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1 INTRODUCTION

For many chronic diseases featuring recurrent clinical events it is natural to evaluate the effect
of therapeutic interventions on the basis of event occurrence. Examples include studies of a
respiratory disease featuring repeated exacerbations of symptoms (Cazzola et al., 2012), febrile
seizure prevention trials (Strengell et al., 2009), neurological trials evaluating prophylactic inter-
ventions for epileptic seizures (Nakamura et al., 2017), and clinical trials of bone strengthening
drugs for the prevention of fractures in osteoporosis (Ettinger et al., 1999). Traditionally at-
tention has been restricted to delaying the occurrence of the first event using Cox regression,
but over the last three decades there has been increasing appreciation that use of information
on event occurrence after the first event will provide a more comprehensive reflection of the
effect of treatment.

There has been considerable discussion among statisticians involved in pharmaceutical re-
search and regulatory agencies about the use of recurrent events for the evaluation of therapeutic
interventions in clinical trials. Methods based on rate functions with multiplicative covariate
effects are among the most widely appealing methods (Cook and Lawless, 2007) and are seeing
increased use. There are two primary challenges with these analyses. First for valid inference,
treatment comparisons based on rate functions must address between-individual heterogeneity
in the propensity for events. Mixed Poisson models which incorporate individual-level random
effects (Lawless, 1987a; Therneau and Grambsch, 2000) offer one approach for achieving this.
Alternatively if robust methods are of interest, multiplicative models based on marginal rate
functions can be fitted using Poisson estimating equations if robust sandwich variance estimates
are used (Andersen and Gill, 1982; Lawless and Nadeau, 1995; Lin et al., 2000). The second
challenge is that event occurrence informs treating physicians that current therapy may be inef-
fective for particular individuals, which can lead to early study withdrawal. This creates a type
of event-dependent censoring which can affect properties of standard estimators (Strawderman,
2000; Cook et al., 2009). For parametric or semiparametric likelihood-based analyses, this form
of dependent censoring is ignorable in the sense that estimators, while less efficient due to
shorter follow-up, remain consistent if the response model assumptions are valid. When the
goal is to carry out robust analyses methods are typically based on incompletely specified mod-
els with estimation and inference based on estimating functions. In this case, event-dependent
censoring leads to inconsistent estimators unless inverse probability of censoring weighted esti-
mating functions are used (Cook et al., 2009, 2010; Akacha and Ogundimu, 2016). These and
other approaches (Wei et al., 1989; Prentice et al., 1981) have been studied in terms of the large
sample properties of estimators (Boher and Cook, 2006; Zhong and Cook, 2019) and via simu-
lation (Kelly and Lim, 2000), but there remains uncertainty about the advantages, limitations,
and interpretation of findings from recurrent event analyses in comparison to Cox regression for
the time to the first event. In particular there has been increased recent attention on the na-
ture and interpretation of estimands in the context of recurrent events (Akacha and Ogundimu,
2016; Akacha, 2019; Stark, 2018; Lee and Cook, 2019; Roger et al., 2019). Some view recurrent
event analyses as leading to estimators which are more efficient than estimators based on Cox
regression for the time to the first event; this was shown to be in the case for Poisson recurrent
event processes (Cook, 1995). More generally, however, the limiting value of estimators from
Cox regression model and marginal rate-based models are different; we highlight this by explor-
ing the determinants of these limiting values. We consider several particular recurrent event
process models within a broad family, and evaluating the limiting values of estimators from Cox
regression and marginal semiparametric rate-based models (Andersen and Gill, 1982). Clear
interpretation of estimators is of central importance, but clinical researchers and regulators
often make decisions based on the results of hypothesis tests so we also use large sample theory



Zhong Y and Cook RJ 3

to investigate the power implications on tests of the null hypothesis of no treatment effect in
these frameworks. The work is motivated in part by the need for recommendations on the
analysis of recurrent events in clinical trials (Agency, 2019).

The remainder of this article is organized as follows. In Section 2, we describe a general class
of models for generating a censored recurrent event process and review the estimating functions
and large sample theory for the semiparametric Andersen-Gill model (Andersen and Gill, 1982)
and Cox regression Cox, 1972. We describe a framework to study estimands from recurrent
event and Cox analyses in Section 3.1 and consider the limiting behaviour of estimators from
the rate-based analysis and Cox regression for special cases including Poisson process (Section
3.2.1) and mixed Poisson processes (Section 3.2.2). Markov processes are considered in Sections
3.3. In Section 4, we discuss the impact of dependent right-censoring. Illustrative applications
are given in Section 5 and we conclude with a summary of the findings from this work and
make recommendations on the design and analysis of future studies in Section 6.

2 NOTATION AND MODEL FORMULATION

2.1 FORMULATION OF A JOINT RECURRENT EVENT AND CENSORING PROCESS

Let T}, denote the time of the kth event in a recurrent event process and let {N(s),0 < s} be
a right-continuous counting process recording the number of events over time s > 0 so that
dN(t) = 1 if an event occurs at time ¢ and dN () = 0 otherwise. Figure 1 (a) gives a multistate
representation of a recurrent event process with transitions to the right taking place upon event
occurrence. Here, T}, is the entry time to state k and N (t) records the state occupied at time
t > 0. We consider the setting of a clinical trial and so let X denote a fixed covariate vector; in
many of the investigations that follow we let X be a binary scalar variable indicating whether
an individual received the experimental treatment (X = 1) or standard of care (X = 0), but
we present the results for the case that X is a vector in what follows. While they can be useful
when formulating suitable models for life history processes and dynamic path analysis (Aalen
et al., 2008), we do not consider time-dependent covariates here as they do not play a central
role in the assessment of randomized interventions - our focus here.

o —1 |— 2 — 3 |—

R T\

(a) (b)

Figure 1: Multistate models depicting a recurrent event process (panel (a)) and a joint recurrent
event and random censoring process (panel (b)).

We also let U denote an auxiliary scalar covariate with E(U) = 1, var(U) = ¢, and U L X.
Then we let H(t) = {[N(s),0 < s < t], X,U} denote the history of the process which includes
the number and times of events over (0,¢) and the covariates X and U. The intensity function
for the event process is given by

L P(AN() = 1H()
Ao At

—MHH @), t>0), (1)



Semiparametric recurrent event vs time-to-first-event analyses in randomized trials 4

where AN(t) = N(t + At™) — N(t7) records the number of events over [t,t + At) and
lAitIEJ AN(t) = dN(t). The intensity function fully defines the event generating process (Cook

and Lawless, 2007).

