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Abstract

The advances in robotics have enabled many different opportunities to deploy a mobile
robot in various settings. However, many current mobile robots are equipped with a sensor
suite with multiple types of sensors. This expensive sensor suite and the computationally
complex program to fully utilize these sensors may limit the large-scale deployment of these
robots. The recent development of computer vision has enabled the possibility to complete
various robotic tasks with simply camera systems. This thesis focuses on two problems
related to vision-based mobile robots: depth perception and motion control.

Commercially available stereo cameras relying on traditional stereo matching algo-
rithms are widely used in robotic applications to obtain depth information. Although their
raw (predicted) disparity maps may contain incorrect estimates, they can still provide use-
ful prior information towards more accurate predictions. We propose a data-driven pipeline
to incorporate the raw disparity to predict high-quality disparity maps. The pipeline first
utilizes a confidence generation component to identify raw disparity inaccuracies. Then a
deep neural network, which consists of a feature extraction module, a confidence guided
raw disparity fusion module, and a hierarchical occlusion-aware disparity refinement mod-
ule, computes the final disparity estimates and their corresponding occlusion masks. The
pipeline can be trained in a self-supervised manner, removing the need of expensive ground
truth training labels. Experimental results on public datasets show that the pipeline has
competitive accuracy with real-time processing rate. The pipeline is also tested with im-
ages captured by commercial stereo cameras to demonstrate its effectiveness in improving
their raw disparity estimates.

After the stereo matching pipeline predicts the disparity maps, they are used by a pro-
posed disparity-based direct visual servoing controller to compute the commanded velocity
to move a mobile robot towards its target pose. Many previous visual servoing methods
rely on complex and error-prone feature extraction and matching steps. The proposed
visual servoing framework follows the direct visual servoing approach which does not re-
quire any extraction or matching process. Hence, its performance is not affected by the
potential errors introduced by these steps. Furthermore, the predicted occlusion masks are
also incorporated in the controller to address the occlusion problem inherited from a stereo
camera setup. The performance of the proposed control strategy is verified by extensive
simulations and experiments.
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Chapter 1

Introduction

1.1 Motivation and Problem Definition

In domestic, commercial, and industrial settings, deploying intelligent mobile robots to
complete various tasks (e.g., cleaning, social interaction, and material handling) has become
more and more popular. In order to obtain accurate information from the environment
and perform safe navigation, these robots are typically equipped with a sensor suite. The
sensor suite may include some costly sensors, like a light detection and ranging (LiDAR)
sensor. Additionally, utilizing multiple sensors to obtain high-quality information also
requires careful calibration of these sensors. Furthermore, various sensor fusion techniques
may be necessary to properly combine the captured information, which can lead to complex
software design. All of the above disadvantages increase the difficulty of large-scale robot
deployment.

Although the sensor suite with various types of sensors is traditionally needed for many
robotic tasks, the recent development in computer vision has introduced new solutions to
these tasks with the use of camera systems only. By reducing the robot’s onboard sensors
from a complete suite to just a few cameras, deploying an intelligent robotic system can
become simpler and more cost efficient. In this thesis, we focus on the use of cameras in
two specific robotic tasks: depth perception and motion control.

Previously, vision-based depth perception is often achieved by stereo cameras through
various traditional stereo matching algorithms [41, 67]. Decades of research has improved
the accuracy and real-time performance of these algorithms in many scenarios. However,
their predictions, known as disparity, are still prone to erroneous or inaccurate estimates,
especially in ambiguous (e.g. textureless, occluded, and highly reflective) regions.
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Recently, using a deep neural network (DNN) trained with a large dataset of images
has shown impressive results in vision-based depth perception. These data-driven depth
perception methods are designed for either monocular or stereo cameras. As discussed
later in Chapter 3, the stereo approaches are typically more reliable than the monocular
ones. Among DNNs developed for stereo cameras, the ones trained in a supervised manner
have outperformed traditional stereo matching algorithms and achieved state-of-the-art
performance [51, 9, 103, 100, 14]. However, large datastes with ground truth labels are
required to train these networks. These datasets are difficult and time consuming to collect.
Hence, this shortcoming increases the difficulty of re-training a supervised approach to
improve its accuracy when the input images are significantly different from its training
images. To address this disadvantage, researchers have studied self-supervised stereo DNNs
[109, 59, 104, 62, 95] that do not require any ground truth labels for training. However,
these methods suffer from low accuracy and/or slow runtime, which limits their use in
robotic applications. One of the focuses of this thesis is to develop a deep learning-based
self-supervised stereo matching pipeline that can compute high-quality disparity estimates
in real-time.

We further investigate vision-based motion control framework for mobile robots with
the use of a stereo camera. Using image data to control a robot, known as visual servo-
ing [46, 12], has been studied in the past decades. Visual servoing algorithms compute
appropriate control signals by comparing a set of properties derived from image data to
the reference ones. Traditionally, these algorithms [23, 38, 83, 11, 42, 18, 7] rely on var-
ious image processing approaches to extract image features and match them across dif-
ferent frames. These complex image processing algorithms may introduce errors, such as
mismatched and unmatches features, into the controller. Therefore, the feature extrac-
tion and matching steps are often the limiting factors of the visual servoing algorithms
[16, 87]. These limitations are addressed in some recent direct visual servoing approaches
[16, 2, 3, 87] by utilizing features at constant pixel locations, which eliminates the need
of feature extraction or matching. In these existing visual servoing algorithms, incorpo-
rating a stereo camera in the controller design is not a new concept [38, 7]. However,
these stereo-based visual servoing approaches are still limited by the error-prone feature
extraction and matching steps. Using a stereo camera in a direct visual servoing scheme
is yet to be explored. Therefore, the other focus of this thesis is to design a direct visual
servoing algorithm for a mobile robot that is equipped with a stereo camera by exploiting
the estimation from the proposed stereo matching pipeline.
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1.2 Contribution

To improve self-supervised stereo matching, we propose a data-driven occlusion-aware
stereo matching pipeline with confidence guided raw disparity fusion. As pointed out
previously, the disparity computed by a traditional stereo matching algorithm (raw dis-
parity) may be erroneous at ambiguous regions. The estimates for other regions, however,
are often accurate. A DNN can utilize these accurate raw disparity estimates as prior
information to enhance its accuracy. In order to fully exploit this prior, our pipeline first
computes a confidence map for a given raw disparity image. With the guidance of the
computed confidence map, the raw disparity is used in a self-supervised DNN that predicts
a more accurate disparity map and its corresponding occlusion mask. Since the DNN is
based on a lightweight design, our stereo pipeline can achieve real-time processing rate.
Experiments on various public and custom datasets demonstrate the effectiveness of the
proposed pipeline.

We further design a direct visual servoing algorithm for a mobile robot based on the
predicted disparity maps. The controller is derived according to the relationship between
the stereo camera’s velocity and the predicted disparity maps. In the proposed controller
design, the predicted disparity maps are used to compute the control signals without the
need of error-prone feature extraction or matching. Furthermore, the predicted occlusion
maps are also incorporated into an occlusion-aware controller to address the occlusion
problem originated from a stereo camera setup. The performance of the proposed controller
is verified through extensive simulations and experiments.

1.3 Organization

The remaining of this thesis is organized in the following structure. In Chapter 2, back-
ground information and literature review related to depth estimation and visual servoing
are given. The performance of various existing deep learning-based depth estimation algo-
rithms is compared in Chapter 3. From this comparison, stereo approaches are identified
as the more reliable solution. Based on this finding, Chapter 4 introduces and verifies the
design of the proposed self-supervised stereo matching pipeline with confidence guided raw
disparity fusion. After the discussions on the stereo pipeline, the design of the proposed
direct disparity-based visual servoing framework is presented in Chapter 5 with verifica-
tion through simulations and experiments. Lastly, the conclusion and recommended future
work are given in Chapter 6.
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Chapter 2

Background and Literature Review

2.1 Depth Estimation

2.1.1 Overview on Depth Estimation

In robotics, depth perception refers to the ability of a robot to detect its distance from other
objects in the environment. Through decades of research and development, researchers and
engineers have developed different approaches to capture depth information. Some of these
methods rely on time-of-flight (ToF) sensors, while the others only require cameras.

Depth Estimation with Time-of-Flight Sensors

A ToF depth sensor consists of an emitter and receiver. The emitter emits light rays into
the scene while the receiver captures the returning light rays. Either the time difference or
phase shift between the emitted light and returning light is used to calculate the distance
[1].

Common ToF depth sensors include Microsoft Kinect v2 sensors [24] and Velodyne’s
LiDAR systems [93]. There are some limitations associated with these ToF systems. For
example, the receiver may capture multiple returning light rays from the same object,
which leads to ambiguity in depth. Additionally, if the sensor or the objects in the scene
move during a time period between a light ray’s emission and return, the predicted depth
may be inaccurate [26]. Furthermore, LiDAR systems can only compute sparse depth
maps, and their high cost poses limitations on their use on robots [108].
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Depth Estimation with Cameras

Computing depth with camera images is a popular alternative to ToF sensors since cameras
are more cost-efficient and they can capture more semantic information [108]. Traditionally,
stereo cameras are widely used for depth perception through a stereo matching algorithm.
Recently, the advancements in deep learning has inspired researcher to revisit this problem
with data-driven solutions.

A stereo camera is composed of two lenses to simulate human’s binocular vision to
infer depth. With a stereo camera, users can obtain two images of the same scene at the
same time. If an object in the scene is visible in both images, the pixels associated to this
object from both images form a corresponding pair. Given a pixel on one of the stereo
images, finding its correspondence on the other view is the key to obtain stereo-based depth
perception. Searching the correct correspondence is typically a computationally expensive
process. To simplified this search, rectification is often performed on the stereo images so
that the search is limited to a 1D scan line. This simplified search is referred as stereo
matching. After the correct pixel correspondence is identified, the distance, known as
disparity, between the pixels forming a corresponding pair can be found. Depth can then
be computed from this disparity by

z =
bf

d
, (2.1)

where z is the depth, b is the known camera baseline or distance between the two lenses, f
is the camera’s focal length in pixels, and d is the disparity in pixels [86]. Based on (2.1),
estimating depth is equivalent to estimating disparity in a stereo setup since both baseline
and focal length are usually available.

Although stereo cameras with a traditional stereo matching algorithm have been widely
used in robotics, they still suffer from multiple problems that lead to incorrect, missing or
noisy disparity estimates. Due to the physical setup of stereo cameras, some objects in
the scene are only visible in one view but not the other, which is known as occlusion. The
disparity estimates for these objects in the occluded regions are usually either incorrect or
missing. Additionally, textureless regions in the images also impose difficulties on correct
correspondence search [108]. Some active stereo cameras [52] attempt to solve the latter
problem by adding textures to textureless regions by projecting artificial infrared light
patterns to the scene. However, this method fails easily if the scene is flooded by strong
natural illumination. The infrared lights from strong natural lighting can overwhelm the
artificial patterns easily.

In addition to the traditional methods, the recent successes of deep learning in computer
vision have opened the door for solving vision-based depth estimation with data-driven

5



approaches. Stereo matching algorithms based on DNNs have achieved state-of-the-art
performance. The accuracy at occluded and textureless regions has also been improved [51].
Furthermore, DNNs even allow depth estimation from only monocular images captured by
even cheaper monocular cameras.

2.1.2 Traditional Stereo Matching Algorithms

According to the analysis by Scharstein et al. [82], traditional stereo matching algorithms
follow four general steps: matching cost computation, cost aggregation, disparity compu-
tation/optimization, and disparity refinement. At the matching cost computation step,
each pixel or its neighborhood from one view of the stereo images is compared against all
candidate correspondences on the other view. Then the matching cost is often aggregated
within a support region in both the spatial domain and the disparity space to improve
the robustness of stereo matching. A disparity map is regressed from the aggregated cost
according to certain criteria. Lastly, the disparity map is optionally refined to achieve
subpixel-level precision, detect occlusion, and/or remove noise.

Following these four general steps, traditional stereo matching algorithms can be cate-
gorized into local, global, and semi-global methods. Local methods [58, 105] usually adopt
the winner-take-all strategy to select disparity from the matching cost. Global methods
[56, 57] minimize a global energy function to achieve better accuracy at the cost of higher
computational expenses. Semi-global matching (SGM) [41] combines the benefits of lo-
cal and global methods by approximating global optimization in multiple local regions.
Due to their accuracy and efficiency, SGM and its variants are widely used by commercial
stereo cameras. For example, the Intel RealSense cameras [52] compute disparity using the
AD-Census algorithm [67], which is a variant of SGM.

2.1.3 Deep Learning-based Depth Estimation

In recent years, deep learning has been widely used in various computer vision tasks, in-
cluding vision-based depth estimation. These approaches often involve a carefully designed
deep learning model (a DNN) and an optimization function (training loss). Prior to de-
ploying (testing) these models in applications, they need to undergo a training process.
In training, the model uses image data from a dataset to estimate the depth. Then the
training loss is computed by the estimated depth and some supervisory signals. An opti-
mization scheme, typically based on stochastic gradient descent [36], is used to update the
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model parameters according to the training loss through back propagation. These data-
driven depth estimation approaches can be categorized into monocular depth estimation
and stereo depth estimation based on the types of input data. Alternatively, they also
fall into either supervised or self-supervised category depending on whether ground truth
depth labels are used as the supervisory signals or not.

Depth Estimation with Monocular Images

Deep learning-based monocular depth estimation was first explored in a supervised manner.
The early design in [22] first predicts a coarse depth map with a monocular red-green-
blue (RGB) image input. The coarse depth map is later refined with the RGB image
as a guidance. Some researchers integrated DNNs with other algorithms like conditional
random fields [60] and random forest [79] for better depth prediction. Jung et al. [50] used
an adversarial network to predict more realistic depth maps. Wofk et al. [98] designed a
lightweight model to enable monocular depth estimation on embedded systems.

One common problem in supervised learning is the difficulty in collecting the training
dataset. Dense and accurate ground truth depth labels are required in this training scheme.
These labels are typically time consuming to collect [29]. To remedy this challenge, self-
supervised models are proposed.

There are two different approaches in self-supervised monocular depth estimation. The
first one utilizes stereo images in training and only predicts depth with monocular images
in testing. Garg et al. [29] predicted a depth map by using the left stereo image as an
input. The predicted depth map is converted to disparity by reversing (2.1). Using the
disparity map and the right stereo image, the algorithm constructs a synthetic left stereo
image. The photometric difference between the actual and synthetic left images is the main
supervisory signal to train this model. Godard et al. [34] followed the similar idea with an
additional left-right consistency check to improve the quality of the predicted depth maps.

An alternative approach is to use monocular videos as training data and design an
algorithm to mimic structure from motion. Zhou et al. [111] provided the first solution
based on this approach. Their model consists of two components: a depth network and a
pose network. The depth network computes a depth map from an RGB image captured
at a particular time step. Using the same RGB image as a target and a temporally
adjacent RGB image as a source, the pose network predicts the camera transformation
between these two frames. By using the camera transformation and predicted depth, the
source image can be projected to the same reference frame as the target image. The
photometric difference between the original target image and the projected image is used

7



to train the model. Building upon this pioneering work, Casser et al. [8] explicitly modeled
object motion to predict depth in a dynamic environment. Chen et al. [13] incorporated
online optimization into their model. Godard et al. [35] modified the loss function to
further improve the accuracy. Some other works derived from [111] attempt to tackle more
difficult indoor scenarios with many ambiguous regions by either using optical flow [110]
or superpixels [101] as additional information for training.

Although self-supervised approaches remove the reliance on ground truth datasets that
are challenging to collect, they introduce other limitations. For examples, the approaches
relying on stereo images for training require a stereo camera to collect the training data,
which introduces cost in addition to the monocular camera. On the other hand, self-
supervised models trained with monocular videos only require one monocular camera for
data collection, but they suffer from scale ambiguity. This problem arises from the pre-
dicted camera transformation that is only unique up to scale. To remedy this limitation,
previous works often scale the predicted depth maps such that their median depth is the
same as the median of the ground truth depth maps [111]. From this perspective, ground
truth supervision is still used in these methods.

