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Abstract

Building extraction from remote sensing images is a critical task to support various
applications such as cartography, disaster response, and urban planning. The automation
of this task is an active research area due to the time-consuming nature and high expense
associated with the manual approach. However, traditional computer vision methods rely
on handcrafted features and human knowledge, leading to the lack of the ability to lever-
age big remote sensing data. Although recently developed deep learning based methods
brought significant advancements in the identification and coarse annotation of buildings,
the accuracy and precision of extracted buildings are still insufficient for high-precision
applications such as surveying and mapping.

This thesis presents two works aiming at enhanced building extraction from high-
resolution remote sensing images by tackling key issues in building footprint extraction
and building vectorization. For building footprint extraction, to address the heterogeneous
noisy features around building boundaries, this thesis presents a deep learning strategy that
incorporates a topography-aware loss (TAL) within a multi-resolution fusion architecture
to increase the accuracy of boundaries in building segmentation. For building vectoriza-
tion, to address the interference caused by noise and obstruction from shadows and trees
around buildings and the limited receptive field in deep learning networks, this thesis
presents a framework that combines a deep learning based building edge detection strat-
egy and a geometry-guided building polygon reconstruction method for improved building
outline vectorization in terms of vertex accuracy. Comparative experimental results on
high-resolution remote sensing building datasets demonstrate significant improvements in
building boundary accuracy and polygon vertex accuracy respectively over state-of-the-art
methods. Hence, both works provide new means to address challenges posed by complex
environmental conditions around buildings captured in remote sensing images and enable
accurate building segmentation and vectorization towards automatic building extraction
for high-precision applications.
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Chapter 1

Introduction

1.1 Problems and Contributions

Building extraction from remote sensing images is an important task with various applica-
tions such as cartography, disaster response, and urban planning [41, 39, 7]. The manual
approach is extremely time-consuming and expensive due to the large scale of building
coverage. Further challenges are posed by the ripped development of urban area and the
requirement of up-to-date maps for modern applications, which demand more frequent up-
dates of building information. This leads to active research in the automation of building
extraction, which benefits applications in geomatics and environmental science.

Over the decades, many traditional computer vision approaches have been proposed
for building extraction. They mostly rely on empirical knowledge of buildings to extract
features such as colors, textures, edges, shapes, shadows, and context, combining with one
or more knowledge-based methods such as template matching, active contour model, math-
ematical morphology, graph-based analysis, and dynamic programming [36, 1, 16, 30, 26].
Despite the progress achieved, the performance of those approaches largely depends on
the quality of manually designed features, which requires human experience and explicit
understanding of building characteristics. However, those approaches do not benefit from
the increased resolution of remote sensing images because of the complexity of the envi-
ronment captured by high-resolution remote sensing images and the difficulty of adopting
handcrafted features to different building variations.

Recently, the development of deep learning techniques including convolutional neural
networks (CNNs) have shown improvement in computer vision tasks such as image clas-
sification, object detection, and semantic segmentation [20, 22, 14]. As a result of this
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development and the increased availability of high-resolution remote sensing images, sig-
nificant advancements have been made in the field of automatic building extraction. Those
data-driven approaches can extract discriminative features by learning from labeled build-
ing data and demonstrate state-of-the-art performance in detection and segmentation of
buildings, e.g., CBR-Net [12] achieves intersection-over-union (IoU) [22] of 91.4%, 74.55%,
and 81.1% in the WHU building dataset [18], the Massachusetts building dataset [28], and
the Inria aerial image dataset [24] respectively. However, the accuracy of extracted build-
ings provided by those coarse annotations is still insufficient and limits their applications
in mapping and navigation which require high-precision building annotations.