In clinical trials failure time responses are subject to administrative and random censoring.
Let A > 0 be an administrative censoring time defined by the dates of accrual and the date the
study will be closed. These administrative censoring times often vary across individuals when
participants are recruited serially over time. Individuals may also withdraw from a study and
we let R denote a random withdrawal time giving C' = min(R, A) as the net censoring time.
Then Y (t) = I(t < C) indicates whether the individual is on study and at risk of failure at
time t > 0. We let dN(t) = Y (t)dN(t) = 1 if an event occurs and is observed at time ¢, with

dN(t) = 0 otherwise. N(t) = fot dN(s) counts the cumulative number of events observed over
(0,t], and AN(t) = N(t + At™) — N(t7).

Figure 1 (b) contains a multistate diagram depicting the joint recurrent event and censoring
process which has a countably infinite set of states recording the number of observed recurrent
events, and an absorbing state entered upon random censoring. We let H(t) = {[Y (s), N(s),0 <
s < t], X, U} be the history of the joint process involving the censored recurrent event process
and the random censoring time. The intensity for the recurrent event process in the context of
this observation scheme is

1 PIAN(E) = 1H(t))
Al At

If the random censoring process is conditionally independent of the recurrent event process
then we can write

= A(t|H(t)) (2)

AtIH(t) = Y (DA HD)) , (3)
and the intensities governing the j — j + 1 transitions in Figure 1 (b) are aligned with those in
Figure 1 (a). This is essential for standard analysis of the data obtained under right-censoring
scheme to yield information about the recurrent event process in the absence of censoring
(Lawless and Cook, 2019).

Likewise we let C®(t) = I(R < t), so the counting process {C*(s),0 < s} records the occur-
rence of random censoring; the counting process for random censoring is itself censored by the
administrative censoring time A. The intensity for the random censoring time, corresponding
to entry to State C in Figure 1 (b), is then

i PECOZIHO) gy i)

where ACE(t) = CF(t + At™) — CE(t7). For parametric or semiparametric likelihood-based
analyses this intensity can be dependent on the cumulative number of events and consistent
results will be obtained for the recurrent event process (Cook et al., 2010). When robust
marginal rate-based analyses are carried out inconsistent estimates will be obtained unless
inverse probability of censoring weights are used. We therefore stress that the term “robust” is
meant to convey robustness of the analysis to misspecification of the recurrent event process;
these robustness properties do not hold when it comes to event-dependent withdrawal.

2.2 LARGE SAMPLE RESULTS FOR SEMIPARAMETRIC REGRESSION FOR RECURRENT EVENTS

Statistical properties of the semiparametric proportional rate function model for recurrent
events was developed by Andersen and Gill (1982) under a “working Poisson process” as-
sumption with a rate function of the form
P(AN(t) =1|X
L P(AN() = 1[X)
AL0 At

= p(t|X) = po(t) exp(BX) , (4)
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where pg(t) is an unspecified baseline rate function and exp(5.X) is a multiplicative term reflect-
ing the effect of the covariate X. Lawless (1987b) gives the partial likelihood and associated
estimating equations for the semiparametric setting and Andersen and Gill (1982) derive the
large sample theory; the semiparametric model (4) is sometimes called the Andersen-Gill model.
Lin et al. (2000) provide a rigorous derivation of the limiting behaviour of estimators with an
emphasis on robust variance estimation.

Consider a sample of n independent individuals where the subscript ¢ labels data from
individual 7, ¢« = 1,...,n. Under the assumptions that censoring is independent and non-
informative (Cook and Lawless, 2007), the log partial likelihood is

Z |0 o pttl X0 0) - e X)) (5)

In the semiparametric setting of (4) we let duo(t) = po(t)dt (t > 0) so that duo(-) can be viewed
as an infinite dimensional parameter. Differentiating the terms in (5) with respect to dug(t) we
obtain the estimating equations

ZY ) {dN;(t) — duo(t) exp(BX:)y =0, 0<t. (6)

The profile Breslow-type estimator dji(t; 8) = dN.(t)/ >, Yi(t) exp(BX;) is the solution
where dN.(t) = >, Yi(t)dN;(t). Differentiating (5) with respect to 8 and replacing dpio(t)
with djig(t; 5) gives the profile partial score equation

n n_ oo ()
v@ =3 v =3 | V0 { % - S5y i =0, (7

where S (3,t) = n 37 Yi(t) exp(BX,) X" with XY = 1, X! = X; and X* = X, X].
The solution to (7) is denoted by B.

If the proportional rate function assumption in (4) is valid and censoring is independent
given X then B is consistent for 8 but more generally it is consistent for 4, the solution to

[{o- i ope i

where s (B,t) = E{S™(B,t)} and s")(t)dt = E{Y (t)X®"dN(t)}, r = 0,1, 2 with the expec-
tation F{ - } taken with respect to the true recurrent event, censoring, and covariate processes
(Andersen and Gill, 1982). Lin et al. (2000) showed that

V(B — B — N (0, A7 (BHBEHA (BN | 9)
where A(8) = E[-0U;(58)/95] and B(8) = E[U;(8)U(B)].

2.3 LARGE SAMPLE RESULTS FOR COX REGRESSION

Let N'(t) = I(Ty < t) indicate that the first event has occurred by time ¢, {N'(s),0 < s}
denote the corresponding counting process, and H!(¢) = {[N'(s),0 < s < ], X, U} denote the
history of the failure process with a fixed covariate X. The hazard for the first event is

1 _ 1
lim P(AN'(t) = 1|H'(t))
ALL0 At

=YY ON(@HH (@), t>0, (10)
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where AN'(t) = N'(t + At7) — N'(¢7) and Y'(¢) = I(t < T}) indicates the first event has not
occurred before time ¢7.

If Y(t) = I(t < C) as before and we let Y (t) = Y(t)Y'(¢), then dN'(t) = Y (t)dN'(t) = 1
indicates that the first event occurs and is observed at time t, with dN'(t) = 0 otherwise.
Then N(t) = fot dN1(s) indicates that the first event has been observed over (0,t] and H'(t) =
{[Y(s), N'(s),0 < s < t], X, U} is the corresponding history. The hazard for the observed event
in the presence of right censoring is then

L PAN'() = 1|7 (#)

lim - = MR ) (1)

where AN'(t) = N'(t + At™) — N'(t7). If censoring is independent of the failure process
given X, M (t|H'(t)) = Y (€)M (¢|H'(¢)) and it is possible to learn about the underlying event
intensity (or hazard) function.

The Cox model involves the further assumption that
Nt (1)) = Mo(t) exp(nXi)

but we point out that the regression coefficient n has a different interpretation than the regres-
sion coefficient 5 in (4). The partial score equation under the Cox model is

n nopoo )
) = YUt = 3 [0 |~ g e =o. (12)

where R (n,t) =n~1 3" Yi(t) exp(nX;) X", The solution to (12) is denoted by 7.
If the proportional rate function assumption in (4) is valid and censoring is independent
then 7 is consistent for n but otherwise it is consistent for n', the solution to

/OOO {r(l)(t) — Mr(o)(t)} dt =0 (13)

r©(n,t)

where O (n,t) = E{R®O(n,t)} and r(t)dt = E{Y (t)X®'dN'(t)}, ¢ = 0,1, 2 with the expec-
tation F{-} taken with respect to the true failure time, censoring, and covariate processes.
Moreover, Lin and Wei (1989) showed that

V(@ —n") = N (0, AT (n")Bi(n") [AT (nD)]) (14)

where A, (n) = E[-0Uii(n)/0n] and Bi(n) = E[Ux(n)Uj;(n)].