Depth Estimation with Stereo Images

Similar to monocular depth estimation, deep learning-based stereo depth estimation was
also first introduced as a supervised approach. The early attempt from [102] replaces
the matching cost computation step in SGM with a convolutional neural network (CNN).
Kendall et al. [51] designed an end-to-end DNN to mimic the four general steps for stereo
matching from [82]. Their model first extracts high-level features from the input stereo
images with multiple 2D convolutional layers. The extracted left features are concatenated
with the right features to form a matching cost volume with the latter shifted according to
the disparity candidates. The cost aggregation step is replaced by applying 3D convolutions
to the cost volume. Lastly, disparity is regressed via a differentiable soft argmin operation.
In this method, explicit reasoning is utilized to search the correct correspondence and
disparity according to the left features and all right candidate features.

By following the framework outlined in [51], researchers have designed numerous net-
works to improve the accuracy in data-driven stereo matching. Chang and Chen [9] adopted
spatial pyramid pooling [39, 106] to incorporate more contextual information into their
model to improve accuracy at ambiguous regions. Zhang et al. [103] redesigned the cost
aggregation module to reduce the number of expensive 3D convolutional layers in [9].
Khamis et al. [53] used a compact matching cost volume and a hierarchical refinement
module guided by the input images to improve the real-time performance of their method
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while maintaining high accuracy. Xu and Zhang [100] replaced all 3D convolutions with
2D deformable convolutions [17], which further increases accuracy and decreases runtime.
Huang et al. [45] utilized deformable convolutions to perform fast occlusion-aware stereo
matching. Cheng et al. [14] found the best network design in training through neural
architecture search and reached state-of-the-art accuracy.

Similar to supervised monocular depth estimation, supervised stereo matching also
suffers from the challenging process to collect training datasets with ground truth. There-
fore, self-supervised training is also another popular research direction. To realize a self-
supervised method, Zhou et al. [109] iteratively selected regions on stereo images with
high confidence to complete stereo matching. Joung et al. [49] also relied on confidential
matches and included additional smoothness constraints to handle non-matching pixels.
Li and Yuan [59] first predicted occlusion masks for the image inputs and then performed
occlusion-aware disparity prediction. Tonioni et al. [90] designed a modular network to
allow online adaptation in a self-supervised manner. Wang et al. [95] incorporated a par-
allax attention mechanism into their network. While significant advancements have been
made in self-supervised stereo matching, these methods still have low accuracy and/or low
frame rate.

To further improve the model’s performance, researchers have proposed some alterna-
tive approaches to include more information into either the model itself or the training
process. Both Dovesi et al. [20] and Zhang et al. [104] jointly predicted semantic seg-
mentation and disparity with their proposed models while the semantic cues help refine
disparity. Liu et al. [62] used both stereo and temporally adjacent images to train their
network. Additionally, there have been a few attempts to incorporate disparity estimates
from a traditional stereo matching algorithm into a DNN. Ferrera et al. [25] fused disparity
maps obtained by a traditional stereo matching algorithm into a light DNN to predict more
accurate disparity in real-time. Instead of treating disparity from a traditional algorithm
as an input to the DNN, Tonioni et al. [89] used a DNN to compute the confidence map
of this raw disparity. The confidence map can filter its corresponding raw disparity map
to obtain more reliable supervisory signal to train a stereo matching model. Wang et al.
[94] designed a novel pyramid voting module to compute accurate and semi-dense disparity
maps as the training labels for their DNN. All of these methods other than [25] do not
attempt to incorporate raw disparity as the model’s input. Although this approach has
been investigated in [25], their model is designed as a supervised method. The potential
of fusing raw disparity into a self-supervised stereo DNN is yet to be explored.
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2.2 Stereo Matching Confidence

As mentioned previously, raw disparity computed by a traditional stereo matching algo-
rithm may contain errors at ambiguous regions. In some applications, it is necessary to
identify these inaccuracies by quantifying the confidence of the raw disparity map. Re-
cently, Poggi et al. [76] provided a comprehensive review on different approaches to esti-
mate stereo matching confidence. Some of the confidence measures require the matching
cost properties [37, 43, 54], e.g., the matching cost for different disparity candidates. Other
methods are based on the consistency between the disparity maps computed from the left
stereo images and from the right stereo images [21, 43], respectively. Additionally, some
methods focus on analyzing certain features of the predicted disparity maps themselves
only [74, 84]. Furthermore, deep learning has also been applied to disparity confidence
generation [28, 77, 91].

2.3 Visual Servoing

Visual servoing algorithms utilize image data to generate the control actions to move a
robot equipped with a camera. Both [46] and [12] have provided comprehensive overviews
of these approaches. The basic formulation of visual servoing algorithms [46] follows

v = −λL+
s (s− sref ) , (2.2)

where v denotes the velocity of the camera capturing the image, λ > 0 denotes the con-
troller gain, L+

s is the pseudoinverse of an interaction matrix Ls, s is a vector of image
properties derived from the image data, sref denotes these properties’ desired values cap-
tured at the robot’s target pose. Note that v ∈ R6 if the camera is free to move in a 3D
space with six degrees of freedom (DOF) and v ∈ R3 if the camera motion is constrained
on a 2D plane. The former scenario is common in applications with a robot manipulator,
while the latter is typically seen on a mobile robot. The interaction matrix describes the
relationship between the rate of change of the image property vector ṡ and the camera
velocity as

ṡ = Lsv. (2.3)

Depending on how the image-based properties are used by the controller, these algorithms
can be categorized into two classes: position-based visual servoing (PBVS) and image-
based visual servoing (IBVS).
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2.3.1 Position-based Visual Servoing

In PBVS, a pose estimation algorithm uses images captured by a camera to compute
estimates for pose control. Essentially, the image-based property vector s used in (2.2)
is the estimated pose and s∗ is the target pose in PBVS algorithms. By considering the
image coordinates of several feature points on an object, Wilson et al. [97] utilized an
extended Kalman filter (EKF) to predict the relative pose between the object and the
camera mounted on a robot. The difference between the estimated relative pose and the
reference relative pose is treated as a feedback signal to control the robot. PBVS is later
extended in [88] to ensure the object needed for image-based pose estimation remains in
the camera’s field of view during the entire motion. The designed controller then moves
the camera towards its target pose according to this criterion. Although PBVS algorithms
can exploit image data to compute control actions for pose control, their performance is
dependent on accurate camera calibration and high-quality pose estimates [7, 10].

2.3.2 Image-based Visual Servoing

To apply IBVS algorithms, a reference image is first captured at the robot’s target pose.
The difference between the image properties based on the same image features at the
current frame and at the reference frame serves as an error signal for a controller to generate
the appropriate control actions. A popular choice of such a property vector s in IBVS is
the image coordinates of a set of image features. To identify the same image features at
both the current and target frames, image processing techniques are adopted to extract
these features and match them across different frames.

Traditional IBVS approaches have been designed according to different image features.
In the early work [23], simple visual features (e.g., points, straight lines, and circles) are
extracted for visual servoing. In [38], a stereo camera captures a pair of stereo views for
the same corner feature. Based on this shared feature and the epipolar constraint, a con-
trol algorithm is proposed. Shademan and Janabi-Sharifi [83] adopted the Scale-Invariant
Feature Transform (SIFT) [63] for robust feature selection and matching in their control
framework. Chaumette [11] first performed segmentation on the images and computed
the image moments for these segments. The moments then serve as the image features
in visual servoing. The uses of image moments and SIFT are combined in [42]. The
Speeded-Up Robust Features (SURF) [4] are also considered in visual servoing [18]. Cai
et al. [7] used color as the image features in their visual servoing approach designed for an
uncalibrated stereo camera. Although the above IBVS methods show that images can be
used for motion control without the need of pose estimation, the complex image processing
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algorithms to extract and match image features can introduce errors, such as mismatched
and unmatched features. Hence, feature extraction and matching are often the bottleneck
in IBVS [16, 87].

Recently, direct visual servoing has been studied to address the above limitation. In
these approaches, the property based on image features is obtained according to all pixels
in the image. Since all pixels are considered, feature extraction or matching is no longer
necessary. Researchers have explored the use of color intensities [16], image histograms [3],
photometric moments [2], wavelet coefficients [73], and images in the frequency domain [65]
for direct visual servoing. Note that depth from the camera to the objects in the scene is
typically required in these IBVS schemes. Therefore, Teuliere and Marchand [87] exploited
the depth information generated by a red-green-blue-depth (RGB-D) camera directly in
their visual servoing design. Their work has shown that depth maps from an RGB-D
camera already contain useful information to achieve the control goal. Besides RGB-D
cameras, stereo cameras are also widely used in robotics for depth perception. However,
applying the stereo setup in direct visual servoing is yet to be studied.

Lastly, it is important to point out that the above visual servoing algorithms typically
assume the camera is integrated with a robot manipulator capable of 6-DOF motion. The
motion of the camera attached to a mobile robot, on the other hand, are constrained to a
2D plane with only 3 DOFs. Some researchers have extended different IBVS algorithms
to mobile robots, such as visual servoing using SIFT features [27] and using depth maps
[99, 61].
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Chapter 3

Comparison of Existing Depth
Estimation Approaches

As outlined in Chapter 2, various data-driven vision-based depth estimation algorithms
have been proposed. This chapter provides a comparison between some selected models and
summarizes their advantages and disadvantages. This summary serves as the foundation
and reference for the proposed depth estimation pipeline.

Six different models with open-source implementation, including Monodepth2 [35],
P2Net [101], PSMNet [9], GA-Net [103], StereoNet [53], and AANet [100], are selected
for this comparison. The first two approaches predict depth from monocular images. Mon-
odepth2 provides a simple solution to achieve state-of-the-art performance, while P2Net
is designed for more accurate depth estimation in indoor environments. Although Mon-
odepth2 and P2N are trained in a self-supervised manner, their reported accuracy has
surpassed many supervised methods. Among the selected stereo models, PSMNet adopts
spatial pyramid pooling [39, 106] to increase accuracy of stereo matching at ambiguous
regions. Through a sophisticated cost aggregation module, GA-Net estimates highly accu-
rate disparity. Both StereoNet and AANet predict disparity maps with high accuracy and
high frame rate.

The reported accuracies of these six models are based on different datasets and different
error metrics. This inconsistency in evaluation makes comparing these methods directly
according to their published results difficult. Hence, to facilitate better comparison, these
models are evaluated by two custom datasets collected by an Intel D435 camera [52] with
the use of each model’s pretrained parameters provided by the model’s authors/developers.
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3.1 Datasets

Both datasets were collected indoors with the camera mounted on a Turtlebot2 [69]. Each
instance of the datasets consists of a pair of stereo infrared (IR) images, a depth map com-
puted by the onboard stereo matching algorithm, and an RGB image. All of these images
were recorded to a laptop when the Turtlebot navigated in the indoor environments. Syn-
chronization was performed offline to group the images into different instances according
to their timestamps. Note that the depth image aligns with the left IR image, while the
RGB image does not line up with either of the stereo views. The depth estimation models
only use the left or both IR images to infer depth, depending on whether the method is a
monocular or stereo algorithm. The RGB image just provides a better visualization of the
scene.

In this chapter, these two datasets are referred to as the Flight Arena dataset and the
Hallway dataset according to where they were recorded. The Flight Arena dataset includes
19 frames with items commonly found in an office/lab setting. There are 105 frames in
the Hallway dataset with difficult scenarios, such as large textureless regions and specular
reflection. Figure 3.1 shows some sample images from these two datasets.

Left IR Right IR RGB Depth

(a)

Left IR Right IR RGB Depth

(b)

Figure 3.1: Sample images from the (a) Flight Arena dataset and (b) Hallway dataset.
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3.2 Results

The results of each model are reported in the following error metrics: L1 error, root
mean squared error (RMSE), and percentage of inliers. Denote a predicted depth map as
Z ∈ RH×W

>0 and a ground truth depth map as Z∗ ∈ RH×W
>0 , where H and W are the height

and width of these images, respectively. Due to the lack of ground truth depth images in
either dataset, the depth maps computed by the camera are treated as the pseudo ground
truth Z∗ for evaluation. By considering an arbitrary pixel location p on the depth maps,
the L1 error is given by

L1 =
1

HW

∑
p

|Z(p)− Z∗(p)| , (3.1)

The RMSE is

RMSE =

√∑
p (Z(p)− Z∗(p))2

HW
. (3.2)

The percentage of inliers δε with respect to a predefined threshold ε [22] is defined as

δε =

∑
p 1ε

(
max

(
Z(p)
Z∗(p)

, Z
∗(p)
Z(p)

))
HW

, 1ε (x) =

{
1, x < ε

0, otherwise
, (3.3)

where max (·) returns the larger value of the two input arguments.

In addition to accuracy evaluation, memory consumption and processing rate for these
algorithms are also important considerations for their applications in robotics. This is
because the hardware on a robot is often limited while the algorithms typically need to
process information in real-time to ensure the robot’s safe operation. In this comparison,
the memory consumption is quantified by giga multiply-accumulate-operations (GMAC)
and number of model parameters. In computing, 1 MAC is equivalent to performing one
multiplication operation followed by one summation operation. GMAC quantifies how
many operations are needed to execute the model once with one input instance. The
processing rate of the model is measured by frame rate in frames per second (fps).

The results from accuracy evaluation on the Flight Arena dataset and the Hallway
dataset are shown in Table 3.1a and Table 3.1b, respectively. Both tables indicate that
the stereo methods can compute more accurate results than the monocular ones. During
training, the monocular methods implicitly map features extracted by the DNNs with
depth. If the features in the test image are significantly different from the ones from the
training dataset, it may be difficult for these models to find the accurate depth. However,
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stereo algorithms utilize explicit reasoning to search correspondences for even previously
unseen features, resulting in more robust predictions.

lower the better higher the better

Method L1 (m) RMSE (m) δ1.25 δ1.252 δ1.253

Monodepth2 [35] 0.5388 0.8748 0.5713 0.8285 0.9143

P2Net [101] 0.6862 1.0344 0.4323 0.7194 0.8654

PSMNet [9] 0.3793 0.6749 0.8426 0.9464 0.9841

GA-Net [103] 0.1818 0.3800 0.9622 0.9900 0.9952

StereoNet [53] 0.1780 0.3925 0.9439 0.9895 0.9971

AANet [100] 0.1793 0.4076 0.9540 0.9871 0.9940

(a)

lower the better higher the better

Method L1 (m) RMSE (m) δ1.25 δ1.252 δ1.253

Monodepth2 [35] 1.0201 1.5577 0.3297 0.6987 0.8687

P2Net [101] 1.1119 1.5942 0.2991 0.5947 0.8005

PSMNet [9] 0.6733 1.2482 0.7275 0.9012 0.9721

GA-Net [103] 0.2776 0.6739 0.9531 0.9899 0.9926

StereoNet [53] 0.4490 0.8399 0.8220 0.9419 0.9799

AANet [100] 0.3433 0.8127 0.9173 0.9746 0.9901

(b)

Table 3.1: Accuracy evaluation on (a) the Flight Arena dataset and (b) the Hallway
dataset.

By comparing the two monocular methods, it is surprising to find that P2Net is less ac-
curate than Monodepth2 even though P2Net is specifically designed for indoor applications.
This result may be explained by the camera setup used in this comparison. One advantage
of P2Net is to enforce the planar constraint at textureless regions that are commonly seen
in indoor scenarios. The Intel D435 camera used to record the datasets projects random
IR patterns into the scene. These IR patterns add textures to the textureless regions to
facilitate better stereo matching by the camera. Due to the lack of textureless regions in
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the recorded IR images, P2Net may not demonstrate its full potential.

Among all stereo methods, GA-Net, StereoNet, and AANet are significantly more ac-
curate than PSMNet. When inferring depth using the Flight Arena dataset, GA-Net,
StereoNet, and AANet all have similar accuracy. However, GA-Net outperforms the other
two methods considerably in the Hallway dataset as shown in Table 3.1b. This may be
caused by the more frequent presence of specular reflection in the Hallway dataset than in
the Flight Arena dataset as shown in Figure 3.1. This comparison suggests that GA-Net
is the most accurate method among all four stereo approaches.

Left IR Right IR Pseudo GT Depth

Monodepth2 P2Net PSMNet

GA-Net StereoNet AANet

Figure 3.2: Sample IR stereo images from the Flight Arena Dataset, pseudo ground truth
depth maps, and depth maps predicted by different algorithms.

