
Finding an induced path that is not a shortest path

Eli Berger1

University of Haifa

Paul Seymour2

Princeton University, Princeton, NJ 08544

Sophie Spirkl3

Rutgers University, Piscataway, NJ 08854

July 18, 2019; revised March 9, 2021

1Supported by Israel Science Foundation Grant 100004639 and Binational Science Foundation USA-Israel
Grant 100005728.

2Supported by AFOSR grant A9550-19-1-0187 and NSF grant DMS-1800053.
3Current address: University of Waterloo, Waterloo, Ontario, Canada N2L3G1. This material is based

upon work supported by the National Science Foundation under Award No. DMS-1802201.

Abstract

We give a polynomial-time algorithm that, with input a graph G and two vertices u, v of G, decides
whether there is an induced uv-path that is longer than the shortest uv-path.

1 Introduction

All graphs in this paper are finite and simple. For a graph G and u, v ∈ V (G), the G-distance dG(u, v)
(or d(u, v) when there is no danger of confusion) is the number of edges in a shortest uv-path in
G; let d(u, v) = ∞ if there is no such path. Let P be an induced uv-path. The length of P is the
number of edges of P . We call P a non-shortest uv-path (uv-NSP) if the length of P is more than
d(u, v).

Given a graph G and u, v ∈ V (G), how can we test whether there are two induced uv-paths
of different lengths, or equivalently, whether there is a uv-NSP? Deciding this in polynomial time
is surprisingly non-trivial. (It is important that we want induced paths; if we just want paths of
different lengths, the question is much easier.) Our main result is the following:

1.1. There is an algorithm that, given a graph G and u, v ∈ V (G), decides whether there is a uv-NSP
in time O(|G|18).

This will be proved in section 2. We use a dynamic programming algorithm for one step of the
proof, and this technique gives a class of further results that we develop in section 3. In particular,
in that section we will prove:

1.2. For fixed k, there is a polynomial-time algorithm that, given a graph G and u, v ∈ V (G), decides
whether there is an induced path between u and v in G of length exactly d(u, v) + k.

Many variants of finding induced paths and pairs of induced paths have been considered previ-
ously; for instance

1.3 (Bienstock [1]). The following problems are NP -hard:

• Given u, v ∈ V (G), decide whether there is an induced uv-path of odd (even) length.

• Given nonadjacent u, v ∈ V (G), decide whether there are two induced uv-paths P1 and P2 with
no edges between V (P1)\{u, v} and V (P2)\{u, v} (that is, decide whether u, v lie in an induced
cycle).

We have two more NP-hardness results, that are new as far as we know (we omit the proofs).
The first is:

1.4. The following problem is NP-hard:

• Input: A graph G and u, v ∈ V (G).

• Output: “Yes” if there exist two induced uv-paths P and Q such that there are no edges
between V (P) \ {u, v} and V (Q) \ {u, v}, and P is a shortest uv-path; and “No” otherwise.

This is in contrast with 3.4, which implies that the problem is polynomial-time solvable if both P
and Q are required to be shortest paths (or at most a fixed constant amount longer than a shortest
path). In view of 1.1, it is natural to ask:

1.5. For fixed k > 1, is there a polynomial-time algorithm that, given a graph G and u, v ∈ V (G),
decides whether there is an induced uv-path P in G of length at least d(u, v) + k?

1

This remains open, even for k = 3 (the algorithm of this paper does the case k = 1, and can
be adjusted to do the case k = 2). It is necessary to fix k, because of the following, our second
NP-hardness result (again, we omit its proof):

1.6. The following problem is NP-hard:

• Input: A graph G and u, v ∈ V (G).

• Output: “Yes” if there exists a uv-NSP of length at least 2dG(u, v) and “No” if there is no
such path.

