Towards Erdős-Hajnal for graphs with no 5-hole

Maria Chudnovsky ${ }^{1}$
Princeton University, Princeton, NJ 08544
Jacob Fox ${ }^{2}$
Stanford University, Stanford, CA 94305-2125
Alex Scott ${ }^{3}$
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Paul Seymour ${ }^{4}$
Princeton University, Princeton, NJ 08544
Sophie Spirkl
Princeton University, Princeton, NJ 08544

March 3, 2018; revised December 1, 2018

[^0]
Abstract

The Erdős-Hajnal conjecture says that for every graph H there exists $c>0$ such that $$
\max (\alpha(G), \omega(G)) \geq n^{c}
$$

for every H-free graph G with n vertices, and this is still open when $H=C_{5}$. Until now the best bound known on $\max (\alpha(G), \omega(G))$ for C_{5}-free graphs was the general bound of Erdős and Hajnal, that for all H,

$$
\max (\alpha(G), \omega(G)) \geq 2^{\Omega(\sqrt{\log n})}
$$

if G is H-free. We improve this when $H=C_{5}$ to

$$
\max (\alpha(G), \omega(G)) \geq 2^{\Omega(\sqrt{\log n \log \log n})}
$$

1 Introduction

All graphs in this paper are finite and have no loops or parallel edges, and the cardinalities of the largest stable sets and cliques in a graph G are denoted by $\alpha(G), \omega(G)$ respectively. If G, H are graphs, we say that G contains H if some induced subgraph of G is isomorphic to H, and G is H-free otherwise.

The Erdős-Hajnal conjecture $[6,7]$ asserts:
1.1 Conjecture: For every graph H, there exists $\epsilon>0$ such that every H-free graph G satisfies

$$
\max (\alpha(G), \omega(G)) \geq|V(G)|^{\epsilon}
$$

This is true for all H with at most four vertices, but is open when $H=C_{5}$ (C_{5} denotes the cycle of length five). The problem for C_{5} has attracted a good deal of unsuccessful attention, for several reasons; not only is C_{5} arguably the smallest open case of 1.1 , but also it is symmetrical, and more importantly, by excluding C_{5} we exclude its complement as well. (Excluding both a graph and its complement is an approach that has been quite fruitful lately, for instance [1, 2].) So we are happy to report some progress at last.

The best general bound for the Erdős-Hajnal conjecture to date was proved by Erdős and Hajnal in [7], namely:
1.2 For every graph H, there exists $c>0$ such that

$$
\max (\alpha(G), \omega(G)) \geq 2^{c \sqrt{\log n}}
$$

for every H-free graph G with $n>0$ vertices.
(Logarithms are to base two, throughout the paper.) Until now, this was also the best bound known when $H=C_{5}$, but in this paper we will improve it to:
1.3 There exists $c>0$ such that

$$
\max (\alpha(G), \omega(G)) \geq 2^{c \sqrt{\log n \log \log n}}
$$

for every C_{5}-free graph G with $n>1$ vertices.
If $A, B \subseteq V(G)$ are disjoint and nonempty, the edge-density between them means the number of edges joining A, B, divided by $|A| \cdot|B|$. The proof of 1.3 is via the following conjecture of Conlon, Fox and Sudakov [5]:
1.4 Conjecture: For every graph H there exist $\epsilon, \sigma>0$ such that for every H-free graph G on $n>1$ vertices, and all c with $0 \leq c \leq 1 / 2, V(G)$ contains two disjoint subsets A, B with $|A| \geq \epsilon c^{\sigma} n$ and $|B| \geq \epsilon n$, such that the edge-density between A, B is either at most c or at least $1-c$.

This has not been proved so far for any graph H with more than four vertices, but in this paper we prove it for $H=C_{5}$ (with $\sigma=1$), and this is the key to proving 1.3. We first prove it for sparse graphs G, and then use a theorem of Rödl to deduce it in general (both in the next section). The proof of 1.3 is completed in section 3 .

