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Abstract

In an earlier paper, two of us proved that for all κ, every graph with clique number at most κ and
sufficiently large chromatic number has an odd hole (a “hole” is an induced cycle of length at least
four). In this paper we prove a strengthening; for all κ, `, every graph with clique number at most
κ and sufficiently large chromatic number has either a hole of length five or an odd hole of length
more than `. This approaches a well-known conjecture of András Gyárfás that for all integers κ, `,
every graph with clique number at most κ and sufficiently large chromatic number has an odd hole
of length more than `.



1 Introduction

All graphs in this paper are finite and have no loops or parallel edges. We denote the chromatic
number of a graph G by χ(G), and its clique number (the cardinality of its largest clique) by ω(G).
A hole in G means an induced subgraph which is a cycle of length at least four, and an odd hole is
one with odd length. A 5-hole means a hole of length five. Two of us proved in [6] a conjecture of
András Gyárfás [4], that:

1.1 For all κ ≥ 0 there exists c ≥ 0 such that for every graph G, if ω(G) ≤ κ and χ(G) > c then G
has an odd hole.

The same paper of Gyárfás gives a stronger conjecture that has remained open:

1.2 Conjecture: For all κ, ` ≥ 0 there exists c such that for every graph G, if ω(G) ≤ κ and
χ(G) > c then G has an odd hole of length more than `.

In this paper we give a result strengthening 1.1 but still weaker than 1.2, the following:

1.3 For all κ, ` ≥ 0, there exists c ≥ 0 such that for every graph G, if ω(G) ≤ κ and χ(G) > c then
G has either a 5-hole or an odd hole of length more than `.

In particular, this gives another proof of 1.1, slightly easier than the original. We remark that
there have been several other partial results approaching the conjecture 1.2, in [1, 2, 5, 7]. The two
strongest of these, implying the others, are the results of [2, 7] respectively, namely:

1.4 For all κ, ` ≥ 0, there exists c ≥ 0 such that for every graph G, if ω(G) ≤ κ and χ(G) > c then
G has a hole of length more than `.

1.5 For all ` ≥ 0, there exists c ≥ 0 such that for every graph G, if ω(G) ≤ 2 and χ(G) > c then G
has holes of ` consecutive lengths (and in particular has an odd hole of length more than `).

2 Some preliminaries

If G is a graph and X,Y ⊆ V (G), we say that Y covers X if X ∩ Y = ∅ and every vertex in X has
a neighbour in Y . We will frequently need the following:

2.1 Let B1, B2, C be subsets of V (G), such that B1, B2 both cover C (possibly B1 = B2). Let
X ⊆ C be a clique with cardinality ω(G). Then there exist b1 ∈ B1 and b2 ∈ B2, distinct, and both
with neighbours in X, such that either b1, b2 are adjacent, or there is an induced path of length three
between them with interior in X.

Proof. Choose b1 ∈ B1 ∪ B2 with as many neighbours in X as possible. From the symmetry we
may assume that b1 ∈ B1. Since |X| = ω(G), there exists x ∈ X nonadjacent to b1. Choose b2 ∈ B2

adjacent to x. If b1, b2 are adjacent then the theorem holds, so we assume not. From the choice of
b1, there exists y ∈ X adjacent to b1 and not to b2. But then b1-y-x-b2 is an induced path of length
three. This proves 2.1.
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If X ⊆ V (G), the subgraph of G induced on X is denoted by G[X], and we often write χ(X) for
χ(G[X]). The distance between two vertices u, v of G is the length of a shortest path between u, v,
or ∞ if there is no such path. If v ∈ V (G) and ρ ≥ 0 is an integer, Nρ

G(v) or Nρ(v) denotes the
set of all vertices u with distance exactly ρ from v, and Nρ

G[v] or Nρ[v] denotes the set of all v with
distance at most ρ from v. If G is a nonnull graph and ρ ≥ 1, we define χρ(G) to be the maximum
of χ(Nρ[v]) taken over all vertices v of G. (For the null graph G we define χρ(G) = 0.)

We might as well assume that ` ≥ 5 in 1.3; and the proof of 1.3 will be induction on κ, with `
fixed, so we may assume that κ ≥ 2 and the result holds for all smaller κ. In particular there exists
τ such that for every graph G, if ω(G) ≤ κ− 1 and G has no 5-hole and no odd hole of length more
than ` then χ(G) < τ . We fix such κ, `, τ , thoughout the paper. Let us say a graph G is a candidate
if ω(G) ≤ κ, and G has no 5-hole and no odd hole of length more than `. We must show that there
exists c such that every candidate has chromatic number at most c.

We observe first (a result that has been proved many times before):

2.2 Let G be a candidate, and let v ∈ V (G). Then χ(N1[v]) ≤ τ , and χ(N2[v]) ≤ τ2.

Proof. Since ω(G) ≤ κ, it follows that ω(G[N1(v)]) ≤ κ − 1, and so χ(N1(v)) < τ . Consequently
χ(N1[v]) ≤ τ . Take a partition X1, . . . , Xτ of N1(v) into stable sets, and let Y1, . . . , Yτ be a partition
of N2(v) such that for 1 ≤ i ≤ τ , every vertex in Yi has a neighbour in Xi. Suppose that for some
i, there is a clique Z ⊆ Yi with |Z| = κ. By 2.1, there exist b, b′ ∈ Xi joined by an induced path
of length one or three with interior in Yi. Length one is impossible since Xi is stable; and length
three is impossible since adding v would give a 5-hole. This proves that ω(G[Yi]) < κ, and hence
χ(Yi) ≤ τ − 1, for 1 ≤ i ≤ τ . Consequently χ(Y1 ∪ · · · ∪ Yτ ) ≤ τ(τ − 1). Since N2(v) = Y1 ∪ · · · ∪ Yτ ,
and N2[v] = N2(v) ∪N1[v], it follows that χ(N2[v]) ≤ τ(τ − 1) + τ = τ2. This proves 2.2.