2 Finding an induced non-shortest path

In this section, we prove 1.1. We start with some definitions. Let G be a graph, and u, v ∈ V (G). A
vertex x ∈ V (G) is uv-straight if d(u, x) + d(x, v) = d(u, v). Let F be the set of uv-straight vertices.
For i ∈ {0, . . . , d(u, v)}, let Vi = {x ∈ F : d(u, x) = i}; we call Vi the uv-layer of height i, and we say
its elements have height i; and we call the sequence V0, . . . , Vd(u,v) the uv-layering of G. It follows
that for i, j ∈ {0, . . . , d(u, v)} with |i− j| ≥ 2, there are no edges between Vi and Vj , and moreover,
for i ∈ {1, . . . , d(u, v)− 1}, every vertex in Vi has a neighbour in Vi−1 and in Vi+1.

We call a path Q with V (Q) ⊆ F monotone (leaving the dependence on u, v to be understood)
if |V (Q) ∩ Vi| ≤ 1 for all i ∈ {0, . . . , d(u, v)} (and therefore Q is induced); and it follows that
the vertices of Q are in |V (Q)| uv-layers of consecutive heights. For every vertex x ∈ F , there is a
monotone ux-path intersecting precisely V0, . . . , Vd(u,x) and a monotone xv-path intersecting precisely
Vd(u,x), . . . , Vd(u,v), and from the definition of uv-monotonicity, it follows that both of these paths are
shortest paths. If K ⊆ V (G), N(K) or NG(K) denotes the set of all vertices in V (G) \K that have
a neighbour in K.

We need the following simple “dynamic programming” algorithm (this method is further devel-
oped in section 3).

2.1. There is an algorithm with the following specifications:

• Input: A graph G, and vertices u, v of G such that every vertex of G is uv-straight, and the
uv-layering V0, . . . , Vd(u,v) of G; also h, k with 0 ≤ h < k ≤ d(u, v), and four vertices s1, t1, s2, t2
of G, where s1, s2 ∈ Vh and t1, t2 ∈ Vk.

• Output: Two monotone paths P1, P2 with ends s1, t1 and s2, t2, respectively, such that V (P1∩
P2) = ∅ and there are no edges between V (P1) and V (P2), or a determination that no such
paths exists.

• Running time: O(|G|4).

Proof. We may assume that s1 6= s2 and s1, s2 are nonadjacent, because otherwise the paths do not
exist. Let Ch be the ordered pair (s1, t1). For i = h+ 1 ≤ k, compute the set Ci of all pairs x, y ∈ Vi

such that x, y are distinct and nonadjacent, and for some p, q ∈ Ci−1, px and qy are edges and py, qx
are not edges. Check whether (t1, t2) ∈ Ck; if so output that the desired paths exist, and otherwise
output that they do not exist. It is easy to see correctness of the algorithm; and its running time
is O(|G|4) (to see the last, note that each quadruple (p, q, x, y) is examined only once). This proves
2.1.

2

Conveniently, in order to solve 1.1 it is enough to handle the case when all vertices are uv-straight,
because of the next result.

2.2. There is an algorithm with the following specifications:

• Input: A graph G and u, v ∈ V (G).

• Output: Either a uv-NSP, or a graph G′ with u, v ∈ V (G′) ⊆ V (G) such that G′ has a uv-NSP
if and only if G has a uv-NSP, and such that every vertex of G′ is uv-straight in G′.

• Running time: O(|G|3).

Proof. Let G be a graph, and u, v ∈ V (G). We will give an algorithm, with running time O(|G|2),
that outputs either

• a uv-NSP in G; or

• a determination that every vertex of G is uv-straight; or

• a graph H with V (H) a proper subset of V (G) and with u, v ∈ V (H), such that H has a
uv-NSP if and only if G has a uv-NSP.

Here is the algorithm. First, compute the set F of uv-straight vertices of G, and the uv-layering
V0, . . . , Vd(u,v) of G. If F = V (G), we output that every vertex of G is uv-straight, and stop. Hence
we may assume that V (G) \ F 6= ∅.