We remark that 1.4 (for all H) is equivalent to the same statement for sparse graphs (for all H), because of the theorem of Rödl discussed in the next section; a graph H satisfies the original version of 1.4 if and only if both H and its complement satisfy the sparse version. We can prove the sparse version of 1.4 for many more graphs H than just C_{5} (for instance, for all bipartite H, and all cycles of length at least four); these results will appear in a later paper [3]. But C_{5} is still the largest graph H for which we can show that both H and its complement satisfy the sparse version of 1.4 , and so the largest for which we can prove the original version of 1.4.

2 Sparse graphs

In this section we prove 1.4 for $H=C_{5}$, and first we prove it when G is sufficiently sparse. For disjoint $A, B \subseteq V(G)$, we say A is anticomplete to B if there are no edges between A and B, and A covers B if every vertex in B has a neighbour in A. We will prove:
2.1 For all c with $0<c \leq 1 / 2$, and every graph G with $n>0$ vertices, if G satisfies:

- every vertex has degree at most $n / 16-1$, and
- for every two disjoint subsets $A, B \subseteq V(G)$ with $|A| \geq c n / 2$ and $|B| \geq n / 16$, the edge-density between A, B is at least c,
then G contains C_{5}.
Proof. Let $0<c \leq 1 / 2$, and let G, n be as in the theorem. Since every vertex has degree at most $n / 16-1$, it follows that $n \geq 16$ and in particular, $\lfloor n / 2\rfloor \geq n / 4$. Choose a set $N_{0} \subseteq V(G)$ of cardinality $\lfloor n / 2\rfloor$. It follows that $\left|N_{0}\right| \geq n / 4 \geq c n / 2$, and so the edge-density between N_{0} and its complement is at least c. In particular, some vertex in N_{0} has at least $c n / 2$ neighbours.

Let v_{1} be a vertex of degree at least $\mathrm{cn} / 2$, let N_{1} be the set of all neighbours of v_{1}, and let $Z_{2}=V(G) \backslash\left(N_{1} \cup\left\{v_{1}\right\}\right)$. Since $\left|N_{1}\right|+1 \leq n / 16$, it follows that $\left|Z_{2}\right| \geq 15 n / 16$. But $\left|N_{1}\right| \geq c n / 2$, and so fewer than $n / 16$ vertices in Z_{2} have no neighbour in N_{1}, since $c>0$. Hence at least $7 n / 8$ vertices in Z_{2} do have such a neighbour. Choose $B_{1} \subseteq N_{1}$ minimal such that B_{1} covers at least $5 n / 16$ vertices in Z_{2}. Let B_{2} be the set of vertices in Z_{2} covered by B_{1}. Thus $5 n / 16 \leq\left|B_{2}\right| \leq 3 n / 8$ from the minimality of B_{1}, and since every vertex has degree at most $n / 16$. Let $A_{2}=Z_{2} \backslash B_{2}$. Thus A_{2} is anticomplete to B_{1}, and $\left|A_{2}\right|=\left|Z_{2}\right|-\left|B_{2}\right| \geq(15 n / 16-3 n / 8)=9 n / 16$.

Let $A_{1}=N_{1} \backslash B_{1}$. Since $\left|N_{1}\right| \geq c n / 2$, the edge-density between N_{1}, A_{2} is at least c. In particular there is a vertex $v_{2} \in A_{1}$ with at least $c\left|A_{2}\right| \geq 9 c n / 16 \geq c n / 2$ neighbours in A_{2}. (Note that $v_{2} \notin B_{1}$ since B_{1} is anticomplete to A_{2}.) Let N_{2} be the set of neighbours of v_{2} in A_{2}. Thus $N_{2} \cap B_{2}=\emptyset$, but v_{2} might also have neighbours in B_{2}. Let P_{1} be the set of vertices in B_{1} adjacent to v_{2}, and let Q be the set of vertices in B_{2} that have a neighbour in $B_{1} \backslash P_{1}$.
(1) If $|Q| \geq n / 8$ then G contains C_{5}.

