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Abstract

To combat the increasing data dimensionality, parsimonious modelling for finite mixture

models has risen to be an active research area. These modelling frameworks offer various

constraints that can reduce the number of free parameters in a finite mixture model.

However, the constraint selection process is not always clear to the user. Moreover, the

relationship between the chosen constraint and the data set is often left unexplained. Such

issues affect adversely the interpretability of the fitted model. That is, one may end up

with a model with reduced number of free parameters, but how it was selected, and what

the parameter-reducing constraints mean, remain mysterious.

Over-estimation of the mixture component count is another way in which the model

interpretability may suffer. When the individual components of a mixture model fail to

capture adequately the underlying clusters of a data set, the model may compensate by

introducing extra components, thereby representing a single cluster with multiple compo-

nents. This reality challenges the common assumption that a single component represents

a cluster.

Addressing the interpretability-related issues can improve the informativeness of model-

based clustering, thereby better assisting the user during the exploratory analysis and/or

data segmentation step.
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Chapter 1

Introduction

Clustering frameworks attempt to construct heterogeneous groups in a sample without

prior knowledge on the group membership status of observations within. One such exam-

ple is model-based clustering, based on �nite mixture models, which aims to represent the

data set using a convex combination of probability mass (or density) functions (Wolfe,

1963). Thanks to its ubiquity, model-based clustering has advanced in numerous fronts.

McLachlan and Peel (2004); McNicholas (2016) provide an overview on some modern de-

velopments in the �eld.

The nature of clustering is often exploratory, where the investigator may be conducting

a more `hands-on' type of analysis. This means that the method's capability in informing

the user, in addition to the quality of its �t on the sample, is important. Mixture model

interpretability concerns the above notion at large. One may draw a parellel between inter-

pretability and happiness; because of their nebulous de�nitions, we are unable to measure

them directly. Instead, we study their proxy measures. For example, happiness could be

measured approximately via one's wealth, work-life balance, number of friends, and so on.

Similarly, model interpretability can be approached from various angles.

This collection of work contributes to interpretability of model-based clustering meth-

ods through penalization, dimensionality reduction, and merging/combining of mixture

components. Penalization aims to suppress signals from less important variables while
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emphasizing that from more important ones. Such favouring is often manifested through

sparser parameter estimates, which reduces the number of variables (and associations be-

tween them) warranting the user's attention. Dimensionality reduction combines original

set of variables into a smaller set, so that the sample may exhibit better-separated groups.

Mixture component merging and combining aim to collect su�ciently similar (based on

a carefully chosen measure) components into a single group, so that a simpler grouping

structure may be discovered from the sample.

The remainder of this thesis is organized as follows. Chapter 2 outlines some founda-

tional concepts that appear throughout the thesis. Chapters 3 and 4 introduce a penaliza-

tion framework for matrix-variate parameters and its applications. Chapter 5 introduces a

hypothesis test-based method of estimating an adequate number of dimensions for projec-

tion. Chapter 6 introduces a novel mixture regression model with a component combining

procedure for identifying simpler response-covariate relationships. Chapters 7 and 8 focus

on mode-based component merging for various families of non-Gaussian �nite mixtures.

We then conclude with a brief summary in chapter 9.
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Chapter 2

Background

2.1 Finite Mixture Models

A �nite mixture model is a probabilistic model de�ned by a convex combination of �nitely

many probability mass or density functions, abbreviated by pmf and pdf respectively. Each

pmf or pdf is referred to as a component, and the components are usually of the same family

of distributions. Denote byf the pmf or pdf of ap-dimensionalG-component �nite mixture

model. Then, we can writef as

f (x ; � ) =
GX

g=1

� gf g(x ; � g) subject to
GX

g=1

� g = 1; (2.1)

where, for each componentg, f g, � g (where � g > 0) and � g denote the pmf or pdf,

mixing proportion parameter and the set of distribution parameters, respectively.� =

f � 1; : : : ; � G; � 1; : : : ; � Gg denotes the set of all parameters off . A �nite mixture distribu-

tion is often used to model the heterogeneous sub-populations within a larger population

(McLachlan and Peel, 2004). Moreover, it is a highly 
exible tool for density estimation, as

a �nite mixture model with a su�cient number of components can estimate an arbitrary

pdf with an arbitrary level of accuracy (Titterington et al., 1985). A classic example is the
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Gaussian �nite mixture (GMM), where every component pdf follows ap-dimensional Gaus-

sian distribution parametrized by a mean vector� g and a covariance matrix� g. There is

a plethora of literature on model-based clustering. Starting from the early works by Day

(1969); Wolfe (1967, 1970), numerous �nite mixture models with non-Gaussian component

distributions have been developed so far. Examples include the parsimonious Gaussian

Fraley and Raftery (2002),t (Peel and McLachlan, 2000), skew-normal (Lin et al., 2007b),

skew-t (Lin et al., 2007a), shifted asymmetric Laplace (Franczak et al., 2013) and gener-

alized hyperbolic (Browne and McNicholas, 2015) distributions. The development of these

non-Gaussian �nite mixtures was motivated by the increasing complexity of the available

data sets and the group structure within. Of course, as noted earlier, a GMM with a large

enough number of components could be �tted instead. However, such strategy would re-

sult in a verbose model; where one 
exible-enough distribution could be su�cient, multiple

Gaussian distributions may be needed.

The Expectation-Maximization (EM) algorithm by Dempster et al. (1977) is commonly

used to �t a �nite mixture model for many reasons, two of which are the relative ease of es-

timation and the monotonicity in terms of likelihood function. Several variations of the EM

algorithm exist, such as the Expectation-Conditional Maximization (ECM) algorithm by

Meng and Rubin (1993) and Alternating Expectation-Conditional Maximization (AECM)

algorithm by Meng and Van Dyk (1997). The Stochastic EM (SEM) algorithm by Celeux

and Diebolt (1985) is another noteworthy variant, where random sampling is incorporated

to allow the convergence path to `escape' from poor initial values.

Under the EM algorithm framework (and its variants) for �nite mixture models, the

observed dataf x 1; : : : ; x ng is deemed incomplete, because we do not know the component

to which eachx i belongs to. Thus a latent (unobserved) component membership indicator

vector Z i = ( Z i 1; : : : ; ZiG )0 is introduced, whereZ ig = 1 (with probability � g) if x i belongs

to component g and 0 otherwise. We denote byz i = ( zi 1; : : : ; ziG )0 a realization of Z i .

If we suppose that we observez i as well, then the (x i ; z i ) pair is considered complete.

Depending on the component-wise distributions, more latent variables may be introduced.

As an illustration of the EM algorithm, consider aG-component GMM. The observed-data
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likelihood function is

L(� ) =
nY

i =1

 
GX

g=1

� g� (x i ; � g; � g)

!

;

where � g and � g denote component-wise mean vector and covariance matrix respec-

tively. Manipulating the sum inside the product is often very challenging. In contrast,

the complete-data likelihood with (x i ; z i )s is

L c(� ) =
nY

i =1

(
GY

g=1

(� g� (x i ; � g; � g))zig

)

;

and the corresponding log-likelihoodlc(� ) is

lc(� ) =
nX

i =1

GX

g=1

zig log(� g� (x i ; � g; � g)) :

In reality, however, the latent variables (zig in this case) are not observed. Therefore, at

every iteration, the EM algorithm obtains the conditional expectation oflc(� ) with respect

to the latent variables givenx i s. Letting � (t ) be the estimate of� at iteration t. Then,

the conditional expectation is given by

Q(� j� (t )) = E[ lc(� )jx i ; � (t ) ] =
nX

i =1

GX

g=1

z(t )
ig log(� g� (x i ; � g; � g)) ;

where z(t )
ig = E[ Z ig jx i ; � (t ) ] is the posterior component membership probability estimate

at iteration t, and it is equal to

z(t )
ig =

� (t )
g � (x i ; � (t )

g ; � (t )
g )

P G
k=1 � (t )

k � (x i ; � (t )
k ; � (t )

k )
: (2.2)

The new model parameter estimates� (t+1)
g ; � (t+1)

g ; � (t+1)
g are obtained by maximizingQ

5



with respect to the corresponding parameters. Their update formulae are given by

� (t+1)
g =

P n
i =1 z(t )

ig

n
; � (t+1)

g =

P n
i =1 z(t )

ig x i
P n

i =1 z(t )
ig

; � (t+1)
g =

P n
i =1 z(t )

ig (x i � � (t+1)
g )(x i � � (t+1)

g )0

P n
i =1 z(t )

ig

:

Upon convergence, the �nal model parameter estimates are reported, and the component

membership of each observationx i is computed as the Maximum A Posteriori (MAP)

estimate of ẑi 1; : : : ; ẑiG (the z(t )
ig s at the time of convergence) where

MAP( ẑig ) =

8
><

>:

1 if argmax
k=1 ;:::;G

f ẑi 1; : : : ; ẑiG g = g;

0 otherwise.
(2.3)

The convergence of the EM algorithm in model-based clustering can be determined by the

consecutive di�erence in log-likelihood. For instance, let� (t ) and � (t � 1) denote the set

of parameter estimates at iterationst and t � 1. Then, given a pre-determined positive

threshold � , if the the di�erence in log-likelihood at the aforementioned two sets is less

than � , then the algorithm can be terminated. This condition is algebraically translated as

l(� (t )) � l (� (t � 1)) < �:

However, per Lindstrom and Bates (1988), such a criterion represents a lack of progress,

not the actual convergence of the algorithm. Aitken's acceleration by Aitken (1926) is a

tool for accelerated convergence of a linearly convergent sequence, which the EM algorithm

produces. Letf l(� (t ))g denote the sequence of log-likelihood values generated by the EM

algorithm, and suppose that its limit is l̂ . Then, the linear convergence rate of the EM

algorithm dictates that, for somea 2 (0; 1),

l(� (t+1) ) � l̂

l (� (t )) � l̂
� a:

The Aitken acceleration coe�cient at iteration t is used to approximatea, and it is de�ned
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as

a(t ) =
l(� (t+1) ) � l (� (t ))
l (� (t )) � l (� (t � 1))

:

The limit l̂ can then be approximated by

l̂ (t+1) = l(� (t )) +
l(� (t+1) ) � l (� (t ))

1 � a(t )
;

and B•ohning et al. (1994) suggests the termination of algorithm when

0 < l̂ (t+1) � l̂ (t ) < �: (2.4)

A �nite mixture model may be accompanied by several hyperparameters, most common

of which is the component countG. In practice, the model parameters are estimated over

a range ofG values, and the one producing the best model selection criterion value is

chosen. Several selection criteria exist, such as the log-likelihood value, Akaike Information

Criterion (AIC) (Akaike, 1974), Bayesian Information Criterion (BIC) (Schwarz, 1978)

and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000), with the BIC being a

common choice. Let̂� and j�̂ j denote a realization of model parameter set and the number

of free parameters within, respectively. Then, assuming a sample size ofn, the formula for

the AIC and the BIC are

AIC( �̂ ) = 2 l(�̂ ) � 2j�̂ j;

BIC( �̂ ) = 2 l(�̂ ) � log(n)j�̂ j; (2.5)

where both are to be maximized. While the log-likelihood itself is the simplest, it is also

most susceptible to verbose models, as it ignores the number of parameters. The AIC

and BIC penalize on the parameter count, but the BIC exacerbates the penalty as the

sample size increases. The ICL favours component counts producing well-de�ned clusters

per Baudry et al. (2010), as opposed to the BIC (and similarly the AIC), which prioritizes

on density estimation, favouring largerG values than the ICL. Given a set of complete-data
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f (x i ; z i )gi =1 ;:::;n , the ICL is computed as

ICL (�̂) = log

 
nY

i =1

GY

g=1

n
�̂ gf g(x i ; �̂ g)

oMAP( ẑig )
!

�
j �̂ j
2

log(n):

The key point here is that the model selection criterion may have a non-trivial impact on

the �nal model.

In addition to selection criteria, the model's performance can be measured using the

components produced. If the data set is accompanied by a ground truth (a known set of

labels), then the Adjusted Rand Index (ARI) by Hubert and Arabie (1985) is commonly

used. The ARI is an extension of the Rand Index by Rand (1971), which measures the

extent of agreement between two sets of partition. LetS = f x 1; : : : ; x ng be a set of objects,

and let A = f A1; : : : ; AGg and B = f B1; : : : ; BK g be two partitions of S. Furthermore, let

a = number of pairs in S that are in the same subset ofA, as well asB ,

b= number of pairs in S that are in di�erent subsets of A, as well asB .

Intuitively, a and b can be interpreted as the number of object pairs whereA and B agree

on in terms of grouping. Then, the Rand Index (RI) is de�ned as

RI =
a + b
� n

2

� :

The RI ranges between 0 and 1, and higher values indicate better agreement betweenA and

B. If A is the ground truth and B is the estimated grouping from a clustering method, then

the RI measures the agreement between the two. The ARI adjusts for chance by subtract-

ing from the agreement between the ground truth and the model-generated grouping the

expected agreement between the ground truth and a randomly-assigned grouping. There-

fore, while the maximum value is still 1, the ARI can be negative if the model-generated

grouping agrees less with the ground truth than a random assignment. More details can

be found in Steinley (2004).
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When a ground truth is unavailable, then the degree of separation between clusters

can be measured. Two such measures are the Between-cluster Sum of Squares (BSS) (and

its Within-cluster counterpart WSS), and the Additive Margin (AM) by Ben-David and

Ackerman (2009). Letf x 1; : : : ; x ng be a data set and letC = f P1; : : : ; PGg be a clustering

or a partition of the data. For example, the MAP estimates (2.3) can formC. Suppose each

partition has an associated centre point� g. Then, the BSS and WSS are de�ned as

BSS =
GX

g=1

 

� g �
GX

k=1

� k=G

! 2

;

WSS =
GX

g=1

X

i :x i 2 Pg

(x i � � g)2;

and the degree of separation between clusters can be measured via the ratio between BSS

and WSS. The AM is based on the comparison of the distance between an observationx

and its two closest centres� k and � l . The Additive Point Margin (APM) of an observation

x is de�ned as

APM (x ) = d(x ; � l ) � d(x ; � k);

whered(�; �) denotes an appropriate distance function,� k is the centre closest tox and � l

is the second closest centre tox . In this thesis, d(�; �) is assumed to be Euclidean. The AM

of a clustering or partition is de�ned as

AM (C) =
P n

i =1 APM (x i )=n
P G

g=1

P
f x ;y g2Pg

d(x ; y )=
P G

g=1

� jPg j
2

� ;

where j � j denotes the cardinality of a set. The AM is non-negative, and higher values

indicate better-de�ned clustering.
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2.2 Parsimonious Model-based Clustering

Along with the complexity in structure, the dimension of available data sets have increased

in the recent past. As suggested by the Curse of Dimensionality (Bellman, 2010), high-

dimensional data sets pose additional modelling challenges compared to lower-dimensional

data sets in terms of the required number of observations and model performance. In partic-

ular, the growing number of model parameters can lead to poorly-�tted models. Consider a

p-dimensionalG-component GMM. It has (G� 1)+ Gp+ Gp(p+1) =2 free parameters, where

each summand comes from the mixing proportions, mean vectors and covariance matrices

respectively. HoldingG constant, the number of free parameters is a quadratic function ofp,

implying that the number of required observations for model-�tting increases very quickly

as the dimension increases. Several parsimonious �nite mixture modelling frameworks have

been developed to mitigate this problem, where the number of free parameters is reduced

by constraining the parameter structures. The trade-o� is that not every method is inter-

pretable. That is, the user may need to select model constraints without understanding

their meanings with respect to the problem-at-hand. Alternatively, the �tted constrained

model may not reveal the aspects of the data that resulted in that set of constraints being

chosen. Here, we present some commonly-deployed frameworks and discuss brie
y their

interpretability concerns.

ˆ Ban�eld-type Eigen-decomposition (Ban�eld and Raftery, 1993). The component-

wise scale matrices� g are decomposed into

� g = � gPgD gP 0
g;

where � g is the �rst eigenvalue of � g, D g is the diagonal matrix of scaled eigen-

values of � g with the �rst entry equal to 1, and Pg is the matrix of eigenvectors.