We remark that the proof just given uses that G has no 5-hole, and with a view to 1.2, it would
be sensible to use this hypothesis as little as possible. Its use here can be avoided by the method
sketched at the end of section 2 of [2], at the cost of a much longer proof (and a worse bound on
χ(N2(v))).

As in several other papers of this series, the proof of 1.3 breaks into cases depending whether
there is an induced subgraph of large chromatic number such that every ball of small radius in it has
bounded chromatic number, or not. Let us make this more precise.

Let N denote the set of nonnegative integers, and let φ : N → N be a non-decreasing function.
For ρ ≥ 1, let us say a graph G is (ρ, φ)-controlled if χ(H) ≤ φ(χρ(H)) for every induced subgraph
H of G. Let us say a class of graphs C is ρ-controlled if there is a nondecreasing function φ : N→ N
such that every graph in the class is (ρ, φ)-controlled.

Thus 2.2 implies that for every 2-controlled class C of candidates, there exists c such that every
graph in C has chromatic number at most c. To see this, choose φ such that every graph in C is
(2, φ)-controlled. Let G ∈ C; then 2.2 implies that χ2(G) ≤ τ2, and so χ(G) ≤ φ(τ2). Consequently
setting c = φ(τ2) satisfies the requirement.

Our first major goal is to extend this to larger values of ρ, that is:

2.3 Let ρ ≥ 2, and let C be a ρ-controlled class of candidates. Then there exists c such that every
member of C has chromatic number at most c.

The proof will take several steps, spread over the next two sections. We will need the following (its
proof is an argument of Gyárfás [4]):
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2.4 Let G be a graph, let k ≥ 0, let C ⊆ V (G), and let x0 ∈ V (G) \ C, such that

• G[C] is connected;

• x0 has a neighbour in C; and

• χ(C) > kχ1(G).

Then there is an induced path x0- · · · -xk of G where x1, . . . , xk ∈ C, and a subset C ′ of C, with the
following properties:

• x0, . . . , xk /∈ C ′;

• G[C ′] is connected;

• xk has a neighbour in C ′, and x0, . . . , xk−1 have no neighbours in C ′; and

• χ(C ′) ≥ χ(C)− kχ1(G).

Proof. We proceed by induction on k; the result holds if k = 0, so we assume that k > 0 and the
result holds for k−1. Consequently there is an induced path x0- · · · -xk−1 ofG where x1, . . . , xk−1 ∈ C,
and a subset C ′′ of C, such that

• x0, . . . , xk−1 /∈ C ′′;

• G[C ′′] is connected;

• xk−1 has a neighbour in C ′′, and x0, . . . , xk−2 have no neighbours in C ′′; and

• χ(C ′′) ≥ χ(C)− (k − 1)χ1(G).

Let N be the set of neighbours of xk−1, and let C ′ be the vertex set of a component of G[C ′′ \N ],
chosen with χ(C ′) maximum (there is such a component since χ(C ′′) > χ1(G) ≥ χ(N)). Let xk be a
neighbour of xk−1 with a neighbour in C ′′. Then x0- · · · -xk and C ′ satisfy the theorem. This proves
2.4.

3 Levellings and multicoverings

If X,Y ⊆ V (G), we say X,Y are anticomplete if X ∩ Y = ∅ and there are no edges between X and
Y . A levelling in a graph G is a sequence of pairwise disjoint subsets (L0, L1, . . . , Lk) of V (G) such
that

• |L0| = 1;

• for 1 ≤ i ≤ k, Li−1 covers Li; and

• for 0 ≤ i < j ≤ k, if j > i+ 1 then Li is anticomplete to Lj .
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If L = (L0, L1, . . . , Lk) is a levelling, Lk is called the base of L, and the vertex in L0 is the apex of
L, and L0 ∪ · · · ∪ Lk is the vertex set of L, denoted by V (L).

For 1 ≤ i ≤ n let Li be a levelling in G with vertex set Vi, and let C ⊆ V (G). We say that
(L1, . . . ,Ln) is a multicovering of C if

• V1, . . . , Vn, C are pairwise disjoint;

• 1 ≤ i < j ≤ n, every vertex in Vi with a neighbour in Vj belongs to the base of Li;

• for 1 ≤ i ≤ n, every vertex in Vi with a neighbour in C belong to the base of Li; and

• for 1 ≤ i ≤ n, the base of Li covers C.

We call n the length of the multicovering (L1, . . . ,Ln). A multicovering (L1, . . . ,Ln) is indepen-
dent if for 1 ≤ i < j ≤ n, every vertex in V (Lj) with a neighbour in V (Li) belongs to the base of
Lj .

Next we need an object rather like a multicovering but different. For 1 ≤ i ≤ n let Li be a
levelling in G with vertex set Vi, and let B,C ⊆ V (G). We say that (L1, . . . ,Ln) is a polycovering of
(B,C) if

• the sets V1, . . . , Vn, B, C are pairwise disjoint;

• the sets V1, . . . , Vn, C are pairwise anticomplete;

• B covers C, and Vi covers B for 1 ≤ i ≤ n;

• let L1 be (L0, . . . , Lk); then (L0, . . . , Lk, B) is a levelling.