Compute the vertex set K of a connected component of G \ F . (This takes time O(|G|2).) Test
whether N(K) contains non-adjacent vertices x, y with d(u, x) < d(u, y); if so, in this case we will
output a uv-NSP in G, as follows. Choose x, y ∈ N(K) such that d(u, y) − d(u, x) is maximum.
Let i = d(u, x) and j = d(u, y). It follows that no vertex in V0, . . . , Vi−1 has a neighbour in K (for
otherwise such a vertex contradicts the choice of x); and similarly, no vertex in Vj+1, . . . , Vd(u,v) has
a neighbour in K. Now let P1 be a monotone ux-path, let P2 be a monotone yv-path, and let Q be
an induced xy-path of G with interior in K. (We can find these paths in time O(|G|2).) It follows
that the concatenation P1-Q-P2 is an induced uv-path; and since V (Q) ∩ K 6= ∅ (because x, y are
nonadjacent), it follows from the definition of K and F that P1-Q-P2 is a uv-NSP. Output this and
stop.

Thus we may assume that there are no such x, y. In this case we will output H as in the third
bullet above. It follows that there do not exist i, j with 1 ≤ i, j ≤ d(u, v) and j ≥ i+2, such that both
Vi, Vj have nonempty intersection with N(K) (because then x ∈ Vi∩N(K) and y ∈ Vj∩N(K) would
be nonadjacent); and consequently N(K) is contained in Vi ∪ Vi+1 for some i ∈ {0, . . . , d(u, v)− 1},
and N(K) ∩ Vi is complete to N(K) ∩ Vi+1. Let H be obtained from G by deleting K and adding
edges to make N(K) a clique. We output H and stop.

To prove correctness, we must show that H has a uv-NSP if and only if G does. Suppose first that
P is a uv-NSP of G. Since N(K) is a clique of H, there is a uv-path of H with vertex set a subset
of V (P); let Q be the shortest such path. We claim that Q is a uv-NSP of H. If V (P) = V (Q), this
follows from the choice of P . Otherwise, Q contains an edge e in E(H) \E(G). Since e connects two
vertices at the same distance from u, it follows that every induced uv-path containing e is a uv-NSP
of H, as claimed, and so H has a uv-NSP.

3

Now suppose that Q is a uv-NSP of H. If Q does not contain an edge in E(H) \E(G), then Q is
a uv-NSP of G, so we assume that Q contains such an edge. Since N(K) is a clique of H, it follows
that Q contains exactly two vertices x, y ∈ N(K), and xy 6∈ E(G). Let P be obtained from Q by
replacing xy by an induced xy-path with interior in K. Then P is a uv-NSP of G, since P contains
a vertex of K. This proves that H has a uv-NSP if and only if G does, and so completes the proof
of correctness of the algorithm. The running time is O(|G|2).

Let us call the algorithm just described “algorithm A”. For an algorithm as specified in 2.2, first
apply algorithm A to G. If its first or second output applies, we are done, so we may assume that
its third output applies, that is, it outputs a graph H with V (H) a proper subset of V (G) and with
u, v ∈ V (H), such that H has a uv-NSP if and only if G has a uv-NSP. Now we apply algorithm A
to H (still with the same pair u, v), and again we are done if the first or second output applies; so we
assume the third applies, and so on. Eventually one of the first two outputs will apply, and we stop.
There are only O(|G|) iterations, since the the number of vertices strictly drops in each iteration;
and so the total running time is O(|G|3). This proves 2.2.

If there is a uv-NSP in G, there is a shortest uv-NSP, and this has some convenient properties
that will help us detect a uv-NSP. We have:

2.3. Let G be a graph and let u, v ∈ V (G), such that every vertex of G is uv-straight. For each
vertex x, let h(x) be its height. Let P be a shortest uv-NSP in G (assuming that one exists). Let Pu

be the longest monotone subpath of P containing u, and let Pv be the longest monotone subpath of P
containing v. Let s denote the endpoint of Pu that is not u, and let t denote the endpoint of Pv that
is not v. Then Pu and Pv are disjoint, and h(x) ≤ h(s) for every x ∈ V (P)\V (Pv), and h(x) ≥ h(t)
for every x ∈ V (P) \ V (Pu). Consequently h(s) ≥ h(t).

