
4

Binary Adder Circuits of Asymptotically Minimum Depth,
Linear Size, and Fan-Out Two

STEPHAN HELD and SOPHIE THERESA SPIRKL, Research Institute for Discrete Mathematics,

University of Bonn

We consider the problem of constructing fast and small binary adder circuits. Among widely used adders, the

Kogge-Stone adder is often considered the fastest, because it computes the carry bits for two n-bit numbers

(wheren is a power of two) with a depth of 2 log2 n logic gates, size 4n log2 n, and all fan-outs bounded by two.

Fan-outs of more than two are disadvantageous in practice, because they lead to the insertion of repeaters

for repowering the signal and additional depth in the physical implementation.

However, the depth bound of the Kogge-Stone adder is off by a factor of two from the lower bound of

log2 n. Two separate constructions by Brent and Krapchenko achieve this lower bound asymptotically. Brent’s

construction gives neither a bound on the fan-out nor the size, while Krapchenko’s adder has linear size, but

can have up to linear fan-out. With a fan-out bound of two, neither construction achieves a depth of less than

2 log2 n.

In a further approach, Brent and Kung proposed an adder with linear size and fan-out two but twice the

depth of the Kogge-Stone adder.

These results are 33–43 years old and no substantial theoretical improvement for has been made since then.

In this article, we integrate the individual advantages of all previous adder circuits into a new family of full

adders, the first to improve on the depth bound of 2 log2 n while maintaining a fan-out bound of two. Our

adders achieve an asymptotically optimum logic gate depth of log2 n + o(log2 n) and linear size O (n).

CCS Concepts: • Theory of computation → Circuit complexity; • Hardware → Logic circuits;

Additional Key Words and Phrases: Binary addition, circuit, combinational complexity, parallel, depth, size,

fan-out

ACM Reference format:

Stephan Held and Sophie Theresa Spirkl. 2017. Binary Adder Circuits of Asymptotically Minimum Depth,

Linear Size, and Fan-Out Two. ACM Trans. Algorithms 14, 1, Article 4 (December 2017), 18 pages.

https://doi.org/10.1145/3147215

1 INTRODUCTION

The addition of binary numbers is one of the most fundamental computational tasks. Given two
binary addends A = (an . . . a1) and B = (bn . . .b1), where index n denotes the most significant bit,
their sum S = A + B has n + 1 bits. We are looking for a logic circuit, also called an adder, that com-
putes S . Here, a logic circuit is a non-empty connected acyclic directed graph consisting of nodes
that are either gates with incoming and outgoing edges, inputs with at least one outgoing edge

Authors’ addresses: S. Held, Research Institute for Discrete Mathematics, University of Bonn, Lennéstraße 2, 53113 Bonn,

Germany; email: held@or.uni-bonn.de; S. Spirkl (Current address), Program for Applied and Computational Mathematics,

Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544, USA; email: sspirkl@math.princeton.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1549-6325/2017/12-ART4 $15.00

https://doi.org/10.1145/3147215

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

https://doi.org/10.1145/3147215
mailto:permissions@acm.org
https://doi.org/10.1145/3147215

4:2 S. Held and S. T. Spirkl

Fig. 1. Examples of a prefix gate and a prefix graph.

and no incoming edges, or outputs with exactly one incoming edge and no outgoing edges. Gates
represent one or two bit Boolean functions, specifically And, Or, Xor, Not, or their negations.
A small example is shown on the right side of Figure 1(a). The fan-in of a gate is the maximum
number of incoming edges at the corresponding vertex, and it is bounded by two for all gates.

The main characteristics in adder design are the depth, the size, and the fan-out of a circuit. The
depth is defined as the maximum length of a directed path in the logic circuit and is used as a
measure for its speed. The lower the depth, the faster is the adder. The size is the total number of
gates in the circuit and is used as a measure for the space and power consumption of the adder,
both of which we aim to minimize. The fan-out is the maximum number of outgoing edges at a
vertex. High fan-outs increase the delay and require additional repeater gates (implementing the
identity function) in physical design. Thus, when comparing the depth of adder circuits, their fan-
out should be considered as well; we will focus on the usual fan-out bound of two. Circuits with
higher fan-outs can be transformed into fan-out two circuits by replacing each interconnect with
high fan-out by a balanced binary repeater tree, i.e., the underlying graph is a tree and all gates are
repeater gates. However, this operation increases the size linearly and the depth with a logarithmic
dependence on the fan-out. Hoover et al. (1984) gave a smarter way to bound the fan-out of a given
circuit, but it would also triple the size and depth in our case of gates with two inputs.

Using logic circuit depth as a measure for speed is a common practice in logic synthesis that
simplifies many aspects of physical hardware. Despite its simplicity, the depth-based model is at the
core of programs such as BonnLogic (Werber et al. 2007) for refining carry bit circuits, which is an
integral part of the current IBM microprocessor design flow. Recently, we reduced the running time
for computing such carry bit circuits significantly from O (n3) to O (n logn) (Held and Spirkl 2017).
In CMOS technology, Nand/Nor gates are faster than And/Or gates and efficient implementations
exist for integrated multi-input And-Or-Inversion gates and Or-And-Inversion gates. Therefore,
we assume that a technology mapping step (Chatterjee et al. 2006; Keutzer 1987) translates the adder
circuit after logic synthesis using logic gates that are best for the given technology. In Section 5,
we give an example for a technology mapping using only Nand/Nor and Not gates, and we show
how to accomplish this without affecting the key properties of our construction significantly.

Like most existing adders, we use the notion of generate and propagate signals (Sklansky 1960;
Brent 1970; Knowles 1999). For each position 1 ≤ i ≤ n, we compute a generate signal yi and a
propagate signal xi , which are defined as follows:

yi = ai ∧ bi ,
xi = ai ⊕ bi ,

(1)

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

Binary Adder Circuits of Asymptotically Minimum Depth, Linear Size, and Fan-Out Two 4:3

where ∧ and ⊕ denote the binary And and Xor functions, respectively. The carry bit at position
i + 1 can be computed recursively as ci+1 = yi ∨ (xi ∧ ci), since there is a carry bit at position i + 1
if the ith bit of both inputs is 1 or, assuming this is not the case, if at least one (hence exactly one)
of these bits is 1 and there was a carry bit at position i .

The first carry bit c1 represents the carry-in, but we usually assume c1 = 0. The last carry bit
cn+1 is also called the carry-out. From the carry bits, we can compute the output S via

si = ci ⊕ xi for 1 ≤ i ≤ n and sn+1 = cn+1. (2)

With this preparation step of constant depth, linear size, and fan-out two at the inputs ai ,bi and
fan-out one at the carry bits ci+1 (i = 1, . . . ,n), we reduce binary addition to the problem of com-
puting all carry bits ci+1 from xi ,yi (i = 1, . . . ,n).

Convention: From now on, we will omit the preparatory steps (1) and (2) and consider a circuit an

adder circuit if it computes all ci+1 from xi ,yi (i = 1, . . . ,n). Moreover, for simplicity, we will always

assume that n is a power of two.