Again, we call n its length.
A levelling (L0, . . . , Lk) has height k, and if (L1, . . . ,Ln) is a multicovering of C and each Li has

height k we call it a k-multicovering of C. If (L1, . . . ,Ln) is a polycovering of (B,C) and each Li
has height k, and in addition for 1 ≤ i ≤ n, every vertex in V (Li) with a neighbour in B belongs to
the base of Li, we call (L1, . . . ,Ln) a k-polycovering of (B,C).

A levelling (L0, . . . , Lk) is stable if each of the sets L0, . . . , Lk is stable. A multicovering (L1, . . . ,Ln)
of C is stable if each Li is stable; and a polycovering (L1, . . . ,Ln) of (B,C) is stable if B is stable
and each Li is stable.

3.1 Let ρ ≥ 2, let C be a ρ-controlled class of graphs, and let τρ−1 be such that χρ−1(G) ≤ τρ−1 for
each G ∈ C. For all c ≥ 0 and n ≥ 0, there exists c′ such that if G ∈ C is a graph with chromatic
number more than c′, then there is a stable (ρ− 1)-multicovering (L1, . . . ,Ln) in G of a set C with
χ(C) > c.

Proof. Choose φ such that every graph in C is (ρ, φ)-controlled. We proceed by induction on n. The
claim holds if n = 0, so we assume that n > 0 and that the theorem holds with n replaced by n− 1
and c′ replaced by c′′. Let c2 = c′′+τρ−1, let c1 = τρρ−1c2, and let c′ = φ(c1); we claim that c′ satisfies
the theorem. For let G ∈ C with χ(G) > c′. Since G is (ρ, φ)-controlled, it follows that φ(χρ(G)) > c′,
and since φ is nondecreasing and c′ = φ(c1), we deduce that χρ(G) > c1. Consequently there is a
vertex v of G such that χ(Nρ[v]) > c1. Now χρ−1(G) ≤ τρ−1, and in particular χ(Nρ−1[v]) ≤ τρ−1,
and so χ(Nρ(v)) > c1 − τρ−1 = c′′. Since χρ−1(G) ≤ τρ−1, there is a τρ−1-colouring of G[Nρ−1[v]],
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say ψ. For each v ∈ Nρ(u), take a path Pu between v, u of length ρ; each of its vertices except u is
assigned a colour by ψ. Let fu be the sequence of the colours of the vertices of Pu \ {u}, in order
starting from v. There are only τρρ−1 possibilities for fu; so there exists C2 ⊆ C1 with χ(C2) > c2,
such that all the sequences fu are the same for all u ∈ C2. For 0 ≤ i ≤ ρ let Li be the set of vertices
w such that for some u ∈ C, w is the ith vertex of Pu. It follows that L0, . . . , Lρ−1 are all stable.

Let L1 = (L0, . . . , Lρ−1); then L1 is a stable levelling. From the inductive hypothesis applied to
G[Lρ], there is a stable (ρ− 1)-multicovering (L2, . . . ,Ln) in G of a set C with χ(C) > c; and then
(L1, . . . ,Ln) satisfies the theorem. This proves 3.1.

If (L1, . . . ,Ln) is an independent multicovering in G of C, we say it is starred if there exist bi in
the base of Li for each i ∈ {1, . . . , n}, and z ∈ C, such that each bi is adjacent to z, and the vertices
bi(1 ≤ i ≤ n) are pairwise nonadjacent. We observe:

3.2 For all n ≥ 0 there exists n′ ≥ 0 with the following property. Let G be a candidate, and let
(L1, . . . ,Ln′) be a multicovering in G of some set C 6= ∅. Then some n-term subsequence of the
sequence (L1, . . . ,Ln′) is starred.

Proof. Choose n′ such that every graph with at least n′ vertices has either a stable set of size n or
a clique of size κ. We claim that n′ satisfies the theorem. For let G,C and (L1, . . . ,Ln′) be as in the
theorem, and let z ∈ C. For 1 ≤ i ≤ n′ choose a neighbour bi of z in the base of Li. Since ω(G) ≤ κ,
the subgraph induced on the vertices {bi : 1 ≤ i ≤ n′} has no clique of size κ; so it has an stable set
of size n. The corresponding subsequence of the multicovering is starred. This proves 3.2.

With this we can polish 3.1 a little, as follows:

3.3 Let ρ ≥ 2, let C be a ρ-controlled class of candidates, and let τρ−1 be such that χρ−1(G) ≤ τρ−1
for each G ∈ C. For all c, n ≥ 0, there exists c′ with the following properties. Let G ∈ C such that
χ(G) > c′. Then there exists C ⊆ V (G) with χ(C) > c, and either

• there is a starred independent stable (ρ− 1)-multicovering (L1, . . . ,Ln) in G of C; or

• there is a stable (ρ− 2)-polycovering (L1, . . . ,Ln) in G of (B,C) for some B.

Proof. Let n′ be as in 3.2. Let c2 = 2n
2n′c, let c1 = c2 + nn′τρ−1, and let c′ satisfy 3.1 with n

replaced by nn′ and c by c1; we claim that c′ satisfies the theorem. For let G ∈ C such that χ(G) > c′.
By 3.1, there is a stable (ρ− 1)-multicovering (L1, . . . ,Lnn′) in G of a set C1 with χ(C1) > c1. Let
X be the set of vertices v ∈ C1 such that for some i ∈ {1, . . . , nn′}, the distance in G between v and
the apex of Li is less than ρ. Thus χ(X) ≤ nn′τρ−1, and so C1 \X has chromatic number more than
c2. For 1 ≤ i ≤ nn′, let Bi be the base of Li.