Qualitative results for sample images from both datasets are shown in Figure 3.2 and
Figure 3.3. Although Monodepth2 and P2Net manage to preserve objects closed to the
camera (e.g., the column in Figure 3.2 and the wall in Figure 3.3), they fail to predict
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accurate distance for objects far away from the camera. All four stereo approaches capture
the general structure of the scene but the performance among them also vary. PSMNet,
GA-Net and AANet can preserve more details from the scene, which can be observed from
the more defined frame structure shown in Figure 3.2 and smoother wall and floor transition
in Figure 3.3. On the other hand, GA-Net and StereoNet can make better predictions for
objects far way from the camera. This is supported by comparing the distribution of yellow
regions in each of the predicted depth maps against the distribution in the pseudo ground
depth map.

Left IR Right IR Pseudo GT Depth

Monodepth2 P2Net PSMNet

GA-Net StereoNet AANet

Figure 3.3: Sample IR stereo images from the Hallway Dataset, pseudo ground truth depth
maps, and depth maps predicted by different algorithms.

In addition to accuracy comparison, Table 3.2 outlines the memory consumption and
frame rate of each approach. The frame rate is measured on a desktop with an NVIDIA
GTX 1660 Super GPU. The results show that the monocular methods can run significantly
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faster than the stereo approaches with fewer operations to compute a depth map. However,
the monocular models may consume more memory space than the stereo alternatives since
the monocular models use more parameters. Among all stereo approaches, StereoNet
consumes the least amount of memory with the highest frame rate.

lower the better higher the better

Method GMAC # of Param. Frame rate (fps)

Monodepth2 [35] 5.18 14.84M 24.22

P2Net [101] 4.66 14.84M 25.01

PSMNet [9] 601.54 5.22M 1.836

GA-Net [103] 1211.14 6.58M 0.1843

StereoNet [53] 32.83 399.81k 12.14

AANet [100] 118.21 3.44M 5.416

Table 3.2: Memory consumption and processing rate of each model.

All of the above observations from the comparison results can be summarized into
the following points. The monocular methods can process images at a higher processing
rate with the expense of more memory consumption. However, they fail to predict depth
maps with reasonable accuracy. Therefore, monocular depth estimation is excluded for
further considerations. On the other hand, the stereo methods are more superior than the
monocular ones in terms of accuracy. Although, GA-Net is the most accurate model among
all four stereo methods studied here, its frame rate is extremely low, which hinders its use
in robotic applications. By taking accuracy, memory, and runtime into considerations,
StereoNet offers a good balance between these factors. Therefore, it is used as a baseline
for further development.
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Chapter 4

Self-Supervised Stereo Vision with
Raw Disparity Fusion

In the previous chapter, StereoNet [53] has been chosen as a baseline model. One limitation
of StereoNet is its dependence on supervised training. Supervised training requires dense
and accurate ground truth labels that are difficult and time consuming to obtain. When
the model needs to be deployed in an unknown environment, its accuracy may degrade
considerably. It is not always feasible to gather a dataset with ground truth information
for re-training in a timely manner. Self-supervised training is a potential solution for this
shortcoming. However, the strong supervisory signals provided by ground truth labels are
not available in this training scheme. Therefore, the accuracy of self-supervised approaches
is often lower than that of supervised methods.

To enable more accurate self-supervised stereo matching, an important task is to iden-
tify useful supervisory signals other than the ground truth labels. Previous studies [89, 25]
have shown that raw disparity generated by a traditional stereo matching algorithm con-
tains strong prior information for stereo DNN. Although these works utilize certain ground
truth information, this finding may still be beneficial to self-supervised methods. Addi-
tionally, for a robot equipped with a commercially available stereo camera, the camera
can often compute this prior disparity information on its onboard computer through a
traditional stereo matching algorithm. Therefore, incorporating raw disparity in a self-
supervised stereo matching approach may also be applicable to robotic applications.

To fully explain and demonstrate the proposed design for self-supervised stereo match-
ing, this chapter first presents discussions on raw disparity maps and how they can provide
the proper prior information. Then the general architecture of the proposed approach is
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presented. The details of each component in the pipeline are given after the introduction of
the high-level overview. The performance of the pipeline is evaluated on publicly available
datasets and custom datasets collected by commercial stereo cameras.

4.1 Observations on Raw Disparity Maps

Commercial stereo cameras use pre-designed algorithms to compute raw disparity/depth
maps that are typically aligned with the left views. These algorithms are usually based on
traditional stereo matching methods due to hardware limitations. For example, the Intel
D435 [52] camera predicts depth from a variation of the AD-Census algorithm [52].

(a)

(b)

Figure 4.1: Sample left stereo views and their corresponding raw disparity maps computed
by (a) the SGBM algorithm and (b) an Intel D435 camera.

Sample raw disparity computed by traditional stereo matching algorithms are given in
Figure 4.1. Figure 4.1(a) shows a sample left RGB image from the Scene Flow dataset
[66] and the left disparity map computed by the semi-global block matching (SGBM) [71]
algorithm from the open-source OpenCV library [5]. Figure 4.1(b) shows the left IR image
and its corresponding raw disparity map obtained from an Intel D435 camera. Note that
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the camera’s output is the left depth map. The raw disparity map is converted from the
depth map by reversing (2.1).

Both samples show that the raw disparity maps from a traditional stereo matching
algorithm or from a commercial stereo camera contain both correct and incorrect infor-
mation. The raw disparity maps can capture the general disparity/depth of the scene.
However, there are many incorrect or missing estimates in ambiguous (e.g., textureless or
occluded) regions. At textureless regions (e.g., the gray cube in Figure 4.1(a) and the
floor area in Figure 4.1(b)), the algorithms fail to find correct correspondence for many
pixels, resulting in missing disparity estimates. Occluded areas present either at object
boundaries or the leftmost areas of the left raw disparity maps. These regions are only
visible in the left stereo view but not in the right view. Hence, the algorithms cannot make
correct predictions for these pixels, which also causes either missing or incorrect disparity
estimates.

Although the raw disparity maps struggle at textureless and occluded regions, their
ability to capture the general structure of the scene can still provide useful information.
If the erroneous or the missing disparity estimates are ignored or filtered out in Figure
4.1, the remaining estimates contain accurate information, which can serve as strong prior
knowledge for a stereo DNN.

4.2 General Architecture of the Proposed Pipeline

To fully utilize the raw disparity information, a self-supervised stereo matching pipeline
with confidence guided raw disparity fusion is proposed. It is assumed that a pair of
rectified stereo images and the corresponding left raw disparity map are available as inputs
to the pipeline. Note that the raw disparity map is restricted to the left view only because
many stereo cameras only provide disparity information for the left view. In this proposed
pipeline as shown in Figure 4.2, there are two main components: a confidence generation
process and a DNN named CRD-Fusion.

In the pipeline, the confidence generation process first computes the confidence map
given the raw disparity and stereo images. The confidence map provides an quantitative
measures on the accuracy of the raw disparity. It is later used to remove inaccurate raw
disparity estimates to obtain more reliable prior information. Next, the stereo images, raw
disparity map and the confidence map are utilized by the self-supervised CRD-Fusion net-
work. The DNN computes a more accurate disparity map with its corresponding occlusion
mask.
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Figure 4.2: Illustration of the proposed self-supervised stereo matching pipeline with con-
fidence guided raw disparity fusion.

4.3 Confidence Generation from Raw Disparity

Previous analysis on raw disparity maps has shown that they contain both accurate and
inaccurate disparity information. Including inaccurate raw disparity into the CRD-Fusion
network may cause erroneous final predictions. Therefore, the purpose of the confidence
generation step is to quantify the raw disparity accuracy at each pixel location in the form
of a confidence map.

Many of the confidence measures outlined in [76] have limitations which prevent their
use in this pipeline. The methods relying on matching cost properties [37, 43, 54] require
access to each pixel’s matching cost at different disparity candidates. Typically, users can
only retrieve the stereo images and the left raw disparity maps from a commercial stereo
camera since the stereo matching algorithm adopted by the camera is a black box to the
users. Intermediate values like matching cost are not accessible. Hence, these methods
can not be used in our pipeline. Additionally, methods depending on both left and right
disparity maps [21, 43] are also not applicable since the right disparity maps are not
usually available to the users. Lastly, learning-based methods [28, 77, 91] are typically
computationally expensive. Using them in the proposed pipeline may cause the entire
pipeline to be too computationally intensive, especially given that the downstream stereo
matching process is achieved by a DNN. Furthermore, re-training may be required if the
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input data are significantly different from the training data.

Based on the above constraints and limitations, two confidence measures are chosen for
the proposed use case: zero-mean sum of absolute difference (ZSAD) [37] and mean dispar-
ity deviation (MND) [74]. Neither of these methods require an expensive neural network.
Moreover, computing ZSAD only needs the stereo images and the left raw disparity maps,
while computing MND is only based on the raw disparity.

ZSAD is a confidence measure based on the difference between one stereo view and a
reconstructed view obtained from the other stereo image and disparity. Assume the left
rectified RGB image Il, right rectified RGB image Ir, and left raw disparity map D̃ are
available to the user. Additionally, all of these images have a spatial resolution of H ×W .
The ZSAD of a left-view pixel pl = (j, i), where j ∈ {1, ..., H} and i ∈ {1, ...,W}, is

ZSAD
(
pl
)

=
∑

q∈Nz(pl)

∣∣Il (q)− µ
(
Il
(
pl
))
− Ir (qr) + µ (Ir (pr))

∣∣ , (4.1)

where Nz(·) denotes a window centered at the specified pixel with a preset size for ZSAD
calculations, µ

(
Il (·)

)
and µ (Ir (·)) denote the average intensities of Nz(·) in the left view

and right view, respectively. The right-view pixel pr corresponding to pl is

pr = pl − D̃
(
pl
)

=
(
j, i− D̃

(
pl
))
. (4.2)

Similarly, for a selected pixel q within the neighborhood of Nz

(
pl
)

in the left view, its
correspondence qr from the right view is

qr = q− D̃ (q) . (4.3)

One problem arising from (4.2) and (4.3) is that the pixel indices from the left view (pl

and q) are whole numbers while their corresponding raw disparities (D̃
(
pl
)

and D̃ (q)) may
have subpixel-level precision. Therefore, the indices of the resulting pixel correspondences
(pr and qr) are not whole numbers. In order to obtain the intensity of these pixel corre-
spondences (Ir (pr) and Ir (qr)) from the right image, bilinear interpolation [48] is used.
Bilinear interpolation samples the pixels with whole-number indices adjacent to pr and qr

and then performs weighted average to obtain the intensity at these pixel correspondences.

Since ZSAD in (4.1) is a similarity score according to pixel intensity, it may be affected
by illumination and contrast of the stereo images. To minimize these effects, a simple
normalization strategy is used to rescale the ZSAD score as

ZSADn

(
pl
)

=
ZSAD

(
pl
)

µ
(
ZSAD

(
Il, Ir, D̃

)) , (4.4)
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where µ
(
ZSAD

(
Il, Ir, D̃

))
denotes the average of the entire ZSAD map obtained from

Il, Ir, and D̃.

Calculating confidence based on ZSAD only may lead to incorrect estimates, especially
at textureless regions. Figure 4.3 shows an image patch cropped from the RGB image
shown in Figure 4.1(a). The image patch is located at a textureless planar region with
smooth ground truth disparity. When a traditional stereo matching algorithm attempts to
find a match for the left-view pixels in this textureless region, many disparity candidates
may have similar matching costs. This is because the color intensities of the right-view
pixels corresponding to these disparity candidates may be visually similar to the left-view
pixels. Therefore, the algorithm can easily select the incorrect candidates according to the
ambiguous matching costs, which results in the noisy raw disparity shown in Figure 4.3.
When calculating ZSAD for this textureless patch, the right image is sampled according
to the raw disparity. Even with the presence of the inaccurate raw disparity esitmates, the
reconstructed image patch may be almost visually identical to the original patch in the
left view. ZSAD will therefore incorrectly assign high confidence level to this noisy raw
disparity patch.

Figure 4.3: Image patch of a textureless region and its corresponding ground truth and
raw disparity.

To properly calculate the confidence at textureless regions, we exploit the observation
that raw disparity at these regions may be noisy. MND quantifies the smoothness of a
disparity map and it is well suited in this use case. MND for pixel pl is found by

MND
(
pl
)

= −
∣∣∣D̃ (pl)− µ(D̃

(
pl
))∣∣∣ , (4.5)
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where µ
(
D̃
(
pl
))

is the mean raw disparity within a window Nm

(
pl
)

centered at pl with

a preset size.

The normalized ZSAD in (4.4) and MND in (4.5) do not limit their values within a
certain range. Typically, confidence score is constrained between 0 and 1. Additionally,
MND is applicable to textureless regions only. Therefore, ZSAD and MND need to be
combined in a texture-aware way to form a confidence map between 0 and 1. The proposed
method to compute this confidence Cf ∈ RH×W is

Cf
(
pl
)

= ω
(
pl
)
e−γmMND(pl) + (1− ω

(
pl
)
)e−γzZSADn(pl), (4.6)

where ω
(
pl
)

is a texture-aware guidance term. According to the definitions (4.1) and
(4.5), ZSAD

(
pl
)
≥ 0 and MND

(
pl
)
≤ 0. Additionally, if their magnitudes are smaller,

it implies that D̃
(
pl
)

is more accurate according to these measures. Hence, the constants
that control the sensitivity of MND and ZSAD, respectively, are γm < 0 and γz > 0.

The texture-aware guidance term ensures that MND is considered as the more impor-
tant measure for textureless regions while ZSAD is more applicable to areas with more
textures. Since the gradient of image intensity is a strong indicator of textures within the
image, the guidance term depends on this gradient as

ω
(
pl
)

= e
−γs

√
( ∂
∂x

Il(pl))
2
+( ∂

∂y
Il(pl))

2

, (4.7)

where γs > 0 is a constant, ∂
∂x

Il
(
pl
)

and ∂
∂y

Il
(
pl
)

denote the image gradients with respect
to the horizontal and vertical direction, respectively. In the actual implementation, these
image gradients are approximated by Sobel filters.

Lastly, confidence scores for invalid pixels are replaced by zero. Two types of invalid
pixels are considered in the confidence generation step. As shown in Figure 4.1, the tradi-
tional stereo matching algorithms cannot find disparity for some pixels. These pixels with
missing raw disparity information are treated as invalid. Additionally, if the confidence
scores for certain pixels are low, the raw disparity estimates for these pixels are likely in-
correct. To prevent these pixels from affecting the downstream process, pixels with their
confidence score lower than a threshold λC are also considered as invalid.

4.4 CRD-Fusion Network

To predict better disparity while exploiting the strong prior information provided by the
raw disparity from a traditional stereo matching algorithm/stereo camera, the proposed
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DNN needs to be effective and fast so that it can run in parallel with the camera for real-
time robotic applications. The proposed CRD-Fusion network, as shown in Figure 4.4, is
inspired by StereoNet [53] due to its good accuracy and high inference rate.

The network consists of three modules: feature extraction, confidence guided raw dis-
parity fusion, and hierarchical occlusion-aware disparity refinement. The feature extraction
module first extracts the high-level features from a pair of rectified stereo images. In the
confidence guided raw disparity fusion module, the initial matching cost is constructed
using the extracted features. After cost aggregation, the raw disparity and the confidence
map are fused into the network to compute an initial disparity map at low resolution. The
initial disparity map is gradually upsampled and refined by an occlusion-aware scheme
using multiple refinement stages with the high-level features as guidance. At the end, the
final predicted disparity map and its corresponding occlusion mask at full resolution are
obtained. To train this network, a self-supervised training strategy is designed.

Left Frame

Right Frame

Predicted Disparity

~ R R. . .
Initial

Disparity Occlusion

Raw Disparity

↓

Confidence

↓Shared
Weights

Feature Extraction Confidence Guided Raw Disparity Fusion Occlusion-Aware Disparity Refinement

~ Fusion

Refinement StageR2D Conv./ResBlock

3D Conv. 4D Volume

3D Volume Downsample↓

Data Flow

Figure 4.4: Overview of the CRD-Fusion network.
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4.4.1 Feature Extraction

There are two purposes for the feature extraction module: downsampling and extraction
of high-level features. Downsampling an input RGB image can lower the computational
load required to predict the initial disparity map. Furthermore, color intensity in an RGB
image may not be descriptive enough to obtain accurate stereo matching. On the other
hand, high-level features, which contain more contextual information, can lead to more
robust performance [51].