Proof. Since P is not monotone, it follows that Pu and Pv are disjoint. Let x ∈ V (P) \ V (Pv) be
chosen with h(x) maximum, breaking ties by choosing the vertex closest to u along P . Let Q be a
monotone xv-path, and let P ′ be the subpath of P from u to x. Let Q′ denote the concatenation
of P ′ and Q. We claim that Q′ is shorter than P . This follows since the subpath of P from x to v
is not monotone (because x 6∈ V (Pv)), and the subpath of Q′ from x to v is monotone. Since P is
a shortest uv-NSP, it follows that Q′ is not a uv-NSP, and hence Q′ is monotone. In particular, P ′

is monotone, and so V (P ′) ⊆ V (Pu). From the choice of x, it follows that P ′ = Pu; and so x = s.
From the choice of x, and from the symmetry between u and v, this proves the first statement of
2.3. The second, that h(s) ≥ h(t), follows immediately since P is not monotone.

With notation as in 2.3, we define h(s)−h(t) to be the twist of P . Thus the twist is non-negative.

2.4. For each integer k ≥ 0, there is an algorithm with the following specifications:

• Input: A graph G and u, v ∈ V (G) such that every vertex of G is uv-straight.

• Output: A uv-NSP in G, or a determination that there is no shortest uv-NSP in G with twist
exactly k.

• Running time: O(|G|k+6).

Proof. We proceed as follows. Enumerate all (k + 4)-tuples (x, y, v1, . . . , vk+2) of vertices of G with
the following properties:

4

• x, y are adjacent, and h(y) = h(x) + 1;

• v1- · · · -vk+2 is a (k + 2)-vertex path with h(vi) = h(y) + i− 1 for 1 ≤ i ≤ k + 2; and

• v1 is nonadjacent to x, and vi is nonadjacent to x, y for 2 ≤ i ≤ k + 2.

For all such choices of (x, y, v1, . . . , vk+2), we proceed as follows:

• Compute a monotone path Qu from u to x, and a monotone path Qv from vk+2 to v.

• Compute the graph H obtained from G by deleting all vertices and neighbours of

V (Qu) ∪ V (Qv) ∪ {x} ∪ {v2, . . . , vk+2}

except for y and v1.

• Test whether H contains an induced path Q from v1 to y. If so, return the concatenated path

Q′ = u-Qu-x-y-Q-v1-v2- · · · -vk+2-Qv-v

and stop.

If all choices of (k + 4)-tuples have been examined and no path has been returned, we report that
there is no shortest uv-NSP with twist exactly k, and stop.

To prove correctness, we must show that if the algorithm returns a path then this path is a
uv-NSP; and if it returns no path, then there is no shortest uv-NSP with twist exactly k. Thus,
suppose that the algorithm returns a path Q′. From the construction of H, it follows that Q′ is an
induced path. Moreover, since Q′ contains v1 and y, and since h(v1) = h(y), it follows that Q′ is a
uv-NSP.

Now we show that if there is a shortest uv-NSP with twist exactly k, then the algorithm returns
a path for one of the choices of x, y, v1, . . . , vk+2. Let P be a shortest uv-NSP with twist exactly k,
and define Pu, Pv, s, t as before. Choose x, y ∈ V (Pu) with h(y) = h(t) and h(x) = h(t) − 1 (thus
x, y are adjacent). Let v1- · · · -vk+2 be a subpath of Pv with v1 = t. Then (x, y, v1, . . . , vk+2) is one
of the (k + 4)-tuples to which the algorithm is applied, and we claim that for this application, the
algorithm returns a path.

Let H be as in the algorithm. We claim that the subpath P ′ of P from v1 to y is contained in
H. Since h(x) = h(t) − 1 and so every vertex z in V (Qu) \ {x} satisfies h(z) ≤ h(t) − 2, it follows
from (1) that z has no neighbours in P ′. Similarly, no vertex in V (Qv) has a neighbour in P ′. Since
x, y ∈ V (Pu), it follows that the only neighbour of x in P ′ is y. Since v1, . . . , vk+2 ∈ V (Pv), it follows
that the only possible neighbour of v2, . . . , vk+2 in P ′ is v1. This proves our claim. Since P ′ is a path
from v1 to y in H, it follows that the algorithm returns a path Q′. This proves correctness of the
algorithm. Since it is easy to check the running time, this proves 2.4.