Expanding the recursive formula for ci+1 as in Equation (3) results in a logic circuit that is a path
of alternating And and Or gates. It corresponds to the long addition method and has linear depth
2(n − 1),

ci+1 = yi ∨ (xi ∧ (yi−1 ∨ (xi−1 ∧ · · · ∧ (y2 ∨ (x2 ∧ y1)). . . .))) . (3)

1.1 Prefix Graph Adders

In this section, we review previous results about prefix graphs, a general framework that is used to
construct adders. We show that adders derived from this framework do not have optimal depth due
to the way that prefix graphs translate to logic circuits. In later sections, we will use generalizations
of prefix graphs to achieve better depth bounds for our adders.

For two pairs zi = (xi ,yi) and zj = (x j ,yj), we define the associative prefix operator ◦ as(
xi

yi

)
◦

(
x j

yj

)
=

(
xi ∧ x j

yi ∨ (xi ∧ yj)

)
. (4)

We call a circuit computing (4) a prefix gate, and it represents the logic circuit consisting of three
gates and with depth two as shown in Figure 1(a). For i = 1, . . . ,n, the results of the prefix com-
putations zi ◦ · · · ◦ z1 of the expression zn ◦ · · · ◦ z1 contain the carry bit ci+1:(

xi ∧ xi−1 ∧ · · · ∧ x1

ci+1

)
=

(
xi

yi

)
◦

(
xi−1

yi−1

)
◦ · · · ◦

(
x1

y1

)
. (5)

A circuit of ◦-gates computing all prefixes zi ◦ · · · ◦ z1 (i = 1, . . . ,n) for an associative operator
◦ is called a prefix graph. A prefix graph yields an adder by expanding each ◦-gate as in Figure 1(a)
and extracting the carry bits as in Equation (5).

Based on the variable pairs in Equation (5), the notion of propagate and generate signals can be
extended to any consecutive subsequence of 1, . . . ,n: For 1 ≤ s ≤ t ≤ n, let Xs,t and Ys,t denote
the propagate and generate signal for the sequence of indices between s and t , i.e.,

Xs,t =
∧t

i=s xi

Ys,t = yt ∨ (xt ∧ (yt−1 ∨ (xt−1 ∧ · · · ∧ (ys+1 ∨ (xs+1 ∧ ys)) . . .))) .
(6)

Most previous constructions for adders are based on prefix graphs of small depth, size, and/or
fan-out. Sklansky (1960) developed a prefix graph of minimum depth log2 n and size 1

2n log2 n but

high fan-out 1
2n + 1. The first prefix graph with logarithmic depth (2 logn − 1) and linear size (3n −

logn − 2) was developed by Ofman (1962), exhibiting a non-constant fan-out of 1
2 logn. Kogge

and Stone (1973) introduced the recursive doubling algorithm which leads to a prefix graph with

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

4:4 S. Held and S. T. Spirkl

depth log2 n and fan-out two (see Figure 1(b)). Since we will use variants of it in our construction,
we describe it in detail. For 1 ≤ s ≤ t ≤ n, let Zs,t := (Xs,t ,Ys,t) = zt ◦ · · · ◦ zs , and for x ∈ R, let
(x)+ := max{x , 0}. The graph has log2 n levels, and on level i it computes for every input j (1 ≤ j ≤
n) the prefix Z1+(j−2i)+, j according to the recursive formula

Z1+(j−2i)+, j = Z1+(j−2i−1)+, j ◦ Z1+(j−2i)+, (j−2i−1)+ , (7)

from the prefixes of sequences of 2i−1 consecutive inputs computed in the previous level. The fan-
out is bounded by two, since every intermediate result is used exactly twice: once as the “upper
half” and once as the “lower half” of an expression of the form zj ◦ · · · ◦ z1+(j−2i)+ . Note that for

level i (1 ≤ i ≤ log2 n), we use a repeater gate (which computes the identity function) instead of
a ◦-gate if j ≤ 2i , i.e., in the case that the right input in Equation (7) is empty. The Kogge-Stone
prefix graph minimizes both depth and fan-out. On the other hand, since there is a linear number
of gates at each level, the total size in terms of prefix gates is nlog2 n − n

2 .
Note that the resulting adder circuit would have fan-out 3, because the underlying logic circuits

uses a left propagate signal twice. However, we can bound the fan-out by two using a repeater
gate at each propagate input and behind each gateA in Figure 1(a). This increases the size by small
factor and the total depth by one.

Ladner and Fischer (1980) constructed a prefix graph of depth log2 n but high fan-out. Brent
and Kung found a linear-size prefix graph with fan-out two but twice the depth of the other con-
structions. Finally, Han and Carlson (1987) described a hybrid between a Kogge-Stone adder and a
Brent-Kung adder that achieves a tradeoff between depth and size. Lower bounds for the tradeoff
between the depth and size of a prefix graph can be found in Fich (1983) and Sergeev (2013).

The above prefix graphs can be used for prefix computations with respect to any associative
operator ◦. In fact, we will later use a prefix graph in which the operator ◦ represents an And gate.
When turning one of the above prefix graph adders into a logic circuit for addition, we replace
each prefix gate with the circuit show in Figure 1(a). As a result, the depth of the logic circuit is
twice the depth of the prefix graph and the number of logic gates is three times the number of
prefix gates. The fan-out of the underlying logic circuit can increase by one compared to the prefix
graph, because the left propagate signal xi is used twice within a prefix gate. In Section 4.1, we will
see that in the case of the Brent-Kung adder a fan-out of two can be achieved by using reduced
prefix gates.

Any adder constructed from a prefix graph has a logic gate depth of at least logφ n − 1 >

1.44 log2 n − 1, where φ = 1+
√

5
2 is the golden ratio (Held and Spirkl 2017), see also Rautenbach

et al. (2008). In Held and Spirkl (2017), we describe an adder of size O (n log2 log2 n) that attains
this depth bound asymptotically, however, with a high fan-out of

√
n + 1.

1.2 Non-Prefix Graph Adders

This section gives a brief overview of adder constructions that are not derived from a prefix graph.
Since none of the 2n inputsxi ,yi (1 ≤ i ≤ n) except forx1 are redundant for cn+1, the depth of any

adder circuit using 2-input gates is at least log2 n + 1, which would be attained by a balanced binary
tree with inputs/leaves xi ,yi (1 ≤ i ≤ n). With adders that are not based on prefix graphs, this
bound is asymptotically tight. Krapchenko showed that any formula (a circuit with tree topology)
for computing cn+1 has depth at least log2 n + 0.15 log2 log2 log2 n + O (1) (Krapchenko 2007).

Brent (1970) gives an approximation scheme for a single carry bit circuit attaining an asymptotic
depth of (1 + ε) log2 n + o(log2 n) for any given ε > 0. The best-known depth for a single carry bit
circuit is log2 n + log2 log2 n + O (1), due to Grinchuk (2008). However, Grinchuk (2008) and Brent
(1970) did not address how to overlay circuits for the different carry bits to bound the size and

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

Binary Adder Circuits of Asymptotically Minimum Depth, Linear Size, and Fan-Out Two 4:5

Fig. 2. High-level adder description.

fan-out of an adder based on their circuits. One problem in sharing intermediate results is that this
creates high fan-outs.

