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Abstract

Recently, the dynamics of flows in cold freshwater (temperatures around the tempera-
ture of maximum density, 3.98 °C) has garnered much interest in the environmental fluid
dynamics community. From a dynamical perspective, fluid flow in cold freshwater is inter-
esting due to the non-linear relationship between temperature and density, as well as the
relatively slow current speeds. In this thesis, we have presented a series of numerical process
studies with the goal of capturing, understanding, and describing characteristic dynamics
of different temperature intervals of the freshwater non-linear equation of state (NLEOS),
quantified by a parameter called the NLEOS parameter ©. We use two canonical exam-
ples of density driven phenomena to describe the dynamics of cold water; convection and
gravity currents. This thesis begins by providing some general background and context on
studies in cold freshwater, and provide some discussion on some technical background and
the numerical model.

An important interval of the NLEOS is the region between the freshwater freezing point
and the temperature maximum density. Over this interval, adding heat to the system in-
creases the water density. In chapter 3, we present a series of numerical process studies of
a freshwater system where a volumetric heating source (representing incident solar radia-
tion) preferentially adds heat near the surface of a body of cold freshwater in the presence
of a stable background shear current. The heating source induces small and nearly linear
temperature and density changes within the flow, leading to an unstable density profile, re-
sulting in convective plumes. The results of this chapter show that for a sufficiently strong
shear current, the growth phase of the thermally induced instabilities is nearly two dimen-
sional and that the transition to more vigorous three dimensional motion is initialized by
baroclinic production of vorticity by convective instabilities followed by a rapid increase
in streamwise vorticity generated by vortex tilting and stretching. We describe how this
process is modified by differences in shear strength and thermal forcing attenuation length.

In chapter 4, we present a series of simulations of gravity currents designed to isolate
the effects of a monotonically increasing but non-linear interval of the NLEOS. In this
chapter, we compare the evolution of gravity currents that are lighter than the ambient to
those that are heavier than the ambient (while holding the magnitude of the density and
temperature differences equal across all cases). The results of this chapter show that for
intrusions initially cooler than the ambient, the density difference between the intrusion
and the ambient decreases rapidly, while for intrusions initially warmer than the ambient,
the density difference decreases at a slower rate. The differing rates at which the density
difference decreases lead to asymmetries in head location, and vertical extent of intruding



fluid, and may have implications for larger scale flows in this temperature regime. These
results are robust across Grashof numbers studied.

In chapter 5 we present a series of simulations of gravity currents where ambient and
intruding temperatures are on opposite sides of the temperature of maximum density. We
use these simulations to describe how cabbeling (mixing of parcels of fluid that lead to
a parcel of fluid that is denser) affects the evolution of gravity currents. We show that
initially buoyant currents undergo mixing in the body and tail region of the gravity current,
which generates dense water from cabbeling. The dense water sinks and forms a secondary
current along the bottom of the domain that is much larger in scale than the original
buoyant current. In this chapter, we show that the maximum distance that the initial
current progresses is a non-linear function of © and the depth of the domain. Lastly, we
discuss some general characteristics of the emergent current that forms along the bottom.
We highlight that once the bottom current forms, larger values of © lead to a larger spatial
extent of the current but narrower distributions of density and temperature about their
mean values.

Finally, chapter 6 provides a brief summary and a look towards potential future work
related to the contents of this thesis.
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Chapter 1

Introduction

1.1 Background

Environmental and geophysical fluid dynamics (EGFD) is the study of fluid dynamic pro-
cesses relevant to rivers, oceans, the atmosphere, and lakes. The study of each is typically
driven by different practical interests. For rivers, it might be understanding where erosion
occurs and how to mitigate it. For oceans it might be understanding large scale circulation
patterns and deep water renewal. For the atmosphere, one might be interested in under-
standing the interactions with different canopy types (forest mosaics versus urban centres
for example). The work presented in this thesis focuses on idealized physical processes
most relevant to the last item in this list: lakes. Lakes are an interesting and unique class
of geophysical body due to the strong variations in their characteristics. Variations in
parameters such as depth, bathymetry, concentration of organic and inorganic compounds,
surface area, and stratification all indicate that they are relatively complicated bodies to
study. There have been a variety of scientific reviews over the years that focus on lakes
from different perspectives. Imberger and Hamblin (1982) provides a comprehensive list of
scaling laws for a variety of processes such as responses to external forcing, surface mixed
layer processes, and interior mixing. Wiiest and Lorke (2003) provides an updated review
of surface boundary layer processes (surface gravity waves, and turbulent mixing due to
momentum and heat fluxes at the surface), stratified interior processes (basin scale seiches,
internal waves, and interior mixing), and bottom boundary fluxes (bottom boundary layer
structure, and bottom turbulence). Boehrer and Schultze (2008) provides a comprehensive
overview of stratifying processes in lacustrine bodies of water. Bouffard and Wiiest (2019)
provides a modern review and discussion specifically on convective processes that occur



in lakes from buoyancy forcing, bioconvection, or penetration by solar radiation. These
resources above are clearly not exhaustive but indicate that interest in lakes has been long
standing and consequently there is a large library of literature.

It has not been until recently that the role of wintertime fluid dynamics in ice covered
lakes has gained more prominence in the limnological literature. For example, of the reviews
listed above, only Boehrer and Schultze (2008) and Bouffard and Wiiest (2019) mention
anything regarding wintertime dynamics. From a dynamic perspective, the winter is an
incredibly interesting time. Perhaps the most obvious difference between the summer and
the winter is the presence of surface ice. The review article written by Kirillin et al. (2012)
highlights the key differences that separate winter fluid physics from that in open water
seasons. In their article, they remark that physical processes of seasonally ice-covered
lakes can be divided into three connected categories; 1) processes related to the timing and
duration of ice cover (called ice phenology); 2) ice mechanics, structure, optical properties
and heat transfer (called ice physics); and 3) internal thermodynamics and hydrodynamics
of ice covered bodies of water. In short, a combination of ice and snow cover creates
a physical cap on the lake that limits heat and momentum fluxes from the atmosphere.
Beneath the ice, a weakly stratified environment forms in the early winter, and this leads
to different dominant physical processes beneath the ice like seiching, flow modification
by the Coriolis force (due to the Earth’s rotation), thermobaric effects (stratification by
hydrostatic pressure variations (Boehrer and Schultze, 2008; Boehrer et al., 2008)) and heat
flow from sediments. In late winter, the surface snow melts and heat is added to the near
surface regions of the water column by penetrative solar radiation, which is destabilizing
(more on this below) thereby inducing vertical currents. As climate change continues to
affect ice cover, Kirillin et al. (2012) remarks that there may be yet-undiscovered feedbacks
that could lead to acceleration of ice cover loss. This review only scratches the surface of
the interesting mechanisms one must consider when studying ice cover and the dynamics
below.

There are several historical reasons why winter limnology was generally avoided. One
such example was the difficulty in acquiring data in order to verify numerical models. For
example, the review by Ozersky et al. (2021) defines logistical winter as “the period when
the lakes become difficult to access due to dangerous weather conditions, insurance rules or
the presence of ice cover that presents a ‘hard stop’ to most Great Lakes research vessels”.
There is simply an inherent danger associated with going out onto an ice pack to collect
data. This danger warrants extra training and specialized equipment, both of which may
come at an increased cost potentially deterring the study of lakes in the winter.

Another example is that the winter season was traditionally deemed ecological insignif-
icant when compared to the summer. On the contrary, the article by Powers and Hampton



(2016) provides a resource (born out of a June 2016 ASLO meeting) that highlights recent
advances in studies of the under-ice microbiome, ice phenology, under-ice physical limnol-
ogy, and under-ice primary production. This article exists to guide researchers of summer
limnological processes to a library spanning the lesser known wintertime literature. This
paper restricts reviews to those found only in the journal Limnology and Oceanography. A
more recent review article by Jansen et al. (2021) provides key interdisciplinary research
questions for the emerging field of winter limnology, some proposed methods to answer
these questions, and the level of field-specific expertise required to answer them. The main
thrust of this article is to urge specialists in hydrodynamics, biogeochemistry, and ecology
to work together in the emerging field of winter limnology.

The importance of wintertime limnology in Canada can be understood with the use of
an example; Lake Erie of the Laurentian Great Lakes. The Laurentian Great Lakes are
composed of Lake Superior, Lake Michigan, Lake Huron, Lake Ontario, and Lake Erie.
They form an environment that many residents of Ontario and the Northern United States
rely upon (e.g. for drinking water) and to which their lives are intimately linked (e.g.
through tourism). These bodies of water are also one of the main drivers for the local and
regional economies. Lake Erie is the shallowest of the Laurentian Great Lakes, with an
average depth of about 19 metres. It is about 388 km long and 92 km wide. A unique
characteristic of Lake Erie among the Laurentian Great Lakes is that it has three distinct
basins. The shallowest is the western basin, averaging 7.5 metres in depth, where the
Detroit River acts as a major inflow. The deepest is the eastern basin, with an average
depth of 27 metres, where the Niagara river acts as an outflow. In between is the central
basin, with an average depth of 18 metres. Though each basin is distinct, water between
each often mixes, and this can affect the overall health of the lake.

Lake Erie was deemed ecologically dead due to problematic eutrophication in the 1970s,
but a substantial collaborative effort between Canada and the United States brought it
back to life (Bruce and Higgins, 2012; Alwin et al., 2015). At the time, modelling showed
that the optimal approach to manage widespread eutrophication was to control phospho-
rous loading. Water quality goals were established and were largely met by 1980 through
phosphate detergent bans and municipal point source controls. In recent years, the health
of the lake has once again been in decline though. While the input of total phosphorus has
remained relatively steady, the re-eutrophication is thought to be due to the introduction
of increased amounts of dissolved reactive phosphorous (DRP), a compound that is readily
bioavailable and can be used by algae for growth (Alwin et al., 2015). For example, a
striking image of Lake Erie taken in March 2012 (the end of a particularly mild winter),
shown in figure 1.1, highlights the clear and obvious blue-green colour present throughout
the lake indicating the presence of high concentrations of algae. The figure shows that the



concentration was clearly highest in the western basin, near the Detroit River plume. The
plume outflow of the Detroit River is known to introduce nutrients and other material into
the western basin of Lake Erie. What is not obvious here is how the outflow from the
Maumee river affects concentrations of algae. A report from Alwin et al. (2015) indicated
that the Maumee and the Detroit rivers were responsible for about 88% of the phosphorus
by mass introduced into the western basin and about 53% for the entire lake.

A three year long study of the health of Lake Erie was performed by Twiss et al. (2012)
and provided a working hypothesis that “algal production [in Lake Erie] in the winter
may help fuel summer hypoxia” (hypoxia occurs when the dissolved oxygen concentration
falls below 2 mg O/L, while anoxia occurs when it falls below 0.1 mg Oy/L). Indeed
they found that chl-a concentrations were higher in many parts of the lake in the winter
than in the spring. Sustained high concentrations of chi-a are usually indicators of poor
water quality and high phytoplankton biomass. That being said, their study did not make
solid conclusions that these higher concentrations would lead to hypoxia. To supplement
this hypothesis, Reavie et al. (2016) found that in the winter, the phosphorus needs of
A.islandica were readily satisfied while increased levels of silica that came from Lake Huron
were found to correlate with intense winter-spring blooms that in turn lead to hypoxia in
the central basin. They argue that winter—spring diatoms are a critical piece of the hypoxia
story that must be included in predictive models.

The impacts of climate change will exacerbate the role that the winter plays on the
dynamical aspects of under-ice environments. For example, as the climate continues to
warm, the prevalence of mild winters will only increase, potentially leading to devastating
feedbacks. For example, Fujisaki et al. (2013) performed simulations of the interannual
variability of ice cover on Lake Erie from 2003-2012 to model the lake circulation beneath,
and they found that in the anomalously mild winters, there was a more energetic coastal
flow from added wind stress due to the lack of ice cover. They claimed that this could
have an impact on pollutant dispersion, wave activity, and lake ecology. Beall et al. (2016)
commented that suppressed diatom growth due to lesser ice coverage may have impacts for
late summer events. The examples they brought up were the late summer hypoxic events
that occurred in the summers after 2002 and 2012. Both of these summer seasons followed
uncharacteristically low ice seasons (Zhou et al., 2015).

Many dynamical studies of Lake Erie in the winter are concerned with the transport of
pollutants and its water quality in general, and the evidence presented above clearly shows
that it is a noble pursuit. However, models that focus on accurately representing water
quality at the scales relevant to Lake Erie often misrepresent important aspects of the fluid
physics. As an example, consider the work of Oveisy et al. (2014), who used a coupled
hydrodynamic-water quality model (Leon et al., 2011) to simulate ice cover dynamics, win-
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Figure 1.1: MODIS imagery of an algal bloom in March 23, 2012. The blue-green colour
indicates a high concentration of algae. Notice that the western basin is completely blue-
green (credit NASA)



ter thermal structure and water quality in Lake Erie from October 2004 to April 2005. In
this study, the horizontal resolution was 2 km and the minimum vertical resolution was
0.5 m, and consequently their model made the hydrostatic assumption (the gravitational
force is balanced by a vertical pressure gradient). For their purposes, these choices were
probably adequate because small-scale non-hydrostatic motion would have not been rep-
resented on the coarse grid. However, there is a larger issues with properly representing
the vertical mixing in these models, especially in the late winter. Accurately accounting
for the vertical mixing is of utmost importance for predicting the heat distribution within
the lake, however, under the hydrostatic assumption, the vertical mixing must be param-
eterized. Properly representing the seasonal thermocline is a common issue in the study
of Lake Erie, and misrepresenting the summertime stratification can have serious impli-
cations for predicting ice cover fractions in the following winter. Leon et al. (2011) (the
model upon which the study of Oveisy et al. (2014) is built) commented that the seasonal
thermocline depth in their model was much more diffuse than in observations, indicating
that the mixing parameterization and potentially numerical viscosity may be mixing the
water column too much. Djoumna et al. (2014) compared two hydrodynamic models (the
MITgem (Campin et al., 2019) and GETM (Burchard, Hans and Bolding, Karsten and
Umlauf, 2011)) and several turbulent mixing parameterizations and compared the ability
of each to reproduced the seasonal thermocline for 2002 and 2008. They noted that all
of the parameterizations reproduced the stratification reasonably well in shallow regions,
but average temperatures and thermocline depths varied between each turbulence model.
Djoumna et al. (2014) suggested that a new parameterization specifically designed for large
shallow lakes should be implemented to accurately represent the seasonal thermocline. Dif-
ficulties like this motivate a smaller scale approach to studying the dynamical processes
relevant to large lakes in the winter. With increases in computing power, small scale simu-
lations can be used to develop better and more comprehensive parameterizations that can
improve existing models of large scale processes of the whole lake. However, identifying the
small scale processes presents a challenge because of limited field data, but as discussed
in Powers and Hampton (2016), there has been a shift in how wintertime processes are
considered by the limnological community.

Pursuant to this, we choose to focus on small scale examples of a class of fluid flow
known as a “density driven flow”. Spatial variations of a fluid’s density drive motion as
the system attempts to achieve the most stable state with minimum potential energy. In
this thesis, we will focus on flows that are primarily density driven in cold water tempera-
tures (wintertime temperatures characteristic of those in lakes in Canada). An important
thread between many of the physical research questions mentioned in Powers and Hampton
(2016) and Jansen et al. (2021) involves understanding and predicting the temporal and



spatial variability of heat and energy within the water column. Energy in the form of heat
that enters the system often drives horizontal and vertical motion which in turn modifies
flows beneath ice, and density driven flow can move this heat around the body of water.
Within this thesis, two canonical density driven flows are considered. They are penetrative
convection by solar radiation, and gravity currents. A more detailed introduction for each
will take place in the respective chapters, so here we will only give a broad introduction.

Convective instabilities occur when denser fluid lies over lighter fluid. This setup is
gravitationally unstable and the dense fluid sinks, causing the lighter fluid below to flow
upwards. This process is called convection which generates convective plumes. The vertical
currents generated are an important mechanism for the vertical transport of dissolved oxy-
gen, organic and inorganic material, and pollutants. Convection occurs in many different
circumstances but we will contain the discussion to EGFD related contexts. Convection
is a very important mechanism in the ocean; Vreugdenhil and Gayen (2021) reviews re-
cent research directed towards nocturnal convection, convection due to evaporative cooling,
winter convection, open-ocean convection, and polynya convection. Additionally, a host
of process related to convection can occur in the atmosphere (take moist convection for
example, a review of which can be found Stevens (2005)).

In terms of convective processes in lakes, a modern resource can be found in Bouffard
and Wiiest (2019). They highlight the most widely relevant forms of convection that occur
in lakes, but here we will highlight only one. A primary discussion point of Bouffard
and Wiiest (2019) is that convection beneath ice is responsible for a host of processes
that have wide ranging implications for both the present and future states of the water
column. For example, Yang et al. (2017, 2020) showed that overturning generated by
vertical convection in the winter may have serious implications for dissolved oxygen (DO)
concentrations observed during the subsequent spring in Lake Simcoe, Canada. Their data
shows vigorous convection beneath ice shortly after the surface snow melted. This resulted
in a burst of vertical transport of DO leading to supersaturation across much of the water
column. Prolonged supersaturation of DO can lead to gas bubble disease in fish resulting
in significant mortality.

The second variety of density driven flow that is discussed in this thesis is that of a
gravity current. A gravity current is a current that flows horizontally along a surface, and is
driven by the density difference between it and the fluid it is immersed in. Gravity currents
can be positively buoyant (they flow along the upper surface of whatever they are flowing
into), they can be negatively buoyant (they sink and flow along the bottom surface), or
they can even flow at some mid-depth if the medium is stratified. Gravity currents provide
a canonical example of density driven flow and have often been used in numerical and
laboratory scale studies to represent much larger scale phenomena. Gravity currents in the

7



atmosphere can manifest themselves as thunderstorm outflows or sea-breeze fronts; both
of which are a result of cold and dense air penetrating into a warmer and lighter mass
(Simpson, 1982, 1999). Wells and Dorrell (2021) review a special type of gravity current
called a sediment-laden gravity current, or turbidity current. These kinds of currents can
occur in both oceans and lakes. Turbidity currents can be initiated by sediment-laden river
plumes flowing into larger bodies of water, underwater landslides, or even resuspension by
intense storms. These kind of currents can travel large distances and are responsible for
deposition of sediments along the ocean or lake floor.

Gravity currents can also originate from shallow near-shore regions of lakes, called
sidearms. Since shallow regions have a smaller mass of fluid to store heat, they often
change temperature much faster than deeper regions. In this case, a horizontal temperature
gradient (and therefore density gradient) is formed between shallow and deeper regions, and
this leads to a gravity current and subsequent horizontal transport (Bouffard and Wiiest,
2019). For example, Ulloa et al. (2019) shows numerical simulations of winter convection in
a small lake and highlights the formation of a gravity current that originates in the shallower
regions of the lake. The authors found that the emergent currents generated in the near
shore regions of the lake increase the rate of warming of mixed layers near the middle of
the lake in the late winter. Finally, gravity currents also represent an environment that
exhibits the coexistence of coherent structures and turbulence and have been extensively
studied in a numerical setting (Hértel et al., 2000a,b; Ouillon et al., 2019).

Lastly, the type of studies discussed within this thesis are known as “process studies”.
It is important to identify the utility of a process study and this can be understood through
the use of a comparison to what it is not. If one wishes to study a full system, the approach
is to include every factor that might have a role to play in the dynamics. The goal is to
maximize realism within the context of the problem to make broad conclusions about the
system. At the largest spatial and temporal scales relevant to humans, a common kind of
system model is called an Earth System model (ESM) (these can be considered successors
to Regional Climate Models, or RCMs (Tapiador et al., 2020)). For an ESM, the goal
is to model the most complete form of the Earth system. This typically includes the
interactions between the physical climate (the atmosphere, oceans, land surfaces, and sea-
ice) and biogeochemical processes (the carbon cycle, or even human interactions with the
climate) (Flato, 2011). An in depth discussion of ESMs is beyond the scope of this thesis,
but a success story of ESMs (from a scientific standpoint and not a political one) is their
use in the IPCC 2021 Report (Szopa et al., 2021). This report uses comparisons of data
from different ESMs to make predictions about the future of Earth’s climate at different
levels of confidence. RCMs have been used with success before, but require information
about the boundaries of the region that is being simulated.



A drawback to full system studies is that they must make some strong assumptions
about the flows they are modelling. A traditional example is that the boundaries of ESM
components (ocean, land, ice sheets, and atmosphere) do not evolve over the course of
a simulation. However, a more realistic ice sheet model must include the horizontal and
vertical variation of these ice sheets which are capable of covering and uncovering land
and ocean, as well as displacing sea ice. For an ESM that does not already include such
mechanisms it could require massive model reconfiguration (Fyke et al., 2018) to do so. An
example of a drawback for a RCM is the significant simplification of the influence of lakes
(in fact, sometimes they are ignored altogether). For instance, in their study of the impact
of the Laurentian Great Lakes on the regional climate, Notaro et al. (2013) commented
that the horizontal circulation and movement of ice in their lake model component was
ignored, and the lack of simulated lake circulation and horizontal heat transport resulted
in biases in the spatial distribution of both water temperature and ice cover. Furthermore,
they commented that the ice cover in deep regions of Lakes Superior and Michigan were
underestimated because overturning in the lake was ignored. Reduced ice cover can lead to
an increase in the heat absorbed by the lakes (less reflection of shortwave radiation), but
in contrast to this, ignoring overturning also underestimates the lake’s capacity for heat
absorption as deep mixing can no longer occur, especially in the late winter. Generally,
the increased heat absorption due to the lack of ice cover does not balance the reduced
heat absorption by ignoring overturning.

Flato (2011) provides a discussion about the necessity of parameterization, currently
the only means of including vitally important small and micro-scale processes like cloud
nucleation in an ESM, or overturning in a RCM. Flato (2011) also mentions that kilome-
tre scale processes like atmospheric convection should be explicitly resolved, but are often
parameterized due to computational resource limitation. All parameterizations come with
modelling assumptions, not all of which are satisfied generally. This can lead to misrepre-
sentations of the small scale physics. Since the larger scale Earth systems are very sensitive
to the small scale unresolved processes, the misrepresentation of these processes can lead
to unrealistic feedbacks within the system.

In contrast to a system model is the idea of the process study. In a process study,
a reductionist approach is taken, in a sense sacrificing context for idealism and control.
Process studies are the building blocks of fluid mechanics, and by taking a reductionist
approach to modelling a single physical process, its role can be studied and identified in its
most true sense with the fewest uncertainties possible. Therefore, a process study is the
best representation of a truly isolated physical process. In the most idealized and simple
form of a problem, a solution to the system can typically be written down by hand. For
instance see any undergraduate or graduate text on fluid mechanics like Kundu (1990)



for a host of toy problems. Toy problems, while very idealized, often provide a basis
for which the results of more complex numerical models can be compared to. Numerical
models and laboratory experiments provide a balance between analytical solutions to toy
problems and meaningful results to more complicated ones. Numerical experiments involve
simulations of complicated equations at the small scale, leading to the need for far fewer
parameterizations when compared to something like an ESM. A numerical example of a
process study relevant to this thesis is the study by Lepot et al. (2018). In this experiment,
they simulated a homogeneous box of fluid heated from below and looked at the efficacy
of convective instabilities at moving heat around the domain. In their experiment the
length scales were on the order of a metre and timescales on the order of hours; both of
these far smaller than comparable systems found in the natural environment. The heating
drove convective instabilities that efficiently mixed the water column. A more detailed
description of this reference and the meaning of “efficiently” is saved for chapter 3. An
experimental example of a process study is the followup to this work by Bouillaut et al.
(2019) who showed small scale laboratory experiments of convection driven by upward
focused internal heating. They reported their scaled results so as to be able to compare to
literature concerned with larger scale examples of this process, even though their system
was at a small scale that is impossible to resolve in something like an ESM. These references
are just a few examples of the utility of process studies.

1.2 The Non-linear Equation of State

In many geophysical flows, accurately representing the water density is a crucial precon-
dition to making predictions about the future state of the water column. To calculate the
water’s density based on other properties (temperature, pressure, concentration of dissolved
solids), a mathematical function called an “equation of state” is required. An equation of
state (EOS) is a mathematical expression that relates the various thermodynamic variables
(also known as state variables) of a solid, liquid, or gas under certain conditions. Equations
of state can also exist as tables of data and empirical fits to that data (Lemons, 2009). The
work in this thesis concerns itself with the equation of state for freshwater (water with no
dissolved solids).

In studies of geophysical fluid dynamics, a common use for the equation of state is to
calculate the density (mass per unit volume). The density is an important quantity to know
because spatial variations in the density generate variations in other quantities within the
flow. As a simple example, consider a vertically stable stratification. If a parcel of fluid of a
certain density is instantaneously brought to a region where it is surrounded by less dense
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fluid, it will sink and until it reaches its point of neutral buoyancy and then it will oscillate
about this point. This happens due to a conversion between gravitational potential energy
and kinetic energy. The oscillation radiates energy away in the form of waves, thereby
inducing motion far away from the original parcel. Thus, accurate representation of the
density of a parcel of water relative to its surrounding is important for understanding
resultant motion. Once the density of a region of water is known, then the buoyancy force
can be calculated; the force responsible for density driven motion. Below is a discussion
some of the key characteristics of the equation of state for water and how those key features
are implemented in a simple and useful way.

The equation of state for water composed of a single constituent (no dissolved solids or
gases) is generally written as
p=p(p.T), (1.1)
where p represents the thermodynamic pressure, measured in Pascals, and T represents
the temperature, measured in Kelvin or °C See references for several difference examples
of the equation of state in McDougall et al. (2003) and Kantha and Clayson (2000). For
the purposes of this thesis, dimensional temperatures are measured in °C.

Assuming an isobaric system (the temperature of the system is independent of its pres-
sure), empirical evidence has shown that the density of fresh water is an increasing function
of temperature between its freezing point 0°C, and its temperature of maximum density
Tona (about 3.98°C) (Kantha and Clayson, 2000). The fact that the water density increases
with temperature for temperatures below 7}, is key to a host of physical processes, and
is remarkably important for life as we know it. It is because of this fact the inverse strati-
fication occurs in the winter meaning that the entire water column does not need to reach
0°C before surface ice can form; surface ice that provides thermal insulation for the water
below (Bouffard and Wiiest, 2019).

After this point, the water density decreases as the temperature is increased. As the
mass of water cannot change in the closed system, the volume of the water must expand
or shrink in order to accommodate the density change. Adding heat to a system with
temperatures greater than 7),; increases its volume while removing heat decreases its
volume. Often, the density p(T) of fresh water in this regime is approximated as a sum of
a constant reference density py = p(Tp) plus an anomaly about that reference due to the
expansion and contraction of the water. Mathematically, this is written as

p=po(l —a(T' = Ty)), (1.2)
where "
)

oa=— — 1.3

oo OT |y, (1.3)
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is the constant thermal expansion coefficient, calculated by evaluating the temperature
derivative of p at the reference temperature, 7. The negative in front of the anomaly term
indicates that @ > 0. The above is only valid for small AT = T — Ty. If AT becomes
too large, then the assumption of constant a becomes incorrect. Thus, when the linear
equation of state is used we maintain the first order effects discussed above. The linear
equation of state is ubiquitous in the study of geophysical bodies of water. In these studies,
« is typically a prescribed quantity, and its value is chosen to best represent the slope of
the freshwater equation of state at Ty.

For characteristic temperature ranges where the non-linear equation of state (NLEOS)
cannot be approximated by a linear function, more complex expressions must be used,
A common equation of state for seawater is provided in McDougall et al. (2003). This
equation of state is written as a ratio of two polynomials, P, and P,, each functions of
the salinity (a measure of the concentration of dissolved solids), the potential temperature
(the temperature a parcel would attain if brought to a standard pressure state), and the
pressure:

- P1 (S, T, p)
P, 2 (S ) T? p) .

This NLEOS is cumbersome to include in a model as it has 25 independent parameters,
which creates a massive parameter-space to analyze. When the water is fresh (S = 0),
both P; and P, have 8 coefficients each. Furthermore, McDougall et al. (2003) optimized
their fitting procedure for deep saline bodies of water, thus their EOS is only accurate
for freshwater when the pressure is equivalent to the surface pressure (p = 0). This
further reduces the total number of parameters to 9. Their specific values are given in
McDougall et al. (2003). Some cold water focused studies will further simplify the full
freshwater NLEOS so that it includes only 3 parameters: T,,4, a fitting constant, C', and
the maximum density p,,q. Olsthoorn et al. (2019) recently used a simple equation of state
in this form:

pu(S; T, p) (1.4)

pq = pma — C(T — de)Q- (1.5)

To determine the parameter C, a quadratic function of the form (1.5) is fit to the freshwater
version of the McDougall et al. (2003) NLEOS ensuring that 7,4 and p,,q are the same
for the quadratic and the full NLEOS. More discussion on the quadratic equation of state
will take place later in chapters 3 and 5.

Other freshwater studies such as Hanson et al. (2021) use the equation of state from
Brydon et al. (1999). This NLEOS includes salinity and pressure effects, but when those
effects are ignored, this EOS becomes cubic in temperature, but near 7,4 the behaviour is
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predominantly quadratic. It is written as
Pe = po + ClT -+ ngj2 + 63T3, (16)

where the constants cg, ¢1, co, and c3 are given in Brydon et al. (1999). In this equation of
state, T},4 is not an explicit parameter but can be calculated as

T —2cy — /43 — 120103. (L.7)

663

More discussion on the cubic equation of state will take place later in chapter 4.

Figure 1.2 provides a comparison of the three NLEOSs described above. Panel (a)
shows the density anomaly in the range 0°C to 10°C, and panel (b) shows the normalized
thermal expansion coefficient. In this range, the three NLEOSs are all essentially quadratic,
however there is a systematic vertical shift for the cubic form. This is probably a symptom
of the optimization procedure used to calculate the coefficients in Brydon et al. (1999)
(they assumed that it would only be used for salty water). This shift in the NLEOS
from Brydon et al. (1999) is ultimately inconsequential as the density differences are the
driver of motion, and not the magnitudes themselves. The density differences are better
quantified by the variable thermal expansion coefficient. The expansion coefficients are all
nearly linear in this temperature range, and we can see that the spread in the values of
the three NLEOS’s is about 10%, so the differences are not substantial for the purposes of
the processes studies presented in this thesis. If instead we were trying to speak about a
specific body of water and match results to data from that body of water, the difference
could potentially be meaningful, so choosing a simplified NLEOS would not be advisable.