Assume that $|Q| \geq n / 8$. Since v_{2} has degree at most $n / 16$, there is a set $Q^{\prime} \subseteq Q$ of at least $n / 16$ vertices that are nonadjacent to v_{2}. The edge-density between N_{2} and Q^{\prime} is at least c, since
$\left|N_{2}\right| \geq c n / 2$, and in particular some vertex $q \in Q^{\prime}$ has a neighbour $w \in N_{2}$. Since $q \in Q^{\prime} \subseteq Q$, it is adjacent to some vertex $b_{1} \in B_{1}$ that is nonadjacent to v_{2}; but then

$$
b_{1}-v_{1}-v_{2}-w-q-b_{1}
$$

is an induced cycle of length 5. (Note that b_{1} is nonadjacent to w since B_{1} is anticomplete to A_{2}.) This proves (1).

Let $Y_{2}=A_{2} \backslash N_{2}$; it follows that $\left|Y_{2}\right| \geq\left|A_{2}\right|-n / 16 \geq n / 2$. Since $\left|N_{2}\right| \geq c n / 2$, the edge-density between N_{2}, Y_{2} is at least c, and so some vertex $v_{3} \in N_{2}$ has at least $c\left|Y_{2}\right| \geq c n / 2$ neighbours in Y_{2}. Let N_{3} be the set of neighbours of v_{3} in Y_{2}. Let P_{2} be the set of vertices in B_{2} with a neighbour in P_{1}.
(2) If $\left|P_{2}\right| \geq 3 n / 16$ then G contains C_{5}.

Assume that $\left|P_{2}\right| \geq 3 n / 16$. It follows that there is a set $P_{2}^{\prime} \subseteq P_{2}$ of at least $n / 16$ vertices that are nonadjacent to both v_{2}, v_{3}. The edge-density between N_{3} and P_{2}^{\prime} is at least c, since $\left|N_{3}\right| \geq c n / 2$, and in particular some vertex $p_{2} \in P_{2}^{\prime}$ has a neighbour $u \in N_{3}$. Since $p_{2} \in P_{2}^{\prime} \subseteq P_{2}$, it is adjacent to some vertex $p_{1} \in P_{1}$; but then

$$
p_{1}-v_{2}-v_{3}-u-p_{2}-p_{1}
$$

is an induced cycle of length 5. (Note that p_{1} is nonadjacent to v_{3}, u since B_{1} is anticomplete to A_{2}.) This proves (2).

Since B_{1} covers B_{2}, it follows that $P_{2} \cup Q=B_{2}$, and since $\left|B_{2}\right| \geq 5 n / 16$, the result follows from (1) and (2). This proves 2.1.

Next we apply a theorem of Rödl [9], the following. (\bar{G} denotes the complement graph of G.)
2.2 For every graph H and all $d>0$ there exists $\delta>0$ such that for every H-free graph G, there exists $X \subseteq V(G)$ with $|X| \geq \delta|V(G)|$ such that in one of $G[X], \bar{G}[X]$, every vertex in X has degree at most $d|X|$.

We deduce:
2.3 There exists $\epsilon>0$ such that for all c with $0 \leq c \leq 1 / 2$, if G is C_{5}-free with $n>1$ vertices, then there exist disjoint $A, B \subseteq V(G)$ with $|A| \geq \epsilon c n$ and $|B| \geq \epsilon n$, such that the edge-density between A, B is either less than c or more than $1-c$.

Proof. Let δ satisfy 2.2 , taking $d=1 / 32$ and $H=C_{5}$. Now let $\epsilon=\delta / 16$, and let G be C_{5}-free with $n>1$ vertices. Let v be a vertex; then it has either at least $(n-1) / 2$ neighbours or at least $(n-1) / 2$ non-neighbours; and since $(n-1) / 2 \geq \epsilon n$, we may assume that $1<\epsilon c n$, for otherwise the theorem holds taking $A=\{v\}$. In particular $n>2 \epsilon^{-1} \geq 32 \delta^{-1}$.