Krapchenko (1967) (see Wegener (1987, pp. 42–46)) presented an adder with asymptotically op-
timum depth log2 n + o(log2 n) and linear size, and Gashkov et al. (2007) gave improvements for
small n. However, the fan-out is almost linear.

1.3 Our Contribution

In this article, we present the first family of adders of asymptotically optimum depth, linear size,
and fan-out bound two:

Theorem 1.1 (Main Theorem). Given two n-bit numbers A and B, there is a logic circuit comput-

ing the sum A + B, using gates with fan-in and fan-out two and that has depth log2 n + o(logn) and

size O (n).

At the core of our new adder we develop a new family of adders of asymptotically minimum

depth, fan-out two, but super-linear size O (n	
√

log2 n
22
√

log2 n), which we present in Section 3.
Compared to a traditional Kogge-Stone adder, it reduces the number of levels by using specially
designed multi-input generate gates (Section 3.1). The propagate signals are computed by a sep-
arate Kogge-Stone AND-prefix graph (Section 3.2), which we augment with result duplication to
bound the fan-out.

Then, in Section 4, similar to Krapchenko (1967), we transform our adder into an adder of linear
size with the asymptotically same depth, thus proving Theorem 1.1. The transformation is based
on Brent-Kung reductions and corrections that allow us to use a multi-input generate adder for a
significantly reduced number of inputs.

While all of the above adders use only And/Or gates and repeaters, we show in Section 5 that
Theorem 1.1 holds also if only Nand/Nor and Not gates are available.

2 HIGH-LEVEL OVERVIEW

A high-level schematic of our adder is shown in Figure 2. Our first step is to develop an adder with
a prefix-like structure but with depth log2 n + o(logn). By Held and Spirkl (2017), an adder built
from prefix gates cannot achieve such a depth bound, and in fact, every prefix gate contributes
two layers of logic gates. Therefore, in Section 3.1, we develop a multi-input generate gate that
computes the joint generate signal of 2r inputs with depth r + 1 (with respect to those inputs). By

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

4:6 S. Held and S. T. Spirkl

using O (
√

logn) layers of gates with 2O (
√

log n) inputs each (instead of log2 n layers with 2 inputs),
we achieve a depth bound of log2 n +O (logn). This is proved in Section 3.3.

The next step of our construction is to bound the fan-out. Having multi-input gates also means
that each output of a gate will be used many times. For generate signals, we remedy this by dupli-
cating the output signal within the multi-input generate gate. We compute the propagate signals
separately using an And-prefix graph; and we describe an auxiliary structure providing sufficiently
many copies of each propagate signal in Section 3.2. Together with the multi-input generate gate
prefix graph, this forms the multi-input generate adder described in Section 3.3.

Finally, we want to bound the size of the construction. Our construction up to this point has

size O (n logn2
√

log n) for n inputs. We use a reduction due to Krapchenko (1967) that allows us to

choose τ = O (log logn +
√

logn) and construct an n-input adder by using an (n/2τ)-input adder
(which has size O (n)) and combining it with a circuit of depth O (τ), linear size, and fan-out two.
This last step is detailed in Section 4.

3 ASYMPTOTICALLY OPTIMUM DEPTH AND FAN-OUT TWO

In this section, we present a new family of adders of asymptotically minimum depth, fan-out two,

but super-linear size O (n	
√

log2 n
22
√

log2 n).
The adders based on prefix graphs as in Section 1.1 impose a common topological structure on

the computation of intermediate results Xs,t and Ys,t . In the adder described by Brent (1970), on
the other hand, intermediate results Xs,t and Ys,t are computed separately within larger blocks.

A central idea of generating a faster adder is to use multi-fan-in (also called high-radix) subcir-
cuits within a Kogge-Stone prefix graph. While all the prefix gates in Figure 1(b) have fan-in two,
we want to use prefix gates with fan-in 2r for some r ≥ 2. With fan-in 2r gates, the number k of
levels reduces from 	log2 n
 for fan-in two to 	log2r n
 = 	 1

r
log2 n
. In the following, we letn = 2rk

for r ∈ N and k ∈ N. We will construct adders with k rows of 2r -input generate gates, compute
their depth and size, and then select the best values for r and k for our construction.

Each prefix gate with fan-in 2r represents a logic circuit with fan-in and fan-out bounded by two.
Since the output of each prefix gate will be used in 2r prefix gates at the next level, our approach
also requires to duplicate the intermediate result at the output of a prefix gate 2r−1 times. To
accomplish this, we consider the computation of generate and propagate sequences separately.

Our adder consists of two global Kogge-Stone type prefix graphs. The first such graph uses
2-input And-gates and computes propagate signals (Section 3.2). The propagate signals are used
in the generate prefix graph (Section 3.3), which uses 2r -input subcircuits (Section 3.1) that are
arranged in the same way as the Kogge-Stone graph.

Both graphs are modified to duplicate intermediate generate signals 2r−1 times and intermediate
propagate signals 2r times so that the overall constructions obeys the fan-out bound of two.

3.1 Multi-Input Generate Gates

We now introduce multi-input generate gates, which are the main building block for computing
the generate signals, and we prove some of their basic properties. In Section 3.3, we will use
them to construct adders using generalized prefix graphs. Given 2r propagate and generate pairs
(x̃2r , ỹ2r), . . . , (x̃1, ỹ1), a multi-input generate gate computes the generate signal

Ỹ1,2r = ỹ2r ∨ (x̃2r ∧ (ỹ2r−1 ∨ (x̃2r−1 ∧ · · · ∧ (ỹ2 ∨ (x̃2 ∧ ỹ1)) . . .))) .

The input pairs (x̃i , ỹi) (i ∈ {1, . . . , 2r }) are not necessarily the input pairs of the adder; they can
be intermediate results.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

Binary Adder Circuits of Asymptotically Minimum Depth, Linear Size, and Fan-Out Two 4:7

Fig. 3. A 2r -input 2r−1-output generate gate for r = 3. The top three rows are a 2r -input Kogge-Stone And-

suffix graph.

Each multi-input generate gate has 2r−1 outputs, each of which provides the result Ỹ1,2r , because
later we want to reuse this signal 2r times and bound the fan-out of each output by two. In contrast
to two-input prefix gates computing (4), multi-input generate gates do not compute the propagate

signals X̃1,2r =
∧2r

i=1 x̃i for the given input pairs. We compute all required propagate signals using
the separate And-prefix graph, described in Section 3.2.

Figure 3 shows an example of a multi-input generate gate with 8 inputs. A 2r -input prefix gate

computes Ỹ1,2r as in the disjunctive normal form

Ỹ1,2r =

2r∨
j=1

���ỹj ∧ ���
2r∧

i=j+1

x̃i
���
���

in three steps.