Although boundaries are important features that define the shape and location of build-
ings, achieving accurate boundary prediction is difficult due to the limitation of typical
CNN design and the complex environmental conditions in the immediate neighboring re-
gion of building boundaries. The work in Chapter 2 proposes a topography-aware multi-
resolution fusion learning strategy specifically designed for enhanced building footprint
extraction. A topography-aware loss (TAL) that adapts to building topology and helps
the network to learn building boundary features is introduced. It is then incorporated in
a multi-resolution fusion architecture that provides high-resolution feature representation
to boost segmentation performance. Furthermore, the average thresholded contour accu-
racy (tCA) is introduced to effectively evaluate the accuracy of building boundaries. The
effectiveness of the method is demonstrated and compared with state-of-the-art semantic
segmentation models using experimental results on the SpaceNet buildings dataset [37].

Building vector maps are essential in supporting high-precision applications, but its
generation through deep learning approaches is prone to errors caused by noise and ob-
struction around buildings in aerial images. The work in Chapter 3 proposes a multi-task
edge detection (MTED) framework for building vectorization countering those challenges.
A deep learning based building edge detection approach utilizing rotated bounding boxes
is introduced to increase robustness to interference. In order to take advantage of spatial
context and regularization, a multi-task learning strategy is designed to integrate building
segmentation with building edge detection. Finally, a simple yet effective geometry-guided
post-processing method reconstructs building outline vectors by leveraging learned building
shape priors and predicted building edges. Significant improvements over state-of-the-art
methods in terms of vertex accuracy metrics and overall vector representation are demon-
strated by comparative experiments on the very-high-resolution Aerial Imagery for Roof
Segmentation (AIRS) dataset [8].

Therefore, this thesis presents two works that focus on improving the quality of auto-
matically extracted building annotations from high-resolution remote sensing images. Both
works are motivated by the increased availability of high-resolution remote sensing images
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Figure 1.1: Overview of the works in Chapter 2 and Chapter 3. The first work addresses
boundary accuracy to improve building segmentation. The second work provides robust
edge detection to improve building vectorization.

and the successes of applying deep learning techniques to computer vision tasks. Further-
more, complex environmental conditions around building boundaries and CNNs’ limited
prediction precision at object boundaries are common challenges faced in those works. The
two works are differentiated by their product types used in applications, which are partly
determined by the level of precision enabled by the resolution of input images. The work
in Chapter 2 improves building annotations extracted by segmentation of satellite images
with a spatial resolution of 30 cm. In comparison, the work in Chapter 3 produces building
annotations in polygon format for vector map productions from aerial images with a spa-
tial resolution of 7.5 cm. As a result, this leads to the different methodology directions as
shown in Figure 1.1, where Chapter 2 proposes a topography-aware loss for buildings and
incorporates it in a multi-resolution fusion architecture to improve building segmentation,
and Chapter 3 proposes a building edge detector and combines it with a geometry-guided
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polygon reconstruction method to improve building vectorization.

1.2 Thesis Outline

In this thesis, two main works aiming at enhanced building extraction from high-resolution
remote sensing images are presented as shown by the overview in Figure 1.1. Both works
focus on resolving key issues that prevent the application of automatic building extraction
as described in Chapter 1. Chapter 2 presents the first work addressing the precision issues
of CNN-based semantic segmentation approaches at the delineation of building boundaries.
Chapter 3 presents the second work improving accuracy and precision of building vector-
ization from very-high-resolution aerial images. Finally, Chapter 4 summarizes the works
and briefly outlines the direction of future works.
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Chapter 2

TAL: Topography-Aware
Multi-Resolution Fusion Learning for
Enhanced Building Footprint
Extraction

The following article has been published in the journal IEEE Geoscience and Remote
Sensing Letters, with the full reference being: Y. Wu, L. Xu, Y. Chen, A. Wong and
D. A. Clausi, “TAL: Topography-Aware Multi-Resolution Fusion Learning for Enhanced
Building Footprint Extraction,” in IEEE Geoscience and Remote Sensing Letters, vol.
19, pp. 1-5, 2022, Art no. 6506305, doi: 10.1109/LGRS.2022.3149709. The text was
reformatted to fit the thesis format.