In Section 3, we explore the behaviour of the limiting values 37 and 7' by computing
their values in some specific settings within a class of models. The purpose is to contrast the
interpretation of the estimands and give remarks to help guide the selection of target estimands
in the design of clinical trials which we do in Section 6.1.

3 ESTIMANDS FOR SOME PARTICULAR UNDERLYING MODELS

3.1 A FRAMEWORK TO STUDY ESTIMANDS FROM RECURRENT EVENT AND COX ANAL-
YSES

While the general intensity functions were defined in Section 2.1, here we consider a specific
formulation which facilitates the study of particular recurrent event models and censoring
processes in order to discuss the process features which influence the interpretation of estimands
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from standard analyses. We also use this general model to highlight the fact that only in very
special cases are the estimands from a Cox regression model and a recurrent event analysis
the same. We focus on the case here with X a scalar binary indicator of assignment to the
experimental treatment arm versus a control treatment.

We consider a general framework in which U > 0 is a scalar random variable with E(U) = 1,

var(U) = ¢, and (1) has the form
AEN(ET) =k, H(t)) = Me(t) exp(BeX + 11 logU), k=0,1,.... (15)

This general formulation accommodates a conditional intensity with event-dependence by al-
lowing Ak (t) # A\x—1(¢), heterogeneity in the intensity between individuals, and complex effects
of treatment when the regression coefficients vary according to the cumulative number of events.
We next discuss some particular models.

3.1.1 MiXED-PoissoN PROCESSES

Note that with Ag(t) = A\e_1(f), kK = 1,2, ... the baseline intensity is a rate function sometimes
denoted by po(t), and does not depend on the cumulative number of events. If in addition
B =B, k=1,2,..., then there is also a common treatment effect. Under the further restriction
that v; = 0 (or ¢ = 0) this model reduces to a Poisson process (Lawless, 1987b) and if 14 # 0
and ¢ > 0 then a mixed Poisson model is obtained; for a negative binomial process (Lawless,
1987a), we require v; = 1 with U gamma distributed with mean 1 and variance ¢.

3.1.2 RECURRENT EVENTS ARISING FROM MIXED-MARKOV PROCESSES

If y =0 (or ¢ = 0) but \g(t) # Ae_1(t) for £ = 1,..., then a Markov model is obtained;
a common treatment effect arises if 5, = [y, £ = 1,2,...; this model is compatible with
the assumptions of the so-called Prentice-Williams-Peterson analysis which was described in
Prentice et al. (1981) outside of the context of randomized trials. Zhong and Cook (2019) show
that the validity of this model for causal inference in randomized clinical trials hinges on the
assumption that vy = 0 (or ¢ = 0), since if there are any omitted covariates confounding is
induced through this stratification even in the presence of baseline randomization. The most
general model within this framework occurs when A (t) # Ax_1(t) for some k € {1,..., K} and
Br # Br_1 for some k € {1,..., K} and ¢ > 0 with 14 # 0.

3.1.3 PROCESSES INVOLVING DEPENDENT CENSORING

When viewed in the context of the multistate model in Figure 1 (b), we can also consider a
general class of censoring models with intensities of the form

YEIN{E) =k, H(t)) = Y () () exp( X +plogU), k=0,1,..., (16)

where if v (t) = v(t), k = 1,2,..., and v» = 0 then censoring is independent of the recurrent
event process given X. If either y4(t) # 7(t) for some k or vy and v, are non-zero with ¢ > 0,
then the random censoring time is not independent of the recurrent event process. In the
former setting the intensities for censoring in Figure 1 (b) differ depending on the cumulative
number of events observed, while for the latter case the dependence arises from shared time-
fixed attributes; only the latter are at play when analyses are based on the time to the first
event.

The model in (15) is quite general so in order to help in the discussion of particular models
we add some structure. Specifically when baseline intensity functions and covariate effects
depend on the cumulative number of events we suppose:
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(i) Br = bifr—1, k=1,..., and
(ll) )\k(t) = Tk)\k_1<t), k= 1, e

Ifbop =1for k=1,2,..., then the treatment effect is independent of the cumulative number
of events, and if r, = 1 for k = 1,2,..., then we obtain a common conditional baseline rate
function which we may write as \;(t) = po(t), K = 1,2,...,. We consider this setting in Section

3.2. Regarding the censoring intensities we let:

(111) ’}/k(t) = %%-1(15), ]{? = 1, 2, ey

so that if g, = 1 for £ = 1,2, ..., there is no systematic dependence of the censoring rate on
the cumulative number of events; censoring is completely independent if in addition ¢ = 0 or
Vg = 0.

3.2 INVESTIGATIONS UNDER THE PROPORTIONAL RATE MODEL

Suppose [y = [, k = 1,2,... so that there is a common treatment effect, and moreover that
Ae(t) = Me—1(t) = po(t), k = 1,2,... so that the baseline intensity does not depend on the
cumulative number of events.

3.2.1 RELATIVE EFFICIENCY INVESTIGATIONS FOR POISSON PROCESSES

If y =0 or ¢ = 0 then (15) reduces to the intensity for a Poisson process (Lawless, 1987b)
and BT = n' = B so it is reasonable to consider the efficiency gains from an Andersen-Gill
analysis (Andersen and Gill, 1982) over Cox regression (Cox, 1972). Note that because it is
a Poisson process A(3) = B(8) in (9) and we have \/n(3 — 8) — N(0, A"1(8)). Likewise for
the Cox model A;(8) = By(f) in (14) so based on Cox regression \/n(3 — 8) — N(0, A7 (3)).
The asymptotic relative efficiency of the Andersen-Gill versus Cox estimator is defined here as
ARE(B) = A~Y(B)/A;*(B) which will take on values less than 1 representing the improvement
in precision from the Andersen-Gill estimator over the Cox estimator.

