For each potato, at most one of the P-ends it includes is a bad P-end.
Proof. By Lemma [2.2, at most one P-end is not complete to M. If there are two P-ends that are not cliques, there is a square formed by two pairs of non-adjacent vertices that are complete to each other. If u, v are in the same P-end in a potato p and non-adjacent, and x is in a different P-end in p and non-adjacent to some $y \in M$, then $x-u-y-v-x$ is a square.

Let S_{i} be strip of P. We define $\widetilde{S_{i}}$ as follows.

- if both A_{i} and B_{i} are good P-ends, then $\widetilde{S_{i}}=C_{i}$;
- if A_{i} is a good P-end and B_{i} is a bad P-end, then $\widetilde{S_{i}}=C_{i} \cup B_{i} \cup B_{4}$;
- if B_{i} is a good P-end and A_{i} is a bad P-end, then $\widetilde{S_{i}}=C_{i} \cup A_{i} \cup A_{4}$; and
- if both A_{i} and B_{i} are bad P-ends, then $\widetilde{S_{i}}=C_{i} \cup A_{i} \cup A_{4} \cup B_{i} \cup B_{4}$.

In Lemma 2.7. we will show that if there is a prism, then some strip of some megaprism has no prism corners in its interior. Our strategy to prove this is, we can assume there is a prism and hence a megaprism; choose a megaprism with a strip "minimal" in some sense, and prove that no vertex in the interior of the strip is a corner. The intuition behind this is, if a vertex v in the interior of this
minimal strip (S say) is a corner, then grow the corresponding prism to a megaprism; it is difficult for the strips of the new megaprism to "escape" from S - more or less, only one can escape through each end of S - so one will be trapped inside of S, and this will contradict the minimality of S. But there are difficulties. First, we need to make sure that there are vertices in the interior of S; so let us choose S to be a strip with no rung of length one, and subject to that with something minimal. Second, too many strips of the new megaprism can sometimes "escape" from S into side components, when the corresponding end of S is not a clique, so we would like to consider this as not really escaping, which means we sometimes need to include the side components as part of the strip. This led us to try choosing a megaprism and a strip S with no rungs of length one and then with \widetilde{S} minimal, and this is an approach that works. It may not be the simplest method, but the example of Figure 2 shows that several simpler methods do not work.

In the graph of Figure 2, the sets $A_{1}=\left\{v_{1}\right\}, A_{2}=\left\{v_{2}\right\}, A_{3}=\left\{v_{3}\right\}, C_{1}=\left\{v_{15}, v_{16}, v_{17}\right\}, C_{2}=$ $\left\{v_{4}\right\}, C_{3}=\left\{v_{5}\right\}, B_{1}=\left\{v_{8}, v_{9}, v_{18}\right\}, B_{2}=\left\{v_{6}\right\}, B_{3}=\left\{v_{7}\right\}, B_{4}=\left\{v_{10}, v_{11}, v_{12}, v_{13}, v_{14}\right\}$ define a megaprism, and there is another from the left-right symmetry. Those are the only two; and an internal vertex of S_{1} is a corner vertex, so whatever we minimize must not be minimized by this strip. The advantage of minimizing \widetilde{S} is that $\widetilde{S_{1}}$ includes the corresponding set of a strip of the other megaprism, and so is not minimal. (A more obvious fix for this example is, choose S with as few vertices as possible. That works for this example, but we could subdivide the edge $v_{2} v_{4}$ a large even number of times, and the same for $v_{3} v_{5}, v_{10} v_{12}, v_{11} v_{13}$, and then simply counting vertices no longer works.)

Figure 2: A hard example
Lemma 2.4. Let S_{i} be a strip with a bad P-end A_{i}; then every component of A_{4} has a neighbor in A_{i}. The same holds for B_{i} and B_{4}.
Proof. This follows because the union of M and good P-ends in A is not a clique cutset.
Lemma 2.5. For $i \in\{1,2,3\}$, every vertex with distance one from $\widetilde{S_{i}}$ is either in M or in a good P-end, and therefore complete to M. Consequently, every path from a vertex in $\widetilde{S_{i}}$ to a vertex not in $\widetilde{S_{i}}$ contains a vertex that is either in M or in a good P-end. Moreover, if $X \subseteq V(P)$ is connected, X touches $\widetilde{S_{i}}$, and no vertex $v \in X$ is complete to $M \backslash\{v\}$, then $X \subseteq \widetilde{S_{i}}$.
Proof. Let $i=1$, say. First, note that vertices with distance one from $\widetilde{S_{1}}$ are either in M or A or B. Moreover, if A_{1} is a good P-end, then vertices in A with distance one from $\widetilde{S_{1}}$ are in A_{1}. If A_{1} is a bad P-end, then vertices in A with distance one from $\widetilde{S_{1}}$ are in $A_{2} \cup A_{3}$, and since A_{1} is a bad P-end by Lemmma 2.3, both A_{2} and A_{3} are good P-ends. The last statement of the lemma follows since every vertex v in a good P-end is complete to M by definition, and every vertex v in M is complete to $M \backslash\{v\}$ by Lemma 2.2 .

Lemma 2.6. For all distinct $i, j \in\{1,2,3\}, \widetilde{S_{i}}$ and $\widetilde{S_{j}}$ do not touch. Let R be a path with one end in $\widetilde{S_{i}}$ and the other end in $\widetilde{S_{j}}$ for some $i \neq j$. Then the interior of R contains either a vertex in M, or a vertex in a good P-end. Moreover, $\widetilde{S_{i}}$ and $\widetilde{S_{j}}$ are anticomplete to each other for all $i \neq j$.
Proof. Since by Lemma 2.3 at most one P-end in each potato is bad, it follows that $\widetilde{S_{i}}$ and $\widetilde{S_{j}}$ do not touch, and in particular they are anticomplete to each other. But $V(R) \nsubseteq \widetilde{S_{i}}$, and R is connected, so it contains a vertex with distance one from $\widetilde{S_{i}}$, and the result follows from Lemma 2.5.

Since G is square-free, for every megaprism, at most one of its strips has a rung of length one.
Lemma 2.7. Let G be a non-null square-free flat graph with no clique cutset, and P, S_{1} be chosen such that P is a megaprism in G with partition $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}, B_{4}, C_{1}, C_{2}, C_{3}, C_{4}$ (where $C_{4}=\emptyset$), and S_{1} is a strip of P with no rung of length one, and among all such choices of P, S_{1}, the set $\widetilde{S_{1}}$ is minimal with respect to inclusion.

Let P^{\prime} be another megaprism in G, and let $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, A_{4}^{\prime}, B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, B_{4}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}$ (where $\left.C_{4}^{\prime}=\emptyset\right)$ be the sets of the partition of P^{\prime}, and let $A^{\prime}=A_{1}^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime}$ and $B^{\prime}=B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}$ be the potatoes of P^{\prime}. Then $\left(A^{\prime} \cup B^{\prime}\right) \cap C_{1}=\emptyset$. In particular, no vertex in C_{1} is a corner.

Proof. Assume for a contradiction that $\left(A^{\prime} \cup B^{\prime}\right) \cap C_{1} \neq \emptyset$. For $i=1,2,3$, let $S_{i}^{\prime}=A_{i}^{\prime} \cup C_{i}^{\prime} \cup B_{i}^{\prime}$ denote the strips of P^{\prime}, and let $M^{\prime}=V(G) \backslash V\left(P^{\prime}\right)$ denote the major vertices for P^{\prime}. By Lemma 2.2, both M and M^{\prime} are cliques. We distinguish several cases depending on which vertices in $V\left(P^{\prime}\right)$ are also in M.

$$
\begin{equation*}
M \cap C_{i}^{\prime}=\emptyset \text { for } i=1,2,3 . \text { Moreover, for } i=1,2,3 \text {, either } M \cap A_{i}^{\prime}=\emptyset \text { or } M \cap B_{i}^{\prime}=\emptyset . \tag{1}
\end{equation*}
$$

Let $\{i, j, k\}=\{1,2,3\}$, and suppose that either $M \cap C_{i}^{\prime} \neq \emptyset$ or $M \cap A_{i}^{\prime}, M \cap B_{i}^{\prime} \neq \emptyset$. Define $X=S_{j}^{\prime} \cup S_{k}^{\prime} \cup \widetilde{S_{j}^{\prime}} \cup \widetilde{S_{k}^{\prime}}$; then $G \mid X$ is connected by Lemma 2.4 and C_{1} touches X, but X contains no vertex complete to $M \cap S_{i}^{\prime}$. Thus, by Lemma 2.5. $\widetilde{S_{j}^{\prime}}, \widetilde{S_{k}^{\prime}} \subseteq \widetilde{S_{1}}$. Since one of S_{j}^{\prime}, S_{k}^{\prime} has no rung of length one, this contradicts the minimality of \widetilde{S}_{1}. This proves (1).
(2) For some $i \in\{1,2,3\}$, either $M \cap V\left(P^{\prime}\right) \subseteq A_{i}^{\prime}$ or $M \cap V\left(P^{\prime}\right) \subseteq B_{i}^{\prime}$.

Suppose not; then by (11), we may assume that either $M \cap A_{4}^{\prime} \neq \emptyset$ or M contains vertices from at least two different strips of P^{\prime}. In the latter case, since M is a clique, we may assume that M contains vertices in two P^{\prime}-ends in A^{\prime}. Let $X=V\left(P^{\prime}\right) \backslash\left(A^{\prime} \cup A_{4}^{\prime}\right)$; then no vertex in X is complete to $M \cap\left(A^{\prime} \cup A_{4}^{\prime}\right)$, but $G \mid X$ is connected and C_{1} touches X. By Lemma 2.5, $X \subseteq \widetilde{S_{1}}$. Let S_{i}^{\prime} be a strip of P^{\prime} with a good P^{\prime}-end in A^{\prime} and no rung of length one; then $\widetilde{S_{i}^{\prime}} \subset \widetilde{S_{1}}$, a contradiction. This proves (2).

Let $X=C_{2}^{\prime} \cup C_{3}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}$ together with the components of $G \mid B_{4}^{\prime}$ that have neighbors in $B_{2}^{\prime} \cup B_{3}^{\prime}$. If $M \cap A_{1}^{\prime} \neq \emptyset$, then $X \subseteq \widetilde{S_{1}}$.

Suppose not. Then we may assume that $M \cap V\left(P^{\prime}\right) \subseteq A_{1}^{\prime}$ by (2). Let $w \in M \cap A_{1}^{\prime}$. Since X is connected and does not touch $\{w\} \subseteq M$, it suffices to show that $\widetilde{S_{1}}$ touches X by Lemma 2.5 .

Since $C_{1} \subseteq \widetilde{S_{1}}$, we may assume that C_{1} does not touch X. By our assumption, $C_{1} \cap\left(A^{\prime} \cup B^{\prime}\right) \neq \emptyset$. Since every vertex in $B^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime}$ touches X, it follows that $\widetilde{S_{1}} \cap\left(B^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime}\right)=\emptyset$. Consequently, $C_{1} \cap A_{1}^{\prime} \neq \emptyset$. Since $C_{1} \cap A_{1}^{\prime}$ is complete to $A_{2}^{\prime} \cup A_{3}^{\prime}$, and since $\left(A_{2}^{\prime} \cup A_{3}^{\prime}\right) \cap M=\emptyset$, it follows that $A_{2}^{\prime} \cup A_{3}^{\prime} \subseteq\left(A_{1} \cup B_{1}\right) \backslash \widetilde{S_{1}}$.

By symmetry, we may assume that $\left(A_{2}^{\prime} \cup A_{3}^{\prime}\right) \cap A_{1} \neq \emptyset$. It follows that $A_{1} \nsubseteq \widetilde{S_{1}}$, and so A_{1} is a good P-end, and in particular, A_{1} is a clique and every vertex in A_{1} touches $A_{2}^{\prime} \cup A_{3}^{\prime}$. Let R be a rung of S_{1}^{\prime} from a vertex in $C_{1} \cap A_{1}^{\prime}$ to a vertex $b \in B_{1}^{\prime}$. If $b \in \widetilde{S_{1}}$, then X touches $\widetilde{S_{1}}$. Therefore, we may assume that $b \notin \widetilde{S_{1}}$, and consequently, some vertex z in $C_{1}^{\prime} \cup B_{1}^{\prime}$ has distance one from $\widetilde{S_{1}}$. But z does not touch $A_{2}^{\prime} \cup A_{3}^{\prime}$, so z is not in A_{1}. Since $M \cap\left(C_{1}^{\prime} \cup B_{1}^{\prime}\right)=\emptyset$, it follows that $z \notin M$. Therefore, z is in
B. Since z has distance one from $\widetilde{S_{1}}, z$ is in a good P-end. It follows that z is touches every vertex of B, and since no vertex in $A_{2}^{\prime} \cup A_{3}^{\prime}$ touches z, it follows that $\left(A_{2}^{\prime} \cup A_{3}^{\prime}\right) \cap B=\emptyset$. Since $A_{2}^{\prime} \cup A_{3}^{\prime} \subseteq A_{1} \cup B_{1}$, it follows that $A_{2}^{\prime} \cup A_{3}^{\prime} \subseteq A_{1}$.