Here, � g represents the volume of the space occupied by a component, andD g and

Pg represent the shape and the orientation of the component respectively. By con-

straining any subset off � g; D g; Pgg to be equal across components, we can choose

the aspects of the component distributions to be held equal. Moreover, such equality
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restrictions reduce the number of free parameters to be estimated. This framework

was applied on the �nite mixture of Gaussian (Fraley and Raftery, 2002),t (Andrews

and Mcnicholas, 2012), shifted asymmetric Laplace (Franczak et al., 2013), general-

ized hyperbolic (Browne and McNicholas, 2015) and power exponential (Dang et al.,

2019) distributions. While this framework can reduce the number of free parameters

in component-wise scale matrices, the user cannot �nd out why certain constraints

are favoured over others by the data set under consideration, other than relying on

the scores from some model selection criteria. For example, suppose� g = � and

Pg = P . Then, although this model tells us that the volume of space occupied by

each component and their orientations are equal, we cannot tell why the data set

chose that set of constraints.

ˆ Subspace Clustering (Bouveyron et al., 2007). The subspace clustering framework for

the Gaussian �nite mixture (abbreviated as SC-GMM henceforth) is another parsi-

monious GMM framework based on linear projections and component-wise intrinsic

dimensions. The intrinsic dimensionsdg (g = 1; : : : ; G) of the p-dimensional data

set are estimated as the number of distinguishable directions in the component-wise

orthogonal bases, and the remainingp � dg directions are deemed indistinguish-

able. The directions are partitioned by the magnitude of the corresponding eigen-

values. Consider the eigen-decomposition ofgth component's covariance matrix� g,

� g = PgD gP 0
g, wherePg is the orientation matrix and D g = diag( � 1; : : : ; � p) is the

diagonal matrix of eigenvalues (arranged in decreasing order). If its intrinsic dimen-

sion is dg, D g would assume the form diag(ag1; : : : ; agdg ; bg; : : : ; bg| {z }
p� dg copies

), where the �rst

dg eigenvalues correspond to distinguishable directions and the remaining ones ren-

der their associated directions indistinguishable. Then, thedg intrinsic-dimensional

covariance� g admits the following eigen-decomposition

� g = [ � g� g] D g [� g� g]0;

where � g and � g are the matrices consisting ofdg distinguishable andp � dg in-
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distinguishable directions respectively. This structure bypasses the estimation of� g,

because the quadratic form is simpli�ed as follows.

(x � � g)0� � 1
g (x � � g) = ( x � � g)0[� g� g] D � 1

g [� g� g]0(x � � g)

=
dgX

j =1

1
agj

�
[� g]0�j (x � � g)

� 2
+

1
bg

pX

j = dg +1

�
[� g]0�j (x � � g)

� 2
;

where the second sum is simpli�ed to

1
bg

pX

j = dg +1

�
[� g]0�j (x � � g)

� 2
=

1
bg

pX

j =1

n
(x � � g)2

j �
�
[� g]0�j (x � � g)

� 2
o

;

where the�j notation means thej th column of the corresponding matrix.

This implies that only � g and f ag1; : : : ; agdg ; bgg need to be estimated instead of the

full � g. Thus, the number of free parameters in� g decreases fromp(p + 1) =2 to

dgp� dg(dg + 1) =2. Moreover, further reduction in free parameters can be achieved if

the orientation and/or the shape of the component-wise subspace are constrained to

be equal, such as

{ Equality of agj within a component: agj = ag, j = 1; : : : ; dg,

{ Equality of agj across components:agj = aj , g = 1; : : : ; G,

{ Equality of bg across components:bg = b, g = 1; : : : ; G,

{ Equality of � g across components:� g = � , g = 1; : : : ; G,

{ Equal intrinsic dimension across components:dg = d, g = 1; : : : ; G.

The resulting submodels are denoted in the form of [agj bg� gdg], [agbg� gdg], etc., and

the full list is available in Bouveyron et al. (2007). The software for the SC-GMM is

available as a R packageHDclassif (Berg�e et al., 2012).

The SC-GMM framework has been extended to functional data analysis (Bouveyron

et al., 2015), noisy images (Houdard et al., 2018) and a �nite mixture of generalized
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hyperbolic distributions (Kim and Browne, 2019). This framework is useful in reveal-

ing the number of dimensions needed to capture cluster structures of the data set.

This means that estimating the component-wise intrinsic dimensionsdg and the se-

lection of cross-component constraints are crucial. The scree test by Cattell (1966) is

commonly used to determine the intrinsic dimensiondg. The scree test examines the

plot of eigenvalues of� g in decreasing order, and seeks for an \elbow" where the slope

of the eigenvalue plot 
attens out. The issue here is the indeterminacy of the elbow,

because the eigenvalue plot rarely exhibits a clear start point of 
attening. Moreover,

the meaning of original variables may be lost after projection. Therefore, the waydg

and the rotation matrices� g are estimated a�ects heavily the interpretability of the

resultant model. Chapter 5 provides a more detailed discussion on intrinsic dimension

selection.

ˆ Factor analyzer (Rubin and Thayer, 1982; Ghahramani and Hinton, 1996). In the

Gaussian factor analyzer model, ap-dimensional random vectorY is modelled as

an a�ne function of a q-dimensional latent vectorX (such that q < p) with a p-

dimensional additive random error� . This relationship is mathematically represented

as

Y = � + � X + � ;

where� is called the loading matrix, which is ofp� q dimensions. It is assumed that

the entries of the latentX are independent to each other, and likewise for the ran-

dom error � . Mathematically speaking, �rstly let Np(� ; � ) denote thep-dimensional

Gaussian distribution with mean � and covariance� . Then, X � Nq(0; I q), and

� � Np(0; 	 ), where 	 is diagonal and X and � are independent. An attrac-

tive feature of this model is the parsimonious modelling of the covariance matrix

of the observed vectorY . Namely, the covariance ofY under factor analyzer is

� p� p = � p� q� 0
p� q + 	 p� p, which reduces the number of free parameters of� from

p(p + 1) =2 to pq � q(q � 1)=2 + p, assuming that p > q. Hence, under the factor

analyzer, the number of free parameters in� is a linear function of p instead of
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quadratic. Thus, factor analyzer can reduce the number of free parameters signi�-

cantly, given that the response variable can be explained by a relatively small number

of latent factors (q << p ). (Ghahramani and Hinton, 1996) introduced a �nite mix-

ture of Gaussian factor analyzers, and it has been extended to various non-Gaussian

distributions (Tortora et al., 2016; McNicholas et al., 2017; McLachlan et al., 2007;

Lin et al., 2016). When modelling with a factor analyzer, the number of factorsq

must be determined a priori, and it is commonly estimated via BIC like the other

frameworks. Moreover, like how the intrinsic dimensiondg changes the number of

free parameters in the chosen submodel in subspace clustering, the factor countq

changes the dimension of the factor loading� . If q is too high, then interpreting

the entries of � is more challenging. In addition, the resultant covariance matrix

estimate b� = �̂ �̂ 0+ 	̂ is more likely to be dense as well. For simplicity, consider the

q = 1 case. The factor loading is ap � 1 vector, and the sparser this vector is, the

sparser the estimateb� will be. Another point of interest in the factor analyzer is the

rotation invariance of factor loadings. Given aq � q dimensional orthogonal matrix

Q, a factor loading� and its rotated version� Q yield the same covariance, since

�� 0 = � QQ 0� :

The rotational non-identi�ability of the factor loading with regard to covariance

estimation has led to the research in factor rotations for various `simple' structures for

interpretation. Notable criteria include the Varimax by Kaiser (1958), the Quartimax

by Ferguson (1954) and the Oblimin by Clarkson and Jennrich (1988).

2.3 Mixture Model Component Merging

Individual components in a �nite mixture model are often treated as clusters. While the

de�nition of a cluster is context-dependent, if the component-wise distributions do not

accommodate adequately the peculiarities of the data set, the number of components may

exceed the number of underlying clusters. Unfortunately, such disparity is di�cult to de-
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tect a priori. Component merging refers to families of techniques that identify su�ciently

similar mixture components and unify their labels without necessarily re�tting the whole

model. Two such families are modal clustering and component membership probability-

based merging.

Modal clustering seeks regions of single dominant mode, where each of such regions

may consist of several mixture components. Chac�on (2019) introduced mode-merging al-

gorithms for the GMM, and Kim and Browne (2021a) extended the algorithm to the �nite

mixture of t-distributions. An overview of modal clustering is provided by Chac�on (2020).