For each v ∈ C1 \X and 1 ≤ i ≤ nn′, choose a neighbour b(v, i) of v in Bi. For each v ∈ C1 \X,
and 1 ≤ i < j ≤ nn′, let fij(v) = 1 if b(v, i) has a neighbour in Vj \ Bj , and fij(v) = 0 otherwise.

There are at most 2n
2n′2 possibilities for the matrix of numbers fij(v) (1 ≤ i < j ≤ nn′), so there

exist a subset C of C1 \X with χ(C) > c and fij ∈ {0, 1} for all i, j with 1 ≤ i < j ≤ nn′, such that
fij(v) = fij for each v ∈ C.

Suppose first that for some i there are at least n−1 values of j with i < j ≤ nn′ such that fij = 1,
say j1, . . . , jn−1. Let B be the set of vertices in Bi with a neighbour in C and with a neighbour in
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Vj \Bj for each j ∈ {j1, . . . , jn−1}. Since b(v, i) ∈ B for each v ∈ C, it follows that B covers C. For
each j ∈ {i, j1, . . . , jn−1}, let L′j be obtained from Lj by removing its final term (that is, its base).
Since every vertex v ∈ B has a neighbour in C, and this neighbour has distance at least ρ from the
apex of Lj , it follows that v has distance at least ρ− 1 from this apex; and hence every neighbour of
v in Vj belongs to one of the last two terms of the sequence Lj . Since v has a neighbour in Vj \Bj , it
follows that v has a neighbour in the base of L′j , and all its neighbours in V (L′j) belong to the base
of L′j . Consequently (L′i,L′j1 , . . . ,L

′
jn−1

) is a stable (ρ − 2)-polycovering of (B,C) and the second
bullet of the theorem holds.

We may therefore assume that for each i, there are fewer than n choices of j with i < j ≤ nn′

such that fij = 1. The graph with vertex set {1, . . . , nn′} in which i, j are adjacent (for i < j) if
fij = 1 is therefore (n − 1)-degenerate and so n-colourable, and since it has nn′ vertices, it has a
stable set of cardinality n′. Hence there are n′ numbers i1 < · · · < in′ such that fij = 0 for all
i, j ∈ {i1, . . . , in′} with i < j. For each i ∈ {i1, . . . , in′}, let B′i be the set {b(v, i) : v ∈ C}, and let
L′i be obtained from Li by replacing its final term with B′i. Then (L′i1 , . . . ,L

′
in′

) is an independent

stable multicovering of C, and by 3.2 and the choice of n′, it has a subsequence of length n which is
starred; and hence the first bullet of the theorem holds. This proves 3.3.

4 (ρ− 1)-multicoverings

Some notation: let L be a levelling (L0, . . . , Lk) say, and let p, q ∈ Lk. Then there is an induced
path P joining p, q with V (P ) ⊆ V (L), using at most two vertices of Li for 0 ≤ i ≤ k. Moreover, if
the levelling is stable, this path has even length. We denote some such path by L(p, q).

Let us return to the proof of 2.3. By 3.3, we may assume that we have one of the two outcomes
of 3.3, and first we handle the first case, by the following theorem.

4.1 For all ρ ≥ 3 there exists c with the following property. Let G be a candidate, and let (L1,L2)
be a starred independent stable (ρ− 1)-multicovering in G of a set C. Then χ(C) ≤ c.

Proof. Let c = (` + 8)τ2 + `τ ; and let G,C and (L1,L2) be as in the theorem. Suppose that
χ(C) > c. For i = 1, 2 let Bi be the base of Li.

Since the multicovering is starred, there exists z ∈ C, with neighbours b1 ∈ B1 and b2 ∈ B2 that
are not adjacent. Since χ(C) > c ≥ τ , there is a clique X ⊆ C of cardinality κ. By 2.1 there exist
b′1 ∈ B1 and b′2 ∈ B2 joined by an induced path Q of length one or three with interior in X.

Let Y = {b1, b2, z} ∪ V (Q), and let Z be the set of vertices in C with distance at least 3 from
every vertex in Y . Since |Y | ≤ 7, it follows that

χ(Z) > c− 7τ2 = (`+ 1)τ2 + `τ.

Let W be a component of G[Z] with maximum chromatic number, and choose x0 ∈ B1 with a
neighbour in W . By 2.4, since χ(W ) = χ(Z) > `τ , there is an induced path x0- · · · -x` of G where
x1, . . . , x` ∈W , and a subset C ′ of W , such that:

• x1, . . . , x` /∈ C ′;

• G[C ′] is connected;
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• x` has a neighbour in C ′, and x0, . . . , x`−1 have no neighbours in C ′; and

• χ(C ′) ≥ χ(W )− `τ > (`+ 1)τ2.

From the last bullet above, there is a vertex in C ′ with distance at least 3 from each of x0, . . . , x`.
Choose a neighbour of this vertex in B2, say y, and let R be an induced path between x0, y with
interior in W such that x1, . . . , x` are all vertices of R. This exists since y is nonadjacent to x0, . . . , x`
(because it has a neighbour with distance at least 3 from each of them). In summary then, R is a
path of length at least `+ 1, between x0, y, and V (R) is anticomplete to Y .