Let $Y=V(R) \cup X$. Since neither X nor $V(R) \backslash A_{1}^{\prime}$ contains a vertex complete to $A_{2}^{\prime} \cup A_{3}^{\prime}$, and since $V(R) \cap A_{1}^{\prime} \subseteq C_{1}$, it follows that $Y \cap A=\emptyset$. Since A is a cutset separating $A_{1}^{\prime} \cap C_{1} \subseteq Y$ from A_{4}, it follows that $Y \cap A_{4}=\emptyset$, and consequently, $X \cap\left(A \cup A_{4}\right)=\emptyset$. But the set X has a neighbor in $A_{2}^{\prime} \cup A_{3}^{\prime} \subseteq A_{1}$, and since $X \cap M=\emptyset$, it follows that X contains a vertex in $\widetilde{S_{1}}$. Hence $X \subseteq \widetilde{S_{1}}$, which proves (3).

$$
\begin{equation*}
M \cap V\left(P^{\prime}\right)=\emptyset \tag{4}
\end{equation*}
$$

Suppose not, and by (1), let $w \in M \cap A_{1}^{\prime}$, say, and let $Z=A_{2}^{\prime} \cup A_{3}^{\prime}$. Let X be as in (3); and so $X \subseteq S_{1}$. Let us pick a strip S_{i}^{\prime} of P^{\prime} such that its P^{\prime}-end A_{i}^{\prime} is good, and it has no rung of length one. Consequently $\widetilde{S_{i}^{\prime}} \subseteq C_{i}^{\prime} \cup B_{i}^{\prime} \cup B_{4}^{\prime}$. By the minimality of $\widetilde{S_{1}}$, it follows that $\widetilde{S_{i}^{\prime}} \not \subset \widetilde{S_{1}}$. Therefore, $i=1$ by (3), since $\widetilde{S_{2}^{\prime}}, \widetilde{S_{3}^{\prime}} \subset X$ by Lemma 2.4 if their P^{\prime}-end in A^{\prime} is good. Consequently, A_{1}^{\prime} is a good P^{\prime}-end of S_{1}^{\prime} and S_{1}^{\prime} has no rung of length one. Moreover, since at most one of S_{2}^{\prime}, S_{3}^{\prime} has a rung of length one, it follows that one of $A_{2}^{\prime}, A_{3}^{\prime}$ is a $\operatorname{bad} P^{\prime}$-end, and so Z is either not a clique or not complete to M^{\prime}. Also, vertices in $B_{1}^{\prime} \cup B_{4}^{\prime}$ are not adjacent to w, and $B_{1}^{\prime} \cup B_{4}^{\prime} \cup X$ is connected, so by Lemma $2.5, B_{1}^{\prime} \cup B_{4}^{\prime} \subseteq \widetilde{S_{1}}$. Since $\widetilde{S_{1}^{\prime}} \not \subset \widetilde{S_{1}}$, it follows that $C_{1}^{\prime} \backslash \widetilde{S_{1}} \neq \emptyset$. Since $C_{1}^{\prime} \cup B_{1}^{\prime} \cup X$ is connected and $B_{1}^{\prime} \cup X \subseteq \widetilde{S_{1}}$, Lemma 2.5 implies that there is a vertex $a \in C_{1}^{\prime}$ that is in a good P-end. Without loss of generality, we assume that $a \in A$; then a is complete to $A \backslash\{a\}$.

Since at most one strip has a rung of length one, there exists $j \in\{2,3\}$ such that S_{j}^{\prime} has no rung of length one. Then $\widetilde{S_{j}^{\prime}} \not \subset \widetilde{S_{1}}$; and since $B_{1}^{\prime} \subseteq \widetilde{S_{1}} \backslash \widetilde{S_{j}^{\prime}}$, it follows that $\emptyset \neq \widetilde{S_{j}^{\prime}} \backslash \widetilde{S_{1}} \subseteq \widetilde{S_{j}^{\prime}} \backslash X$. The set $X \cup \widetilde{S_{j}^{\prime}}$ is connected, so $\widetilde{S_{j}^{\prime}} \backslash \widetilde{S_{1}}$ contains a vertex b in a good P-end by Lemma 2.5. It follows that $b \in A_{2}^{\prime} \cup A_{3}^{\prime} \cup A_{4}^{\prime}$, because $b \notin X$. Since b is not adjacent to a, it follows that $b \notin A$ and thus, $b \in B$ and b is complete to $B \backslash\{b\}$.

We claim that $Z \cap\left(A_{4} \cup A\right)=\emptyset$, and that $M^{\prime} \cap\left(A_{2} \cup A_{3} \cup A_{4}\right)=\emptyset$. Let $Y=S_{2}^{\prime} \cup S_{3}^{\prime} \cup \widetilde{S_{2}^{\prime}} \cup \widetilde{S_{3}^{\prime}}$; then Y contains no neighbor of a and hence Y is disjoint from A. The set Y is connected and contains b, which implies that $Y \cap A_{4}=\emptyset$. Since $Z \subset Y$, it follows that $Z \cap\left(A_{4} \cup A\right)=\emptyset$. Moreover, $B_{2}^{\prime} \cup B_{3}^{\prime} \subseteq X \cap Y$, and so $B_{2}^{\prime} \cup B_{3}^{\prime} \subseteq C_{1} \cup B_{1} \cup B_{4}$. Since every vertex in M^{\prime} has a neighbor in $B_{2}^{\prime} \cup B_{3}^{\prime}$, it follows that $M^{\prime} \cap\left(A_{2} \cup A_{3} \cup A_{4}\right)=\emptyset$.

We choose a path R as follows. Let R_{1} be a one- or two-vertex path from b to a vertex in $B_{2} \cup B_{3}$, depending whether $b \in B_{2} \cup B_{3}$ or $b \in B_{1}$. Let R_{2} be a rung of P starting at the end of R_{1} in $B_{2} \cup B_{3}$ and ending at some vertex $r \in A_{2} \cup A_{3}$. Finally, let $R=R_{1} \cup R_{2}$.

By construction, since $b \notin \widetilde{S_{1}}$, every interior vertex of R has distance at least two from $\widetilde{S_{1}}$. Therefore, no interior vertex of R is in X or M^{\prime}. Moreover, $r \notin X$ because $r \notin \widetilde{S_{1}}$; and $r \notin M^{\prime}$, because $r \in A_{2} \cup A_{3}$, and we proved that $\left(A_{2} \cup A_{3}\right) \cap M^{\prime}=\emptyset$.

Let $R^{*}=R$ if $r=a$, and $R^{*}=a-r-R$ - b otherwise. Then R^{*} has ends $a \in C_{1}^{\prime}$ and $b \in A_{2}^{\prime} \cup A_{3}^{\prime} \cup A_{4}^{\prime}$. Since $A_{1}^{\prime} \cup M^{\prime} \cup X$ is a cutset separating C_{1}^{\prime} from $A_{2}^{\prime} \cup A_{3}^{\prime} \cup A_{4}^{\prime}$, and $(\{a\} \cup V(R)) \cap\left(X \cup M^{\prime}\right)=\emptyset$, and $a, b \notin A_{1}^{\prime}$, it follows that $(V(R) \backslash\{b\}) \cap A_{1}^{\prime} \neq \emptyset$. Let $y \in V(R) \cap A_{1}^{\prime}$.

Since $N(r) \cap \widetilde{S_{1}} \subseteq A \cup A_{4}$, and no internal vertex of R has a neighbor in $\widetilde{S_{1}}$, it follows that $N(y) \cap \widetilde{S_{1}} \subseteq A \cup A_{4}$. But y is complete to Z, and $Z \cap\left(A_{4} \cup A\right)=\emptyset$, so $Z \cap \widetilde{S_{1}}=\emptyset$. Every vertex in Z touches $X \subseteq \widetilde{S_{1}}$, and since $Z \cap\left(A_{4} \cup A \cup \widetilde{S_{1}}\right)=\emptyset$, it follows that $Z \subseteq B \cup B_{4}$. All vertices in Z have distance one from $\widetilde{S_{1}}$, and $Z \cap M=\emptyset$, so all vertices of Z are in good P-ends; it follows that Z is included in the union of all good P-ends in B. Thus, Z is a clique and complete to M.

We showed earlier that Z is either not a clique or not complete to M^{\prime}, and so there is a vertex $m \in M^{\prime} \backslash M$ such that m is not complete to Z. It follows that $m \notin B$, and we already proved that $M^{\prime} \cap\left(A_{2} \cup A_{3} \cup A_{4}\right)=\emptyset$, so $m \notin A_{2} \cup A_{3} \cup A_{4}$. Since m has a neighbor in $Z \subseteq B$, and S_{1} has no rung of
length one, $m \notin A_{1}$. Since m has a neighbor in $B_{2}^{\prime} \cup B_{3}^{\prime} \subseteq X \subseteq \widetilde{S_{1}}, m \notin C_{2} \cup C_{3}$. Since $y \in A_{1}^{\prime}$ and A_{1}^{\prime} is a good P^{\prime}-end, m is adjacent to y and so $m \notin C_{1}$. It follows that $m \in B_{4}$, and so B_{1} is a bad P-end, since m touches $\widetilde{S_{1}}$. But then $V(R) \cap B=\{b\}$, and so m is not adjacent to y, a contradiction; (4) follows.

By (4) we have $M \subseteq M^{\prime}$, and so $V\left(P^{\prime}\right) \subseteq V(P)$.

$$
\begin{align*}
& \text { If } A_{1} \text { is a good } P \text {-end, and there exist distinct } i, j \in\{1,2,3\} \text { such that } A_{1} \cap\left(A_{i}^{\prime} \cup\right. \\
& \left.A_{4}^{\prime}\right), A_{1} \cap\left(A_{j}^{\prime} \cup A_{4}^{\prime}\right) \neq \emptyset \text {, then } V\left(P^{\prime}\right) \backslash\left(A^{\prime} \cup A_{4}^{\prime}\right) \subseteq V(P) \backslash\left(A \cup A_{4}\right) \text {. } \tag{5}
\end{align*}
$$

Let $a_{i} \in A_{1} \cap\left(A_{i}^{\prime} \cup A_{4}^{\prime}\right), a_{j} \in A_{1} \cap\left(A_{j}^{\prime} \cup A_{4}^{\prime}\right)$, and let X be as in (3). Then no vertex in X touches both a_{i} and a_{j}. Since A_{1} is a good P-end, every vertex in A touches a_{i} and a_{j}, and therefore, $X \cap A=\emptyset$. Moreover, $X \subset V\left(P^{\prime}\right)$, so $X \cap M=\emptyset$. Since $A \cup M$ is a cutset separating A_{4} from $V(P) \backslash\left(A \cup A_{4}\right)$ and by (3), X touches C_{1}, it follows that $X \cap A_{4}=\emptyset$. This proves (5).

A potato p of P^{\prime} is sweet if $p \subseteq S_{1} \cup \widetilde{S_{1}}$, and the good P^{\prime}-ends in p are included in S_{1}.

(6) There is a sweet potato of P^{\prime}.

There exists i such that $\left(A_{i}^{\prime} \cup B_{i}^{\prime}\right) \cap C_{1} \neq \emptyset$; choose a value of i with this property such that S_{i}^{\prime} has a rung of length one if possible. We may assume from the symmetry that $i=1$ and $A_{1}^{\prime} \cap C_{1} \neq \emptyset$; and, since at most one strip of P^{\prime} has a rung of length one, it follows that for $j=2,3$, if S_{j}^{\prime} has a rung of length one then $\left(A_{j}^{\prime} \cup B_{j}^{\prime}\right) \cap C_{1}=\emptyset$. Let $v \in A_{1}^{\prime} \cap C_{1}$.

Every vertex in $A_{2}^{\prime} \cup A_{3}^{\prime}$ has a neighbor in C_{1}, and it follows that $A_{2}^{\prime} \cup A_{3}^{\prime} \subseteq S_{1}$. Suppose that (6) is false. In particular there exists $w \in A_{1}^{\prime} \backslash S_{1}$, for otherwise both statements of (6) are true. Then w is non-adjacent to v. Consequently, A_{1}^{\prime} is not a clique, and so A_{2}^{\prime} and A_{3}^{\prime} are good P^{\prime}-ends by Lemma 2.3 . It follows that $A_{1}^{\prime} \nsubseteq S_{1} \cup \widetilde{S_{1}}$, since $(\sqrt{6})$ is false, and therefore we may assume that $w \notin \widetilde{S_{1}}$. Since v, w have a common neighbor in $V\left(P^{\prime}\right) \subseteq V(P)$, it follows that $w \notin C_{2} \cup C_{3}$, and we may assume without loss of generality that $w \in A_{2} \cup A_{3} \cup A_{4}$, and thus $A_{2}^{\prime} \cup A_{3}^{\prime} \subseteq A_{1}$.

We claim that if A_{1} is a good P-end, then $A_{4} \subseteq A_{4}^{\prime}$ and $A \cup A_{4} \subseteq A^{\prime} \cup A_{4}^{\prime} \cup M^{\prime}$. For let $X=V\left(P^{\prime}\right) \backslash\left(A^{\prime} \cup A_{4}^{\prime}\right)$. Since A_{1} is a good P-end and $A_{2}^{\prime}, A_{3}^{\prime} \subseteq A_{1}$, (5) implies that $X \cap\left(A \cup A_{4}\right)=\emptyset$. Thus $A \cup A_{4} \subseteq A^{\prime} \cup A_{4}^{\prime} \cup M^{\prime}$. If $u \in A_{4}$, then u has no neighbor in $V(P) \backslash\left(A \cup A_{4}\right)$, and so u has no neighbor in X, and hence $u \notin A^{\prime} \cup M^{\prime}$; and therefore $u \in A_{4}^{\prime}$. The claim follows.