By 2.2, there exists $X \subseteq V(G)$ with $|X| \geq \delta n$ such that every vertex of J has degree at most $|V(J)| / 32$, where J is one of $G[X], \bar{G}[X]$. Since $|V(J)| \geq \delta n \geq 32$, it follows that $1+|V(J)| / 32 \leq$ $|V(J)| / 16$, and so every vertex of J has degree at most $|V(J)| / 16-1$. Since C_{5} is isomorphic to its complement, J is C_{5}-free, and so from 2.1, there are two disjoint subsets $A, B \subseteq V(J)$ with $|A| \geq c|V(J)| / 2$ and $|B| \geq|V(J)| / 16$, such that the edge-density between A, B in J is less than c. Thus $|A| \geq c \delta n / 2 \geq \epsilon c n$ and $|B| \geq \delta n / 16=\epsilon n$, and the edge-density between A, B in G is either at most c or at least $1-c$. This proves 2.3.

It is possible to deduce versions of 1.2 from versions of Rödl's theorem 2.2 directly, as follows. If we have d, δ satisfying 2.2 , then for any n, if we choose $k \leq \min \left(\frac{1}{2 d}, \frac{\delta n}{2}\right)$ then we can use Turán's theorem to obtain a stable set or clique on k vertices from the set of at least $2 k$ vertices with density at most $\frac{1}{2 k}$ or at least $1-\frac{1}{2 k}$ that 2.2 gives us. This motivates trying to improve the bound in 2.2 .

- Rödl's original proof of 2.2 uses Szemerédi's regularity lemma and gives a tower-type bound for $1 / \delta$ in terms of $1 / d$, which yields something worse than 1.2 .
- In [8], a better bound of $\delta=2^{-15|V(H)|\left(\log (1 / d)^{2}\right.}$ in 2.2 is proved, which implies the bound of 1.2.
- It is conjectured that a polynomial dependence of δ on d holds, and this would imply the Erdős-Hajnal conjecture itself.
- For $H=C_{5}$ we can get mid-way between, and that provides a different route to proving 1.3, as follows. One can prove that for $H=C_{5}$ we may take

$$
\delta=2^{-O\left(\log (1 / d)^{2} / \log \log (1 / d)\right)}
$$

in 2.2 by appropriately adapting the proof of 2.2 in [8] using that we now know 1.4 for $H=C_{5}$. This would imply 1.3. But the details of the proof of this improved bound for 2.2 for C_{5} are involved and similar to that of the proof of 1.3 given in the next section, and we omit them for the sake of brevity.

3 The proof of 1.3.

Now we use 2.3 to prove 1.3. Since the argument to come is rather heavy, and works just as well for any graph H satisfying 1.4 instead of C_{5}, it might be wise to present it in full generality. Thus, let us say a class of graphs \mathcal{I} is hereditary if every graph isomorphic to an induced subgraph of a member of the class also belongs to the class. Let ϵ be as in 2.3, and let $\sigma>1+\log \left(\epsilon^{-1}\right)$. Then for $c \leq 1 / 2$, $c^{\sigma} \leq \epsilon$, and so by 2.3 , if G is C_{5}-free with $n \geq 2$ vertices, and $0 \leq c \leq 1 / 2$, then there exist disjoint $A, B \subseteq V(G)$ with $|A| \geq c^{\sigma} n$ and $|B| \geq \epsilon n$, such that the edge-density between them is either at most c or at least $1-c$. Then 1.3 follows from 2.3 and the following, applied to the hereditary class of all C_{5}-free graphs:
3.1 Let \mathcal{I} be a hereditary class of graphs, and let $\sigma \geq 0$ and $0 \leq \epsilon \leq 1$ with the following property: for every graph $G \in \mathcal{I}$ with at least two vertices, and all c with $0 \leq c \leq 1 / 2$, there are disjoint subsets $A, B \subseteq V(G)$ with $|A| \geq c^{\sigma} n$ and $|B| \geq \epsilon n$, such that the edge-density between A, B is either at most c or at least $1-c$, where $n=|V(G)|$. Then there exists $\kappa>0$ such that