Suppose first that R has odd length. Then the union of R, L1(x0, b1), L2(y, b2) and the path
b1-z-b2 is an odd hole of length more than `, a contradiction. If R has even length, then the union
of R, L1(x0, b′1), L2(y, b′2) and Q is an odd hole of length more than `, again a contradiction. This
proves 4.1.

Now we handle the second outcome of 3.3.

4.2 For all ρ ≥ 3 there exist c with the following property. Let G be a candidate, and let (L1,L2)
be a stable (ρ− 2)-polycovering in G of a pair (B,C). Then χ(C) ≤ c.

Proof. Let c = 2(` − 1)τ + 2(` + 7)τ2, let G,L1,L2, B,C be as in the theorem, and suppose
that χ(C) > c. Let A1, A2 be the bases of L1,L2 respectively. Thus every vertex in V (Li) with a
neighbour in B belongs to Ai, for i = 1, 2. By 2.1, since c > τ , there is an induced path p2- · · · -p5 of
length three where p2, p5 ∈ B and p3, p4 ∈ C. Among all such choices of p2, . . . , p5, choose p2- · · · -p5
such that the set of vertices in A2 with a neighbour in {p2, p5} is minimal.

Let us say a ∈ A1 ∪ A2 is a grandparent of z ∈ C if there exists b ∈ B such that a-b-z is an
induced path. Every vertex of C has a grandparent in A1, and every vertex in A1 is nonadjacent to
at least one of p2, p5. By reversing the path p2- · · · -p5 if necessary, we may assume that the set Z1

of vertices in C that have a grandparent in A1 that is nonadjacent to p5 has chromatic number at
least χ(C)/2, and hence more than (`− 1)τ + (`+ 7)τ2.

Let Y1 be the set of vertices in B that have a neighbour in A1 nonadjacent to p5. It follows that
Z1 is the set of vertices in C that have a neighbour in Y1. Let Y2 be the set of all vertices in Y1
with a neighbour in A2 nonadjacent to p2. For every vertex in Y1 \ Y2, all its neighbours in A2 are
adjacent to p2; and so, from the minimality of the set of neighbours in A2 of p2, p5 (and since p5
has a neighbour in A1 that is not adjacent to p2), there is no induced path p′2- · · · -p′5 of length three
where p′2, p

′
5 ∈ Y1 \ Y2 and p′3, p

′
4 ∈ C. By 2.1, the set of vertices in C with a neighbour in Y1 \ Y2

has chromatic number at most τ ; and so the set Z2 of vertices in Z1 with a neighbour in Y2 has
chromatic number at least χ(Z1)− τ > (`− 2)τ + (`+ 7)τ2.

Choose p1 ∈ A1 adjacent to p2, and p6 ∈ A2 adjacent to p5. Since p2, p5 have no common
neighbour in A1 ∪ A2 (because G has no 5-hole), it follows that p1- · · · -p6 is an induced path. Let
Z3 ⊆ Z2 be the set of vertices in Z2 with distance at least three from each of p1, . . . , p6. Consequently
χ(Z3) ≥ χ(Z2)−6τ2 > (`−2)τ +(`+1)τ2. Let C ′ be the vertex set of a component of G[Z3], chosen
with maximum chromatic number. Let Y3 be the set of vertices in Y2 with a neighbour in C ′. Since
Y2 covers Z2 it follows that Y3 covers C ′.

Now Y3 ⊆ Y1, so every vertex in Y3 has a neighbour in A1 nonadjacent to p5; choose A′1 ⊆ A1

minimal such that no vertex in A′1 is adjacent to p5, and A′1 covers Y3. Since Y3 6= ∅, there exists
q′1 ∈ A′1. From the minimality of A′1, there exists q2 ∈ Y3 such that q′1 is its only neighbour in A′1.
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Since q2 ∈ Y3 ⊆ Y2, there exists q1 ∈ A2 adjacent to q2 and nonadjacent to p2. Since q2 ∈ Y3,
q2 has a neighbour in C ′. Since χ(C ′) > (` − 2)τ , by 2.4 there is an induced path q2- · · · -q` where
q3, . . . , q` ∈ C ′, and a subset C ′′ of C ′, such that

• q2, . . . , q` /∈ C ′′;

• G[C ′′] is connected;

• q` has a neighbour in C ′′, and q2, . . . , q`−1 have no neighbours in C ′′; and

• χ(C ′′) ≥ χ(C ′)− (`− 2)τ > (`+ 1)τ2.

Since χ(C ′′) > (`+1)τ2, there exists z ∈ C ′′ with distance at least three from each of q′1, q1, q2, . . . , q`.
Since z ∈ C ′ ⊆ Z2, z has a neighbour y ∈ Y2. SinceG[C ′′] is connected, the path q2- · · · -q` is a subpath
of an induced path q2- · · · -qn−1 where qn−1 = y and q`+1, . . . , qn−2 ∈ C ′′. Now q1 is nonadjacent to
qn−1, since qn−1 is adjacent to z and z has distance at least three from q1. Consequently q1- · · · -qn−1
is an induced path. Let qn ∈ A′1 be adjacent to qn−1. Since qn 6= q′1 (because z has distance at least
three from q′1) and q′1 is the only neighbour of q2 in A′1, it follows that q2, qn are nonadjacent; and so
q1- · · · -qn is an induced path Q say.