Suppose that $w \in A_{4}$. Since $w \notin S_{1}$, it follows that A_{1} is a good P-end, and yet $w \in A_{4} \backslash A_{4}^{\prime}$, a contradiction. This proves that $w \in A_{2} \cup A_{3}$.

Let $X=\widetilde{S_{2}^{\prime}} \cup \widetilde{S_{3}^{\prime}} \cup B_{2}^{\prime} \cup B_{3}^{\prime}$. Note that since A_{2}^{\prime} and A_{3}^{\prime} are good P^{\prime}-ends, it follows that $X \cap\left(A_{2}^{\prime} \cup A_{3}^{\prime}\right)=$ \emptyset. Since no vertex in X is complete to $A_{2}^{\prime} \cup A_{3}^{\prime}$ or adjacent to w, it follows that $X \cap A=\emptyset$.

We claim that $S_{2}^{\prime}, S_{3}^{\prime}$ have no rungs of length one. For suppose that $a \in A_{2}^{\prime}$ is adjacent to $b \in B_{2}^{\prime}$ say; so $a \in S_{1}$. From the initial choice of S_{1}^{\prime}, it follows that $\left(A_{2}^{\prime} \cup B_{2}^{\prime}\right) \cap C_{1}=\emptyset$, and in particular $b \notin C_{1}$. Since S_{1} has no rung of length one, $b \notin B_{1}$; and since $b \in X$, it follows that $b \notin A$, and so $b \in A_{4}$. Since X is connected and $A \cap X=\emptyset$, we deduce that $X \subseteq A_{4}$. Since $X \nsubseteq A_{4}^{\prime}, A_{1}$ is a bad P-end, and so

$$
\widetilde{S_{3}^{\prime}} \subseteq X \subseteq A_{4} \subseteq \widetilde{S_{1}} \backslash\{v\}
$$

contrary to the minimality of $\widetilde{S_{1}}$, since S_{3}^{\prime} has no rung of length one. This proves that $S_{2}^{\prime}, S_{3}^{\prime}$ have no rungs of length one.

For $i=2,3, \widetilde{S_{i}^{\prime}}$ is not a subset of $\widetilde{S_{1}}$ from the minimality of $\widetilde{S_{1}}$, since $v \in \widetilde{S_{1}} \backslash \widetilde{S_{i}^{\prime}}$; and so there is a path R_{i} of $G \mid\left(A_{i}^{\prime} \cup \widetilde{S_{i}^{\prime}}\right)$ from A_{i}^{\prime} to some vertex in $\widetilde{S_{i}^{\prime}} \backslash \widetilde{S_{1}}$, such that all its vertices except the first belong to $\widetilde{S_{i}^{\prime}}$. Choose such a path R_{i}, of minimum length, and let its ends be $y_{i} \in A_{i}^{\prime}$ and $z_{i} \in \widetilde{S_{i}^{\prime}}$. Certainly R_{i} has length at least one, since $A_{i}^{\prime} \cap \widetilde{S_{i}^{\prime}}=\emptyset$. Let the neighbor of z_{i} in R_{i} be z_{i}^{\prime}.

Now z_{2}, z_{3} are non-adjacent, since $\widetilde{S_{2}^{\prime}}$ is anticomplete to $\widetilde{S_{3}^{\prime}}$ by Lemma 2.6. Consequently they do not both belong to good P-ends in B; and neither of them is in a good P-end in A, since neither z_{2} nor z_{3} is complete to $A_{2}^{\prime} \cup A_{3}^{\prime}$. Thus one of z_{2}, z_{3} is not in a good P-end, say z_{2}, and so by Lemma 2.5 , $z_{2}^{\prime} \notin \widetilde{S_{1}}$. From the minimality of $R_{2}, z_{2}^{\prime} \notin \widetilde{S_{2}^{\prime}}$, and so $z_{2}^{\prime}=y_{2}$ and $y_{2} \notin \widetilde{S_{1}}$. Since $y_{2} \in A_{1}$ it follows that A_{1} is a good P-end, and hence $A \cup A_{4} \subseteq A^{\prime} \cup A_{4}^{\prime} \cup M^{\prime}$; and so $z_{2} \notin A \cup A_{4}$. Since z_{2}, y_{2} are adjacent, and S_{1} has no rung of length one, it follows that $z_{2} \in C_{1}$, contradicting that $z_{2} \notin \widetilde{S_{1}}$. This proves (6).

For the remainder of the proof, we will always assume that A^{\prime} is a sweet potato of P^{\prime}.
For $i=1,2,3$, if $\widetilde{S_{i}^{\prime}} \nsubseteq \widetilde{S_{1}}$, then there exists $z_{i} \in \widetilde{S_{i}^{\prime}} \cup A_{i}^{\prime}$ touching $\widetilde{S_{i}^{\prime}} \backslash \widetilde{S_{1}}$ with distance one from $\widetilde{S_{1}}$. Consequently, z_{i} is in a good P-end, and either $z_{i} \in \widetilde{S_{i}^{\prime}}$ or z_{i} is in a good P-end of S_{1}.

Let $x_{i} \in \widetilde{S_{i}^{\prime}} \backslash \widetilde{S_{1}}$, and let R_{i} be a path from x_{i} to a vertex $y_{i} \in A_{i}^{\prime}$ such that $V\left(R_{i}\right) \backslash\left\{y_{i}\right\} \subseteq \widetilde{S_{i}^{\prime}}$. By Lemma 2.4, such a path exists. Since $y_{i} \in A^{\prime}$ and A^{\prime} is sweet, so y_{i} touches $\widetilde{S_{1}}$; let z_{i} be the first vertex of R_{i} (starting at x_{i}) that touches $\widetilde{S_{1}}$. It follows that $z_{i} \notin \widetilde{S_{1}}$, and either $z_{i} \in \widetilde{S_{i}^{\prime}}$, or $z_{i}=y_{i}$ and R_{i} has at least two vertices and a neighbor of z_{i} in $V\left(R_{i}\right)$ is in $\widetilde{S_{i}^{\prime}} \backslash \widetilde{S_{1}}$. Consequently, z_{i} touches $\widetilde{S_{i}^{\prime}} \backslash \widetilde{S_{1}}$. Since $x_{i} \notin \widetilde{S_{1}}$, we know that z_{i} has distance one from $\widetilde{S_{1}}$. Moreover, $V\left(P^{\prime}\right) \cap M=\emptyset$, so by Lemma 2.5. z_{i} is in a good P-end. We may therefore assume that $z_{i} \notin \widetilde{S_{i}^{\prime}}$; consequently, A_{i}^{\prime} is a good P^{\prime}-end, and $z_{i} \in A_{i}^{\prime}$. Since A^{\prime} is sweet, it follows that $A_{i}^{\prime} \subseteq S_{1}$, and so $z_{i} \in S_{1}$. Thus, $z_{i} \in A_{1} \cup B_{1}$, and the P-end of S_{1} containing z_{i} is good. This proves 77 .

If z_{i}, z_{j} as in (7) exist for $i \neq j$ with $i, j \in\{1,2,3\}$, then z_{i} and z_{j} are in different potatoes of P. Consequently, one of z_{1}, z_{2}, z_{3} does not exist.
Suppose that z_{1} and z_{2} exist and belong to the same potato A, say. Since z_{1}, z_{2} are in good P-ends in A, it follows that z_{1} is adjacent to z_{2}, which means that either $z_{1} \notin \widetilde{S_{1}^{\prime}}$ or $z_{2} \notin \widetilde{S_{2}^{\prime}}$; and without loss of generality, let $z_{1} \notin \widetilde{S_{1}^{\prime}}$. Therefore, $z_{1} \in A_{1}^{\prime}$ and A_{1}^{\prime} is a good P^{\prime}-end; and so z_{1} is in a good P-end of S_{1} by (7). Hence A_{1} is a good P-end, and since $z_{1}, z_{2} \in A$ have distance one from $\widetilde{S_{1}}$, it follows that $z_{1}, z_{2} \in A_{1}$. Also, $z_{2} \in N\left(z_{1}\right) \cap\left(\widetilde{S_{2}^{\prime}} \cup A_{2}^{\prime}\right)$, so $z_{2} \in A_{2}^{\prime} \cup A_{4}^{\prime}$. Let $X=V\left(P^{\prime}\right) \backslash\left(A^{\prime} \cup A_{4}^{\prime}\right)$; then $X \cap\left(A \cup A_{4}\right)=\emptyset$ by (5), since $z_{1} \in A_{1} \cap A_{1}^{\prime}$ and $z_{2} \in A_{1} \cap\left(A_{2}^{\prime} \cup A_{4}^{\prime}\right)$. Since z_{1} touches $\widetilde{S_{1}^{\prime}} \backslash \widetilde{S_{1}}$ and $z_{1} \notin \widetilde{S_{1}^{\prime}}$, there is a neighbor x of z_{1} with $x \in \widetilde{S_{1}^{\prime}} \backslash \widetilde{S_{1}}$. Since A_{1}^{\prime} is a good P^{\prime}-end, it follows that $x \in X$, so $x \notin A \cup A_{4}$. But x is adjacent to $z_{1} \in A_{1}$, and consequently, $x \in C_{1} \subseteq \widetilde{S_{1}}$, since S_{1} has no rung of length one. This is a contradiction, because $x \notin \widetilde{S_{1}} ;(8)$ follows.
(9) For $i=1,2,3$, if $\widetilde{S_{i}^{\prime}} \subseteq \widetilde{S_{1}}$, then $\widetilde{S_{i}^{\prime}} \subset \widetilde{S_{1}}$, and so S_{i}^{\prime} has a rung of length one.

Let Y be the union of all good P^{\prime}-ends in A^{\prime}; because A^{\prime} is sweet, we know that $Y \subseteq S_{1}$. Since Y only includes good P^{\prime}-ends, it follows that $Y \cap \widetilde{S_{i}^{\prime}}=\emptyset$ for $i=1,2,3$. We may assume that $Y \cap \widetilde{S_{1}}=\emptyset$, for otherwise (9) holds. Therefore, $Y \subseteq S_{1} \backslash \widetilde{S_{1}}$. Since Y is a clique and S_{1} has no rung of length one, we may assume that $Y \subseteq A_{1}$, and A_{1} is a good P-end of S_{1}. Let $X=V\left(P^{\prime}\right) \backslash\left(A^{\prime} \cup A_{4}^{\prime}\right)$; then $X \cap\left(A \cup A_{4} \cup M\right)=\emptyset$ by (5), since $Y \subseteq A_{1}$. Let $j \neq i$ such that $A_{j}^{\prime} \subset Y$, and let $v_{j} \in C_{j}^{\prime} \cup B_{j}^{\prime}$ with a neighbor in A_{j}^{\prime}. Then $v_{j} \in X$, so $v_{j} \notin A \cup A_{4} \cup M$, but v_{j} has a neighbor in $Y \subseteq A_{1}$, and hence $v_{j} \in C_{1}$. Therefore, $v_{j} \in \widetilde{S_{1}} \backslash \widetilde{S_{i}^{\prime}}$. This proves (9).

By (7) and (8), we may assume that $\widetilde{S_{1}^{\prime}} \subseteq \widetilde{S_{1}}$. By (9), we know S_{1}^{\prime} has a rung $a b$ of length one with $a \in A_{1}^{\prime}$ and $b \in B_{1}^{\prime}$. Since G is square-free, and so $S_{2}^{\prime}, S_{3}^{\prime}$ have no rungs of length one, we deduce that $\widetilde{S_{2}^{\prime}} \nsubseteq \widetilde{S_{1}}$ and $\widetilde{S_{3}^{\prime}} \nsubseteq \widetilde{S_{1}}$. So there exist z_{2} and z_{3} as in (7), and by $(8), z_{2}$ and z_{3} are in different potatoes of P, so without loss of generality, let $z_{2} \in A, z_{3} \in B$. We know that $a \in A^{\prime} \subseteq S_{1} \cup \widetilde{S_{1}}$, so both a
and b touch $S_{1} \cup \widetilde{S_{1}}$. Also, z_{2} and z_{3} are each adjacent to at most one of a, b. Since z_{2} is complete to $A \backslash\left\{z_{2}\right\}$, it follows that $\{a, b\} \nsubseteq A$, and similarly, $\{a, b\} \nsubseteq B$. Since $a \in \widetilde{S_{1}} \cup S_{1}$ and S_{1} has no rung of length one, it follows that $\{a, b\} \nsubseteq A \cup B$. For the remainder of the proof, we fix a, b, z_{2} and z_{3}.

(10) Every vertex in M^{\prime} is adjacent to either a or b.

Suppose that $m \in M^{\prime}$ is non-adjacent to both a and b. Then by Lemma $2.3 m$ is complete to A_{2}^{\prime} and B_{3}^{\prime}. Let $a^{\prime} \in A_{2}^{\prime}$ and $b^{\prime} \in B_{3}^{\prime}$; then $m-a^{\prime}-a-b-b^{\prime}-m$ is a hole of length five. This is a contradiction, because G is Berge. This proves (10).

(11) The vertices z_{2} and z_{3} are not adjacent.

Since $\widetilde{S_{2}^{\prime}}$ and $\widetilde{S_{3}^{\prime}}$ do not touch by Lemma 2.6 , we may assume that one of z_{2}, z_{3} is in a good P^{\prime}-end in A^{\prime}; without loss of generality, say $z_{2} \in A_{2}^{\prime}$, and A_{2}^{\prime} is a good P^{\prime}-end. By (7), $z_{2} \in A_{1}$. Since S_{1} has no rung of length one, z_{2} is non-adjacent to every vertex in B, and in particular, z_{2} is not adjacent to z_{3}, which proves (11).