In the original StereoNet design, the feature extraction module first downsamples the
input image by using three 2D convolutional layers with large receptive fields. After down-
sampling, the image tensor is at 1/8 of its original resolution. Then multiple residual
blocks [40] are applied to the small image tensor to further extract high-level features.
This approach can capture more contextual information at the lowest image resolution,
but not necessarily at higher resolution. This design is suitable for StereoNet since it pro-
duces initial disparity maps at 1/8 resolution and does not require high-level features at
the intermediate scales (i.e., 1/2 and 1/4 resolutions) in the model.

In the CRD-Fusion network, the feature extraction module is modified so that high-
level features at different image resolutions can be used in the disparity refinement modules.
The module consists of multiple stages with the same design. By using different number
of stages, high-level features at different resolutions can be extracted.

Given an input image, the proposed feature extraction module needs to extract features
{F0,F1, ...,FK}, where Fk ∈ RH/2k×W/2k×Ck for k ∈ {0, 1, ..., K}, and Ck is the number
of feature channels at scale k. Note that feature F0 at the original resolution k = 0 is
essentially the input image. Additionally, C0 = 3 is used to account for the color channels
in an RGB image.

A feature extraction stage k is responsible for processing feature Fk to compute the
feature at the next scale Fk+1. Each stage follows the design outlined in Table 4.1. First,
a 5 × 5 2D convolutional layer with stride 2 reduces the spatial resolution of Fk by half.
Then a residual block with 3× 3 convolutions and an additional 3× 3 convolutional layer
extract more features to obtain Fk+1. All of the convolutional layers except for the last one
in each stage are followed by batch normalization [47] and the leaky ReLU [64] activation
function. The number of feature channels Ck is fixed at 32 for all k 6= 0. There are K − 1
extraction stages in total to obtain K features.

The same feature extraction module is applied to both left and right stereo images.
This can help reduce the memory footprint of the model and ensure the features extracted
from both views are consistent. A convolution operation applies the same kernel/filter to
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Layer Description Input Size Output Size
1 5× 5 conv., stride 2 H/2k ×W/2k × Ck H/2k+1 ×W/2k+1 × Ck+1

2 3× 3 residual block H/2k+1 ×W/2k+1 × Ck+1 H/2k+1 ×W/2k+1 × Ck+1

3 3× 3 conv. H/2k+1 ×W/2k+1 × Ck+1 H/2k+1 ×W/2k+1 × Ck+1

Table 4.1: Structure of the feature extraction stage k. All convolutions (conv.) except for
layer 3 are followed by batch normalization and leaky ReLU. C0 = 3 and Ck = 32 if k 6= 0.

its inputs at all pixel locations. No matter where an object is located in an image, the same
features are extracted from this object. In a stereo setting, the same non-occluded objects
are visible in both left and right views. Using the same feature extraction module on both
images will lead to two feature maps with the same non-occluded high-level features but
at different locations.

After applying the feature extraction module to both input images Il and Ir, two sets
of features

{
Fl

0,F
l
1, ...,F

l
K

}
and {Fr

0,F
r
1, ...,F

r
K} are computed. These features are used in

the following modules to predict disparity.

4.4.2 Confidence Guided Raw Disparity Fusion

In a typical stereo-based deep learning model, a matching cost given a pre-defined maxi-
mum disparity range is generated by using the extracted features. To reduce the computa-
tional cost, only features at low resolution are used. Additionally, if the maximum number
of disparity candidates at the original image resolution is D0, the corresponding number
of disparity candidates at an arbitrary scale k is

Dk =
D0

2k
. (4.8)

Equation (4.8) shows that using a low image resolution reduces the disparity range, which
can further lower the computational cost. The matching cost generation step in CRD-
Fusion also follows this procedure to construct the cost at the lowest resolution, which
corresponds to the resolution scale K.

Given the high-level features Fl
K and Fr

K , the matching cost c is formed according toDK

disparity candidates. The matching cost c is a 4D tensor with dimension of H/2K×W/2K×
DK × CK . For a pixel plK = (jK , iK) where jK ∈

{
1, ..., H/2K

}
and iK ∈

{
1, ...,W/2K

}
from the left feature Fl

K , its matching cost c
(
plK , dk

)
∈ RCK given a disparity candidate

dK is defined by

c
(
plK , dk

)
= Fl

K

(
plK
)
− Fr

K

(
plK − dK

)
, dK ∈ {0, 1, ..., DK − 1} , (4.9)
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where the pixel correspondence is similar to (4.2) as

plK − dK = (jK , iK − dK) . (4.10)

In the case when iK < dK , the resulting pixel correspondence plK − dK is outside of Fr
K ,

which causes Fr
K

(
plK − dK

)
in (4.9) to become invalid. To address this problem, the

cost c
(
plK , dk

)
when iK < dK is explicitly set to zero. Note that the matching cost c is

constructed by fixing Fl
K and shifting Fr

K . Hence, c is the difference between reference
left-view pixels and all candidate right-view pixels. The disparity map inferred from this
matching cost is therefore the left disparity map.

As pointed out in [51], it is important to aggregate the cost volume in three dimensions:
height, width and candidate disparities. This can help the model learn more contextual
information and minimize multi-modal distribution in the cost volume. In the context of
deep learning, this aggregation step is achieved by applying 3D convolutional layers to the
cost volume. By following [53], a lightweight cost aggregation design is adopted.

The aggregation follows the layers shown in Table 4.2 sequentially. The first four 3D
convolutaional layers followed by batch normalization and the leaky ReLU activation func-
tion maintain the same number of feature channels at CK . The last convolution which does
not utilize any normalization or activation function combines all of the feature channels.
Then the dimension of the feature channels is removed. The resulting aggregated cost
volume is therefore ĉ ∈ RH/2K×W/2K×DK .

Layer Description Input Size Output Size
1 3× 3× 3 conv. H/2K ×W/2K ×DK × CK H/2K ×W/2K ×DK × CK
2 3× 3× 3 conv. H/2K ×W/2K ×DK × CK H/2K ×W/2K ×DK × CK
3 3× 3× 3 conv. H/2K ×W/2K ×DK × CK H/2K ×W/2K ×DK × CK
4 3× 3× 3 conv. H/2K ×W/2K ×DK × CK H/2K ×W/2K ×DK × CK
5 3× 3× 3 conv. H/2K ×W/2K ×DK × CK H/2K ×W/2K ×DK × 1
6 Dim. reduction H/2K ×W/2K ×DK × 1 H/2K ×W/2K ×DK

Table 4.2: Layers used in cost aggregation, including five 3D convolutional layers (conv.)
and a dimension (dim.) reduction operation. Layers 1 to 4 are followed by batch normal-
ization and leaky ReLU activation.

After cost aggregation, the aggregated cost volume can be used to regress a disparity
map at resolution scale K. The soft argmin operation proposed in[51] is designed for this
task. The operation begins with a conversion from the aggregated matching cost ĉ to a
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probability distribution P̂ ∈ RH/2K×W/2K×DK for all disparity candidates at scale K. This
conversion is given by

P̂
(
plK , dK

)
= σ

(
−ĉ
(
plK , dK

))
, (4.11)

where σ(·) is the softmax [6] operator which yields an exponentially normalized probability.
The softmax operator in this case is defined as

σ
(
−ĉ
(
plK , dK

))
=

e−ĉ(p
l
K ,dK)∑DK−1

di=0 e−ĉ(p
l
K ,di)

. (4.12)

After the probability distribution is obtained, an H/2K×W/2K preliminary disparity map
D̂ is regressed by the following weighted summation:

D̂
(
plK
)

=

DK−1∑
dK=0

dKP̂
(
plK , dK

)
. (4.13)

The preliminary disparity map is only dependent on the deep features extracted in the
previous module. The prior knowledge from raw disparity, especially the more accurate raw
disparity estimates as identified by the confidence map, is not exploited yet. To incorporate
this prior information, a confidence guided raw disparity fusion step is proposed to improve
the preliminary disparity map. The preliminary disparity D̂ is regressed at the resolution
scale K while D̃ and Cf are computed at the original resolution. To ensure their resolutions
are consistent, D̃ and Cf are resized to resolution scale K by nearest downsampling to
obtain the low-resolution raw disparity D̃K and low-resolution confidence CfK . Note that
after downsampling, D̃K must be divided by 2K to properly scale the disparity values.
Once the resolutions are consistent, the fusion step is carried out by

Di

(
plK
)

= CfK
(
plK
)

D̃K

(
plK
)

+
(
1−CfK

(
plK
))

D̂
(
plK
)

(4.14)

to compute the H/2K×W/2K initial disparity map Di that combines the information from
both the deep features and raw disparity. The fusion scheme (4.14) exploits the accurate
raw disparity when possible. When the raw disparity is not available or its corresponding
confidence map has low scores, (4.14) focuses more on the preliminary disparity based on
the deep features.

4.4.3 Hierarchical Occlusion-Aware Disparity Refinement

The initial disparity map Di is at low resolution and does not contain many details. To
obtain a more accurate disparity map at higher resolution, the initial disparity map needs
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to be upsampled and refined [53]. StereoNet adopts a hierarchical refinement module which
upsamples the initial disparity map gradually to the original image resolution by doubling
the resolution at each step. Additionally, it uses the left image as guidance to recover
detailed disparity in the prediction.

Although the refinement module in [53] can successfully estimate accurate disparity, it
lacks the ability to address occlusion. This missing function is not problematic in [53] since
it is designed as a supervised model. To train a stereo model in a supervised manner, the
ground truth disparity values are provided. These values also include the correct disparity
at occluded regions. By training with these ground truth labels, the model implicitly
learns how to make accurate predictions at occluded regions. Therefore, StereoNet only
needs a simple refinement module to obtain high-quality results. On the other hand, the
proposed pipeline is designed as a self-supervised approach with no knowledge of ground
truth information in training. To achieve more accurate results, it is necessary to address
occlusion explicitly.

Recently, MaskFlowNet [107] has been proposed to solve the optical flow prediction
problem in a self-supervised manner. The model adopts a hierarchical design to upsample
low-resolution predicted optical flow maps gradually and then refine the upsampled maps.
Similar to stereo matching, occlusion is also present in optical flow prediction. To mitigate
this problem, the model predicts a soft occlusion mask at each stage of refinement. The
occlusion mask is considered in the next refinement stage. A similar design has also been
extended for supervised stereo matching [45].

Inspired by [53] and [107], the CRD-Fusion network utilizes a hierarchical occlusion-
aware refinement module. Similar to the feature extraction module, the refinement module
also consists of multiple stages. By changing the number of refinement stages, the model
can be applied to different image resolutions.

The proposed refinement module follows the arrangement shown in Table 4.3. There
are K refinement stages in the refinement module. Each stage is responsible for doubling
the resolution of the input disparity map while providing additional detailed disparity
estimates through a refinement block. With K stages, the module can refine the initial
disparity map Di, which is regressed at the resolution scale K, and obtain the refined
disparity at the original image resolution.

The general structure of a disparity refinement stage k can be visualized in Figure 4.5
with additional description in Table 4.3. The inputs of the stage include refined disparity
Dk+1, predicted occlusion mask Ok+1, and disparity residual feature Rk+1 at scale k + 1
from the previous refinement stage k+ 1, as well as high-level features Fl

k and Fr
k from the

feature extraction module. The stage computes the refined disparity Dk, occlusion mask
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Stage Input Description Output

K

Fl
K , Fr

K , Di Correlation CorrK
CorrK , Fl

K , Di Refinement block K RK

RK 3× 3 conv, added to Di DK

RK 3× 3 conv OK

K − 1

DK , OK Upsample D
′
K−1, O

′
K−1

RK Upsample, 3× 3 conv R
′′
K−1

R
′′
K−1 3× 3 conv R

′
K−1

Fl
K−1, Fr

K−1, D
′
K−1, O

′
K−1, R

′
K−1 Correlation CorrK−1

CorrK−1, Fl
K−1, R

′′
K−1, D

′
2 Refinement block K − 1 R2

RK−1 3× 3 conv, added to D
′
K−1 DK−1

RK−1 3× 3 conv OK−1

......

0

D1, O1 Upsample D
′
0, O

′
0

R1 Upsample, 3× 3 conv R
′′
0

R
′′
0 3× 3 conv R

′
0

Fl
0, Fr

0, D
′
0, O

′
0, R

′
0 Correlation Corr0

Corr0, Fl
0, R

′′
0 , D

′
0 Refinement block 0 R0

R0 3× 3 conv, added to D
′
0 D0

R0 3× 3 conv O0

Table 4.3: Description of the hierarchical occlusion-aware disparity refinement module.

Ok, and disparity residual feature Rk at scale k.

The first step in the refinement stage is to ensure the inputs are at the same resolution.
Among all of the inputs, Dk+1, Ok+1, and Rk+1 are at scale k+ 1, while Fl

k and Fr
k are at

scale k. Hence, the first three inputs need to be upsampled. Dk+1 and Ok+1 are resized
by simply applying a bilinear upsampling operator U(·) to them as

D
′

k = 2U (Dk+1) , (4.15)

O
′

k = U (Ok+1) . (4.16)

After resizing, the upsampled disparity D
′

k and occlusion mask O
′

k are at the resolution
scale k. Note that a multiplier of 2 applied to Dk+1 is needed to ensure the disparity
values are correct after upsampling. Upsampling of the disparity residual feature Rk+1

is more complicated. As described later, Rk+1 is of dimension H/2k+1 ×W/2k+1 × CR
k+1,

where the number of channels CR
k+1 is large. To reduce the computational load, Rk+1 is first
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Figure 4.5: Overview of refinement stage k.

bilinearly upsampled and then processed by a 3×3 2D convolution for channel reduction to
obtain residual feature R

′′

k ∈ RH/2k×W/2k×16. The 2D convolution here is followed by batch
normalization and leaky ReLU activation. Furthermore, a second 3 × 3 2D convolution
without batch normalization or activation function computes another disparity residual
feature R

′

k ∈ RH/2k×W/2k×Ck from R
′′

k. R
′

k shares the same number of channels Ck as the
high-level features Fl

k and Fr
k.

Following input resizing, the next step evaluates the accuracy of the upsampled disparity
D
′

k in the form of a correlation score [19]. Correlation quantifies the similarity of its inputs,
which are high-level features in the context of the refinement module. Prior to constructing
the correlation score, the right high-level feature Fr

k is first bilinearly sampled to build a

synthetic left high-level feature F̂l
k according to D

′

k. Since only non-occluded regions are
visible in both views, feature reconstruction is not applicable to occluded pixels. Therefore,
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the occlusion-aware sampling scheme follows

F̂l
k = S

(
Fr
k,D

′

k

)
⊗O

′

k ⊕R
′

k, (4.17)

where S(·) is the bilinear sampler, ⊗ and ⊕ are element-wise tensor multiplication and
addition, respectively. The multiplication with the upsampled occlusion mask O

′

k enforces
sampling at non-occluded regions only. The addition of the disparity residual feature R

′

k

results in better occlusion prediction in the later steps according to [107]. For a pixel
plk = (jk, ik), where jk ∈

{
1, ..., H/2k

}
and ik ∈

{
1, ...,W/2k

}
, the correlation measures a

patch-wise similarity between Fl
k and F̂l

k to evaluate the accuracy of D
′

k

(
plk
)

as

Corr
′

k

(
plk
)

=
∑

o∈(−m,m)×(−m,m)

〈
Fl
k

(
plk + o

)
, F̂l

k

(
plk + o

)〉
. (4.18)

The image patches of interest are centered at plk in Fl
k and F̂l

k with the size of (2m+ 1)×
(2m+ 1).