Let P be the path p1- · · · -p6. Since every vertex of Q has distance at most two from some vertex
in C ′, and every vertex in C ′ has distance at least three from every vertex of P , it follows that
V (P ) ∩ V (Q) = ∅. We need to investigate edges between V (P ) and V (Q); suppose then that pi is
adjacent to qj where 1 ≤ i ≤ 6 and 1 ≤ j ≤ n. Since the distance between pi and C ′ is at least three,
it follows that the distance between qj and C ′ is at least two, and so j ∈ {1, n}. Since there are no
edges between {q1, qn} and {p1, p3, p4, p6}, it follows that i ∈ {2, 5}.

Now q1 is not adjacent to p2, from the choice of q1; and qn is not adjacent to p5, since p5 has
no neighbour in A′1. Thus the only possibilities for edges between P and Q are p2qn and p5q1. If p2
is adjacent to qn let R be the path p2-qn. If p2, qn are not adjacent, let R be the path obtained by
adding the edge p1p2 to the even path L1(p1, qn). In either case R has odd length. Similarly, there
is an induced path S of odd length between p5, q1, with V (S) \ {p5, p6, q1} ⊆ V (L2) \ A2. But then
the union of P,Q,R, S is an odd hole of length more than `, a contradiction. This proves 4.2.

We deduce 2.3, which we restate:

4.3 Let ρ ≥ 2, and let C be a ρ-controlled class of candidates. Then there exists c such that every
graph in C has chromatic number at most c.

Proof. We proceed by induction on ρ. As was noted after 2.2, the claim holds for ρ = 2, so we
assume that ρ > 2 and the claim holds for ρ− 1.

Choose c1 such that 4.1 is satisfied with c replaced by c1, choose c2 such that 4.2 is satisfied with
c replaced by c2, and let c = max(c1, c2). For each integer x ≥ 0, let φ(x) ≥ φ(x − 1) (or φ(x) ≥ 0
if x = 0) be such that 3.3 is satisfied with τρ−1 replaced by x, n replaced by 2, and c′ replaced by
φ(x). Let Cx be the class of all induced subgraphs H of members of C with χρ−1(H) ≤ x.

Suppose that for some x, there exists G ∈ Cx with χ(G) > φ(x). By 3.3, there exists C ⊆ V (G)
with χ(C) > c, and either

• there is a starred independent stable (ρ− 1)-multicovering (L1,L2) in G of C; or

8



• there is a stable (ρ− 2)-polycovering (L1,L2) in G of (B,C) for some B.

By 4.1 the first is impossible; and by 4.2 the second is impossible.
Thus there is no such G; that is, for every induced subgraph H of a member of C, χ(H) ≤ φ(x) for

all x ≥ χρ−1(H), and in particular, χ(H) ≤ φ(χρ−1(H)). Consequently every graph in C is (ρ−1, φ)-
controlled, and so C is (ρ− 1)-controlled, and the result follows from the inductive hypothesis. This
proves 4.3.

5 Multicoverings in the uncontrolled case

To show 1.3, we need to show that every candidate has bounded chromatic number. In view of 4.3,
it suffices to show that the class of all candidates is `-controlled. Suppose not; then as in the proof
of 4.3, there exist x and a class of candidates G with χ`(G) ≤ x and with unbounded chromatic
number. Thus it suffices to prove the following:

5.1 For all τ` there exists c such that if G is a candidate with χ`(G) ≤ τ` then χ(G) ≤ c.

Proving this is the goal of the remainder of the paper.
In 3.1 we could obtain stable multicoverings, but this depended on ρ-control, and no longer

works. But we can at least arrange that the bases of our levellings are stable. Let us say a levelling
is stable-based if its base is stable, and a multicovering is stable-based if each term is stable-based.
We begin with:

5.2 For all τ`, c ≥ 0 there exists c′ ≥ 0 such that if G is a candidate with χ`(G) ≤ τ` and χ(G) > c′

then there is a levelling (L0, . . . , Lk) in G with χ(Lk) > c and Lk−1 stable.

Proof. Let c2 = τ` + 2τ , let c1 = c2c2, and let c′ = 2c1. Let G be a candidate with χ`(G) ≤ τ` and
χ(G) > c′.

(1) There is a levelling (L0, . . . , Lk) in G such that χ(Lk) > c1.

For let G1 be a component of G with maximum chromatic number, and let z0 ∈ V (G1). For
all i ≥ 0 let Li be the set of vertices with distance i from z0. Then there exists k such that
χ(Lk) ≥ χ(G)/2 > c′/2 = c1. This proves (1).

(2) There is a levelling (L0, . . . , Lk) in G with the following properties:

• χ(Lk) > c1;

• G[Lk] is connected; and

• for 0 ≤ i < k and for every vertex v ∈ Li, there exists u ∈ Li+1 such that v is the unique
neighbour of u in Li.
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For choose L0, . . . , Lk as in (1) with L0 ∪ · · · ∪ Lk minimal. Consequently deleting any vertex of
Lk reduces the chromatic number of G[Lk], and hence G[Lk] is connected. Also, for 0 ≤ i < k and
v ∈ Li,

(L0, . . . , Li−1, Li \ {v}, Li+1, . . . , Lk)

is not a levelling, and so v is the unique neighbour in Li of some vertex in Li+1. This proves (2).

Since c1 ≥ τ`, it follows that k > ` ≥ 5. Choose z ∈ Lk−2. Let X be the set of vertices in Lk−2
with distance at least `+ 1 from z in G. Hence χ(X) ≥ χ(Lk−2)− τ`. Let A = L0 ∪ · · · ∪ Lk−3 and
B = Lk−1 ∪ Lk.