1.2.1 Cabbeling

In freshwater, the non-monotonic nature of the NLEOS near T,,4 leads to a phenomenon
known as cabbeling. A basic example of cabbeling in freshwater can be understood by
considering two parcels of equal density but different temperatures and what happens when
they mix. If the two parent parcels have temperatures T} and 75, to a good approximation,
the child parcel will have a temperature 73 = %(Tl + T3), assuming that the parents are
of equal mass. However, the density of the child parcel will be greater than the average
density of the parent parcels. Cabbeling also occurs in the ocean because the density of
seawater is a function of both the salinity and temperature, and there is a whole separate
literature concerned with saltwater /freshwater cabbeling. Parcels of fluid along the same
isopycnal can mix, and this generates denser water that sinks. An example of a study
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Figure 1.2: The non-dimensional density anomaly about 1000 kg/m? for freshwater be-
tween 0 — 10°C is shown in panel (a), while the thermal expansion coefficient in the same
temperature range is shown in panel (b). Each curve corresponds to the NLEOS of Jack-
ett and McDougall (1995) (dashed), Olsthoorn et al. (2019) (solid), and Hanson et al.
(2021) (dot-dashed). The maximum density of each curve is highlighted on each curve by
a marker. The maximums of the full NLEOS and the quadratic EOS are coincident.
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of salt/fresh cabbeling is found in Shakespeare and Thomas (2017). Since this thesis is
only concerned with freshwater dynamics, the study of saltwater/freshwater cabbeling is
intentionally ignored.

We now allow the parent parcels to have different densities, allowing us to discuss two
categories of cabbeling in this thesis. The first is weak cabbeling which occurs when the
density of the child parcel is greater than the average of the parent densities, but is still
lower in magnitude than one parent and higher than the other. The second category will
be called strong cabbeling, which aligns with the more traditional view where the child
density is greater than that of both the parents. Strong cabbeling is especially interesting
because (in the absence of some other equal and opposite forcing mechanism) the relative
density of the child parcel causes it to sink and generate vertical currents (downwelling).
In this thesis, “strong cabbeling” and “cabbeling” will be used interchangeably, but when
weak cabbeling is being discussed, the qualifier “weak” will always be used.

One relatively common natural phenomenon that exhibits cabbeling is the thermal bar.
A thermal bar occurs when two masses of water with temperatures on different sides of
T,.q are adjacent and mix together. Thermal bars form in both the autumn and spring in
many lakes, but autumn thermal bars are often disrupted by wind mixing, so springtime
thermal bars are reported on more often. To form a spingtime thermal bar in a lake, a
mass of warm water whose temperatures are greater than 7,4 (this could be fed by a river
mouth for example, or by heat exchange with the atmosphere) sits in a shallow region
of the lake and is adjacent to a mass of cooler lake water whose temperatures are less
than 7,,4. Mixing occurs along the interface between these two fluids which results in the
formation of dense water that sinks, causing downwelling. The sinking mass is replaced
by near-surface waters which further contributes to cabbeling and dense water formation.
Tsydenov et al. (2016) shows 2.5D numerical simulations (the Coriolis force is included,
but derivatives of any quantity with respect to the out of the page direction are zero) of
the thermal bar in a model for a deep lake. Their figure 4 highlights the main process
discussed above. Additionally, if the thermal bar exists on a slope, the dense fluid flows
down the slope to deeper regions in the lake. Thermal bars may have significant ecological
implications, as well as impacting pollution transport in lakes. For example, horizontal
currents typically cannot penetrate the thermal bar, so there is limited horizontal mixing
which compounds eutrophication problems in near-shore regions (Holland and Kay, 2003).
Historically, the thermal bar was thought to be a mechanism responsible for deep water
renewal in Lake Baikal (Shimaraev et al., 1993), but other mechanisms have since been
proposed (Schmid et al., 2008).

A more vigorous example of strong cabbeling where horizontal currents may form in
freshwater may be found near a power plant outflow. Power plants are often adjacent
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to a lake, river, or some other body of water and will use this ambient water to cool
the internal components. This water absorbs heat and is expelled back into the body
from which it came. In the winter, the ambient water may approach the freezing point,
so there is potentially a significant temperature difference between the discharged water
and the ambient water. When the warmer water is expelled into the cold ambient, it is
initially less dense and will float. However, as the warm water mass mixes with the ambient
water, it becomes denser and sinks. Additionally, there may be vigorous mixing due to
mechanical energy input from outflow of the plant, further inducing mixing and cabbeling.
A recent study by Faulkner et al. (2021) shows numerical simulations of the dispersion of
thermal discharge from Heysham power station (UK). This study serves as an example
of the potential temperature differences between expelled water and ambient water. They
showed that discharged water was between 3 and 9 degrees warmer than the ambient water
in the winter and spring. Data from Landsat 8 shows that the ambient water was between
4 and 6 degrees in the winter and as high as 13 degrees in the spring.

Large scale cabbeling is difficult to study at high resolution with direct numerical
simulations due to the characteristic length scales required to study it. For example,
thermal bars have been observed to extended several hundred metres lakeward and several
tens of metres deep in the near-shore regions of Kamloops Lake (Canada) (Carmack, 1979).
As an example in a simulation context, the domain used in the study of Tsydenov et al.
(2016) models the near-shore regions of Lake Baikal and as such covers 10 kilometres in the
cross-isobath direction and 300 metres in depth. In any case, the scales of this phenomenon
require the use of turbulence models to estimate the sub-grid scale turbulence and the
diffusion of mean quantities. Holland et al. (2001) used a diffusivity that was inversely
proportional to the local buoyancy frequency above some small cutoff. Below this cutoff, a
constant diffusivity four orders of magnitude greater than the molecular value was chosen.
Tsydenov et al. (2016) used the two-parameter k—e model of Wilcox (1988) to compute the
vertical diffusivity, while also using a constant horizontal value. The k — e model is useful in
many contexts as it is the simplest complete turbulence model. However, its performance
has been known to suffer in complex flows (though the term “complex” is not exactly
precise in this context) (Pope, 2000). As with any empirical model, it can be tuned to fit the
specific context. In this thesis, the difficulty of selecting an appropriate turbulence model
and tuning is side-stepped by instead performing small scale direct numerical simulations
(DNS). More information on DNS is presented in section 2.4.1
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1.2.2 NLEOS Parameter

Generally speaking, for a polynomial equation of state, there are a set of NLEOS param-
eters that characterize the magnitude of the non-linear terms relative to the linear term.
The following section is intentionally left general since the exact definition of the NLEOS
parameters differ from chapter to chapter. Thus we will speak about it in broad terms
here.

The main role of the NLEOS parameter is best understood for the quadratic equation
of state in (1.5). This EOS yields a single non-dimensional NLEOS parameter, and its
magnitude and sign both play important roles in predicting the dynamics. For studies
in cold water, characteristic temperatures responsible for driving motion (often set by
initial conditions or relaxation terms for example) are not the only relevant temperatures
in the flow. The temperature of maximum density and the proximity of the characteristic
temperatures to 7,4 also play a role in the dynamics. Since the characteristic temperatures
in the numerator and denominator are determined by the specific context, the role this
parameter plays in this thesis will be discussed in the relevant chapters.

Generally speaking, if the NLEOS parameter is large (compared to unity), then we
should expect the quadratic term in the equation of state to have a leading order effect on
the dynamics. On the other hand, if the NLEOS parameter is small compared to unity,
then the quadratic term becomes secondary to the linear one. A recent example of the use
of the NLEOS parameter (the authors called it § in their work, but we will adopt ©) can
be found in Olsthoorn et al. (2019). In this study, the authors studied the development of
Rayleigh-Taylor instabilities with diffuse interfaces in temperatures below the temperature
of maximum density. For given layer temperatures T} and 75, they defined their © analogue

as
T —T5

T+ Ty — 2T
Note that T and 75 in their study were both greater than 7,,4, so the denominator was
never zero. Using this definition and defining a non-dimensional temperature as

(1.8)

T -1,

T = 1.9

= (19
the quadratic equation of state from Olsthoorn et al. (2019) became

p=—-0T%—(1-0)T. (1.10)

Thus, for © near unity, the EOS becomes more quadratic, whereas for © near zero, it
becomes more linear. In this study, © was restricted to be between 0 and 1.
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Hanson et al. (2021) performed numerical simulations of a stratified parallel shear flow
such that the interface between the two fluid layers crossed T,,4, thus, mixing across the
interface generated dense fluid that would fall to the bottom of the domain. The top
layer had a temperature of Ty and the bottom layer had a temperature of Ty + AT (AT
is the temperature difference between the top and bottom layers). In their study, they
used the cubic EOS from Brydon et al. (1999), shown in (1.6). Hanson et al. (2021)
did not specifically define any non-dimensional parameters to characterize each term in
the NLEOS, but we will do that here to provide an example of a recent study with a
wider range of NLEOS parameters. Since their equation of state is cubic, we can define
two NLEOS parameters, each quantifying the magnitude of higher order terms relative to
the linear term. We will call them ©; and ©,. Note that in (1.6), the temperature of
maximum density is 3.5°C instead of the true value of 3.98°C. As mentioned previously,
this is probably an artifact from the optimization procedure to determine the coefficients
in Brydon et al. (1999), as their NLEOS is meant to be used for seawater and assumes the
salinity is non-zero. The actual value of T},; does not matter for the definition of ©; and
O,, only the difference between some characteristic temperature and T,,4. A Taylor series
expansion of the equation of state given by (1.6) about T} gives

p—p(To)

T 1 / T 2 1 " T 3
" :a(To)(T—T0)+§a (To)(T' = To) T ¢ (To)(T = To)”, (1.11)

where a tilde represents a dimensional variable, « is the thermal expansion coefficient
from (1.3), and a prime denotes a temperature derivative. We can non-dimensionalize the
temperature anomaly about the upper layer temperature as

T —T, = (AT)T. (1.12)

Here, T' is the non-dimensional temperature for this system and takes values between 0
and 1. Upon substitution of the above into (1.11), we see that the magnitude of the linear
term is aAT. Dividing the whole equation by this factor, and defining

p—p(To)
— PP 1.1
aAT (1.13)
we get

p=T (1 + %@1T + %®2T2> : (1.14)

where ((Ty) AT "(Ty)AT?

_ aHo)ar _ oAl
0, = (Ty) O, oTo) (1.15)
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Thus, for small ©; and ©,, the system behaves as if the density and the temperature were
linearly related, whereas for larger ©; and ©,, the quadratic and cubic terms are more
comparable in size and therefore play a more significant role in the dynamics.

As an example, we will compute ©; and ©, for the CB case in Hanson et al. (2021),
as this case is representative of the rest of their runs where cabbeling occurred. This case
has Ty = 2°C, and AT = 4°C. Substituting 7y and AT into the above equations gives
07 = —2.6 and Oy = 0.14. In this formulation, ©; is significant compared to unity, so we
should expect effects from this term to be apparent. Additionally, ©, is smaller indicating
the cubic term in the cubic NLEOS plays a relatively insignificant role.

1.3 Thesis Layout

The remainder of thesis is laid out as follows. Chapter 2 is a broad technical background
section that highlights the common mathematical and computational threads that are used
throughout this thesis. A discussion of the equations of motion and details on the Boussi-
nesq and incompressibility approximations follow. The chapter closes with a discussion
of some of the broad details of software used, as well as a brief section highlighting the
motivation for using such a model. Following the Methods chapter, the following three
chapters (chapters 3, 4, 5) discuss three different classes of process studies. Each chapter
considers the dynamical response under a different characteristic interval of the NLEOS.
Chapter 3 (published as Grace et al. (2022)), highlights the evolution of a water column as
heat is added. The added heat increases the density in this study, but this results in only
relatively small spatial density differences. This chapter highlights one of the most im-
portant features of the non-linearity of the freshwater EOS; its positive slope between the
freezing point and T,,4. This chapter discusses the development and degeneration of con-
vective instabilities in the presence of mean shear characteristic of under-ice flows. Chapter
4 (published as Grace et al. (2021)) begins to discuss the dynamic response for a larger
but still monotonic interval of the NLEOS. In this chapter, the evolution characteristics of
two classes of gravity current are compared (one that is positively buoyant and one that
is negatively buoyant). The characteristic density difference is controlled by the choice
of initial conditions. Finally, chapter 5 (yet to be published at the time of this writing)
extends the work of chapter 4 by allowing non-monotonicity of the NLEOS and discusses
the general evolution of a cabbeling gravity current. In this chapter, under a particular set
of circumstances, an initially positively buoyancy current mixes and generates a coherent
bottom flowing current. The characteristics of this process are investigated and quantified.
Figure 1.3 highlights the different temperature intervals for each chapter as well as the re-
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Figure 1.3: A schematic representation of the different intervals of the NLEOS that chapters
3, 4, and 5 are concerned with. Panel (a) (chapter 3) shows a small approximately linear
sub-interval of the NLEOS. The key is that heat is continually added to the domain and the
interval stays nearly linear. Panel (b) (chapter 4) shows a larger monotonic sub-interval
that is non-linear. Panel (c) (chapter 5) shows a non-monotonic and non-linear sub interval

of the NLEOS.

sultant density differences. Lastly, chapter 6 concludes the work and provides some future
directions for the thesis as a whole.
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Chapter 2

Technical Background

This chapter presents the mathematical and physical foundations upon which the rest of
this thesis is built. The technical background below will provide information on common
threads between each chapter, but specific techniques and methods will be highlighted in
the chapter they appear in. The goal of this chapter is to highlight some of the details of the
full equations so we can understand where they come from and what assumptions we make
to get them. After sketching the derivation of the equations of motion, the incompressibility
assumption and the Boussinesq approximation will be discussed. Following this discussion,
the numerical model used throughout this thesis is introduced. The technical aspects of
the numerical model are briefly highlighted, but the primary focus will be placed on the
reasoning behind the choice of numerical method and its strengths.

2.1 Conservation Laws

A conservation law is a mathematical sentence that describes how a quantity of interest
changes in space and time, and what mechanisms or processes are responsible for this
change. Our understanding of every physical process is derived from a conservation law
at some stage, and it is important to understand where these laws come from and what
equations they lead to. In the following section, the equations of motion for a fluid will
be derived under only the most basic assumptions, and the approximations used in this
thesis will be discussed and applied afterwards. This exposition is included as a reminder
that the main results of this thesis (and many others that use the same equations) are
approximations to an even more complicated set of equations. Additionally, this section
can also be provided as a resource or primer for new researchers to get a brief overview of
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where the common approximations come from. The work below is from a combination of
several sources. Specifically from Kundu (1990), Vallis (2006), and Batchelor (2000).

The conservation of mass, momentum, and energy will be used throughout this thesis.
For the sake of exposition, we will derive the conservation of mass from its integral form,
and show how it can be expressed in differential form. The conservation of momentum and
energy can be derived by following similar procedures, but will only be highlighted here.
A more in-depth and complete derivation of conservation of momentum and energy for a
fluid can be found in Kundu (1990). For readers who would like to skip the discussion of
the full equations of motion and only want to see their final form after the application of
common approximations, please skip to section 2.4.

2.1.1 Conservation of Mass

The total mass of a fluid M within a region W can be expressed as the volume integral of its
density, p, over this region. The region W is time-dependant, meaning that it can deform
as the fluid flows. This requires the definition of two objects used in the study of fluid
dynamics. The first is called a fluid particle, and the second is called a material volume.
A fluid particle is a small packet of fluid that has enough molecules to have consistent
thermodynamic properties, but is large enough to adhere to the continuum assumption.
A material volume is a set of fluid particles identified at the initial time that retain their
identity as the fluid flows. As a simple example, think of an initially dyed packet of fluid
that is followed as the flow evolves. We can write the total mass in a region W as

M= ///W(t)pdv. (2.1)

Assuming the mass within W is conserved over its evolution, the statement of the conser-

vation of mass is
dv = 2.2
dt dt///w(tpv o (22)

As W itself is a time-dependant region, the time derivative and integral do not commute
directly. To solve this problem, we will use the Reynolds Transport Theorem (RTT). The
RTT re-expresses the time derivative of the integral of a quantity as a sum of the integral
of the time rate of change of the quantity within the region W (t) plus the flux of quantity
through the bounding surface of the region. The RTT is a generalization of the Leibniz
integral rule from calculus (Kundu, 1990). Using the RT'T, we can write the integral as

I, (G ow) ao=o -
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where w is the flow velocity. The region W is finite, and the integrand is continuous over
W. Since (2.3) holds for any W, we can write the conservation of mass in differential form
as: N
p

Dt+pV~u—O. (2.4)
This equation indicates that changes in the fluid’s density changes due to compression and
expansion. Here, the operator % = % + u - V is the material derivative. It appears often
in studies of fluid flows. The first term represents the time rate of change of a quantity at
a particular location in space, while the second term represents the variation of a quantity

as it moves with the flow. Note that steady flow is one where %—f = 0 for all quantities X.

2.1.2 Conservation of Momentum

The conservation of momentum is a statement of Newton’s second law, commonly written
as simply as F,.; = ma, or that the net force acting on a body is proportional to its
acceleration, with the constant of proportionality being the mass of the body. For this
equation to be useful, we must first determine the forces acting on the fluid. In this thesis,
we must account for two classes of force: body forces and surface forces. In this thesis, the
only body force considered is the gravitational force. Surface forces, or the forces exerted
on an area element of size dA by its neighboring elements, on the other hand are specific
to continua and include normal forces and shear forces. Using a technique similar to the
one we used for the conservation of mass (albeit with a more details), we can write the
conservation of momentum in differential form as

pF’l: — —gpk+V - T. (2.5)
The gravitational force per unit volume on the fluid is represented by —gpl%. This force
only acts in the direction parallel to gravity (the vertical direction in this thesis). Here,
V - T represents the internal forces within the fluid. Assuming a Newtonian fluid, we can
use the linear constitutive law for a fluid (the stress-rate of strain relationship) to relate the
internal stresses to the velocity field. We can recast internal forces in tensor notation so as
to be able to use the Einstein summation convention (repeated indices imply summation):

Tij = —p(SU + 2ueij + )\ekkéij (26)

where e;; is the rate of strain tensor, ¢;; is the Kronecker Delta, j is the dynamic viscosity,
and X is the bulk viscosity. The bulk viscosity is only relevant for compressible fluids,
whereas 1 is a very important parameter for compressible and incompressible fluids alike.
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The stress tensor is a sum of two basic parts; the isotropic component that would exist
if the fluid were at rest (this is the first term in the above equation), and the deviatoric
stress tensor, which is non-isotropic and is a result of velocity gradients within the flow
(this is the sum of the last two terms in the above equation). We can use tensor notation
to express the last term in (2.5) as

Tijg = —P30 + 1 (Wigs + w5) + N g0 (2.7)

(the comma between indices represents a derivative with respect to the indices after it)
where the first term represents the contribution to the total stress by the thermodynamic
pressure (the diagonal entries in the rate of strain tensor), the second term represents the
shear stresses (the diagonal entries of the rate of strain tensor), and the third term is the
volumetric strain rate. Upon contraction and expressing back in vector notation, we have

V-r=-Vp+uViu+ (u+ NV(V-u). (2.8)

Thus, the full variable density conservation of momentum for a Newtonian fluid be-
comes:

Du

"Dt

The first term on the right is the pressure gradient. The second term is the force of gravity

per unit volume, the third term represents the diffusion of momentum by viscosity, and
the last term represents the diffusion of momentum by compression of fluid elements.

= —Vp — gpk + pV*u + (n+ NV(V - ). (2.9)

As a brief aside, there is a point of nuance with the definition of the pressure in the
above equation. Kundu (1990) points out that thermodynamic quantities are only defined
for equilibrium states. Since the flow state is not generally in equilibrium (there is motion,
diffusion of temperature and momentum, etc.), the pressure defined above is not exactly
the thermodynamic pressure. However, we can assume that the relaxation timescale for
the molecules in the fluid is much shorter than the timescales of the motion, thus allowing
us to interpret the motion as a progression through a series equilibrium states. This
allows p to become an adequate representation of the true thermodynamic pressure. This
matters for the calculation of other state variables through the equation of state, as only
thermodynamic variables play a role.

2.1.3 Conservation of Energy

The conservation of internal energy is a statement of the first law of thermodynamics: the
rate of change of internal energy with time is due to external heat fluxes (heat entering the
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system increases the temperature of the flow which in turn increases the internal energy),
pressure work (compression of elements by the system resulting in a decrease in volume of
elements, thereby increasing the internal energy). We could instead write the conservation
of stored energy (internal 4+ mechanical), but the total mechanical energy is not a separate
law, and is derivable from the conservation of momentum. As an example, see Kundu
(1990). We can subtract the total mechanical energy from the stored energy to get a
conservation law for the internal energy per unit mass e, which is written as

De

Y g —p(V. ‘ 2.1
Ppp =V a—pVeou)te (2.10)

The first term on the left represents the rate of change of the internal energy per unit
volume (per volume because we have multiplied by the fluid density p). The first term on
the right is the divergence of the heat flux. This is easily seen if this term is integrated over
a three-dimensional region and Gauss’ theorem is used. The second term is the pressure
work done on the body, and finally, the last term is the increase in heat due to viscous
dissipation, or the rate that kinetic energy is turned into heat via fluid friction. The viscous
dissipation is defined as € = 2ue;je;; (Kundu, 1990) and is always greater than or equal to
zero. At this stage there is no simplification that can be done to this equation.

In this section we have highlighted the conservation of mass, momentum, and energy for
a fluid in a very general form. At the moment, they are in a state that is difficult to analyze
or simulate numerically, and are infrequently used when considering the motion of water.
These equations can be simplified significantly by using two common approximations for the
studied of variable density flows; the incompressibility approximation and the Boussinesq
approximation. In the following section, these approximations will be discussed, and their
impact on the equations of motion will be shown.

2.2 The incompressibility approximation

In this thesis, flows are treated as incompressible. This means that the expression of
the conservation of mass is replaced by the incompressibility condition V- u = 0. As a
reminder, the conservation of mass equation is:

Ly v.ou=o. (2.11)
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In order to replace the above with V - w = 0, the dominant balance in the above equation
must be among the terms u,, v,, and w,, or in other words

'1Dp

DI < max {|ug, |vy, |w,|} - (2.12)

This means that the material derivative is much smaller in magnitude than at least two
of the individual terms representing the divergence of the velocity field so that in an
approximately incompressible flow, density changes are so small that they have a negligible
effect on the mass balance (Vallis, 2006). Under this assumption, stretches of the fluid
in one direction are compensated by compressions in another, rather than by changes
in density. Thus, under the incompressibility approximation, the continuity equation is
replaced by

V-u=0. (2.13)

There are several restrictions that must be met for a fluid to be considered incompress-
ible. Practically speaking, they are as follows. The squared Mach number, U?/c? must
be much smaller than unity (c is the speed of sound in the relevant media). If waves are
under consideration, the ratio of estimated wave propagation velocities to the speed of
sound must also be much smaller than unity. Since the characteristic velocities that we
are interested in studying in this thesis are all much slower than ¢, these restrictions are
satisfied. Lastly, depths must be much smaller than the ratio ¢*/g. In water, this depth is
approximately 200 km, so this condition is easily satisfied as the depths presented within
this thesis are all on the order of 1 m. Finally, density changes as a result of heat exchange
by internal dissipation or molecular diffusion must be small compared to the reference
density. An in-depth discussion of these restrictions can be found in Batchelor (2000).

2.3 The Boussinesq approximation

The Boussinesq approximation is a commonly used approach for simplifying the equations
of motion for studying geophysical flows, and will be used throughout this thesis. Below,
we will summarize discussions provided in Kundu (1990), Batchelor (2000), and Vallis

(2006).

The main thrust of the Boussinesq approximation is that the full density field in the
equations of motion is replaced by a constant reference density except in the buoyancy
term. This motivates us to decompose the density into the sum of a reference density pg
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and a perturbation about the reference density p':

,0:/)0"‘/)/(3773/;2;7?)‘ (214>

The perturbation may be due to a stratification, motion, or something else. However, it
must be much smaller in magnitude than py. Furthermore, we can write the full fluid
pressure as

p=Py+p" )+ (z,y,21). (2.15)

where it is decomposed into a sum of a constant reference pressure Py (the equilibrium
pressure on a small element of fluid located at a reference height z), p is the part of
the pressure in hydrostatic balance with pg, and p’ represents the pressure fluctuation due
to motion. The pressure in hydrostatic balance with pg is the solution to the following
equation:

dpt
— = —pog. 2.16
Az Pog ( )
By substituting (2.14) and (2.15) into (2.9) one arrives at
o\ Du dp™ . S s 9
1+ 2V 22— P p oy pogk — gk . 2.17
po( +p0) D Tk = V= pogk — p'gk + ¥V u (2.17)

Note that we have removed the (1 + A)V(V - ) term because of the incompressibility
condition V - u = 0. Since we are assuming p'/py < 1, the second term in the parentheses
on the left hand side can be ignored. Additionally, the vertical derivative of the hydrostatic
pressure exactly cancels —pgg, so we arrive at the following equation for the conservation
of momentum under the Boussinesq approximation:

Du

Py = —Vyp' — plgk + uVu. (2.18)

In order to ensure that p'/py < 1, several conditions must be met. Firstly, the changes
in the density fluctuation due to other thermodynamic variables (temperature and pressure
for a homogeneous fluid) must be small so that p’ continues to be much smaller than py. A
discussion is provided in Vallis (2006), but in short, as long as the pressure and temperature
fluctuations are much smaller than O(10°) atm and O(10%) °C respectively, then an O(1)
change in p'/py cannot occur. Since the conditions within this thesis preclude extremely
large pressures and temperature variations, the Boussinesq approximation is justified.

Lastly, we can simplify the internal energy equation. The equation is re-written below:

De

pﬁt:—v-q—p(v-u)%—s. (2.19)
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It is important to note that even though we are assuming the fluid is incompressible, we
cannot assume that the p(V-u) term is small compared to the other terms in this equation.

Following Batchelor (2000), we can write

D DT D

'OF: = (p " Df aT%) —p(V - u), (2.20)
which is an expression derived from the first and second laws of thermodynamics applied
to a material volume. Batchelor (2000) contains a derivation of the above equation, so
details are omitted here. C,, is the specific heat capacity at constant pressure (assumed to
be independent of temperature in this thesis), and « is the coefficient of thermal expansion
of the fluid. Substituting the above into (2.19), we arrive at

DT  oT Dp
C il — | =-V.-qg+ 2.21
Po p(Dt poCy Dt) a+e (2:21)

where we have replaced p with its reference value py. We can scale the left hand side of
the above equation as

AT DT oT™P_, Dyl
pocp( R p) _ (2.22)

Dt peCyr~ DF

where variables with a prime are dimensionless in the above. Here AT is a characteristic
temperature difference, 7 is a characteristic timescale (assume the material derivative of
pressure operates on the same timescale 7 as the material derivative of temperature), P is
a characteristic value for pressure, and 7™ is a characteristic temperature.

The magnitudes of py and C), are about 1000 kg m—* and about 4000 Jkg~! °C~* respec-
tively. For a non-linear equation of state, the thermal expansion coefficient « varies with
temperature in the range of 0°C™! (at T},4) to about 107 °C~! at 10°C. Any higher tem-
perature could have been chosen because o does not vary much in order of magnitude past
this value. Its sign can also be negative or positive depending on whether the temperature
is above or below the temperature of maximum density. Finally, for geophysical flows, we
can choose T™ to be in the neighborhood of 300K (since 7™ is an absolute temperature
scale, we have to express its value in units of Kelvin). This leaves two parameters that can
control the size of the pressure term in (2.22); the pressure scale P, and the temperature
difference AT. For simplicity, assume that the temperature is the main stratifying agent.
In stratified regions, characteristic temperature differences can be on the order of 10°C.
Since aT™ /poC,AT ~ O(1073) atm ™! at most, and the characteristic pressure P would
have to be about 10% standard atmospheres in order for this term to be comparable to
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unity. For example, the pressure at the bottom of the Mariana trench (the deepest part of
the Pacific ocean) is about of 103 standard atmospheres (Vallis, 2006). If the temperature
differences within the flow are smaller (say AT = 1°C), then the pressure would instead
have to be 102. Of course, with smaller temperature differences, the magnitude of the pres-
sure term becomes more important to the energy balance. However, the pressure required
are still much higher than those found in this thesis. From this analysis, it is clear that
the pressure term in the conservation of energy equation provides a negligible correction
to the overall energy balance, so under the assumptions of this thesis, we can re-write the
above equation as

pr 1 V.gis S

Dt Cppo q Cppo '

This equation says that changes in temperature of the flow are due only to heat fluxes into
the flow, and generation of heat by fluid friction. The heat generated by fluid friction is
often ignored in this equation as it is often inconsequential compared to other heat fluxes
within geophysical fluid flows. For an example where this term cannot be ignored, consider
a lubricant in an engine. One of the primary roles of a lubricant is to absorb heat from
friction generated by the mechanical engine components and subsequently to transport this
heat away.

(2.23)

The important heat fluxes can be broken into two categories: external and internal.
Empirical evidence has demonstrated that heat flow follows Fourier’s law of heat conduction
q,, = —kVT. Thus, large gradients induce a large diffusive heat flux, and heat flows
from high temperatures to low temperatures. Alternatively, we can specify external heat
fluxes as q,,; and these could be represented as boundary conditions (longwave radiation
incident on the surface of a body of water, or heat exchanged by sensible, latent, or
material processes), or as internal forcing terms (shortwave solar radiation, see chapter
3). Substituting in Fourier’s law of heat conduction and letting the thermal diffusivity be
defined as k = k/C,py, we can write the evolution of the fluid temperature as

% eyt (224)

where we have left the exact form of q,,, to be discussed later.
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2.4 The equations of motion and numerical solver

The full set of equations of motion after simplification using the Boussinesq approximation
read as follows:

Du 1 pl ~ 2
—— = ——Vp— —gk+vViu 2.25
Dt Po P Pog (228)
DT 9 1
= _ T — . 2.26
Dt /ﬁ:v Cppov qezt ( )
V-u=0, (2.27)
o= (D), 229

where in the above equation, p is now the perturbation density about the reference, and
we have let kK = k/Cppo. The functional form p(7") has been left unspecified here, and will
be discussed in each chapter.

2.4.1 The SPINS code

The primary results presented in this thesis are a product of data analysis from direct
numerical simulations (DNS) of the above equations in different contexts. In this section,
we will give a very brief overview of the software used for the numerical simulations and
its regular usage. The technical details are spared and the discussion is instead a broad
overview of the utility of the software, followed by a discussion of the motivation for using
such a model.

The open-source software used for data generation is the pseudo-Spectral Parallel In-
compressible Navier-Stokes solver (SPINS) developed in our research group. Technical
details can be found in Subich et al. (2013). This software has been used for the study of
a wide variety of density driven flow phenomena. An (incomplete) list of examples include
studies on the evolution of mode-2 internal waves in various configurations (Deepwell and
Stastna, 2016; Deepwell et al., 2017, 2019, 2021), the formation and evolution of solitary
waves (Xu et al., 2016; Xu and Stastna, 2018, 2019; Xu et al., 2019; Xu and Stastna, 2020),
the evolution of double diffusive systems in various contexts (Penney and Stastna, 2016;
Legare et al., 2021), interaction of waves with bottom topography (Olsthoorn and Stastna,
2014; Harnanan et al., 2015, 2017), the evolution and degeneration of internal standing
waves (Grace et al., 2019), and perhaps most relevant, the study of parallel shear flows in
the cabbeling regime (Hanson et al., 2021). These are just some of the examples of studies
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that have used SPINS, and are cited to highlight its broad applicability when studying
density driven flows.