In the first step, we compute the terms
∧2r

i=j+1 x̃i for i = 0, . . . , 2r − 1 using a Kogge-Stone And-
suffix graph, which arises from a Kogge-Stone prefix graph by reversing the ordering of the inputs.
This uses each input x̃i exactly twice.

Next, we use a single row consisting of And gates and one repeater to compute the minterms

mj := ỹj ∧ (
∧2r

i=j+1 x̃i) (j = 1, . . . , 2r). Each input ỹi is used exactly once within this circuit. The
repeater is dispensable but simplifies the size formula and will become useful in Section 5.

Finally, instead of computing the disjunction
∨2r

j=1mj by a balanced binary Or tree and du-

plicating the results 2r−1 times through a balanced repeater tree, we accomplish the duplication
using r rows of 2r−1 Or-gates as shown in the duplicating binary Or-tree in Figure 3. Formally,

let Mi, j =
∨j

i′=i
mi′ be the conjunction of minterms i, i + 1, . . . , j. Then, on level l ∈ {1, . . . , r }, we

compute each signal of the form Mi2l+1, (i+1)2l , i = 0, . . . , 2r−l − 1, from the previous level, and we

compute 2l−1 copies of it. By using Mi2l+1, (i+1)2l = M2i2l−1+1, (2i+1)2l−1 ∨M (2i+1)2l−1+1, (2i+2)2l−1 , and

since each preceding signal is available 2l−2 times (l ≥ 2), we can ensure that each of them has

fan-out two. On the last level, we will have computed 2r−1 copies of M1,2r = Ỹ1,2r . Each level uses
2r−1 Or-gates. Note that a similar construction for reducing fan-out has been used by Lupanov
when extending his well-known bounded-size representation of general Boolean functions to cir-
cuits with bounded fan-out (Lupanov 1962).

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

4:8 S. Held and S. T. Spirkl

Lemma 3.1. Given r ∈ N, 2r generate inputs ỹi and 2r propagate inputs x̃i for i ∈ {1, . . . , 2r }, there

is a multi-input generate gate G that computes the signal

Ỹ1,2r =

2r∨
j=1

���ỹj ∧ ���
2r∧

i=j+1

x̃i
���
���

and provides it at 2r−1 outputs, and each propagate input has fan-out two and each generate input has

fan-out one. Moreover, the gate G consists of r2r + (r + 1)2r−1 logic gates, each of which has fan-out

at most two. The outputs are at depth 2r + 1 with respect to the propagate inputs x̃i , and at depth

r + 1 with respect to the generate inputs ỹi (i ∈ {1, . . . , 2r }).

Proof. All the terms
∧2r

i=j+1 x̃i are computed as a Kogge-Stone And-suffix graph as shown in
Figure 3 of size

2r 	log2 2r
 − 2r

2
= (r − 1)2r + 2r−1.

Then, there is a level of 2r (red) And gates and one repeater, concluding the computation of the

minterms. Finally, there are r2r−1 (green) Or-gates to compute the disjunction
∨2r

j=1mj 2r times,
for a total of

r2r + (r + 1)2r−1

gates. By construction, no gate and propagate input has fan-out larger than two, and all generate
inputs have fan-out one. The depth is r for the And-suffix graph, one for the red gates, and r for
the disjunctions, yielding the desired depths of 2r + 1 for the propagate inputs and r + 1 for the
generate inputs. �

3.2 Augmented Kogge-Stone And-Prefix Graph

The second important component of our construction is the augmented Kogge-Stone And-prefix
graph, which we describe in this section. While multi-input generate gates are used to compute
generate signals throughout our construction, the propagate signals (which are used by multi-
input generate gates) are supplied by a separate circuit.

The augmented Kogge-Stone And-prefix graph computes Xs,t =
∧t

i=s xi for all 1 ≤ t ≤ n and

s = 1 + (t − 2r l)+ with 0 ≤ l < k , providing each output 2r times through 2r individual gates. The
construction is as follows. First, we take a Kogge-Stone (1973) prefix graph, where the prefix op-
erator is an And-gate, i.e., ◦ = ∧. It consists of log2 n levels, and on level i it computes for every
input j (1 ≤ j ≤ n) the prefix X1+(j−2i)+, j from the prefixes of sequences of 2i−1 consecutive inputs
computed in the previous level.

Each of the results Xs,t from level rl will later be used in 2r multi-input generate gates for

all 0 ≤ l < k , s = 1 + (t − 2r l)+ and 1 ≤ t ≤ n. To achieve a fan-out bound of two, starting at the
inputs, we insert one row of n repeaters after every r levels of And-gates. This allows us to use
the repeaters as the inputs for the next level and to extract the signals Xs,t once at the And-gates
before the repeaters. The construction is shown in Figure 4. The last block of r rows of gates of
the Kogge-Stone prefix graph can be omitted in our construction to reduce the size.

Each output signalXs,t is the input of a multi-input generate gate, and it has fan-out two within
that gate. Thus, each output Xs,t of the augmented Kogge-Stone And-prefix graph has to be pro-
vided through an individual gate. To this end, at each of the nk outputs, we add 2r+1 − 1 repeater
gates as the vertices of a balanced binary tree to create 2r copies of the signal with a single repeater
serving each leaf.

Lemma 3.2. For k, r ∈ N, the augmented Kogge-Stone And-prefix graph with k · r levels computes

the signal Xs,t for all 1 ≤ t ≤ n and s = 1 + (t − 2r l)+ for all 0 ≤ l < k . It obeys the fan-out bound

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

Binary Adder Circuits of Asymptotically Minimum Depth, Linear Size, and Fan-Out Two 4:9

Fig. 4. The augmented Kogge-Stone And-prefix graph for r = k = 2, with the extracted outputs Xs,t shown

as red arrows. The last block of r rows of gates is hatched, and, for simplicity, repeaters providing multiple

copies of each output signal are hidden.

of two and its size is nr (k − 1) + nk2r+1. The output signals Xs,t are provided 2r times at a depth of

(l + 1) (r + 1).

Proof. The functional correctness and and the fan-out bound are clear by construction. For
the size, note that each binary repeater tree at one of the nk outputs consists of 2r+1 − 1 repeaters,
summing up to nk (2r+1 − 1) repeaters in these repeater trees. The remaining circuit consists of
r (k − 1) rows of And-gates and k rows of repeaters. Each row consists of n gates, summing up to
n(r (k − 1) + k) gates. Altogether, the circuit contains nr (k − 1) + nk2r+1 gates.

For the depth bounds, let 1 ≤ t ≤ n and 0 ≤ l < k . Then, for s = 1 + (t − 2r l)+, the signal Xs,t is
available at the bottom of the lth block at a depth of l (r + 1). Subsequently, we create 2r copies of
the signal in a repeater tree of depth r + 1. Together, this gives the desired depth (l + 1) (r + 1). �

3.3 Multi-Input Generate Adder

We now describe the multi-input generate adder for n = 2rk , which is an adder of low depth and
fan-out two; later, we will show how to reduce its size without compromising the first two proper-
ties. The adder consists of an augmented Kogge-Stone And-prefix graph from the previous section
and a circuit consisting of multi-input generate gates similar to a radix-2r Kogge-Stone adder.