(3) For all v ∈ X, either every induced path between v, z with interior in A is even and every
induced path between v, z with interior in B is even, or every induced path between v, z with interior
in A is odd and every induced path between v, z with interior in B is odd.

For there is an induced path between v, z with interior in A, from the definition of a levelling;
and there is one with interior in B, by (2). Each such path has length more than `, and the union of
a path of the first type and a path of the second is a hole of length more than ` and is consequently
even. This proves (3).

Let X0 be the set of all vertices v ∈ X such that every induced path between v, z with interior
in A is even, and X1 = X \X0.

(4) Let j ∈ {0, 1}, and let u, v ∈ Xj be adjacent; then every neighbour of u in Lk−3 is also ad-
jacent to v, and vice versa.

For suppose that w ∈ Lk−3 is adjacent to u and not to v. By (2), there is an induced path be-
tween v, Lk containing no neighbour of u except v, and also there is an induced path between z, Lk
containing no neighbour of u; and since G[Lk] is connected and contains no neighbours of u, it follows
that there is an induced path Q between v, z containing no neighbours of u except v, with interior
in B. Choose an induced path P between w and some neighbour z′ of z in Lk−3, with interior in
L0 ∪ · · · ∪ Lk−4. But then adding the edges uw and zz′ to P gives an induced path P ′ between v, z
with interior in A, which therefore has the same parity as Q, by (3); and so adding the edge uv to
the union of P ′ and Q gives an odd hole of length more than `, which is impossible. This proves (4).

It follows that for i = 0, 1, ω(G[Xi]) < κ, since every connected subgraph of G[Xi] has a common
neighbour in Lk−3 by (4). Hence χ(Xi) ≤ τ for i = 0, 1. We deduce that χ(Lk−2) ≤ τ` + 2τ = c2.
Take a partition of G[Lk−2] into c2 stable sets, say Y1, . . . , Yc2 . Every vertex in Lk−1 has a neighbour
in at least one of these sets, so there is a partition Y ′1 , . . . , Y

′
c2 of Lk−1 such that for 1 ≤ i ≤ c2, Yi

covers Y ′i . If some Y ′i has chromatic number more than c, then (L0, . . . , Lk−3, Yi, Y
′
i ) satisfies the

theorem, so we assume not. Hence χ(Lk−1) ≤ cc2. Take a partition of Lk−1 into cc2 stable sets
Z1, . . . , Zcc2 , and take a partition Z ′1, . . . , Z

′
cc2 of Lk such that each Zi covers Z ′i. Since χ(Lk) > c2c2,

there exists i with χ(Z ′i) > c; and so (L0, . . . , Lk−2, Zi, Z
′
i) satisfies the theorem. This proves 5.2.

We deduce:
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5.3 For all τ`, c, n ≥ 0, there exists c′ such that if G is a candidate with chromatic number more
than c′ and with χ`(G) ≤ τ`, then there is a stable-based multicovering (L1, . . . ,Ln) in G of a set C
with χ(C) > c.

Proof. We proceed by induction on n; the result holds for n = 0, so we assume that n > 0 and the
result holds for n− 1. Choose c′′ such that the theorem is satisfied with n replaced by n− 1 and c′

replaced by c′′. Choose c′ such that 5.2 is satisfied with c replaced by c′′. We claim that c′ satisfies
the theorem.

For let G be a candidate with chromatic number more than c′ and with χ`(G) ≤ τ`. By 5.2
there is a levelling (L0, . . . , Lk) in G with χ(Lk) > c′′ and Lk−1 stable. Let L1 be the levelling
(L0, . . . , Lk−1); then it is stable-based. From the inductive hypothesis, there is a stable-based mul-
ticovering (L2, . . . ,Ln) in G[Lk] of some set C ⊆ Lk with χ(C) > c. But then (L1, . . . ,Ln) satisfies
the theorem. This proves 5.3.

This can be polished just as we polished 3.1 in 3.3, to give the following (the proof is exactly
analogous to that of 3.3 and we omit it).

5.4 For all c, n, τ` ≥ 0, there exists c′ with the following properties. Let G be a candidate such that
χ`(G) ≤ τ` and χ(G) > c′. Then there exists C ⊆ V (G) with χ(C) > c, and either

• a starred independent stable-based multicovering (L1, . . . ,Ln) in G of C, or

• a polycovering (L1, . . . ,Ln) in G of (B,C), for some stable set B.

6 Finishing the uncontrolled case

We may assume that one of the two outcomes of 5.4 holds, and we handle them separately. The first
case will be handled by the following:

6.1 For all τ` ≥ 0 there exists c with the following property. Let G be a candidate with χ`(G) ≤ τ`,
and let (L1,L2,L3) be a starred independent multicovering in G of a set C. Then χ(C) ≤ c.

Proof. For i = 1, 2, 3, let Bi be the base of Li. Since the multicovering is starred, there exist z ∈ C
and bi ∈ Bi for i = 1, 2, 3, such that z is adjacent to b1, b2, b3, and b1, b2, b3 are pairwise nonadjacent.

Let Z be the set of all v ∈ C with distance at least `+ 1 from z. Consequently χ(Z) ≥ χ(C)− τ`.
For each v ∈ Bi, let Pi(v) be some path Li(v, bi). Each vertex in W has neighbours in B1, B2, B3,
and the corresponding paths Pi(v)(i = 1, 2, 3) may be even or odd, a total of eight possibilities.
Thus there exists W ⊆ Z with χ(W ) ≥ χ(Z)/8 and f1, f2, f3 ∈ {0, 1}, such that for all w ∈ W and
i = 1, 2, 3, w has a neighbour v in Bi such that the path Pi(v) has even length if fi = 0 and odd
length if fi = 1.