We set A = 1 to be a common administrative censoring time and consider a random R; which
is an independent exponential random variable with hazard rate 7o such that P(R; < A) = 0.20
or 0.40 giving a 20% or 40% early withdrawal rate over the course of the study. We let
X; ~ Bern(0.5) and set py(t) = po for a time homogeneous rate and let 5 = log 0.75 or log 0.50
to correspond to a 25% or 50% reduction in the rate of events with treatment. Figure 2 contains
a plot of the ARE where the horizontal axis is the expected number of events in the control arm
by the administrative censoring time (i.e. E{N(A)|X = 0}) with values ranging from 0.5 to 5.
Different lines are plotted for the 20% and 40% early withdrawal rate and for the two different
values of . It is apparent that the Andersen-Gill analysis yields a more efficient estimator of
treatment effect compared to Cox analysis based on the time to first event, with the efficiency
gain becoming quite substantial as the expected number of events increases. Moreover, for a
given point on the horizontal axis the efficiency gain from an Andersen-Gill analysis becomes
attenuated as the magnitude of the treatment effect increases and as the censoring rate increases;
theses have the effect of decreasing the total expected number of observed events in the trial.

3.2.2 INVESTIGATIONS UNDER MIXED POISSON PROCESSES

If v, =1 and ¢ > 0 a mixed Poisson process is obtained; furthermore if U is gamma distributed
then a negative binomial process is obtained (Lawless, 1987a). Here 37 = 3 but 5 # 7 since



Zhong Y and Cook RJ 9

1.0
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0.2

E{N(A)|X=0}

Figure 2: The asymptotic relative efficiency (ARE) for an estimator from an Andersen-Gill
analysis versus a Cox analysis for different independent random censoring rates (20% and 40%)
and treatment effects (exp(f8) = 0.75 and 0.50) as a function of E{N(A)|X = 0}.

the Cox model is misspecified, and § # n the two analyses have incompatible estimands. Since
X L U due to randomization the survivor function for 71|X = z is

P(Ty >t|X =2)=P(N(t) =0|X =x) = /OO P(N(t) =0|X =2,U = u)dG(u) .

If U is gamma distributed then this is given by

o u?” exp(—u/@) _ 1 .
]—“(t|x)—/0 exp(—up(t|r)) T(¢—1)go d“_(m) ’

where p(t|z) = fot po(s)dsexp(fBx) = po(t) exp(Bz) is the mean function for the recurrent event
process and pi(t) is the baseline mean function. The cumulative hazard function is H (t|x) =
—log F(t|z) = ¢~ log(1 + guo(t) exp(Bz)), the hazard function is h(t|z) = po(t) exp(Bz)/(1 +
opo(t) exp(Bz)), and the hazard ratio is

h(tle =1) _ po(t)e”/(1 + duo(t)e”) _ { L+ dpuo(t)

h(tle =0)  po(t)/(1 + duo(t)) 1+ dpo(t)e”

which is a function of time unless f = 0 or we are in the setting of Section 3.2.1 where ¢ = 0.
As a result the Cox model is misspecified and we rely on the results of Struthers and Kalbfleisch
(1986) and Lin and Wei (1989) to determine the limiting value n' via (13). As noted by Wu
and Cook (2012) and Rufibach (2019) when a failure time model is misspecified the limiting
value will depend on the censoring distribution. We next explore the other determinants of the
limiting value of the estimator from the Cox model.

Without loss of generality we set A =1 and let 5 = log0.5. Figure 3 (a) contains plots of
the limiting value of the Cox model estimator ' against the variance of the random effect ¢

} exp(f) |
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with independent random censoring with a 40% probability of early withdrawal for pu(A|X =
0) = 0.5, 1, 2 and 4. To help understand the role of random censoring in determining the
limiting value of the estimator, we display the probability of observing the first event by the
administrative censoring time by evaluating the cumulative incidence function for the first event
at time A when treating random censoring as a competing event; this probability is displayed
in Figure 3 (b) as a function of the expected number of events and the extent of extra-Poisson
variation. The plots in Figure 3 (a) show how the estimands for the treatment effect under the
Cox model become more attenuated the greater the extra-Poisson variation, with the extent of
attenuation greater when the event rate is bigger and the effective censoring rates are lower.

N =
3 g2 -
! — W(AJX=0)=0.5 L — W(AjX=0)=0.5
© o= u(AIX=0) = 1.0 @ o= u(AIX=0) = 1.0
S W(A|X=0) = 2.0 o W(A|X=0) = 2.0
- W(AX=0) = 4.0 g = _ T - u(AIX=0) = 4.0
—~ >
=3 i
s g
I w L ©
> oI - O S
g =
= 2
s 3 4 2
30T e}
S < |
~ g o
S g
© E \
3 2«
o s —
! T T T T T 3° 5 T T T T
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
o o

Figure 3: The limiting value of regression coefficient from a Cox regression model when the
data are generated by a mixed Poisson process considering different degrees of extra-Poisson
variation reflected by ¢, different expected number of events by the administrative censoring
time in the control arm (u(A|X = 0)) (panel (a)) and the cumulative probability that the first
event is observed (panel (b)).

Wald tests can be carried out based on estimates from the Andersen-Gill and Cox models —
the power of these tests are affected by both the limiting values and the asymptotic variances
of the respective estimators. While Wald tests are most appropriate when based on estimators
with a clear interpretation, hypothesis testing is a core part of evaluating an experimental
intervention, and tests for effects in superiority trials are often prescribed in a protocol before
any data are available and model assumptions can be assessed. In general, however, the null
hypothesis of no treatment effect will be rejected based on a Wald test at a rate compatible
with the nominal level, provided it is based on robust variance estimates (Boher and Cook,
2006). Finally, while we consider Wald-based tests, these will have frequency properties similar
to the analogous pseudo-score tests routinely applied.

Consider Wald tests for the parameter of interest, £, which we used to represent S under
the Andersen-Gill model and 1 under the Cox model. If the null hypothesis is Hy : £ = 0 and
the alternative is Hy : £ # 0, then the “asymptotic” power of the Wald tests at significance
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level w for samples of size m can be calculated as

power = P (’5/\/ asvarg(€) HA)

. zw/gy/asvaro(é) —/mét o —Zw/2\/ asvarg(€) — /m &l an
\/asvar 4 (€) asvar 4(§) |

where asvarg(€) and asvar,(€) are the asymptotic variances of the estimates under the null
and alternative hypothesis, which can be evaluated by (9) under the Andersen-Gill model and
by (14) under the Cox model, respectively. Moreover, ' is the limiting value of & which we
have denoted by BT or n' under the Andersen-Gill or Cox regression models, respectively. We
therefore evaluate the relative power of Andersen-Gill and Cox regression analyses by plotting
the power curves based on Wald tests using the asymptotic variance formula for samples of
size m where m is determined to give 80% power to detect a 25% or 50% reduction in the risk
of events with E{N(A)|X = 0} = 2 and ¢ = 2. Figure 4 shows that when the true value of
treatment effect is the same as the one we used to determine the sample size, the power of Wald
tests under the Andersen-Gill analysis with robust variance estimates can achieve the desired
80% power. Naturally as the treatment effect decreases, the power decreases for both analyses
but the power of the Wald tests based on the Andersen-Gill model is always bigger than the
corresponding test under the Cox model. The power of Wald test under the Andersen-Gill
model with a naive variance estimate is greater than the tests based on the other analyses
because it under-estimates the variation in the data and hence features an inflated type I error
rate; robust variance estimation is therefore recommended for analyses based on rate functions.