One disadvantage of the correlation calculated according to (4.17) and (4.18) is that it
only explores the similarity of the two input feature volumes according to the predicted
disparity. Without sufficient refinement, the predicted disparity map may contain inaccu-
rate values, which may lead to low similarity. In spite of the presence of inaccuracies, the
predicted disparity can still offer a heuristic about the approximate value of the accurate
estimate. If a range of disparity values according to the predicted disparity are considered
in the correlation step, it is more likely for the correlation score to reflect information
of the accurate disparity. By following this observation and [19], the sampling rule and
correlation are modified to

F̂l
k,d′ = S

(
Fr
k,D

′

k + d′
)
⊗O

′

k ⊕R
′

k, (4.19)

Corrk,d′
(
plk, d

′) =
∑

o∈(−m,m)×(−m,m)

〈
Fl
k

(
plk + o

)
, F̂l

k,d′

(
plk + o

)〉
, (4.20)

where d′ ∈ [−drange, drange] is a disparity offset from a pre-defined range. After the correla-

tion for each disparity offset is computed, the correlation scores Corrk,d′ ∈ RH/2k×W/2k

for all offsets are concatenated together to form a correlation score volume Corrk ∈
RH/2k×W/2k×(2drange+1). In the actual implementation, the image patch and disparity range
are fixed to m = 1 and drange = 4. Hence, the correlation score is applied to 3 × 3 image

patches and the final correlation volume is Corrk ∈ RH/2k×W/2k×9.
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After Corrk is obtained, a refinement block as shown in Table 4.4 is used to ex-
ploit more contextual information to compute a new disparity residual feature Rk. Inside
the refinement block, the correlation score Corrk ∈ RH/2k×W/2k×9, left high-level feature
Fl
k ∈ RH/2k×W/2k×Ck , upsampled disparity residual feature R

′′

k ∈ RH/2k×W/2k×16, and the
upsampled disparity D

′

k ∈ RH/2k×W/2k×1 are concatenated together. The number of chan-
nels Chk for the volume after concatenation depends on the number of channels of the
inputs. For example, if all four inputs are used, Chk = 9 + Ck + 16 + 1 = 26 + Ck. The
concatenated volume undergoes a series of five combinations of 2D convolution and concate-
nation. In each combination, a 3× 3 2D convolution followed by batch normalization and
leaky ReLU activation processes the input volume. Then the output from the convolution
is concatenated with the input volume along the channel dimension. The number of output
channels is 32 for the first three convolutions and 16 for the remaining two. Similar to [53],
some of the convolutional layers are dilated convolutions as shown in Table 4.4 in order to
increase the receptive field. After all five convolutions and concatenations, the disparity
residual feature Rk is obtained and it contains CR

k = Chk + 3× 32 + 2× 16 = 128 + Chk
channels. As pointed out earlier, the number of channels CR

k is high for Rk. Reducing it
in the next stage of refinement can reduce the computational load.

Layer Input Description Output Size Output

1
Corrk, Fl

k,

R
′′

k, D
′

k

Concatenation H/2k ×W/2k × Chk concat1

2 concat1 3× 3 conv H/2k ×W/2k × 32 conv2
3 concat1, conv2 Concatenation H/2k ×W/2k × (32 + Chk) concat3
4 concat3 3× 3 conv, d = 2 H/2k ×W/2k × 32 conv4
5 concat3, conv4 Concatenation H/2k ×W/2k × (64 + Chk) concat5
6 concat5 3× 3 conv, d = 4 H/2k ×W/2k × 32 conv6
7 concat5, conv6 Concatenation H/2k ×W/2k × (96 + Chk) concat7
8 concat7 3× 3 conv H/2k ×W/2k × 16 conv8
9 concat7, conv8 Concatenation H/2k ×W/2k × (112 + Chk) concat9
10 concat9 3× 3 conv H/2k ×W/2k × 16 conv10
11 concat9, conv10 Concatenation H/2k ×W/2k × (128 + Chk) Rk

Table 4.4: Description of the refinement block k (d - dilation). The number of channels
Chk depends on the inputs.

The disparity residual feature Rk from the refinement block is used to estimate both
a disparity residual ∆Dk and a predicted occlusion mask at the current scale k. One
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3× 3 convolution is applied to Rk to compress the number of channels to calculate ∆Dk ∈
RH/2k×W/2k×1, and a separate 3 × 3 convolution also processes Rk to find the occlusion
mask with the size of RH/2k×W/2k×1. The residual disparity and the upsampled disparity
are added together to obtain the refined disparity at scale k as

Dk = ReLU
(
D
′

k + ∆Dk

)
, (4.21)

where the ReLU operation ensures Dk is non-negative. Similarly, the occlusion mask from
the convolutional layer undergoes a sigmoid operator so that the predicted occlusion mask
Ok is constrained between 0 and 1. Lastly, the refined disparity Dk, occlusion mask Ok,
and disparity residual feature Rk act as the inputs for the next refinement stage at scale
k − 1.

In the actual implementation, the refinement module starts from refinement stage k =
K and ends at stage k = 0. At stage K, the upsampling steps are ignored with D

′
K

initialized as Di, O
′
K initialized as a tensor of 1’s, R

′
K initialized as a tensor of 0’s, and

R
′′
K initialized as an empty tensor. Because of this initialization scheme and CK = 32, the

number of channels ChK = 9 + 32 + 1 = 42 and CR
K = 128 + 42 = 170 for this scale. For

k ∈ {1, 2, ..., K − 1}, all four inputs are used in the corresponding refinement block and
Ck = 32. Hence, the number of channel is Chk = 26 + 32 = 58 and CR

k = 128 + 58 = 186.
When k = 0, the feature Fl

0 is essentially the input left image Il. Therefore, C0 = 3 leads
to Ch0 = 26 + 3 = 29 and CR

0 = 128 + 29 = 157. The refined disparity D0 and occlusion
mask O0 at this scale are at the original image resolution. They are used as the final
outputs of the pipeline.

4.4.4 Loss Function

Training a neural network involves calculating a loss function, computing the gradient of
the loss function with respect to the network parameters, and updating the parameters
based on the gradient. The self-supervised training loss to train the CRD-Fusion network
is

L =
1

(K + 1)HW

K∑
k=0

(
1

2k
(αdLd,k + αpLp,k + αsLs,k + αoLo,k)

)
, (4.22)

where Ld is the disparity supervision loss according to the raw disparity, Lp is the photo-
metric loss, Ls is the smoothness loss for the predicted disparity map, Lo is the occlusion
loss, and α’s are the weights for each term. The subscript k denotes that the loss is com-
puted with Dk and/or Ok from refinement stage k. Including the scaling factor 1/2k help
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emphasize the losses at higher resolution. Similar to [35], all refined disaprity maps Dk

and predicted occlusion masks Ok are bilinearly upsampled to the original resolution as
D0
k and O0

k for loss computation. Note that no ground truth disparity maps are used in
this loss function, which makes it suitable for self-supervision. The definition of each loss
term is given below.

Raw Disparity Supervision Loss

The raw disparity map contains rich information of the actual disparity values. Hence, it is
a strong supervisory signal to train the network. However, the raw disparity map may also
include inaccurate disparity estimates. This error must be removed to provide appropriate
supervision. The proposed raw disparity supervision loss incorporates the confidence map
to filter out the inaccurate areas in loss computation. This loss follows

Ld,k =
∑
pl

Cf
(
pl
)

∆s

(
D0
k

(
pl
)
− D̃

(
pl
))
, (4.23)

where ∆s (x) is the smooth L1 loss [33] given by

∆s (x) =

{
1
2
x2, x < 1

|x| − 1
2
, otherwise

(4.24)

Photometric Loss

The raw disparity supervision loss can only focus on regions with accurate raw disparity.
At areas with inaccurate or missing raw disparity information, additional supervision is
necessary to improve their disparity estimates. Another commonly used loss in depth
estimation is the photometric loss. The photometric loss compares the difference between a
reference image and a source image warped to the reference image’s frame. In the context of
stereo matching, the warping process involves reconstructing one stereo view from another
under the condition of disparity. This warping process can be achieved by the bilinear
sampler S(·). Since only non-occluded pixels are visible in both views, occluded pixels
should be removed from the photometric loss computation. Additionally, the raw disparity
supervision loss already provides strong supervision at pixels with accurate raw disparity
estimates. The photometric loss should therefore allocate more emphasis on pixels without
useful raw disparity information. Based on these considerations, the photometric loss is
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inspired by [34, 59, 95] as

Lp,k =
∑
pl

(α
2

(
1− SSIM

(
Il
(
pl
)
, Îlk
(
pl
)))

+ (1− α)
∥∥∥Il (pl)− Îlk

(
pl
)∥∥∥)O0

k

(
pl
) (

1−Cf
(
pl
))
,

(4.25)

where the constant α is set to 0.85, SSIM(·) is the structural similarity index measure
[96] to quantify the similarity between two images, and Îlk is the reconstructed left view by

Îlk = S
(
Ir,D0

k

)
. (4.26)

Disparity Smoothness Loss

Minimizing only the raw disparity supervision loss and photometric loss may cause the
predicted disparity map to be noisy. The raw disparity map can only provide sparse
supervision to the model, while the photometric loss may result in incorrect matches at
ambiguous regions. Additionally, estimation at occluded areas is not addressed in these two
losses. Including the disparity smoothness loss can reduce the noisiness of the predicted
disparity maps. Moreover, it can fill in disparity at occluded regions with disparity from
non-occluded pixels. However, disparity discontinuities do exist in many scenarios due to
the presence of multiple objects in the scene. Boundaries of these objects provide a good
indication of where disparity discontinuities are located, and these boundaries often reveal
themselves as change in color intensity in the image. Therefore, the smoothness loss follows
the edge-aware design in [35, 34] as

Ls,k =
∑
pl

∣∣∣∣ ∂∂xD0
k

(
pl
)∣∣∣∣ e−‖ ∂

∂x
Il(pl)‖ +

∣∣∣∣ ∂∂yD0
k

(
pl
)∣∣∣∣ e−‖ ∂

∂y
Il(pl)‖. (4.27)

Occlusion Loss

Since the predicted occlusion mask is part of the photometric loss computation, minimizing
Lp,k may cause the occlusion mask to become all 0’s. When the predicted occlusion mask is
zero, the resulting photometric loss is also zero even though inaccurate predicted disparity
D0
k will still lead to nonidentical Il and Îlk. Therefore, a zero occlusion mask may bring

inaccurate information to the training process. A behavior similar to this has been observed
in [111] where the model predicts an explainability mask that can converge to zero easily.
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To remedy this problem, a binary cross entropy loss between the explainability mask and
a constant mask with 1’s is used. The binary cross entropy loss pushes the explainability
mask towards the non-zero direction. This same approach is adopted here and the occlusion
loss is given by

Lo,k =
∑
pl

− ln O0
k

(
pl
)
. (4.28)

4.5 Experiments

4.5.1 Datasets

The proposed pipeline is evaluated on multiple datasets, including three public datasets and
two custom datasets, to demonstrate its effectiveness. The public datasets are SceneFlow
[66], KITTI 2015 [68], and KITTI 2012 [32]. These datasets are widely used by other works
on stereo matching. Evaluating the proposed pipeline on these datasets is more convenient
for comparison with other existing approaches. The two custom datasets were collected
by commercially available stereo cameras that are commonly seen in robotic applications.
Since the pipeline is designed for use with a commercial stereo camera, evaluating it on
these custom datasets can verify its performance with respect to this goal.

The SceneFlow dataset is a synthetic dataset with 35,454 frames in the training set and
4,370 frames in the test set. The ground truth disparity maps are provided in both sets.
The image size for all images is 540 × 960. The dataset contains very challenging scenes
with textureless regions, large disparity, and large occlusion.

Both KITTI 2015 and KITTI 2012 are real-word datasets collected in driving scenarios.
The stereo images were captured by two cameras mounted on a car. KITTI 2015 includes
200 training frames and 200 test frames, while KITTI 2012 provides 194 training frames
and 195 test frames. Ground truth disparity is provided for training images in the form
of sparse disparity maps obtained from a LiDAR. To evaluate the model’s performance
on test images, the predicted results must be submitted to the official KITTI server. The
image size varies in these two datasets with an average image size of 375 × 1240.

The two custom datasets were collected by an Intel RealSense D435 camera [52] and a
Zed Mini camera [85] mounted on a Turtlebot 2 [69], respectively, as shown in Figure 4.6.
In the dataset collected by the RealSense camera, there are 5,546 training frames and 1,387
testing frames. The resolution of all frames is 480 × 640. Note that the stereo images from
the RealSense camera are infrared images with only one color channel. Since the pipeline
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requires the input stereo images to have three color channels, the same infrared images
are concatenated three times along the channel dimension. Additionally, the camera only
provides depth maps instead of disparity. The raw disparity maps are computed based
on the depth maps by reversing (2.1) with known camera baseline and focal length. In
addition to the RealSense dataset, the dataset recorded by the Zed camera includes 2,967
training frames and 742 testing frames. The image resolution of this dataset is 720 × 1280.
No ground truth data is available in these custom datasets. Therefore, the test frames are
only used for qualitative evaluation.

Figure 4.6: System setup for custom dataset collection.

4.5.2 Implementation Details

The raw disparity maps for public datasets are computed by the SGBM algorithm [71]
from the OpenCV library due to its simplicity and ease of use, while the ones for custom
datasets are provided by the cameras. To fully exploit the benefits of parallel computing,
the confidence generation step and the CRD-Fusion network are implemented with a deep
learning framework, PyTorch [75]. The pipeline is trained and evaluated on an NVIDIA
V100 GPU, unless otherwise stated. After the raw disparity maps are available for all input
frames, the confidence generation step is carried out. The confidence maps are computed
according to the parameters outlined in Table 4.5a.

Once the stereo RGB images, raw disparity maps, and confidence maps are available,
the CRD-Fusion network is ready to be trained and evaluated. Prior to sending the train-
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γz 0.24 γm -2.0
γs 0.01 λC 0.8

Nz size 3× 3 Nm size 5× 5

(a)

Parameter Scene Flow/Custom datasets KITTI 2012/2015

αd 0.7 8.5
αp 3 0.8
αs 0.45 0.05
αo 0.75 0.3

(b)

Table 4.5: Constant parameters for the proposed pipeline: (a) parameters used in confi-
dence generation; (b) parameters to train CRD-Fusion on different datasets.

ing images to the network, data augmentation is performed for all input images. The
brightness, contrast, saturation, and hue of the RGB images are randomly altered. Their
pixel intensities are also normalized by the mean and variance of images from the large
ImageNet [81] dataset. All training images are then randomly cropped to an input size
of 256× 512. Note that in evaluation, only intensity normalization is performed, and the
images are padded such that their size is divisible by 2k for k ∈ {0, 1, ..., K}. This padding
strategy ensures the network can downsample and upsample the images properly.

The CRD-Fusion network is set up with K = 3 and D0 = 192 disparity candidates
at the full resolution. These settings result in DK = 24 for cost volume construction and
1/8 resolution as the lowest image resolution in the model. The negative slope of all leaky
ReLU activation function is fixed at 0.2. The model is trained with a batch size of 8 using
an Adam [55] optimizer.

The model parameters are first randomly initialized and then trained with images from
the Scene Flow dataset for 15 epochs with an initial learning rate of 0.001, which is later
multiplied by 0.1 at the 10th epoch. Training on the KITTI 2012/2015 datasets and custom
datasets does not start from scratch. These datasets contain significantly fewer images than
Scene Flow does. Training from scratch using these smaller datasets is likely to lead to
unsatisfactory results. Instead, the model trained with Scene Flow is further fine-tuned
by these smaller datasets separately for evaluation on each of them. When fine-tuning the
model on KITTI 2012/2015, training is performed for 1000 epochs with the learning rate
at 0.0001. The learning rate is then halved every 200 epochs. When training with the
RealSense dataset, the model is fine-tuned for 30 epochs with 0.0001 learning rate that is
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divided by 2 at the 15th epoch. Lastly, data from the Zed dataset is applied to the model
for 50 epochs with an initial learning rate of 0.0001, which is also halved at the 25th epoch.
The weighting terms for the loss function are shown in Table 4.5b given different datasets.

4.5.3 Confidence Map Evaluation

The confidence map generation scheme proposed in (4.6) is evaluated with the Scene
Flow test set. The evaluation is performed by first dividing all pixels into multiple sets
{R1,R2,R3, ...} according to each pixel’s corresponding confidence score. For example, the
confidence scores for all pixels in an arbitrary setRi all fall within a pre-defined range. The
endpoint error (EPE) for all pixels in Ri is then computed according to the raw disparity
and ground truth via

EPEi =
1

|Ri|
∑
qi

∣∣∣D̃ (qi)−D∗ (qi)
∣∣∣ , qi ∈ Ri, (4.29)

where D∗ is the ground truth disparity map.