This article documents a topography-aware multi-resolution fusion learning strategy
aiming at enhanced building footprint extraction from high-resolution satellite images and
compares it with state-of-the-art methods with experimental results.
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TAL: Topography-Aware Multi-Resolution
Fusion Learning for Enhanced Building

Footprint Extraction
Yifan Wu, Linlin Xu, Yuhao Chen, Alexander Wong, and David A. Clausi

Abstract

Automatic building footprint extraction from remote sensing imagery is a challenging task
with important applications in geomatics and environmental science. Significant advances
have been made in this field as a result of the emergence of deep convolutional neural
networks (CNNs) designed for semantic segmentation. Although CNNs have demon-
strated state-of-the-art performance in coarse annotation and identification of buildings,
the boundary accuracy of extracted building footprints is still insufficient for high-precision
applications such as mapping and navigation [8, 39, 7]. We propose the topography-aware
multi-resolution fusion learning strategy tailored to the problem of enhanced building foot-
print extraction. More specifically, we introduce a topography-aware loss (TAL) for en-
hancing a deep CNN’s ability to learn heterogeneous building features for better boundary
preservation during segmentation. We then incorporate the proposed TAL loss within
a multi-resolution fusion architecture to boost high-resolution segmentation performance.
Finally, we introduce a novel metric named average thresholded contour accuracy (tCA)
which specifically measures the accuracy of segmentation boundaries. The experimental
results on the SpaceNet buildings dataset [37] show significant improvements in bound-
ary integrity of extracted building footprints when compared with previously proposed
methods. Hence, this method enables accurate boundary annotation toward automatic
production of building footprint maps for high-precision applications.

2.1 Introduction

Building footprint extraction from satellite images and aerial images is an important task
in remote sensing. The automation of this task is an active research area with applications
such as cartography, disaster response, and urban planning. The development of convo-
lutional neural networks (CNNs) such as fully convolutional networks (FCNs) [22] and
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U-Net [33] benefits it by providing a semantic segmentation approach. In this approach, a
label is predicted for every pixel of an image. While pixel-based predictions give promising
coverage, they have precision issues at the delineation of object boundaries [19, 5, 39]. How-
ever, accurate boundary annotation is a pre-requirement for applications in automatic map-
ping and land surveying. In addition, the widely adopted intersection-over-union (IoU) [22]
metric only evaluates the area coverage and lacks the ability to assess boundary accuracy.

Building boundaries are considered the most important features of a building footprint
because they define the shape and location of a building [39, 7]. However, accurate pre-
dictions with sharp corners and straight walls are difficult to achieve due to limitations of
typical CNN architectures [27, 10]. Typical CNNs use a series of encoding stages which
reduce the spatial resolution of feature maps [22, 2]. This low-resolution representation
leads to reduced localization accuracy. To make predictions at the input resolution, de-
coding stages are used to recover the lost information by upsampling the low-resolution
representation in multiple stages, usually with the aid of additional information from the
encoding stages [33, 21, 6]. U-Net improves upon FCNs by introducing skip connections
and multiple upsampling stages. FPN [21] combines low-resolution features and high-
resolution features via lateral connections. DeepLab [5] uses a fully connected Conditional
Random Field (CRF) [19] to capture fine edge details. However, the lack of high-resolution
representations still hinders the accurate prediction of pixel labels on object boundaries [6].

Furthermore, the complex environmental conditions in remote sensing imagery also
raise challenges in boundary-accurate building footprint extraction [25]. The immediate
neighboring region of building boundaries contains heterogeneous features due to environ-
mental conditions including visible sidewalls, partial coverage from trees, shadows, and
small irregular structures. Figure 2.1 shows some examples. In contrast, the inner region
of buildings is often homogeneous with simple texture. This imbalance in the feature va-
riety at different topology levels makes the building boundaries difficult to predict. The
softmax loss function used in CNNs penalizes incorrect prediction equally across the whole
image. While this is desired for an even distribution of features in nature images, buildings
in remote sensing imagery require a different design.