> Zw/Q

3.3 RECURRENT EVENTS ARISING FROM MARKOV MODELS
3.3.1 LIMITING VALUE OF THE ESTIMATOR FROM AN ANDERSEN-GILL MODEL

If Ap(t) # Ap_1(t) for some k =1,..., but 5 = g for k = 1,2, ..., when v; = 0, then a Markov
model is obtained with a common treatment effect. We let r, = e*, for k = 0,..., K + 1 so
that the occurrence of each event increases the baseline rate of the next event up until the
(K +1)st event and set r, = 1 for k = K +2,..., K,, so that the risk does not increase beyond
the (K + 1)st event. We consider a maximum number of recurrent events of K,,, so data are
generated based on the multistate model with state 0 and K, event states; we choose K, to
be sufficiently large that the probability of entering the absorbing state K, over the planned
period of observation is close to zero.

Time-homogeneous transition intensities are obtained by letting Ag(¢) = po. We let Q denote
the (K, +1) x (K,, + 1) transition intensity matrix with (4, j) entries —\;_1, (j,j + 1) entries
Aj_1 above the diagonal, and all other entries zero. The Chapman-Kolmogorov equations then
give,

P(s,s +t|X = 0) = exp(Qt) , (18)

where P(s,s 4+ t|X = 0) = P(0,¢|X = 0) and P;(0,t|X = 0) = P(N(¢t) =[|N(0) = j, X = 0)
(Cox and Miller, 1965). Here, nf = n = 3 but 57 # 3 since the Andersen-Gill model ignores
the state-dependent transition intensity; the Cox model for the time to the first event is still
valid.

We let o = log 1.2 so there is a 20% increase in the risk of an event each time an event
occurs up to K =5, and let K,,, = 20. We focus on 8 = log0.5 and log 0.75, and consider 20%
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Figure 4: Power of Wald tests under Andersen-Gill and Cox regression models for samples
of size m to give 80% power to detect a 25% or 50% reduction in the risk of events with
E{N(A)|X =0} = 2 and ¢ = 2 under a gamma-Poisson (negative binomial) data generating
process.

and 40% early withdrawal. We determine pg so that p(A|X = 0) = 0.5,1,2 and 4, where
u(t|X =0) = Zk P(N(t) = k|N(0) = 0, X = 0) (19)

is the expected number of events at time t given X = 0. Figure 5 shows the limiting bias of the
Andersen-Gill model estimator 87 against the increase in risk of event each time (i.e. exp(a)).
The lines illustrate how the estimands of the treatment effect of the Andersen-Gill model varies
as a function of the increase of transition intensity each time an event occurs, the expected
number of events in the control arm, treatment effect and the censoring rate. The magnitude
of asymptotic bias of the estimates from the Andersen-Gill analysis increase when exp(«) is
far from 1 and the expected number of event increases. This is worse when the magnitude of
treatment effect is large.

3.3.2 POwWER CONSIDERATIONS

We also consider the power of Wald tests based on Andersen-Gill and Cox regression analyses
when the events follow a Markov process by plotting the power curves based on Wald tests
using asymptotic variance formula for samples of size m to give 80% power to detect a 25% or
50% reduction in the risk of events with F{N(A)|X = 0} = 2 under the mixed Poisson model.
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Figure 5: The limiting bias of regression coefficient from Andersen-Gill model as a function of
the increase of transition intensity when the data are generated by a Markov process considering
different expected number of events in the control arm (u(A|X = 0)), treatment effect and early
withdrawal rates.

Figure 6 shows that although the Andersen-Gill model ignores the state-dependent transition
intensity the robust variance ensures it yields valid tests of the null hypothesis of no treatment
effect in the sense that the type I error rate is compatible with the nominal 5% level. Although
Cox regression gives a consistent estimate of the treatment effect, its asymptotic variance is
quite large compared to the robust variance under the Andersen-Gill model, so the power of
Cox regression analysis is less than that of Andersen-Gill analysis.

4  IMPLICATIONS OF DEPENDENT CENSORING

Event-dependent censoring is at higher risk of occurring in settings with recurrent event out-
comes since event occurrence can influence the way physicians treat patients, and certain kinds
of treatment changes may lead to study withdrawal. Strategies for dealing with dependent
censoring include joint modeling of the censoring and event processes through shared or cor-
related frailty parameters (Cook et al., 2010), joint multistate modeling (Cook et al., 2009),
or use of inverse probability of censoring weights (Cook et al., 2009). Ghosh and Lin (2003)
alternatively considered scale-change models for the event and dependent censoring processes,
and leave the dependence structure unspecified. Artificial censoring was considered in their
paper as another approach to mitigate bias arising from dependent censoring, this method had
also been extended by Hsieh et al. (2011). The purpose here is not to explore how such methods
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Figure 6: Power of Wald tests under Andersen-Gill and Cox regression models when events
follow a Markov process; samples of size m is determined by giving 80% power to detect a 25%
or 50% reduction in the risk of events with E{N(A)|X = 0} = 2 under mixed Poisson model.

can improve estimators but rather to investigate how dependent censoring may influence the
limiting values of estimators arising from mixed Poisson and Markov processes.

4.1 MIXED PoissoN MODEL AND CORRELATED RANDOM EFFECTS

Here, we introduce a slightly more general formulation to facilitate a discussion about dependent
censoring. We relabel the mean 1 gamma distributed random effect U in (15) as U; and denote
its variance by ¢; and we set vy = 1. We also relabel the mean 1 random effect U in (16) as
U, and denote its variance by ¢, and we set v = 1. We assume that given the random terms
U, and Us, the recurrent event process and the censoring process is conditionally independent,
and the recurrent event process given the random term U; is a Poisson process with rate
Ui A(t) exp(BX), while the random censoring has conditional intensity Uyy(t)exp(¢X). Here,
we consider time non-homogeneous processes with A(f) = \lk "~ and (t) = y"2kqt™2 L.
We then use a Clayton copula to induce a dependence between the random terms U; and U,
indexed by parameter # so the joint cumulative distribution function for (Uy, Us) is