The evaluation results for five confidence ranges are shown in Table 4.6. Based on the
results, the pixels with lower confidence scores generally have higher disparity errors. When
the confidence scores reach 0.8, the EPE is as low as 0.65 px. From this evaluation, it can
be concluded that the proposed confidence generation scheme is effective in quantifying
the accuracy of raw disparity. Additionally, the chosen confidence threshold λC = 0.8 can
be used to select accurate raw disparity while filtering out inaccuracies.

Confidence Range 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1
Error (px) 5.20 5.52 4.83 2.10 0.65

Table 4.6: Average raw disparity error at different confidence ranges.

Figure 4.7 also shows some sample confidence outputs for the raw disparity map in
Figure 4.1(a). The same textureless patch from Figure 4.3 is highlighted. In Figure 4.7(a)
where the confidence map is computed based on ZSAD only, the confidence scores for the
highlighted textureless region are high even though it contains many incorrect raw disparity
estimates. By using the proposed method which incorporates both ZSAD and MND, the
algorithm successfully identifies these incorrect raw disparity estimates and assigns low
confidence scores to them as shown in Figure 4.7(b).
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(a) (b)

Figure 4.7: Confidence maps computed by (a) ZSAD only and by (b) the proposed method.
The red rectangle outlines a textureless region from the RGB image in Figure 4.3.

4.5.4 Design Analysis on Scene Flow

In order to demonstrate the benefits of different components of the pipeline, multiple
configurations of the proposed approach are built and evaluated on the Scene Flow test
set. The configuration with the best performance is chosen for further analysis on other
datasets.

The first configuration, which is also the baseline (B) configuration, follows the same
model structure as StereoNet [53]. Instead of supervised training, the baseline configuration
is trained in a self-supervised manner by following

LB =
1

(K + 1)HW

K∑
k=0

(
1

2k

(
αpL

′

p,k + αsLs,k

))
, (4.30)

where the photometric loss L
′

p,k is modified based on (4.25) to exclude the confidence map
and occlusion mask as

L
′

p,k =
∑
pl

(α
2

(
1− SSIM

(
Il
(
pl
)
, Îlk
(
pl
)))

+ (1− α)
∥∥∥Il (pl)− Îlk

(
pl
)∥∥∥) . (4.31)

Additionally, to prevent Ls,k from overpowering the training loss, αs is changed to 0.045
for this configuration only. Built upon the baseline, the second configuration (B + DS)
includes the raw disparity supervision loss without confidence guidance as

LB+DS =
1

(K + 1)HW

K∑
k=0

(
1

2k

(
αdL

′

d,k + αpL
′

p,k + αsLs,k

))
, (4.32)
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where the raw disparity supervision loss in this case does not include confidence as

L
′

d,k =
∑
pl

∆s

(
D0
k

(
pl
)
− D̃

(
pl
))
. (4.33)

The third configuration (B + DS + CL) includes the confidence guidance in addition to
(4.32) with a resulting training loss of

LB+DS+CL =
1

(K + 1)HW

K∑
k=0

(
1

2k

(
αdLd,k + αpL

′′

p,k + αsLs,k

))
, (4.34)

where the modified photometric loss only excludes the occlusion mask from (4.25) as

L
′′

p,k =
∑
pl

(α
2

(
1− SSIM

(
Il
(
pl
)
, Îlk
(
pl
)))

+ (1− α)
∥∥∥Il (pl)− Îlk

(
pl
)∥∥∥) (1−Cf

(
pl
))
.

(4.35)

By using the loss in (4.34), the fourth configuration (B + DS + CL + DF) further in-
corporates the dispariy fusion step shown in (4.14). These four configurations can verify
the benefits introduced by the raw disparity supervision loss, confidence maps, and raw
disparity fusion.

Another two configurations are also constructed to demonstrate the proposed occlusion-
aware model design and they are both trained with (4.22). The fifth configuration (OR +
DS + CL) adopts the proposed feature extraction module and the hierarchical occlusion-
aware refinement module without any raw disparity fusion. In this configuration, (4.14) is
omitted and the preliminary disparity map D̂ from (4.13) is treated as the initial disparity
map Di for refinement. The last configuration (OR + DS + CL + DF) is the proposed
approach with the additional raw disparity fusion.

The accuracy of all these configurations are measured according to two metrics by
following the previous work [95]. The first metric is EPE with respect to the entire predicted
and ground truth disparity maps as

EPE =
1

HW

∑
pl

∣∣D0

(
pl
)
−D∗

(
pl
)∣∣ . (4.36)

The second metric is the 3px-error rate (> 3 px), which is the percentage of pixels with
L1 error larger than 3 px compared to the ground truth. Both metrics are calculated for
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all test images and then averaged by the total number of test frames. The model is more
accurate if they have lower values.

The quantitative and qualitative results for all configurations are presented in Table 4.7
and Figure 4.8, respectively. For each configuration, the same settings are used to repeat
the experiment for seven times. Both the average and minimum metrics are reported in
Table 4.7. Additionally, the 3px-error of the raw disparity generated by SGBM is also
shown. Note that calculating EPE for raw disparity is ambiguous since the raw disparity
maps contain many pixels with missing disparity predictions. Therefore, it is not included
in the table.

Configuration
EPE (px) > 3 px (%)

Avg Min Avg Min

SGBM [71] - - 18.54 -
B 5.130 5.048 15.89 15.65

B + DS 3.997 3.962 13.33 13.19
B + DS + CL 3.515 3.383 13.02 12.65

B + DS + CL + DF 3.404 3.343 12.99 12.85
OR + DS + CL 3.838 3.112 16.84 13.08

OR + DS + CL + DF (Ours) 2.647 2.606 11.02 10.79

Table 4.7: Average and minimum accuracy on Scene Flow test set for different model
configurations.

We first compare the results obtained from SGBM and from different configurations.
According to the results in Table 4.7, the predicted disparity estimates from all six con-
figurations are more accurate than raw disparity. The qualitative outputs show that the
DNN can reason with contextual information to complete the missing estimates found in
the raw disparity maps. These comparisons verify DNN as a more powerful tool for stereo
matching.

Within all six configurations, the first four models based on the baseline network are
then studied. The baseline configuration (B) is the least accurate one among them. Al-
though this configuration can recover the general structure of the scene, it predicts dis-
parity maps with incorrect estimates at object boundaries and occluded regions. After
using the raw disparity supervision loss, the second configuration (B + DS) can compute
substantially more accurate estimates. However, errors at the ambiguous regions are still
significant. The accuracy is further improved by using confidence in the training loss in
configuration B + DS + CL. With disparity fusion in configuration B + DS + CL +
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.8: Sample images from the Scene Flow test set and their corresponding qualitative
results: (a) left RGB images; (b) ground truth disparity; (c) raw disaprity from SGBM;
(d) computed confidence maps; predictions from configurations (e) B, (f) B + DS, (g) B
+ DS + CL, (h) B + DS + CL + DF, (i) OR + DS + CL, (j) (OR + DS + CL + DF).
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DF, the disparity error is reduced even more but with increased error at the occluded
regions. This comparison shows that using the photometric loss (4.31) and smoothness
loss (4.27) only cannot address disparity errors, especially at occluded areas. Training the
network with the photometric loss (4.31) will guide the model to find disparity estimates
even at occluded regions, which are not applicable to this loss. The resulting estimates
for occluded pixels are typically inaccurate. The smoothness loss (4.27) further enforces
constant disparity for these inaccuracies. Including raw disparity supervision, confidence
guidance, and disparity fusion can remedy errors at these ambiguous regions. However,
significant number of erroneous estimates are still present in the qualitative results.

To reduce error at occluded regions, we consider the configurations with our proposed
occlusion-aware design. As shown in Figure 4.8(i), configuration OR + DS + CL can
predict high-quality occlusion masks. The use of these masks greatly improves the disparity
predictions at occluded areas compared to the configurations based on the baseline model.
However, the occlusion masks cannot identify the occlusion information for certain intricate
objects, which affects the accuracy at regions with many details. Additionally, the training
of this configuration may become unstable. This stability issue reflects on the accuracy
shown in Table 4.7, where the average accuracy of this configuration is worse than some
baseline models while its minimum error is lower than that of the baseline. The training
becomes more stable with the inclusion of raw disparity fusion. The strong prior knowledge
from raw disparity helps configuration OR + DS + CL + DF achieve the best accuracy
among all six configurations. Additionally, the predicted occlusion masks are also more
defined and can capture more detailed information. The improved occlusion masks further
boost the quality of the predicted disparity maps, which contain detailed predictions and
accurate estimates at occluded regions.

Both the quantitative and qualitative analyses above compare different configurations
of the proposed pipeline. They verify the effectiveness of different components in the
approach, including confidence generation, the proposed feature extraction and occlusion-
aware refinement modules, raw disparity fusion, and the self-supervised loss in (4.22). It can
be concluded that the proposed occlusion-aware self-supervised stereo matching pipeline
with confidence guided raw disparity fusion (configuration OR + DS + CL + DF) is an
effective tool to predict both accurate disparity and occlusion masks.

4.5.5 Comparison with Existing Models on KITTI 2012/2015

A common practice in evaluating a stereo-based deep learning model is to verify its accuracy
on the KITTI 2012 and KITTI 2015 datasets. This same approach is adopted in this thesis
to compare the performance of the proposed pipeline with other existing methods.
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Method D1-bg D1-fg D1-all Runtime

S
u
p
.

GC-Net [51] 2.21% 6.16% 2.87% 0.9 s
PSMNet [9] 1.86% 4.62% 2.32% 0.41 s

StereoNet [53] 4.30% 7.45% 4.83% 0.015 s
GA-Net [103] 1.55% 3.82% 1.93% 0.36 s
AANet [100] 1.99% 5.39% 2.55% 0.062 s

S
el

f-
su

p
.

Zhou et al. [109] - - 9.91% 0.39 s
OASM-Net [59] 6.89% 19.42% 8.98% 0.73 s

DispSegNet [104] 4.20% 16.97% 6.33% 0.9 s
Flow2Stereo [62] 5.01% 14.62% 6.61% 0.05 s

PASMnet [95] 5.41% 16.36% 7.23% 0.5 s
Ours 4.59% 13.68% 6.11% 0.02 s

(a)

Method Out-Noc Out-All Avg-Noc Avg-All Runtime

S
u
p
.

GC-Net [51] 1.77% 2.30% 0.6 px 0.7 px 0.9 s
PSMNet [9] 1.49% 1.89% 0.5 px 0.6 px 0.41 s

GA-Net [103] 1.36% 1.80% 0.5 px 0.5 px 0.36 s
AANet [100] 1.91% 2.42% 0.5 px 0.6 px 0.06 s

S
el

f-
su

p
. OASM-Net [59] 6.39% 8.60% 1.3 px 2.0 px 0.73 s

DispSegNet [104] 4.68% 5.66% 0.9 px 1.0 px 0.9 s
Flow2Stereo [62] 4.58% 5.11% 1.0 px 1.1 px 0.05 s

Ours 4.38% 5.40% 0.9 px 1.1 px 0.02 s

(b)

Table 4.8: Quantitative results on the (a) KITTI 2015 and (b) KITTI 2012 datasets.

Table 4.8 summarizes the accuracy of the proposed model and other existing methods
with a similar training strategy. The error metrics follow the same definition and nomencla-
ture as the ones found on the KITTI online leaderboard [30, 31]. The accuracy in KITTI
2015 is evaluated with three quantities: D1-bg, D1-fg, D1-all. They are defined in the
same way as the 3px-error rate introduced previously. However, D1-bg, D1-fg, and D1-all
are applicable to background, foreground, and all pixels with valid ground truth labels,
respectively [68]. In the KITTI 2012 comparison, the metrics include Out-Noc, Out-All,
Avg-Noc, and Avg-All. Out-Noc and Out-All are the 3px-error rate with Out-Noc applied
to the non-occluded regions only and Out-All applied to all pixels with ground truth la-
bels. Avg-Noc and Avg-All are defined in the same way as (4.36), while the former is for
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Left RGB Raw disparity

Confidence map Predicted occlusion mask

Predicted disparity by our method Error map by our method

Predicted disparity by Flow2Stereo Error map by Flow2Stereo

Figure 4.9: Sample qualitative results from the KITTI 2015 test set.

non-occluded pixels and the latter is for all pixels [32]. All of the results in Table 4.8 are
obtained from either the online leaderboard or from the corresponding publication.

The quantitative results show that there is still a significant gap between the self-
supervised approaches, including the proposed one, and the supervised methods. Nev-
ertheless, the D1-bg metric in KITTI 2015 for the proposed pipeline is still comparable
to the one for StereoNet [53], which is trained in a supervised manner. By comparing
the self-supervised methods, it can be seen that the proposed one is considerably better
than the approaches from [109], [59], and [95]. In KITTI 2012, the proposed pipeline,
DispSetNet [104], and Flow2Stereo [62] have similar accuracy. while our pipeline is slightly
more accurate at non-occluded areas. This may be due to the strong supervision from raw
disparity at these regions. In KITTI 2015, the proposed approach is more accurate than
other self-supervised methods according to multiple metrics. Additionally, the runtime of
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Left RGB Raw disparity

Confidence map Predicted occlusion mask

Predicted disparity by our method Error map by our method

Predicted disparity by Flow2Stereo Error map by Flow2Stereo

Figure 4.10: Sample qualitative results from the KITTI 2012 test set.

the pipeline is one of the lowest ones within all of the models studied here. These results
show that the proposed approach is effective in predicting accurate disparity even for im-
ages recorded in real life. Although it still cannot outperform the supervised models, its
accuracy is comparable or better than other self-supervised methods with a much lower
runtime.

Sample qualitative results from both KITTI 2015 and KITTI 2012 can be found in
Figure 4.9 and Figure 4.10, respectively. Although the ground truth disparity maps are
not available in KITTI 2012/2015 test sets, the online leaderboard provides the error maps
for the submitted predicted disparity. Red color in the error maps from Figure 4.9 indicates
that the error is higher, while white color from the error maps in Figure 4.10 means higher
error. Figure 4.9 shows that the proposed method can predict a clear occlusion mask which
correctly identifies the occluded regions (e.g., occlusion at the light poles). This occlusion
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mask can effectively improve disparity estimates at occluded regions, which results in
better disparity predictions compared to Flow2Stereo [62]. This can be verified by the
orange bounding boxes focusing on the occluded regions of the two light poles. In Figure
4.10, the improvements at occluded areas are not easily visible since the scene does not
contain large occlusion. However, it shows that the proposed pipeline can predict better
disparity at textureless regions, for instance, at the front hood of the black car.

The above quantitative and qualitative comparisons show that the proposed pipeline
can predict accurate disparity with visually more satisfactory results as well as occlusion
maps indicating the occluded regions correctly. In addition to accuracy, another impor-
tant factor to consider is the model’s runtime since it is designed to run in parallel with
a commercial stereo camera. A commercial stereo camera is often capable of real-time
processing. If the pipeline’s frame rate is low, then the pipeline will not be able to exploit
all of the information from the stereo camera. Hence, a detailed comparison of runtime is
necessary to demonstrate if the pipeline is applicable for this use case.

Method 1660 Super P100 V100

PSMNet [9] 1.218 2.304 2.658
StereoNet [53] - 61.03 90.77
GA-Net [103] 0.128∗ 0.224 0.476
AANet [100] 6.677 9.953 17.14

PASMNet [95] 8.072 12.11 15.44
Ours 38.92 31.20 46.74

Table 4.9: Frame rate in fps of different approaches on KITTI 2015 test set. *Image size
is fixed at 384× 1248 in all tests with the exception of running GA-Net on 1660 Super. In
this case, the input images are cropped to 336× 1200 due to limited video memory.

The runtime shown in Table 4.8 is reported by the submitter of each method. The
results are not directly comparable since they are obtained with different hardware setup.
As a result, a fair runtime comparison was conducted and the results are summarized
in Table 4.9. Multiple existing methods with open-source code and the proposed one are
studied using different GPUs in this comparison. The runtime of processing 200 test frames
from KITTI 2015 is summed up and the frame rate is computed from the total runtime.
Note that the runtime for the proposed pipeline includes both the confidence generation
step and the CRD-Fusion network. According to the results, StereoNet achieves the fastest
frame rate, while the most accurate model shown in Table 4.8, GA-Net, is immensely slow.
Although the proposed pipeline is slower than StereoNet due to the use of accurate but
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complex refinement module, it is still faster than other models with more than 30 fps even
on a mid-range NVIDIA 1660 Super GPU.