Early works on building footprint extraction focus on adopting generic segmentation
CNNs. Maggiori et al. [25] uses the FCN architecture to target building extraction. Ji
et al. [18] and Iglovikov et al. [17] modify the popular U-Net to improve the performance.
Wei et al. [39] add a multiscale aggregation in an FCN and use a polygon regularization
algorithm to refine building boundaries. Shao et al. [35] combine an encoder-decoder
structure and a residual refinement module which enhance the accuracy of boundaries.
Other recent works use additional building information for footprint extraction. Yuan [41]
proposes the signed distance function as an output representation for building footprint
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(a)

(b)

(c)

(d)

(e)

Figure 2.1: (a) High-resolution RGB spectral satellite image with building boundary anno-
tation overlay in red. Cyan boxes highlight environmental conditions including (b) visible
sidewalls, (c)(d) partial coverage from trees, shadows, and (e) small irregular structures.

labels. Bittner et al. [3] fuse features extracted from the three-band, panchromatic, and
normalized digital surface model images in hybrid FCN. Guo et al. [13] consider the scene
prior knowledge in a multitask parallel attention network to improve robustness. The works
mentioned above add complexity to the existing CNNs by requiring additional inputs and
modifying network architectures, making them difficult to adapt to various state-of-the-art
segmentation networks.

In this letter, we propose a topography-aware loss (TAL), a topography-aware multi-
resolution fusion learning strategy for enhanced building footprint extraction. TAL is a
simple yet effective loss weight function suitable for any network without additional input
requirements. More specifically, TAL adapts to building topology and helps the network
to learn boundary features without adding complexity from extra data or a change of
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output representation. We incorporate TAL into an architecture that provides a high-
resolution feature representation by fusing multi-resolution parallel convolution streams
for information exchange at different scales. As a result, the semantic representation
becomes more precise without the loss of localized information. To effectively evaluate the
building boundary accuracy, we introduce the average thresholded contour accuracy (tCA)
as an evaluation metric in addition to IoU. The experimental results on the SpaceNet
buildings dataset [37] demonstrate the effectiveness of our method compared with the
existing semantic segmentation models.

2.2 Methodology

2.2.1 Topography-Aware Loss (TAL) Function

Buildings in remote sensing images often have a feature imbalance problem associated with
the nature of building distribution and characteristics. To solve this problem, we propose a
TAL function that adapts to building topography characteristics in remote sensing imagery.
More specifically, each pixel in the segmentation mask is weighted by two components. The
first component addresses the learning imbalance problem associated with background and
building regions which can lead to predictive bias. The number of pixels associated with
background regions is often many times the number of pixels with building regions and thus
can cause much of the network’s capacity to be spent learning the background instead of the
buildings. We introduce a region weight for each class, which is inversely proportional to
the pixel occurrence of the class in the training set. Reflecting on the binary segmentation
natural of building footprint extraction, this region weight is further balanced with a factor
to cooperate with the design of the TAL function.

The second component addresses the imbalanced feature characteristics of buildings.
The neighboring region of building boundaries often contains difficult to learn features
with high variation, while the inner region of buildings has relatively simple features. We
introduce a boundary weight, which is assigned relative to the distance from the pixel to
the nearest building boundary. It gives extra weight to pixels close to the boundaries and
forces the network to learn features in those areas. Figure 2.2(b) shows an example of
pixel-wise topography weight visualization for a training image.

Based on the proposed TAL, we compute the loss weight w for each pixel x of each
image in the training set

w(x) = c(x) · wr(x) + wb · exp
(
−d(x)2

2α2

)
(2.1)
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(a) (b)

Figure 2.2: (a) Original image with ground truth (GT) building boundary annotation
overlay. (b) Pixel-wise TAL weight map derived from GT building boundaries with wb = 10
and α = 5. As can be seen from (b), by assigning very high loss weights to pixels close
to GT building boundaries, the TAL weight map helps the CNN model focus on learning
the building boundary characteristics for more accurate boundary delineation. Moreover,
by assigning higher loss weights to building pixels than background pixels that greatly
outnumber the building pixels, TAL helps alleviate the imbalanced classes issue.

where c is the class balancing factor, wr is the region weight, wb is the boundary weight
coefficient, d denotes the distance to the nearest building boundary, and α2 denotes the
variance of the boundary weight distribution. We design the region weight component and
boundary weight component to work cooperatively in a single equation by introducing the
class balancing factor c to avoid extreme difference in loss weight w between pixels after
combining the two components.