Fuy,uz) = (Fy%(uys 1) + Fy P(ug 3 ¢0) — 1)71°

where Fi(ug;¢1) and Fy(ug;¢2) are the marginal cumulative distribution function for U; and
Us, respectively. The strength of the association between U; and U, is reflected by Kendall’s 7
defined in terms of 6 as 7 = 6/(0 + 2) (Nelson, 2006).
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When ¢ = 0, even when {N(s),0 < s} and R are associated because Kendall’s 7 # 0, fitting
the Andersen-Gill model yields a consistent estimate of the treatment effect (ie. ST = 3).
Note, however, that g # 3 if ( # 0 and Kendall’s 7 # 0. The estimator from a Cox regression
analysis is also inconsistent in general for reasons discussed in Section 3.2.2 but the dependent
censoring changes the limiting value. Figure 7 shows the limiting value of the estimators from
an Andersen-Gill model and Cox model as a function of Kendall’s 7. We set the expected
number of events in the control group to be u(A|X =0) =2, § =1og0.75 and set the random
censoring rate to give 20% early withdrawal. As noted above when ¢ = 0, the Andersen-Gill
model gives consistent estimate of the treatment effect, but it leads to biased estimates when
¢ = log 1.5 and when the censoring process and event process are dependent. The bias increases
with the strength of the dependence between these two processes. Interestingly, while the values
of k1 and ko influence the properties of the estimators of the baseline rate or hazard functions,
they do not impact the limiting value of the regression coefficients from the Andersen-Gill or
Cox analyses. The Cox regression analyses gives inconsistent estimate of the treatment effect,
but the bias becomes smaller as the dependence between the event and censoring processes
increases; and the bias is bigger when ¢ = log 1.5 compared with those when ( = 0 under the
Cox model.
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Figure 7: Limiting value of estimators from the Andersen-Gill and Cox models under dependent
censoring with events generated according to a mixed Poisson process

4.2 MARKOV MODELS WITH STATE-DEPENDENT CENSORING PROCESS

We now consider another scenario where the dependent censoring arise because its intensity
depends on the previous cumulative number of events, that is, event-dependent censoring. Let
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the event process is a Markov process with transition intensity Ay (¢) from state k to state k+1,
Me(t) = MEIN(t7) =k, H(t)) = \pexp(BX). We consider \; = exp(ka) for k=0,1,..., K +1
and then A\, = exp((K+2)a) for k = K+2,..., K,,; we consider K = 5, K,,, = 20. The intensity
for censoring process from state k to a censoring state is y(t|N(t7) = k, H(t)) = Y (t)709*, where
g reflects the increase of risk of censoring when the cumulative number of events increase.
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Figure 8: Limiting bias of estimators under Andersen-Gill model as a function of exp(a) when
the event process is a Markov process

When the censoring intensity depends on the cumulative number of events, the conditionally
independent censoring assumption required for the Andersen-Gill model is not satisfied, but
the estimator from the Cox regression analysis is consistent since this form of event dependent
censoring is not manifest before the first event. We derive the limiting value of estimators
under the Andersen-Gill model and study the limiting behavior of estimates from both models.
Figure 8 illustrates the limiting bias under an Andersen-Gill model as a function of exp(a),
the parameter that reflects the increase in risk upon the occurrence of each event. This trend
is given for different values of the mean number of events in the control arm (u(A|X = 0)),
treatment effects given by g = log0.75 and log0.5, and different early withdrawal rates for
both independent (¢ = 1.0) add dependent (g = 1.2) censoring. We see that as exp(«) becomes
further from 1, the magnitude of the limiting bias of the Andersen-Gill estimator increases
under dependent and independent censoring. When the expected number of events or the mag-
nitude of treatment effect increase, the asymptotic biases increase. When the censoring process
and event process are associated the bias is slightly smaller when exp(a) > 1.2; this arises
because the effective censoring rate is higher and less information (to be used inappropriately)
is provided by each individual. The two panels of Figure 9 show the asymptotic variance of es-
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timators under the Andersen-Gill and Cox analyses as a function of exp(«) in the same setting
but for 5 = log0.75 and the early withdrawal rate is 20%. We see that when « increases and
the expected number of events decreases, the variance of estimates increase. When the censor-
ing process depends on the cumulative number of events (¢ = 1.2), the asymptotic variance of
estimators is getting smaller. Also the asymptotic variance of estimators under Andersen-Gill
model is smaller than those under Cox model when exp(a) < 1.4.
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Figure 9: Asymptotic variance of estimators under Andersen-Gill model and Cox model as a
function of exp(«) when the event process is a Markov process

In the Supplementary Material, we report additional results for estimators from the marginal
rate-based analysis when the true data generating process is Markov and censoring is state-
dependent. There we find that the limiting bias is larger when the expected number of events
is greater; the asymptotic bias is also sensitive to size of the treatment effect and relatively
insensitive to event-dependent censoring for the modest range of dependence values (g) we
consider for the censoring intensity; see Figure S.1. The impact of asymptotic variance of these
estimators and the power of tests are also considered with the curves given in Figure S.2 and
Figure S.3, respectively.

5 ILLUSTRATIVE APPLICATIONS

5.1 ANALYSIS OF RECURRENT EXACERBATIONS IN CYSTIC FIBROSIS

Cystic fibrosis is a respiratory disease with airway obstruction caused by the accumulation of
mucus in the lungs due to extracellular DNA; this results in recurrent pulmonary exacerbations.
When delivered to the lungs in an aerosolized form, a highly purified recombinant form of
DNase I called rhDNase cuts extracellular DNA, reducing the viscoelasticity of airway secretions
and improving clearance. In a randomized double-blind trial reported by Fuchs et al. (1994),
321 individuals were assigned to receive rhDNase and 324 were assigned to receive a placebo
treatment. The primary purpose of this study was to investigate the effect of rhDNase on the
suppression of exacerbations so to this end the onset times of exacerbations were recorded over
the study period of approximately 169 days. In the control arm 139 individuals had at least
one exacerbation, 42 had at least two exacerbations, and 18 had at least three exacerbations;
in the rhDNase arm these numbers were 104, 39 and 9, respectively. This study was reported
on in Therneau and Hamilton (1997) and the data are available at the website for Cook and
Lawless (2007).
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Figure 10: Nelson-Aalen estimates of the mean function for recurrent events and Kaplan-Meier
estimates of cumulative probability function for the time to first exacerbations in the rhDNase
trial by Fuchs et al. (1994).

Table 1: Estimates of treatment effects using the Andersen-Gill, partially conditional (stratified
Andersen-Gill), and semiparametric negative binomial model for the recurrent events along with
a Cox model for the time-to-first-event for the cystic fibrosis study reported by Fuchs et al.
(1994).