Modal clustering is closely related to the concept of unimodality. Ray and Lindsay (2005)

introduced the ridgeline function for the GMM and outlined some conditions under which

a pair of Gaussian densities is unimodal.

Merging methods based on component membership probabilities seek groups of com-

ponents where observations are similarly likely to belong in any one of said components,

or the observations are most likely to belong to the said group than others. Hennig (2010)

introduced the Directly Estimated Misclassi�cation Probabilities (DEMP) for the GMM,

which measures the degree of overlap between components using misclassi�cation probabil-

ities. A robust variant of the DEMP was introduced by Melnykov (2016), called DEMP+.

Baudry et al. (2010) introduced an algorithm where components are merged based on

an entropy-based criterion. Scrucca (2016) used the log-odds on component membership

probabilities and density level sets to merge components. We describe the DEMP+ and

the entropy-based criterion below.

ˆ Directly Estimated Misclassi�cation Probabilities Plus (DEMP+) is a mixture component-

merging procedure based on the degree of overlap between pairs of components (or

component groups). A misclassi�cation probability between two sets of components

G1 and G2 is de�ned as

qG1 jG2 = P

 
X

g2G2

� gf g(X ) <
X

k2G1

� k f k(X )

�
�
�
�
�
X from G2

!

;
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and a measure of overlap betweenG1 and G2 is de�ned as

qG1 ;G2 = qG1 jG2 + qG2 jG1 : (2.6)

If qG1 ;G2 > c for some pre-determined thresholdc (authors suggestc = 0:1), then G1

and G2 are deemed be su�ciently overlapped, and their labels are merged. The au-

thors compute a sample estimate ofqG1 jG2 by samplingx 1; : : : ; x N (N pre-determined)

from a mixture distribution consisting of components fromG2 �rst, then computing

q̂G1 jG2 =
1
N

NX

i =1

I

 
X

g2G2

�̂ gf g(x i ) <
X

k2G1

�̂ k f k(x i )

!

: (2.7)

Finally, we computeq̂G1 ;G2 = q̂G1 jG2 + q̂G2 jG1 .

ˆ The entropy-based criterion (abbreviated as EntropyMerge hereafter) is motivated

as an alternative to both the BIC and the ICL, each of which can over- and under-

estimate the number of clusters respectively, per the authors. The procedure begins

with a model chosen by the BIC, withG components. Once a mixture model is �t-

ted, the MAP estimates of membership probabilities are used as an initialization:

f ẑ(1)
i 1 ; : : : ; ẑ(1)

iG gi =1 ;:::;n . In the �rst iteration, the pair of components (j; k ) that maxi-

mizes the following criterion

�
nX

i =1

h
ẑ(1)

ij log(ẑ(1)
ij ) + ẑ(1)

ik log(ẑ(1)
ik )

i
+

nX

i =1

(ẑ(1)
ij + ẑ(1)

ik ) log(ẑ(1)
ij + ẑ(1)

ik ) (2.8)

is merged. Let (j ?; k?) denote the merged pair. Once merged, the posterior probabil-

ities get updated to (for g = 1; : : : ; G � 1)

ẑ(2)
ig =

8
<

:
ẑ(1)

ig if g =2 f j ?; k?g;

ẑ(1)
ij ? + ẑ(1)

ik ? otherwise.

Then the criterion in (2.8) is applied again to select a pair from 1; : : : ; G � 1 to be
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merged. Merging is terminated when

Entropy at iteration i � Entropy at iteration i+1
Entropy at iteration 1

< c; (2.9)

where the thresholdc is set at 0.05 in this thesis, and the entropy at iteration i is

computed as

�
X

g

nX

i =1

ẑ(i )
ig log(ẑ(i )

ig ):
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Chapter 3

Stiefel Elastic Net: A Novel

Penalization for Matrix-variate

Parameters

3.1 Introduction

Estimating interpretable model parameters has been a key interest in the recent past,

where the parameter estimates are forced to be of smaller magnitude (shrinkage), or to

be zero (sparsity). Such regularization allows the user to identify important variables in

the model, hence improves model interpretability. There are ample literature on parameter

regularization via penalized optimization, including the famed Ridge, LASSO and Elastic

Net (Hoerl and Kennard, 1970; Tibshirani, 1996; Zou and Hastie, 2005). While limited,

there exists some existing work on regularization of factor loadings as well, where the focus

is on sparsity. An early method is the Quartimax rotation by Neuhaus and Wrigley (1954),

which rotates the factor loading to �nd a simpler structure. Adachi and Trenda�lov (2018,

2014); Trenda�lov and Adachi (2015); Trenda�lov et al. (2017) use projection approaches

that are not model-based, and Hirose and Yamamoto (2014, 2015) considers some sparsity-

inducing penalty functions where a �nite mixture of Gaussian factor analyzers is assumed.
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However, many sparse estimation techniques on model-based factor analyzers risk de-

generate solutions at the cost of sparsity due to rank-de�cient factor loading estimates.

This can lead to poor model �t and interpretability. To address this issue, we develop a

novel method for sparse, yet rank-preserving estimation of component-wise factor loadings

in a �nite mixture of Gaussian factor analyzers, and explore their theoretical properties. In

addition, we extend the existing work on sparse factor analyzer by Hirose and Yamamoto

(2015) to a �nite mixture of Gaussian factor analyzers for completeness of the literature.

We will demonstrate both contributions' performance in real and simulated data settings.

3.2 Methodology

In this section, we present two methods for estimating a sparse factor loading in a �nite

mixture of Gaussian factor analyzers. The �rst method is a direct penalization on the

component-wise factor loadings� g, which is an extension of the work on a single com-

ponent Gaussian factor analyzer by Hirose and Yamamoto (2015). The second and novel

method is based on an alternative parametrization of the factor loadings via singular value

decomposition.

The model of interest is aG-component �nite mixture of Gaussian factor analyzers.

Extending the single-component Gaussian factor analyzer outlined section 2.2, letYi , X ig

and � ig denote thei th observed variable, thei th latent variable from componentg and the

i th random error variable from componentg, respectively. Then, with the latent component

membership indicator variableZ i as de�ned in section 2.1, the conditional distribution of

Yi given Z ig = 1 and that of Yi given Z ig = 1 and x ig (a realization of X ig ) are given by

Yi jZ ig = 1 � Np(� g; � g� 0
g + 	 g);

Yi jZ ig = 1; x ig � Np(� g + � gx ig ; 	 g);

where� g is the factor loading parameter of componentg. The marginal pdf of Yi at y i is
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given by

f (y i ; � ) =
GX

g=1

� g� (y i ; � g; � g� 0
g + 	 g);

where � denotes the set of model parameters. Under this model, a complete-data set

consists of (y 0
i ; z0

i ; x 0
i 1; : : : ; x 0

iG )0 tuples, and the corresponding complete-data log-likelihood

based onn independent observations is

lc(� ) =
nX

i =1

GX

g=1

Z ig [log� g + log � (y i ; � g + � gx ig ; 	 g) + log � (x ig ; 0; I q)];

where � denotes the set of model parameters. The methods to be presented in this work

can be represented in a penalized complete-data log-likelihood framework given by

lpen(� ) = lc(� ) �
GX

g=1

� gh(�); (3.1)

where h(�) denotes the penalty function with appropriate argument, and� g > 0 are the

component-wise penalty multiplier, which are treated as hyper-parameters.

3.2.1 Alternative Parametrization of Factor Loading

In the following discussion, we drop the component subscriptg for notational brevity. An

unconstrained direct penalization on the factor loading can lead it to a zero matrix as

the penalty multiplier increases. This behaviour can be problematic in both parameter

estimation and interpretation. A zero factor loading implies that�� 0+ 	 = 	 , which is

overly restrictive and likely uninformative. Assuming that the number of factors is correctly

speci�ed, one would expect some amount of explanatory power from each factor manifesting

as non-zero entries. However, even in such cases, unconstrained direct penalization has

no built-in mechanism to prevent a degenerate loading estimate. Hence, we develop a

penalization method for the factor loading that can estimate a sparse and full-rank factor

loading. In addition to the increased interpretability from sparseness, the full-rankness of
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the estimate ensures that allq factors contribute to the model.