SPINS uses an Adams-Bashforth adaptive three level time discretization, which achieves
third order accuracy in time, and the code attains spectral accuracy in space (the order of
accuracy increases as the number of grid points is increased). For uniformly spaced grid
points, fields are expressed in a Fourier basis, and when grid points are clustered, the basis
is chosen to be Chebyshev polynomials. Derivatives are calculated using the Fast Fourier
Transform (FFT) algorithm when the grids are uniform, and the FFT-based (i.e. matrix
free) version of the Chebyshev differentiation matrix used when clustered grids are used.
Fourier transforms are performed using a numerical package known as FFTW (Frigo and
Johnson, 2005). Finally, the Message Passing Interface (MPI) protocol is used to handle
the parallelization procedure. Information on the parallelization scheme can be found in
Subich et al. (2013).

One of the design strengths of SPINS is that users can easily design their own case files
and can include whatever momentum forcing, thermal forcing, or passive tracer forcing is
relevant to their problem without modifying the primary code files. Additionally, various
diagnostics are included in the Science package, and users can include whichever diagnos-
tics are relevant to the problem at hand. Examples of available diagnostics include four
options for the EOS (linear, quadratic, cubic, or full), energy diagnostics from Winters
et al. (1995), computation of the viscous kinetic energy dissipation, and computation of
the boundary stresses. Diagnostics are available on an iteration by iteration basis and
are output to a text file that can be analysed using post-processing tools like MATLAB
or Python. Another utility of SPINS is that once the user defined casefile is successfully
compiled, the problem parameters, grid information, boundary conditions, filter informa-
tion, and timing information are saved in a configuration file that exists separately from
the model itself. This file can be easily edited, transported between machines, and read
into the model without having to recompile. It also provides a record of the simulations
performed.

Figure 2.1 schematizes the usage of SPINS where the level of user interaction required
to run the code increases from right to left. Some specific aspects of each section of SPINS
are highlighted within each box. This figure is intended to be a very broad overview of
SPINS.
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..................................................... ;

Figure 2.1: A schematization of the SPINS workflow. User interaction increases from right
to left. For a given casefile, the spins.conf is the file with whom the user most often
interfaces. Most importantly, this file contains the problem specific parameters that the
user may wish to vary for a given experiment. The user may want to edit the case file,
which is where the particular forcing and diagnostic information and code is kept. The
case file should only be modified when planning a new experiment. Finally, the evolution
code is mostly hidden from the user. This is where the actual solvers do their work.
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2.4.2 Why pseudo-spectral methods?

When modelling some sort of physical process, our first decision is often in regards to what
physical process or mechanism we want to focus our efforts on. Once we have made this
decision, we need to understand the limitations of our modelling approach, and finally
determine if those limitations are relevant to the dynamics, or if they can be ignored. In
a perfect world the order of operations would be to formulate the modelling question, and
then to choose a relevant model based on its strengths for studying the question at hand.
In reality this order of operations is often reversed. The numerical model is chosen first,
often due to factors such as model expertise, availability, and in some cases price—point.
Next, the physical process which we would like to model is chosen. For this approach, it is
imperative that we choose a process to study so that we can maximize the strengths of our
chosen model while also minimizing the weaknesses. This was the approach used in this
thesis. The model choice used in this thesis was primarily due to the modelling expertise
available, and thereby directed the types of questions asked. Below, we highlight why
pseudo-spectral models may be useful and what can be done to maximize their strengths.

The strengths of pseudo-spectral methods are immense for solving problems in specific
contexts. For pseudo-spectral methods, solutions are expanded in terms of a certain basis.
As an example, when boundary conditions are periodic on a certain interval, or can be
periodically extended, we can express functions as a Fourier series (an infinite sum of sines,
cosines, or complex exponential functions). In a numerical setting, the continuous interval
is instead discretized, and this action forces our infinite Fourier series to become finite sum.
Thus, to represent functions on the discretized grid, we require a discrete Fourier transform
(DFT). In this thesis, sample points are typically uniformly spaced, which allows us to
utilize the speed and accuracy of the Fast Fourier Transform (FFT) algorithm to compute
DFTs. The FFT algorithm is incredibly efficient, undergoing O(N log(NN)) flops in a single
dimension with N points. Details of its implementation in SPINS can be found in Subich
et al. (2013). Furthermore, when the geometry of a problem can be simplified, this leads to
other potential simplifications in the parallelization scheme, further increasing efficiency.
For an example, see the appendix in Deepwell (2018), which highlights the efficiency of
the parallelization of SPINS simulations with uniform and clustered grids at various grid
resolutions.

Furthermore, pseudo-spectral methods have little to no spurious numerical dissipation
or dispersion in the absence of a filter. Other alternatives to spectral methods (finite
volume methods or finite difference methods) suffer from significant and unpredictable
numerical dissipation and dispersion, often caused by the choice of advection scheme.
This can lead to artificially damped solutions and/or unphysical oscillation, and in some
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cases, completely incorrect results. As an example, Vitousek and Fringer (2011) presented
simulations of the evolution of internal solitary waves using a low order model in its non-
hydrostatic configuration (allowing physical and numerical dispersion) and its hydrostatic
configuration (allowing numerical dispersion only). They found that at low lepticity (ra-
tio of the horizontal grid spacing to upper layer depth) in the hydrostatic configuration,
numerical dispersion generated very short trailing waves that were eventually dissipated.
The process of numerical dispersion followed by dissipation of the trailing waves caused
a significant change in the propagation velocity and location of the leading solitary wave.
In the non-hydrostatic configuration, the trailing solitary waves were instead generated by
physical dispersion and converged to the correct length scale. Furthermore, they were not
significantly damped by numerical or physical dissipation. By increasing the lepticity, the
numerical dispersion in both the non-hydrostatic and the hydrostatic configurations lead
to severe damping of the wave leading to indistinguishable results between the waves in
each configuration.

Pseudo-spectral methods avoid spurious diffusion and dispersion, and instead control
aliasing with the use of a numerical filter. The numerical filter applied in SPINS is an ex-
ponential filter and is discussed in detail in Deepwell (2018). In short, the exponential filter
is a low-pass filter, where the amount of energy removed from the system is predictable.
The user can specify a cutoff wavenumber k. (in one dimension for simplicity), where every
k < k. remains unaffected by the filter, but k£ > k. becomes attenuated. Hyper-viscosity
is an alternative to a numerical filter, but is not used in this thesis. See Ulloa et al. (2019)
for a recent example of the use of hyper-viscosity in dynamical studies in cold water.

Pseudo-spectral methods are not without their limitations. As discussed above, geome-
tries must be simple so as the method is able to use the FFT algorithm. Other numer-
ical schemes allow for arbitrary boundary conditions (like inflows for instance), whereas
pseudo-spectral methods are relatively limited in the boundary condition choice. Freedom
to arbitrarily specify boundary conditions often comes at the cost of accuracy and speed
though. For the purposes of this thesis, these simple geometries and basic boundary condi-
tions are sufficient to represent the processes we are interested in. A series of more directed
discussions regarding the applicability of geometries and boundary conditions are found in
each chapter.
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Chapter 3

Numerical simulations of the
three-dimensionalization of a shear
flow in radiatively forced cold water
below the density maximum

3.1 Author’s Note

This chapter is a modification of the material that appeared Grace et al. (2022). The main
changes include a complete non-dimensionalization of the equations of motion, as well as
an extended discussion on the governing non-dimensional parameters. Figures are reported
in terms of non-dimensional variables except for figures 3.2 and 3.5.

3.2 Introduction

During ice-covered seasons, and especially during the later winter, the primary mechanism
responsible for introducing energy into the water column is solar radiation. Some of that
radiation is reflected or absorbed by the ice, and some of it penetrates into the underlying
water column, with its intensity decreasing approximately exponentially with depth. The
rate at which the intensity of the radiation is attenuated with depth is encoded in an atten-
uation length scale that is a function of both the clarity of the water and the wavelength
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of the incident radiation. Smaller attenuation lengths represent more absorption near the
ice-water interface, and larger attenuation lengths represent penetration to greater depths.

Owing to the fact that freshwater temperatures beneath ice are typically below 7,4, the
added heat that increases the temperature of the water also increases its density. Since the
bulk of the heat is added near the surface, solar radiation ultimately leads to the formation
of an unstable stratification that induces overturning and subsequent homogenization of the
water column. As mentioned previously, Yang et al. (2017) used thermistor chain data in
Lake Simcoe, Canada, over the winter in 2015 to show homogenization of the water column
due to overturning once the snow on the ice surface had melted. Their figure is reproduced
in figure 3.1. This figure shows that the time the surface snow melts (approximately
April 1 in panel (b)) coincides with an increased intensity of solar radiation entering the
water column (inferred from the daily-averaged time rate of change of the water column
temperature integrated over the column) (panel (d)) and homogenization of the water
column (panel (¢)). Prior to this time, when ice and snow cover limited the incoming solar
radiation, the dominant heat flux came from bottom sediments. This is the usual indicator
of Winter I. Winter II occurs when the sediments have released all of their heat and snow
cover melts allowing solar radiation to penetrate the water column (Kirillin et al., 2012).

This result provides practical evidence of total homogenization by convection driven by
solar radiation. Part of the unique nature of the cold water regime is that characteristic
density differences (Ap = p; —p2) within the flow can be very small. The density differences
within a flow are usually characterized by the Atwood number, At = (p1 — pa)/(p1 + p2)
(Andrews and Dalziel, 2010). There has been some interest in mixing in small At flows.
Boffetta et al. (2009, 2010); Andrews and Dalziel (2010) and Akula et al. (2013) quote
At in the range of 0(0.01) — O(0.1) but it can be much smaller in other applications.
Temperature and density differences within the flows examined in this chapter are small.
For example, based on the initial and final states considered, At is in the range of O(107?).

The process of overturning generated by solar radiation is complicated by the presence of
subsurface currents. For instance, there is evidence of very slow (several mm/s) subsurface
currents beneath ice cover in Lake Vendyurskoe (Russia) (Malm et al., 1998), induced
by a uni-modal seiche. More vigorous subsurface (several cm/s) currents can occur as a
result of under ice river plumes as well. In simulations of an under-ice river plume, Kasper
and Weingartner (2015) showed that velocities were in the range of 5-10 cm/s beneath
ice cover. The discharge that they used was representative of the spring freshet of a
small arctic river. This order of magnitude agrees with measurements of the flows beneath
landfast ice in the Alaskan Beaufort Sea by Weingartner et al. (2017). There is considerable
theoretical evidence showing that the development of the convective instabilities is coupled
to the shear generated by flows like those beneath ice cover. Benilov et al. (2002) used a
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Figure 3.1: Time series of (a) ERA-Interim temperature (a climate reanalysis data set
covering 1979 to August 2019). (b) Predictions of ice thickness from the Canadian Lake
ice model without snow (solid black line) and with snow (dashed black line), as well as
observations of ice thickness (black markers) and snow cover (pink line). A positive depth
indicates height above the surface. (¢) Water column temperature profiles at the measured
levels at K42 (a sensor location) and the estimated mixed layer (black line). (d) Daily
average heat flux time series. Red lines indicate the mean over three periods: Before
ice cover J = —62.5 W/m? Winter I when J = +8.4 W/m? and Winter IT when J =
+31.8W/m?. Blue dash line indicates zero. (e) Dissolved oxygen concentrations at K42.
(f) Percentage of dissolved oxygen saturation and the estimated mixed layer (black line).
The thick blue line above Figures 2d-2f indicates the duration of ice cover from 8 January
until 18 April. Figure adapted with permission from Yang et al. (2017).
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jet velocity profile and a quasi-two layer inverse stratification to show that near the tip of
the jet (where the vertical shear is near zero), Rayleigh-Taylor instabilities (RTT) occurred,
but on the flanks of the jet (where the vertical shear is changing with depth), no RTT were
noted. The authors followed this with a numerical study that showed that by increasing
the magnitude of homogeneous shear, the width of the unstable region in spectral space
decreased but stayed finite. Furthermore, the growth rates always had an interior peak,
indicating that there is always a single fastest growing instability. Their conclusion was
that streamwise instabilities will always occur in their system and the length scale of the
primary instability is proportional to the magnitude of the shear in some way. Mikhailenko
et al. (2005) went a step further and showed that streamwise RTT are suppressed in regions
where

g4
ok
Here, |U.| is the local magnitude of the shear, and &; is the growth rate of the fastest
growing instability in the absence of any background shear. While the result of Mikhailenko
et al. (2005) is mathematically sound, the theory does not include a spanwise dimension.
Multiple studies in varying convection contexts have shown that shear interacting with an
unstable stratification in three dimensions leads to rollers with their cores aligned with
the background current. Kuo (1963) commented that cloud streets occur because of the
suppression of streamwise instability, leaving spanwise perturbations to grow. Keisuke
et al. (1991) noted that the interaction between Rayleigh-Bénard convection and shear in
their experiments on coherent turbulent structures led to the formation of rollers. Finally,
Pirozzoli et al. (2017) showed these rollers in a similar setup using numerical simulations
for a variety of Reynolds numbers and Rayleigh numbers. To our knowledge, no numerical
studies on cold water convection induced by volumetric thermal forcing interacting with
shear have been carried out.

U] > (3.1)

In this chapter, we study the interaction between a shear flow and convection induced by
non-uniform heating in cold water. Heat is continually added such that an unstable density
gradient is created near the surface giving rise to convective instabilities. We investigate
the development of the instabilities and the transition to turbulence using high resolution
three dimensional simulations. We discuss with examples the roles that the magnitude of
the shear and the attenuation length scale play in the transition to turbulence. In this
chapter, the word “turbulence” is used to describe the random and chaotic flow state,
and is used in the qualitative sense. A directed discussion on the turbulent state will be
pursued in future work.

The structure of the chapter is as follows. First we describe the experimental configu-
ration and some particular aspects of the numerical model. Next, we show the equations of
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motion and describe the setup we are modelling. Following this is a non-dimensionalization
of the equations of motion and a discussion of the governing non-dimensional numbers.
Then we show the results of several numerical simulations highlighting the instability de-
velopment and the transition to turbulence. The last section provides a summary and
discussion of the results, as well as a description of the limitations of simulating this sys-
tem in two dimensions. We conclude with future research directions.

3.3 Experimental Configuration

The study presented in this chapter is motivated by under-ice dynamics as a result of
heat deposition in lacustrine bodies over the winter. In a complete lacustrine system,
many competing mechanisms and processes must be included to properly represent the
full range of dynamics. However, the specific modelling choices presented herein are meant
to represent experimental scales, thus maximizing the capabilities of our numerical model
(discussed in chapter two). Pursuant to this, the conceptual model presented below is
simplified in order to have a properly constrained study.

In this study we use the pseudospectral numerical model SPINS (Subich et al., 2013) to
perform direct numerical simulations of the incompressible Navier-Stokes equations under
the Boussinesq approximation to model the interaction between cold water (temperatures
between 0°C and the freshwater temperature of maximum density) convection generated
by volumetric thermal forcing and a shear current in a rectangular domain of length and
width L (ranges from 1.024m to 2.048m) and depth H (2.048m). We adopt the standard
oceanographic coordinate system so that the streamwise (direction of the shear current),
spanwise, and vertical (positive upwards) directions are denoted by (z,v, z) respectively
and corresponding unit vectors %, j, and I%, and z = 0 is along the bottom of the domain.
The boundary conditions for the top and bottom surfaces are free-slip for velocity and
no-flux for temperature, while the boundary conditions are periodic in the horizontal di-
rections. The uniform grid spacing is (Az, Ay, Az) = (4 x 1072,4 x 1073,2 x 107%)m. A
resolution sensitivity test was performed on the Slow-Narrow case (table 3.2) and revealed
that the instability development was insensitive to higher resolutions, thus, the resolution
was selected to balance accuracy and expediency of simulation. A domain size test was also
performed and the domain size presented herein is sufficient to resolve the scales of interest.
Static parameter information is found in table 3.1. Where relevant, the value is directly
referenced, otherwise the location in the text is referenced. The values of parameters that
are varied for each case are included in table 3.2.

In the simulations in this study, the temperature is an initially uniform value of Tj
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(table 3.1), chosen to be less than the temperature of maximum density for freshwater,
Tnq- The choice of a uniform temperature is made to simplify the modelling approach.
Ulloa et al. (2019) and Ramoén et al. (2021) observed a cross-shore shear flow within the
convective mixed layer in their simulations indicating some numerical evidence for the
coexistence of a shear flow in a uniform temperature environment (more on this in section
3.4).

The dimensional equations of motion that are solved by the model are

D R
F,ltf = —Vp — gok + vV’u, (3.2)

DT .
Eﬁczmv?r+zwa, (3.3)
Vi =0. (3.4)

In this chapter, dimensional variables contain a tilde, while non-dimensional ones do not.
Dimensional parameters (such as physical constants) do not have tildes. The material
derivative is represented by D% = % + u - V, the three dimensional velocity is given by u,
time is given by ¢, pressure divided by the reference density po is given by p. Viscosity is
given by v, the temperature diffusivity by x, and g is the gravitational acceleration, values
of which are found in table 3.1. p is the density perturbation about the reference density
Pmd, about 999.97 kg/m3. Note that the reference density has been absorbed into both p
and rho. This gives p units of m?/s? and leaves p unitless (hence there is no tilde). The
nonlinear equation of state used in this chapter is

p=—C(T — Tpa)? (3.5)
where ’_f’(x, y, z,t) is the temperature field, and the value of the constant C'is given in table

3.1.

The volumetric heating is represented by F(%) [°C/s] with an example profile shown in
figure 3.2(b). This profile is a simple model of penetrative short wave radiation. The forcing
takes the form of an exponential with a single decay scale and is called the Beer-Lambert
Law. Mathematically, it is given by

Fz) = % exp (2 ;H> , (3.6)

where H is the total depth of the domain, and Z = 0 along the bottom of the domain. Two
important parameters appear in this formulation of the forcing. They are )y (dimensions
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Figure 3.2: Panel (a) shows the background velocity profile from equation (3.8). The
maximum upper layer velocity is Uy. The upper layer depth is h,, and the lower layer
depth is h;. The thermal forcing profile is shown in panel (b). The decay scale of the
thermal forcing is ¢, and the magnitude at the surface is ()y. One e-folding scale is located
at a height H — £.
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of (°Cm/s), the magnitude of the thermal forcing at the top of the domain, and ¢, the
attenuation length. The value for ) used throughout the chapter is found in table 3.1, and
corresponds to an intensity of approximately 30 W/m? when multiplied by pyC,,. This value
is an order of magnitude estimate for the intensity of radiation that penetrates beneath a
representative amount of snow and ice cover on a natural body of water in the late winter
(Kirillin et al., 2012; Ulloa et al., 2019). @Qo/poC, represents the total heat flux into the
body of water. The exponential envelope describes how much of that heat is absorbed by
the water column at a specific depth. Since changes of temperature are functions of the
divergence of the heat flux (see (2.26) for instance), a factor of 1/¢ appears (¢ is discussed
below).

The attenuation length £ is provided in table 3.2 for each case. The attenuation length
controls how fast the incoming radiation is attenuated with depth and is a function of
both the water’s clarity and the frequency band of the incident radiation. The Jerlov
water-type system presents a basis for categorizing water based on its clarity and assigns
attenuation length scales based on how certain frequency bands of light are absorbed
for a given turbidity (Jerlov, 1976). Common parametrizations of penetrative shortwave
radiation often contain more than one forcing component, each with its own associated
attenuation length. Including multiple frequency bands may be necessary to adequately
represent mechanisms such as photosynthesis, gas dynamics, or stratification development
(Simpson and Dickey, 1981a; Hodges and Dallimore, 2006). For reference, other established
codes like the MITgem (Campin et al., 2019), and ELCOM (Hodges and Dallimore, 2006)
use two and three band models respectively in their default setups. The columnar model
used in Simpson and Dickey (1981a) and Simpson and Dickey (1981b) used up to 10 bands
for some experiments.

Since this study is not concerned with the precise distribution of heat by the solar
radiation, and is instead concerned with the redistribution of heat by instabilities generated
by the unstable stratification, we follow the approach of Ulloa et al. (2019) and Bouffard
and Wiiest (2019) and parameterize the incident radiation as a single-band model. In the
context of cold water, Bouffard and Wiiest (2019) simplified the Jerlov system and made an
order of magnitude estimate that attenuation length for clear water beneath ice is O(1m)
and for turbid water beneath ice is O(0.1m). The values for ¢ chosen for each case (table
3.2) were chosen to be similar in magnitude to the attenuation length used in Ulloa et al.
(2019), who used ¢ = 0.4m. For cases where ¢ was changed from the value in the Base
case, the values were chosen such that there were clear differences in dynamics but was
also in the neighborhood of the turbid estimate from Bouffard and Wiiest (2019).

Since heat is continuously added to the domain, the domain averaged temperature will
continue to increase as there is no explicit mechanism to remove it. By integrating equation
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(3.3) over the entire domain, the domain averaged temperature becomes
o Qo ey :
T =T+ (1—e 9t (3.7)

Thus, the average temperature of the domain increases at a rate (o (1 — et/ Z) J/H. The
utility of defining T comes when we will non-dimensionalize the system in section 3.5.

In all cases, we should expect convective instabilities to grow at a rate proportional to
two quantities: i) the density difference between consecutive fluid layers, often quantified
by the Atwood number (see section 3.2), and ii) how much energy is initially present in each
wavenumber. The initial energy in each wavenumber is controlled by the size of the initial
white noise perturbation. Each simulation presented is seeded with a velocity perturbation
of Upert = 10-6 m/s, the magnitude of which is held constant across all cases.

The initial velocity profile (current will be used interchangeably) considered for this
chapter has a layer of constant shear atop a layer with no background velocity. Measure-
ments of the velocity profiles in the near-mouth region of small river plumes (Osadchiev
et al., 2020) indicate nearly piece-wise linear velocity profiles. The form of the current used
in this chapter is given by

0(z) - % /0 5 (1 + tanh (#)) a7, (3.8)

and is shown schematically in figure 3.2(a). Here, 6 controls how rapidly the profile transi-
tions from motionless to the constant shear state. This parameter is held constant across
all simulations at 0.1 m (table 3.1). Values for H and U, (the depth of the domain and
maximum velocity of the current) are found in tables 3.1 and 3.2 respectively. A key feature
of the profile in equation (3.8) is that it initially precludes the formation of shear instabil-
ities by Rayleigh’s inflection point criterion (Kundu, 1990). Shear instabilities provide a
means for column wide mixing but are not of interest here.
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Parameter Description Value Dimensions
Qo Intensity of Solar Radiation 7.25x107° °Cm/s
T Time varying domain averaged temperature | See equation 3.7 °C
14 Attenuation length of solar radiation See table 3.2 m
v Kinematic Viscosity 1076 m? /s
K Thermal Diffusivity 1077 m? /s
g Gravitational Acceleration 9.81 m /s?
C Non-linear equation of state parameter 7.6x1076 °C~2

T Temperature of maximum density 3.98 °C
L Domain width See table 3.2 m
H Domain depth 2.048 m
Uy Background current velocity See table 3.2 m/s
) Background current transition thickness 0.1 m

Table 3.1: List of dimensional parameters, a description, their value, and their dimensions.

Case Uy L 14 Ny x Ny x N,
(m/s) | (m) | (m) -

Base 0 1.024 | 0.6 | 256 x 256 x 1024
Slow 0.001 | 1.024 | 0.6 | 256 x 256 x 1024
Fast 0.01 | 1.024 | 0.6 | 256 x 256 x 1024
Fast-Wide 0.01 |2.048 | 0.6 | 512 x 512 x 1024
Fast-Narrow 0.01 [0.512 | 0.6 | 128 x 128 x 1024
Medium-Attenuation 0.01 | 1.024 | 0.4 | 256 x 256 x 1024
Short-Attenuation 0.01 | 1.024 | 0.2 | 256 x 256 x 1024
Short-Attenuation-Wide | 0.01 | 2.048 | 0.2 | 512 x 512 x 1024

Table 3.2: The cases considered in this chapter. Uj is the maximum velocity of the back-
ground current, L is the streamwise length of the tank (equal to the spanwise length of the
tank for all cases), ¢ is the attenuation length of the thermal forcing, and N, x N, x N, is
the grid resolution.

3.4 Non-dimensionalization

In order to non-dimensionalize the system, we must use the parameters in table 3.1 to
form a pressure scale P, a velocity scale U, a timescale 7, and a temperature scale 6.
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Furthermore, we can use the Buckingham Pi theorem to rigorously identify the number of
non-dimensional groupings that govern the system, and we can use our knowledge of the
equations of motion to actually develop these non-dimensional groupings.

We can begin by decomposing the total temperature 7" into a sum of T (the time-varying
domain averaged temperature from (3.7)) plus the perturbation about this quantity, 7,

written as ~ - ~
T=T+T,. (3.9)

By decomposing the temperature this way, we can define the temperature scale 6 such
that it characterizes only the perturbation about the background, and does not contain
any information about the known time-varying average background state. Additionally,
if the rate of heating is slow compared to other timescales of the problem, like the in-
stability growth rate for example, the initial temperature of the domain Ty can be used
for scaling rather than 7" without accruing significant error. Substituting the temperature
decomposition into (3.5) and expanding, we get

p=—CT?+20T(Tna—T)+p(T) (3.10)

where

p(T) = —C(T — Trna)®
can simplify (3.10) to - ~ .
p—p(T) = —CT? + 2CT,AT, (3.11)

where we have let AT = T,,; — T, a parameter indicating the temperature difference be-
tween the temperature of maximum density and the domain averaged temperature. The
second term on the left hand side of (3.11) is the density of the domain averaged temper-
ature, which in general is not the domain averaged density. This term is balanced by a
time-varying hydrostatic pressure and does not contribute to internal motion. We can let
the total pressure be decomposed as p = p + p,, where p is in hydrostatic balance with
p (T) so that

ap

o= g0 (), (3.12)

and p, is the variation about this pressure. The above procedure has allowed us to simplify
the equations of motion so as to be able to non-dimensionalize them. The equations of
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motion are rewritten below for convenience.
Du

o7 = VPt CyT? — 2C9T,AT + vV*0 (3.13)

DT s Qo - H

— =gV + 2 14

D kVT + , eXP < 7 ) (3.14)
V-a=0 (3.15)

The equations presented above are expressed in terms of only three basic dimensional
quantities: time, length, and temperature. For the shear-free cases, there are 10 dimen-
sional parameters that govern the system, and for the sheared cases, there are 12. The
two extra parameters for the sheared cases arise from the initial condition, U(Z). The
complete list of parameters are shown in table 3.1, as well as a short description of each.
As we shall see in the next section, two parameters within this list are dependant on others,
thereby reducing the number of independent parameters to eight for the shear-free cases
and 10 for the sheared cases. With this in mind, the Buckingham Pi theorem gives five
non-dimensional groupings for the shear-free cases, and seven for the sheared cases.

In the following section, the non-dimensionalization will be carried out in detail for both
the shear-free and sheared cases, highlighting the significance that each non-dimensional
parameter has for the problem, along with some examples of where they have been used
elsewhere.

3.5 Scaling for the Shear-Free System

In the shear free cases, there is no inherent velocity U, or temperature scale 6. Thus, these
scales must be functions of the problem parameters defined in table 3.1. We can choose
the following scalings for the dependant variables:

T =I(x (3.16)
= Uu (3.17)
-l
t=—t 3.18
7 (3.18)
Po=U"p (3.19)
T=0T+T, (3.20)

We have chosen the attenuation length ¢ to be the relevant length scale for the problem,
allowing us to define the timescale 7 = ¢/U. We have chosen the advective timescale
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because we are assuming that the density driven fluid motion is responsible for moving
heat around the domain, rather than diffusion. We could use the total depth H as the
characteristic depth, but as will be seen later, in the limit of /H — 0, (a very deep domain)
the instabilities do not “feel” the bottom, and grow independently of this parameter. More
on this in section 3.5.3. The pressure is scaled by U2, and finally, we have let 7, » =0T so
the total temperature scales as 07 + T.

There are two minimum requirements that the velocity, time, pressure, and temperature
scalings must satisfy in order to be useful.

1. The scales must have some functional dependence on the parameters relevant to the
thermal forcing; ()g and /. For the shear free cases, all motion is induced by spatial
density differences within the flow which are induced by the thermal forcing.

2. The non-linear equation of state should play some role in determining how the motion
scales. As characteristic temperatures approach the temperature of maximum den-
sity, the slope of the equation of state becomes very small effectively slowing motion
by decreasing velocities.

We can start by non-dimensionalizing (3.13). Substituting in the above scalings, we
arrive at

U*Du  U? 22 WU oo
7 D = _TVP + Cgb*T* — (2CgOATT + E_Qv u. (3.21)
For clarity, we can re-write the above equation with the buoyancy term re-arranged:
U? Du U? 0 vU o

We can see here that the parameters Cg and AT = T,,q — T always appear in the
equations as single parameters. Letting

U = /2Cg0ATI (3.23)

allows us to divide out the U?/¢ term, revealing the following non-dimensional equation:

Du

- 2u. 24
Dt Vu (3.24)

S} 1
=-Vp-T(1—=T)+
P ( 2 ) VGr
where we have defined the NLEOS parameter © as
0

O=37

(3.25)
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and the Grashof number as

Gr = (%)2 (3.26)

14

U is sometimes called the buoyancy velocity scale, and arises because of the assump-
tion that motion is driven exclusively by the density differences within the flow. In the
current context, U is a function of two temperature scales: # and AT. Each one of these
temperature scales satisfies the requirements listed above; 6 captures the dependence on
the temperature differences set by the thermal forcing, while AT captures the dependence
on proximity of the characteristic temperatures to 7},4, and thus the variable slope of the
NLEOS. Previous studies of similar setups, Bouillaut et al. (2019) for instance, have de-
fined the buoyancy velocity using a linear equation of state (no variation in the slope of
the NLEOS), which leads to a buoyancy velocity that is only a function of the internal
temperature differences (f in the framework presented in this chapter).