The above analysis on the KITTI 2012/2015 datasets indicates that the proposed
pipeline can produce accurate disparity and occlusion masks in real-time. Its good balance
of accuracy and runtime makes it an ideal candidate to run together with a commercial
camera to achieve better depth perception.

4.5.6 Verification on Custom Datasets

Since the pipeline is designed to complement a commercial stereo camera, testing it with
data from this camera is necessary. To fully verify the pipeline’s effectiveness, it is evaluated
on two custom datasets collected by two different stereo cameras: Intel RealSense D435
[52] and Zed Mini camera [85]. Since these two datasets do not include ground truth depth
information, the evaluation is restricted to qualitative analysis only.

Figure 4.11 provides some sample results from the custom datasets. Although the
raw disparity maps can provide fairly accurate depth information, they still contain lots
of inaccuracies or missing predictions. For example, in the raw disparity map from the
RealSense dataset, the yellow pixels at the occluded region caused by the stool are erroneous
estimates. In the Zed dataset, the camera cannot predict disparity for the cardboard box
located at the rightmost region of the image. Additionally, neither cameras can provide
estimation of the leftmost columns since pixels there are not usually visible in the right
frame.

By using the proposed pipeline, all of the problems mentioned above are resolved.
The pipeline successfully identifies the incorrect estimates at the occluded regions of the
RealSense image, and then it fills in the occluded areas with disparity from the background.
The predicted disparity map for the Zed image also indicates that the pipeline can identify
the disparity values of the cardboard box. The missing disparity information of the leftmost
columns is also provided by the pipeline. Lastly, the predicted occlusion masks include
clear occluded areas of the input left stereo images. This analysis demonstrates that the
proposed pipeline has the capability to complement a commercial stereo camera to offer
more accurate depth information.
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Raw disparity
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Predicted disparity

Predicted occlusion

RealSense Zed

Figure 4.11: Sample qualitative results on test sets of the custom datasets
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Chapter 5

Occlusion-Aware Disparity-based
Direct Visual Servoing

In this chapter, a direct visual servoing scheme that utilizes the stereo matching pipeline
proposed in the previous chapter is designed for a mobile robot. To eliminate the need of
feature extraction and matching, which may lead to errors in visual servoing [16, 87], the
proposed strategy uses the predicted disparity at each pixel location directly. The predicted
occlusion masks are also incorporated to address the occlusion problem originated from the
stereo setup.

This chapter first provides a derivation of the relationship between a stereo camera’s
velocity and the disparity map computed by images from this camera. This relationship
allows us to design a disparity-based direct visual servoing controller. Next, the occlusion
information is integrated into the control strategy. Lastly, the entire control framework is
verified with extensive simulations and experiments.

5.1 The Proposed Visual Servoing Framework

5.1.1 Stereo Vision Modeling

A mobile robot equipped with a stereo camera is free to move in a workspace. During the
robot’s motion, the stereo camera is assumed to record stereo images continuously. The
proposed stereo matching pipeline computes the disparity maps and occlusion masks with
these stereo images. A schematic of the stereo camera capturing a pair of rectified images
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is shown in Figure 5.1. In the schematic, a reference frame O is attached to the optical
center of the stereo camera’s left lens. At an arbitrary time instant t, consider an arbitrary
3D point, which is visible to both camera lenses, with coordinates P = (xo, yo, zo) ∈ R3

with respect to frame O. The 3D point P is projected to both the left and right image
planes of the camera at plc and prc, respectively. The subscript c indicates that these image
points are located in the continuous pixel space instead of discrete pixel locations used in
the previous chapter. By using a pinhole camera model, the continuous coordinates of the
projected point plc = (v, u) on the left image plane are related to P as{

ū = u−cu
f

= xo
zo

v̄ = v−cv
f

= yo
zo

, (5.1)

where ū and v̄ denote the adjusted image coordinates, (cv, cu) is the principal point, i.e.,
the position where the optical axis zO intersects with the left image plane.

Figure 5.1: Schematic of a stereo camera capturing a pair of rectified images.

At the same left image plane, the proposed stereo matching pipeline can continuously
compute the corresponding disparity maps and occlusion masks. Denote the disparity map
D0 computed by the stereo matching pipeline at this specific time instant t as D ∈ RH×W

>0 .
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This disparity information can be further expressed in a vector form as

D =



D(1)
D(2)

...
D (W (v̄j − 1) + ūi)

...
D(N)


=



D (v̄1, ū1)
D (v̄1, ū2)

...
D (v̄j, ūi)

...
D (v̄H , ūW )


∈ RN

>0, (5.2)

where N = WH is the total number of pixels in D, v̄j ∈ {v̄1, v̄2, ..., v̄H} and ūi ∈
{ū1, ū2, ..., ūW} denote the discrete image coordinates (pixel indices) corresponding to the
continuous adjusted image coordinates (v̄, ū). (v̄j, ūi) is essentially the pixel coordinates
(j, i) recorded at time instant t. Furthermore, (v̄j, ūi) also represents a whole-number
location on the continuous pixel space formed by (v, u).

5.1.2 Disparity-based Direct Visual Servoing

The disparity-based visual servoing algorithm needs to compute the camera velocity to
move the camera and robot such that the disparity map converges to the target one.
By following the IBVS formulation introduced in [12, 46, 87], the instantaneous velocity

v =
[
vo,x vo,z ωo,y

]> ∈ R3 of the camera frame O and the temporal variation of D is
defined as

∂D

∂t
= LDv, (5.3)

where LD ∈ RN×3 denotes the full interaction matrix based on disparity. Since the camera
is attached to a mobile robot whose motion is limited on a 2D plane, the camera’s velocity
only contains two translational components vo,x and vo,y along the xO and zO axis, re-
spectively, as well as the rotational component ωo,y about the yO axis. Consider the error
vector

∆D =


D(1)−Dref (1)

...
D(W (v̄j − 1) + ūi)−Dref (W (v̄j − 1) + ūi)

...
D(N)−Dref (N)

 , (5.4)

where Dref ∈ RN
>0 denotes the vector form of the reference disparity map captured at the

robot’s target pose. The proposed velocity control law is designed with a goal to minimize
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e = ‖∆D‖2/2 along (5.3), by guaranteeing

∂e

∂t
= (∆D)>

∂D

∂t
= (∆D)> LDv < 0 (5.5)

for nonzero L>D∆D. Hence, the corresponding control law is chosen as

v = −λL+
D∆D, (5.6)

where L+
D =

(
L>DLD

)−1 L>D is the pseudoinverse of LD. Although the global stability
of controller (5.6) is not guaranteed, the local asymptotic stability is ensured within a
neighborhood of D = Dref when LD is of column rank 3 [12]. In the actual implementation,
L+

D is computed by using singular value decomposition, which eliminates any potential
problem for matrix inversion.

In order to derive the full interaction matrix LD, we follow a procedure similar to that
in [87]: The depth zo captured at time instant t is modeled as a surface zo (v̄, ū, t). The
disparity is also considered as a time varying surface D (v̄, ū, t). Note that the disparity
image D and its vectorized form D are essentially the discrete representations of this
surface. Taking the full time derivative of D (v̄, ū, t) yields

dD

dt
=
∂D

∂ū
˙̄u+

∂D

∂v̄
˙̄v +

∂D

∂t
, (5.7)

which can be rearranged as

∂D

∂t
=
dD

dt
− ∂D

∂ū
˙̄u− ∂D

∂v̄
˙̄v. (5.8)

By triangulation shown in Figure 5.2, the depth zo (v̄, ū, t) of P from the left optical center
is geometrically related to the disparity D (v̄, ū, t). By using the similar triangles in Figure
5.2 and following (2.1), this relationship is

D (v̄, ū, t) =
bf

zo (v̄, ū, t)
, (5.9)

which implies that
dD

dt
= −bf

z2
o

żo. (5.10)

Additionally, time derivatives of the adjusted image coordinates are obtained by differen-
tiating (5.1) as {

˙̄u = ẋozo−xożo
z2o

˙̄v = ẏozo−yożo
z2o

.
(5.11)
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Figure 5.2: Top view of Figure 5.1 to visualize triangulation.

The velocity components (ẋo, ẏo, żo) of the 3D point P in (5.11) can be related to the
camera velocity. This relationship has been derived in [12] as

ẋo = −vo,x − ωo,yzo + ωo,zyo

ẏo = −vo,y − ωo,zxo + ωo,xzo

żo = −vo,z − ωo,xyo + ωo,yxo

, (5.12)

where the camera velocity (vo,x, vo,y, vo,z, ωo,x, ωo,y, ωo,z) allows the camera to move in a 3D
workspace with 6 DOFs. This suggests that (5.12) is applicable to camera integrated with
a robot manipulator. Since the camera motion in our case is constrained in a 2D plane,
this relationship can be simplified to accommodate planar motion by setting vo,y = ωo,x =
ωo,z = 0 as 

ẋo = −vo,x − ωo,yzo
ẏo = 0

żo = −vo,z + ωo,yxo

. (5.13)

Substituting (5.1), (5.9), and (5.13) into (5.10) yields

dD

dt
= − bf(

bf
D

)2 (−vo,z + ωo,yxo) ,

dD

dt
= −D

2

bf
(−vo,z + ωo,yzoū) ,
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dD

dt
= −D

2

bf

(
−vo,z + ωo,y

bf

D
ū

)
,

dD

dt
=
D2

bf
vo,z −Dūωo,y. (5.14)

Similarly, (5.11) can also be expanded as

˙̄u =
(−vo,x − ωo,yzo) zo − xo (−vo,z + ωo,yxo)

z2
o

,

˙̄u = −vo,x
zo
− ωo,y +

xo
z2
o

vo,z −
x2
o

z2
o

ωo,y,

˙̄u = −vo,x
bf
D

− ωo,y +
D

bf
ūvo,z − ū2ωo,y,

˙̄u = −D
bf
vo,x +

Dū

bf
vo,z −

(
ū2 + 1

)
ωo,y. (5.15)

˙̄v =
−yo (−vo,z + ωo,yxo)

z2
o

,

˙̄v =
yo
z2
o

vo,z −
xoyo
z2
o

ωo,y,

˙̄v =
Dv̄

bf
vo,z − ūv̄ωo,y. (5.16)

Substituting (5.14), (5.15), and (5.16) into (5.8), we obtain

∂D

∂t
=


D
bf
∂D
∂ū

D
bf

(
D − ū∂D

∂ū
− v̄ ∂D

∂v̄

)
−Dū+ (ū2 + 1) ∂D

∂ū
+ ūv̄ ∂D

∂v̄


> vo,xvo,z

ωo,y

 . (5.17)

From (5.17), we define an interaction manifold, which is also referred to as interaction
matrix in previous works, based on an arbitrary point on the disparity surface D (ū, v̄, t)
as

LD =


D
bf
∂D
∂ū

D
bf

(
D − ū∂D

∂ū
− v̄ ∂D

∂v̄

)
−Dū+ (ū2 + 1) ∂D

∂ū
+ ūv̄ ∂D

∂v̄


>

. (5.18)
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The full interaction matrix LD is constructed as a stack of interaction manifolds LD as

LD =


LD (v̄1, ū1, t)

...
LD (v̄j, ūi, t)

...
LD (v̄H , ūW , t)

 , (5.19)

where LD (v̄j, ūi, t) is the interaction manifold evaluated with the discrete pixel indices
(v̄j, ūi) and D(W (v̄j − 1) + ūi) recorded at time instant t. In the actual implementation,
the adjusted image coordinates (v̄, ū) given pixel (v̄j, ūi) are evaluated via (5.1) by setting
u = ūi and v = v̄j. Additionally, the spatial gradients ∂D

∂ū
and ∂D

∂ū
can also be computed

based on (5.1) as {
∂D
∂ū

= ∂D
∂u

∂u
∂ū

= f ∂D
∂u

∂D
∂v̄

= ∂D
∂v

∂v
∂v̄

= f ∂D
∂v

, (5.20)

where ∂D
∂u

and ∂D
∂v

are approximated by applying the Sobel filters to the disparity D(W (v̄j−
1) + ūi) located at (v̄j, ūi).

In the above derivation of LD ∈ RN×3, the camera motion is restricted to a 2D plane
since it is attached to a mobile robot. Similar procedures can be followed to derive a more
generic LD ∈ RN×6 for applications with robot manipulators by using (5.12) instead of
(5.13).

Robot

Camera

Figure 5.3: Model of a mobile robot with a camera.

After obtaining the full interaction matrix LD, the camera velocity v can be computed
by the control law (5.6). However, v is based on frame O attached to the camera. Since
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this camera frame does not always align with the robot’s base, moving the robot directly
with this velocity will cause undesired pose. Hence, v needs to be transformed to the
robot’s base frame in order to provide the appropriate velocity command to the robot. To
obtain this transformation, consider Figure 5.3 that shows the model of a nonholonomic
differential drive mobile robot with a camera and a reference base frame B attached to its
base. The robot’s motion is governed byẋbẏb

θ̇b

 =

vb cos θb
vb sin θb
ωb

 , (5.21)

where (xb, yb) is the position of the robot’s base in the world reference frame W , and θb is
its orientation with respect to axis xW . The linear velocity of the robot’s base vb is inline
with axis xB, while the rotational velocity ωb is about axis zB. The camera’s velocity v is

related to the robot’s velocity vb =
[
vb ωb

]>
in frame B [27] by

v = Tvb =

0 −tx
1 −ty
0 −1

vb, (5.22)

where tx and ty are the offsets of the camera from B as shown in Figure 5.3. Hence, given
the camera’s velocity from (5.6), the control law in the form of the robot’s velocity is

vb = T+v, (5.23)

where T+ is the pseudoinverse of the transformation T.

5.2 Occlusion-Aware Visual Servoing and Final De-

sign

Due to the setup of a stereo camera, occluded regions are only visible in one of the stereo
views but not in the other. Some stereo algorithms remove the disparity estimates in
these regions from their predictions. In the case of the proposed stereo matching pipeline,
contextual information is utilized to provide these estimates. Since they are not obtained
according to the general principle of stereo matching, they may not reflect accurate depth
information. Including them in the control law may affect the overall performance. There-
fore, they should be removed from the visual servoing algorithm.
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The removal of occluded regions is facilitated by the predicted occlusion mask Oo

computed at the same time as the predicted disparity D0 by the stereo matching pipeline.
For the disparity image vector D at time instant t, denote the corresponding occlusion
mask O ∈ RN , which has been vectorized in a similar way as (5.2). Given the pixel
(v̄j, ūi), O (W (v̄j − 1) + ūi) ∈ (0, 1) indicates how likely this pixel belongs to an non-
occluded region according to the model’s knowledge. When O (W (v̄j − 1) + ūi) is close to
1, the model is certain that (v̄j, ūi) is from a non-occluded region, while O (W (v̄j − 1) + ūi)
close to 0 indicates the opposite. This soft occlusion mask can be used to effectively select
non-occluded pixels to be included in the controller.

To incorporate this occlusion information at time instant t and at the robot’s target
pose, both the occlusion mask O and the vectorized occlusion mask Oref ∈ RN obtained
at the target pose are used to compute a joint occlusion mask by

Ō = O⊗Oref ∈ RN . (5.24)

The soft joint occlusion mask Ō can be viewed as a weighting vector based on the occlusion
predictions at both time instant t and at the target pose for all pixels. In [87], a different
weighting scheme is used in the control law to address the problem where structure of
the scene changes during the visual servoing process. By extending this technique, the
controller in (5.6) is modified to include the joint occlusion mask as

v = −λ
(
ŌDLD

)+ (
ŌD∆D

)
, (5.25)

where ŌD is a diagonalized matrix form of Ō as

ŌD = diag
(
Ō (1) , ..., Ō (N)

)
∈ RN×N (5.26)

Equation (5.25) explicitly lowers the contribution of pixels that are identified as part of
the occluded regions to the calculated camera velocity.