We begin by observing that the covariance matrix arising from the factor analyzer is

identi�able up to orthogonal rotation on the factor loading; see McLachlan and Peel (2004).

Now consider the thin singular value decomposition of ap-by-q dimensional factor loading

�

� p� q = � p� q� q� q
 0
q� q;

where � and 
 are p and q-dimensional orthonormalq-frames respectively, and� is a

q-dimensional diagonal matrix. Under the factor analyzer model, the covariance matrix of

the observed variable is given as

� = �� 0+ 	 = �� 2� 0+ 	 ;

as 
 is a orthogonal matrix. It is clear that 
 vanishes in the formula for� under

this decomposition. Thus, we constrain
 to be the identity matrix and obtain a (� ; � )

parametrization of � while preserving the identi�ability of � . Under this parametrization,

we have� = �� . With respect to the identi�ability of � , there are two types of equivalent

constraints as explained in Fokou�e and Titterington (2003). One of them constrains� such

that � 0� is a diagonal matrix. The (� ; � ) parametrization satis�es this constraint:

� 0� = �� 0�� = � I � = � 2;

where � 0� = I by construction and � 2 is diagonal by de�nition. Therefore, under our

alternative parametrization, � is identi�able.

3.2.2 Direct Penalization on Factor Loading

The entry-wise penalization on the factor loading is an intuitive way to estimate sparse

factor loadings. Hirose and Yamamoto (2015) have contributed to solving this problem by

introducing a single-component LASSO-based sparse factor analyzer. We will refer to this

direct entry-wise penalization on the factor loading as the PL penalty. The functionhP L
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for the PL penalty is

hP L (� ) =
pX

i =1

qX

j =1

j� ij j: (3.2)

Extending this penalty to a �nite mixture model is straightforward. The penalized complete-

data log-likelihood in (3.1) under the PL penalty is

lP L (� ) = lc(� ) �
GX

g=1

� ghP L (� g):

Optimization of lP L with respect to each� g can be formulated as an iterative least-square-

type problem, as will be shown in section 3.2.4.

3.2.3 Stiefel Elastic Net (SEN)

Consider the Stiefel manifold ofq vectors overp-dimensional real vector spaceVp:q. The

penalty function of interest in this chapter is the row-wiseL s;1 norm for s = 1; 2, which is

de�ned as

jj � jj s;1 =
pX

i =1

 
qX

j =1

j� ij js
! 1=s

; (3.3)

where � ij is the ij th element of the matrix � . The L s;t norm is usually de�ned on the

columns of a matrix, and is used frequently in matrix regularization for structured sparsity;

see Yuan and Lin (2006). TheL s;1 penalty over the Stiefel manifold has several desirable

properties for our purpose. We will discuss the theoretical results onL2;1 �rst, followed by

that on L1;1.

L2;1 case

The L2;1 norm penalty has an intuitive lower bound over the Stiefel manifold, and that is

the column rank of its argument. To show this, we begin with the following lemma.
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Lemma 1. Let Vp;q = f � 2 Rp� q : � 0� = I qg wherep � q. Denote thei th row of a matrix

� as � i �. For any � 2 Vp;q, jj � i � jj 2
2 � 1 for all i = 1; : : : ; p.

Proof. Suppose, on the contrary, that there exists a rowk 2 f 1; : : : ; pg such that jj � k� jj 2
2 >

1. Since� is an orthonormalq-frame, it is always possible to construct ap-by-p orthogonal

matrix by attaching p � q linearly independent unit column vectors, denoted byU , that

are pairwise-orthogonal to every column vector in� . Then, this new orthogonal matrix

W = [ � ; U ] is such that W 0W = I , which implies

jj � k� jj 2
2 + jjUk� jj 2

2 = 1;

However, this impliesjj � k� jj 2
2 � 1, which is a contradiction.

Proposition 1. The minimum value of theL2;1 norm over Vp;q is q.

Proof. The column-wise orthogonality constraint implies tr(� 0� ) = q. Moreover, by the

cyclic property of trace, we have

q = tr( � 0� ) = tr( �� 0) =
pX

i =1

jj � i � jj 2
2:

If p = q, then � is orthogonal in Rq� q, so tr(�� 0) = q. Thus, assumep > q without loss

of generality. Lemma 1 tells us thatjj � i � jj 2
2 � 1 for every i . Hence,jj � i � jj 2

2 � jj � i � jj 2. This

implies

jj � jj 2;1 =
pX

i =1

jj � i � jj 2 �
pX

i =1

jj � i � jj 2
2 = q: (3.4)

The following corollary characterizes a minimizer of theL2;1 norm penalty.

Corollary 1. Any minimizer of the L2;1 norm penalty overVp;q has exactlyq rows that

form a q-by-q orthogonal matrix, and the remainingp � q rows are zero vectors.
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Proof. Suppose that� 2 Vp;q minimizes theL2;1 penalty over Vp;q. Inequality (3.4) implies

that
pX

i =1

�
jj � i � jj 2 � jj � i � jj 2

2

�
= 0:

Since we havejj � i � jj 2 � jj � i � jj 2
2 and equality is achieved if and only ifjj � i � jj 2 = 1 or � i � = 0,

there must be exactlyq rows with unit vectors and the remainingp � q rows must be zero

vectors.

Remark: A q-frame of signed standard basis vectors inRp minimizes theL2;1 norm penalty

over Vp;q for p � q.

L1;1 case

The L1;1 penalty enjoys the same lower bound as that ofL2;1, as shown below.

Proposition 2. Consider the spaceVp;q wherep � q. The minimum value of theL1;1 norm

over Vp;q is q.

Proof. From proposition 1 and by vector norm property, we have

q �
pX

i =1

jj � i � jj 2 �
pX

i =1

jj � i � jj 1 =
qX

j =1

jj � �j jj 1 = jj � jj 1;1: (3.5)

Clearly, the matrix A = [ I q; 0q� (p� q) ]0 achieves equality for the lower bound given in (3.5),

so the bound ofq is attainable.

However, theL1;1 penalizes the matrix more aggressively, which results in a �nite number

of feasible minimizers. The following proposition shows that a minimizer takes the form of

extreme points on the manifold.

Proposition 3. Let Vp;q be de�ned as earlier and assumep � q. The only minimizer of

L1;1 norm penalty overVp;q is a q-frame of signed standard basis vectors inRp.
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Proof. Let � be aq-frame of signed standard basis vectors inRp. Then clearly jj � jj 1;1 = q.

For the converse, suppose that there exists� 2 Vp;q such that jj � jj 1;1 = q. Then it follows

that

pX

i =1

jj � i � jj 1 =
qX

j =1

jj � �j jj 1 �
qX

j =1

jj � �j jj 2 �
qX

j =1

jj � � jj 2
2 = tr( � 0� ) = q;

where the �rst equality occurs because

pX

i =1

jj � i � jj 1 =
pX

i =1

qX

j =1

j� ij j =
qX

j =1

pX

i =1

j� ij j =
qX

j =1

jj � �j jj 1:

The leftmost inequality between 1-norm and 2-norm follows from the property of vector

norms, and the middle inequality between 2-norm and squared 2-norm follows from (3.4).

Hence, we havejj � �j jj 1 = jj � �j jj 2 for every column in� , which occurs if and only if� �j is a

zero vector or is a signed elementary basis vector for everyj .

Proposition 3 implies that the L1;1 allocates exactly one latent factor to each ofq dimen-

sions, and it estimates remaining dimensions as noise. This is a more aggressive penalization

than the L2;1 norm.

De�ning the Stiefel Elastic Net

Finally, we introduce the convex combination of theL2;1 and L1:1 penalties, which contains

each of the two as special cases. We name this penalty as Stiefel Elastic Net, abbreviated

as the SEN:

hSEN (� ) = � jj � jj 1;1 + (1 � � )jj � jj 2;1; (3.6)

where � 2 [0; 1] is the hyper-parameter for mixing portion between the two penalties,

and � 2 Vp;q. The SEN inherits the same lower bound as that ofL1;1 and L2;1 norms.

Moreover, it has a �nite set of minimizers if� > 0 due to the inclusion ofL1;1 component.
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The following proposition characterizes a minimizer of the SEN.

Proposition 4. Let Vp;q be de�ned as earlier and assumep � q. The only minimizers of

the SEN with � > 0 over Vp;q are q-frames of signed standard basis vectors inRp.