We can find a closed form expression for # in order to determine closed form expressions
for Y and T. To do this, we need to non-dimensionalize (3.14). Using the scalings in
equations (3.17)-(3.20), non-dimensionalizing equation (3.14) gives

0 DT dT kb Qo z—H
==t —==_VT+ = : 3.27
TDi " d P +£exp( 0 ) (3:27)
We can let i
_ o —H/e
— =—(1- 2
i~ e (3.28)
and simplifying the above set gives us
= T+ = —— (11—t . 2
D —GrPrQV + 700 (exp < 7 ) i (1—e ) (3.29)

From the above, we can identify several non-dimensional parameters. The first is the
Prandtl number y
Pr=—, (3.30)
K

which measures the relative strength of momentum diffusion to temperature diffusion. The
next is the non-dimensional depth

H
=" (3.31)

which will be discussed in detail later. The last non-dimensional grouping is Qo/U6, and
represents the ratio of the the heat flux by volumetric forcing (Qy), to the convective heat
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flux scale (Uf). To estimate 6, we will assume that these two scales are approximately
equal. In general, this is not true until the system is at equilibrium, but this still provides
a consistent yardstick on which we can base the case intercomparisons in the chapter.
Additionally, the initial temperature changes of the system are driven almost exclusively
by the volumetric thermal forcing (the last term on the right hand side of in (3.29)) rather
than thermal diffusion, so we set QQo/U6O = 1 allowing us to define 6 as:

- Q2 1/3
0= (Cng) . (3.32)

Importantly, the temperature scale is not linearly related to any of the problem parame-
ters. The temperature scale is proportional to Qg/ 3 indicating that the radiation intensity
would have to increase by almost three times in order to double the temperature scale (all
other parameters held constant). Furthermore the temperature scales with both £~1/3 and
AT-'/3 meaning that in order to double the temperature scale, the attenuation length or
the bulk temperature difference needs to be decreased by almost 10 times. Understanding
this will become important when discussing whether or not we might see similar dynamics
at the field scale.

With the temperature scale in hand, the timescale, velocity scale, and the pressure
scale become:

82 1/3
_ 1/3 —
U = (2Cg0ATQ)?, T ( AT QO) (3.33)

In this framework, both the velocity scale and the timescale vary proportionally to a
sub-linear power of the attenuation length, indicating that doubling the attenuation length
does not double to velocity and timescales. Additionally, the velocity scale is proportional
to a sub-linear power of the intensity of the radiation, and the timescale is inversely pro-
portional to it. This is consistent with the fact that more energy input by the thermal
forcing increases the flow speeds as there is more potential energy that can be changed to
kinetic energy by buoyancy production.

Finally, the five parameters that govern the shear-free system are as follows:

0
@:E, Gr = ( —7, /§7 M2 = —. (334)

14

ue)Q H v L
- ; H1 =

In order, they are the NLEOS parameter, the Grashof number, the dimensionless depth,
the Prandtl number, and the aspect ratio. Each of these will be described below.
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3.5.1 The NLEOS parameter

The NLEOS parameter,
0

0= T T (3.35)
is the ratio of the temperature scale induced by the thermal forcing to the difference
between the mean temperature difference and the temperature of maximum density. ©
controls when the non-linear term of the NLEOS will be of comparable magnitude to the
linear one, indicating when we should expect the non-linear term to play a meaningful role
in the governing equations. In the cases presented in this chapter, © ~ O(107°), so the non-
linear terms in the NLEOS can be ignored. However, it is useful to briefly discuss what one
might see when the non-linear terms play a meaningful role in this system. In convection
and convection related contexts, NLEOS effects are often characterized by asymmetric
plume growth, resulting in larger downward excursions by plumes compared to excursions
by upward growing plumes. Olsthoorn et al. (2019) discussed the development of diffuse
interface Rayleigh-Taylor instabilities using the NLEOS. They compared the growth of
instabilities originating at the mid-depth of their domain and showed that under a linear
EOS, the upward and downward growing plumes were symmetric, while under the NLEOS,
the downward growing plumes grew faster than those growing upwards. Another example is
from the study of Ozgokmen and Esenkov (1998), who noted that falling salt fingers grew
faster than rising ones as they increased their non-dimensional non-linearity parameter
(equivalent to © in this thesis) up to 1. When they increased it to 3, rising plumes did not
appear to form. More discussion on NLEOS effects can be found in chapters four and five.

It is also useful to discuss under what circumstances might we be able to achieve
O ~ 1 in a similar laboratory or field setup. In terms of a field campaign or a laboratory
experiment, three parameters in the definition for © can be realistically varied. They
are (o, ¢, and AT. Kantha and Clayson (2000) provides a resource of measurements
from a multitude of studies that highlight the physical limitations of values of ¢ and Q)
when considering laucustrine bodies of water. The attenuation length of incident radiation
in the field varies over about 5-6 orders of magnitude depending the frequency of the
incoming radiation. For example, infrared radiation (775-2600 nm) has an attenuation
length on the order of 0.1mm to 10 cm and is typically independent of the turbidity of
the water. The attenuation lengths in the UV (300-345 nm) and visible spectra (350-
750 nm) are both functions of the clarity of the water. The attenuation length for the
UV spectrum in optically clear water can vary between about 5-10m (for turbid water,
the attenuation length is reduced by about an order of magnitude), and for the visible
spectrum between about 50cm and 50 m. Since 6 ~ £~/3, smaller attenuation lengths lead
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to larger temperature scales, so it may be difficult to achieve © ~ 1 via the manipulation
of ¢ unless it could be adequately constrained. Thus, in an experimental setting where
band-limiting the incident radiation is potentially possible, one could achieve non-linear
effects by using exclusively infrared light to drive instabilities. Achieving non-linear effects
in the field may be tougher to measure as the incoming frequency is not band limited, and
attenuation lengths are typically very large.

Another potential method of controlling the attenuation length is by the use of artificial
dyes. This technique was used in the studies in Lepot et al. (2018) and Bouillaut et al.
(2019). More information is presented in section 3.5.3. Furthermore, )y can only achieve
a maximum of about 107® °Cm/s (corresponding to about 1000 W/m?) in only the most
optimal conditions in the field. In the wintertime, this maximum is further reduced for
two reasons: 1) the reduced solar zenith angle and 2) intermediate ice and snow cover. Of
course, in a laboratory setting, controlling the intensity of incident radiation is trivial. The
last parameter that could potentially be manipulated is AT. In the field, to realistically
achieve non-linear effects, AT must be very small, meaning characteristic in situ temper-
atures must be very near the temperature of maximum density. As an example, consider
if © ~ 1, then from (3.35), we would have to have

B Q(Q) 1/4
AT = (O_gg) | (336)

For the realistic values of @y and ¢ discussed above, AT has a corresponding range of
about 107 to 107! °C. Of course, such small temperature differences in the field can easily
be erased by other processes like surface wave—induced mixing, or even heat fluxes from
surface ice. Furthermore, we run into the issue of actually measuring these temperature
differences. For example, a well calibrated thermistor may only have the accuracy of
+0.01°C (Anonymous, 2018).

3.5.2 Grashof Number

The Grashof number is a measure of the relative strengths of buoyancy forcing and mo-
mentum diffusion and is a common non-dimensional parameter in a variety of density
driven flow contexts (often the Rayleigh number is used to characterize this ratio, but it
is interchangeable with the Grashof number for the purposes of this thesis). A common
occurrence of the Grashof number is in the study of gravity currents, where it is used as a
control parameter (Cantero et al., 2007, 2008; Hértel et al., 2000a), and indeed as a brief
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look-ahead, the Grashof number is a controlling parameter for the systems described in
chapters 4 and 5 in this thesis. Recall the Grashof number is defined as

Gr— <“—€>2 (3.37)

v

In the framework of the current chapter, using the definition of # in (3.32) and ¢ in (3.33),
the Grashof number above can be re-written in terms of the problem parameters as

(CgATQp)¥3¢8/3

2

Gr =

(3.38)

An important feature here is that the exponent on /¢ is greater than one, indicating that
there could potentially be a large discrepancy between lab scale Grashof numbers and field
scale Grashof numbers. As discussed above, attenuation lengths in the field can range over
several orders of magnitude, whereas in experimental or numerical settings, their isolated
influence is limited by the geometry of the tank or numerical domain. In this chapter, the
Grashof numbers are in the range of O(10*) —O(10%). In the study of Ulloa et al. (2019), a
range of Grashof numbers can be estimated over the course of about a month of simulation
time using the parameters listed in their table A1 as well as the maximum and minimum
mixed layer temperatures. Using this information, Grashof numbers in their study ranged
between about 1.4 x 10* and 1.7 x 10%. This narrow range is due to the small range of AT
over the course of the month.

In general, Grahsof numbers can be much larger for summertime process than those for
processes beneath ice. An important reason for this is because the characteristic velocity
scales are often much smaller due to the less vigorous forcing that occurs over winter. As
a comparison, consider another convection process, this time due to surface cooling in the
summer. In temperate lakes in the summer, there is an outward heat flux at the surface
of the lake (due to outgoing longwave radiation, sensible and latent heat fluxes). As heat
escapes the surface of the body of water, near surface water becomes denser and sinks,
generating convective cells. The typical rate of heat loss in the late summer at night can
amount to approximately 200 W/m? at night (Bouffard and Wiiest, 2019), whereas in
the winter, a reasonable estimate of incident shortwave radiation is about 30 W/m? (the
value used in this chapter). Since these heat fluxes are the driver of the convection, it
is sensible that higher forcing in the summer would amount to more vigorous convection.
As an example, consider the results of Jonas et al. (2003), who studied convection due to
surface cooling in a small wind protected lake (Soppensee located on the Swiss Plateau).
Their outgoing surface heat flux was a maximum of 200 W/m? and they found convective
velocities w, were on the order of 5-6 mm/s over a depth h of about 6 metres. We can use
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this information to estimate a flow Reynolds number Re; = w.h/v. Since they provide
evidence that the total dissipation is dominated by dissipation in the bulk (as opposed to
the surface boundary layer), we can relate the flow Reynolds number to the Grashof number
through the scaling law Gr ~ Re® (Grossmann and Lohse, 2000). This gives Gr ~ 10%; a
4 — 5 order of magnitude difference between the results presented in this chapter as well
as the results of Ulloa et al. (2019).

3.5.3 Attenuation Length

In this study, p1 represents the non-dimensional depth of the domain and is written as

H

A different interpretation of this parameter was studied in a context similar to the one
presented here. Lepot et al. (2018) established a technique for generating volumetrically
forced convection in a laboratory. In their experiments, the heat was generated by placing
an intense light source at the bottom of a tank of water. The light shined on the tank
and generated an inverse stratification, and the attenuation of the heating was controlled
by the concentration of an added dye. This differed from other experiments of convection
where plates on the bottom and top of the domain were heated and cooled and heat from
the plate would have to diffuse across a thermal boundary layer. The goal of this study was
to show that this method of internally heating the bulk fluid is a mechanism to achieve
the so-called “ultimate regime of convection”. In this regime, the Nusselt number (the
non-dimensional vertical heat flux) scales with Ra!/?, where Ra is the Rayleigh number.
This is different than the classical scaling of Nu ~ Ra!/%. Bouillaut et al. (2019) took this
setup a step further and showed the transition from the classical scaling to the ultimate
scaling occurred as ¢/H increased. Conceptually speaking, as ¢/H becomes very small,
we should expect the system to tend towards a Rayleigh Bénard convection type. In this
kind of system, the heat flux from the source into the bulk is limited by the intermediate
thermal boundary layer, so the efficiency of the heating is reduced.

It should be noted that the system of Lepot et al. (2018) and Bouillaut et al. (2019)
is similar in spirit to the one presented in this chapter, though it is not identical. They
performed experiments on fresh water heated from below with a linear equation of state,
whereas we are simulating cold water heated from the top with a non-linear equation of
state. In the simulations presented below, the non-dimensional attenuation lengths are
prt = ¢/H = (0.0977,0.1953,0.2930), whereas the range of Bouillaut et al. (2019) was
¢/H = 0.0015 — 0.096.
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Since the convective instabilities are a result of the unstable stratification created by
the thermal forcing, it is reasonable to surmise that the instabilities would have inherent
length scales proportional to the length scale of the inverse stratification; a quantity set by
(. If £ ~ H, then the bottom boundary will have some role to play, potentially limiting the
growth of the instabilities, but in the context of actual lakes, the depth is often much greater
than the attenuation length. Parameterization of the effect of p; on a laucustrine system
could be useful for the purposes of modelling vertical convection. The results of Lepot et al.
(2018) and Bouillaut et al. (2019) show that it may be necessary to include this parameter
in models to accurately reflect the vertical heat flux. For instance, for particularly shallow
regions, clearer water is more likely to efficiently transport heat downward, (larger ¢), where
as in more turbid lakes, the efficiency of the vertical heat flux is not as high. Shallower
regions such as sidearms are responsible for creating lateral intrusions that flow into deeper
regions of the lakes, leading to (among other things) an increased rate of mixed layer
warming (Ulloa et al., 2019).

3.5.4 Prandtl Number

The Prandtl number is simply the ratio of molecular viscosity and thermal diffusivity is
held constant across all simulations at a value of 10. It is written as

v

Pr = p (3.40)
This value is representative for flows with temperatures near 7),; as many recent studies
use a constant Prandtl number in this range. See for instance Olsthoorn et al. (2019)
and Ulloa et al. (2019) for recent cold water studies. In reality, since the viscosity and
thermal diffusivity are both weak functions of the temperature near water’s freezing point
the Prandtl number varies about the chosen value of 10 slightly. For instance, Pr varies
between about 13.84 at 0.01°C and 9.645 at 5°C (Dinger and Zamfirescu, 2016). Lepot
et al. (2018) briefly discussed the influence of the Prandtl number on the non-dimensional
vertical heat flux, and they showed that varying the Prandtl number between 1 and 10
led to a relative independence of the heat flux on this parameter. They did not perform a
comprehensive study, but in the range relevant to this thesis, the Pr dependence does not
appear to be strong according to their results.
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3.5.5 Aspect Ratio

1o represents the “aspect ratio”, and its significance arises when considering the effect of
domain size on the instability formation. It is written as

We have established that the attenuation length ¢ sets the length scale inherent to the in-
verse stratification, subsequently setting the approximate length scale of the fastest grow-
ing mode. If the domain size is large enough to permit the fastest growing mode, then
increasing jo beyond this critical value simply allows more copies of the instability to grow.
Allowing several copies of the instability to coexist can lead to pairing. An example of the
pairing instability for Kelvin-Helmholtz billows can be seen in figure 2(f) of Mashayek and
Peltier (2012). Thus, in the limit of large ps, the dynamics should initially be unchanged.
However, beyond the initial growth of the instabilities, there may be some non-linear cou-
pling of instabilities, thus ps may be important late in the evolution. A focused discussion
on the non-linear coupling is saved for followup work to this thesis.

3.6 Scaling for the Sheared System

The sheared system includes two more independent parameters; the initial background
current velocity Uy, and the shear layer transition thickness 6. This creates two new non-
dimensional groupings that describe the system. Once the background current has been
added to the flow, there is now a mechanical source of energy that can move heat.

Consider the dimensional initial condition U(z) in (3.8). We can scale it by the buoy-
ancy velocity derived in (3.23). Letting

U(z) = % (2)U, (3.42)

where 7% (z) is the dimensionless initial condition. This allows us to re-cast (3.8) in non-
dimensional form as:

Up ¢ z< <Z/_%,u1)) /
U(z) = —— 1+ tanh [ ———=— dz'. 3.43
(2) U, o (3.43)

The prefactor of ¢ appears because 2’ scales with attenuation length. By multiplying
the top and bottom of the coefficient of the integral by ¢, H, and v, we can write the
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non-dimensionalized initial condition as

1 [Re? [* 2 — L
= —\/ = 1 h(—2— ! 44
U (z) /L%V o /0 ( + tan ( o >) dz (3.44)

_ UpH
N v

where

Re

(3.45)

is the Reynolds number (discussed below).

In studies where both buoyancy driven convection (free convection) and forced con-
vection (convection driven by mechanical sources) coexist and are on similar scales, the
motion is labelled as “mixed convection”. Traditionally, the parameter that is used to
characterize mixed convection is the bulk Richardson number (Gebhart et al., 1988) Ri,,
and is defined here as

For example, this parameter was used as a control parameter in the numerical study of
turbulent mixed convection in Pirozzoli et al. (2017). Note that (3.46) is different than
the traditional form of the gradient Richardson number used in studies of hydrodynamic
stability Ri = N?/U? (N? is the buoyancy frequency and U? is the squared vertical shear).
However, since Gr quantifies the magnitude of the buoyancy term relative to the viscous
term in the momentum equations, and (3.44) shows that the Reynolds number quantifies
the magnitude of the background shear flow relative to the viscous velocity scale, (3.46)
plays a similar role to the gradient Richardson number of comparing the magnitude of the
buoyancy driven velocities to the velocities of the background shear flow.

When Gr > Re? (Ri, > 1), free convection is the dominant heat transfer mechanism,
and heat moved by mechanical effects, like a background current or pressure gradient,
becomes secondary. We can see that in (3.44), if Ri, becomes large, the coefficient in front
becomes small and the non-dimensional background current velocity scale approaches zero.
In this case, the currents driven by free convection due to heating are simply stronger than
the background current.

In the opposite case, Gr < Re? (Ri, < 1), forced convection becomes the dominant
heat transfer mechanism, meaning buoyancy driven currents are secondary to mechanical
ones. This occurs when the background current velocity is much larger than the buoy-
ancy velocity scale. If there is a large discrepancy in these scales, it is sensible that the
motion may not scale with ¢, and would instead scale with Uy. From a quantitative per-
spective, the dominant heat transfer mechanism is reflected in the non-dimensional heat
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flux (the Nusselt number), and it scales differently depending on the particular parameter
regime (Grossmann and Lohse (2000) for example) and whether forced, or free convection
is dominant.

As a brief aside, Ri, can appear as a governing parameter in the equations of motion
instead of the initial condition like (3.44). Pirozzoli et al. (2017) simulated the steady-state
interaction between Rayleigh-Bénard convection and a background shear flow sustained
by a pressure gradient. In their study, they chose the bulk flow current speed as their
characteristic velocity scale, rather than a buoyancy driven velocity scale. They considered
the steady-state evolution of domain scale rollers aligned with the background shear once
the turbulence was fully developed in the range Ri, € [0.001,100] as well as extreme
values of oo (corresponding to pure Rayleigh-Bénard convection) and 0 (corresponding to
a pure Poiseuille flow). Their choice of scaling velocity was sensible as they considered a
steady-state response of the system where a pressure gradient was applied to balance the
dissipative effects by turbulence, leaving the initial condition effectively forgotten, and as
a result of this choice, Ri, appeared as the coefficient to the buoyancy term.

The new set of non-dimensional parameters that govern the system are those in equation

(3.34) and

Re = UOH, f3 = % (3.47)

14

3.6.1 Reynolds number

The Reynolds number measures the relative magnitudes of inertia effects (u - Vu) versus
viscous effects (¥V?u) and is denoted by
UoH
Re = ——. (3.48)

v

The magnitudes of the Reynolds number is often used as an indicator for the level of tur-
bulence, with higher Reynolds numbers indicating higher levels of turbulence. Generally
speaking, Reynolds numbers are often much lower beneath ice due to the very weak cur-
rents. Field measurements of currents beneath ice indicate speeds on the order of one to
several mm/s. See Malm et al. (1998) in Lake Vendyurskoe (Russia) or Rizk et al. (2014)
in Lake Pagjarvi (Finland) for examples. The currents are often driven by seiching motion
generated by vertical oscillations in ice-cover or basin-scale gyres and not directly from
the wind. More recent numerical work by Ramén et al. (2021) and Ulloa et al. (2019)
on an idealized lake indicates that near surface return flows generated by sidearm gravity
currents had velocities on the order of about 5 mm/s for realistic rates of heating. This
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is a stark contrast to the ice-free seasons where surface currents and surface waves are
driven directly by the wind. Some of the momentum is extracted from the wind and is
used to grow surface waves, while some penetrates beneath the wave affected surface layer
and generates subsurface currents. These surface currents are functions of the wind speed
and can range from relatively quiescent (O(mm/s)) to vigorous (O(m/s)) (O means “of
order of magnitude” in this context) under strong wind conditions. This speaks to a more
general phenomenon where under-ice currents are generated by weaker mechanisms when
compared to the forcing mechanisms in the ice-free seasons.

3.6.2 Non-dimensional transition thickness

This parameter controls how rapidly with depth the background velocity profile transitions
from the initially still state to the linearly increasing state. It arises from the initial
conditions and it is denoted by

d

This parameter is not expected to have a meaningful effect once convective instabilities
develop, and will not be discussed any further.

3.7 Vorticity Diagnostics

The main goal of this study is to examine how the system moves from a quasi-two-
dimensional state to a fully three-dimensional state, and what role the attenuation length
and the magnitude of the shear play in that process. A simple way to establish when the
flow goes fully three-dimensional is to examine the vorticity components;

w=Vxu (3.50)

as well as the enstrophy;

Lo 1.5 2 2

—|w| = z(w, +w;, +wi), 3.51
where w = (w,,wy, w,) (subscripts indicate direction in this context). For brevity, enstro-
phy components normalized by the total enstrophy are denoted as

2

oy (3.52)
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Note that since enstrophy is a scalar quantity, the term “components” is an abuse of
notation. When we refer to enstrophy components in the following sections, we are really
referring to each quantity in (3.52).

A characteristic of three-dimensional fluid flow is that vorticity vectors typically have
three non-zero components, while in two dimensional flow, there is only one non-zero
component. Thus, to determine when and under what conditions the streamwise symmetry
of the flow breaks, we can first look at how the vorticity components change over time.

We can take the curl of the dimensionless momentum equations to get a system of
vorticity equations

Dw, 1 5 0 )

- (r(1-271 : .
Dt \/@V wx—k&y( ( 5 >)—|—w Vu, (3.53)
Dw, 1 _, 0 S)
Do: = 1 92wV (3.55)

Dt v Gr

The terms on the right hand side of each of the above equations are responsible for the
net changes in vorticity. The Laplacian (V?) terms diffuse vorticity in regions of high
spatial variation, but will be ignored in the following analysis. The remaining terms are
the baroclinic generation terms and the vortex tilting/stretching terms w - Vu. Next, two
metrics called S; and B; are defined as

Si = \// |wj8jui|2dx1dx2, (356)

B; = \// €130, ps|*d1dzs. (3.57)

S; and B; (note that Bz = 0) are the horizontal L? norms of the tilting/stretching terms
and baroclinic generation terms for the ith component of vorticity (i = 1,2, 3) respectively.
Note that we are letting p3 = T (1 — 27") for brevity in (3.57). These metrics allow us to
compare the strengths of the vortex stretching/tilting and baroclinic terms in equations
(3.53)—(3.55) at every vertical level in the domain.
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3.8 Results

The results of this chapter are broken up into two subsections. The first describes the
instability growth phase, and the second describes the transition to a turbulent state. The
first subsection is broken down further into separate sections that describe the roles the
shear layer and the attenuation length play. The role that the shear layer plays in that
process is described through comparison of the Base, Slow, and Fast cases. These cases are
chosen because they show three different behaviours based on the magnitude of the shear
flow. The Base case shows one extreme where there is no shear flow, and the system evolves
under only the volumetric thermal forcing. The Slow case presents an example where there
is a background shear flow, but it is not strong enough to suppress the streamwise variation
in the instability growth. Finally, the Fast case provides an example where the shear flow
can temporarily prevent the streamwise variation in the instability growth. The role that
the attenuation length plays in the instability growth is discussed after, with reference to
the Fast, Medium-Attenuation and Short-Attenuation cases. These cases demonstrate how
changing the attenuation length changes key aspects of the instability growth and eventual
destabilization. The second section describes the transition to the full three-dimensional
state and cases are compared as necessary.

Simulations are initialized with a uniform temperature (1°C), and are then thermally
forced using the Beer—Lambert law. This generates an unstable background density profile.
Figure 3.3 shows the temperature field at three times throughout the evolution of the Fast
case. In this figure, the background current flows along the x direction (approximately out
of the page). Panels (a) and (b) show the evolution during the instability growth phase,
and panel (c) shows the water column once the instabilities have collapsed into a fully
three-dimensional state. Note that fluid with temperatures near Ty is rendered as nearly
transparent, and the opacity increases with temperature. Figure 3.3 is one example of a
case that exhibits temporary quasi-two-dimensional instability growth, and this is followed
by a rapid collapse to a complex three dimensional turbulent state. The following sections
describe the instability growth and transition to turbulence under different background
and forcing conditions.

3.8.1 Instability Growth Phase

Both the magnitude of background shear flow, U,, and the attenuation length of the thermal
forcing, ¢, play different roles in setting the growth rate and critical wavenumber of the
instability as well as controlling the eventual destabilization of the water column. These
two parameters will be discussed separately.
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Figure 3.3: Renderings of the temperature field for the Fast case during the instability
growth phase (panels (a) and (b)) and after full collapse of the water column (panel (c)).
All temperatures and times are non-dimensionalized using the temperature scale in (3.32)
and timescale in (3.33) respectively. Panel (a) is at t = 5.9, panel (b) at ¢ = 6.3 and
panel (c¢) and ¢ = 7.8. The background current is directed along the z axis (indicated by
the orientation axes in the bottom left corner). Higher temperatures correspond to higher
opacity.
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The role of the background shear flow, U,

During the instability growth phase, the magnitude of the background shear controls
whether or not the initial instability formation occurs with or without a preferential direc-
tion in the horizontal plane. Of the cases considered in table 3.2, only the Slow and the
Base case exhibit randomly seeded instabilities, whereas every other case exhibits instabil-
ities aligning themselves with the background shear flow. A comparison of the Fast and
Slow cases in figure 3.4 highlights the basic role that the shear flow plays as the convective
plumes grow. Panels (a) and (c) show y — z and x — z slices of w for the Slow case, while
(b) and (d) show the same slices of w for the Fast case. Both y — z slices have temperature
contours overlaid in black. The y — z slice is taken in the middle of the domain and the
white dashed line in panels (a) and (c) indicate the heights at which the x — y slices are
taken. In panels (a) and (c), the direction of the background current is out of the page,
while in panels (b) and (d) it is from left to right. The times of the plots are on the figure.
Note that since the timescale is independent of the background current, and the intensity
of the radiation is constant in every case, plots taken at the same time have had the same
amount of thermal energy added.

As the Slow case develops, the instability caused by the unstable stratification generates
regions of upwelling and downwelling near the surface, but the convective plumes that form
do not orient themselves either as parallel or perpendicular to the background current. The
Fast case, on the other hand, exhibits a strong and persistent streamwise homogeneity until
full three-dimensionalization (discussed in the next section). It is interesting to note that
the magnitude of the vertical velocity is the same for both of the panels shown, even
though the magnitude of the background current varies by an order of magnitude between
them. This suggests that the vertical currents induced during the instability growth phase
are mostly independent of the background current, thus being solely influenced by the
thermal forcing. This is confirmed by calculating the vertical buoyancy flux (—pw) for
the Fast, Short-Attenuation, and Base cases and noting they are all on the same order
of magnitude (not shown). There is some field evidence for this. Bouffard et al. (2019)
estimated convective velocities over the course of March 2017 in Lake Onego (Russia),
and the variation in daily maximums was very small, indicating that there could be an
independence of the convective velocity scales from other under-ice flow factors.

The role of the attenuation length, /¢

The role of ¢ is to control the rate at which incident radiation is attenuated with depth.
The rate that energy is attenuated influences the size of the convective instabilities that
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Figure 3.4: A comparison of the w fields for the Slow and Fast cases. The times are on
the figure. y — z slices of the Slow and Fast cases are shown in panels (a) and (b). z — 2
slices at the same times are shown for both cases in panels (¢) and (d). The height that
the x — z slice is taken at is indicated by the white dashed line in panels (a) and (b). The
y — z slices are taken in the middle of the domain.
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grow. Given a constant rate at which energy is introduced by the thermal forcing, smaller
values for ¢ force this energy to be concentrated over a smaller depth range thus leading to
larger density differences over smaller distances. We can see the effect that the variation in
attenuation length has on the instabilities by solving the viscous Taylor-Goldstein (vTG)
equations (Appendix A) (Smyth et al., 2011).

For cases when the shear is sufficiently strong so as to orient the instability cores in the
streamwise direction (as in the Fast case), we solve for growth rates of perturbations in
the y — z plane only. We make this assumption to facilitate a clearer comparison between
growth curves for cases with different attenuation lengths. This decision is motivated
by solving the vT'G equations (in dimensional form) assuming that perturbations in any
direction can grow (not shown), and noting that the maximum growth rate is found to
lie along the k = 0 (streamwise wavenumber) boundary. This limit allows us to consider
perturbations with only spanwise structure. Since the streamwise background current does
not have any structure in the spanwise direction, it does not play a part in determining the
stability of modes in the spanwise direction, and is not included in the model presented in
Appendix A.

We solve the system using mean dimensional density profiles at times before the insta-
bilities have significantly modified the stratification. Since heat is continuously added to
the system, the maximum growth rates given by the vI'G model are only an estimate, as
a primary assumption of the model is a steady background state. Thus, we use the results
of the linear model only as general guidelines for the understanding the instability growth,
and not for a quantitative discussion.

The density profiles and growth curves are presented in figure 3.5. Quantities related
to this figure are reported in dimensional terms for visual clarity. Panel (a) shows the
density profile of the horizontally averaged temperature at 1000 s (solid lines) and 2500 s
(dashed lines) for attenuation lengths of 0.2 m (red) and 0.6 m (blue). These correspond
to the attenuation lengths in the Short-Attenuation and the Fast cases respectively. Since
the amount of heat added to the domain is linearly related to the time of each profile, the
profiles shown at 2500s have 2.5 times more heat added than the profiles at 1000s. Since
the equation of state is non-linear, the density profile will not have the exact same structure
as the thermal forcing, but since © is much less than unity in these cases, the increase in
density is approximately linearly related to the increase in temperature. Pursuant to this,
top-bottom density differences of the profiles at 2500s are about 2.5 times as large as those
taken at 1000s. Thus the aspects of the density structure attributed to the non-linear
equation of state are secondary for the dynamics.

As heat is added, the resultant density profiles take on an exponential structure similar
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Figure 3.5: Panel (a) shows background density profiles at 1000s (solid) and 2500s (dashed)
for the Fast and the Short-Attenuation cases. Panel (b) shows the growth rates as a function
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to the thermal forcing, thus gaining a vertical length scale on the order of the attenuation
length. This vertical length scale should have some role to play in setting the horizontal
length scales of the instabilities that grow in practice. Panel (b) shows the growth curves for
instabilities growing on the background density profiles in panel (a). As the background
state for a given attenuation length becomes more unstable as more heat is added (a
comparison of curves with the same color), the peak of each growth curve shifts along the [
(spanwise wavenumber) axis only slightly but its magnitude increases by roughly 50%. This
means that as more heat is added to the domain, the wavenumber pertaining to the fastest
growing instability does not significantly change, but the growth rate does. This is to be
expected because heat added to the domain increases the temperature differences between
overlying layers of fluid, thus increasing their local Atwood number. However, for a given
time, a comparison of cases with different attenuation lengths (a comparison of curves with
the same linestyle) reveals a significant difference in both the location of the peak of the
growth curve, as well as the growth rate. This figure suggests that the shorter attenuation
lengths have faster growing instabilities with shorter characteristic length scales. This is to
be expected because shorter attenuation lengths imply a larger amount of heat deposited
near the surface across a smaller vertical scale, thus inducing a larger density gradient near
the surface.

We can examine the role the attenuation length plays in practice by looking at the
vertical velocities for the early development of the Short-Attenuation case at two times,
shown in figure 3.6. The two main conclusions of figure 3.5(b) are qualitatively correct
as smaller scale convective instabilities are observed to form much earlier in the evolution
of that case relative to the Fast case. This can be seen by comparing figures 3.4(b) and
3.6(b), for example.