The construction uses k rows, each with n multi-input generate gates or repeater trees (see
Figure 5). The t th multi-input generate gate in level l ∈ {1, . . . ,k } computes Y1+(t−2r l)+,t according
to the formula Y1+(t−2r l)+,t =

2r∨
j=1

���Y1+(t−j2r (l−1))+, (t−(j−1)2r (l−1))+ ∧
���

2r∧
k=j+1

X1+(t−k2r (l−1))+, (t−(k−1)2r (l−1))+
���
��� . (8)

If (t − 2r l)+ < (t − 2r (l−1))+, then this computation is carried out using a multi-input generate
gate from Section 3.1. As its inputs, it uses generate signals from the previous level, l − 1, and
propagate signals obtained from the augmented Kogge-Stone And-prefix graph.

Except for the last level, each intermediate generate signal will be used 2r times as in Equation (8)
in the next level. As the fan-out of each generate input inside a multi-input generate gate is one,
we need to provide 2r−1 copies through individual gates to serve 2r multi-input generate gates
with fan-out two.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

4:10 S. Held and S. T. Spirkl

Fig. 5. A multi-input multi-output generate gate adder for r = k = 2, where yellow circles represent multi-

input generate gates, and blue squares represent balanced binary repeater trees. The ancestors of one output

are highlighted in red.

If (t − 2r l)+ = (t − 2r (l−1))+, then the already-computedY1+(t−2r l)+,t at the previous level, and in

this level it is sufficient to duplicate the signal 2r−1 times using a balanced binary repeater tree.
The augmented Kogge-Stone And-prefix graph provides each signal 2r times with individual

repeaters. Thus, it can be distributed to 2r multi-input generate gates, where the fan-out of each
propagate input is two.

For the first level of multi-input generate gates, we duplicate each generate signal yi at an input
i ∈ {1, . . . ,n} using a balanced binary repeater tree of depth r − 1 and size 2 + 22 + · · · + 2r−1 =

2r − 2. Again, we can distribute each copy to two multi-input generate gates, maintaining fan-out
two.

In the last level of multi-input generate gates, we do not need to duplicate the signals anymore.
Instead of the r rows of 2r−1 Or-gates each, we can compute the single outputs using a balanced
binary tree of 2r − 1 Or-gates and depth r .

Lemma 3.3. The multi-input generate adder for n = 2rk bits (r ,k ∈ N) obeys a fan-out bound of

two, contains less than

3nk (r + 2)2r−1 + n2r + nrk

gates and has depth

kr + 2r + k + 1.

Proof. Inside each multi-input generate gate, the fan-out of propagate inputs is two and the
fan-out of generate inputs is one. Thus, it suffices to observe that in each non-output level there
are 2r copies of each propagate signal and 2r−1 copies of each generate signal and that the fan-out
of two holds within the augmented Kogge-Stone graph and within each multi-input generate gate.

By Lemma 3.2, the size of the augmented Kogge-Stone And-prefix graph is nr (k − 1) + nk2r+1.
The size of the n balanced binary trees duplicating the input generate signals is n(2r − 2).

The remainder of the graph consists of k rows of n 2r -input multi-input generate gates or re-
peater trees. The size of a repeater tree is at most 2r−1 − 1 ≤ r2r + (r + 1)2r−1 (r ≥ 1), which is the
size of a multi-input generate gate. Thus, the size of all these multi-input generate gates is at most
nk (r2r + (r + 1)2r−1). Summing up, the total size is at most

nr (k − 1) + nk2r+1 + n(2r − 2) + nk (r2r + (r + 1)2r−1)
= nk2r+1 + nkr2r + n2r + nk (r + 1)2r−1 + nkr − n(r + 2)
= nk (4 + 2r + (r + 1)) 2r−1 + n2r + nkr − n(r + 2)
< 3nk (r + 2) 2r−1 + n2r + nkr .

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

Binary Adder Circuits of Asymptotically Minimum Depth, Linear Size, and Fan-Out Two 4:11

For a simpler depth analysis, we assume that the input generate signals yi arrive delayed at a
depth of r + 2. The generate input signals traverse a binary tree of depth r − 1 and the propagate
input signals traverse a binary tree of depth r + 1 before reaching the first multi-input generate
gate, i.e., generate signalsyi become available at depth 2r + 1 and propagate signals at depth r + 1.
Thus, the first row of multi-input generate gates has depth

3r + 2 = max{2r + 1 + 1 + r , r + 1 + r + 1 + r },
where the first term in the maximum is caused by the delayed generate signals yi and the second
term by the propagate signals xi (1 ≤ i ≤ 1).

For the next level, the propagate signals are available at time 2r + 2, and the generate signals at
time 3r + 2, and the propagate signals again arrive r time units before the corresponding generate
signals, so at the next level, both signals arrive r + 1 time units later than they did before. Induc-
tively, we know that for each level 2 ≤ l ≤ k , the generate and propagate signals arrive at a depth
of (l − 1) (r + 1) more than they did for at the first level. Consequently, the total depth of the adder
is (k − 1) (r + 1) + 3r + 2 = kr + 2r + k + 1. �

If
√

logn ∈ N, then we can choose r = k =
√

logn and receive the following result.

Corollary 3.4. If
√

logn ∈ N, then there is a multi-input generate adder for n bits with fan-out

two, size at most

3n(logn + 2
√

logn)2
√

log n−1 + n2
√

log n + n logn,

and depth

logn + 3
√

logn + 1.

In general,
√

logn � N, and we get the following result.

Theorem 3.5. Letn ∈ N be a power of two. For input pairs (xi ,yi) (i ∈ {1, . . . ,n}), there is a circuit,

computing all carry bits with maximum fan-out 2, depth at most

log2 n + 5
⌈√

log2 n
⌉
+ 2.

The size is at most

4n
⌈√

log2 n
⌉2

2
⌈√

log2 n
⌉

(9)

if n ≥ 16 and at most

8n
⌈√

log2 n
⌉2

2
⌈√

log2 n
⌉

(10)

if n ≤ 15.

Proof. We choose r = k = 	
√

log2 n
. By Lemma 3.3 and r = k , we obtain

3nk (r + 2)2r−1 + n2r + nrk = n(3(r 2 + 2r)2r−1 + 2r + r 2). (11)

Now, if n ≥ 16, then we have r = k ≥ 2. Thus, we can use 2r ≤ r 2 and 2r + r 2 ≤ r 22r to bound the
right-hand side by

n(3(r 2 + r 2)2r−1 + r 22r) = 4nr 22r ,

implying Equation (9).
Otherwise, n ≤ 16, r = k ≤ 2, r 2 ≤ 2r , r 2 ≤ 2r , and the right-hand side of Equation (11) is

bounded by

n (3 (2r + 2r)) 2r−1 + 2r + 2r = 8nr2r ≤ 8nr 22r .