$\left(A_{4} \cup B_{4}\right) \cap\{a, b\}=\emptyset$.

Assume for a contradiction that $a \in A_{4}$. Since $a \in A^{\prime} \subseteq S_{1} \cup \widetilde{S_{1}}, A_{1}$ is a bad P-end of S_{1}. Since z_{2} is in a good P-end in A, it follows that $z_{2} \in A_{2} \cup A_{3}$, and since A_{1} is bad, it follows from (7) that $z_{2} \in \widetilde{S_{2}^{\prime}}$. Also, A_{1}^{\prime} is a bad P^{\prime}-end, because A^{\prime} is sweet, and therefore, since a is complete to $A_{2}^{\prime} \cup A_{3}^{\prime}$, again because A^{\prime} is sweet, $A_{2}^{\prime} \cup A_{3}^{\prime} \subseteq A_{1}$. Since $z_{2} \in A_{2} \cup A_{3}$, this implies that $z_{2} \notin A_{2}^{\prime} \cup A_{3}^{\prime}$, but z_{2} is complete to $A_{2}^{\prime} \cup A_{3}^{\prime}$, and thus $z_{2} \in A_{4}^{\prime}$. But A_{2}^{\prime} is a good P^{\prime}-end of S_{2}^{\prime}, since A_{1}^{\prime} is a bad P^{\prime}-end, so $A_{4}^{\prime} \cap \widetilde{S_{2}^{\prime}} \cup A_{2}^{\prime}=\emptyset$, a contradiction to the fact that $z \in \widetilde{S_{2}^{\prime}} \cup A_{2}^{\prime}$. Therefore, $a \notin A_{4}$, and by symmetry, $a \notin B_{4}$, and similarly, $b \notin A_{4} \cup B_{4}$. This proves (12).

$$
\begin{equation*}
\text { If }\{a, b\} \cap A_{1} \neq \emptyset \text {, then } z_{2} \in \widetilde{S_{2}^{\prime}} . \text { If }\{a, b\} \cap B_{1} \neq \emptyset \text {, then } z_{3} \in \widetilde{S_{3}^{\prime}} \text {. } \tag{13}
\end{equation*}
$$

Suppose not. By symmetry, we may assume that $\{a, b\} \cap A_{1} \neq \emptyset$, and that z_{2} is in A_{2}^{\prime} and A_{2}^{\prime} is a good P^{\prime}-end. In particular, z_{2} does not touch b. Since z_{2} touches every vertex of A, it follows that $b \notin A$, and since $\{a, b\} \cap A_{1} \neq \emptyset$, it follows that $\{a, b\} \cap A_{1}=\{a\}$. We let $X=\widetilde{S_{2}^{\prime}} \cup B_{1}^{\prime} \cup B_{2}^{\prime}$.

Since z_{2} is in a good P^{\prime}-end A_{2}^{\prime}, by (7), it follows that $z_{2} \in A_{1}$ and A_{1} is a good P-end. Hence (5) implies that $X \subseteq V(P) \backslash\left(A \cup A_{4}\right)$, because $a, z_{2} \in A_{1}$. Thus $\widetilde{S_{2}^{\prime}} \subset X$ is disjoint from $A \cup A_{4}$. Since $A_{2}^{\prime} \subseteq S_{1}$ (as A^{\prime} is sweet) and a is complete to A_{2}^{\prime}, we know that $A_{2}^{\prime} \subseteq A_{1} \cup C_{1}$. Let Z be a component of $\widetilde{S_{2}^{\prime}}$. Then Z has a neighbor in A_{2}^{\prime}, and so Z touches C_{1}. By $\sqrt{11}, z_{3} \notin A_{3}^{\prime}$, and so $z_{3} \in \widetilde{S_{3}^{\prime}}$. Since z_{3} touches every vertex in B, but z_{3} touches no vertex in $\widetilde{S_{2}^{\prime}}$, it follows that $Z \cap B=\emptyset$. Finally, since $Z \cap(A \cup B \cup M)=\emptyset$, and Z touches C_{1}, it follows that $Z \subseteq C_{1}$. Consequently, $\widetilde{S_{2}^{\prime}} \subseteq C_{1} \subseteq \widetilde{S_{1}}$, a contradiction. This proves (13).

$$
\begin{equation*}
\text { If } a \in A_{1} \cup B_{1} \text {, then } b \in C_{1} \text {. } \tag{14}
\end{equation*}
$$

By symmetry, we may assume that $a \in A_{1}$. By (13), we know that $z_{2} \in \widetilde{S_{2}^{\prime}}$, and since z_{2} is adjacent to a (since z_{2} is in a good P-end of A), it follows that $z_{2} \in A_{2}^{\prime} \cup A_{4}^{\prime}$. Hence A_{2}^{\prime} is a bad P^{\prime}-end, so A_{3}^{\prime} is a good P^{\prime}-end. Let $Y=\widetilde{S_{3}^{\prime}} \cup B^{\prime}$. Then $Y \cap(A \cup M)=\emptyset$, since Y does not touch $z_{2} \in\left(A_{2}^{\prime} \cup A_{4}^{\prime}\right) \cap \widetilde{S_{2}^{\prime}}$, but z_{2} touches every vertex in A, since z_{2} is in a good P-end in A. Since Y is connected and touches $z_{3} \in B$, it follows that $Y \cap A_{4}=\emptyset$. But $b \in Y \cap N(a)$, and consequently, $b \notin A \cup A_{4} \cup M$, and hence $b \in C_{1}$. This proves (14).

$$
\begin{equation*}
\text { If } a \in C_{1} \text {, then } b \in A_{1} \cup B_{1} \text {. } \tag{15}
\end{equation*}
$$

Suppose not. Since $a \in C_{1}$, it follows that $b \in S_{1}$, and so $b \in C_{1}$. Let $Z=S_{2} \cup S_{3}$. Every vertex in Z is non-adjacent to both a and b. By (10), it follows that $M^{\prime} \cap Z=\emptyset$. Also, no vertex in Z is in a good P^{\prime}-end, because no vertex in Z is adjacent to a or b.

Let R be a path from z_{2} to z_{3} containing a rung of S_{2} as a subpath (exists by (11)). Since $z_{2}, z_{3} \in V\left(P^{\prime}\right)$ and every internal vertex of R is in Z, it follows that $V(R) \cap M^{\prime}=\emptyset$. We claim that some vertex of R belongs to a good P^{\prime}-end; for if z_{2} or z_{3} is in a good P^{\prime}-end then this is true, and otherwise R is a path from $\widetilde{S_{2}^{\prime}}$ to $\widetilde{S_{3}^{\prime}}$, and the claim follows from Lemma 2.6. Let $r \in V(R)$ be in a good P^{\prime}-end. From what we proved above it follows that $r \notin Z$, and so r is one of z_{2}, z_{3}, and we may assume from the symmetry that $r=z_{2}$. Since $z_{2} \in A_{2}^{\prime} \cup \widetilde{S_{2}^{\prime}}$, it is not the case that B_{2}^{\prime} is a good P^{\prime}-end and $z_{2} \in B_{2}^{\prime}$; so A_{2}^{\prime} is a good P^{\prime}-end and $z_{2} \in A_{2}^{\prime}$.

It follows that $z_{2} \in A_{1}$, and thus $N\left(z_{2}\right) \cap Z=A_{2} \cup A_{3}$. Since z_{2}, z_{3} are not adjacent by (11), it follows that $z_{3} \notin A_{3}^{\prime}$, and so $z_{3} \in \widetilde{S_{3}^{\prime}}$. Thus, Z touches $z_{3} \in \widetilde{S_{3}^{\prime}}$ (because $z_{3} \in B$), Z is connected, and Z contains no vertex in M^{\prime} or in a good P^{\prime}-end, so by Lemma $2.5, Z \subseteq \widetilde{S_{3}^{\prime}}$. Hence $A_{2} \cup A_{3} \subseteq N\left(z_{2}\right) \cap Z \subseteq A_{3}^{\prime} \cup A_{4}^{\prime}$. Since a is complete to A_{3}^{\prime} and anticomplete to $A_{2} \cup A_{3}$, it follows that $A_{2} \cup A_{3} \subseteq A_{4}^{\prime}$, and so $Z \cap A_{4}^{\prime} \neq \emptyset$. Since $z_{2} \in A_{2}^{\prime}$, it follows that $Z \cap A_{3}^{\prime} \subseteq N\left(z_{2}\right) \cap Z \subseteq A_{2} \cup A_{3} \subseteq A_{4}^{\prime}$. Since $A_{3}^{\prime} \cap A_{4}^{\prime}=\emptyset$, this implies that $Z \cap A_{3}^{\prime}=\emptyset$. Since Z is connected, Z is included in $\widetilde{S_{3}^{\prime}} \backslash A_{3}^{\prime}$, and Z includes the non-empty set $A_{2} \cup A_{3} \subseteq A_{4}^{\prime}$, it follows that $Z \subseteq A_{4}^{\prime}$. Consequently, every vertex in $A \cup B \cup M$ touches A_{4}^{\prime}. Let $X=V\left(P^{\prime}\right) \backslash\left(A^{\prime} \cup A_{4}^{\prime}\right)$; then X is disjoint from $A \cup B \cup M$, because X does not touch A_{4}^{\prime}. But X touches C_{1}, and so $X \subseteq C_{1}$. Since A_{2}^{\prime} is a good P^{\prime}-end, it follows that $\widetilde{S_{2}^{\prime}} \subset X \subseteq C_{1} \subseteq \widetilde{S_{1}}$. This is a contradiction, and (15) follows.

Together, (4), (12), (14), and (15) imply that either $a \in A_{1} \cup B_{1}$ and $b \in C_{1}$, or $a \in C_{1}$ and $b \in A_{1} \cup B_{1}$. By symmetry, we assume from now on that $\{a, b\} \cap A_{1} \neq \emptyset$ and $\{a, b\} \cap C_{1} \neq \emptyset$. By (13), it follows that $z_{2} \in \widetilde{S_{2}^{\prime}}$.

$$
\begin{equation*}
M^{\prime} \cap\left(S_{2} \cup S_{3}\right)=\emptyset \tag{16}
\end{equation*}
$$

Every vertex in $B_{2} \cup B_{3} \cup C_{2} \cup C_{3}$ is non-adjacent to both a and b. Thus, 10 implies that $M^{\prime} \cap\left(S_{2} \cup S_{3}\right) \subseteq A_{2} \cup A_{3}$. Therefore, we may assume that some vertex m in $A_{2} \cup A_{3}$ is in M^{\prime}. Then m is not adjacent to the vertex in $c \in\{a, b\} \cap C_{1}$, and hence c is in a bad P^{\prime}-end of S_{1}^{\prime} in a potato p of P^{\prime}. Since every vertex in $S_{3}^{\prime} \cap p$ is adjacent to both m and c, it follows that $S_{3}^{\prime} \cap p \subseteq A_{1}$. Consequently, z_{2} has a neighbor in $S_{3}^{\prime} \cap p$. But S_{1}^{\prime} has a bad P^{\prime}-end in p, and so $\widetilde{S_{2}^{\prime}}$ does not touch $S_{3}^{\prime} \cap p$, a contradiction. Thus, $M^{\prime} \cap\left(S_{2} \cup S_{3}\right)=\emptyset$, and we have proved (16).

If $z_{2} \in A_{1}$, then no vertex in $A_{2} \cup A_{3}$ is in a good P^{\prime}-end in B^{\prime}.

Suppose that some vertex r is in $A_{2} \cup A_{3}$ and in a good P^{\prime}-end in B^{\prime}, and that $z_{2} \in A_{1}$. Then r and b are adjacent, and so $b \in A_{1}$. Since z_{2} is in a good P-end by (7), it follows that z_{2} is adjacent to b and r. Thus $z_{2} \in B_{2}^{\prime} \cup B_{4}^{\prime}$, so B_{2}^{\prime} is a bad P^{\prime}-end, and $r \in B_{1}^{\prime} \cup B_{3}^{\prime}$. Moreover, $A^{\prime} \subseteq S_{1} \cup \widetilde{S_{1}}$ since A^{\prime} is a sweet potato; and $B^{\prime} \subseteq A \cup A_{4}$, because every vertex in $B^{\prime} \backslash\{r, b\}$ is adjacent to both r and b. Therefore, and by (16), $Z=B_{2} \cup B_{3} \cup C_{2} \cup C_{3}$ is a connected set disjoint from $A^{\prime} \cup B^{\prime} \cup M^{\prime}$. Furthermore, $z_{3} \in \widetilde{S_{3}^{\prime}} \cup A_{3}^{\prime} \subseteq A_{4}^{\prime} \cup A_{3}^{\prime} \cup C_{3}^{\prime}$ touches Z, so $Z \subseteq A_{4}^{\prime}$ or $Z \subseteq C_{3}^{\prime}$. But r has a neighbor in Z, so $Z \nsubseteq A_{4}^{\prime}$, and thus $Z \subseteq C_{3}^{\prime}$. Every vertex in $A_{2} \cup A_{3}$ is adjacent to $b \in B_{1}^{\prime}$ and has a neighbor in $Z \subseteq C_{3}^{\prime}$, so $A_{2} \cup A_{3} \subseteq B_{3}^{\prime}$. Since $B^{\prime} \subseteq A \cup A_{4}$ and $A_{2} \cup A_{3} \subseteq B_{3}^{\prime}$, it follows that $B_{2}^{\prime} \cap\left(A_{2} \cup A_{3}\right)=\emptyset$, and thus $B_{2}^{\prime} \subseteq A_{1} \cup A_{4}$.