3.8.2 Transition Phase

The Instability Growth phase focused on the early development of the instability as the
system gained heat and became more unstable. The following section highlights the pro-
cesses that occur as the instabilities achieve a finite amplitude, subsequently collapse and
the system moves to a turbulent regime. A full discussion of the fully developed turbulent
regime itself is left for future work.

As the flow develops, the streamwise symmetry (quasi-two-dimensional state) from
the growth phase breaks, leading to a three-dimensional turbulent state. A qualitative
appreciation of an example of the fully three-dimensional state can be seen by considering
panel (c) in figure 3.3. The full three-dimensionalization of the system will be investigated
by considering the enstrophy components defined in (3.52).
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Figure 3.6: A comparison of the w field at two times for the Short-Attenuation case with
temperature contours overlaid. Times are chosen to highlight the initial development of
the instability and the state of the instability shortly before collapse. The times are on
the figure. y — z slices are shown in panels (a) and (b), and = — z slices taken at the
height indicated by the white dashed line. These are shown in panels (c) and (d). Note
the difference in the colorbar limits in panels (a) and (c) versus (b) and (d).
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Figure 3.7: Enstrophy components normalized by the total enstrophy at that time for the
Fast case (solid), Medium-Attenuation case (dashed) and the Short-Attenuation case (dot-
dashed lines). For all cases shown, the streamwise, spanwise, and vertical components of
enstrophy are red, blue, and black respectively.
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Figure 3.7 shows the enstrophy components for the Fast case (—), Medium-Attenuation
case (——) and Short-Attenuation case (—-). The z, y and z components for each case are
shown in red, blue, and black. This plot can be broken into two regimes, one where the
streamwise and vertical enstrophy components are distinctly different than the spanwise
component, and one where they are comparable. The former corresponds to when the
instability is forming and transitioning, and the latter corresponds to when the flow is
strongly three-dimensional and disordered.

This plot concisely demonstrates that the system reaches a turbulent state on a com-
parable non-dimensional timescale. Thus as the attenuation length is decreased, the di-
mensional time at which the system reaches the turbulent state is earlier. Figure 3.7 also
highlights that prior to the full three-dimensionalization, there is an increase in the stream-
wise and vertical components of the enstrophy; @? and w? respectively. Thus, most of the
enstrophy that is initially present is due to the background current, (appearing in w;) while
the streamwise and vertical components emerge only after convective instabilities begin to
modify the background state. Note that there is some initial activity in the streamwise
and vertical components due to the white noise perturbation at the beginning of each
simulation, but this decreases due to viscosity and the numerical filter.

As the instabilities develop and carry energy down to smaller scales with them, the net
trend of the streamwise and vertical components of the enstrophy is to increase, resulting
in a relative decrease of the spanwise component. This results in all three components
being equal in magnitude. As the emergent components grow, w? is more active than w?
for the Fast and Medium-Attenuation cases, and the disparity between the two is higher
in the Fast case. The Short-Attenuation case is slightly different in that the streamwise
component is more active than the vertical component prior to three-dimensionalization.
This could arise from the fact that the instabilities grow fast enough that the shear is not
able to completely suppress streamwise perturbations. This is evident in figure 3.6 (¢) and

(d), as there is some streamwise variation in the vertical velocity.

It should be noted that significant modification of the background current occurs only
after the convective plumes are very large and have had sufficient opportunity to bring
momentum lower into the water column. Since the instabilities induce vertical fluxes of
momentum, it is reasonable to expect some change in the mean profiles of velocity, since
the current is incapable of being maintained by forcing or a pressure gradient. Shown in
figure 3.8 are mean velocity profiles for the Fast (left) and Short-Attenuation (right) cases
at three different times. The times are chosen are to highlight the state of the mean current
before, during, and after the instability growth phase

For both cases, the key is that during the initial formation of the instability, the mean
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Figure 3.8: Streamwise current profiles at three times for the Fast (panel(a)) and Short-
Attenuation (panel(b)) cases. Times are chosen to highlight the mean streamwise current
profile before instability formation (black), during the transition (blue), and in the three-
dimensional state (red). Angle bracket represent horizontal average.
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current becomes slightly modified by the growth of the instabilities, but there is still some
evidence that the shear layer persists. However, once the instabilities have grown signifi-
cantly, the shear layer structure has changed substantially. At this point, the instabilities
have moved momentum from the near surface regions to lower in the water column. The
dimensional times that this process occurs is earlier for the Short-Attenuation case, con-
sistent with the results described above.

Now consider figure 3.9 where we have taken the horizontal L? norm of each vorticity
component for the Fast case. The horizontal L? norm is useful for assessing information
regarding the vertical structure in the vorticity components. Panels (a,b,c) show the norms
of the streamwise, spanwise and vertical vorticity component (with vorticity of the back-
ground current removed). Coinciding with the rapid increase in spanwise vorticity in the
Fast case from figure 3.7, panel (b) of figure 3.9 shows a front of strong spanwise vorticity
propagating downwards. Finally, around ¢t = 6.5 we see larger values of streamwise vortic-
ity near the bottom of the shear layer, which coincides with the sharp increase from figure
3.7, and the three-dimensionalization of the flow.

As the convective plumes grow and flow downwards, they bring streamwise momentum
with them. The generation of spanwise and vertical vorticity occurs because of a flux of
streamwise momentum from the tip and sides of the plume into the fluid moving at a
different velocity below. This momentum flux manifests itself as @, produced at tip and
@, produced at the sides of the plumes.

A closer look at this process is presented in figure 3.10. Shown are y — z slices of the
three components of vorticity overlaid with contours of the streamwise velocity for the Fast
case at t = 5.7. This time was chosen because it coincides with the first local minimum of
w; for the Fast case in figure 3.7. The Medium-Attenuation case follows the same general
pattern and is not shown. Strong spanwise and vertical vorticity (panels (b) and (c))
are associated with strong variations in u, denoted by the spatial overlap of contours and
large positive and negative vorticities. Generally speaking, the streamwise component of
vorticity is not a function of the streamwise component of velocity, and must be generated
by spanwise variations in w or vertical variations in v. While there is some shear on fluid
parcels caused by the falling plumes interacting with the upwelling water, the spanwise
variations of w generated by this motion are small because the spatial variations of w are
much smaller than variations in the other velocity components.

Shown in figure 3.11 are vorticity slices for the Short-Attenuation case at t = 6.6.
This time was chosen as it coincides with the first local minimum of @5 for the Short-
Attenuation case in figure 3.7. The same underlying principles can be seen to apply,
except this time, the streamwise vorticity production is higher and more comparable to
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Figure 3.9: Horizontal L? norm of the vorticity components for Fast case. Panel (a)
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background current has been removed from @, before squaring.
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Figure 3.10: Panels (a) — (c¢) show the y — z slices of each component of vorticity (x, v,
and z respectively) at ¢ = 5.7 for the Fast case. Contours of velocity are included on the
plots.
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the spanwise and vertical. Since the shorter attenuation length implies a smaller length
scale for the instabilities, the density and velocity gradients are potentially higher, leading
to more vorticity production. Since the streamwise vorticity in the Short-Attenuation
case becomes as active as the other two components sooner relative to the Fast case, the
system goes unstable much earlier than the Fast case. The implication is that the smaller
scale instabilities create thinner interfaces and higher resultant velocity gradients leading
to enhanced streamwise vorticity production and to an earlier transition to turbulence.

Below, we discuss the role that the vorticity dynamics plays in this process. To do this,
first consider the terms that generate vorticity in the system, quantified by S; and B;.
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Figure 3.11: Panels (a) — (¢) show the y — z slices of each component of vorticity (z, y, and
z respectively) at t = 6.6 for the Short-Attenuation case. Contours of velocity are included
on the plots.
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Shown in figure 3.12 (a) and (c) are profiles of S; at ¢t = 5.6 and t = 6.3 respectively
for the Fast case. Panels (b) and (d) show the corresponding B; values. The z,y,z
components are given by the red, blue, and black curves. These times are shown because
they describe the overall process that occurs during three-dimensionalization. For the Fast
case, B is systematically larger than S;, but for the Slow case, S; and B; are generally
comparable. This indicates that the generation of streamwise vorticity is primarily from
baroclinic generation during the instability development phase in the Fast case whereas
streamwise vorticity production is approximately the same from both mechanisms in the
Slow case. At the same time, a comparison of Sy and B, for the Fast case indicates
that spanwise vorticity is generated primarily by vortex tilting/stretching as opposed to
baroclinic production, while for the Slow case, these terms are of comparable magnitude
again. This observation is consistent with the fact that there is very little streamwise
variation in any variables at this time for the Fast case, where as the Slow case is fully
three dimensional.

At a later time, during the three-dimensionalization of the Fast case we see that there
is a substantial increase in Sy, Ss, and S3 compared to the earlier time. Furthermore, the
vorticity production coming from vortex tilting/stretching is greater than the baroclinic
vorticity production by about an order of magnitude for both the spanwise and streamwise
components. The baroclinic production is comparable across these two cases, while the
production by tilting and stretching is greater in the Fast case. Thus, it is clear that it is
vortex tilting/stretching that induces the three dimensionalization, and not the baroclinic
generation of vorticity.

The same premise follows for the Short-Attenuation and Short-Attenuation-Slow cases.
Profiles of S; and B; for the Short-Attenuation case are shown in figure 3.14, while such
profiles are omitted for the Short-Attenuation-Slow case, as they are very similar to fig-
ure 3.13, but concentrated near the surface. Note that the non-dimensional times are not
exactly the same between cases. However, qualitative comparisons can be made provided
that the profiles are chosen just before the transition to three-dimensionalization. The key
features to note here are the localization of the vorticity production near the surface, con-
sistent with the smaller attenuation length and smaller instabilities, as well as the fact that
the baroclinic generation of streamwise vorticity is much higher relative to the streamwise
generation by tilting/stretching. This is consistent with higher density gradients induced
by the smaller scale instabilities. This could explain the much larger streamwise component
of vorticity when comparing figures 3.10 and 3.11.
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Figure 3.12: Panel (a) shows profiles of the horizontal L? norm of each component of vortex
tilting/stretching for the Fast case at ¢ = 5.6. Panel (b) shows the horizontal L? norm of
each component of the baroclinic vorticity production at ¢ = 5.6 for the same case. Panels
(c) and (d) show the same quantities but at t = 6.3.
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Figure 3.13: As in figure 3.12, but for the Slow case.
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Figure 3.14: Panel (a) shows profiles of the horizontal L? norm of each component of vortex
tilting/stretching for the Short-Attenuation case at t = 5.9. Panel (b) shows the horizontal
L? norm of each component of the baroclinic vorticity production at ¢t = 5.9 for the same
case. Panels (c) and (d) show the same quantities but at ¢ = 6.6.
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3.9 Discussion

This thesis chapter (and the paper it is based on (Grace et al., 2022)) presents three-
dimensional simulations of cold water (T' < T},,4) convection induced by volumetric thermal
forcing in the presence of a subsurface current in a horizontally periodic rectangular prism.
In this temperature regime, density differences, characterized by the Atwood number,
achieved within the flow are often much smaller than other studies citing low Atwood
numbers (Boffetta et al., 2009, 2010; Andrews and Dalziel, 2010; Akula et al., 2013). The
incident thermal forcing is a simplified model of solar radiation akin to Bouffard and
Wiiest (2019); Ulloa et al. (2019); Ramén et al. (2021), and the background current is
approximately linearly increasing from the mid-depth to the surface creating a region of
constant shear and motionless region below. In this setup, heat is preferentially added to
the near surface regions of the water column resulting in an unstable stratification, with
the rate of attenuation of the incident radiation being controlled by /.

Rayleigh-Taylor instabilities develop in all cases, but in cases with sufficiently strong
shear, the background shear flow suppresses streamwise variation in the instabilities. The
physical length scales of the instabilities that appear tend to correlate with the attenuation
length. Cases with smaller attenuation lengths transition to a three-dimensional state
earlier than cases with larger attenuation lengths.

All cases exhibited some degree of streamwise variability in the spatial structure of
the instability but the variation was much stronger in the Base case and the Slow case.
Whether or not the instabilities initially grow in a full three-dimensional state or a quasi-
two dimensional state is complicated by the fact that the background density profile is
constantly changing. The criterion for determining if streamwise RTT will be suppressed
(Mikhailenko et al., 2005) is rewritten here for convenience:

0
V2
Here, |U.| is the dimensional local magnitude of the shear, and &; is the dimensional growth
rate of the fastest growing instability in the absence of any background shear. In this setup,
heat is continually added to the domain, and prior to instability formation, this heat mod-
ifies the stratification, which in turn modifies both the length scale of the fastest growing
instability and the growth rate of instability. The background state in the Slow case quickly
reaches a point where &;/v/2 > |U,|, and this happens before significant modification of

the background state and growth of the instability to its finite sized manifestation. Thus,
when the perturbations finally grow, the shear that they experience is not strong enough to

U.(2)| 2

(3.58)
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enforce the quasi-two-dimensional instability growth. Contrast this to the Fast case, where
the shear is ten times as strong, and instability occurs before &;/ V2 becomes larger than
|U,|. Therefore, instabilities grow to finite amplitude in a quasi-two dimensional state.

For large enough attenuation lengths (the Fast and Medium-Attenuation cases), the
growth of the convective instabilities induces a vertical flux of streamwise momentum,
rapidly increasing the spanwise and vertical components of vorticity (refer to figure 3.10,
panel (c)). The rapid increase triggers three-dimensional tilting/stretching of vorticity,
which finally allows the instabilities to go from a quasi-two dimensional structure to a
fully three-dimensional turbulent state. The Short-attenuation case exhibited qualitatively
similar behaviour (refer to figure 3.11 panel (c)), but the baroclinic generation of vorticity
was slightly stronger as the system transitioned from the quasi-two-dimensional state to
the full three-dimensional one. The increased baroclinic production comes from the fact
that the length scales between the plumes are much smaller in the Short-Attenuation case,
allowing for higher horizontal density and velocity gradients leading to streamwise vorticity
generation. This is evident in the fact that for the Short-Attenuation case, values of w?
are higher than values of @? for much of the evolution.

The results of this chapter also bring up an important question about what one sees
when simulating planar convection with a background shear flow (convection in only the
x—z plane). For instance, in Benilov et al. (2002), planar convection is seen as a reasonable
representation of the full three dimensional physics, but by limiting the simulations to a
single plane, the key mechanism responsible for three-dimensionalization and mixing is
missing. When performing similar simulations to those in table 3.2, except limiting the
domain to the x — z plane, the background shear flow completely stabilizes the upper
portion of the water column. Convective heat fluxes are temporarily (and in some cases
indefinitely) stopped within the domain, leading to a cooler lower layer relative to a run
without a shear flow. The cases discussed in Benilov et al. (2002) suffer from this behaviour,
as there is no mechanism for the background state to become more unstable, thus eventually
being able to overcome the stabilizing effects of the shear.

Building an understanding of the dynamical processes that are responsible for the
transition from instability growth to turbulent convection in cold water is important for
the eventual parameterization of these processes for larger scale models. The heat added
to the system generates upwelling and downwelling and an associated momentum transfer
that in turn disrupts the background shear flow. As was shown in the Results section, the
mechanism by which the system goes unstable was shown to be intimately linked to the
presence of the shear flow. More research is needed to investigate the long term impact of
the instability collapse and resultant turbulence on the background current. For example,
once the system is in a turbulent state, is there some sort of equilibrium, or slowly varying
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but predictable background state that is achieved after enough time? Additionally, what
does the turbulent state look like as the attenuation length is varied? In the limit of
¢/H — 0, the system approaches a Rayleigh-Bénard type of convection system. Pirozzoli
et al. (2017) simulated the interaction of this form of convection with mean shear and
identified robust streamwise rollers that increased the efficiency of the downward heat
flux. Bouillaut et al. (2019) used an experimental setup similar to the one presented in
the present chapter. They heated a tank of freshwater from the bottom and measured the
convective heat flux as a function of the Rayleigh number and ¢/ H and found that at larger
¢/H, the upward heat flux was more efficient than for smaller values of ¢/H, indicating
that volumetric thermal forcing may be able to achieve the so-called “ultimate regime” of
convection under the right conditions.

The results in this chapter also highlight a gap in the understanding of turbulence
generated by unstable stratification. As an example, consider the K-Profile Parameteriza-
tion (KPP) (Large et al., 1994), a more modern review of which is found in Van Roekel
et al. (2018). The KPP is a mixed layer model, with a term that parameterizes non-local
turbulence based on boundary fluxes of heat and salt. Since radiation from the sun is a
volumetric heating mechanism rather than a boundary flux, it is not clear how much solar
radiation should be included in the non-local term (Van Roekel et al., 2018), thus a sepa-
rate parameterization for mixing in cold water by radiation may be needed. Furthermore,
the parameterizations within the KPP are built on theories which rely on the presence of
fully developed turbulence. It is interesting to note that the flow Reynolds numbers of
the above simulations are quite low, indicating that the simulations may not reach a point
where they could be considered as fully developed turbulence by models like the KPP. Low
Reynolds numbers could indicate that the inertial sub-range of the kinetic energy spectra
(Kundu, 1990) where vortex tilting and stretching typically dominate, may not be fully
formed. However, it is clear from figures 3.12, 3.13, and 3.14 that stretching and tilting
are still important to the development of the system.

Furthermore, future work should include a demonstration and discussion of the dy-
namics of a similar system where the background shear current is located near the bottom
of the domain, as opposed to near the surface. This setup provides a companion to the
simulations presented in this chapter. With a current located near the bottom, convective
instabilities are free to form in three dimensions near the surface, and they can collapse
and then contact the shear flow. Can the instabilities move momentum from the shear
layer to the near surface region? Is this momentum flux more efficient once the instabil-
ities collapse, or prior to collapse? Do fully three dimensional instabilities become two
dimensional when they are subjected to the shear in this setup on long enough timescales?

Another direction one could consider is the impact of a different shear profile. One
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key feature that is ignored in this chapter is an inflection point in the background velocity
profile. An inflection point is a necessary condition for the development of shear instabilities
by Rayleigh’s inflection point criterion (Kundu, 1990). Shear instabilities provide another
mechanism to mix the water column (Caulfield, 2021), and depending on the strength of
the shear, these shear instabilities may grow faster than any convective instabilities. Once
in a turbulent mixed state, does the hypothetical system generated by shear instabilities
differ from a turbulence point of view when compared to the system presented in this
chapter?
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Chapter 4

Asymmetries in gravity currents
attributed to the nonlinear equation
of state

4.1 Author’s Note

This chapter is a slight modification of the material that appeared as Grace et al. (2021).
A discussion on how the non-dimensional parameters in the cubic equation of state used
in this chapter relate to the NLEOS parameter discussed in the previous two chapters has
been included.

4.2 Introduction and Overview

This chapter concerns itself with a larger but still monotonic interval of the NLEOS rel-
ative to the results and analysis of chapter 3. For a visual representation, refer back
to figure 1.3(b). In this chapter, characteristic temperatures fall between the freshwater
freezing point and the freshwater temperature of maximum density 7},q. We will call this
regime the “cold water regime”. As mentioned in chapter 1, to examine this interval of
the NLEOS, the specific low phenomenon we will focus on is a gravity current. For a
brief overview of gravity currents in previous studies, refer to section 1.1. In brief, gravity
currents provide a canonical example of density driven flow and have often been used in
numerical and laboratory scale studies to represent much larger scale phenomena. Simpson
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(1982, 1999) and Huppert (2006) provide an overview of the history, theory, and practical
applications of gravity currents in the laboratory and environment. For numerical analy-
sis on the coexistence of coherent structures and turbulence, see Hartel et al. (2000a,b);
Ouillon et al. (2019). With respect to the NLEOS, gravity currents have the benefit that
one can control the interval of interest of the NLEOS by specifying appropriate initial
conditions. This includes choosing an ambient temperature T, and intruding temperature
T;, and forming an a priori temperature difference AT. This differs from the internally
heated convection system in chapter 3, where an initial condition was specified, and the
characteristic temperature difference was controlled by the intensity of the radiation and
was a function of time.

An analogy of gravity currents in the cold water regime can be made to the ice pump
mechanism beneath the Pine Island Glacier ice shelf in West Antarctica (Schoof, 2010).
Autonomous underwater vehicle data from Jenkins et al. (2010) shows that warm and salty
circumpolar deep water slips into a trough in the continental shelf and flows down into the
cavity between the continental shelf and glacier. Once this water mass makes contact with
the ice shelf, mixing and basal melting occur forming buoyant ice shelf water that flows
upwards along the ice shelf (Schoof, 2010). This process has been identified as a possible
mechanism responsible for the accelerated retreat of the Pine Island Glacier.

Near the Pine Island Glacier ice shelf, Walker et al. (2007) measured the salinity to
be between 33 PSU and 35 PSU and temperature to be between -2°C and 1.5°C. In this
regime, the density varies linearly with salinity, while simultaneously varying non-linearly
with temperature. These observations suggest that density driven flows similar to gravity
currents exist in regions where the equation of state is non-linear. Understanding the small
scale processes that lead to increased melting in places like the Pine Island Glacier ice shelf
is imperative to accurately projecting future sea-level rises resulting from enhanced glacier
retreat.

Another example of cold water density driven flows comes from the study of the thermal
structure of proglacial lakes, which are lakes found adjacent to glaciers. Several prototyp-
ical examples of these lakes can be found in the review by Carrivick and Tweed (2013).
Proglacial lakes are primarily fed from meltwater originating from the adjacent glaciers and
have a number of influences on the ice dynamics of the glacier, as well as influences on the
local and regional climate. Proglacial lakes also act as fluvial sediment traps, meaning that
sediment fluxes from glaciers are trapped in these lakes as runoff mixes with the ambient
lake water (Carrivick and Tweed, 2013).

The characterization for the thermal structure of proglacial lakes is site specific due
to the variation in their characteristics, so consider Bridge Lake (Lillooet Icefield, British
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Columbia, Canada) where detailed data on the thermal structure is available (Bird et al.,
2022). Over the months of July, August and September in 2013, the thermal structure of
the lake at several locations of varying proximity to calved icebergs was measured. The
temperatures in the measured parts of the lake remained below Tp,4. Bird et al. (2022)
found that near the icebergs, the water column was isothermal over the depth (save for
the very near surface region which was warmer due to incident thermal radiation during
the daytime). Moving further away from the iceberg, a clear stable thermal stratification
formed, where waters near the bottom were around 2-3 °C, and the temperature decreased
as the surface was approached (again, save for the very near surface region that was warmer
due to incident thermal radiation). Moving further still, the water column achieved a
warmer isothermal state.

Bird et al. (2022) hypothesized that meltwater at a temperature of 0°C (which was
less dense than ambient water) flowed upward along iceberg margins and away from the
iceberg once it reached the surface, and this was driven by the density difference between
the meltwater and the ambient. This example of a cold water density driven flow is
important because is led to a thermal stratification and limited proximal warming near the
iceberg.

This chapter presents a series of numerical simulations of two categories of freshwater
gravity currents with temperatures restricted to the cold water regime. The first category
consists of cool intrusions propagating into warmer denser ambients, and the second cat-
egory consists of warm intrusions propagating into cooler lighter ambients. The results
highlight the temporal and spatial differences between the two categories, and how the
mechanism responsible for these differences can be attributed to the NLEOS. The remain-
der of this chapter is organized as follows. Section 4.3 shows the equations of motion, and
defines the non-dimensional equation of state for each category of current, demonstrating
how the dominant terms in the NLEOS change depending on which category of current is
considered. Section 4.4 highlights phenomenological NLEOS effects, specifically how ide-
alized density distributions change for each category of current. Following this, section 4.5
shows simulations of freshwater gravity currents at varying Grashof numbers in the cold
water temperature regime. Lastly, section 4.6 concludes with a summary and discussion
of the results and how they may relate to cabbeling with a look ahead to chapter 5.

4.3 Governing Equations and Model setup

In this chapter we use the Spectral Parallel Incompressible Navier-Stokes Solver (SPINS)
(Subich et al., 2013) to simulate the evolution of various gravity currents with a charac-

85



teristic temperature and density of T} and p(ﬂ) propagating into a motionless ambient
of temperature and density 7, and j(7},) in freshwater in two dimensions. The boundary
conditions are free-slip for velocity and no-flux for temperature and the model achieves
spectral accuracy. Previous studies have used SPINS to simulate the formation and propa-
gation of gravity currents in numerous circumstances; Xu et al. (2016) and Xu and Stastna
(2020) being two recent examples. The length of the domain is L = 20m and the height is
H = 2m. The number of grid points in the horizontal and vertical directions are N, = 8192
and N, = 512 respectively, and are uniformly spaced. The grid spacing is approximately
Az = 2.4 x 1073m in the horizontal and Az = 3.9 x 10~%m in the vertical. The equation
of state used in the model is a cubic fit from Brydon et al. (1999) modified so that the
temperature of maximum density coincides with 4°C. In dimensional form (variables with
a tilde are dimensional quantities), it is

ﬁ(T) = Cp —f- Clj—' + CQTQ —f- 03T3. (4].)

The values for cq, ¢1, ¢z, and ¢3 can be found in table 4.1 and values for T}, 5(T;), T, and

p(T,) can be found in table 4.2. The temperature field is scaled as

T,

T = = 4.2
AT (4.2)
with AT = T; — T, and the density field is scaled as
:5 - ﬁ(Ta)
=Lt 4,
p A (4.3)

where Ap = p(T}) — p(T,) is the initial density difference. Both T and p take on values
between 0 and 1. With the scalings in (4.2) and (4.3), (4.1) can be re-cast as

p=RiT +RyT? + R3T? (4.4)
where the coeflicients are
§(T)AT 17"(T,)AT? 17"(T,)AT?
_ Sl o Sl Vsl S S SV A 4.
Rl Aﬁ ) R’Q 2 Aﬁ ) R3 6 Aﬁ ( 5)

Prime symbols represent derivatives with respect to temperature. Values of R; and Ry for
each case are given in table 4.2 and R3 = 0.0113 for all cases. The scaling of density takes
into account three quantities; the initial temperature difference between the intrusion and
the ambient, the initial density difference between the intrusion and the ambient, and the
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derivatives of the equation of state around the ambient temperature. Note that for a linear
equation of state Ry = 1 while Ry and Rj3 are zero. This is because the thermal expansion
coefficient p/'(T,) is constant and is equal to %.

We can use (4.3) to define a velocity scale and time scale as

H
Ub = \/g/H, tb = -~ (46)

g
where ¢ = g% is the reduced gravity, pg is the constant reference density. These values
are found in table 4.1. The spatial coordinates, two-dimensional velocity, time, and the
dynamic pressure can then be non-dimensionalized as

_(3%75> _ _ 7 _
(Z’,Z)— H ) (u,w)— Ub ) = H> p_pOUg'

The initial condition of the temperature field is

T(z,2,t=0) = % (1—tanh (‘"”_5“)) (4.8)

where 2, and ¢ are the dimensionless lock and transition lengths, which are 0.5 and 0.025
respectively. A schematic of the case with T; > T, is provided in figure 4.1.

The scaling discussed above can be used to non-dimensionalize the incompressible
Navier-Stokes equations under the Boussinesq approximation. We can define a control
parameter called the Grashof number, Gr, the form of which follows Hértel et al. (2000b)

) - (22)" "

14

The relative strength of momentum diffusion to temperature diffusion is kept constant
across all cases and is measured by the Prandtl number,

v

Pr = — =10. 4.10
=2 (410)

This value of the Prandtl number is representative of the value for freshwater near Td.
Finally, the equations of motion in non-dimensional form are

Du
Dt

— —Vp—pk + Viu, (4.11)

1
v Gr
87



DT 1,

= VT, 4.12
Dt v/ GrPr? ( )
V-u=0, (4.13)

along with the NLEOS (4.4). The material derivative is represented by % = % +u-V, the

non-dimensional velocity by w, time by ¢, and k represents the unit vector in the positive
(upwards) z direction.

The values for Gr, viscosity, and diffusivity are given in table 4.2. Case names that
contain a T indicate that the gravity current is a cool intrusion (i < Ta) and flows along
the top surface, while those with a B indicate the intrusion is a warm intrusion (7} > T,)
and flows along the bottom surface. A control case is also included, called Control. For
this case, the density field was evolved following an equation similar to (4.12), and has an
equivalent driving density difference to the T and B cases. Evolving the density directly is
equivalent to evolving the gravity current under a linear equation of state. All other flow
parameters were unchanged for the control case. The cases in this chapter were chosen to
have comparable Grashof numbers of other studies such as Cantero et al. (2007, 2008) and
Hértel et al. (2000b). In section 4.5, the Grashof number is modified by changing the value
of the viscosity. In order to keep Pr = 10, the thermal diffusivity must was also changed by
the same amount. Alternatively, we could have instead modified Gr by varying H across
cases. To achieve the Gr in 2B/T and 3B/T, H would need to be reduced by about 66%
and 78% relative to the 1B/T cases respectively. Furthermore, to keep the same aspect
ratio of the domain, L, §, and z, would also need to be reduced by the same amount.

Since the coefficients of (4.4) are functions of the ambient temperature within the
domain, there are different leading order terms in the NLEOS for each type of current, and
they are based on the relative magnitudes of Ry and Ry. For example, for cases where T}, is
not close to Ty (the exact meaning of “close” and “not close” will be discussed in chapter
5), the magnitudes of Ry and Ry are generally comparable. We can then write (4.4) as

p=RiT (1 + —@21T + —@62 T2> (4.14)
where the NLEOS parameters are
Rs Rs
O, == O,=_—2. 4.15
1 Rl 3 2 Rl ( )

As per usual, the NLEOS parameters measure the relative magnitude of the non-linear
terms in (4.4) relative to the linear one, while R; (interpreted as the scaled thermal expan-
sion coefficient) sets the scale for the buoyancy forcing itself. Note that in this formulation,
O can be positive or negative because Ry can be of either sign.
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Alternatively, for cases where Ta is close to (but not equal to) de, R; <« Ry. This
means that the dominant term in (4.4) is the quadratic term so that the NLEOS becomes

1 1 O,
=RoT ( — + =T+ ——T" 4.16
p=RT (g + 5T+ ) (4.16)
In this case, ©1/0O; measures the relative magnitude of the cubic term in (4.4). In the
limit of T, = T},4, the ©7' term vanishes because R; = 0. In this limit, the coefficient of
the last term in the brackets of (4.16) simply reverts to the ratio of R and Ry because 6,
and O, are no longer finite using the definition in (4.15).

Using the values for R; and Ry from table 4.2 and the constant value Rz = 0.0113, we
can estimate that for the B cases, ©; = —0.5028 and ©, = 5.695 x 1073, indicating that
the quadratic term of (4.4) is comparable in magnitude to the linear term. Furthermore,
the cubic term is negligible compared to both the linear and quadratic term. For the T
cases, ©; = 42.6460 and ©, = 0.5. In this case, both ©;" and the cubic term are negligible
compared to unity, the NLEOS is quadratic to leading order in these cases. A more general
discussion of the expected dynamics for different intervals of the NLEOS parameter will
take place in chapter 5.