2.5. There is an algorithm with the following specifications:

• Input: A graph G and u, v ∈ V (G) such that every vertex of G is uv-straight.

5

• Output: A uv-NSP in G, or a determination that there is no shortest uv-NSP in G with twist
at least six.

• Running time: O(|G|18).

Proof. Enumerate all 14-tuples (s0, s1, . . . , s6, t1, . . . , t6, t7) of vertices of G with the following prop-
erties:

• s0, s1, . . . , s6, t1, . . . , t6, t7 are all distinct;

• s0-s1-s2-s3, s4-s5-s6, t1-t2-t3, and t4-t5-t6-t7 are paths;

• h(si) = h(ti) for 1 ≤ i ≤ 6;

• h(s0) + 3 = h(t1) + 2 = h(t2) + 1 = h(t3) ≤ h(t4) = h(t5)− 1 = h(t6)− 2 = h(t7)− 3; and

• si is non-adjacent to tj for all i ∈ {0, . . . , 6} and j ∈ {1, . . . , 7}.

For each such 14-tuple (s0, s1, . . . , s6, t1, . . . , t6, t7), run the following algorithm:

• Compute a monotone path Qu from u to s0, and a monotone path Qv from t7 to v.

• Using 2.1, compute (in time O(|G|4)) a pair Ru, Rv of monotone paths such that Ru is an
s3s4-path, Rv is a t3t4-path, and there are no edges between V (Ru) and V (Rv); or if no such
pair of paths exists, move on to the next 14-tuple.

• Let P ′u and P ′v be respectively the concatenations

u-Qu-s0-s1-s2-s3-Ru-s4-s5-s6

t1-t2-t3-Rv-t4-t5-t6-t7-Qv-v.

Compute the graph H obtained from G by deleting all vertices of P ′u \ {s6} and all their
neighbours except s6, and deleting all vertices of P ′v \ {t1} and all their neighbours except t1.
Test whether there is an induced path Q from t1 to s6 in H, and if so, return the concatenated
path u-P ′u-s6-Q-t1-P

′
v-v and stop.

If the algorithm runs through all the 14-tuples without returning a path, return that there is no
shortest uv-NSP in G with twist at least six, and stop.

This completes the description of the algorithm. To prove correctness, we must show that if the
algorithm returns a path, then it is a uv-NSP, and otherwise that there is no shortest uv-NSP in G
with twist at least six.

If the algorithm returns a path Q′, then the construction implies that Q′ is an induced path;
and since Q′ contains s1, t1 with h(s1) = h(t1), it follows that Q′ is a uv-NSP. It remains to show
that if a shortest uv-NSP P exists with h(s) − h(t) ≥ 6 in the usual notation, then the algorithm
returns a path for some choice of the 14-tuple. Consider the 14-tuple such that s6 = s, and t1 = t,
{s0, . . . , s6} ⊆ V (Pu), and {t1, . . . , t7} ⊆ V (Pv). This 14-tuple exists since h(s) − h(t) ≥ 6, and so
there are at least six vertices in Pu that each have the same height as some vertex in Pv.

Now we need to show that, when applied to this 14-tuple, the algorithm above returns a path.
Let P ′ be the subpath of P from s to t. It follows from (1) that there are no edges from V (Qu) or

6

V (Qv) to V (P ′). Since {s0, . . . , s6} ⊆ V (Pu) and {t1, . . . , t7} ⊆ V (Pv), it follows that the only edges
from {s0, . . . , s6, t1, . . . , t7} to V (P ′) are the edge from s = s6 to its neighbour in V (P ′), and the edge
from t = t1 to its neighbour in V (P ′). If neither V (Ru) nor V (Rv) intersects or has edges to V (P ′),
then P ′ is present in H, and a path is returned. By symmetry, we may assume (for a contradiction)
that V (Ru) intersects or has edges to V (P ′). Let z be the vertex closest to s3 in Ru such that z has
a neighbour in V (P ′).