Now two of f1, f2, f3 are equal, say f1, f2 (without loss of generality, since reordering the levellings
in an independent multicovering gives another). For i = 1, 2, let B′i be the set of v ∈ Bi such that
Pi(v) has length of parity fi. It follows that B′1, B

′
2 each cover W .

Since χ(W ) > τ , by 2.1 there exist b′1 ∈ B′1 and b′2 ∈ B′2, joined by an induced path Q of length
one or three with interior in W , and b′1, b

′
2 both have neighbours in W . In particular the distance

between b′i and a0 is at least `, and so Pi(b
′
i) has length at least ` for i = 1, 2. The sets

{z}, V (P1(b
′
1)) \ V (Q), V (P2(b

′
2)) \ V (Q), V (Q)
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are pairwise disjoint, and we claim that the only edges between these sets are the edges zb1, zb2,
and edges of P1(b

′
1), P2(b

′
2). To see this, note that there are no edges between z and V (Q), since

every vertex of Q has distance at least ` from z. Moreover, every vertex of Pi(b
′
i) \ V (Q) belongs

to V (Li) \ Bi except for bi, and so since the multicovering is independent, the only edges between
P1(b

′
1) \ V (Q) and P2(b

′
2) \ V (Q) are between b1, b2, and hence there are no such edges since b1, b2

are nonadjacent. Hence the union of Q, P1(b1) and P2(b2) is an odd hole of length more than `, a
contradiction. This proves 6.1.

For the second case of 5.4 we use the following:

6.2 For all τ` ≥ 0 there exists c with the following property. Let G be a candidate with χ`(G) ≤ τ`,
and let (L1,L2) be a polycovering in G of a pair (B,C), where B is stable. Then χ(C) ≤ c.

Proof. For i = 1, 2, let Vi = V (Li). Choose b ∈ B, and let Z be the set of vertices in C with
distance at least `+ 1 from b. Consequently χ(Z) > χ(C)− τ`. Let L1 = (L0, . . . , Lk); then from the
definition of polycovering, it follows that (L0, . . . , Lk, B) is a levelling L say. For each v ∈ B with a
neighbour in Z, let P1(v) be some path L(v, b). For each vertex v ∈ B with a neighbour in Z, choose
an induced path P2(v) between v, b with interior in V2, of minimum length.

If P1(v) is even and P2(v) is odd, or vice versa, then P1(v)∪ P2(v) is an odd hole of length more
than `, a contradiction. Thus either P1(v), P2(v) are both even or they are both odd. Let B′0 be
the set of v ∈ B with a neighbour in W such that P1(v), P2(v) are both even, and B′1 the set with
P1(v), P2(v) both odd. Every vertex in W has a neighbour in one of B′0, B

′
1, so there exists W ′ ⊆W

with χ(W ′) > χ(W )/2, and B′ ⊆ B, and f ∈ {0, 1}, such that B′ covers W ′, and for each v ∈ B′,
P1(v) and P2(v) both have parity f . Since χ(W ′) > τ , and B is stable, by 2.1 there exist b1, b2 ∈ B′
joined by an induced path of length three with interior in W ′.

By exchanging b1, b2 if necessary, we may assume that P2(b1) has length at least that of P2(b2).
Now b1 has no neighbour in P1(b2), since b1 has no neighbours in L0 ∪ · · · ∪Lk−1, and b1, b2 have no
common neighbour in the base of L1 (since G has no 5-hole), and b1 has distance at least ` from b.
Now b1, b2 also have no common neighbour in the base of L2 (since G has no 5-hole); and so b1 has
no neighbour in P2(b2), since there is no path between b1, b with interior in V2 of length less than
that of P2(b2). But then the union of P1(b1), P2(b2) and Q is an odd hole of length more than `, a
contradiction. This proves 6.2.

We deduce 5.1, which we restate:

6.3 For all τ` there exists c such that if G is a candidate with χ`(G) ≤ τ` then χ(G) ≤ c.

Proof. Let 6.1 be satisfied with c replaced by c1, and let 6.2 be satisfied with c replaced by c2. Let
c0 = max(c1, c2), and let 5.4 be satisfied with c′, c, n replaced by c, c0, 3 respectively. Suppose that
G is a candidate with χ`(G) ≤ τ` and χ(G) > c. By 5.4 there exists C ⊆ V (G) with χ(C) > c0, and
either

• an independent stable-based multicovering (L1,L2,L3) in G of C, or

• a polycovering (L1,L2) in G of (B,C), for some stable set B.

But the first contradicts 6.1 and the second contradicts 6.2. This proves 6.3, and hence completes
the proof of 1.3.
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chromatic number. II. Three steps towards Gyárfás’ conjectures”, J. Combinatorial Theory,
Ser. B, 118 (2016), 109–128.

[2] Maria Chudnovsky, Alex Scott and Paul Seymour, “Induced subgraphs of graphs with large
chromatic number. III. Long holes”, Combinatorica, to appear, arXiv:1506.02232.

[3] Maria Chudnovsky, Alex Scott and Paul Seymour, “Induced subgraphs of graphs with large
chromatic number. V. Chandeliers and strings”, submitted for publication (manuscript Septem-
ber 2015).
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