To summarize the above derivation and design, a stereo camera installed on a mobile
robot captures a pair of stereo images and a raw disparity map at each arbitrary time
step. These images are processed by the proposed stereo matching pipeline, which has
been trained offline. The pipeline estimates a disparity map and an occlusion mask online.
The disparity map and occlusion mask estimates are exploited on the fly to obtain the
interaction matrix (5.19), the error signal (5.4), and the joint occlusion mask (5.24). Then
(5.25) utilizes all this information to compute the camera’s commanded velocity. Lastly,
the camera velocity is transformed to the robot’s velocity command according to (5.23).
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5.3 Simulation and Experimental Results

5.3.1 System Setup

The proposed visual servoing algorithm is verified in both a simulation environment and
on a physical robot, as shown in Figure 5.4, with the use of Robot Operating System [78].
In the simulation environment, a Turtlebot 3 [70] with a simulated Intel RealSense D435
camera [52] is used, while a Turtlebot 2 [69] with a RealSense D415 camera [52] is utilized
for the physical experiments. Both of the robots are nonholonomic differential drive mobile
robots. The simulated camera captures stereo images at a resolution of 600×800 with focal
length f = 435 px and baseline b = 0.05 m. The local block matching method from the
OpenCV library [72] then computes the raw disparity maps from the stereo images. In the
physical experiments, the camera outputs stereo images and raw disparity maps directly at
a resolution of 480× 640 with f = 608.3 px and b = 0.055 m. Note that the raw disparity
maps are converted from the raw depth maps computed by the camera’s processor.

(a) (b)

Figure 5.4: Setup in the (a) simulation and (b) physical environments.

After obtaining the stereo images and raw disparity maps, the proposed stereo matching
pipeline computes the final predicted disparity maps and occlusion masks. In order to lower
the runtime, the images are cropped to W = 320 and H = 240 at the center prior to feeding
them into the stereo pipeline. The predicted disparity and occlusion are utilzied by the
controller with its gain chosen as λ = 30 for the simulated controller and λ = 5 in the
experiments. The robot’s ground truth poses in experiments are captured by an Optitrack
camera tracking system.

With the above implementation details, the simulation can run smoothly on a desktop
with an Intel i7-10700K CPU and an NVIDIA RTX 3060 GPU at approximately 0.075
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sec per iteration. In the experiments, a laptop with an Intel i5-7500HQ CPU and an
NVIDIA GTX 1050 GPU is connected to the robot to perform all computations. Due to
the hardware limitation, the runtime in the experiments is slightly lower at around 0.095
sec per iteration.

Ground truth Raw disparity Predicted disparity Occlusion mask

(a)

Raw disparity Predicted disparity Occlusion mask

(b)

Figure 5.5: Sample qualitative results from the (a) simulated and (b) real datasets.

The stereo pipeline discussed previously is trained and evaluated with images captured
in scenes different from the simulation or physical environment. Using the trained model
directly in the current use cases may not yield accurate disparity estimates. To improve
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the performance of the stereo pipeline, the model pretrained on the Scene Flow dataset is
fine-tuned with datasets recorded in the simulation and experimental settings separately,
leading to two trained models for both settings. The dataset collected in the simulation
environment consists of 5,056 frames, while there are 12,814 frames in the dataset from the
physical environment. For both datasets, 80% of the images are considered as the training
images, while the remaining ones are reserved to validate the trained model. When training
with the simulation dataset, the model is fine-tuned with an initial learning rate of 0.0001
for 40 epochs. The learning rate is reduced to 0.00005 at the 20th epoch. Fine-tuning
with the real images is performed for 30 epochs with the same initial learning rate, which
is lowered to 0.00001 at the 15th epoch. Other hyperparameters are the same as the ones
used for training with the Scene Flow dataset according to Table 4.5.

After fine-tuning, the stereo pipeline can predict accurate disparity and occlusion in
these environments. When evaluating the model on the simulation dataset’s validation set,
the EPE is only 0.3301 px and only 0.3852% of pixels have disparity error larger than 3
px. Since no ground truth data is available in the real dataset, only the qualitative results
are given in Figure 5.5. The qualitative results in Figure 5.5 show that the proposed stereo
pipeline can provide high-quality disparity and occlusion predictions in the simulation and
physical environments.

5.3.2 Simulation Results

In the simulation environment, three sets of tests have been performed. The first test is
designed to verify the proposed controller in (5.25). Then the performance between the
proposed scheme and visual servoing methods based on feature extraction is compared.
The last test justifies the importance of occlusion masks in the controller.

Verification of the Proposed Design

The proposed disparity-based visual servoing scheme is verified by a positioning task in
the simulation environment. The robot is first placed at a target pose. Then the predicted
disparity map and occlusion mask at this pose are recorded as the reference images. By
using these reference images, the robot moves from its initial pose according to the velocity
commands computed by the controller. During the robot’s motion, its position and heading
angle are recorded.

Figure 5.6 shows the results from this test. The task error shown in Figure 5.6(a) is
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Figure 5.6: Results from the positioning task in the simulation environment: (a) task error;
(b) positioning error; (c) robot’s velocity.

defined as

ed =
1

N

N∑
n=1

Ō (n) |∆D(n)| . (5.27)

This task error computes the difference between the robot’s current disparity map and the
target one with occlusion considerations. The positioning error shown in Figure 5.6(b)
includes three elements: the translational difference ∆x between the robot’s position and
the target position along the xW axis in Figure 5.3, the translational error ∆y along axis
yW , and rotational error ∆z about the zW axis that can be derived by applying the right-
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(a)

(b)

(c)

Figure 5.7: (b) Disparity maps and (b) occlusion masks captured in the (a) simulated
scene for the positioning task. For (b) and (c), images from left to right are captured at
the robot’s target, initial, and final pose.

hand rule to xW and yW . The linear and rotational velocities of the robot’s base are also
shown in Figure 5.6(c).

Figure 5.6(b) shows that the proposed controller in (5.25) can provide the appropriate
control actions to move the robot towards its target pose. After the robot reaches its
steady state pose at approximately t = 300 sec, the translational and rotational errors are
in close vicinity of zero, i.e., the robot reaches its target pose. The task error shown in
Figure 5.6(a) also decreases as the robot moves towards its target. At steady state, the
task error is close to zero, which indicates that the robot’s disparity map at steady state is
almost identical to the target disparity map at the non-occluded regions. This result is also
supported by the images shown in Figure 5.7, where the robot’s final disparity map and
final occlusion mask are visually similar to the reference images. These results verify that
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the proposed controller can utilize the predicted disparity and occlusion information to
compute the appropriate control commands. These commands are effective in regulating
the robot’s positioning error between its current pose and the target pose as well as the
difference between the current and target disparity maps.

Comparison with Feature-based Approaches

In the second test, the performance of the proposed direct disparity-based controller is
compared with two other approaches relying on feature extraction and matching. The
controller design of these two baseline methods is based on the formulation given in (2.2).
In these methods, a set of features are first extracted from the left stereo image recorded
at the robot’s target pose. The same set of features are extracted and matched from the
current left stereo image. The image coordinates of these features are used as the image
feature properties s and s∗ in (2.2). The interaction matrix Ls based on these properties
has been derived in [46]. In the first baseline method, the SIFT features [63] are extracted
from the images, while the oriented FAST and rotated BRIEF (ORB) descriptors [80]
are used in the second baseline. For simplicity, the extraction and matching algorithms
provided by open-source libraries [5, 92] are used directly in the implementation.

∆x (m) ∆y (m) ∆z (◦)
Initial error -0.375 -0.080 10.873

SIFT -0.232 -0.040 1.337
ORB 0.013 -0.004 0.555

Proposed 0.002 0.003 0.124

Table 5.1: Initial and final positioning error for different visual servoing approaches.

Table 5.1 shows the final positioning error obtained by different controllers used in
this test. Compared to the initial positioning error, all three controllers can compute
commanded velocity to move the robot closer to the target. The controller relying on
SIFT feature yields the least accurate result. After the robot reaches its steady state with
the SIFT-based controller, the robot’s pose is still significantly different from the target one.
After replacing SIFT features with ORB descriptors in the algorithm, the positioning error
is reduced substantially. The proposed direct disparity-based controller achieves the best
result with final positioning error close to zero. These results indicate that our designed
controller has more superior performance than the ones relying on feature extraction and
matching. When using feature-based controllers, the performance is dependent on the
accuracy of the feature extraction and matching algorithms, which may match non-identical
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features together. Using the direct visual servoing approach can avoid these potential
inaccuracies.

Significance of Occlusion Masks

The controller in (5.25) incorporates occlusion information to address the limitation caused
by the stereo setup. In this test, we verify the importance of this occlusion information in
the control strategy. We compare the robot’s positioning error from the proposed controller
and from the one without occlusion information as shown in (5.6).

We observe that the proposed stereo pipeline may not compute correct disparity esti-
mates at the occluded regions, especially when the objects in the scene are close to the
camera. As shown in the example in Figure 5.8, the predicted disparity map includes no-
table error next to the left object boundary in the scene. Meanwhile, the occlusion mask
can effectively identify this erroneous region as an occluded region.

(a) (b) (c)

Figure 5.8: Images recorded at the robot’s target pose for occlusion study: (a) left stereo
view; (b) predicted disparity; (c) occlusion mask.

By using the images shown in Figure 5.8 as the reference images, a positioning exper-
iment is performed with results shown in Figure 5.9. When using the controller without
occlusion information in (5.6), the robot does not converge to the desired pose according
to Figure 5.9(b). The incorrect disparity at the occluded region contaminates the calcu-
lated velocity, leading to unsatisfactory positioning performance. As the occlusion mask
removes the contribution of incorrect disparity in the control algorithm according to (5.25),
the robot can move to the target pose with the final positioning error close to zero as shown
in Figure 5.9(a). This comparison verifies the effectiveness of the proposed controller to
address the occlusion problem inherited from a stereo setup.
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Figure 5.9: Positioning error for the robot (a) with and (b) without the proposed occlusion-
aware control law.

5.3.3 Experimental Results

The proposed controller has also been tested on a physical robot to verify its effective-
ness in a real-life environment. A positioning experiment similar to the one performed in
the simulation environment is carried out. Additionally, a navigation experiment is also
included to show the controller’s performance in a longer run.

Positioning Experiment

In the positioning experiment, the experimental procedure is similar to the one used in
the simulation test. The results of this experiment are shown in Figure 5.10. Using the
reference images, the robot moves towards the target pose in the experiment and reaches
close proximity to zero in terms of the positioning error in three dimensions as found in
Figure 5.10(b). The task error in Figure 5.10(a) also reduces to approximately zero during
the experiment. This can be further verified by Figure 5.11. The final disparity map and
occlusion mask in Figure 5.11 are visually similar to the reference ones. These experimental
results demonstrate that the proposed direct disparity-based controller is also applicable
to a robot in a real-life environment. Furthermore, the robot used here is a differential-
drive robot with dimensions and sensor setup different from those of the simulated robot.
Therefore, the results further indicate that the proposed control algorithm is generic, and
it can be applied to different mobile robotic systems with differential drive.
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Figure 5.10: Results from the positioning task in the physical environment: (a) task error;
(b) positioning error; (c) robot’s velocity.

Navigation Experiment

In the navigation experiment, the robot is required to move to a sequence of poses in the
environment shown in Figure 5.12(a). The robot is first placed at a sequence of six different
poses. At each pose, a disparity map and an occlusion mask are recorded, resulting in a
sequence of reference disparity maps in Figure 5.12(b) and a sequence of reference occlusion
masks in Figure 5.12(c). At the beginning of the experiment, the robot starts from an
initial pose. The controller uses the first set of disparity map and occlusion mask from the
reference image sequences as the current target images. When the robot moves, the task
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(a)

(b)

(c)

Figure 5.11: (b) Disparity maps and (c) occlusion masks captured in the (a) physical scene
for the positioning task. For (b) and (c), images from left to right are captured at the
robot’s target, initial, and final pose.

error in (5.27) is computed online with the current and target images. When the task error
is less than 0.3 px, the second set of disparity map and occlusion mask from the recorded
sequences is used as the new reference images. The same procedure continues until the
robot reaches its final pose.

Figure 5.13 shows the robot’s target poses on the xW-yW plane in red, selected actual
robot poses in blue, and the approximate obstacle locations in black. From this result, it
can be observed that the robot can move towards the target poses in a sequential manner
by using the proposed controller. When the robot reaches close proximity to a target pose,
the reference images are switched automatically to guide the robot towards the next pose.
This experiment demonstrates that the proposed direct disparity-based controller can be
used to move the robot according to a sequence of reference images, which indicates the
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(a)

(b)

(c)

Figure 5.12: Reference (b) disparity and (c) occlusion sequences recorded in the (a) naviga-
tion experiment setup. The order of the images in (b) and (c) is in the clockwise direction
from the upper left image.
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Figure 5.13: Actual robot poses and target poses from the navigation experiment. Obsta-
cles’ poses are approximate.

potential use of this control strategy in longer runs.

Figure 5.13 further shows that it is more difficult for the robot to correct its lateral error
than its longitudinal error. This behavior may be attributed to the robot’s nonholonomic
motion constraints. To correct its lateral error, the robot is required to move along its
longitudinal direction and about its rotational axis. However, these constraints are not
considered in the control law shown in (5.25). Incorporating them in the controller design
[15, 44] may lead to better performance.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have presented a self-supervised stereo matching pipeline with confidence
guided raw disparity fusion and a direct disparity-based visual servoing framework. The
stereo matching pipeline first calculates the confidence of a raw disparity map from a tradi-
tional stereo matching algorithm/commercial stereo camera, and then predicts an accurate
disparity image and occlusion mask by fusing the raw disparity and confidence into a self-
supervised deep neural network. Extensive experiments on public datasets demonstrate
the effectiveness of each design component in the pipeline. Comparison with results from
existing methods highlights the competitive accuracy and fast inference rate of the pro-
posed approach. Further experiments with custom datasets collected by commercial stereo
cameras also show that our method can effectively improve disparity computed by these
cameras.

The proposed direct disparity-based visual servoing framework utilizes the high-quality
predicted dispairty maps obtained from the stereo pipeline. Unlike many other visual ser-
voing approaches, the proposed control framework does not rely on complex image feature
extraction and matching, which are not always accurate and may lead to unsatisfactory
performance. Moreover, the occlusion masks are also included to address the occlusion
problem inherited from a stereo camera setup. The proposed control algorithm has been
applied to mobile robots in both a simulation and physical environment. The simulation
and experimental results show high positioning accuracy of the controller.
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6.2 Future Work

There are multiple potential future research directions which may improve the stereo
matching pipeline and the visual servoing framework. To further increase the accuracy
of the stereo matching pipeline, different DNN designs and confidence guided raw dis-
parity fusion schemes can be studied. Although CNNs are widely used in deep learning
models designed for computer vision tasks, using alternative DNN architectures like re-
current neural networks (RNNs) and transformers may also be explored. Designing the
stereo matching pipeline according to these architectures is another potential solution to
achieve high-quality depth perception. Furthermore, the proposed confidence guided raw
disparity fusion step may be included at different stages of the pipeline to further exploit
the supervisory signals from raw disparity.

In addition to different network designs, tuning the hyperparameters in the pipeline
may be improved by developing some systematic procedures as alternatives to the current
ad-hoc approaches. For this improvement, an automatic hyperparameter tuning algorithm
according to properties of the input information may be designed. Enhancing the tuning
process can maintain the high-quality predictions when fine tuning the pipeline on new
datasets. Moreover, this may also allow online adaptation of the pipeline, leading to
improvement of its accuracy continuously on the fly.

In robotic applications, using light and fast algorithms is essential. Hence, the runtime
and memory footprint of the stereo matching pipeline may be further reduced by applying
various model compression techniques to the DNN. Improving the runtime of the pipeline
is beneficial for other downstream processes relying on the pipeline. An algorithm with
low memory footprint can be deployed on robots more easily since the capacity of their
hardware may be limited.

For the visual servoing framework, better performance may be achieved if more factors
are included in the controller design. For instance, the robot’s nonholonomic motion con-
straints may be included in the control design to improve the tracking performance in the
lateral direction. Considering the robot’s dynamical model when designing the controller
can better address disturbances that occur when the robot moves. Lastly, using more ad-
vanced control strategies, such as linear-quadratic (LQ) optimal control, model predictive
control (MPC), and neuro-adaptive control, may result in higher tracking accuracy.
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