Proof. Proposition 1 tells us that a minimizer of theL2;1 penalty takes the form of a row-

wise permutation of aq-by-q orthogonal matrix and (p � q)-by-q zero matrix. Proposition

3 tells us that a minimizer ofL1;1 penalty is a q-frame of signed standard basis vectors in

Rp. Since the SEN is minimized if and only if each ofL1;1 and L2;1 is minimized, the set

of minimizers of SEN is the intersection between that ofL1;1 and L2;1. Finally, we observe

that the set of minimizers forL1;1 penalty is a strict subset of that forL2;1.

The SEN shares similarity with the Elastic Net by Zou and Hastie (2005) due to its formula,

but SEN generalizes the Elastic Net to a constrained space of matrices. In the remainder of

this proposal, for ease of reference, SEN with� �xed at 0 and 1 will be denoted as Stiefel

penalty 1 and 2 respectively. Their function notation will behSP1 and hSP2 respectively.

3.2.4 Parameter Estimation

Parameter updates are based on the Alternating Expectation-Conditional Maximization

(AECM) algorithm by Meng and Van Dyk (1997), in conjunction with a suitable penalty-

based update for the factor loading� g, or the orthonormal q-frame � g, depending on the

parametrization. The AECM algorithm is used as it enjoys a faster convergence than the

original EM algorithm. This is to compensate for the more complicated update for� g.

Recall that the penalized complete-data log-likelihood function under aG-component

mixture model is given by

lpen(� ) = lc(� ) �
GX

g=1

� ghpen(�);

where pen 2 f PL; SP1; SP2; SEN g with an appropriate argument in place of (�).

� g > 0 are the component-wise penalty multiplier hyper-parameters. The SEN contains an

26



additional mixing coe�cient � g, which is also a hyper-parameter. In the AECM algorithm,

we will update (� g; � g) �rst, then � g, and �nally 	 g. At each iteration of the algorithm,

the existing and updated parameter estimates will be superscripted with (t) and (t + 1)

respectively.

In the �rst stage of the AECM algorithm, we update the component-wise location and

mixing proportion parameters,� g and � g. At this stage, the complete-data set is made of

(y i ; z i ) pairs the lc function is equal to

lc(� 1; : : : ; � G; � 1; : : : ; � G)

=
nX

i =1

GX

g=1

zig

�
log� g �

1
2

tr
h�

� g� 0
g + 	 g

� � 1
(y i � � g)(y i � � g)0

i �
+ const;

where `const' represents all additive constants. Treatingzig s as missing, the conditional

expectation oflc at iteration t given y i s is equal to

Q(� 1; : : : ; � G; � 1; : : : ; � G j� (t )
1 ; : : : ; � (t )

G ; � (t )
1 ; : : : ; � (t )

G )

=
GX

g=1

�
n(t )

g log� g �
1
2

tr

"
�
� g� 0

g + 	
� � 1

nX

i =1

z(t )
ig (y i � � g)(y i � � g)0

# �
+ const;

where z(t )
ig =

� (t )
g �

�
y i ; � (t )

g ; � (t )
g ; 	 (t )

g

�

P G
h=1 � (t )

h �
�

y i ; � (t )
h ; � (t )

h ; 	 (t )
h

� and n(t )
g =

P n
i =1 z(t )

ig . Upon di�erentiation

with respect to each of� g and � g, we obtain the updates

� (t+1)
g =

P n
i =1 ẑig y iP n

i =1 ẑig
; and � (t+1)

g =
n̂g

n
:

In the next stage of the AECM algorithm, we update the component-wise factor loading

and noise covariance� g and 	 g, while incorporating the updates from the previous stage.

Here, the complete-data set is made of (y 0
i ; z0

i ; x 0
i 1; : : : ; x 0

iG )0 tuples, as� g and 	 g need to
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be separated. The complete-data log-likelihood is equal to

lc (� 1; : : : ; � G; 	 1; : : : ; 	 G)
nX

i =1

GX

g=1

zig

�
�

1
2

logj	 gj �
1
2

tr
�
	 � 1

g (y i � � (t+1)
g � � gx ig )(y i � � (t+1)

g � � gx ig )0
�

�
+ const;

and its conditional expectation giveny i s is equal to

Q(� 1; : : : ; � G; 	 1; : : : ; 	 G j� (t )
1 ; : : : ; � (t )

G ; 	 (t )
1 ; : : : ; 	 (t )

G )

=
GX

g=1

�
n(t )

g

2
logj	 gj �

1
2

tr
�
	 � 1

g Sg
�

+ tr
�
	 � 1

g � g� (t )
g Sg

�
�

1
2

tr
�
� 0

g	 � 1
g � g� g

�
�

+ const;

(3.7)

wherez(t )
ig and n(t )

g are now computed using� (t+1)
g and � (t+1)

g , and

Sg = n̂� 1
g

nX

i =1

ẑig (y i � � (t+1)
g )(y i � � (t+1)

g )0;

� (t )
g = � (t )0

g

�
� (t )

g � (t )0

g + 	 (t )
g

� � 1
;

� g = I q � � (t )
g � (t )

g + � (t )
g Sg� (t )0

g :

The speci�c update formulae for � g and � g di�er based on the penalty function. We

present the update for the PL �rst, then the SEN.

Update for PL

When applying the PL, We follow the procedure given in Hirose and Yamamoto (2015)

and use the co-ordinate descent. The expected complete-data log-likelihood is written as a

quadratic function of � g, and the entry-wise update for� g is the solution to the following
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objective function

argmin
� ij

1
2

(� ij � cij )2 +
� g

h
	 (t )

g

i

ii

[� g]jj
j� ij j;

wherecij =

h
� (t )

g

i 0

j �
[Sg]�i �

P
k6= j [� g]kj

h
� (t )

g

i

ik

[� g]jj
, [A ]ij denotes theij th element of a matrix

A , [A ]i � denotes thei th row of A and [A ]�j denotes thej th column of A . The solution is

given by

�
� (t+1)

g

�
ij

= sgn(cij ) � �

0

@jcij j �
� g

h
	 (t )

g

i

ii

[� g]jj

1

A ;

where the function� (z) is de�ned as

� (z) =

8
<

:
z if z > 0;

0 otherwise:

The updated estimate replaces
h
� (t )

g

i

ij
in � (t )

g , and the descent on the next entry begins.

In this work, the entries are searched in row-major order.

3.2.5 Update for SEN

With the SEN, we update � g and � g separately, then estimate� g = � g� g. The diagonal

matrix � g is updated �rst, followed by � g with a Minorize-Maximization update based on

Browne and McNicholas (2014). The expected complete-data log-likelihood with respect
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to � gs and � gs can be written as

Q(� 1; : : : ; � G; � 1; : : : ; � G j� (t )
1 ; : : : ; � (t )

G ; � (t )
1 ; : : : ; � (t )

G )

=
GX

g=1

�
tr

�
� g� (t )

g Sg
�
	 (t )

g

� � 1
� g

�
�

1
2

tr
� �

	 (t )
g

� � 1
� g� g� g� g� 0

g

� �
+ const:

(3.8)

The following matrix identity from Horn and Johnson (2012) can be applied to the second

trace term:

tr ( � g� g� gM g) = diag ( � g)0(� g � M g) diag (� g) ;

whereM g = � (t )0

g

�
	 (t )

g

� � 1
� (t )

g , which lets us re-write the summands in equation (3.8) as

vecdiag (N g)0diag (� g) �
1
2

diag (� g)0(� g � M g) diag (� g) ;

whereN g = � (t )
g Sg

�
	 (t )

g

� � 1
� (t )

g , and `vecdiag' denotes a vector consisting of the diagonal

entries of the matrix argument within. This is a quadratic form in terms of diag(� g), and

upon di�erentiation, we obtain

diag
�
� (t+1)

g

�
= ( � g � M g)� 1 vecdiag (N g) :

For � g, we compute the updates for SP1 and SP2 each, then assemble them to obtain the

SEN update. While outlining the component-wise updates via SP1 and SP2, the component

subscript g will be dropped for notational brevity.