EST RR  S.E. p-value 0]

rhDNase in Cystic Fibrosis

Andersen-Gill Model -0.271 0.763 0.124 0.029 -
Partially Conditional Rate Model -0.234 0.791 0.108 0.030 -
Semiparamertric Negative Binomial -0.271 0.763 0.125 0.030 0.67
Cox Model -0.365 0.694 0.130 0.005 -

Figure 10 (a) gives plots of the Nelson-Aalen estimates of the mean functions for the rhDNase
and control arms while Figure 10 (b) gives plots of the Kaplan-Meier estimates of the cumulative
probability function for the time to first exacerbation. Table 1 gives the summary statistics
from fitting the Andersen-Gill model, the stratified Andersen-Gill model, a semiparametric
mixed Poisson model with a gamma frailty, and a Cox regression model for the time to the
first exacerbation; the variance ¢ of the random effect is estimated as ¢ = 0.67. The point
estimates from the Andersen-Gill and semiparametric negative binomial analyses are identical,
and the corresponding standard errors are very close, differing only in the third decimal place.
When fitting stratified Andersen-Gill model, k£ + 1 time-dependent strata were defined based
on no events (N;(t7) = 0), 1 event (N;(t7) = 1), 2 events (V;(t~) = 2), upto k — 1 events
(N;(t7) = k—1), and then > k events (NV;(t~) > k). Since few people experienced more than 3
events, we set k = 3 and consider 4 time-dependent strata. The stratified Andersen-Gill model
yields smaller evidence of a treatment benefit with a relative rate of 0.791 compared to 0.763
obtained from the Andersen-Gill and negative binomial analyses, and the standard error is also
smaller since conditioning on the cumulative number of events explains some of the variation.
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This analysis is not recommended however, with the limitations discussed in Zhong and Cook
(2019). The Cox model yields a point estimate yielding a hazard ratio of 0.694 and with an
only slightly larger standard error of 0.130 it gives a p—value for the test of no treatment effect
at 0.005 which is smaller than those of the recurrent event analyses.

5.2 A CARCINOGENICITY EXPERIMENT INVOLVING MAMMARY TUMOURS IN RATS

Here, we consider data from a carcinogenicity experiment on the times to the development of
mammary tumours in 48 female rats (Gail et al., 1980). All rats were exposed to a carcinogen
following which they were assigned to one of two groups; 23 and 25 rats were randomized to the
treatment and control groups, respectively. Rats were examined every 2 to 3 days during the
122 day follow-up period, and the days on which new tumours were discovered were recorded.
The main objective of this study is to compare the onset rate of tumours in rats assigned to the
treatment and control groups to assess the prophylatic nature of the treatment under study. In
the control group all rats developed at least one tumour, 21 developed at least two tumours,
and 9 rats developed more than 7 tumours; in the treatment arm 21 rats had at least one
tumour, 14 rats had at least two tumours, and no rat developed more than 7 tumours.
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Figure 11: Nelson-Aalen estimates of the mean function for recurrent tumours and Kaplan-
Meier estimates of cumulative probability function for the time to first tumour development
using data from carcinogenicity study of Gail et al. (1980).

Figure 11 give plots of the Nelson-Aalen estimates of the mean functions and Kaplan-Meier
estimates of the cumulative probability function for the time that the first tumour for the
treatment and control rats, respectively. Table 2 gives the summary statistics from fitting
the Andersen-Gill model, the stratified Andersen-Gill model with 8 strata, a semiparametric
mixed Poisson model with a gamma frailty, and a Cox regression model for the time to the first
tumour development; the variance ¢ of the random effect is estimated to be much lower here at
¢ = 0.27. The point estimates from the Andersen-Gill and semiparametric negative binomial
analyses are again identical at -0.816 giving a relative rate of 0.442, with the corresponding
standard error slightly smaller for the Andersen-Gill analysis. The stratified Andersen-Gill
model again yielded a more conservative estimate of the treatment effect with a point estimate
of -0.535; the smaller standard error was again evident but we reiterate that this analysis is
not recommended. The Cox model gives an intermediate estimate of treatment benefit with
the point estimate of the hazard ratio given as 0.503.
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Table 2: Estimates of treatment effects using the Andersen-Gill, partially conditional (stratified
Andersen-Gill), and semiparametric negative binomial model for the recurrent events along with
a Cox model for the time-to-first-event for carcinogenicity study of Gail et al. (1980).

6

6.1

EST RR S.E. p-value 1)

Tumour onset in rats (Gail et al., 1980)

Andersen-Gill Model -0.816 0.442 0.198 <0.001 -
Partially Conditional Rate Model -0.535 0.586 0.133 <0.001 -
Semiparametric Negative Binomial -0.816 0.442 0.211 <0.001 0.27
Cox Model -0.686 0.503 0.312 0.028 -

REMARKS AND DISCUSSION

SUMMARY REMARKS

Here we make some summary remarks on the findings of the asymptotic findings and simulation
studies we report on here, and provide some additional guiding comments.

1.

If data are generated according to a Poisson process then the Andersen-Gill model will yield
a more efficient estimator of the multiplicative treatment effect. Section 3.2.1, Figure 2

. Within the class of data generating mixed Poisson models, estimands corresponding to a Cox

model and Andersen-Gill model are in general incompatible with the differences influenced
by the extent of heterogeneity and the expected number of events. Section 3.2.2, Figure 3

. If the mean function specification is valid, robust variance estimates are needed for valid

inference with the Andersen-Gill model. Section 3.2.2, Figure 4

Robust methods based on rate functions are robust in the sense that only the functional
form of the marginal mean function must be correct for valid inference. With random
censoring however, consistent estimators are only obtained if censoring is independent given
the covariates controlled for in the rate function model. Section 3.3

. If there is an event-dependence in the rate function as characterized by the Markov model

of Section 3.3.1, the estimand from a multiplicative rate function model can be conservative
or anticonservative depending on the expected number of events, and whether the event
rate increases or decreases with event occurrence. Section 3.3.1, Figure 5

. Within the class of mixed Poisson models the Andersen-Gill model will tend to lead to more

powerful tests of treatment effects compared to a Cox model; more generally this may not
be true if the treatment simply affects the risk of the first event. Figure 4

If the censoring intensity depends on the treatment arm and there is an association between
the censoring and the recurrent event processes, biased estimates will be obtained from the
Andersen-Gill analysis. Section 4

. Inverse probability of censoring weights can be used to mitigate the bias arising from some

forms of dependent censoring. (Cook et al., 2009)
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9. Issues involving recurrent events and dependent terminal events are much more challenging
to deal with and causal inference may best be carried out using utility-based analyses rather
than hazard or intensity-based analyses.

6.2 DISCUSSION

Discussions in the pharmaceutical industry and among regulatory agencies continue about
the merit and limitations of recurrent event analyses. Central to these discussions are the
interpretation of estimands in the various approaches to recurrent event analysis, the robustness
of inferences to different kinds of complications that may arise, and the power of competing
analyses. Semiparametric analyses based on partially specified models are appealing in their
robustness to misspecification of the data generating process for the recurrent events, but
they are at risk of biases from event-dependent withdrawal or censoring. Likelihood or partial
likelihood analysis based on mixed Poisson models are insensitive to event-dependent censoring
but these do require full models assumptions; the inferences regarding multiplicative treatment
effects appear relatively robust to misspecification of the mixing distribution so these remain a
viable approach to analysis. In fact mixed Poisson models offer a natural basis for the design
of clinical trials based on recurrent events.