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

4:12 S. Held and S. T. Spirkl

By Lemma 3.3, the resulting depth is bounded by

kr + 2r + k + 1 =
⌈√

log2 n
⌉2

+ 3
⌈√

log2 n
⌉
+ 1

≤
(⌊√

log2 n
⌋
+ 1

)2
+ 3

⌈√
log2 n

⌉
+ 1

≤ log2 n + 5
⌈√

log2 n
⌉
+ 2.

�

If
√

log2 n � N, then the adder in Theorem 3.5 is larger than necessary, since it has n′ =

2 	
√

log2 n
2 > n inputs. If, for example n = 32, then we choose r = k = 3 and n′ = 512. However,

if 	
√

log2 n
2 ≥ n + 	
√

log2 n
, then choosing r = 	
√

log2 n
 − 1 instead still yields an adder with at
least n inputs and outputs and reduces the size and depth significantly. For n = 32, we would still
obtain a 64-input adder using this method. The following lemma shows how to decrease the size
and depth further.

Lemma 3.6. Let r ,k in N such that n ≤ 2rk , where n is a power of two. Then multi-input generate

adder for n′ = 2rk bits can be modified to obey a fan-out bound of two to contain less than

3nk (r + 2)2r−1 + n2r + nrk

gates and to have depth

log2 n + 2r + k + 1.

Proof. The columns n′ down to n + 1 in the augmented Kogge-Stone And-prefix graph and the
multi-input gate graph can be omitted, since they are not used for the computations of the first
n output bits. This reduces its size from n′r (k − 1) + n′k2r+1 to nr (k − 1) + nk2r+1. Moreover, the
size of the repeater trees duplicating input signals is at most n(2r − 2). The multi-input generate
gates in columns n′ down to n + 1 can be removed as well, and so the total size of all multi-input
generate gates is at most nk (r2r + (r + 1)2r−1). Thus, the size bound follows as in Lemma 3.3;
clearly, this does not increase the fan-out.

For the depth bound, note that if n′ > n, then we can omit the left half of the construction and
notice that the right half of the lowest row of multi-input generate gates has only 2r−1 inputs, so we
can actually use 2r−1-input generate gates and reduce the depth by 1. This process can be iterated
until n′ = n; the depth decreases by at least rk − log2 n. This implies the result of the lemma. �

In this section, we have achieved a depth bound of log2 n + O (
√

logn) = log2 n + o(log2 n),
which is asymptotically optimal, since the lower bound is log2 n.

4 LINEARIZING THE SIZE OF THE ADDER

To achieve a linear size while preserving an asymptotically optimum depth, we adopt a technique
similar to the construction by Brent and Kung (1982), which was first used as a size-reduction tool
by Krapchenko (1967) (see Wegener (1987, pp. 42–46)).

4.1 Brent-Kung Step

We first describe a single reduction step, which can be used to transform an n-input adder into a
2n-input adder.

Brent and Kung (1982) construct a prefix graph recursively as shown in Figure 6(a). If n is a at
least two, then it computes the n/2 intermediate results zn ◦ zn−1; . . . ;z2 ◦ z1 (see Section 1.1 for
the definition of zi). We use a prefix graph for these n/2 inputs to compute the prefixes Z1,2i for all
even indices i ∈ {1, . . . ,n/2}. For odd indices, the prefix needs to be corrected by one more prefix
gate asZ1,2i+1 = z2i+1 ◦ Z1,2i (i ∈ {1, . . . ,n/2 − 1}). We call this method of input halving and output

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

Binary Adder Circuits of Asymptotically Minimum Depth, Linear Size, and Fan-Out Two 4:13

Fig. 6. A Brent-Kung step and the resulting prefix graph.

Fig. 7. The reduced output correction prefix gate of a refined Brent-Kung step with propagate signal com-

putation omitted.

correction a Brent-Kung step. Note that the propagate signals are not needed after the correction
step. Thus, we can use reduced prefix gates (Figure 7) in the output correction step. In these prefix
gates, the left propagate signal xi is used only once. Thus, the underlying logic circuit inherits the
fan-out of two from the prefix graph.

The Brent-Kung step reduces the instance size by a factor of two, but it increases the depth of
the construction by four and the size by (5/2)n in terms of logic gates.

Applying these Brent-Kung steps recursively, Brent and Kung obtain a prefix graph that has
prefix gate depth 2 log2 n − 1 and logic gate depth 4 log2 n − 2. The prefix gate depth is no longer

optimal, but the adder has a comparatively small size of 1
2 (5n − log2 n − 8) gates, and its fan-out is

bounded by two at all inputs and gates. It is shown in Figure 6(b).
Brent-Kung steps were actually known before the article by Brent and Kung (1982), e.g., they

were already used in Krapchenko (1967). But the Brent-Kung adder is based solely on these steps.

4.2 Krapchenko’s Adder

In this section, we state a lemma that can be used to achieve a tradeoff of depth and size of an adder.
This lemma is part of the construction of Krapchenko’s adder, a non-prefix adder computing all
carry bits with asymptotically optimal depth and linear size. Its fan-out, on the other hand, is
almost linear as well, which makes it less useful in practice. Krapchenko’s techniques can be used
to derive the following reduction, based on Brent-Kung steps.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

4:14 S. Held and S. T. Spirkl

Lemma 4.1 (Krapchenko 1967, see Wegener (1987, pp. 42–46)). Let n ∈ N be a power of two

and τ ≤ log2 n − 1. Then given a family of adders computing k carry bits with depth d (k), maximum

fan-out f (k) and size s (k), there is a family of adders computing n carry bits with depth d (n/2τ) + 4τ
and size s (n/2τ) + 5n.

With size s (n/2τ) + (11/2)n, we can achieve the same depth and a maximum fan-out of at most

max
{
2, f (n/2τ)

}
.

Proof. We apply τ Brent-Kung steps and construct the remaining adder for n/2τ from the
given adder family. Figure 6(a) shows the situation for τ = 1. The simple application of τ Brent-
Kung steps would achieve the claimed depth and fan-out result, except with at most 2n additional
2-input prefix gates (because we will never add more prefix gates than are present in the Brent-
Kung prefix graph) and thus with 6n additional logic gates.

To see that 5n logic gates are enough, we show that we can omit the propagate signal com-
putation for the parity-correcting part of the Brent-Kung step. Such a reduced output prefix gate
is shown in Figure 7. With this construction, note that for i even, we have computed (x ,y) = zi

◦ · · · ◦ z1. For zi+1 = (yi+1,xi+1), the carry bit arising from position i + 1 is ci+2 = xi+1 ∨ (yi+1 ∧ y),
which uses two gates. It follows that a Brent-Kung step uses only the propagate signals at the in-
puts. For the next Brent-Kung step, the inputs are the n/2 pairs zn ◦ zn−1; . . . ;z2 ◦ z1, and therefore
we need three logic gates per prefix gate for the reduction step.