$$
\max (\alpha(G), \omega(G)) \geq 2^{\kappa \sqrt{\log n \log \log n}}
$$

for every $G \in \mathcal{I}$, where $n=|V(G)| \geq 2$.
Proof. Let us define $r(n)=\sqrt{\log n \log \log n}$ for $n \geq 2$, for typographical convenience.
A cograph is a graph not containing a 4-vertex path. Thus the disjoint union of two cographs is a cograph, and so is the complement of a cograph. We prove 3.1 by showing that G contains a
cograph with at least $2^{2 \kappa r(n)}$ vertices. As cographs are perfect, there is a clique or independent set with $2^{\kappa r(n)}$ vertices (and so of the desired cardinality).

For a graph G, let $\phi(G)$ denote the maximum of $|V(H)|$ over all cographs H contained in G. For each real number $x \geq 0$, let $f(x)$ be the minimum of $\phi(G)$, over all graphs $G \in \mathcal{I}$ with $|V(G)|=\lceil x\rceil$ (we may assume there is some such graph G, or else the result is trivially true). Since \mathcal{I} is hereditary, $f(x)$ is non-decreasing with x.

We may assume that $\sigma \geq 1$ (by increasing σ if necessary). Let $\mu=(32 \sigma)^{-1 / 2}$. Choose n_{0} such that

$$
\left\lfloor\frac{\sigma 2 \mu r(n)-1}{\log (2 / \epsilon)}\right\rfloor \geq \sqrt{\log n}
$$

for all $n \geq n_{0}$, and also such that $\mu r\left(n_{0}\right) \geq 2$, and $\log n_{0} \geq 4 \sigma \mu r\left(n_{0}\right)$. Choose $\kappa>0$ such that $\kappa \leq \mu / 2$ and $2 \kappa r\left(n_{0}\right) \leq 1$. We will show that κ satisfies the theorem.
(1) For all $n \geq 2$ and all c with $0 \leq c \leq 1 / 2$, either $f(n) \geq 1 /(4 c)$ or $f(n) \geq f\left(c^{\sigma} n / 2\right)+f(\epsilon n / 2)$.

Let $G \in \mathcal{I}$ with $n \geq 2$ vertices, such that $\phi(G)=f(n)$. Since $G \in \mathcal{I}$, the hypothesis implies that there are disjoint sets $A, B \subseteq V(G)$ with $|A| \geq c^{\sigma} n$ and $|B| \geq \epsilon n$ such that the edge-density between A and B is either at most c or at least $1-c$. We suppose without loss of generality that this density is at most c (in the other case, we apply the same argument to \bar{G}).

Let $A^{\prime \prime}$ be the set of vertices in A with at least $2 c|B|$ neighbours in B. As the number of edges between A, B is at least $2 c|B|\left|A^{\prime \prime}\right|$ and at most $c|A||B|$, it follows that $\left|A^{\prime \prime}\right| \leq|A| / 2$. Let $A^{\prime}=A \backslash A^{\prime \prime} ;$ so $\left|A^{\prime}\right|=|A|-\left|A^{\prime \prime}\right| \geq|A| / 2$ and every vertex in A^{\prime} has at most $2 c|B|$ neighbours in B. Since $G\left[A^{\prime}\right] \in \mathcal{I}$, it follows from the definition of f that $\phi\left(G\left[A^{\prime}\right]\right) \geq f\left(\left|A^{\prime}\right|\right)$. Let $A_{0} \subseteq A^{\prime}$ induce a cograph, with $\left|A_{0}\right|=f\left(\left|A^{\prime}\right|\right)$.