Since $z_{2} \in A_{1}$ and z_{2} is in a good P-end it follows that A_{1} is a good P-end, and so every vertex in A touches b. Let $Y=A_{2}^{\prime} \cup C_{2}^{\prime} \cup\{a\}$; then Y contains no neighbor of b except a, so $Y \cap A=\emptyset$. Since $a \in Y$ and Y is connected, it follows that $Y \subseteq V(P) \backslash\left(A \cup A_{4}\right)$, and in particular Y is anticomplete to A_{4}. Since every vertex in B_{2}^{\prime} touches Y, we deduce that $A_{4} \cap B_{2}^{\prime}=\emptyset$, and so $B_{2}^{\prime} \subseteq A_{1}$.

Since $B_{2}^{\prime} \subseteq A_{1}$, it follows that B_{2}^{\prime} is a clique and M is complete to B_{2}^{\prime}. Since B_{2}^{\prime} is a bad P^{\prime}-end, there exists a vertex $m \in M^{\prime} \backslash M$ such that m is not complete to B_{2}^{\prime}; and therefore $m \notin A$. Since m is complete to $B_{3}^{\prime} \supseteq A_{2} \cup A_{3}$, it follows that $m \in A_{4}$. Then the good P^{\prime}-ends in A^{\prime} are complete to m and contained in S_{1}, and thus the good P^{\prime}-ends in A^{\prime} are contained in A_{1}, and hence complete to z_{2}. This is a contradiction, because $z_{2} \in B_{2}^{\prime} \cup B_{4}^{\prime}$. This proves (17).
(18) Neither z_{2} nor z_{3} is in a good P^{\prime}-end in A^{\prime}.

We already proved that z_{2} is not in a good P^{\prime}-end in A^{\prime} by 13 . Therefore, we suppose that z_{3} is in a good P^{\prime}-end A_{3}^{\prime}, and since $z_{3} \in B$ is adjacent to a and S_{1} has no rung of length one, it follows that $a \in C_{1}, b \in A_{1}$, and $z_{3} \in B_{1}$. Since z_{2} is adjacent to b (since z_{2} is in a good P-end), it follows that $z_{2} \in B_{2}^{\prime} \cup B_{4}^{\prime}$, and B_{2}^{\prime} is a bad P^{\prime}-end. Let $Y=S_{2} \cup S_{3}$; then Y contains no vertex in $M^{\prime} \cup A^{\prime}$ by (16) and because $Y \cap\left(S_{1} \cup \widetilde{S_{1}}\right)=\emptyset$, but A^{\prime} is sweet and so $A^{\prime} \subseteq S_{1} \cup \widetilde{S_{1}}$. Let $Z=C_{2} \cup C_{3} \cup B_{2} \cup B_{3}$; then $Z \subset Y$. Since B_{2}^{\prime} is a bad P^{\prime}-end, every vertex in B^{\prime} touches $b \in B_{1}^{\prime}$. No vertex in Z touches $b \in A_{1}$, so $Z \cap B^{\prime}=\emptyset$.

We claim that $Y \subseteq \widetilde{S_{2}^{\prime}} \cup B^{\prime}$. Suppose that $z_{2} \in A_{1}$; then by (17), no vertex in $A_{2} \cup A_{3}$ is in a good P^{\prime}-end in B^{\prime}. Thus, Y does not contain a vertex in a good P^{\prime}-end of B^{\prime}, and since Y is disjoint from $A^{\prime} \cup M^{\prime}$ and Y touches $z_{2} \in \widetilde{S_{2}^{\prime}}$, it follows that $Y \subseteq \widetilde{S_{2}^{\prime}}$. Therefore, we may assume that $z_{2} \notin A_{1}$; and so $z_{2} \in A_{2} \cup A_{3}$, and therefore z_{2} touches Z, so we have $Z \subseteq \widetilde{S_{2}^{\prime}}$. Every vertex in $A_{2} \cup A_{3}$ is adjacent to $b \in B_{1}^{\prime}$, and touches $z_{2} \in\left(B_{2}^{\prime} \cup B_{4}^{\prime}\right) \cap \widetilde{S_{2}^{\prime}}$; so $A_{2} \cup A_{3} \subseteq B^{\prime} \cup\left(B_{4}^{\prime} \cap \widetilde{S_{2}^{\prime}}\right)$, and thus $Y \subseteq \widetilde{S_{2}^{\prime}} \cup B^{\prime}$. This proves our claim.

But Y touches $z_{3} \in A_{3}^{\prime}$. Since S_{3}^{\prime} has no rung of length one, Y contains a vertex in $A_{2}^{\prime} \cup A_{4}^{\prime}$. Since $Y \cap\left(A^{\prime} \cup M^{\prime}\right)=\emptyset$, it follows that $Y \subseteq A_{4}^{\prime}$. But $z_{2} \in B_{2}^{\prime} \cup B_{4}^{\prime}$ touches Y, a contradiction. This proves (18).

Let R be a path from z_{2} to z_{3} containing a rung of either S_{2} or S_{3} as a subpath; we choose R so that if $z_{2} \in A_{2} \cup A_{3}$, then the rung starts at z_{2}. By $\left(18, R\right.$ is a path from $\widetilde{S_{2}^{\prime}}$ to $\widetilde{S_{3}^{\prime}}$. By Lemma 2.6 , $V(R) \backslash\left\{z_{2}, z_{3}\right\}$ contains a vertex in M^{\prime} or in a good P^{\prime}-end. By $(\sqrt{16}), V(R) \cap M^{\prime}=\emptyset$. No vertex of $V(R) \backslash\left\{z_{2}, z_{3}\right\}$ is in a good P^{\prime}-end in A^{\prime}, because all good P^{\prime}-ends in A^{\prime} are included in S_{1} as A^{\prime} is a sweet potato of P^{\prime}. So there exists $r \in V(R) \backslash\left\{z_{2}, z_{3}\right\}$ such that r is in a good P^{\prime}-end in B^{\prime}. Since r is adjacent to b, it follows that $r \in A_{2} \cup A_{3}$, and since $r \neq z_{2}$, it follows that $z_{2} \in A_{1}$, which contradicts (17). Thus, our initial assumption that $\left(A^{\prime} \cup B^{\prime}\right) \cap C_{1} \neq \emptyset$ is false. Now, by Theorem 2.1, it follows that no vertex in C_{1} is a corner. This concludes the proof.

3 Rough vertices

To prove that there is a vertex in C_{1} that is not rough, we first recall some results and definitions from [2].

A pyramid with triangle $\left\{x_{1}, x_{2}, x_{3}\right\}$ and apex x (where x, x_{1}, x_{2}, x_{3} are four distinct vertices) is a graph containing three paths P_{1}, P_{2}, P_{3} such that for each $i=1,2,3, P_{i}$ is an $\left(x_{i}, x\right)$-path, $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a clique, at least two of the paths have length at least two, and there are no other vertices or edges. A pyramid in a graph G is an induced subgraph of G that is a pyramid.

Lemma 3.1 (2.4 in [2]). If a graph G contains no odd hole, then G contains no pyramid.
Theorem 3.2 (10.1 in [2]). In a Berge graph G let R_{1}, R_{2}, R_{3} be three paths that form a prism K, with triangles $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$, where each R_{i} has ends a_{i} and b_{i}. Let $F \subset V(G) \backslash V(K)$ be connected, such that its set of neighbors in K is not local, but some vertex in F has a neighbor in K. Assume that no vertex in F is major with respect to K. Then there is a path $f_{1} \cdots \cdots-f_{n}$ in F with $n \geq 1$, such that (up to symmetry) either:

1. f_{1} has two adjacent neighbors in R_{1}, and f_{n} has two adjacent neighbors in R_{2}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
2. $n \geq 2, f_{1}$ is adjacent to a_{1}, a_{2}, a_{3}, and f_{n} is adjacent to b_{1}, b_{2}, b_{3}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
3. $n \geq 2, f_{1}$ is adjacent to a_{1}, a_{2}, and f_{n} is adjacent to b_{1}, b_{2}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
4. f_{1} is adjacent to a_{1}, a_{2}, and there is at least one edge between f_{n} and $V\left(R_{3}\right) \backslash\left\{a_{3}\right\}$, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K) \backslash\left\{a_{3}\right\}$.

Note that in item 1 the set $V(K) \cup\left\{f_{1}, \ldots, f_{n}\right\}$ induces the line-graph of a bipartite subdivision of K_{4}, and a subset of that set induces a prism of which f_{1} and f_{n} are corners. In items 2 and $3, G$ has a prism with corners $a_{1}, a_{2}, f_{1}, b_{1}, b_{2}, f_{n}$. In item $4, G$ has a prism with corners $a_{1}, a_{2}, f_{1}, b_{1}, b_{2}, b_{3}$. Hence in all items f_{1} is the corner of a prism. In particular, when F consists of only one vertex we obtain the following using Lemma 1.1.

Theorem 3.3. In a Berge graph G, let K be an odd prism and $x \in V(G) \backslash V(K)$ be a smooth vertex. If x has a neighbor in K, then x is a local neighbor of K.

Lemma 3.4. Let G be a flat graph. Let K be a prism with paths P_{1}, P_{2}, P_{3}, and let v be rough for K such that v has a normal path Q from v to a base path P_{1}. Then no vertex in the interior of Q has a neighbor in P_{2} or P_{3}.

Proof. Let F be the set of interior vertices of Q. We may assume that F is non-empty, and therefore, some vertex in F has a neighbor in the interior of P_{1}; we may assume that some vertex in F has a neighbor in $V\left(P_{2}\right) \cup V\left(P_{3}\right)$, and thus F does not attach locally to K. Then, by Theorem 3.2 since G is flat, F contains a vertex f_{1} with two neighbors in either $\left\{a_{1}, a_{2}, a_{3}\right\}$ or $\left\{b_{1}, b_{2}, b_{3}\right\}$; but every vertex in F is non-adjacent to every vertex in $\left\{a_{2}, a_{3}, b_{2}, b_{3}\right\}$, a contradiction.

Theorem 3.2 implies that in a flat graph, every vertex which is rough for a prism K is either a corner or major for K. Here we use a related statement:

Lemma 3.5. Let K be a prism in a flat graph G and let v be a vertex that is rough for K; then either v is a corner in G, possibly for another prism, or there exist $\{i, j, k\}=\{1,2,3\}$ such that v is adjacent to a_{i} and b_{j}, and P_{k} is the base path for v in K. In particular, if v is not a corner, then v is major for K.

Proof. Let the prism consist of triangles $\left\{a_{i}, a_{j}, a_{k}\right\}$ and $\left\{b_{i}, b_{j}, b_{k}\right\}$ as well as paths P_{i}, P_{j}, P_{k}, where P_{k} is the base path for v in K. If v is complete to $\left\{a_{i}, b_{j}\right\}$ or $\left\{a_{j}, b_{i}\right\}$, then the result follows from Theorem 3.2 with $F=\{v\}$; thus we may assume that this is not the case. We may assume that v is not an end of P_{k}, for otherwise v is a corner. By definition of a rough vertex, v has a neighbor in $\left\{a_{i}, b_{i}\right\}$ and in $\left\{a_{j}, b_{j}\right\}$. Thus, we may assume that v is adjacent to a_{i} and a_{j}, and anticomplete to $\left\{b_{i}, b_{j}\right\}$. Let P_{k}^{\prime} denote the path from v to b_{k} obtained as $v b_{k}$, or as the path from v to b_{k} in $G \mid\left(V(Q) \cup V\left(P_{k}\right)\right)$, where Q is a normal path. By Lemma 3.4, no vertex in the interior of Q has a neighbor in $V\left(P_{i}\right) \cup V\left(P_{j}\right)$. If v has no neighbors in the interior of P_{i}, P_{j}, then $\left\{a_{i}, a_{j}, v\right\},\left\{b_{i}, b_{j}, b_{k}\right\}, P_{i}, P_{j}, P_{k}^{\prime}$ forms a prism and v is a corner, and the statement of the lemma follows.

Thus, we may assume that v has a neighbor in $\left(V\left(P_{i}\right) \cup V\left(P_{j}\right)\right) \backslash\left\{a_{i}, a_{j}\right\}$. Let u_{l} be the neighbor of v closest to b_{l} on P_{l} for $l=i, j$. It follows that $u_{l} \neq b_{l}$ for $l=1,2$. Let P_{l}^{\prime} denote the path in $G \mid(\{v\} \cup$ $\left.V\left(P_{l}\right)\right)$ from v to b_{l}. Then both P_{i}^{\prime} and P_{j}^{\prime} have an interior vertex, and thus $v, P_{i}^{\prime}, P_{j}^{\prime}, P_{k}^{\prime},\left\{b_{i}, b_{j}, b_{k}\right\}$ form a pyramid, contrary to Lemma 3.1. This concludes the proof.

Lemma 3.6. Let G be a non-null square-free flat graph with no clique cutset, and P, S_{1} be chosen such that P is a megaprism in G with with partition $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}, B_{4}, C_{1}, C_{2}, C_{3}, C_{4}$ (where $\left.C_{4}=\emptyset\right)$, and S_{1} is a strip of P with no rung of length one, and among all such choices of P, S_{1}, the set $\widetilde{S_{1}}$ is minimal with respect to inclusion. There is a smooth vertex v in the interior of the strip S_{1}.