We have highlighted the fact that the rate-based recurrent event modeling framework is
generally incompatible with the Cox regression model routinely applied in analyses of the
time to the first event. When the recurrent events are generated by a Poisson process then
multiplicative rate based analyses and the Cox model yield estimates which are consistent for the
same estimand and the former will be more efficient in general. However, there is typically extra-
Poisson variation which will mean the corresponding estimands differ and the interpretations
of findings are therefore different. In terms of power, no single method consistently dominates
and our illustrative analyses show that Cox regression may lead to smaller or larger p—values
than recurrent event analyses in any given setting.

A variety of methods can be used to assess the appropriateness of the multiplicative rate or
hazard function assumptions in recurrent event and time to first event analyses. Nelson-Aalen
estimates (Cook and Lawless, 2007) of the cumulative baseline mean or hazard functions can
be plotted, which should be roughly proportional to one another across the two treatment
groups. To check the functional form of treatment effects Schoenfeld residual (Therneau and
Grambsch, 2000) plots can also be examined; while we have not emphasized general regression
modeling here these plots are perhaps most useful for assessing effects of continuous covari-
ates. Finally model expansion is sufficiently straightforward with modern software that fitting
expanded models and carrying out tests of the need for such model expansion is straightfor-
ward. Diagnostics regarding the assumption of independent censoring are less developed, but
by formulating multistate models such the one depicted in Figure 1 (b), plots of Nelson-Aalen
estimates of the cumulative j — C' transition rates can be inspected (Cook et al., 2009); these
estimates should have comparable slopes if censoring is truly independent of event occurrence.
If there is evidence to suggest dependent censoring joint models for the event and censoring
processes via frailty (Cook et al., 2010; Wang et al., 2001), or inverse probability of censoring
weights (Cook et al., 2009; Miloslavsky et al., 2004) can be adopted. Robust methods based
on scale-change models and using artificial censoring to remove bias have also been developed
(Ghosh and Lin, 2003; Hsieh et al., 2011).

A quite different and considerably great challenge arises when a recurrent event process is
terminated by another event. Examples are ubiquitous and include the analysis of recurrent
graft rejection episodes in transplantation studies where episodes are terminated by total graft
rejection, recurrent metastases in patients with advanced cancer where the metastatic process
is terminated by death, and recurrent exacerbations in chronic obstructive pulmonary disease
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in elderly patients at risk of terminating event of death. Important work on semiparametric
analysis of data from such processes has taken place over the past 20 years including Ghosh and
Lin (2000) and Ding et al. (2009) among others. Causal inference in this setting is particularly
challenging but building on the increasing popularity of tests based on restricted mean lifetimes,
utility-based analyses offer a promising avenue for development in this setting. These challenges
are beyond the scope of the present work, where we focus on the performance of common
estimators of treatment effects in randomized trials.

Much of the work of the Estimands Working Group in the survival setting has been directed
at the development of methodology for time to event analyses when the proportional hazards
assumption is violated (Akacha et al., 2017; Rufibach, 2019) where weighted log-rank tests
(Leén et al., 2020) have received considerable attention for use on their own or as part of
supremum-based tests. Estimates with a simple causal interpretation are of course a priority
following rejection of a null hypothesis of no difference; see Fay et al. (2018). Two degree of
freedom tests accommodating more general departures from the null hypothesis of common
hazards have been developed for the failure time setting and analogous generalizations are
possible for recurrent events (Cook et al., 1996).
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Summary

Here we report on the results of additional calculations related to the limiting value of
estimators from rate based analysis when the true data generating process is a Markov
process. We consider cases with state-dependent censoring.

1 MARKOV MODELS AND EVENT-DEPENDENT CENSORING

1.1 LIMITING VALUES AND ASYMPTOTIC VARIANCES OF RATE-BASED AND COX REGRES-
SION

Here we consider the limiting bias of the Andersen-Gill model as a function of g where if g # 1,
the censoring process depends on the event process. We consider different expected number of
events in the control arm, different treatment effects, and different rates of early withdrawal.
From the plots in Figure S.1 we see that the asymptotic biases are smaller for larger values of g,
and that the asymptotic biases are larger when the expected number of events and treatment
effects are larger. Figure S.2 illustrate the asymptotic variance of estimators under Andersen-
Gill model and Cox model as a function of g when the event is Markov process with a = log 1.2,
£ =1og0.75 and the early withdrawal rate is 20%. We see here that when the expected number
of events increase or when ¢ increases, the asymptotic variance decreases for both methods.
As before the variance of the respective estimator is larger under the Cox model compared to
Andersen-Gill model.
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Figure S.1: Limiting bias of estimators under Andersen-Gill model as a function of g when the
event process is a Markov process (« = log 1.2) and the intensity function for censoring process
depends on the cumulative number of events
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Figure S.2: Asymptotic variance of estimators under Andersen-Gill model and Cox model as
a function of g when the event process is a Markov process (o = log1.2) and the intensity
function for censoring process depends on the cumulative number of events
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1.2 POWER IMPLICATIONS

The limiting value and the asymptotic variances play a role in Wald tests of the hypotheses
Hy : 8 =0 versus Hy : 8 # 0. We therefore now consider the effect of event-dependent
censoring on the power of tests of treatment effects under Markov models for g = 1.0 and 1.5.
The sample size is determined to give 80% power to detect treatment effect under Andersen-Gill
model or Cox model when the significance level is 0.05 and 54 = log0.75 when the censoring
process is taken to be independent of the event process (i.e. g = 1.0). For this sample size
calculation we first obtain the limiting value ' when 3 = log0.75 under the Markov models
with independent censoring and then obtain the corresponding asymptotic variance. Figure
S.3 shows the power of no treatment effect test under Andersen-Gill and Cox models when the
event process is Markov process and the censoring process possibly depends on the cumulative
number of events (i.e. the censoring intensity is state-dependent). The top two plots are based
on the sample size derived from the Andersen-Gill model when the data generation is based
on a Markov process with independent censoring while the bottom two plots are based on
the sample size obtained under a Cox model for the time to the first event under the Markov
process with independent censoring. From this plot we see that within the framework of the
Cox model the power is unaffected by the relation between the censoring and event processes;
this is natural since state-dependent censoring is not manifest until the first event is observed
and this is the failure time in this analysis. Although Cox analyses give consistent estimate
in this setting, the power is smaller for Cox analysis compared with the analysis based on the

Andersen-Gill model.
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Figure S.3: Power of test under Andersen-Gill model and Cox model as a function of exp(3)
when the event process is a Markov process (« = log 1.5) and the intensity function for censoring
process depends on the cumulative number of events (top two plots are based on the sample
size obtained from Andersen-Gill model for Markov process with independent censoring and
bottom two plots are based on the sample size derived from Cox model for Markov process
with independent censoring)