Parameter Symbol Value Dimensions Description

g 9.81 m/s? Acceleration due to gravity
0 1000 kg/m? Constant reference density
Co 999.865 kg/m? NLEOS constant. See (4.1).
1 5.84 x 1072 | kg/(m*°C) NLEOS constant. See (4.1)
o —7.45 x 1073 | kg/(m3°C?) NLEOS constant. See (4.1).
cs 3.30 x 107 | kg/(m®*°C3) | NLEOS constant. See (4.1)
H 2 m Depth of domain

L 20 m Length of domain

|Apl/po 4.57 x 107° - Dimensionless density difference

Table 4.1: List of constants used in this chapter, their values, and a description.

4.4 Phenomenological non-linear equation of state ef-
fects

Mentioned in chapter 3, the dynamic implications of the non-linear of equation of state
have been discussed in several contexts like salt fingers (Ozgokmen and Esenkov, 1998), and
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Reference length ( = 1)

L/H

Figure 4.1: A schematic of the initial condition on temperature. T' = 1 is the dimensionless
temperature of intruding fluid while 7" = 0 is the dimensionless temperature of the ambient
fluid. In the cool intrusion cases, T, < Ta, and in the warm intrusion cases, T, > T
The lock length is given by xy, the dimensionless tank length given by L/H, and the
dimensionless tank height is equal to one (since the reference length is H; the dimensional
depth of the tank). x is the horizontal coordinate, and z is the vertical coordinate, and
gravity points in the negative z direction.
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Case VGr v(m?/s) | k(m?/s) Ti(OC) .(°C) R, R,

1T 6.0x10*| 1076 1077 1.5 4 0.0226 | 0.9638
1B 6.0 x 10*| 107 1077 4 1.5 | 1.9841 | -0.9977
2T 1.2x10* | 5x10°%|5%x 1077 | 1.5 4 0.0226 | 0.9638
2B 1.2x10* | 5x10°¢ | 5x 1077 4 1.5 | 1.9841 | -0.9977
3T 6.0 x 103 | 107 1076 1.5 4 0.0226 | 0.9653
3B 6.0 x 10| 107° 106 4 1.5 | 1.9841 | -0.9977
Control | 1.2 x 10* | 5x 107% | 5 x 1077 - - 1 0

Table 4.2: Outline of the cases in this chapter. T cases indicate cool intrusion, and B cases
indicate warm intrusions. The Grashof number is defined in (4.9), v is the viscosity,  is
the temperature diffusivity, T, is the intruding temperature, T, is the ambient temperature,
and R; and Ry are defined in (4.5). For the control case, density is evolved directly, so
intruding and ambient temperatures are not defined.

Rayleigh-Taylor instabilities (Olsthoorn et al., 2019), but the impacts on freshwater gravity
currents remain understudied. As heat is exchanged between the ambient and intrusion
their density difference will subsequently decrease assuming the temperatures reside in
the monotonic cold water regime between the freezing temperature and Tjng, shown in
figure 4.2(a). Figure 4.2(b) shows the dimensionless equations of state that model the
density differences between the ambient and the intrusion as their temperature difference
decreases. The equations for these equations of state were shown in section 4.3 Initially,
the dimensionless temperatures of both currents are 7' = 1. The densities of all B (T) cases
are scaled such that the density-temperature relationship is given by the dashed (dotted)
curve, called py, (p.)-

The two different scalings reveal an important feature about this problem. The rate that
the density decreases is strongly dependent on its initial configuration. For cool intruding
fluid that gains heat from a much larger volume of ambient fluid at T),4, the density will
initially decrease at a relatively large rate, and as the temperature difference between the
intrusion and the ambient approaches zero, the rate of decrease of the density difference
will slow. Conversely, for a warm intrusion at or near 1,4 that gives heat to the ambient,
the density difference will decrease at a lower rate, until the temperature difference between
the masses of water is small. At this point, the density difference begins to decrease more
rapidly.

As the gravity current propagates, mixing between ambient and intruding fluids ir-
reversibly modifies the temperature distribution within the flow. The constants in (4.4)
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Figure 4.2: Panel (a) shows the equation of state in the temperature regime in this chapter.
The temperature of maximum density according to the modified equation of state, (4.1),
is approximately 4°C. The black markers indicate the temperature range in this chapter.
Panel (b) shows the scaled density-temperature relationships for each set type of current,
(4.4). For the T cases, the density initially undergoes a relatively rapid change and slows
as the temperature nears zero (depicted by p.), and vice versa for the B cases (depicted

by pu).
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Figure 4.3: A conceptual demonstration of how density distributions with normally dis-
tributed temperatures depend on the dimensionless equation of state. Panel (a) shows a
temperature distribution with a mean of 0.4, and panel (b) shows a temperature distri-
bution with a mean of 0.6. Standard deviations are constant at 0.11. Refer to legend.
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indicate that the resulting density distributions will be different for each type of current.
Insight into the relationship between temperature distributions and density distributions
can be gained by first considering a test flow with normally distributed temperatures. Since
the relationship between T" and p is nonlinear, the density distribution is not normally dis-
tributed. This is illustrated in figure 4.3. In figure 4.3(a), the flow has a mean temperature
of T'= 0.4, and in 4.3(b), it has a mean temperature of 7' = 0.6, each represented by the
dark gray probability density functions (PDFs). These distributions were chosen to have
standard deviations of 0.11.

When temperatures are distributed such that their mean is closer to T' = 0 (representing
the ambient temperature) than to 7" = 1 (representing the intruding temperature), densi-
ties described by pr(T') result in positively skewed and narrow distributions concentrated
close to p = 0.15. Conversely, densities described by pg(T) result in negatively skewed and
broad distributions with a peak located near p = 0.65. When temperatures are distributed
such that their mean is closer to the intruding temperature, rather than to the ambient
temperature, the opposite behavior occurs. Thus, depending on which equation of state
the flow evolves under, the density distributions within the flow are characteristically dif-
ferent. This difference may result in large scale variation in the dynamics of the flows.
Since each type of current in this study follows one of either pg(T) or pr(T), the density
differences within the flow evolve in different ways. The results in the following sections
demonstrate the structural and evolutionary differences that arise due to the characteristic
differences between pg(T') and pr(T).

In general, temperature distributions in the simulations in this chapter are more com-
plicated than the idealization in figure 4.3. However, normally distributed temperatures
create a simple idealized model that the more complicated distributions presented in Sec-
tion 4.5 can be compared to, regardless of the exact form of the temperature distribution.

The primary method by which we are going to examine the dynamical significance of
the NLEOS in the cold water regime is by comparing gravity currents in two categories.
The first category consists of cool intrusions propagating into warmer denser ambients
(TZ < Ta), and the second category consists of warm intrusions propagating into cooler
lighter ambients (T} > T,).
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Figure 4.4: Temperature fields for cases 1B ((a), (c), and (e)), and 1T ((b), (d), and (f)).
These cases were chosen because it best highlights the qualitative differences between cool
and warm intrusions. The dashed vertical lines indicate the location of the nose of the
gravity current, while the dashed horizontal lines indicated the critical height where the
Froude number becomes insensitive to head height (Huppert and Simpson, 1980)
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4.5 Results

4.5.1 Evolution and emergent density changes

The qualitative differences between the cool and warm intrusions are noticeable from a
very early stage in their development, and these differences persist as the gravity currents
continue to evolve. Shown in figure 4.4 is the dimensionless temperature field for cases 1B
on the left, and 1T on the right. Initially, 4.4(a) and (d) show that the gravity currents
are similar in structure but by ¢ = 13.5 in (b) and (e), large scale differences between the
two cases occur. In case 1T, vortices form in the tail of the current and intrude downwards
into the water column, whereas for case 1B, much of the intruding fluid is trapped near the
bottom surface, and no clear vortices form. The head of 1T is also smaller than the head of
1B. As 1T continues to propagate, small amounts of fluid are shed from the top surface and
brought further into the water column (compare panels (¢) and (f)), resulting in a much
larger body than in 1B. The temperature fields of the 2B/T and 3B/T cases (not shown)
have very similar structures, but they show less spatial variability in the temperature field
due to the higher values of viscosity and thermal diffusivity. The 1B/T cases show the
most spatial variability because they have the smallest viscosity and thermal diffusivity,
and therefore the largest Grashof number considered here.

Distinct differences between the head locations occur as the currents continue to evolve.
The difference is most apparent in panels (c) and (f), indicated by the dashed vertical lines.
Comparing with the results of the 2B/T and 3B/T cases, the simulations reveal systematic
differences in the head locations for all cool intrusions compared to the warm intrusions
at the same Gr. Figure 4.5(a) show the head locations for all cases with power law fits
to the data, and (b) shows the non-dimensional velocity calculated from the fits. The
data from the simulations are plotted as coloured markers and the fits for the B and T
cases are plotted as dashed and solid lines respectively. The head location data was fit
to Ct* (a and C' are computed coefficients) over an interval of t ~ 4 to t ~ 18 using
MATLAB’s polyfit function. The choice of this range of times was motivated from a
discussion about self-similar phases of gravity current evolution presented in Cantero et al.
(2008). For sufficiently large Grashof number, gravity currents travel through several self-
similar phases. They are called the acceleration phase, the slumping phase, the inertial
phase, and the viscous phase. In the first three of these phases, the dominant balance
in the momentum equation is between the driving pressure gradient generated by density
differences, and the inertial term. For the viscous phase, the dominant balance is instead
between the viscous term and the inertial term. The record of the head locations begins as
about ¢ ~ 4, which is the time Cantero et al. (2008) predicts that the transition between
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the accelerating phase and the slumping phase occurs. This event is significant because the
head height and the current speed attain their maximum values during this regime shift.

The head location for the B cases scale as ~ 87 across the entire time interval shown.
The scaling of the B cases nearly matches the theoretical scaling of Huppert and Simpson
(1980) in the slumping phase, who report that the head location scales as ~ %7 as long
as ¢ > 0.075, where ¢ is the head height of the gravity current. This height is included as
horizontal dashed lines in figure 4.4. The T cases scale as ~ t8. The rate of decrease of
the head height is much higher in these cases, even reaching near the critical height 0.075
by t &~ 18, which could impact the current head speed. Included in panels (a) and (b) are
the head location and head speed for the control case. The results show that the B cases
propagate faster than the control case while the T cases propagate slower. The rate at
which the head location scales is also very similar to the slumping regime in Huppert and
Simpson (1980), ~ %83,

Figure 4.5(c) shows the difference in head location, x g — x7, for each pair of cases with
the same Gr. zr represents the location of the T cases, and xg the B cases. For the 1B/T
and the 2B/T cases, the curves are coincident, while the curve for 3B/T shows that the
3T case stays closer relative to the B case during the evolution. A closer examination (not
shown) reveals that 3B propagates slightly slower than 1B and 2B, while the 3T moves at
a rate more comparable to 1T and 2T. This indicates that decreasing the Grashof number
past this threshold affects the relative disparity in the head locations. Cantero et al. (2007)
show that gravity currents with a low Grashof number reach a viscously dominated regime
much earlier in their evolution than gravity currents with higher Grashof number. Though
the 3B/T cases do not formally exhibit a clear transition to this scaling regime in figure
4.5(a), the results from panel (c) indicate that viscosity plays a quantifiable role in the
head location for those cases. Time estimates from Cantero et al. (2008) suggest that the
viscously dominated regime should occur near the end of our simulations for cases 3B/ T,
but long after the final simulation time for 1B/T and 2B/T.

A direct comparison of the two types of currents highlights the structural differences
that occur as they evolve. To differentiate them further, consider the temperature PDF of
case 1B in figure 4.6((a) — (g)), and case 1T in figure 4.6((h) — (n)). The PDFs are shown
at several times between t = 9.1 and t = 13.6. In each panel, the ambient temperature is
in the left most bin, while the intruding temperature is in the right most bin. At ¢ = 9.1,
the PDF's reveal that a broad distribution of intermediate temperatures form because of
mixing of ambient and intruding fluids. By ¢ = 13.6, the distributions evolve and form
peaks centered around 7' = 0.38 in 1B and around 7" = 0.3 in 1T. Additionally, 1B has
a relatively narrow distribution of temperatures about its peak at T = 0.38, while 1T is
more broad. This indicates that more mixing has occurred in 1T. In both cases, there is
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Figure 4.5: Panel (a) shows the head location of each current. Cool intrusions are denoted
by blue markers and warm intrusions are denoted by red markers. The solid and dashed
lines are power law fits for the cool intrusions and warm intrusions respectively. The
Control case is denoted by x markers and the fit by the dot-dashed line. The power laws
are marked on the figure. Panel (b) shows the velocity time series derived from the fits in
panel (a). The solid curve is the fit for the cool intrusions, vy, the dashed curve for the
warm intrusions, vg, and the dot-dashed line for the Control, vo. Panel (c) shows the the
difference in the head location xp — 7 (zr is the head location for cool intrusions, and
xp is the head location of warm intrusions) as a function of time between cases with the
same Gr. Cases 1B/T are denoted by the dashed line, 2B/T by the solid line, and 3B/T
by the dot-dashed line.
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a much lower probability of finding temperatures between about 0.6 and 0.95 within the
domain. This is due to the much larger volume of ambient fluid.

The regions with temperatures between 7" = 0.15 and T = 0.5 (approximately sur-
rounding the peaks in the PDFs in figure 4.6 (h) and (n) where mixing has occurred) in
the gravity currents are plotted in figure 4.7. The peak in the intermediate temperatures
in the PDFs approximately corresponds to the tail region of the gravity current, with the
head being primarily outside this region. It is the tail region where ambient fluid is rapidly
mixed with intruding fluid that forms the peak in the PDFs.

The density PDFs for case 1B are shown in figure 4.8((a) — (g)) and case 1T is shown in
figure 4.8((h) — (n)) at the same times as the corresponding to figure 4.6. In each panel, the
ambient density is in the left most bin, while the intruding density is in the right most bin.
Figure 4.8 reveals the wide variations of the density distribution within the two currents.
At t = 9.1, the density distribution for 1B is broad with a small peak at about p = 0.5,
but for 1T, no such peak is exists and the range of densities in the domain are much closer
to the ambient. This is a clear indication of how the NLEOS strongly affects the density
distributions of the two currents. By ¢ = 13.6, the density PDF for 1B has a clear peak
(the tail of the current), while the PDF for 1T shows something completely different. The
control case (not shown) has identical temperature and density PDFs due to the linear
relationship between them. The density PDF exhibits a wider distribution than 1T, and
no peak similar to 1B is evident.

Figure 4.9 shows the densities of the regions depicted in figure 4.7. The temperature
bounds used in figure 4.7 translate to about p = 0.02 and p = 0.25 for 1T (figure 4.9((a)—
(c)) and about p = 0.25 to p = 0.75 for 1B (figure 4.9(d) — (f)). The most obvious
consequence of the NLEOS is the difference between the densities in the tail of each type
of current. For 1B, as fluid travels toward the tail of the current, it mixes with some
ambient fluid resulting in a relative density of about 0.6, and the buoyancy force on this
fluid is strong enough to draw it back into the current. As fluid travels towards the tail in
the 1T case, it mixes with ambient fluid and achieves a relative density that nearly matches
the ambient. The buoyancy force on this fluid is not nearly as strong, and this leads to a
larger tail.

An analogy to figure 4.3 can be made. As the fluid in the tail region is mixed over
the course of the evolution of the current, the temperature distribution is seen to form a
peak. As the peak becomes more well defined and closer to the ambient temperature, the
density distributions are affected asymmetrically. The warm intrusions flatten with the
mean closer to the intruding density, similar to what develops in figure 4.8(a) — (g). The
cool intrusions form a peak that is close enough to the ambient density that it blends with
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Figure 4.6: PDFs of the non-dimensional temperature for cases 1B((a) — (g)) and 1T((h)
— (n)) at successive time intervals, indicated on the plots. The bin width is 0.01, and the
vertical axis is capped at 1 to avoid clouding the data. The ambient temperature is located
within the left most bin, and the intruding temperature is within the rightmost bin.
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Figure 4.7: Regions of the gravity current where the non-dimensional temperature field
varies between 7' = 0.15 and 7" = 0.5. Case 1B is shown in panels (a)—(c), and 1T in panels
(d)—(f). Times of the plots are on each panel.
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Figure 4.8: PDF's of the density for cases 1B((a) — (g)) and 1T((h) — (n)) at successive time
intervals, indicated on the plots. The bin width is 0.01, and the vertical axis is capped at
1 to avoid clouding the data. The ambient density is located within the left most bin, and
the intruding density is within the rightmost bin.
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Figure 4.9: Regions of the gravity current where the non-dimensional density field varies
between the values prescribed by T" = 0.15 and T" = 0.5. Case 1B is shown in panels
(a)—(c), where the density values are between p = 0.25 and p = 0.75. Case 1T in shown in
panels (d)—(f), where the density values are between p = 0.05 and p = 0.25. Times of the
plots are on each panel.
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the temperatures in that part of the distribution. The analogy is not exact because figure
4.3 is an idealization of the current temperature distribution, and ignores the ambient and
intruding temperatures. However, as a simple model, it serves the purpose of explaining
why there is a stark contrast between the densities fields of the evolving current.

An empirical formulation of the density of the current as a function of its temperature
can be determined by defining the phenomenological current temperature, which summa-
rizes the main findings above. Following Cantero et al. (2008), an indicator function is

defined as
1 T>T,
— 4.17
X {0 T<T (4.17)

The average temperature of the intrusion is denoted by

1
ATy = v //V xT'dzdz. (4.18)

The average temperature of the intrusion is the average temperature of the region of the
flow where the temperatures are greater than a cutoff temperature. The cutoff used here
is T, = 0.01, which corresponds to all temperatures to the right of the leftmost bin in all
panels of figure 4.6. The critical temperature corresponds to T' = 1.525°C for the T cases
and T = 3.975°C for the B cases. These temperatures characterize the currents very well.
The average density is defined in a similar way

1
Apy = v//v xpdedz. (4.19)

Note that there is an important distinction to be made in this temperature regime. The
average density is not equal to the density of the average temperature as it would be under
a linear equation of state, so Apy # p(ATYy).

Plotted in figure 4.10(a) is the average temperature of the current. For all cases, the
decrease in AT} follows the same trend, but in cases 1B and 1T it appears to decrease
slightly faster, due to the larger Gr. The basic result is that the temperature difference
between the ambient and the intrusion does not significantly discriminate between the cool
intrusion and warm intrusion across all values of Gr. Figure 4.10(b) shows the average
density of the current. It is clear from this plot that the density difference is dependent on
whether the intrusion is gaining heat or losing heat, as Apy is smaller for the cool intrusion
than for the warm intrusion for ¢ = 6. This is qualitatively consistent with the hypothesis
discussed above (see figure 4.2(b) and related discussion). Shown in panel (c) is the average
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Figure 4.10: Panel (a) shows AT} data for all cases. Panel (b) shows Ap; data for all
cases. Panel (c) shows Apy plotted against AT for all cases. Warm intrusions are given
by dashed lines and the cool intrusions by solid lines. Fits for each set of currents (warm
and cool) are included on the plot. The direction of time for each set of cases in panel (c)
is indicated by the arrows.
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temperature of the current plotted against the average density. An estimate of the average
density of the current can be made by assuming a power law fit to the data

For the cool intrusions, A ~ 1.07 and v ~ 1.57, while for the warm intrusions A ~ 0.97
and v ~ 0.67.

The constant v describes the rate at which the average density of the current changes
as its average temperature changes. Figure 4.10 demonstrates that the change in density
is higher for a given temperature change for the T cases (y = 1.53) than it is for the
B cases (7 = 0.67). There is some spread in the data, especially when the temperature
differences become small, however, this relationship characterizes the difference between
the cool intrusions and warm intrusions well. It is sensible that the rate that the average
density changes should be higher for the T cases relative to the B cases because the slope
of the NLEOS near TZ for the T cases is larger than near TZ for B cases. Thus, as cool
intrusions travel, the relative density change is higher for a given increase in temperature.
Conversely, as warm intrusions travel, the relative density change is small as heat is removed
from the current.

4.6 Discussion

4.6.1 Implications for gravity current evolution

This chapter presents numerical simulations of two categories of gravity currents in the
cold water regime (temperatures less than 7T),4). Differences between the categories arise
due to the way the fluid density changes as heat is transferred between the intruding and
ambient fluids. Warm intrusions near at 4°C undergo a gradual change in density leading
to structures more reminiscent of a traditional gravity current. Cool intrusions at 1.5°C
undergo an initial rapid change in density, and exhibit more fluid being torn from the
current resulting in a qualitatively different body shape and a much smaller head. It is
important to note that gravity currents will behave in a similar way when temperatures
are greater than T}, but close enough that the equation of state is still non-linear.

A consistent feature demonstrated by the numerical experiments is a clear difference
in the location of the head of the cool intrusions with respect to the warm intrusions after
enough time has elapsed. The head locations for the B and T cases scale differently than
each other, and different also to the control case that uses a linear equation of state. A
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single power law for each set of cases is adequate to describe this difference. In none
of the cases do the velocities exhibit a clear transition from the slumping regime to the
inertial regime, as suggested by Huppert and Simpson (1980); Cantero et al. (2007, 2008),
even though both the volume of intruding fluid and Grashof number were comparable to
the cases of Hértel et al. (2000b), Cantero et al. (2008), and some of the experiments of
Huppert and Simpson (1980). The closest approximation to the established scaling laws
are the B cases and the control cases having scaling laws close to ~ t%/7, which is what
Huppert and Simpson (1980) found to characterize the slumping regime.

The lack of agreement between the head location of the control case with the established
scaling laws could be a result of the slip boundaries used in this article. Hértel et al.
(2000b) discusses effects of no-slip boundaries versus slip boundaries, but does not discuss
in detail how the head location differs. Furthermore, the two-dimensional nature of the
simulations presented in this chapter removes the ability for the system to fully develop
turbulence (since vortex tilting and stretching cannot occur in two dimensions). Cantero
et al. (2007) showed that fully developed turbulence enhances the front velocity of gravity
currents, and Cantero et al. (2008) supplemented this by showing that two dimensional
and three dimensional head speeds agreed only in the acceleration and slumping regimes,
while the two-dimensional gravity current head speed was reduced relative to the three-
dimensional simulations in the inertial regime (for the same Reynolds number). Cantero
et al. (2008) postulated that large coherent vortices formed in the wake of a two-dimensional
current which lowered the driving pressure gradient between the current and the ambient.
Their claim was that these vortices were not as large and coherent in three-dimensional
simulations (due to vortex tilting and stretching), so the driving pressure gradient was not
as significantly reduced, leading to a larger head speed. Therefore, a clear avenue to extend
the work presented in this thesis is to perform the same experiments in three dimensions
to confirm that the results in this chapter are still valid.

The difference in the scaling laws occurs because the non-linear relationship between
the driving density difference and the evolving temperature differences affects the evolution
of the current in different ways. In the linear regime of the freshwater equation of state,
the rate that the density of the current changes is independent of the exact temperatures
of the current and the ambient, and is only dependent on their difference. However, in the
nonlinear cold water regime, the temperatures of the ambient and the intrusion play a role
in how the density will change as the fluids of different temperatures are mixed, depicted
graphically in figure 4.2(b), and mathematically by the ambient temperature dependence
of Ry, and Ry (with the cubic equation of state, Rg remains unchanged for both kinds of
currents).

The simulation results above show that at high Grashof number, the temperature dis-
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tributions of the two types of currents are initially broadly distributed and tend to sharpen
as the current mixes in the tail region, resulting in similar temperature distributions for
the 1B and 1T cases. The peak of the temperature distribution tends to be closer to the
ambient temperature than intruding temperatures in both cases near the end of the simula-
tions. Figure 4.3 suggests that when the temperature distribution is closer to the ambient
temperature, currents that follow p. (the T cases) will have sharper density distributions
that tend to be close to the ambient density while currents that follow p,, (the B cases)
will have flatter density distributions that tend to be closer to the intruding density. The
general trend from the simulations agrees with this. For the T cases, as fluid rolls up on
the interface between the current and the ambient, it mixes near the tail and attains a
density close enough to the ambient that its motion nearly ceases. The net effect is a large
tail reaching deep into the water column. Comparatively, the B cases look more like a
traditional gravity current because as fluid rolls up and mixes, the density achieved is still
far enough away from the ambient that there is still a significant downward buoyant force
that returns it into the current.

4.6.2 Insights for cabbeling in shallow bodies of water

Density driven flows in this temperature regime have been previously shown to exhibit
downward biases in the vertical exchange of fluids because of the non-linearity in the
equation of state. For example, Olsthoorn et al. (2019) showed that downward growing
plumes had larger length scales and grew faster than upward growing plumes in numerical
simulations of finite thickness Rayleigh-Taylor instabilities. Ozgékmen and Esenkov (1998)
demonstrated the same behaviour in the growth of salt fingers. This downward bias is
related to the phenomenon known as cabbeling, and the results of this chapter provides
insight into how cabbeling could impact the vertical dispersion of intruding fluid in the
fresh cold water regime.

Traditionally, cabbeling refers to how two fluid parcels of equal density but different
temperatures mix to create a parcel that is denser than both parents (McDougall, 1987).
The cold water regime (f < de) precludes mixing between fluid parcels with equal density
and different temperatures due to the monotonicity of the equation of state, so a more apt
definition provided by Stewart et al. (2017) relates cabbeling to the process of mixing two
water masses at different temperatures and forming a mass that is denser than the average
of the source densities.

Where cabbeling traditionally generates downward fluxes of momentum and heat due
to the formation of dense water (Thomas and Shakespeare, 2015; Shakespeare and Thomas,
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2017), the net effect of cabbeling in the cold water regime, termed “weak cabbeling”, is
to enhance pre-existing downward fluxes of intruding fluid, and to weaken upward fluxes.
The results in figure 4.4 demonstrate that for cool intrusions, fine filament structures
reach far deeper into the water column, while for the warm intrusions, intruding fluid is
confined closer to the bottom surface, unable to rise further up into the water column.
This behaviour is in qualitative agreement with the results of both Olsthoorn et al. (2019)
and Ozgokmen and Esenkov (1998).

The results of this chapter show that the subtle example of cabbeling created in the
cold water regime can have clear impacts on the small scale non-hydrostatic dynamics of
gravity currents. Weak cabbeling may even have implications for the vertical fluxes of
material at the surface or bottom of a lake, especially near a river outflow, where masses
of water are rapidly mixed.

The results presented in section 4.5 beg the question as to how noticeable differences
between warm and cool intrusions are as AT (the initial difference in temperature between
the ambient and intrusion) becomes small. For example, consider a surface current of 1°C
flowing into an ambient of 1.1°C (called C1 for brevity) versus its comparable bottom
current of 1.1°C flowing into an ambient of 1°C (called C2 for brevity). Using (4.14) and
(4.15), we find ©; ~ 1072 and ©y ~ 107" for both C1 and C2 indicating that the leading
order form of (4.14) is p = RyT (it can be shown that R; =~ 0.11 for C1 and Ry ~ 0.12
for C2). This indicates that C1 and C2 will be dynamically equivalent (aside from the
small variation in Ry between cases). Generally speaking, we should expect that for small
enough |AT|, the dominant term in the NLEOS is linear for both surface flowing and
bottom flowing currents.

Additionally, we can consider two comparable intrusions with equal ]AT|, but we can
choose different temperature intervals. For example, 1°C flowing into 1.1°C (called C3 for
brevity) compared to 3°C flowing into 2.9°C (called C4 for brevity). In can be shown using
(4.14) and (4.15) that the dominant term in the NLEOS is linear for both C3 and C4,
indicating the same dynamical equivalence discussed for C1 and C2. However it should
be noted that as temperatures approach Thng. ]AT! must become versy small since the
quadratic term becomes very important in the NLEOS as R; becomes close to zero.
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Chapter 5

Gravity Currents in the cabbeling
regime

5.1 Author’s Note

The material presented in this chapter is new and has not been published as of this writing.

5.2 Introduction and Overview

The following chapter aims to complete the tour through the three characteristic intervals
of the NLEOS presented in figure 1.3. In the previous chapter, the temperature interval
of the NLEOS under consideration had density as a strictly increasing, but non-linear
function of temperature. This led to the notion of ‘weak cabbeling’, the result of which
was noticeable differences in the vertical extent and horizontal head location of near-surface
flowing gravity currents relative to near-bottom flowing currents for a given magnitude of
the initial density difference. Weak cabbeling followed the definition of Stewart et al.
(2017) where mixing of two parent parcels of differing density generated a child parcel
whose density was greater than the average of the densities of two parent parcels. In the
current chapter, the characteristic temperature interval is further extended so that the
density of freshwater is non-monotonic. This means that two different water temperatures
can have the same density, with the maximum density occurring at a temperature of T)q.
As mentioned in section 1.2.1, the non-monotonic nature of the density leads to the more
traditional form of cabbeling, where the mixing of two parent parcels leads to a child parcel
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that is denser than both parents, and not simply greater than their average density. As a
result, convection occurs and vertical currents are generated leading to a mechanism for
downwelling. Refer to section 1.2.1 for some references and background on cabbeling, as
well as the present state of its numerical modelling.

In this chapter, we present simulations of the evolution of gravity currents where tem-
peratures of the intrusion and the ambient are on opposite sides of T, md, leading to cabbel-
ing. The addition of the cabbeling mechanism in this context leads to some interesting and
emergent dynamics. We will demonstrate that gravity currents initially flow near the top
surface of the domain (called a hypopycnal current), undergo cabbeling induced by mixing,
and develop coherent currents that flow near the bottom boundary (called a hyperpycnal
current). We analyze the impact of the NLEOS parameter © and the non-dimensional
depth of the system h (both to be defined below) on the development of the initial hy-
popycnal current, and its transition to the hyperpycnal current. We will demonstrate
that these parameters play an important role in determining the characteristics of the sec-
ondary hyperpycnal current, and discuss the implications for the study of the secondary
hyperpycnal currents.

The formation of a secondary hyperpycnal current in the context of cold water is not
unlike that which occurs as a result of a process in the sediment-laden gravity current
literature known as convective sedimentation. In nature, convective sedimentation occurs
when a buoyant particle laden inflow (from a river, for example) mixes with denser saline
reservoir (the coastal ocean, for instance). While the inflow is initially buoyant, a denser
mixture composed of saline water and sediment forms between the fresh and saline layers.
This mechanism was hypothesized by Maxworthy (1999). This denser layer generates
an unstable stratification that induces convection, bringing the sediment laden layer and
interstitial fluid to the bottom (Wells and Dorrell, 2021). Recent laboratory experiments
have demonstrated this process in unstratified environments (Davarpanah Jazi and Wells,
2020; Sutherland et al., 2020) and in linearly stratified environments (Snow and Sutherland,
2014).