Proof. Let v be a vertex in C_{1} such that $N(v) \cap\left(A_{1} \cup B_{1}\right)$ is minimal with respect to inclusion.
$N(v) \cap\left(M \cup A_{1}\right)$ and $N(v) \cap\left(M \cup B_{1}\right)$ are cliques, and $N(v) \cap A_{1}$ is anticomplete to $N(v) \cap B_{1}$. In particular, $G \mid\left(N(v) \cap\left(A_{1} \cup M \cup B_{1}\right)\right)$ is the union of two complete graphs.

Suppose that v has two non-adjacent neighbors $x, y \in M \cup A_{1}$. Since M is a clique by Lemma 2.2, we may assume that $x \in A_{1}$. Let $a \in A_{2}$; then y is adjacent to a, because either $y \in A_{1}$ or $y \in M$, and y is not complete to A_{1}, so y is complete to A_{2}. Therefore, $v-x-a-y-v$ is a square, a contradiction. Since S_{1} has no rung of length one, this implies (1).

We may assume that v is rough for some prism $K ; v$ is not a corner by Lemma 2.7 and Theorem 2.1. By Lemma 3.5. there exist $\{i, j, k\}=\{1,2,3\}$ such that v is adjacent to a_{i} and b_{j} and P_{k} is the base path for v in K.

Suppose that v has a normal path Q from v to the interior of a base path P_{k} in K; let w be the neighbor of v in $V(Q)$. We know that v is adjacent to b_{j} and a_{i} by Lemma 3.5. The set $\left\{w, a_{i}, b_{j}\right\}$ is a stable set, and $a_{i}, b_{j} \notin C_{1}$ by Lemma 2.7, so $a_{i}, b_{j} \in A_{1} \cup M \cup B_{1}$. By (11), we may assume that $a_{i} \in A_{1}, b_{j} \in B_{1}$, and consequently, $w \in C_{1}$. Now w is not adjacent to either of a_{i}, b_{j}, and by the choice of v with $N(v) \cap\left(A_{1} \cup B_{1}\right)$ minimal, w has a neighbor x in A_{1} or B_{1}, say A_{1}, such that x is not a neighbor of v. We know that x is not adjacent to b_{j}, because S_{1} has no rung of length one. But then $x-w-v-b_{j}$ and $a_{i}-v-b_{j}$ are two rungs in S_{1} of different parity, so adding a rung from A_{2} to B_{2} will complete one of them to an odd hole, a contradiction.

Therefore, we may assume by the definition of a rough vertex that v is adjacent to $a_{i}, b_{j}, a_{k}, b_{k}$ and $P_{k}=a_{k}-b_{k}$. Then $\left\{a_{i}, b_{j}, a_{k}, b_{k}\right\} \subseteq N(v) \cap\left(A_{1} \cup M \cup B_{1}\right)$. But $G \mid\left\{a_{i}, b_{j}, a_{k}, b_{k}\right\}$ is a four-vertex path, and thus not the union of two complete graphs; this contradicts (1).

Lemma 3.7. Let G be a graph, and let C be a clique cutset in G such that there exist $A, B \neq \emptyset$ with $A \cup B \cup C=V(G), A \cap B=\emptyset$, and such that there are no edges between A and B in G. Let $v \in A \cup C$ be a smooth vertex in $G \mid(A \cup C)$, and either $G \mid(B \cup C)$ contains no prism or $v \in A$. Then v is smooth in G.

Proof. We may assume that v is rough in G. By Lemma 3.5, v is either a corner of a prism, or there is a prism K so that v is adjacent to two corners a_{i} and b_{j} for some $i \neq j, i, j \in\{1,2,3\}$. Consequently, there is a prism K in G so that v has two non-adjacent neighbors in $V(K)$, and v is rough for K in G. Let Q be a normal path for v and K if it exists, and $Q=\emptyset$ otherwise. Let $H=G \mid(V(Q) \cup V(K) \cup\{v\})$; it follows that v is rough for K in H. Consequently, $V(H) \cap B \neq \emptyset$, because v is smooth in $G \mid(A \cup C)$. Since H has no clique cutset, this implies that $V(H) \subseteq B \cup C$, and therefore $G \mid(B \cup C)$ contains a prism, and hence $v \in A$. This is a contradiction, since $V(H) \subseteq B \cup C$.

We are now ready to prove Theorem 1.9 , which we restate.
Theorem 3.8. Let G be a square-free flat graph. Then either G is a disjoint union of cliques or some $v \in V(G)$ is smooth and not simplicial.

Proof. We may assume that G is not a disjoint union of cliques. If G does not contain a prism, then every vertex of G is smooth, and since G is not a disjoint union of cliques, G has a non-simplicial vertex.

From now on, we may assume that G contains a prism. We prove by induction on $|V(G)|$ that if G contains a prism, G contains two distinct non-adjacent smooth and non-simplicial vertices.

Suppose that G has no clique cutset. Then, no vertex of G is simplicial, because otherwise $N(v)$ is a clique cutset in G. Since G contains a prism, we can find a megaprism P by Theorem 2.1, Let S_{1}, S_{2} be strips of P with no rung of length one. For $i=1,2$, let $P^{\prime i}$ be a megaprism with a strip $S_{1}^{\prime i}$ with no rung of length one and such that $\widetilde{S_{1}^{\prime i}} \subseteq \widetilde{S_{i}}$, and subject to that $\widetilde{S_{1}^{\prime i}}$ is minimal with respect to inclusion. $P^{\prime i}$ exists, since $P^{\prime i}=P$ (after possibly relabelling strips) is such a megaprism. By Lemma 3.6. it follows that for $i=1,2$, there is a smooth vertex $v_{i} \in \widetilde{S_{1}^{\prime i}} \subseteq \widetilde{S_{i}}$. It follows that v_{1} and v_{2} are distinct and non-adjacent, since $\widetilde{S_{1}}$ and $\widetilde{S_{2}}$ do not touch by Lemma 2.6 , and hence v_{1} and v_{2} are the desired vertices.

Therefore, we may assume that G has a clique cutset $C \subseteq V(G)$ such that there exist $A, B \neq \emptyset$ with $A \cup B \cup C=V(G), A \cap B=\emptyset$, and such that there are no edges between A and B in G. Since prisms do not have a clique cutset, and since G contains a prism, at least one of $G \mid(A \cup C)$ and $G \mid(B \cup C)$ contains a prism as well. Suppose that both $G \mid(A \cup C)$ and $G \mid(B \cup C)$ contain a prism. By induction, $G \mid(A \cup C)$ contains two distinct non-adjacent smooth non-simplicial vertices u_{A}, v_{A}, and $G \mid(B \cup C)$ contains two distinct non-adjacent smooth non-simplicial vertices u_{B}, v_{B}. Since C is a clique, at most one of u_{A}, v_{A} is contained in C; the same holds for u_{B}, v_{B}. Thus, we may assume that $u_{A}, u_{B} \notin C$. Then, u_{A}, u_{B} are distinct, non-adjacent, not simplicial, and smooth by Lemma 3.7. Therefore, we may assume that $G \mid(A \cup C)$ contains a prism, but $G \mid(B \cup C)$ does not. Then, by induction, $G \mid(A \cup C)$ contains two distinct non-adjacent smooth non-simplicial vertices u, v. By Lemma 3.7, u, v are smooth in G as well, which concludes the proof.

4 Even pairs

In this section we give the proof of Theorem 1.10. This proof closely follows the proof of the main results in [5] and [7].

Let $P=x-x^{\prime}-\cdots-y^{\prime}-y$ be a path of length at least three in G. Following [2], we say that a pair $\{u, v\}$ of non-adjacent vertices of $V(G) \backslash P$ is a leap for P if $N(u) \cap P=\left\{x, x^{\prime}, y\right\}$ and $N(v) \cap P=\left\{x, y^{\prime}, y\right\}$. Note that in that case $P \cup\{u, v\}$ induces a prism, whose corners are $u, v, x, x^{\prime}, y, y^{\prime}$.

Let $T \subseteq V(G)$. The set T is called anticonnected if $G^{c} \mid T$ is connected, where G^{c} denotes the complement of G. A vertex is called T-complete if it is complete to T, and $C(T)$ denotes the set of all T-complete vertices. An edge is a T-edge if both its ends are T-complete. An induced subgraph Q of G is an antipath in G if $G^{c} \mid V(Q)$ is a path in G^{c}.
Lemma 4.1 ([2, 8). In a Berge graph G, let P be a path and $T \subset V(G)$ be an anticonnected set such that $V(P) \cap T=\emptyset$ and the ends of P are T-complete. Then either:

1. P has even length and has an even number of T-edges;
2. P has odd length and has an odd number of T-edges;
3. P has odd length at least three and there is a leap for P in T;
4. P has length three and its two interior vertices are the ends of an odd antipath Q whose interior is in T (and consequently $V(P) \cup V(Q)$ induces an antihole in G).
Lemma 4.2 (2.3 in [2]). In a Berge graph G, let H be a hole and $T \subset V(G)$ be an anticonnected set such that $V(H) \cap T=\emptyset$. Then either the number of T-edges in H is even, or H has exactly two T-complete vertices and they are adjacent.
Lemma 4.3. Let G be a Berge graph that contains no antihole of length at least six. Let P be a path in G and $T \subset V(G)$ be an anticonnected set such that $V(P) \cap T=\emptyset$, the ends of P are T-complete, and some vertex in T is smooth. Then the number of T-edges in P has the same parity as the length of P. In particular if P has odd length at least three, then some interior vertex of P is T-complete.

Proof. If P has length one or two the lemma holds trivially, so assume that P has length at least three. Let $P=u-u^{\prime}-\cdots-v^{\prime}-v$. We apply Lemma 4.1 to P and T. If we have outcome 1 or 2 of Lemma 4.1, then the lemma holds. We know that outcome 4 does not hold since G contains no antihole of length at least six. Hence suppose that outcome 3 of Lemma 4.1 holds, so T contains a leap $\{a, b\}$ for P. Then $P \cup\{a, b\}$ induces a prism K, whose triangles are $\left\{a, u, u^{\prime}\right\}$ and $\left\{b, v, v^{\prime}\right\}$, and $a-v, b-u$ are two paths of K, so K is an odd prism. Let x be a smooth vertex in T; so $x \notin\{a, b\}$. Since x is adjacent to u and v, it follows that it is not a local neighbor of K, but x has neighbors in K; but this contradicts Theorem 3.3.

Lemma 4.4. Let G be a Berge graph that contains no antihole of length at least six. Let H be a hole in G, let $P=x-\cdots-y$ be a path in G, and let $T \subset V(G)$ be an anticonnected set that contains a smooth vertex σ, such that $V(H), V(P)$ and T are pairwise disjoint. Assume that there are disjoint edges $a b, c d$ of H such that the edges between H and P are ax and $b x$, and c, d, y are T-complete. Then one of a, b is T-complete.

Proof. We may assume that a, c, d, b lie in this order along H. We call P_{1} the (a, c)-path contained in $H \backslash\{b, d\}$ and P_{2} the (b, d)-path contained in $H \backslash\{a, c\}$. Let $t \in T$. Since t has a neighbor in $V(P)$, there is a path from t to x with interior in $V(P)$; denote this path by $S(t)$. We may assume that neither a nor b is complete to T.
(1) There exists $q \in T$ with q non-adjacent to both a and b.

Since T is anticonnected, there is an antipath Q from a to b with interior in T. We claim that Q has length two. Suppose not. Since $a-Q-b-z-a$ is not an antihole (of length at least five) for any $z \in\{c, d, y\}$, it follows that $a c, b d \in E(G)$ and $x=y$. But now $a-Q-b-c-y-d-a$ is an antihole of length at least five, a contradiction. This proves that Q has length two, and the interior vertex q of Q satisfies (1).

Let $t \in T$ be anticomplete to $\{a, b\}$. Then t is anticomplete to $V(H) \backslash\{c, d\}$, and $K(t)=G \mid(V(H) \cup V(S(t)))$ is a prism with triangles $\{a, b, x\}$ and $\{c, d, t\}$.

Suppose that t has a neighbor in $V(H) \backslash\{c, d\}$. We may assume that t has a neighbor in $V\left(P_{1}\right) \backslash\{c\}$. Now there is a path R_{1} from t to a with interior in $V\left(P_{1}\right) \backslash\{c\}$, a path R_{2} from t to b with interior in $V\left(P_{2}\right)$, and $G \mid\left(V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V(S(t))\right)$ is a pyramid with triangle $\{a, b, x\}$ and apex t, contrary to Lemma 3.1. This proves that t is anticomplete to $V(H) \backslash\{c, d\}$. But now $K(t)=G \mid(V(H) \cup V(S(t)))$ is a prism with triangles $\{a, b, x\}$ and $\{c, d, t\}$. This proves (2).

Let q be as in (1). It follows from (2) that σ is adjacent to at least one of a, b (for σ is not a corner vertex), and in particular $\sigma \neq q$. Since σ is complete to $\{c, d\}$, it follows that σ is not a local neighbor of $K(q)$, but σ has a neighbor in $K(q)$, and so, since σ is smooth, Theorem 3.3 implies that $K(q)$ is an even prism. In particular, q is non-adjacent to x, and $x \neq y$. Let x^{\prime} be the neighbor of x in P. Since σ has a neighbor in $V(P) \backslash\{x\}$, namely y, there is a path from σ to x^{\prime} with interior in $V(P) \backslash\{x\}$; let $R(\sigma)$ be this path. Now $R(\sigma)$ contains a path from σ to the interior of $S(q)$, and every vertex in the interior of $R(\sigma)$ is non-adjacent to a, b, c and d. Since σ is adjacent to both c and d, it follows that σ is rough for $K(q)$ with base path $S(q)$, a contradiction.