If $\left|A_{0}\right| \geq 1 /(4 c)$, then $f(n)=\phi(G) \geq\left|A_{0}\right| \geq 1 /(4 c)$ as required, so we may assume that $\left|A_{0}\right| \leq$ $1 /(4 c)$. Let B^{\prime} be those vertices in B with no neighbours in A_{0}; so $\left|B^{\prime}\right| \geq|B|-2 c|B|\left|A_{0}\right| \geq|B| / 2$. Again from the definition of $f, \phi\left(G\left[B^{\prime}\right]\right) \geq f\left(\left|B^{\prime}\right|\right) \geq f(\epsilon n / 2)$. Since A_{0} is anticomplete to B^{\prime}, it follows that

$$
f(n)=\phi(G) \geq\left|A_{0}\right|+\phi\left(G\left[B^{\prime}\right]\right) \geq f\left(c^{\sigma} n / 2\right)+f(\epsilon n / 2) .
$$

This proves (1).
(2) For all $n \geq 2$ and all c with $0 \leq c \leq 1 / 2$, if $\log n \geq \sigma \log (1 / c)$ then either $f(n) \geq 1 /(4 c)$ or $f(n) \geq k f\left(c^{2} \sigma\right)$, where

$$
k=\left\lfloor\frac{\sigma \log (1 / c)-1}{\log (2 / \epsilon)}\right\rfloor .
$$

We may assume that $f(n)<1 /(4 c)$, and hence $f\left(n^{\prime}\right)<1 /(4 c)$ for all $n^{\prime} \leq n$. From the definition of $k, k \log (2 / \epsilon) \leq \sigma \log (1 / c)-1 \leq \log n-1$, and so $n(\epsilon / 2)^{k} \geq 2$. Hence we may recursively apply (1) k times without violating the condition " $n \geq 2$ " in (1); and we obtain

$$
f(n) \geq f\left(c^{\sigma} n / 2\right)+f\left(c^{\sigma}(\epsilon / 2) n / 2\right)+f\left(c^{\sigma}(\epsilon / 2)^{2} n / 2\right)+\cdots+f\left(c^{\sigma}(\epsilon / 2)^{k} n / 2\right) .
$$

Each of the $k+1$ terms on the right side is at least $f\left(c^{2 \sigma} n\right)$, from the definition of k, and so $f(n) \geq k f\left(c^{2 \sigma} n\right)$. This proves (2).
(3) For all $n \geq 2$ and all c with $0 \leq c \leq 1 / 2$, if $\log n \geq 2 \sigma \log (1 / c)$ and with k as in (2), either $f(n) \geq 1 /(4 c)$ or $f(n) \geq k^{j}$, where

$$
j=\left\lfloor\frac{\log n}{4 \sigma \log (1 / c)}\right\rfloor
$$

Again, we may assume that $f(n)<1 /(4 c)$, and hence $f\left(n^{\prime}\right)<1 /(4 c)$ for all $n^{\prime} \leq n$. From the definition of $j, c^{2 \sigma j} n \geq n^{1 / 2}$, and so $\log \left(c^{2 \sigma j} n\right) \geq \frac{1}{2} \log n \geq \sigma \log (1 / c)$. Moreover, $c^{2 \sigma(j-1)} n \geq n^{1 / 2} c^{-2 \sigma} \geq 2$ since $\sigma \geq 1$. Hence we may apply (2) recursively j times, and deduce that $f(n) \geq k^{j} f\left(c^{2 \sigma j} n\right) \geq k^{j}$. This proves (3).
(4) Let $n \geq n_{0}$, and $c=2^{-2 \mu r(n)}$. Then

- $c \leq 1 / 2$;
- $\log n \geq 4 \sigma \mu r(n)=2 \sigma \log (1 / c)$;
- $k \geq \sqrt{\log n}$, where k is as defined in (2); and
- $1 /(4 c) \geq 2^{\mu r(n)}$.