If the sediment laden layer is dense enough, a secondary hyperpycnal current flows
along the bottom. Maxworthy (1999); Snow and Sutherland (2014); Davarpanah Jazi and
Wells (2020) have provided laboratory examples where a coherent hyperpycnal current
develops. These currents are often called turbidity currents, and they are significant for the
transport of material along lake or ocean floors. Wells and Dorrell (2021) presents a modern
review of turbulent processes within turbidity currents and discusses some of the geological
features that they create and modify. Meiburg and Kneller (2010) discuss the fact that
these currents could potentially act as a mechanism for long-distance transport of material
from coastal regions to the deep ocean. They also mention that (among other things) the
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sediment and material that turbidity currents have transported over the last 10* to 10°
years have formed significant sediment deposits, and through years of compaction, have
formed an important class of hydrocarbon reservoirs. Due to their inherently unpredictable
initiation processes (earthquakes, landslides, etc), and logistical difficulties with regards to
measurement, turbidity currents have been difficult to study in a nature, and much of what
we know about them now is based on numerical simulations and laboratory experiments
(Wells and Dorrell, 2021).

The analogy between sediment laden gravity currents and cabbeling gravity currents
is highlighted because they share some basic characteristics. A schematic of a typical
stratification of a sediment laden gravity current shortly after it begins flowing is given in
Davarpanah Jazi and Wells (2020) (their figure 2(b)), and a comparable stratification in
cold water is given in Hanson et al. (2021) (their figure 3(c)). A schematic of this basic
stratification is reproduced in figure 5.1. Figure 5.1(a) shows the initial stratification at
t = 0 of a typical sediment laden gravity current, and figure 5.1(b) shows the density
profile some short time later. Figure 5.1(b) also represents the initial density profile for
the cabbeling gravity currents present in this chapter. The key similarity in both of these
systems is the maximum density generated at depth, which is surrounded by an otherwise
stable stratification.

The key difference between the temporal evolution of these systems is the non-monotonic
nature of the NLEOS, as expressed in the gravitational force. The results of Hanson et al.
(2021) reveal that a system with a stratification like that in figure 5.1(b) evolves differently
depending on whether or not cabbeling occurs. If the temperatures are in the cabbeling
temperature regime, then as convection occurs and parcels mix, denser fluid is created
which generates more convection and mixing. If temperatures are away from the cabbeling
regime, then mixing generates intermediate densities thereby reducing the amount of avail-
able potential energy to be transformed to kinetic energy by the buoyancy flux (Winters
et al., 1995). For cabbeling, instability led to the production of a dense mass of fluid (fluid
within 10% of the initial density jump of the maximum density) that was seen near the
bottom of their computational domain. For the non-cabbeling cases an insignificant mass
of fluid near the bottom was seen, and this was due to the inefficient mixing.

5.3 Governing Equations and Model setup

This chapter presents an extension of the work of chapter 4 into the cabbeling regime,
where the density of water can be non-monotonic (different values of temperature can cor-
respond to the same density). In keeping with chapters 3 and 4, we use SPINS (Subich
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Figure 5.1: A prototypical stratification for sediment laden hypopycnal current with an

interstitial layer, as well as for a cabbeling system.
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et al., 2013) to simulate the evolution of gravity currents with a characteristic tempera-
ture and density of T, and p(TNZ) and initial hypopycnal current height of zy propagating
into a motionless ambient of temperature and density 7, and p(T,) in freshwater in two
dimensions. We solve the system of equations in (2.25)-(2.28) (the exact form of (2.28)
for this chapter will be discussed below), where we have ignored any external heat fluxes
(i.e. g,y = 0). The boundary conditions along all surfaces are free-slip for velocity, and
no-flux for temperature, and the model achieves spectral accuracy. The motivation of
free-slip boundary conditions is twofold. First, in the laboratory experiments of convective
sedimentation by Sutherland et al. (2018) and Davarpanah Jazi and Wells (2020), sed-
iment laden gravity currents initially flowed along the free surface (on top of the saline
ambient). Furthermore, we are not interested in effects by the boundary layer and are
only interested in interior mixing. In this chapter the dimensional length of the domain
is L = 20m (table 5.2), and the depth is kept constant at H = 0.5m (table 5.2). All
simulations presented have 8192 uniformly spaced grid points in the horizontal dimension
and 256 uniformly spaced grid points in the vertical direction, leading to a physical reso-
lution of (Az, Az) = (0.0024,0.0020) m. A resolution sensitivity test was performed and
the chosen resolution is adequate to represent the system. In this chapter, variables with
a tilde are dimensional quantities.

In this chapter the departure of density from a reference state py (table 5.2) is
p=—C(T = Tha)?. (5.1)

This equation differs from the previous chapter where the NLEOS was cubic, given by
(4.1). The choice to use the quadratic EOS is motivated by the fact it is simpler and has
fewer dimensional parameters than (4.1). Note also that (5.1) is the same NLEOS used
in chapter 3. As a reminder, (5.1) contains the temperature of maximum density Ta and
constant C' (both found in table 5.2) as parameters. Also note that p in (5.1) is already
dimensionless.

The temperature field is scaled similarly to that in chapter 4:

T-T,
T = = (5.2)

AT,
with AT, = T; — T,. Thus, T varies between 0 and 1, and T = 0 corresponds to the
ambient temperature while 7' = 1 corresponds to the intrusion temperature. We have
included the subscript in the definition for AT} because, as we shall see, this is not the only
temperature scale that we must define. We can use the above non-dimensional temperature

to non-dimensionalize the density

p=—CANT — (Tra —T,))?, (5.3)
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where we can define AT 5 = T, nd — T, w and the NLEOS parameter as

N

d . (5.4)
ATQ de - Ta

Note that the non-dimensional temperature of maximum density is given by é. Expand-

. S\ 2
ing the above quadratic, and noting that p (Ta) = —C (ATg) , we can write the non-
dimensional NLEOS as

p=p <T> 4 20O(ATH)T (1 - %T) . (5.5)

We can define the buoyancy velocity scale and timescale as
2
Up=+3%, t= 9—?7 (5.6)

where ¢’ = g|p(T})—p(T,)] is the reduced gravity, and z is the initial height of the intruding
fluid (table 5.3). This differs from the non-dimensionalization from the previous chapter
where the characteristic lengthscale was the total depth H. In general the lengthscale
used to estimate the buoyancy driven velocity in the study of gravity currents is the initial
height of the intrusion. In chapter 4, the initial height of the intrusion was coincident with
the total depth H, whereas it is not for the current chapter. We can simplify the reduced
gravity to

glo(T;) = p(To)| = CglO(© - 2)|(AT:)?, (5.7)
allowing us to write
Uy = /Cg10(6 — 2)|(AT)22. (5.8)
Using these scales, we can non-dimensionalize the system as
(j') 2) (’lNL, QD) g g, ]5
xr,2) = , (u,w) = , t=14/=—, = : 5.9
@9 =" ww = Lor= i (5:9)

In this chapter, we have modified the form of initial condition to accommodate different
values for height of the initial hypopycnal current zy. In non-dimensional form, the initial
condition for the system is

T(x,z,t:O):¥ (1—tanh (xg”D (5.10)

T
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where B is defined as

B(z):%<1+ﬁtanh (Z(S_l» (5.11)

B allows us to select the initial height of the intruding fluid relative to the top surface («
= 1) or the bottom surface (f = —1). The parameters J,, and 9, are the dimensionless
transition thicknesses, while z, (table 5.2) is the dimensionless lock length. Since all lengths
in the problem are scales relative to zy, the initial intrusion height sets the reference length
scale. This is illustrated on figure 5.2. A schematic of the initial condition is provided
in figure 5.2. The domain depth and length are also normalized by the intrusion height.
They are h = H/z, and | = L/z, and their values are found in table 5.3.

Xe

Figure 5.2: A schematic of the initial condition demonstrating the initial locations of the
intrusion and ambient, which are defined to have temperatures of one and zero respectively.
In all cases, the intrusion is initially located adjacent to the top left corner of the domain.
The initial hypopycnal current depth is varied across cases. The lock length is given by z,
the tank length given by [, and the tank depth given by h. x is the horizontal coordinate,
and z is the vertical coordinate, and gravity points in the negative z direction. Lengths are
non-dimensionalized by zy, so the initial intrusion height serves as the reference length.

We can define the Grashof number and the Prandtl number as per usual:

2
Gr = (%> , Pr= z, (5.12)
K

1%
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which give the equations of motion as

Du 2 O N 1
—=-Vp———T(1-=T )k 2 1
Dt Vp 53 ( 5 ) + \/@V U (5.13)
DT 1
= VAT 5.14
Dt v GrPr? ( )
V-u=0. (5.15)

Here we can see that © plays a similar functional role as the NLEOS parameter in chapter
3 (controlling the relative magnitude of the non-linear term in (5.13)), except in this case,
if can attain a much larger range of values that are easily set by the initial conditions 7;
and T,. Note that © = 2 leads to the case where U, = 0 and there is no longer a buoyancy
velocity to scale by. © = 2 is special case that must be discussed separately and is done
so as a part of the following section.

5.3.1 Gravity Current Classification based on initial intruding
and ambient temperatures

Assuming ATy > 0 (T, > T,) we can build a framework for the classification of gravity
currents based on their © value. Note that because of the symmetry of the NLEOS about
de, a dynamically equivalent classification can be developed for the case where ATy <0
(T < T,) using the map T — 2de — TZ and T — 2T, md — T Furthermore, an exact
NLEOS is slightly asymmetric about T, so currents with ATy < 0 will not evolve exactly
as those with ATl > (. This is of no consequence for this thesis because the exact NLEOS
is not used here, and differences are expected to be small.

In the following section, we will consider 8 different cases: © =1, © = —1, © < —1,
© € (-1,07),0 € (0",1),and © € (1,2), © = 2, and © > 2. With this information, we
can determine the relative ordering of the intruding temperature, ambient temperature, and
temperature of maximum density, and discuss the expected evolution characteristics. The
following section goes through each case, but for readers simply interested in a summary,
see figure 5.3 and table 5.1. As a reminder, the NLEOS parameter is defined as

N

ATQ de - Ta

(5.16)
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0< -1

For the case where © < —1, AT and AT, must have opposite sign, so when AT; > 0 and
AT, < 0, we find that

13

T- % Tm

T, < % (5.17)
and 3 ) )

T, > T, > T, (5.18)

We can see that this interval of © implies that T, is always closer to T, than it is to the
T;. Therefore, as © gets more negative, T, approaches T,,;. Note that this critical value
was that which characterized the T cases in chapter 4. This regime is presented in figure

5.3(a).

0=-1

In this case AT; and AT, must be equal in absolute value but opposite in sign. In this
case

- T+ T,
7, — 21T tmd (5.19)
2
and . . .
ﬂ > Ta > de (520)

must pe true. This indicates, th@t for Q = —1, Tl and Ta are both greater than de and
that 1), must be tlle average of T; and T,,4. This case is illustrated in figure 5.3(b). The
average of T; and T,,4 is highlighted by a dotted vertical line.

©c(-1,07)

In the case © € (—=1,07), AT, and AT, must have the opposite sign but AT; must be

smaller in absolute value than ATQ. In this case
7 i Tm
T, > % (5.21)

Th~us, T » must be greater than the average of TZ and de. Additionally, since AT, > 0 and
AT, < 0, we must have

!

i > Ta > de' (522)
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We can see that as T, becomes larger than %, the characteristic temperatures of the
gravity current tend to move further away from the non-linearity of the NLEOS. Thus, as
© — 07, one expects the non-linear term in the NLEOS to become smaller in magnitude

relative to the linear term. This case is illustrated in figure 5.3(c).

© e (0M,1)

In the interval © € (07, 1), AT, and AT, must have the same sign, but AT, < ATy, Tt
follows that . . .
T, < T; < Tona. (5.23)

Thus, for values © € (0%, 1) we have that the intruding temperature is between the tem-
perature of maximum density and the ambient temperatures. In this case, the intrusion is
denser than the ambient, so the current will sink. This case is illustrated in figure 5.3(d).

0=1

In this case, AT} and AT, must be equal. The only ordering that allows for this is to have
T; = Tppg. Thus, for © = 1, the only gravity current class that can exist is one where the
intruding fluid is at the temperature of maximum density. In this case, the intrusion is
maximally dense, so it sinks. Note that this critical value was that which characterized
the B cases in chapter 4. This case is illustrated in figure 5.3(e).

0>1

For the case of ©® > 1, AT, and AT, have to be of the same sign and AT, > AT,. The
ordering then becomes 3 . 3
T > Tha > T,. (5.24)

Thus, the ambient temperature must be less than the temperature of maximum density,
while the intruding temperature must be higher. This regime is important because mixing
of two parent parcels of fluid generates a parcel that is heavier and sinks. The results
dynamics in this interval can be further subdivided into two sub-intervals © € (1,2) and
© > 2. For © € (1,2), the density of the intrusion is higher than the ambient, so the
intrusion initially sinks. However, as the intrusion and the ambient mix, they form denser
water, which in turn has a larger density difference relative to the ambient than the intru-
sion. Thus, as mixing occurs, a faster moving current may form. For © in this interval, it
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can be shown that

13

i Ta
Trd < + .

2
In-depth analysis of © € (1,2) is left for future work. This case is illustrated in figure
5.3(f).

If © = 2, then the ambient and intruding densities are the same. In terms of T;, T,
and T},,, we must have

(5.25)

R

T A + Ta

T = 5
In this case, there is no initial collapse and no horizontal intrusion is generated. There is
mixing along the interface between the two masses of water that generate vertical currents.
This observation is consistent with the scaling U,, which showed that the current speed
would be zero in the event of © = 2. In this event, a different velocity scaling should be
used. This case is illustrated in figure 5.3(g).

If © > 2, then

(5.26)

!

o 7 + Ta

T < 5
In this case, the intruding density is initially lower than the ambient (save for a band of
dense water surrounding the initial mass of water), thereby allowing the current to initially
rise to the top boundary. As the intrusion propagates and mixes with the ambient water,
dense water is created which sinks. The © > 2 regime is fascinating and will be the focus
of the rest of this chapter In the following sections, we will discuss the dynamics of the
O > 2 regime specifically highlighting the dynamics as © is increased beyond two. This
case is illustrated in figure 5.3(h).

(5.27)

An interesting result occurs in the limit of large ©. Using dimensionless variables now,
we can re-write the buoyancy forcing term in (5.13) as

,0:—1_2 T(é—%). (5.28)

PR T<e—§). (5.29)

In the limit of large © (or small €), we can expand the temperature as

Letting € = 5, we arrive at

1
9’

T=T9 4 e1W 4 O, (5.30)
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and substituting (5.30) into (5.29), we find that
p~ (TO)? —2¢ (T2 —TO (1 -TW)) +O(). (5.31)
Expressing the density as an expansion in € as p = p(@ 4 ¢p 4+ O(e?), we find that

p O = (T, (5.32)
o) = 2<T(0))2 _ 970 (1 _ T(l)) 7 (5.33)

meaning that p(©) is a monotonic function of 7. Since the density is monotonic at leading
order, cabbeling becomes a higher order effect (recall that cabbling occurs because of the
non-montonic nature of the NLEOS). Ignoring terms of O(e?) and higher, we are left with
an equation of state that is quadratic (but monotonic) in 7 and linear in 7M. Thus,
for © > 2 cabbeling occurs until € = é becomes small, at which point, cabbeling becomes
a secondary effect and the leading order effect is to evolve under a monotonic NLEOS,
specifically one that is purely quadratic in temperature. This means that gravity currents
with large values of © evolve similarly to the near-surface currents discussed in chapter 4
(called the T cases) to leading order. See (4.16) in the limit of large ©; (recall ©; is one
of the two NLEOS parameters defined in (4.15)). Figure 5.3 and table 5.1 are provided
as visual summaries of the above discussion. In figure 5.3, it is assumed that ATy > 0 for
brevity. For cases where ATy < 0 the locations of each marker on the diagram would be
reflected about 7T),,4.

5.3.2 Experimental Configuration

To discuss the physics of the © > 2 regime, we will present two experiments. We must
have % (Tl + Ta) > T4 to ensure that © > 2. In this chapter T, is either 2.5°C or 5.5°C.

However of AT? does not change between cases (see table 5.3 for details). In the first
experiment, © is manipulated by varying the magnitude of ATj. In the second experiment,
the relative intrusion depth is manipulated by varying the total depth of the domain h.
By modifying h, we are modifying the amount of intruding fluid relative to the domain
depth, which leads to variations in the head height of the initial hypopycnal current. For
gravity currents under linear equations of state, the head height of the current is about half
the height of the initial intrusion (for large enough Grashof number; for smaller Grashof
numbers, viscosity plays a more prominent role in determining the characteristics of the
resulting current). Cases are presented in table 5.3 and are named based on their values
for © and h. See the caption of 5.3 for details.
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Figure 5.3: A schematic representation of different values and intervals of ©® and what
they imply about the expected behaviour of the resulting gravity current. Each set of axes
shows the quadratic equation of state and the markers represent the temperatures of the
intruding fluid (triangles) and the ambient fluid (squares), as well as the temperature of
maximum density (stars). In the above figure, it is assumed that AT, > 0. For cases where
AT < 0 is of equal magnitude and opposite sign, the location of the temperature markers
are flipped across the line T = Ty Dotted vertical lines represents the average of the
intruding and ambient temperatures and are included only where necessary.

122



Case Ordering ofT T, and ~md

0 < -1 [, >T,> T, and T~a<%(~z—|— de)
0=-1 ~,~>Ta>de andTa:%(~z+ ~md)
~1<0<0 | T;>T, > Tpgand T, > (T} + Tra)
1>0>0 [, < T, < Thna

=1 Ti = Trna
1<0 <2 T+ 1T,) < Toa

0=2 WL+ To) = Toa

0> 2 T+ T.) > Tna

Table 5.1: A representation of the ordering the intruding temperature, ambient tempera-
ture, and temperature of maximum density (TZ, T,, and de respectlvely) given different
intervals of © for positive AT}. O is defined in (5.4) and AT, =T, —1T,.

Note that by changing © and h, we also change the Grashof number. This motivates
the definition of another number called Gry. It is defined as

gC(ATy)*H?

Gry = 2 (5.34)

v

Since the magnitude of AT} is held constant in this chapter, Gry invariant upon changing
© or h. The Grashof number in table 5.3 is related to Gry by
S

B3

Gry is held constant for all cases except VI'5h4 and VT6h4 where is has been increased by
a factor of four.

Gr = Gro— (5.35)

5.4 Results

5.4.1 © and h dependence of the development of the flow

In this subsection, the results of several numerical simulations in the © > 2 regime will be
shown. To discuss the basic dynamics, we can consider T3h2, which has ©® = 3 and h = 2.
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Parameter Symbol Value Dimensions Description

g 9.81 m/s? Acceleration due to gravity
Trna 3.98 °C Temperature of maximum density
00 999.974 kg/m? Constant reference density

C 7.6 x 107° °C~? NLEOS constant (see (5.1))

H 2 m Dimensional depth of domain
L 20 m Dimensional length of domain
Pr 10 - Prandtl Number (see (5.12))
Ty 8 - Dimensionless lock length

Table 5.2: The list of constant parameters used in this chapter, their values, dimensions,
and a description.

Neither © nor h are extreme values considered in this chapter so cabbeling is still a leading
order effect (e = é is not small compared to unity). Snapshots of the temperature and
velocity fields at different times for T3h2 case are shown in figures 5.4 and 5.5 respectively.
The dynamics of the other cases for each experiment are qualitatively similar, with only

minor differences in the details.

Figure 5.4 shows that the initial hypopycnal current, which is lighter than the ambient
(except for a thin band around the intrusion), flows from left to right along the top surface.
Mixing in the body and tail of the current creates water of a higher density than both the
intrusion and the surrounding ambient. The denser fluid sinks, as visible in panels (a)—(c).
We can see that the initial intruding water mass quickly mixes due to this process. Once
enough dense fluid gathers near the bottom surface, a new coherent hyperpycnal current
is created. This current flows away from the left wall, visible in panels (d)—(f). Due to
the propagation of the hyperpycnal current, a near surface reverse flow is induced which
pushes the remains of the initial hypopycnal current back towards the left hand wall.

The hyperpycnal current has a new typical temperature, and is heavier than the ambi-
ent, thus allowing it to flow along the bottom. Qualitatively speaking, the volume of the
hyperpycnal current is much larger than the initial hypopycnal current indicating that a
significant volume of ambient water has been entrained over the course of the cabbeling
process. Note the time jump between panels (¢) and (d). Recall that the non-dimensional
temperature of maximum density is given by 1/0 (approximately 1/3 in this case), and
it is important to note that the temperature of the bottom current is lower than 1/0,
indicating that the hyperpycnal current consists of fluid that is not simply the maximally
dense fluid, but some other temperature whose value is an emergent quantity of the dy-
namical process. This is true for all cases discussed in this chapter, and a more detailed
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Case Gr © T; T, | vx10°

- - | (°Q) | (C) | (m?/s)
T2.2hd | 143 % 10° | 22 | 2.156 | 5.5

9, =0.8, 5, =0.08
T3h4 | 1.00 x 106 | 3.0 | 0.944 | 5.5 =4, =160
T4h4 | 2.68 x 10| 4.0 | 85 | 2.5
Tshd | 4.82x 10| 5.0 | 99 | 25
T6h4d | 7.71x10° | 6.0 | 11.38 | 2.5
VT5h4 | 1.93x 10" | 5.0 | 99 | 25
VT6h4 | 3.08 x 107 | 6.0 | 11.38 | 2.5
T7h4 | 1.12x 107 | 7.0 | 12.86 | 2.5
T8h4 | 1.59 x 107 | 8.0 | 14.5 | 2.5
T2.2h2 | 1.14 x 105 | 2.2 | 2.156 | 5.5 0, =0.4, 5, =0.04
T2.4h2 | 2.55 x 106 | 2.4 | 1.852 | 5.5 h=2,1=280

T2.63h2 | 4.44 x 10° | 2.63 | 1.500 | 5.5
T2.8h2 | 6.00 x 10° | 2.8 | 1.244 | 5.5
T3h2 |8.03x10°| 3.0 | 0944 | 5.5
T3.5h2 | 1.56 x 107 | 3.5 | 0.018 | 5.5
T4h2 | 2.14x 107 | 40 | 85 | 2.5
T5h2 |3.86x107 | 5.0 | 9.9 | 25
T6h2 | 6.17x 107 | 6.0 | 11.38 | 2.5
T7h2 |9.00 x 10" | 7.0 | 12.86 | 2.5
T8h2 | 1.27x10%| 80 | 145 | 2.5
T3h1.82 | 1.07 x 107 | 3.0 | 0.944 | 5.5
T4h1.82 | 2.86 x 107 | 4.0 | 85 | 2.5
T5h1.82 | 514 x 107 | 5.0 | 9.9 | 2.5
T6h1.82 | 8.21 x 107 | 6.0 | 11.38 | 2.5
T7h1.82 | 1.20 x 10% | 7.0 | 12.86 | 2.5
T8h1.82 | 1.69 x 10% | 8.0 | 14.5 | 2.5

5, = 0.365, 0, = 0.0364
h=182,1="727

o O

Table 5.3: The cases presented in this chapter. Case names are denoted by the “Txxhyy”,
where xx and yy represent the value of © (the NLEOS parameter (5.4)) and h (the depth
of the domain, found in the rightmost column) for the case. The exception to this are
cases preceded by a “V”. In those instances, the viscosity and thermal diffusivity have
been reduced by 50%. Gr represents the Grashof number, (5.12), T, is the dimensional
intruding temperature, and T}, is the dimensional ambient temperature, v is the kinematic
viscosity. Parameters that remain unchanged in groups of cases are shown in the rightmost
column. d, and J, are the transition thicknesses in the x and z directions respectively, and
[ is the tank length.

125



discussion on the temperatures of the bottom currents is presented below.

Figure 5.5 shows the dimensionless horizontal component of the velocity field. The
initial hypopycnal current develops and flows along the top surface (panel (a)—(c)). The
currents shown in panel (d) are very irregular, but this state is ultimately a transition
between the hypopycnal and hyperpycnal currents. In panels (e) and (f), we can see the
signature of the hyperpycnal as it propagates to the right, and the return flow moving to
the left near the top surface. It is interesting to note that the head height of the bottom
current is approximately half the depth of the domain, which is in qualitative agreement
to that seen in the full-depth lock release simulations from both Hértel et al. (2000b) and
Cantero et al. (2008) in the slumping regime. Furthermore, we can see that the velocities in
the hyperpycnal current are weaker than those in the hypopycnal current. The transition
from a characteristic dimensional length scale of zy to H/2, and the subsequent reduction
in velocity is a consistent feature across all cases studied in this chapter. This indicates
that the emergent current has no memory of the initial height of the intrusion.

It is interesting to note that the reduction in the velocities of the hyperpycnal current
does not lead to a relative decrease in the kinetic energy of the system. To see this, we can
can analyze the domain average kinetic energy ke of the system, defined as

1 ok
ke = ﬂ/o /0 u? + w? dadz. (5.36)

Figure 5.6 shows the ke for each case with h = 2 and different values of ©. This figure is
broken up into two categories for clarity; low © in panels (a) and (b), and high © in panels
(c) and (d). The left column is the entire time history of the ke prior to the current colliding
with the end-wall, whereas the right column is the same data with the axis values adjusted
to highlight the early development. Also note the difference in vertical and horizontal
scales in each panel. Broadly speaking the evolution of the ke takes place over several
stages; an increase by the propagation of the initial hypopycnal current, and an increase in
ke by the hyperpycnal current. It should be noted that cabbeling itself is not a source of
kinetic energy, but instead increases the potential energy, which is then transformed into
kinetic energy by a buoyancy flux. The low © cases (T2.2h2, T2.4h2,T2.63h2, T2.8h2, and
T3h2) are shown in panels (a) and (b), and these cases are characterized by a short time
increase of ke as the initial hypopycnal current propagates, but this is quickly swamped by
a much larger increase from the hyperpycnal current. There is a transient period between
these stages where the ke oscillates but does not significantly increase. As © becomes
larger, the initial rate of growth of the ke slows, and the second stage occurs at a later
time. Eventually, the total ke reaches a peak and then decreases before the gravity currents
ultimately collide with the right hand wall (the time at which the curves terminate).
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Figure 5.4: Temperature fields for T3h2, given by (5.2). The non-dimensional temperature
of maximum density for T3h2 (&) is marked on the colourbar. Times are located on
each panel. Panels (a)—(c) show the general evolution of the hypopycnal (near-surface)
current, panel (d) shows a transition time, and panels (e) and (f) show the hyperpycnal
(near-bottom) current. Notice the increase in head height in panel (f) relative to panel
(a). Notice also that the hyperpycnal current quickly outruns the hypopycnal current.
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Figure 5.5: Horizontal component of non-dimensional flow velocity for T3h2. The times of
each plot are the same as in figure 5.4. Notice the decrease in the velocity of the current
in panel (f) relative to panel (a).
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We can see in 5.6(c) and (d) that by further increasing © in the 3.5-8 range (T3.5h2,T4h2,
T5h2, T6h2, T7h2, and T8h2), the first stage of growth by the propagation of the initial
hypopycnal current is elongated resulting in a clear localized peak in the ke, before slowly
decreasing as the hypopycnal current spreads. Following this, there is a more gradual in-
crease due to the slumping of the hyperpycnal current. The general behaviour that can
be gleaned from figure 5.6 is that for © near 2, the hypopycnal current does not complete
its initial acceleration before cabbeling and the subsequent formation of the hyperpycnal
current starts to dominate the kinetic energy history. Conversely, for larger values of O,
the initial hypopycnal current is allowed to develop into a more mature current before
cabbeling ultimately generates the hyperpycnal current.

In figure 5.7, we compare the total kinetic energy of two values of © (3 and 6) for three
values of h. These © values were chosen chosen to best illustrate the sensitivity of the
total kinetic energy based on the variation of © and h. Figures 5.7(a) and (b) show the
total kinetic energy for the T3h4, T3h2, and T3h1.82 cases. It is clear that by making the
domain shallower (or alternatively increasing the initial intrusion height), we get a more
well-defined early evolution of the flow, indicated by the rapid rise and peak in kinetic
energy. T3h4 shows a severe early and late reduction in total kinetic energy relative to the
T3h2 and T3h1.83 cases, potentially indicating the impact of viscosity due to the relatively
low value of Gr. It is interesting that in the interval 100 < t < 200, the relative increase
in the total kinetic energy is similar between T3h4, T3h2, and T3h1.82. This indicates
that the development of the hyperpycnal current may be unaffected by the magnitude of
Gr over this time interval. Figure 5.7(c) and (d) show the same quantity for cases T6h4,
T6h2, and T6h1.82. We can see a more well defined initial acceleration of the current,
and peak in the kinetic energy. Note that the hyperpycnal currents for T6h2 and T6h1.82
become large enough that they run into the wall at x = [ before they can fully develop,
but T6h4 does not. This is interesting as the ke increase due to the hyperpycnal current
results in a larger total ke than that of the initial peak.

Figures 5.8(a,b,c) show Hovmoeller plots of the temperature field at 0.95h for T3h4,
T3h2, and T3h1.82 between 0 < z < 50 and 0 < ¢t < 100. Figure 5.8(d,e,f) shows the same
for T6h4, T6h2, and T6h1.82 between 0 < z < 70 and 0 < ¢ < 200. These figures highlight
the overall similarity in the time history of the near-surface temperature for each of the
cases compared. For example, first consider panels (a,b,c) (the same discussion below can
be applied to panels (d,e,f)). Note that while the broad features such as the propagation
speed of the current (inferred by the slope in 2 —t space of the front) and halting behaviour
are similar between all three of these cases, T3h4 (shown in panel (a)) travels the shortest
non-dimensional distance relative to T3h2 (panel (b)) and T3h1.82 (panel (c)), indicating
the impact of the low value of Gr. Directly comparing panels (b) and (c) (where Gr has

129



0.4 : : : : 0.06

— T2.2h2
0350 A T2.4h2 | 0.05 L
03l — — — T2.63h2 .
————— T2.8h2
0.25 | — T3h2 004y
0.15 —— 1
; s - - 0.02
R /o m—
01 r / ‘/'/ . ;
Y 0.01 I
0051 & 7 -~ 1 ;
[ = a
. | @ .
50 100 150 200 250
¢
0.06 : : : ' 0.03
0.05 0.025 |
0.04 | 0.02
£ 0.03} 1 20015}
0.02 0.01 }
0.01 0.005
0 . . . . (© (d)
0 1 1 1
0 100 200 300 400 500 50 100 150 200
t t

Figure 5.6: Time series of the total kinetic energy for all cases with A = 2. Panel (a) shows
the total kinetic energy for cases with 2.2 < © < 3. Panel (c) shows the same quantity for
cases with 3.5 < © < 8. Panels (b) and (d) are detailed views of the early evolution.
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been increased by decreasing h) reveals negligible differences between the distance travelled
between these two cases. In other words, there are noticeable differences in the travelled
distance between T3h4 and T3h1.82, but comparatively small differences in the travelled
distances between T3h2 and T3h1.82. These results indicate that for low enough Grashof
number, the quantitative current characteristics are modified relative to cases with higher
values Gr. The implication then becomes that the large scale behaviour of the current
may be relatively independent of Gr for large enough values. The exact regime where
the gravity current evolution achieves Gr independence is beyond the scope of this thesis.
Some discussion on this is provided in Hértel et al. (2000a) and Cantero et al. (2008).
Recall that Gr independence in head location was noted in the results of figure 4.5(c) in
chapter 4, where a larger value of Gr led to an increased discrepancy between the head
locations of near-surface propagating currents versus near-bottom propagating currents,
and by reducing Gr, these differences became smaller.