Lemma 4.5. Let G be a Berge graph that contains no antihole of length at least six. Let H be a hole in G, let $P=x-\cdots-y$ be a path in G, and let $T \subset V(G)$ be an anticonnected set that contains a smooth vertex, such that $V(H), V(P)$ and T are pairwise disjoint. Assume that $V(H) \cup V(P)$ is connected, and that there are adjacent vertices $u, v \in H$ such that u, v and x are T-complete. Then either some vertex of P is adjacent to one of u, v, or some vertex of $H \backslash\{u, v\}$ is T-complete.

Proof. Suppose that the lemma does not hold and choose a counterexample such that $|V(H) \cup V(P)|$ is minimal. Hence y is the only vertex of P that has a neighbor in H, and no vertex of $V(P) \backslash\{x\}$ is complete to T. Let u^{\prime} (resp. v^{\prime}) be the neighbor of y closest to u along $H \backslash\{v\}$ (resp. to v along $H \backslash\{u\})$. By the assumption, $u^{\prime} \neq u$ and $v^{\prime} \neq v$. Call H_{u} the path from u to u^{\prime} in $H \backslash\{v\}$, and call H_{v} the path from v to v^{\prime} in $H \backslash\{u\}$.

Suppose that $u^{\prime}=v^{\prime}$. Then one of the paths $P \cup H_{u}$ and $P \cup H_{v}$ is odd (note that this odd path is of length at least 3), and has no T-complete vertex in its interior, contrary to Lemma 4.3. Therefore $u^{\prime} \neq v^{\prime}$.

Suppose that $u^{\prime} v^{\prime} \in E$. Then we can apply Lemma 4.4 to the hole H, the path P, and the set T, and we obtain that one of u^{\prime}, v^{\prime} is T-complete, a contradiction. Therefore $u^{\prime} v^{\prime} \notin E$. Consider the hole H^{\prime} induced by $V\left(H_{u}\right) \cup V\left(H_{v}\right) \cup\{y\}$. If $x \neq y$, then $H^{\prime}, P \backslash\{y\}$, and T form a counterexample to the lemma with $\left|V\left(H^{\prime}\right) \cup V(P \backslash\{y\})\right|<|V(H) \cup V(P)|$, a contradiction. Therefore, $x=y$, but then H^{\prime} has exactly one T-edge, but also contains the T-complete vertex x. This contradicts Lemma 4.2.

Now we can give the proof of Theorem 1.10, which we restate here for clarity.
Theorem 4.6. Let G be a Berge graph with no antihole of length at least six. Assume that every proper induced subgraph of G either is a complete graph or has an even pair. Let σ be a vertex of G that is smooth and not simplicial. Then the neighborhood of σ includes an even pair of G.

Proof. For $X \subseteq V(G)$, we let $C(X)$ denote the set of all common neighbors of X in G. For a path R and $x, y \in V(R), R[x, y]$ denotes the subpath of R with ends x and y.

There is a set $T \subset V(G)$ such that T is anticonnected, $\sigma \in T$, and $C(T)$ is not a clique (because $\{\sigma\}$ itself has these properties), and we choose T maximal with these properties. Let $Z=V(G) \backslash(T \cup C(T))$. An outer path is a path of length at least two whose ends are T-complete and whose interior vertices are in Z.

$$
\begin{equation*}
\text { Every outer path has length } \geq 4 \text { and even. } \tag{1}
\end{equation*}
$$

Indeed, Lemma 4.3 implies that there is no outer path of odd length. Moreover, suppose that P is an outer path of length two. Let z be the interior vertex of P. The set of $T \cup\{z\}$-complete vertices is equal to $C(T) \cap N(z)$, which is not a clique because it contains the ends of P, and is anti-connected because $z \notin C(T)$, so $T \cup\{z\}$ contradicts the maximality of T. Thus (1) holds.
(2) We may assume that there is an outer path.

Suppose that there is no outer path. By the hypothesis, the subgraph $G \mid C(T)$ has an even pair $\{a, b\}$. Consider an (a, b)-path P in G. If P has a vertex $t \in T$ then $P=a-t-b$, so P has length two. Now suppose that $V(P) \cap T=\emptyset$. Then P lies entirely in $C(T)$, for otherwise P would contain an outer path. Hence P has even length. This means that $\{a, b\}$ is an even pair of G and the theorem is proved. Thus (2) holds.

By (2), we can choose an outer path $\alpha-z_{1} \cdots-z_{n}-\beta$, with $\alpha, \beta \in C(T)$ and $z_{1}, \ldots, z_{n} \in Z$, such that n is minimal. By (11), n is odd and $n \geq 3$. Let $R=z_{1} \cdots-z_{n}$. Define:

$$
\begin{aligned}
& A=\left\{v \in C(T) \mid v \text { is adjacent to } z_{1} \text { and has no neighbor in }\left\{z_{2}, \ldots, z_{n}\right\}\right\}, \\
& B=\left\{v \in C(T) \mid v \text { is adjacent to } z_{n} \text { and has no neighbor in }\left\{z_{1}, \ldots, z_{n-1}\right\}\right\} .
\end{aligned}
$$

Note that A is not empty, because $\alpha \in A$, and that A is a clique, for otherwise there is an outer path $a-z_{1}-a^{\prime}$ for every two non-adjacent vertices $a, a^{\prime} \in A$, contradicting (1). Likewise B is a nonempty clique. Clearly, $A \cap B=\emptyset$. Moreover, there is no edge $a b$ with $a \in A$ and $b \in B$, for otherwise
$\left\{a, z_{1}, \ldots, z_{n}, b\right\}$ induces an odd hole. We will show that some well-chosen vertices $a \in A$ and $b \in B$ form an even pair of G.

Every T-complete vertex that has a neighbor in R is either in $A \cup B$ or complete to $A \cup B$.

Pick a T-complete vertex w that has a neighbor $z_{i} \in R(1 \leq i \leq n)$. Suppose that w is not complete to $A \cup B$; so, up to symmetry, w is not adjacent to a vertex $u \in A$. Let i be the smallest integer such that w is adjacent to z_{i}. Then $u-z_{1} \cdots \cdots-z_{i}-w$ is an outer path. The minimality of n implies $i=n$, and so $w \in B$. Thus (3) holds.

We say an R-segment is a path in G of length at least one whose ends have a neighbor in R and whose interior vertices have no neighbor in R.

Let Q be an R-segment that contains an odd number of T-edges. Assume that $V(Q) \cap$ $(B \cup C(A \cup B))=\emptyset$ and $V(Q) \nsubseteq A$. Then Q has length at least two, $V(Q) \cap V(R)=\emptyset$,
there are exactly two T-complete vertices in Q and they are adjacent, and there are vertices $z_{i}, z_{j} \in V(R)$ such that $V(Q) \cup V\left(R\left[z_{i}, z_{j}\right]\right)$ induces a hole H_{Q}.

Note that since Q is a path and contains a T-edge, it follows that $V(Q) \cap T=\emptyset$, for otherwise $G \mid V(Q)$ would contain a triangle.

Let x, y be the ends of Q, and let x^{\prime} (resp. y^{\prime}) be the T-complete vertex in Q closest to x (resp. closest to y). So $x^{\prime} \neq y^{\prime}$. Suppose that Q has length one. Then x, y are T-complete, so $x, y \notin V(R)$. Moreover each of x, y has a neighbor in R, by the definition of an R-segment. By (3) and since $V(Q) \cap(B \cap C(A \cap B))=\emptyset$, we have that $x, y \in A$, a contradiction since $V(Q) \not \subset A$. So Q has length at least two. It follows, by the definition of an R-segment, that $V(Q) \cap V(R)=\emptyset$. Moreover, x has a neighbor $z_{i} \in V(R)$ and y has a neighbor $z_{j} \in V(R)$. We choose z_{i} and z_{j} such that the path $R\left[z_{i}, z_{j}\right]$ is minimal; so every interior vertex of that path has no neighbor in Q. Hence $V(Q) \cup V\left(R\left[z_{i}, z_{j}\right]\right)$ induces a hole H_{Q}. The hole H_{Q} has an odd number of T-edges (the same as Q), so Lemma 4.2 implies that x^{\prime} and y^{\prime} are the only T-complete vertices in H_{Q} and they are adjacent. Thus (4) holds.

Let $P=u-u^{\prime}-\cdots-v^{\prime}-v$ an odd path with $u \in A$ and $v \in B$. Then P has length at least three, since there is no edge between A and B; also P contains no vertex of T and no $(A \cup B)$-complete vertex.

Let $P=u-u^{\prime}-\cdots-v^{\prime}-v$ be an odd path with $u \in A$ and $v \in B$, and with $u^{\prime}, v^{\prime} \notin A \cup B$. The only edges between R and $V(P) \cap C(T)$ are $z_{1} u$ and $z_{n} v$.

Suppose that $z w$ is an edge with $z \in R$ and $w \in V(P) \cap C(T)$. As observed above w is not complete to $A \cup B$, so, by (3), we have $w \in A \cup B$. If $w \in A$, then, since A is a clique, it follows that $w=u$, because $u^{\prime} \notin A$. The case $w \in B$ is similar. Thus (5) holds.

$$
\begin{align*}
& \text { If } P=u-u^{\prime}-\cdots-v^{\prime}-v \text { is an odd path with } u \in A \text { and } v \in B \text {, then exactly one of } u^{\prime} \in A \tag{6}\\
& \text { or } v^{\prime} \in B \text { holds. }
\end{align*}
$$

We prove (6) by induction on the length of P. First, suppose that both $u^{\prime} \in A$ and $v^{\prime} \in B$ hold. The path $P^{\prime}=P\left[u^{\prime}, v^{\prime}\right]$ has odd length and, since there is no edge between A and B, this length is at least three. Put $P^{\prime}=u^{\prime}-u^{\prime \prime}-\cdots-v^{\prime \prime}-v^{\prime}$. By the induction hypothesis applied to P^{\prime}, one of $u^{\prime \prime} \in A$ or $v^{\prime \prime} \in B$ holds; but this contradicts the fact that A and B are cliques. So at most one of $u^{\prime} \in A$ and $v^{\prime} \in B$ holds.

We may assume that $u^{\prime} \notin A$ and $v^{\prime} \notin B$. We will show that this leads to a contradiction. Some interior vertex of P has a neighbor in R, for otherwise $V(R) \cap V(P)=\emptyset$ and $V(R) \cup V(P)$ induces an odd hole. Since u and v also have a neighbor in R, we deduce that P has at least two R-segments. On the other hand, Lemma 4.3 implies that P has an odd number of T-edges. It follows that there is an
R-segment Q of P that contains an odd number of T-edges, and that Q does not contain both u and v, say Q does not contain v. Clearly, $V(Q) \cap(B \cup C(A \cup B))=\emptyset$ and $V(Q) \nsubseteq A$. By (4), Q contains exactly two T-complete vertices x^{\prime}, y^{\prime} and they are adjacent, and we use the notation H_{Q}, z_{i}, z_{j} as in (4). Call x and y the ends of Q, and assume that $u, x, x^{\prime}, y^{\prime}, y, v$ lie in that order along P. By (5) we have $y^{\prime} \neq y$ since $v \notin Q$.

Let $k=\max \{i, j\}$. Define a path S by setting $S=z_{k+1}-R-z_{n}-v$ if $k<n$ and $S=v$ if $k=n$. Note that $G \mid\left(V\left(H_{Q}\right) \cup V(S)\right)$ is connected since z_{k} is a vertex of H_{Q} adjacent to S. We can apply Lemma 4.5 to the triple $\left(H_{Q}, S, T\right)$; so some vertex $z \in S$ has a neighbor in $\left\{x^{\prime}, y^{\prime}\right\}$. However, v itself has no neighbor in $\left\{x^{\prime}, y^{\prime}\right\}$ because $x^{\prime}, y^{\prime}, y, v$ are four distinct vertices in that order along P. So $z \in\left\{z_{k+1}, \ldots, z_{n}\right\}$. But z is not adjacent to y^{\prime} because y^{\prime} has no neighbor in R since y^{\prime} is in the interior of Q; so z is adjacent to x^{\prime}. Then x^{\prime} has a neighbor in R, so $x^{\prime}=x=u$ by (5), so $x^{\prime} \in A$, but then the edge $z x^{\prime}$ contradicts (5) because $z \neq z_{1}$. This completes the proof that either $u^{\prime} \in A$ or $v^{\prime} \in B$ holds, and (6) follows.

For each vertex $b \in B$ we define a binary relation $<_{b}$ on A by setting $a<_{b} a^{\prime}$ if there exists an odd path $a-a^{\prime}-\cdots-b$. For each vertex $a \in A$ we define a binary relation $<_{a}$ on B similarly.

For each $b \in B$ the relation $<_{b}$ is antisymmetric.
Suppose not; then there exist $b \in B$ and odd paths $P_{u}=u_{0}-u_{1} \cdots-u_{p}$ with $p \geq 3, p$ odd, $P_{v}=v_{0}{ }^{-}$ $v_{1} \cdots-v_{q}$ with $q \geq 3, q$ odd such that $u_{0}=v_{1}$ and $v_{0}=u_{1}, u_{0}, v_{0} \in A$ and $u_{p}=v_{q}=b$. By (6) we know that $P_{u} \backslash\left\{u_{0}, u_{1}, b\right\}$ and $P_{v} \backslash\left\{v_{0}, v_{1}, b\right\}$ contain no vertex from $A \cup B$.