2.2.2 Multi-Resolution Fusion Learning

For multi-resolution fusion learning, we leverage a multi-resolution fusion architecture
based on HRNet [38] with the incorporation of the proposed TAL loss as shown in Fig-
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Figure 2.3: Multi-resolution fusion architecture with the incorporation of the proposed
TAL loss.

ure 2.3. The multi-resolution convolution streams include four parallel streams with high-
to-low resolution. The network starts with a high-resolution stream and adds lower res-
olution stream branches while keeping the higher resolution streams through the entire
network. In this way, the network maintains feature representation at different resolu-
tion levels. Fusion modules are used to aggregate feature representation from different
streams using striding or upsampling, which enables the exchange of information between
multi-resolution streams. It is used between multi-resolution streams repeatedly to form a
multistage fusion design. Thus, the multi-resolution fusion architecture provides a repre-
sentation with information combined from different spatial resolutions.
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2.3 Experiments

2.3.1 Dataset and Training Setup

We evaluate and compare our method using the SpaceNet buildings dataset [37] because of
its high-resolution RGB spectral satellite images and fine-grained building footprint anno-
tations. We choose the area of interest in Las Vegas for its large number of building samples
and good consistency across building labels. It covers an area of 216 km2 and contains
151,367 building labels. The RGB spectral images are collected from the WorldView-3
satellite at about 1.3-m spatial resolution and pansharpened to 0.3-m spatial resolution.
They are provided as 3,851 tiles with the size of 650 × 650 pixels and the corresponding
building polygons in GeoJSON format. We randomly choose 60% of tiles for training, 20%
of tiles for validating and 20% of tiles for testing. The polygon format building labels
are preprocessed to produce ground-truth binary masks and pixel-wise weight maps for
training.

The weights of our network are initialized with a model pretrained on ImageNet [34]
to take advantage of the generic features learned and speed up convergence. For training,
we use an initial learning rate of 0.007, SGD optimizer with a momentum of 0.9, and
a weight decay of 0.0005. Random cropping, scaling, and flipping are disabled for all
the models because they are not beneficial for remote sensing images with fixed spatial
resolution and viewing angle. The models are trained for 30 epochs with a batch size
of 2 on an NVIDIA GeForce RTX 2080 Ti GPU with 11 GB of memory. The proposed
TAL method has a similar training time and the same inference time compared with
HRNet. We use the inverse of pixel occurrence in the training set for region weight wr of
background and building pixels in (2.1). The class balancing factor c normalizes wr so that
the region weight component of any background pixels is 1. This normalization technique
is necessary to prevent degradation of performance caused by extreme loss weight values.
Our experiments find wb = 10 and α = 5 in (2.1) yield strong result.

2.3.2 Average Thresholded Contour Accuracy (tCA)

In semantic segmentation, predictions are stored in the form of binary masks. Each pixel in
the mask belongs to either the foreground class or the background class. Sets of contours
for the foreground class can be derived from each binary mask, and we consider each
contour the boundary of a building. We use a bipartite graph matching with morphology
approximation [31] between ground-truth contour and predicted contour to classify pixels
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Figure 2.4: Contour accuracy at thresholds from 1 to 5 pixels. The proposed TAL method
is in red; HRNet [38] in green; DeepLabv3+ [6] in blue; PSPNet [43] in purple.

into true positives (TP), false positives (FP), and false negatives (FN). A threshold distance
in pixels is applied to this calculation, where matches within this threshold buffer are
considered true positives. The average thresholded contour accuracy (tCA) based on F-
score is defined as

tCAaverage =
1

n

n∑
t=1

2PtRt

Pt +Rt

(2.2)

where Pt = TPt/(TPt + FPt) and Rt = TPt/(TPt + FNt) are the contour precision and
recall at t pixel threshold, respectively [31]. We use multiple threshold values to generate
multiple tCA values as an unbiased comprehensive metric that tends to be more indepen-
dent of threshold distances. More specifically, we use the averages of these tCA values, i.e,
tCAaverage as quantitative metric (as in Table 2.1), and also use the tCA curve as visual
evaluation, as shown in Figure 2.4.