Additionally, late in the time history, we can see a near-surface reversal of the propaga-
tion direction. The prominence of this feature increases as © — 2 and was clearly visible in
cases where 2 < © < 3. However, a key feature that these figures highlight is the variation
in the maximum extent that the current achieves as © is increased for constant h. At low
O, the current’s near-surface forward motion ceases much earlier in the tank relative to a
case with larger ©, made apparent by comparing the horizontal axis across panels in the
same column of figure 5.8. This is discussed in the next section.

5.4.2 The maximum extent of the current

Figure 5.8 highlights the propensity of the hypopycnal currents to progress down the length
of the domain, and then halt. The maximum distance over which this occurs, denoted by
L, is an important parameter because it represents the length (in the z direction) of the
rectangular region that characterizes the volume of fluid that makes up the emergent hy-
perpycnal current. For context, the maximum extent of gravity currents has been studied
before, but in the context of sediment-laden gravity currents. Maxworthy (1999) used lab-
oratory experiments to first identify the formation of a secondary current that flows along
the bottom of the domain. He tracked the maximum extent as a function of the excess
density ratio (the ratio of density differences due to salt versus that of sediment). Suther-
land et al. (2018) went a step further and performed laboratory experiments of hypopycnal
flows that underwent convective sedimentation with varying particle sizes. They measured
the maximum distance of the hypopycnal current and found a semi-empirical relationship
to the particle diameter. They found that as particles became larger, the maximum ex-
tent of the hypopycnal current increased. Davarpanah Jazi and Wells (2020) performed
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experiments along a flat bottom tank and highlighted the expected maximum extent for
different intervals of the density ratio. The point is that in these studies, the maximum
extent of the current driven by convective sedimentation is important because it predicts
the length scale of the deposition of sediment on the bottom of the tank. More on the
significance of the maximum extent in this context can be found in the discussion section.
In the simulations presented within this chapter, it is not necessarily sediment deposition
that is of interest, but more the transport of heat (and perhaps dissolved gases in a field
setting, for example).

For the following section, we will define
L= f(0,h,Grg), (5.37)

We calculate £ (dimensionless and defined in (5.37)) by simply recording the location of
the front of the gravity current at a height 0.95h. In (5.37), f is some unknown function
of ©, h, and Gry. The location of the front of the gravity current at a given time is defined
as the furthest distance from the left hand wall where T' = T,., where T, = 0.01. The
computed values for £ are not strongly dependent on the choice of T, until it is greater
than about 0.5 (the estimate of the front location of the current is incorrect) or until it
is less than about 0.0001 (small numerical variations in the flow start to give incorrect
results). Note that T, corresponds to a different dimensional temperature for each case.

L is plotted as a function of © in figure 5.9(a). Cases with h = 4 are represented by
blue squares, cases with A = 2 are represented by red triangles, and cases with A = 1.82
are represented by black diamonds. VT5h4 and VT6h4 are represented by green circles.
We can see that £ generally increases with ©, however, past © = 3 the slope of increase
is shallower. Furthermore, for large h (a relatively deep domain), we can see that the
maximum extent is severely affected for © between 3 and 7, relative to the cases with
smaller h. This was also apparent in the temperature Hovmoeller plot in figure 5.8(a). It
is not until © is increased past about 6 where the maximum extent is more comparable to
the cases with h = 2 and h = 1.82. The reason for this discrepancy is that the Grashof
number is small enough that the hypopycnal current enters the viscous regime early in
its development, leading to a decreased maximum horizontal extent. This is confirmed
by re-running cases T5h4 and T6h4 but reducing the viscosity by a factor of two (recall
that these cases are VI'5h4 and VT6h4). Note that by increasing Gry by a factor of four
(reducing viscosity by a factor of two), we increase the maximum extent of those two cases.
This led to £ values more comparable to the cases with larger h (and equal ©).

We can see that continuing to increase © increases the distance in which the hypopycnal
current travels before it halts. As discussed previously, continually increasing © implies
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that the leading order functional form of the buoyancy forcing is purely quadratic, which
precludes cabbeling (and similar to the “T cases” presented in chapter 4). For this reason,
we should expect £ to continue increasing with © but at a slower rate at larger ©.

The maximum horizontal extent £ is an important parameter because it helps charac-
terize the approximate area of the hyperpycnal current, which consists of mixed ambient
and intruding fluid. For each hyperpycnal current, we estimate the area by assuming
that the mixing of the hypopycnal current and ambient occurs over a rectangular region
of length £ + x4, and the depth h. This can be thought of as the “initial area” for the
hyperpycnal flow, and for brevity, this region will be called the ”entrainment zone”. The
full depth is chosen as the vertical length scale since the mixing takes place over the entire
depth of the domain. Mathematically, area of the entrainment zone is given by

A= (L +z)h. (5.38)

The area of the current calculated from the simulation data at a given time is

I rh
A= / / xdzdz, (5.39)
0 Jo

1 T>1,
= . 5.40
X {0 T<T (5.40)

where the indicator function y is

Recall T, = 0.01 is the critical temperature, which was found to adequately represent the
area of the current. The computed area of the current is sensitive to the choice of T, and
values of T greater than about 0.05 tend to underestimate the area of the current. Figure
5.9(b) shows the area of the hyperpycnal current A normalized by A. The times were
chosen so that the initial hypopycnal current has ceased flowing and significant mixing
between the hyperpycnal current and remaining ambient had not occurred. We can see
that for larger ©, A/ A approaches unity, meaning that £ + x, is a good representation of
the lock length of the hyperpycnal current. Conversely, it is apparent that for low ©, A
underestimates the initial fluid area of the hyperpycnal current. The reason for this lies
in the near surface reverse flow mechanism discussed earlier. For low ©, cabbeling occurs
very quickly relative to the propagation of the gravity current, so the bottom current forms
and quickly outruns the initial hypopycnal current. The near surface reverse flow of equal
magnitude (but opposite direction) to the bottom current pushes the initial hypopycnal
current back towards the left hand wall. Thus, cabbeling and subsequent mixing takes place

in a very narrow region near the left hand wall, resulting in a relatively small estimate of
L, and therefore A.
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Figure 5.9: Panel (a) shows the variation of £ for the large intrusion cases (#), the medium
intrusion cases (A), and the small intrusion cases (H). Panel (b) shows the area of the
hyperpycnal current normalized by the area of the entrainment zone A after the cabbeling
is quenched. VTHh4 and VT6h4 are also included and denoted by a green e.

5.4.3 Early hyperpycnal current characteristics

The size of the entrainment zone also affects the temperature distribution of the bottom
current. Larger entrainment zones lead to mixing with more ambient fluid, so temperatures
will be closer to T" = 0. We can assess the qualitative properties of the gravity current as
© varies by comparing the current’s spatial structure at a late time when the hypopycnal
current has been mixed out. A comparison is presented in figure 5.10 (a)—(d). In this
figure the density field is multiplied by 20©. This re-scaling puts the maximum density
at 1 and the density of the ambient at 0. This facilitates an easy comparison between
cases. The times were chosen such that the dimensional temperature in every location of
the domain falls between the ambient temperature and T By increasing ©, we can see
that the volume of the current is larger, in qualitative agreement with the difference in
entrainment zone size, and we can also see that the density distribution within each current
is qualitatively different. This is especially noticeable in the body and tail of the current
for the T2.2h2 (figure 5.10(a)) case when compared to T3.5h2 (figure 5.10(d)).

Furthermore, the density distribution in the head is clearly different. For lower ©, the
density in the head is much closer to the maximum density (indicated by brighter colours),
and increasing © tends to decrease the head’s density. Along the bottom of the T2.2h2
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case, we can see a layer of fluid that is very close to the maximum density, whereas in
the T3h2 case, the densities are all less than the maximum density. Since the T3h2 case
actually starts with a wider range of temperatures (the largest Afl), it is interesting to
note that the temperatures are relatively closer to the ambient. The density fields for
the cases with © > 3.5 are not shown simply because the tank is not long enough for the
hyperpycnal current to develop. In these cases, maximum extent of the hypopycnal current
is nearly the entire length of the tank, so the hyperpycnal current simply has no room to
develop and propagate.

Figures 5.10(e)—(g) provide a measure of the distribution of temperatures within the
current for T2.2h2, T2.63h2, T3h2, and T3.5h2. These plots highlight the form of the
distribution of temperatures within the current. The fluid within the current is defined by
any parcel that has T' > T,.. The upper and lower bounds of the blue box indicate the spread
between the 25th percentile and 75th percentile of the data, while the upper and lower
whiskers show the spread between the lower (upper) extreme and lower (upper) quartile.
The horizontal red line represents the median and the filled diamond represents the mean.
Figure 5.10(e) shows the data, as well as the non-dimensional temperature of maximum
density é, for the four cases, figure 5.10(f) shows the data on an axis normalized by the
temperature of maximum density, and figure 5.10(g) shows the non-dimensional density
normalized by the maximum density. These plots highlight the fact that by increasing
O, the distribution of temperatures within the hyperpycnal current become systematically
narrower, with the distribution of temperatures grouped around the median. Furthermore,
the temperatures become closer to the ambient (7" = 0). This is further evidence of the
general hypothesis that currents with larger © mix with a larger volume of ambient fluid,
leading to a narrower temperature distribution.

On the other hand, the wider distribution in T2.2h2 is a result of the early evolution of
the current. Recall that the formation of the hyperpycnal current occurs relatively early,
and this induces the near surface reverse flow. Thus, the hypopycnal current, which is the
source of the cabbling, reverses direction and is trapped near the left hand wall, forcing
cabbeling only to act in this region. Since the hyperpycnal current continues propagating,
dense fluid is fed only to its tail, leading to a wider range of temperature.

An interesting point that is made clear by figure 5.10 concerns the variation of the
head location of the currents. We can see that the head location for T3.5h2 is actually the
furthest down the length of the tank. The explanation is that the times shown were chosen
to best highlight the state of the current after it has begun to flow, and not necessarily to
facilitate a comparison in head location. However, this brings up an interesting question
about long term evolution of the hyperpycnal currents. As O is increased, the head speed
of the initial hypopycnal current increases, meaning more distance is covered in the first

137



1
t=770 T2.2h2 (@) -

1.5
N 1 0.5 @
T Wy e — Y i 0 O
10 20 30 40 50 60 70

: : : : ; g 1
1.5 t =151.7 T2.63h2(b) a
IS 1 0.5®
0.5 x
‘ 0

10 20 40

1
1.5 =2043 T3h2 (o) “
w1 0.5
1.5 t =270.7 T3.5h2 (d)
w1
03 m

xr
i 1 1 —
oQ— __ (e) T 4 = Average (f) | l= Average (g)
e o
°
0.3 | o -
&~ T 5 0.5 | - @ 0.5
1 | | \
ol [
T @ %1 L 1L 1 1 L 4 -
0 0 0
v 9 QO v QO O I 9 O D
Y & » P » S
&‘7» &%- & &/‘W/ &/q) & &% &/q). &

Figure 5.10: Panels (a)-(d) show the re-scaled density field for several cases. Case names
and times are located on the plots. A density of 0 corresponds to the ambient density while
a density of 1 corresponds to the maximum density. Panel (e) shows box and whisker plots
of the temperature distribution within the current. Panel (f) and (g) show the same data
on re-scaled axes where 1 corresponds to a temperature 7' = % (the non-dimensional
temperature of maximum density) and 0 is the ambient temperature. The interquartile
range is denoted by the blue boxes and the median temperature is denoted by the red line.

The mean temperature of the current is indicated by 4 and é is indicated by e.
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phase of its evolution over a given time interval. However, for large enough ©, the area
of ambient fluid that is entrained is larger leading to a much smaller density difference
between the head of the hyperpycncal current and the remaining ambient, evidenced by
figures 5.10(e)—(g). Thus, while these currents may initially attain larger distances, it is
reasonable to think that the hyperpycnal currents from lower © cases may eventually catch
up due to their larger driving density difference.

5.5 Summary and Discussion

In this chapter, we performed numerical simulations of gravity currents in the cabbeling
regime. We highlighted the general evolution of a specific class of gravity currents where
ambient and intruding temperatures were on different sides of the temperature of maximum
density and © > 2, indicating that the density of the ambient is initially closer to the
maximum density relative to the intrusion thus allowing the intrusion to initially rise.
Cabbeling is an important driver of the dynamics in this chapter. Cabbeling occurs when
two masses of water with different temperatures and equal density mix and a denser mass
of water is generated.

In the present chapter, both © and A (the non-dimensional depth) were varied to build
an understanding of the general behaviour of these currents in (O, h) space. In general,
we found that currents initially slumped to the top surface and propagated while mixing
along the body and tail of the current generated dense water due to cabbeling. Sinking of
the dense water continually occurs as the initial hypopycnal current flows and eventually
a hyperpycnal current forms along the bottom surface of the domain that quickly outruns
the initial hypopycnal current. A consistent feature across all cases was that the head
height of the hyperpycnal current was about half the depth of the domain, regardless of
the initial height of the intrusion.

To further categorize the behaviour of these currents, we considered the ke and found
that as © was increased, the timescale of the development of the gravity current increased
before the onset of cabbeling. This agrees with the perturbation analysis that cabbeling
is a higher order mechanism in the limit of large ©. The total kinetic energy also showed
that decreasing the height of the initial water mass led to a relatively small increase in
kinetic energy due to cabbeling at constant ©.

By using the near surface temperature in the along-tank direction, the maximum hor-
izontal extent of each current was also tracked and compared. We showed that as ©
increases, the maximum extent of the hypopycnal current increased as well, but the slope

139



decreased as © became larger. Increasing h led to a reduction in horizontal extent at con-
stant ©. The Grashof number for the high h cases was small enough that viscous effects
played a significant role early on. This was evident for T3h4, T4h4 and T5h4, as L clearly
scales differently than the cases with h = 2 and h = 1.82. T'wo simulations were performed
where the Grashof number was modified by changing viscosity (VT5h4 and VT6h4). By
changing the value of viscosity, we can change the value of the Grashof number but keep ©
and h unchanged. In these cases the viscosity was reduced by 50% leading to an increase
in the Grashof number by a factor of four. This led to larger maximum extents relative
to the comparable cases Tbh4 and T6h4. Similar behaviour was seen in experiments by
Gladstone et al. (2004), as well chapter 4 of this thesis.

We used the maximum extent of the current as well as the total depth to define a
rectangular region called the entrainment zone. This region acts as the reservoir of fluid
that makes up the hyperpycnal current. It was shown that the entrainment zone is a good
indicator of the area of fluid that makes up the hyperpycnal current except for © near
two. In this regime, the calculated entrainment zone under-estimated the volume of the
hyperpycnal current. For © close to two, the timescale for cabbeling was found to be shorter
than the timescale of initial propagation of the current, so cabbeling occurred quickly
and the hyperpycnal current formed before the initial hypopycnal current propagated a
significant distance.

The distribution of density and temperature of the hyperpycnal current was also shown.
The key observation is that increasing ©® makes the distribution of temperatures narrower
about the median temperature. As © was increased, the hypopycnal current mixed with
a larger region of ambient fluid, leading to an average temperature of the mixture closer
to the temperature of the ambient. Alternatively, by reducing © to be close to two, the
distribution was found to be wider, with more locations within the flow being close to %
(the non-dimensional temperature of maximum density). Thus, hyperpycnal currents with
© close to two generally exhibited more regions of dense fluid than currents with larger ©.

The results of this chapter highlight an important characteristic about gravity currents.
For a sufficiently large Reynolds number, gravity currents go through several self-similar
phases of evolution as they progress, each corresponding to a different dominant momentum
balance within the current. These phases are called the acceleration phase, the slumping
phase, the inertial phase, and the viscous phase. In the acceleration, slumping and inertial
phases, the dominant balance is between the driving pressure gradient generated by density
differences, and the inertial term in the momentum equations. In the viscous phase, the
dominant balance is instead between the inertial term and the viscous term. Each of these
four phases manifest themselves as (among other things) a different scaling law for the head
speed of the current. Cantero et al. (2008) discusses each of the four phases and provides
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evidence for the dominant balance within each phase. They also provide quantitative
relationships between the head speed, time, and the normalized lock-release volume V4.
For example, in the slumping phase, the gravity current head speed is approximately
independent of time, and the time the current spends in this regime is simply proportional
to Vp. In this regime, density changes within the head, as well as head height changes are
negligible. It is not until the inertial regime, where the head speed scales as VO1 % that
gravity currents experience more significant head height and density changes.

How might we apply these regimes to the hypo- and hyperpycnal currents presented in
this chapter? We expect that the only circumstance in which the currents may progress
through these phases is at the high © limit. A primary assumption of the theory of each
phase is that the volume of the current does not deviate strongly from its initial value
(Huppert and Simpson, 1980), and since the initial hypopycnal currents with low © are
immediately disrupted by cabbeling, this assumption is not satisfied. However, in the
high © limit, we saw that the leading order behaviour was that of a non-cabbeling gravity
current, so there is potential that currents in this limit may progress through each phase
before cabbeling can completely extract the intruding fluid. More work is necessary to fully
characterize these currents. Furthermore, as we saw in chapter 4 in figure 4.5(a), the head
speed does not necessarily scale with time in the same way under a non-linear equation of
state.

The more pertinent question is regarding the hyperpycnal current. As we saw, varying
© increased the size of the entrainment zone, and the resulting hyperpycnal current. In
principle, one can expect that increasing © indirectly increases the time interval of each
of these regimes for the hyperpycnal current by increasing the nominal lock length, and
therefore the V5. What complicates this is the fact that by increasing ©, we increase the
initial volume of entrained ambient fluid, which reduces the characteristic density difference
between hyperpycnal current and the remaining ambient. This is evident by the smaller
mean and median temperatures and densities shown in figure 5.10(b). This density differ-
ence affects the buoyancy velocity and therefore the non-dimensional timescales on which
the gravity current flows. A point of future work could be to make a more comprehensive
characterization of the hyperpycnal current characteristics, such as a quantifying whether
the phenomenological lock length can compensate for the reduced timescales created by
the mixing, resulting in a net increase in the horizontal transport of heat and material with
increasing ©.

There are several additional future directions to take this research. The first is to
identify if the relationship between £, ©, and h is substantially different if the boundary
conditions are changed to no-slip. In the high Gr limit, we should expect that the boundary
layers are significantly thinner relative to the length scales of the interior flow, so the
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interior should evolve similar to the results presented here. However, it is unclear on if
no-slip boundary conditions are even the “correct” boundary conditions. One could think
that a density driven flow might be flowing beneath ice, so the boundary conditions have
a certain variable roughness associated with them, as well as thermal boundary layers,
melting (especially for high ©), and entrainment of melt water. Another potential avenue
is to discuss how the three dimensional development of the current may play a role. The
convection currents associated with cabbeling in three dimensions will undergo vortex
tilting and stretching as the dense fluid sinks. This may be more prevalent for the low
O limit, as the mixing dynamics are limited by the small temperature differences, so an
added mixing mechanism may have a more profound effect on the dynamics.
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Chapter 6

Concluding Remarks

In thesis, we have presented a series of numerical process studies with the goal of capturing,
understanding, and describing characteristic dynamics of different temperature intervals of
the freshwater non-linear equation of state (NLEOS).

In chapter 3, we presented a series of process studies that represented the evolution
of a fresh water system in the late winter. In this setup, a volumetric heating source
(representing incident solar radiation) preferentially added heat near the surface. The
heating induced small temperature and density changes within the flow, and since the
temperature of the flow was below T}, everywhere, convective plumes were generated near
the surface. We investigated how these plumes developed in the presence of an otherwise
stable background shear current. We showed that for a sufficiently strong background
current, cores of the convective plumes were aligned in the direction of the current. It
was hypothesized that this led to a systematic vertical flux of streamwise momentum by
the convective plumes which triggered vortex tilting and stretching, and the result was
a turbulent-like state. It was noted that common mixed layer parameterizations (the
KPP was specifically mentioned in that chapter) calculate vertical heat fluxes by assuming
a fully turbulent water column, which implicitly assumes a sufficiently large Reynolds
number. However, the results of this chapter demonstrate that in spite of the very low
Reynolds number of the simulations (and therefore a traditionally non-turbulent flow), the
vortex tilting and stretching are important mechanisms in the degeneration of the water
column and subsequent mixing. This could potentially pose a problem for the accurate
parameterization of convection driven by solar radiation beneath ice. More on this can be
found in section 6.1.

In chapter 4, we presented a series of simulations of gravity currents in a monotoni-
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cally increasing but non-linear interval of the NLEOS. The core of the series of numerical
experiments was a comparison between two classes of gravity currents with temperature
differences (and density differences) of equal magnitudes. The first class was a series of
surface currents flowing into a denser ambient, while the second class was a series of dense
currents flowing into a lighter ambient. We saw that the lighter currents that flowed along
the top surface experienced a decrease in the head speed and head location relative to
denser currents that flowed along the bottom surface. We also demonstrated that currents
flowing along the top surface had a larger vertical extent in the tail region and that their
head heights decreased more rapidly when compared to current flowing along the bottom
surface. Additionally, we identified key differences in the density and temperature distri-
butions of the currents due to mixing in the body and tail of the currents. We closed this
chapter with a discussion on how the results presented within may related to what we term
“weak cabbeling” (the density of a mixed parcel of fluid is denser than the average density
of the parent parcels of fluid) in fresh bodies of water.

Finally, in chapter 5 we presented a series of simulations of gravity currents where
ambient and intruding temperatures were on opposite side of T,q. We used this interval to
describe how cabbeling (the density of a mixed parcel of fluid is denser than the density of
either parent parcel of fluid) affects the evolution of gravity currents. Temperatures were
chosen so that currents initially flowed along the surface of the domain (called hypopycnal
currents in that chapter). We found that while the hypopycnal currents propagated down
the tank, cabbeling occurred in the tail and body of the current. Once enough fluid was
extracted, the current ceased its propagation. The mixed fluid settled on the bottom and
a coherent bottom flowing current formed (called a hyperpycnal current in that chapter).
The dependence of the maximum extent of the hypopycnal current on © (the definition
can be found in (5.4)) and h (the depth of the domain) were probed and discussed. It
was shown as © was increased, cabbeling became a secondary effect allowing the currents
to travel a greater distance. Furthermore, deeper domains led to a shorter maximum
extent due to the relatively small value of the Grashof number. We also discussed some
of the characteristics of the hyperpycnal currents such as their density and temperature
distribution. We found that once the hyperpycnal current formed, larger values of © led
to larger current area but narrower distributions of density and temperature about their
mean values.
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6.1 Future Work

There are several direct extensions of this work that could be considered. Specific exten-
sions to each of the projects have been highlighted in their respective chapters, but here
we will suggest several broad directions that work described in this thesis as a whole could
take in the future.

Throughout this entire work, it has been assumed that greatest contribution to density
variation is from the temperature. However, due to the smallness of the density differences
in the cold water regime due to variations in temperature (in the neighborhood of 0.005%)
it is clear that comparable density variations can come from slight variations in salinity (for
example, Cortés and MacIntyre (2020) saw examples of column-wide variations in density
due to salinity on the order of 0.001% in a small arctic lake) as well as variations in the
hydrostatic pressure. As an example, let us specifically consider the pressure effects.

We can perform a Taylor expansion of the density about the temperature of maximum
density T),q and a reference pressure Py (this could be the surface pressure). Note that since
we are expanding the density about T},4, the first term in the expansion of temperature is
zero since o = 0 at de. This leaves:

p(T,p) = pPo (1 —f—% (%)T(p— Pg) + 2Lp0 <%>p(T— de)Q —+ ) s (61)

where py = p(Tp, Py) and we have omitted higher order terms including cross terms. We
can express the scaled perturbation about the reference state as

/
1 ~
=K (p— P) 5O = T + . (6.2)
0
where the isothermal compressibility and the temperature derivative of the isobaric thermal
expansivity are given by
1[0 1 [ 02
K:—(—p> : C:—<—p2> . (6.3)
po \Op/ ¢ po \01? )

respectively. We can replace p — Py with p 4+ p' using (2.15) (recall that pf = Py + pogz).
We can assume that perturbations to the pressure field by motion are much smaller in
magnitude than p? so that p > p/. This allows us to write the normalized perturbation
J o as
r 1 = \2
0
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We are interested in the relative importance of the pressure dependency of the density
fluctuation (the first term on the right of (6.4)) versus the temperature dependency of the
density fluctuation (the second term on the right of (6.4)). Thus, for changes in p'/pg
due to pressure variations over a depth z to be comparable to those due to temperature
variations, those temperature variations about de must be

Kpogz

T — Ty~ -

. (6.5)

Over the temperature range that this thesis is concerned with, K does not deviate strongly
about 5 x 107°atm~! (Millero et al., 1980), we can assume that C' &~ 1079°C~2 (see the
constant C' in table 5.2 for an estimate), g ~ 10m/s* and py = 1000kg/m?. Since the
domain depths presented in this thesis are all on the scale of about one metre, density
changes due to pressure will need to be accounted for if the deviations of temperature
about Tp,q are smaller than about 0.3°C. Of course, depths in the field are much larger
than one metre, so variations in density due to pressure variations are comparable to much
larger temperature deviations about T.,g. This is specifically relevant to the process study
described in chapter 3. For initial temperatures near Tp,q, the temperature of the flow
becomes closer to Th,q due to incident the solar radiation. As we showed in chapter 3, the
solar radiation generates an unstable density gradient, and instabilities occur. However,
the resultant density differences generated by the heating may be small enough such that
they are comparable to the stable density stratification caused by the hydrostatic pressure
variation. This means that a hydrostatic background state creates a stable background
stratification that the instabilities must overcome to grow to finite amplitude.

The results of chapter 3 also bring up questions about the applicability of mixed layer
models in cold waters. The K-Profile Paramerization (KPP), was mentioned as an example,
and more information can be found in Large et al. (1994) and Van Roekel et al. (2018). The
KPP (while useful in many contexts) uses Monin-Obhukov (M-O) stability functions to
assess whether or not the water column is stable. If it is unstable, non-local mixing occurs
and heat is instantaneously redistributed throughout the domain. M-O theory assumes a
fully developed turbulent state to calculate the M-O length scale, which in turn determines
the stability of the water column. The results of chapter 3 have a flow Reynolds number
that is too small to properly develop an inertial sub-range, so the assumption of a fully
turbulent mixed layer is not necessarily satisfied. More generally, it is not clear that the
water column beneath ice in the field is fully turbulent such that it has an inertial sub-range
(this was briefly touched on in section 3.5.2). Thus, for flows beneath ice where turbulence
is weak, the turbulent fluxes of heat may not be properly estimated. Thus, the efficacy of
mixed layer models in cold water beneath ice should be studied directly.
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Furthermore, Van Roekel et al. (2018) highlights that non-local transport of horizontal
momentum is absent in most KPP implementations, but it is clear from these results of
chapter 3 that there is evidence of coupling of the momentum from the background current
to the plume structures that arise from the destabilizing thermal forcing. Thus, it should
be determined whether or not this coupling is well represented by a non-local term, or
should be parameterized by something completely different.

For readers more interested in turbulent structures, the simulations presented in chap-
ters 4 and 5 could be re-run in three dimensions at large Gr (see (4.9)). By assuming that
the flow evolves in only two dimensions (as we have done in those chapters), the potential
for turbulence generation by vortex tilting and stretching is removed. It has been shown
that turbulent structures in the tail of a gravity current have some impact on the head
location and head speed of the current late in its evolution. Cantero et al. (2008) and
references within discussed this impact and found that when simulating gravity currents
in two dimensions, two-dimensional coherent vortical structures in the tail of the current
led to a reduction in the driving pressure gradient of the flow. They compared these re-
sults to three dimensional cases at the same Reynolds number and found that the pressure
reduction within the tail was weaker for the three dimensional cases. This led to a larger
head speed in the inertial and viscous regimes for the three dimensional cases compared
to the two dimensional cases.

The results presented in chapter 4 suggest noticeable differences in the head speed
and location for the surface flowing and bottom flowing currents; currents that are denser
than the ambient (they flow along the bottom surface) travel a greater distance in a given
time than a current that is lighter than the ambient. If the gravity currents presented in
chapter 4 are allowed to evolve in three dimensions, would we see a similar manifestation
of the reduced pressure gradient discussed in Cantero et al. (2008)?7 Would this minimize
the differences between each class of current, or would the effects of the reduced pressure
gradient appear after each class of current were allowed to separate?

Furthermore, are the results of chapter 5 significantly affected by three-dimensionality?
Vortex tilting and stretching may enhance the rate of mixing when compared to two-
dimensional simulations. Could this affect the rate that the hypopycnal currents mix with
the ambient? If mixing occurs more rapidly over the course of hypopycnal current evo-
lution, there may be implications for the rate of formation and the characteristics of the
hyperpycnal current. If mixing happens more rapidly and more efficiently, the hyperpyc-
nal current temperature distributions may be narrower and their mean temperature may
be further from the ambient, due to there being a smaller volume of entrained ambient
fluid. This could allow a three-dimensional hyperpyncal current to travel further than a
comparable two-dimensional case.
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Finally, for those more interested in laboratory work, the studies presented within this
thesis should be performed in a laboratory to validate some of the results. For example,
it is common practice in laboratory studies of gravity currents to track the head location
and infer the head speed of the currents. For example, the results of figures 4.5, could
be directly compared to laboratory data. As another example, the maximum extent of
hypopycnal currents could be tracked to determine the accuracy of figure 5.9.
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Appendix

The derivation for the Viscous Taylor Goldstein Equations can be found in Smyth et al.
(2011), and only the equations are presented below. k is the streamwise wavenumber, [ is
the spanwise wavenumber, and ¢ = o, +10; is the complex growth rate. Perturbations that
have o; > 0 are unstable modes and grow without bound, and the growth rates of these
modes are of general interest in this problem. The perturbation with the largest o; will
grow the fastest, and the wavenumber of that mode sets the length scale of the instability
that we see in the system. The equations are derived by substituting w = (U + «/,v’, w')
and p = p+ p into the system of equations (3.2) - (3.4). Then, substitute the wave ansatz

(', 0 W, p) = (al2),0(2), w(2), b)), p2))e =+, (6)

into the linearized system. Following this, define

k=Vk2+12 v~2:d—2—/2;2 o= Uk (7)
) d22 ) ]%

and simplify. Then we get the following system of equations which govern the growth of
perturbations to the system.

oV = —ikUV*b + kU0 + vV — pil? ), (8)
0

op = —ip, — ikUp+ kV?p. (9)
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