Let r be the smallest integer such that a vertex $u_{r} \in P_{u} \backslash\left\{u_{0}, u_{1}\right\}$ has a neighbor in $P_{v} \backslash\left\{v_{0}, v_{1}\right\}$, and let s be the smallest integer such that $u_{r} v_{s}$ is an edge, with $2 \leq s \leq q$. Such integers exist since u_{p-1} is adjacent to v_{q}. Now $\left\{u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{s}\right\}$ induces a hole H, so r and s have the same parity, and u_{r} and v_{s} are different and adjacent. Hence $2 \leq r<p$ and $2 \leq s<q$.

We claim that $u_{r} v_{s+1}$ is an edge, and it is the only edge between $P_{u}\left[u_{1}, u_{r}\right]$ and $P_{v}\left[v_{s+1}, v_{q}\right]$. By the choice of $r,\left\{u_{1}, \ldots, u_{r-1}\right\}$ is anticomplete to $\left\{v_{s+1}, \ldots, v_{q}\right\}$. Let t be the largest integer such that there is an edge $u_{r} v_{t}$ with $2 \leq s \leq t \leq q$. Suppose that $t-s$ is even. Then $V\left(P_{u}\left[u_{1}, u_{r}\right]\right) \cup V\left(P_{v}\left[v_{t}, v_{q}\right]\right)$ induces an odd path from A to B. Its second vertex is u_{2}, and its penultimate vertex w is either v_{q-1} (if $t<q$) or u_{r} (if $t=q$). By (6) applied to that path, we should have either $u_{2} \in A$ or $w \in B$, but by (6), neither P_{u} nor P_{v} contains a vertex $(A \cup B) \backslash\left\{u_{1}, v_{1}, b\right\}$; this is a contradiction. Therefore, $t-s$ is odd. Suppose that $t \geq s+3$. Then $V\left(P_{v}\left[v_{1}, v_{s}\right]\right) \cup\left\{u_{r}\right\} \cup V\left(P_{v}\left[v_{t}, v_{q}\right]\right)$ induces an odd path from A to B. Its second vertex is v_{2}, and its penultimate vertex y is either v_{q-1} (if $t<q$) or u_{r} (if $t=q$). By (6) applied to that path, we should have either $v_{2} \in A$ or $y \in B$, but by (6), neither P_{u} nor P_{v} contains a vertex $(A \cup B) \backslash\left\{u_{1}, v_{1}, b\right\}$; this is a contradiction. Hence $t=s+1$, which proves our claim.

We continue with the proof of (7). Consider the T-complete vertices in $H \backslash\left\{u_{1}, v_{1}\right\}$. We can apply Lemma 4.4 to the hole H, the path $P_{v}\left[v_{s+1}, v_{q}\right]$ and the set T, with respect to the edges $u_{1} v_{1}$ and $u_{r} v_{s}$, and we obtain that one of u_{r}, v_{s} is T-complete, so H contains at least three T-complete vertices. By Lemma 4.2, H has an even number of T-edges.

We claim that some vertex of $H \backslash\left\{u_{1}, v_{1}\right\}$ has a neighbor in R. Suppose the contrary. In particular $V(H) \cap V(R)=\emptyset$. There is a path S from z_{1} to v_{s+1} in $V(R) \cup\left\{v_{s+1}, \ldots, v_{q}\right\}$, with vertex set $\left\{z_{1}, \ldots, z_{k}, v_{s+1}, \ldots, v_{l}\right\}$, say; in particular z_{k} is adjacent to v_{l}.

Then, by our previous claim, the three paths $P_{u}\left[u_{1}, u_{r}\right], P_{v}\left[v_{1}, v_{s}\right]$ and S form a prism K, whose corners are $u_{1}, v_{1}, z_{1}, u_{r}, v_{s}, v_{s+1}$, and T is complete to u_{1}, v_{1} and one of u_{r}, v_{s}. If K is an odd prism, then this contradicts Theorem 3.3 because σ is a smooth vertex in T, so K is even, and in particular either $k \neq 1$ or $l \neq s+1$. Also, since K is even, $q \neq s+1$. Since σ is adjacent to $b=v_{q}$, there is a path Q_{1} from σ to z_{k} with interior in $\left\{z_{k+1}, \ldots, z_{n}, b\right\}$, and a path Q_{2} from σ to v_{l} with interior in $\left\{v_{l+1}, \ldots, v_{q}\right\}$. Since either $k \neq 1$ or $l \neq s+1$, at least one of Q_{1}, Q_{2} is a path from σ to the interior
of S. Moreover, $\left\{u_{1}, v_{1}, u_{r}, v_{s}\right\}$ is anticomplete to $\left(V\left(Q_{1}\right) \cup V\left(Q_{2}\right)\right) \backslash\left\{\sigma, z_{k}, v_{l}\right\}$, and so σ is rough for K, a contradiction. This proves our claim that some vertex of $H \backslash\left\{u_{1}, v_{1}\right\}$ has a neighbor in R.

It follows that H has at least three R-segments. Observe that $u_{1}-v_{1}$ is an R-segment that contains one T-edge. Since H has an even number of T-edges, there exists an R-segment Q of H, different from $u_{1}-v_{1}$, that contains an odd number of T-edges. Call x and y the ends of Q, and call x^{\prime} and y^{\prime} respectively the first and last T-complete vertices of Q, so that $u_{1}, x, x^{\prime}, y^{\prime}, y, v_{1}$ lie in this order along H. Clearly, $V(Q) \cap(B \cup C(A \cup B))=\emptyset$ and $V(Q) \nsubseteq A$. By (4) x^{\prime} and y^{\prime} are the only T-complete vertices in Q and they are adjacent. We use the same notation H_{Q}, z_{i}, z_{j} as in (4). Since H has at least three R-segments, we have either $x \neq u_{1}$ or $y \neq v_{1}$, so let us assume up to symmetry that $y \neq v_{1}$.

Suppose that $x \neq u_{1}$. So $x^{\prime}, y^{\prime} \notin A$. By (3), we have $x \neq x^{\prime}$. Let $h=\min \{i, j\}$. Define a path $P_{1}=u_{1}-z_{1}-R-z_{h-1}$ if $h \geq 2$ and $P_{1}=u_{1}$ if $h=1$. We can apply Lemma 4.5 to the triple ($\left.H_{Q}, P_{1}, T\right)$, which implies that a vertex of P_{1} is adjacent to one of x^{\prime}, y^{\prime}. However, x^{\prime} and y^{\prime} have no neighbor in R, by (3); and so, one of x^{\prime}, y^{\prime} is adjacent to u_{1}. Since $x \neq x^{\prime}$, and $x \neq u_{1}$, it follows that neither x^{\prime} nor y^{\prime} are adjacent to u_{1}, a contradiction. Hence $x=u_{1}$, which implies $x^{\prime}=u_{1}$, so $i=1$, and $y^{\prime}=u_{2}$, so $y \neq y^{\prime}$ since Q has length at least two. If y is adjacent to v_{1}, then $V\left(H_{Q}\right) \cup\left\{v_{1}\right\}$ induces a pyramid (with triangle $\left\{u_{1}, v_{1}, z_{1}\right\}$ and apex y), a contradiction to Lemma 3.1. So y is not adjacent to v_{1}. It follows that $\left\{v_{1}\right\} \cup V\left(R\left[z_{1}, z_{j}\right]\right) \cup V\left(Q\left[y, y^{\prime}\right]\right)$ induces a path. This path is odd (because $H_{Q} \backslash\left\{u_{1}\right\}$ is even, and y^{\prime} is adjacent to u_{1}), of length at least three, and its ends are T-complete and its interior vertices are not T-complete, which contradicts Lemma 4.3. Thus (7) holds.
(8) For each $b \in B$, the relation $<_{b}$ is transitive.

Let u, v, w be three vertices of A such that $u<_{b} v<_{b} w$. Since $v<_{b} w$, there exists an odd path $P=v_{0}-v_{1} \cdots \cdots v_{q}$ with $v_{0}=v, v_{1}=w, v_{q}=b, q$ odd, $q \geq 3$. By (6) we have $v_{q-1} \notin B$. If u has no neighbor in $P\left[v_{2}, v_{q}\right]$ then $\{u\} \cup V\left(P\left[v_{1}, v_{q}\right]\right)$ induces an odd path to b, implying $u<_{b} w$ as desired. Hence we may assume that u has a neighbor v_{i} in $P\left[v_{2}, v_{q}\right]$, and let i be the largest such integer. We have $i<q$ as there is no edge between A and B. If i is odd (so $3 \leq i \leq q-2$), then $\{u\} \cup V\left(P\left[v_{i}, v_{q}\right]\right)$ induces an odd path with $u \in A$ and $v_{q} \in B$; applying (6) to this path, we have either $v_{i} \in A$ or $v_{q-1} \in B$. The former is impossible because A is a clique, and we saw above that $v_{q-1} \notin B$. Hence i is even (with $2 \leq i \leq q-1$). Then $\left\{v_{0}, u\right\} \cup V\left(P\left[v_{i}, v_{q}\right]\right)$ induces an odd path to b, implying $v<_{b} u$ and contradicting (7). Thus (8) holds.

Facts (7) and (8) mean that $<_{b}$ is a strict order relation for each $b \in B$. Let $\operatorname{Max}(b)$ denote the set of vertices of A that are maximal for $<_{b}$. Similarly, for each vertex $a \in A$ the relation $<_{a}$ is a strict order. Let $\operatorname{Max}(a)$ denote the set of vertices of B that are maximal for $<_{a}$.
(9) There exist $a \in A$ and $b \in B$ such that $a \in \operatorname{Max}(b)$ and $b \in \operatorname{Max}(a)$.

For two vertices $a \in A$ and $b \in B$, let $D_{b}(a)=\left\{a^{\prime} \in A \mid a^{\prime}<_{b} a\right\}$, and let $D_{a}(b)$ be defined similarly. Choose a and b such that $D_{b}(a)$ is maximized and, subject to this first criterion, such that $D_{a}(b)$ is maximized. The first criterion implies that $a \in \operatorname{Max}(b)$. Hence let us assume that $b \notin \operatorname{Max}(a)$. So there exists $v \in \operatorname{Max}(a)$ such that $b<_{a} v$. We claim that $D_{b}(a) \subseteq D_{v}(a)$. To prove this, let $a^{\prime} \in D_{b}(a)$. So there is an odd path $P=a^{\prime}-u_{1} \cdots-u_{k}$ with $u_{1}=a$ and $u_{k}=b$. Let j be the smallest integer such that v is adjacent to u_{j}. If $j=k$, then $a-P-b-v$ is an odd path, implying $v<_{a} b$, a contradiction. So $j<k$. Hence $a-P-u_{j}-v$ is a path, and (6) implies that it is even, so $a^{\prime}-a-P-u_{j}-v$ is an odd path, and so $a^{\prime}<_{v} a$. This proves that $D_{v}(a) \supseteq D_{b}(a)$. On the other hand we have $D_{a}(v) \supseteq D_{a}(b) \cup\{b\}$ since $b<_{a} v$. So the pair $\{a, v\}$ contradicts the choice of $\{a, b\}$. Thus (9) holds.

Finally, we observe that the pair $\{a, b\}$ given by (9) is an even pair of G. Indeed, if there is an odd path $a-a^{\prime} \cdots-b^{\prime}-b$, then (6) implies either $a^{\prime} \in A$ and $a<_{b} a^{\prime}$, or $b^{\prime} \in B$ and $b<_{a} b^{\prime}$, so either $a \notin \operatorname{Max}(b)$ or $b \notin \operatorname{Max}(a)$, a contradiction. This completes the proof of Theorem 4.6.

5 Acknowledgment

The authors would like to thank Nicolas Trotignon and Kristina Vušković for many helpful discussions.
This material is based upon work supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under grant number W911NF-16-1-0404.

References

[1] M. Chudnovsky, I. Lo, F. Maffray, N. Trotignon, K. Vušković, "Coloring square-free Berge graphs", arXiv preprint, arXiv:1509.09195 (2015).
[2] M. Chudnovsky, N. Robertson, P. Seymour, R.Thomas, "The strong perfect graph theorem", Annals of Mathematics 164 (2006), 51-229.
[3] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray, O. Porto, B.A. Reed, "Even pairs", in: Perfect Graphs, J.L. Ramírez-Alfonsín and B.A. Reed eds., Wiley Interscience, 2001, 67-92.
[4] S. Hougardy, "Even and odd pairs in line-graphs of bipartite graphs", Eur. J. Comb. 16 (1995), 17-21.
[5] F. Maffray, "Coloring square-free Berge graphs with no odd prism", arXiv preprint, arXiv:1502.03695 (2015).
[6] F. Maffray, private communication.
[7] F. Maffray, N. Trotignon, "Algorithms for perfectly contractile graphs", SIAM Journal on Discrete Mathematics 19 (2005), 553-574.
[8] F. Roussel, P. Rubio, "About skew partitions in minimal imperfect graphs", J. Comb. Theory, Ser. B 83 (2001), 171-190.

[^0]: *Supported by NSF grant DMS-1550991 and U. S. Army Research Office grant W911NF-16-1-0404.
 †'Supported by by ANR grant "STINT", ANR-13-BS02-0007.
 ${ }^{\ddagger}$ Supported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563.