Note that in Figure 6(b), the propagate signal at a gate is used if and only if there is a vertical
line from this gate to another prefix gate (and not to an output or repeater). These lines exist only
in the “upper half” of the adder, i.e., the parts with depth at most log2 n. Since parity correction
occurs exclusively in the lower half with depth greater than log2 n, the propagate signals from
parity correction steps are never used.

As in the Brent-Kung prefix graph, n
2 repeaters can be used to distribute the fan-out and reduce

the maximum fan-out of the parity-correcting gates to two (see also Figure 6(b)). �

The fact that the refined Brent-Kung step does not require the inner adder to provide the prop-
agate signals, which a prefix graph adder would provide, allows us to use the multi-input generate
adder with the size and depth bounds stated in Theorem 3.5, where the last r rows of And gates
in Figure 4 in the augmented Kogge-Stone And-prefix graph are omitted.

Lemma 4.1 can be used to achieve different tradeoffs. In particular, constructions for all carry

bits of size up to n1+o (1) can be turned into linear-size circuits with the same asymptotic depth
or depth guarantee, since we could choose τ = o(log2 n). This works for prefix graphs and logic
circuits; for example, with τ = log2 log2 n, the Kogge-Stone prefix graph will have size 3n, depth
log2 n + 2 log2 log2 n and fan-out bounded by two in terms of prefix gates (Han and Carlson 1987).

While the technique in Lemma 4.1 is essentially a 2-input prefix gate construction, the main
result of Krapchenko (1967) cannot be constructed using only prefix gates.

4.3 Adders with Asymptotically Minimum Depth, Linear Size, and Fan-Out Two

In this section, we combine Theorem 3.5 and Lemma 4.1 to obtain our main result: an adder of
asymptotically minimum depth, linear size, and with fan-out at most two.

Theorem 4.2. Let n ∈ N be a power of two. There is an adder for n inputs of size bounded by

(27/2)n with depth

log2 n + 8
⌈√

log2 n
⌉
+ 6

⌈
log2

⌈√
log2 n

⌉⌉
+ 2

and maximum fan-out two. If n ≥ 4,096, then the size can be bounded by (19/2)n.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

Binary Adder Circuits of Asymptotically Minimum Depth, Linear Size, and Fan-Out Two 4:15

Proof. We apply Lemma 4.1 with τ = 	
√

log2 n
 + 2	log2 	
√

log2 n

 and use an adder for
n/2τ = 2−τn inputs according to Theorem 3.5 as an inner adder. From the proof of Lemma 4.1,
we have seen that the output correction of the Brent-Kung step does not require propagate signals
from the inner adder. So the fan-out is indeed two. Using Equation (10), this results in an adder of
size ⌈

8n · 2−τ · 2 	
√

log2 (2−τ n)
 ·
⌈√

log2 (2−τn)
⌉2
⌉
+ (11/2)n

≤
⌈
8n · 2−τ · 2 	

√
log2 n
 ·

⌈√
log2 n

⌉2
⌉
+ (11/2)n

=

⌈
8n · 2−	

√
log2 n
 · 2−2 	log2 	

√
log2 n

 · 2 	

√
log2 n
 ·

⌈√
log2 n

⌉2
⌉
+ (11/2)n

≤ 8n + (11/2)n = (27/2)n.

If n ≥ 4,096, then we have n/2τ ≥ 16 that allows us to apply the alternative bound (9) to achieve a
size bound of (19/2)n.

The depth is

log2 (2−τn) + 5
⌈√

log2 (2−τn)
⌉
+ 2 + 4τ = log2 n + 5

⌈√
log2 (2−τn)

⌉
+ 2 + 3τ

= log2 n + 8
⌈√

log2 n
⌉
+ 6

⌈
log2

⌈√
log2 n

⌉ ⌉
+ 2,

using the definition of τ . �

From Theorem 4.2, we can easily conclude our main result stated in Section 1.3:

Theorem 1.1 (Main Theorem). Given two n-bit numbers A,B, there is a logic circuit computing

the sum A + B, using gates with fan-in and fan-out two and that has depth log2 n + o(logn) and size

O (n).

5 TECHNOLOGY MAPPING

In this section, we show that our construction from Theorem 4.2 can be transformed into an adder
using only Nand/Nor, and Not gates, which are faster than And/Or gates and repeaters in current
CMOS technologies. This increases the depth by one and the size by a small constant factor.

Theorem 5.1. Let n ∈ N be a power of two. There is an adder for n inputs using only Nand, Nor,

and Not gates. Its size is bounded by (18 + 1
3)n, the depth is at most

log2 n + 8
⌈√

log2 n
⌉
+ 6

⌈
log2

⌈√
log2 n

⌉⌉
+ 3,

and the maximum fan-out is two. If n ≥ 4,096, then the size is bounded by (15 + 5
6)n,

In the next two lemmas, we show how to transform the two main components of our construction,
the Brent-Kung steps and the multi-input multi-output generate gate adder, into circuits using only
the desired gates.

Lemma 5.2. Brent-Kung reduction and correction steps can be implemented using only Nand and

Not gates achieving the same depth an less than 5
3 the number of gates as with And and Or gates.

Proof. Brent-Kung reduction steps can be implemented using Nand/Not prefix gates as shown
in Figure 8. Similarly, the reduced output correction gate in Figure 7 can be realized by two Nand
gates and one Not gate, i.e., by eliminating the two rightmost gates in Figure 8. The modified

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

4:16 S. Held and S. T. Spirkl

Fig. 8. A Nand/Not prefix gate used for a modified Brent-Kung reduction step.

prefix gates do not increase the depth of the Brent-Kung step and increase the size by a constant
factor less than 5

3 . �

Similarly, we can implement the adder from Theorem 3.5 using only Nand, Nor, and Not gates,
increasing the depth by one and size by a factor 5

3 .

Lemma 5.3. Let n ∈ N. For input pairs (xi ,yi) (i ∈ {1, . . . ,n}), there is a circuit using only Nand,
Nor, and Not gates, computing all carry bits with maximum fan-out 2, depth at most

log2 n + 5
⌈√

log2 n
⌉
+ 3.

The size is at most
5

3
4n

⌈√
log2 n

⌉2

2
⌈√

log2 n
⌉

if n ≥ 16, and at most
5

3
8n

⌈√
log2 n

⌉2

2
⌈√

log2 n
⌉

if n ≤ 15.

Proof. We transform multi-input multi-output generate gate adders from Theorem 3.5 apply-
ing DeMorgan’s laws. For easier understanding, we first insert repeaters so that the gates can be
arranged in rows, such all input signals for gates in odd rows are computed in even rows and
vice versa. Here row zero refers to the input signals xi ,yi (i = 1, . . . ,n). This bipartite structure is
already given in the augmented Kogge-Stone And-prefix graph (see Figure 4).