We observe first that $c \leq 1 / 2$ if $n \geq n_{0}$, since $\operatorname{\mu r}\left(n_{0}\right) \geq 1$. Also, $\log n_{0} \geq 4 \sigma \mu r\left(n_{0}\right)$ from the choice of n_{0}, and since $\frac{\log n}{r(n)}$ increases with n, it follows that $\log n \geq 4 \sigma \mu r(n)$ for $n \geq n_{0}$. But $4 \sigma \mu r(n)=2 \sigma \log (1 / c)$, and so this proves the second statement. The third statement follows from the choice of n_{0}. For the final statement, we must check that $\log (1 / c)-2 \geq \mu r(n)$, that is, $\mu r(n) \geq 2$; but this holds from the definition of n_{0}. This proves (4).
(5) If $n \geq n_{0}$ then $f(n) \geq 2^{\mu r(n)}$.

Let c be as in (4) and let $n \geq n_{0}$. By the first two statements of (4), we may apply (3), and so either $f(n) \geq 1 /(4 c)$ or $f(n) \geq(\log n)^{j / 2}$, by the third statement of (4). In the first case, the claim follows from the final statement of (4), so we may assume that

$$
f(n) \geq(\log n)^{j / 2} \geq(\log n)^{(\log n) /(16 \sigma \log (1 / c))}=2^{(16 \sigma \cdot 2 \mu)^{-1} r(n)}
$$

As $\mu=(16 \sigma \cdot 2 \mu)^{-1}$ from the definition of μ, this proves (5).
We recall that $\kappa \leq \mu / 2$ and $2 \kappa r\left(n_{0}\right) \leq 1$. We claim that $f(n) \geq 2^{2 \kappa r(n)}$ for all $n \geq 2$. This is true if $n \leq n_{0}$, because then $f(n) \geq 2 \geq 2^{2 \kappa r(n)}$; and if $n>n_{0}$ then it follows from (5). This proves 3.1.

References

[1] M. Bonamy, N. Bousquet and S. Thomassé, "The Erdős-Hajnal conjecture for long holes and antiholes", SIAM J. Discrete Math. 30 (2015), 1159-1164.
[2] N. Bousquet, A. Lagoutte, and S. Thomassé, "The Erdős-Hajnal conjecture for paths and antipaths", J. Combinatorial Theory, Ser. B, 113 (2015), 261-264.
[3] M. Chudnovsky, J. Fox, A. Scott, P. Seymour and S. Spirkl, "Sparse graphs with no polynomialsized anticomplete pairs", submitted for publication, arXiv:1810.00058.
[4] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Trees and linear anticomplete pairs", submitted for publication, arXiv:1809.00919.
[5] D. Conlon, J. Fox and B. Sudakov, "Recent developments in graph Ramsey theory", Surveys in Combinatorics 2015, London Math. Soc. Lecture Note Ser., 424 (2015), 49-118, Cambridge Univ. Press, Cambridge, problem 3.13.
[6] P. Erdős and A. Hajnal, "On spanned subgraphs of graphs", Contributions to Graph Theory and its Applications (Internat. Colloq., Oberhof, 1977) (German), 80-96, Tech. Hochschule Ilmenau, Ilmenau, 1977, www.renyi.hu/~p_erdos/1977-19.pdf.
[7] P. Erdős and A. Hajnal, "Ramsey-type theorems", Discrete Applied Math. 25 (1989), 37-52.
[8] J. Fox and B. Sudakov, "Induced Ramsey-type theorems", Advances in Math. 219 (2008), 1771-1800.
[9] V. Rödl, "On universality of graphs with uniformly distributed edges", Discrete Math. 59 (1986), 125-134.

[^0]: ${ }^{1}$ Supported by NSF grant DMS-1550991. This material is based upon work supported in part by the U. S Army Research Laboratory and the U. S. Army Research Office under grant number W911NF1610404.
 ${ }^{2}$ Supported by a Packard Fellowship and NSF Career Award DMS-1352121.
 ${ }^{3}$ Supported by a Leverhulme Trust Research Fellowship.
 ${ }^{4}$ Supported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563.