Let x ∈ V (P ′) be the neighbour of z closest to t = t1 in P ′. Let R be the induced uv-path that
begins with a subpath of P ′u from u to z and the edge zx, and whose remaining vertices are contained
in the vertex set of the subpath of P ′ from x to t, and P ′v. Then R is shorter than P , since the
subpath of R from u to x has length h(z)+1, but in P , the subpath from u to x contains s, and thus
it has length at least h(s) + 1 > h(z) + 1. Since R is induced, it follows from the choice of P that R
is monotone, and therefore h(x) > h(z) (and x has a neighbour in V (P ′v), but we will not need this).

The concatenation Q′′ of the subpath of P ′u from u to z, the edge zx, and the subpath of P from
x to v is not monotone, since it contains s1 and t1; and as before, it is shorter than P . Therefore
Q′′ is not an induced path. This implies that some vertex y of Pv has a neighbour in the subpath of
Ru between s3 and z; choose y with h(y) maximum, and let z′ be a neighbour of y in the subpath
of Ru between s3 and z, chosen with h(z′) maximum (possibly z′ = z). It follows that y lies in the
subpath of Pv between t3, t4.

Let t′ be a vertex of the subpath of P ′ between x and t, such that h(t′) = h(t), and subject to
that, the subpath of P ′ between x, t′ is minimal. Now let R′ be the concatenation of a monotone
path from u to t′, the subpath of P ′ from t′ to x, the edge xz, the subpath of Ru between z and z′,
the edge z′y, and the subpath of Pv from y to v. Then R′ is an induced path because of (1); and its
length is at most the length of P ′ plus d(u, t)+2+d(y, v); but the length of P is at least the length of
P ′ plus d(u, t) + 6 + d(t, v), and d(t, v) ≥ d(y, v) since y ∈ V (Pv). This implies that R′ is monotone.
Since z is closer to v than x in R′, it follows that h(x) < h(z), a contradiction. Hence the algorithm
above does indeed return a path. This completes the proof of correctness of the algorithm. We omit
the analysis of running time, which is straightforward; so this proves 2.5.

Now 1.1 follows by combining the algorithms of 2.2, 2.4 (running it for k = 0, 1, . . . , 5) and 2.5.

3 Dynamic programming

The dynamic programming technique used in 2.1 can be extended, and in this section we develop
that. A path forest means a graph in which every component is a path (possibly of length zero); and
a path forest in G means an induced subgraph of G that is a path forest. (Thus it consists of a set
of induced paths of G, pairwise vertex-disjoint and with no edges of G joining them.)

Let V1, . . . , Vn be pairwise disjoint subsets of V (G), with union V (G), such that for all i, j ∈
{1, . . . , n}, if j ≥ i + 2 then there are no edges between Vi and Vj . We call (V1, . . . , Vn) an altitude.
We are given a graph G and an altitude (V1, . . . , Vn) in G, and we will show how to test whether
there is a path forest in G with certain properties, that contains only a bounded number of vertices
from each Vi.

Let X ⊆ V (G), and let H,H ′ be path forests in G. We say they are X-equivalent if

• V (H) ∩X = V (H ′) ∩X;

7

• H, H ′ have the same number of components; and

• for each component P of H, there is a component P ′ of H ′ with the same ends and same length
as P .

This is an equivalence relation.
Again, let X ⊆ V (G). A path forest H is h-restricted in G relative to X if |V (H) ∩X| ≤ h, and

there are at most h components of H that have no end in X. Now let (V1, . . . , Vn) be an altitude in
G. A path forest H is h-narrow (with respect to (V1, . . . , Vn)) if for 1 ≤ i ≤ n, H[Vi ∪ · · · ∪ Vn] is
h-restricted in G[Vi ∪ · · · ∪ Vn] with respect to Vi.

Let 1 ≤ i ≤ n. Let Ci be the set of all equivalence classes, under Vi-equivalence, that contain a
path forest in G[Vi ∪ · · · ∪ Vn] that is h-narrow with respect to (Vi, . . . , Vn). Algorithmically, we may
describe Ci by explicitly storing such a path forest.