The MM Algorithm

The MM (Majorize-Minimization or Minorize-Maximization) algorithm, popularized by

Hunter and Lange (2000), is an indirect optimization approach to an otherwise-challenging

functions through so-called majorizer or minorizer, depending on the objective. A majorizer
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g of a function f is a surrogate function with the two properties:g
�
x(t ) jx(t )

�
= f

�
x(t )

�

and g(xjx(t )) � f (x) for all x, where x(t ) denotes the current position of the algorithm.

For example, a quadratic majorizer of absolute valuejxj is given by de Leeuw and Lange

(2009).

g(xjx(t )) =
x2

2
p

x(t )2 + �
+

jx(t ) j
2

;

where � is a small positive constant added as a computational provision to avoid division

by zero, andx(t ) is the t-th iterative estimate of the argumentx.

Figure 3.1: An illustration of MM algorithm. Black curve is the objectivef (x), and the
red, blue, and magenta curves are the majorizers at iterationst, t + 1 and t + 2. We see
that the the majorizer's minimum approaches that off (x).

MM Optimization on Stiefel Manifold

Matrix optimization problems in statistics frequently involve the minimization of a function

of the form

min
�

f (� ) = min
�

tr ( A � ) +
RX

r =1

tr( B r � C r � 0); (3.9)

for arbitrary matrices of matching dimensionsA , B r and C r , for r = 1; : : : ; R, and the

argument � con�ned to the Stiefel manifold of q vectors overp-dimensional real vector
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space, denoted as

Vp;q =
�

� 2 Rp� q : � 0� = I q
	

: (3.10)

This manifold is the space ofp-by-q matrices consisting ofq orthonormal columns, known

as orthonormalq-frames. Optimization on Stiefel manifold is di�cult in general, and the

general-purpose algorithms are complicated. Fortunately, for the above-mentioned trace-

based objective function, works from Browne and McNicholas (2014); Kiers (2002) allow

an iterative update based on the MM algorithm. If we assume thatB r are positive de�nite

and C r are diagonal with positive diagonal entries for allr = 1; : : : ; R, then the trace

minimization problem in (3.9), admits a majorizer over the Stiefel manifold from Kiers

(2002):

f (� ) � tr( F (t ) � ) + a; (3.11)

whereF (t ) = A +
P R

r =1

�
B r � 0

(t )C r � c�
r B r � 0

(t )

�
with � (t ) being the current position of� ,

c�
r is the largest eigenvalue ofC r , and a is a constant independent of� . Then, the solution

to (3.11) is

� (t+1) = Q (t )P 0
(t ) ; (3.12)

whereF (t ) = P(t )D (t )Q0
(t ) is the singular value decomposition ofF (t ) .

MM Update for SP1

For the SP1, we obtain the following majorizer by applying the approximation formula for

the absolute value and its sharp quadratic majorization from de Leeuw and Lange (2009);

Ramirez et al. (2014).

pX

i =1

qX

j =1

j� ij j �
pX

i =1

qX

j =1

0

@ � 2
ij

2
q

j� (t )
ij j2 + �

+

q
j� (t )

ij j2 + �

2

1

A ;

32



and similar to Hunter and Lange (2000), a small perturbation constant� > 0 for compu-

tational accommodation of absolute value around zero. In Hunter and Lange (2000),� is

set at 1=5, and in this work, � is set at 10� 6 for an increased accuracy of approximation.

The majorizer from equation (3.13) admits the following trace form

pX

i =1

qX

j =1

0

@ � 2
ij

2
q

j� (t )
ij j2 + �

+

q
j� (t )

ij j2 + �

2

1

A

=
qX

j =1

tr
�
A j � ej e0

j �
0
�

+ c

� tr ( K � ) + const; (3.13)

whereej is the j th elementary basis vector,A j = diag
�

2
q

j� (t )
1j j2 + �; : : : ; 2

q
j� (t )

pj j2 + �
� � 1

and K =
P q

j =1

h
ej e0

j

�
� (t )0

�
A j � max (A j ) ej e0

j

�
� (t )0

�i
.

MM Update for SP2

For the SP2, we begin with the following row-wise majorizer similar to Nie et al. (2010),

where

jj � i � jj 2 �
jj � i � jj 2

2

2
q

jj � (t )
i � jj 2

2 + �
+

q
jj � (t )

i � jj 2
2 + �

2
:

With the above, hSP2 obtains the following majorizer per Browne and McNicholas (2014)

jj � jj 2;1 � tr ( W �� 0) + const � tr ( G� ) + const; (3.14)

where

W = diag
�

2
q

jj � (t )
1� jj 2

2 + �; : : : ; 2
q

jj � (t )
p� jj 2

2 + �
� � 1

and G = � (t )0
W � max(W )� (t )0

.
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MM update for SEN

Majorization of hSEN is straightforward, as we already have majorizers forhSP1 and hSP2:

SEN (� g) � tr [( � gK g + (1 � � g)Gg) � g] + c: (3.15)

The �nal step in updating � g is the double minorization of the expectation in (3.8), minus

the penalty function. The change from majorization to minorization is a direct consequence

of multiplying the penalty function by � 1. The conditional expectation in equation (3.8)

is minorized by tr (Fg� g) + c, where

A g = � (t+1)
g � (t )

g Sg
�
	 (t )

g

� � 1
;

B g = � (t+1)
g � g� (t+1)

g

Fg = A g �
1
2

�
B g� (t )0

g

�
	 (t )

g

� � 1
� max

n�
	 (t )

g

� � 1
o

B g� (t )0

g

�
:

Hence, the double-minorized penalized expectation is given by

tr [( Fg � � gH g) � g] + const;

where

H g =

8
>>><

>>>:

K g if SP1;

Gg if SP2;

� gK g + (1 � � g)Gg if SEN:

The updated estimate is� (t+1)
g = R gP 0

g, wherePgD gR 0
g is the singular value decomposition

of Fg � � gH g.

After computing � (t+1)
g , 	 (t+1)

g can be obtained by di�erentiating with respect to itself

and applying the diagonal matrix constraint:

	 (t+1
g = diag

�
Sg � 2Sg� (t )0

g � (t+1) 0

g + � (t+1)
g � g� (t+1) 0

g

�
:
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3.2.6 Computational Aspects

Care must be taken when counting the number of free parameters. It is known that the

factor loading � p� q containspq� q(q� 1)=2 free parameters, as in McNicholas and Murphy

(2008). However, in PL, SP1, SP2, and SEN models, there may be fewer free parameters as

sparsity penalty coerces some entries to be zero. To account for this, we adopt the strategy

proposed in Pan and Shen (2007); St•adler et al. (2010); Xie et al. (2008), where we discount

the zero entries in the factor loadings, up topq � q(q � 1)=2 many zeros. The penalty

coe�cients � g and the mixing coe�cient for SEN � g are treated as hyperparameters, and

they are selected in via BIC during model selection process. The component-wise range

of coe�cient values need to be pre-determined. During the penalty coe�cient selection

process, the minimum is set at 0, and the maximum is set using the method presented

in Hirose and Yamamoto (2015) for consistency, where the maximum is estimated as the

largest � such that the factor loading is still a non-zero matrix.

The sparsity of factor loading estimate are measured using two metrics. One is the

proportion of zero entries (rounded to 2 decimal places) in the loading, and the mean and

standard deviation of the loading entries on absolute value scale.

3.3 Numerical Experiments

In this section, we discuss various computational aspects of PL and SEN along with some

other mixture models in literature in both simulated and real data settings. Various sub-

sets of the models listed below are �tted in each experiment and illustration. The italicized

abbreviations will be used henceforth when a model is referred. For each model, its de-

scription, hyperparameter and model selection process are outlined below.

ˆ GMM from the R packagemclust (Scrucca et al., 2016): This is a parsimonious

Gaussian mixture model with constraints on the modi�ed eigen-decomposition of

component-wise covariance matrices� g = � gPgD gP 0
g. Each element of the decom-

position (� g, Pg, D g) can be constrained for equality across mixture components.
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The Bayesian Information Criterion (BIC) is used to select the best-�tting compo-

nent count and covariance constraint.

ˆ HDDC from R packageHDclassif (Berg�e et al., 2012): This another parsimonious

Gaussian mixture model with projection-based constraints that seeks the intrinsic

dimensiondg of each component in the mixture. Eachdg is assumed to be less than

the observed dimensionp, and the observations in each component is projected onto

a dg-dimensional subspace during model-�tting process. Additional parsimony can

be achieved by constraining the eigen-decomposition of component-wise covariance

matrices. The scree test by Cattell (1966) is used to approximatedg for each compo-

nent. Then, the BIC is used to select the best-�tting component count and covariance

constraint.