Let us now consider a multi-input generate gate as shown in Figure 3. By inserting 2r /2 repeaters
gates in the last row of the And-suffix graph, we achieve a uniform depth for this first stage. The
red row of And gates and the final 2r−1-output Or already have a uniform depth. The additional
repeaters increase the size by less than a factor of 5

3 . Except for the first row of generate gates, the
depth of the generate signals equals the depth of the propagate signals when they are merged in
the red row of And gates. In the first row of generate gates, the propagate signals arrive there at
depth 2r + 1, while the generate signals arrive at depth r − 1 (see the proof of Lemma 3.3). Thus, if
r is odd, we add one additional repeater at every generate input signal so that it arrives at an odd
depth at the red level of And gates. Note that we can do this without increasing the overall depth,
as we already assumed that the generate signals are delayed by r + 1 in the proof of Lemma 3.3.
At most n repeaters are inserted this way.

Some gates of the multi-input generate gate adder are repeater trees. They have depth r − 1,
which is odd if and only if the depth r + 1 of the corresponding paths of generate signals through
multi-input generate gates is odd. Thus, they preserve the bipartite structure.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

Binary Adder Circuits of Asymptotically Minimum Depth, Linear Size, and Fan-Out Two 4:17

Now we can use the bipartite structure to transform the multi-input multi-output generate adder
into a circuit consisting of Nand, Nor, and Not gates. In our construction we will maintain the
following characteristics. Inputs to an odd row, i.e., outputs of an even row, will be the origi-
nal function values, while inputs to an even row, i.e., outputs of an odd row, will be the negated
original function values. We achieve this by transforming gates as follows: Repeaters are always
transformed into Not gates. In odd rows, we translate And gates into Nand gates and Or gates
into Nor gates. In even rows, we translate And gates into Nor gates and Or gates into Nand gates.
If the number of rows is odd, then we add one row of Not gates to correct the otherwise negated
outputs of the adder.

Together with the n repeaters that we insert after each generate input signal if r is odd, this
constitutes 2n gates that can by accounted for by the size of the augmented Kogge-Stone And-
prefix graph (see Figure 4), which is at least 3n if r ≥ 1. Thus, the overall size of the generate adder
increases by a factor of at most 5

3 . �

In combination with the mapping of the Brent-Kung step in Lemma 5.2, this proves Theorem 5.1.

Conclusion

We introduced the first full adder with an asymptotically optimum depth, linear size, and a maxi-
mum fan-out of two. Asymptotically, this is twice as fast and significantly smaller than the Kogge-
Stone adder, which is often considered the fastest adder circuit, as well as most other prefix graph
adders.

For small n, Theorem 4.2 will not immediately improve on existing adders. When focusing on
speed for small n, one would rather omit the size reduction from Section 4. Without the size re-
duction, our results in Lemma 3.3 match the depth of the Kogge-Stone adder for 512 inputs and
improve on it for 2,048 inputs, where r = 3,k = 4 yields an adder with depth 21 for our construc-
tion, but the adder of Kogge-Stone will have depth 22.

Today’s microprocessors usually contain adders for at most a few hundred bits. However, adders
for 2,048 bit numbers are used for cryptographic chips. Thus we expect that adders based on our
ideas will find their way into hardware.

REFERENCES

R. P. Brent. 1970. On the addition of binary numbers. IEEE Trans. Comput. 19, 8 (1970), 758–759.

R. P. Brent and H.-T. Kung. 1982. A regular layout for parallel adders. IEEE Trans. Comput. 100.3 (1982): 260–264.

S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam. 2006. Reducing structural bias in technology mapping.

IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 25, 12 (2006), 2894–2903.

F. E. Fich. 1983. New bounds for parallel prefix circuits. In Proceedings of the 15th Annual ACM Symposium on Theory of

Computing (STOC’83). ACM.

S. B. Gashkov, M. I. Grinchuk, and I. S. Sergeev. 2008. On the construction of schemes for adders of small depth. Diskr. Anal.

Issledov. Operat. Ser. 1, 14, 1 (2007), 27–44 (in Russian). [English translation in J. Appl. Industr. Math. 2, 2 (2008, 167–178).

M. I. Grinchuk. 2008. Sharpening an upper bound on the adder and comparator depths. Diskr. Anal. Issledov. Operat. Ser. 1,

15.2 (2008): 12-22 (in Russian). [English translation in J. Appl. Industr. Math. 3, 1 (2009), 61–67.]

T. Han and D. A. Carlson. 1987. Fast area efficient VLSI adders. In Proceedings of the8th IEEE Symposium on Computer

Arithmetic, 49–56.

S. Held and S. Spirkl. 2017. Fast prefix adders for non-uniform input arrival times. Algorithmica 77, 1 (2017), 287–308.

H. J. Hoover, M. M. Klawe, and N. J. Pippenger. 1984. Bounding Fan-out in Logical Networks. J. ACM 31, 1 (1984), 13–18.

K. Keutzer. 1987. DAGON: technology binding and local optimization by DAG matching. In 24th ACM/IEEE Design Automa-

tion Conference. 341–347.

S. Knowles. 1999. A family of adders. In Proceedings of 14th IEEE Symposium on Computer Arithmetic. 277–281.

P. M. Kogge and H. S. Stone. 1973. A parallel algorithm for the efficient solution of a general class of recurrence equations.

IEEE Trans. Comput. C-22, 8 (1973), 786–793.

V. M. Krapchenko. 1970. Asymptotic estimation of addition time of a parallel adder. Probl. Kibern. 19 (1967), 107–122 (in

Russian). [English translation in Syst. Theor. Res. 19 (1970), 105–122.]

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

4:18 S. Held and S. T. Spirkl

V. M. Krapchenko. 2008. On possibility of refining bounds for the delay of a parallel adder. Diskr. Anal. Issledov. Operat. Ser.

1, 14, 1 (2007), 87–93. [English translation in J. Appl. Industr. Math. 2.2 (2008): 211–214.]

R. E. Ladner and M. J. Fischer. 1980. Parallel prefix computation. J. ACM 27, 4 (1980), 831–838.

O. B. Lupanov. 1963. A class of schemes of functional elements. Probl. Kibernet. 7 (1962), 61–114. [English translation in

Probl. Cybernet. 7 (1963), 68–136.]

Y. P. Ofman. 1963. The algorithmic complexity of discrete functions. Dokl. Akad. Nauk SSSR 145, 1 (1962), 48–51. [English

translation in Sov. Phys. Dokl. 7 (1963): 589–591.]

D. Rautenbach, C. Szegedy and J. Werber. 2008. On the cost of optimal alphabetic code trees with unequal letter costs. Eur.

J. Combinator. 29, 2 (2008), 386-394.

I. Sergeev. 2013. On the complexity of parallel prefix circuits. In Electronic Colloquium on Computational Complexity, Vol. 20.

J. Sklansky. 1960. Conditional-sum addition logic. IRE Trans. Electr. Comput. 2 (1960), 226–231.

I. Wegener. 1987. The Complexity of Boolean Functions. Wiley-Teubner (1987).

J. Werber, D. Rautenbach, and C. Szegedy. 2007. Timing optimization by restructuring long combinatorial paths. In Pro-

ceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design. 536–543.

Received January 2017; revised September 2017; accepted September 2017

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 4. Publication date: December 2017.