We observe:

3.1. If h is fixed, with G, V1, . . . , Vn as above, for 1 ≤ i < n we can compute Ci from a knowledge of
Ci+1 in polynomial time.

Proof. There are only polynomially many equivalence classes in Ci+1. (This is where we use the
condition that at most h components of H have no end in X, in the definition of “h-restricted”.) For
each one, take a representive member H ′ say. There are only polynomially many induced subgraphs
J of the graph G[Vi∪Vi+1] such that V (J)∩Vi+1 = V (H ′)∩Vi+1 and |V (J)∩Vi| ≤ h. For each such
J , check whether H ′ ∪ J is h-narrow in G[Vi ∪ · · · ∪ Vn] with respect to (V1, . . . , Vn), and if so record
its equivalence class under Vi-equivalence. To see that every member of Ci is recorded, observe that
if H is a path forest in G[Vi ∪ · · · ∪ Vn] that is h-narrow with respect to (Vi, . . . , Vn), then H \ Vi is a
path forest in G[Vi+1 ∪ · · · ∪ Vn] that is h-narrow with respect to (Vi+1, . . . , Vn); and if H ′ is another
member of the equivalence class in Ci+1 that contains H \ Vi, then its union with J = H[Vi ∪ Vi+1]
is h-narrow with respect to (V1, . . . , Vn) and Vi-equivalent to H. This proves 3.1.

We deduce:

3.2. For all fixed h ≥ k ≥ 0, there is a polynomial-time algorithm that, given pairs (s1, t1), . . . , (sr, tr)
of a graph G, and integers n1, . . . , nr ≥ 0, and an altitude (V1, . . . , Vn) in G, computes whether there
is a path forest in G, h-restricted with respect to (V1, . . . , Vn), with r components, where the ith
component has ends si, ti and has length ni.

Proof. First compute Cn; then n − 1 applications of 3.1 allow us to compute C1, and from C1 we
can read off the answer.

This implies 1.2, which we restate:

3.3. For fixed k, there is a polynomial-time algorithm that, given a graph G and u, v ∈ V (G), decides
whether there is an induced path between u and v in G of length exactly d(u, v) + k.

We may assume that G is connected. For each i ≥ 0, let Vi be the set of vertices with distance
exactly i from u. Then (V1, . . . , Vn) is an altitude, where n is the largest i with Vi 6= ∅. Let P be an
induced uv-path of length d(u, v) + k. Then, for all i ∈ {1, . . . , d(u, v)}, P contains a vertex x with
d(x, v) = i. Consequently, for all i ∈ N0, P contains at most k + 1 vertices with distance exactly i
from v. So P is (k + 1)-narrow with respect to (V1, . . . , Vn), where n is the largest i with Vi 6= ∅.
Hence 3.2, with r = 1 and n1 = d(u, v) + k, will detect a path in the same V1-equivalence class.

8

Similarly, by trying all possibilities for n1, . . . , nr, we obtain a generalization of 2.1:

3.4. For fixed h and r, there is a polynomial-time algorithm with the following specifications, where
Vi is the set of vertices with distance exactly i from v:

• Input: A graph G, a vertex v ∈ V (G) and r pairs (s1, t1), . . . , (sr, tr) ∈ V (G).

• Output: A path forest H of G with r components P1, . . . , Pr, such that for each i, Pi has ends
si, ti and |V (H) ∩ Vj | ≤ h for all j ∈ N, or a determination that no such path forest exists.

Acknowledgments

The first author was supported by Israel Science Foundation Grant 100004639 and Binational Science
Foundation USA-Israel Grant 100005728. The second author was supported by AFOSR grant A9550-
19-1-0187 and NSF grant DMS-1800053. This material is based upon work supported by the National
Science Foundation under Award No. DMS-1802201 (Spirkl).

References

[1] D. Bienstock, “On the complexity of testing for odd holes and induced odd paths”, Discrete
Mathematics 90 (1991), 85–92. (Corrigendum, Discrete Mathematics 102 (1992), 109.)

9