ˆ tMM from the R packageteigen (Andrews et al., 2018): This is a parsimonious

mixture of t-distributions with the same type of covariance constraints as that in

GMM from mclust package. The BIC is used to select the best-�tting component

count and covariance constraint.

ˆ PGMM from the R packagepgmm (McNicholas et al., 2018): This is a parsimonious

mixture of Gaussian factor analyzers, where the factor loadings� g and random error

covariance	 g are constrained to reduce the number of free parameters. The BIC is

used to select the best component count, factor count and the model constraint.

ˆ PL, SP1, SP2, SEN: They are the four �nite mixtures of penalized factor an-

alyzers employing the penalty corresponding to the abbreviations. Hyperparam-

eter selection is done in two stages: factor analyzer-related quantities �rst, then

penalty-related quantities. An un-penalized �nite mixture of factor analyzers are

�tted to select the best component and factor counts. Then, if SEN is used, for each

� 2 f 0; 0:1; 0:2; : : : ; 1g, the penalty coe�cients � g are selected, then the penalized

model is �tted. Selection of� g is done over a grid its range is set according to section

3.2.6. For PL, SP1 and SP2, the� selection process is skipped.
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To avoid premature stopping of the parameter estimation, Aitken's acceleration with

threshold � = 0:01 is used as the model convergence criterion whenever the software pack-

age accommodates it. Otherwise, the packages' default convergence criteria were used. The

clustering performance is measured by the Adjusted Rand Index (ARI). We consider two

simulations and two real data analyses. For simulations, we conduct the following.

i) Change in factor loading sparsity and rank as penalty increases. We study

the change in sparsity and the rank of the factor loading estimate as the penalty

coe�cient � increases. This experiment is intended to show that direct penalization

on the loading can result in rank-de�cient estimates, and that the SP1, SP2 and SEN

are robust to rank-de�ciency.

ii) The e�ect of mixing coe�cient � g. We study the e�ect of varying � g value on

the resulting mixture model.

For real data illustration, we discuss the following data sets.

i) Wine data. We perform clustering on the Wine data set, as a benchmarking test

against other model-based clustering methods in a high-dimensional setting.

ii) Movehub data. We perform clustering on the Movehub quality-of-life data set. We

pay particular attention to the interpretability of the resulting model.

3.3.1 Change in Factor Loading Sparsity and Rank

We study the e�ect of increasing penalty coe�cient � on the sparsity and the rank of

the factor loading estimate. The four penalized methods - PL, SP1, SP2 and SEN - are

tested. Since the factor loading estimate is of primary concern, we simulated 1-component

Gaussian data set with zero mean for this experiment. The considered sample sizes (n) and

data dimensions (p) are n = 100; 500 andp = 5; 50 respectively. Forp = 5, the true number
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of factors isq = 2. For p = 50, the true number of factors isq = 5. The factor loading and

the covariance for the random noise used to simulate the data set are as follows.

� 5� 2 =

2

6
6
6
6
6
6
4

0:1 1:4

� 0:5 2

1 � 2

0 0

0 0

3

7
7
7
7
7
7
5

; � 50� 5 =

2

6
6
6
6
6
6
6
6
6
4

0:1 1:4 � 0:5 2 1

� 2 1 1:5 � 3 0

3:1 2:5 0 1 � 1

0 0:1 � 4 2 0

0:5 0 2 0 � 1

045� 5

3

7
7
7
7
7
7
7
7
7
5

	 5� 5 = 2I 5; 	 50� 50 = 2I 50

With regards to the hyper-parameter setup, to avoid confounding e�ect between parame-

ters, the true number of components and factors are used when �tting the model. Theg

subscript is dropped for notational brevity. For each combination of (n; p), the experiment

was replicated 500 times, each with a newly-generated data set.
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Figure 3.2: Plots of median rank and sparsity against penalty coe�cient � 2 [0; 1]. The top plot is for
(p; q) = (5 ; 2) dimensional case, and the bottom plot is for (p; q) = (50 ; 5) dimensional case. In each panel,
the top row is for sample sizen = 100, and the bottom row is for sample sizen = 500. The left column
contains the plots of estimated factor loading's column rank, and the right column contains the plots of
the proportion of zero entries in the estimated factor loading. The solid line is for PL, the dashed line is
for SP1, the dotted line is for SP2, and the dot-dash line is for SEN.
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p = 5 PL SP1 SP2 SEN
n = 100 0.40 0.64 2.69 4.11
n = 500 1.48 2.95 4.05 5.04

p = 50 PL SP1 SP2 SEN
n = 100 16.49 6.27 15.03 14.72
n = 500 30.36 21.34 30.14 29.95

Table 3.1: Table of median elapsed time (in seconds) all (n; p) pairs tested. The top table
is for the p = 5 case, and the bottom table is for thep = 50 case. In each table, the top
and bottom rows are forn = 100 and n = 500 cases respectively. The columns correspond
to each model tested, marked by their abbreviations.

Figure 3.2 is the set of plots generated from experiments with (p; q) = (5 ; 2) dimensional

data. The left column contains the plots of estimated factor loading's column rank, and

the right column contains the plots of the proportion of zero entries in the estimated factor

loading. The top row is for sample sizen = 100, and the bottom row is for sample size

n = 500. Consider the left column of this �gure. The PL shows a rapid reduction in factor

loading column rank as� increases. Contrarily, all of SP1, SP2 and SEN maintain the full

column rank, as expected. On the right column, we see a rapid increase in the proportion of

zero entries in the factor loading estimates generated by PL model. A trade-o� for the SP1,

SP2 and SEN is the reduced sparsity proportion. In practice, one may use the upper bound-

setting method for � outlined in Hirose and Yamamoto (2015) to avoid over-penalization

of factor loading. However, in all simulated cases in this experiment, the estimated upper

bound on � was 0 for every replication despite the true factor loading being quite sparse.

Because an upper bound of 0 forbids any penalization, the merit of a penalized model is

lost. The SP1, SP2 and SEN are robust against this issue, as they are a lot less sensitive

to the increasing� value. Thus, they can alleviate the burden of penalty coe�cient tuning.

Another trade-o� is the increased computation time in a low-dimensional setting. Table

3.1 shows the median elapsed time for the tested models under each of (n; p) case. Here,

we see that the PL is the most computationally e�cient with the median elapsed time of

0.40 seconds and 1.48 seconds for (n = 100; p = 5) and (n = 500; p = 5) cases respectively.

However, the rank-preserving penalties gain an edge in a high-dimensional setting. The
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bottom table in table 3.1 shows similar levels of median elapsed time for bothn = 100 and

n = 500 cases. Indeed, this is promising for the SEN since sparse parameter estimates are

more desirable in higher dimensions. The SP1 was consistently cheaper computationally

than the SP2 in all scenarios.

3.3.2 The E�ect of Mixing Coe�cient � g

As SEN allows a 
exible mixture of sparsity from SP1 and shrinkage from SP2, one might

be inquisitive of the e�ect of mixing coe�cients � g on the resultant model. To emulate a

realistic use case, we simulate a 2-component mixture of 2-dimensional Shifted Asymmetric

Laplace (SAL) distributions from the R package MixSAL by Franczak et al. (2018). SAL

distribution is a skewed distribution parametrized by location vector� , skewness direction

vector � , and a positive de�nite scale matrix� . An example of a 2-component mixture of

SAL distributions is given below.

Figure 3.3: An example of 2-component mixture of 2-dimensional SAL distributions.
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The considered sample sizes aren = 100; 200; 300; 400, and the parameter set for data

generation is given below.

� 1 = � 2 = 0:5

� 1 = (0 ; 0)0; � 2 = ( � 2; 5)0

� 1 = (2 ; 2)0; � 2 = (1 ; 2)0

� 1 =

"
1 0

0 1

#

; � 2 =

"
1 0:5

0:5 1

#

In the experiment, we �t a GMM with SEN on the simulated data, where the number of

components and factors are �xed atG = 2 and q = 1 to isolate the e�ect of the mixing

coe�cient on the model, and we set� 1 = � 2. At each sample size, the experiment was

replicated 500 times, each with a newly-generated data set.
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