We measure the segmentation performance with both IoU and tCA for building foot-
print prediction. IoU evaluates segmentation in terms of labeled area, but it lacks the
ability to localize the variation in performance. In contrast, the proposed tCA is com-
puted from contour precision and recall between predicted boundaries and ground truth.
We take measurements at thresholds from 1 to 5 pixels and calculate the average tCA for
unbiased comprehensive boundary accuracy evaluation.
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Figure 2.5: Three test scenes. From left to right are RGB images, GT binary masks, results
by PSPNet [43], DeepLabv3+ [6], HRNet [38], and the proposed TAL method, respectively.

2.3.3 Results and Analysis

We compare the proposed TAL method with the state-of-the-art semantic segmentation
networks, namely DeepLabv3+ and HRNet. Figure 2.5 shows segmentation results in three
scenes. The first scene shows that the proposed TAL method is able to better preserve small
building structures and predicate sharp building corners. In the second scene, shadows and
visible sidewalls between adjacent buildings lead to difficulties for PSPNet, DeepLabv3+,
and HRNet to correctly define building boundaries. Segmentation from our method shows
clean separation between those adjacent buildings while maintaining straight boundaries
and sharp corners. The third scene includes buildings with partial tree coverage and
complex small structures with shadows and visible sidewalls. Our method shows an overall
improvement in reproducing “H”-shaped buildings with correct structures. Furthermore, if
we pay attention to the long rectangle building highlighted by the box in the middle, both
PSPNet and DeepLabv3+ fail at inferring the building segmentation under tree coverage,
and HRNet makes a prediction with curved building boundaries. In comparison, our
method produces a building segmentation with straight edges without being affected by
the partial tree coverage.
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Table 2.1: Segmentation results on 770 images in the test set. IoUbuilding is taken for
building predictions over all image pixels. tCAaverage, Paverage, and Raverage are averaged for
thresholds from 1 to 5 pixels.

Method IoUbuilding tCAaverage Paverage Raverage

PSPNet [43] 78.47% 62.42% 66.43% 58.89%

DeepLabv3+ [6] 78.75% 65.09% 64.86% 65.33%

HRNet [38] 85.21% 76.27% 77.57% 75.03%

TAL region weight only 85.49% 77.27% 78.26% 76.30%

TAL boundary weight only 85.61% 77.52% 78.10% 76.96%

TAL 85.62% 77.55% 78.09% 77.03%

The results summarized in Table 2.1 show that the proposed method improves on both
building IoU and average tCA. Ablation experiments with TAL boundary weight only
and TAL region weight only show the improvements brought by each component in (2.1).
Although the improvements in building IoU and average tCA are numerically small when
comparing with HRNet, both segmentation results in Figure 2.5 and contour accuracy
curves in Figure 2.4 demonstrate the effectiveness of TAL loss. Figure 2.4 shows that the
TAL performs particularly well in the low threshold value range where the allowed error
margin is small and the tCA of the proposed TAL method and HRNet only coverage as the
threshold increases. The proposed TAL function assigns higher loss weights to pixels that
are close to GT building boundaries as shown in Figure 2.2(b). This helps the CNN model
to focus on learning the building boundary characteristics for more accurate boundary
delineation. The most significant improvement of segmentation result characterized by
contour accuracy is found in the area with the highest loss weight assigned.

Although the SpaceNet buildings dataset provides high spatial resolution images and
building footprint annotations with good overall accuracy, there are some inherent limita-
tions because it is designed for an object detection problem. In such a problem, achieving
a true positive building detection only requires a building footprint IoU greater than 50%.
Most small errors and inconsistencies in annotations would not affect the evaluation result.
However, here we evaluate building segmentation based on pixel-wise classification results
in terms of IoU and tCA. Figure 2.6 shows some problems of building footprint annotations
in the dataset that would cause inaccurate evaluation. Other similar datasets suffer from
similar problems and often more extensively [28, 24, 29].
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(a) (b) (c) (d)

Figure 2.6: (a) (b) Building footprint annotations include visible sidewalls and exclude part
of the roof for tall buildings because orthorectification is not applied to satellite images.
(c) (d) Inconsistent building footprint annotations for buildings with similar structures.
(d) Oversimplification of small building structures.

2.4 Conclusion

TAL, a topography-aware multi-resolution fusion learning method for enhanced building
footprint extraction has been designed and implemented, and then compared with other
state-of-the-art methods. A TAL function was proposed that adapts to the underlying
building topography to better learn and preserve building boundaries characterized in
remote sensing imagery. Moreover, the proposed loss function was incorporated into a
multi-resolution fusion architecture that better captures information at different spatial
resolutions to enable a more precise high-resolution representation when compared with
encoder-decoder architectures. Finally, we defined an average tCA which is tailored for
measuring of boundary accuracy to supplement IoU metric. The proposed TAL method was
demonstrated on the SpaceNet buildings dataset to exhibit enhanced building boundary ac-
curacy and overall footprint extraction improvement when compared with state-of-the-art
methods. Future work includes investigations of additional priors that can be incorpo-
rated to further improve trade-offs between boundary preservation and footprint coverage.
We will also investigate data argumentation techniques, e.g., synthetic image-label pair
generation via generative adversarial networks, which could reduce the impact of building
footprint annotation errors in our task.
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Chapter 3

Multi-Task Edge Detection for
Building Vectorization from Aerial
Images

The following article has been submitted to the journal IEEE Geoscience and Remote
Sensing Letters. The text may be modified later for the journal submission.

This article presents a multi-task edge detection framework aiming at building outline
vectorization from very-high-resolution aerial images and compares it with state-of-the-art
methods with experimental results.
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Multi-Task Edge Detection for Building
Vectorization from Aerial Images

Yifan Wu, Linlin Xu, Lei Wang, Qi Chen, Yuhao Chen, and David A. Clausi

Abstract

The extraction of building outline vectors is an essential task in supporting various ap-
plications. Although the recent development of deep learning based techniques has made
advancements in the automation of this task, the accuracy and precision are insufficient
due to errors caused by abundant noise and obstruction from shadows and trees around
buildings in aerial images. To better address this issue, this paper presents a new approach
called the multi-task edge detection (MTED) for building vectorization with the following
characteristics. First, instead of detecting building corner points that are very sensitive
to noise effects, a deep learning based rotated bounding box detector is introduced for
building edge detection to increase robustness to interference. Second, a multi-task learn-
ing strategy is designed to integrate building segmentation inside the METD framework
to closely guide the edge detection using spatial context. Third, a simple yet effective
geometry-guided post-processing method is designed to reconstruct vectorized building
outlines based on the detected edges and learned building shape prior knowledge. The
comparative experiments conducted on a benchmark of very-high-resolution optical aerial
images indicates that the proposed approach can significantly outperform the state-of-the-
art methods in terms of vertex-based building outline accuracy metrics.

3.1 Introduction

High-precision building vector maps are essential to support various applications such as
cartography, urban planning, and disaster response [41, 39, 7]. Many machine learning
and computer vision approaches have been designed for building detection to support
automatic vector map generation. Traditional approaches rely on the extraction of building
signature information using textures, edges, shapes, shadows, and context information [36,
16, 26]. They utilize feature engineering and cannot adaptively accommodate the data
characteristics for discriminative feature mining. Recently, deep learning techniques have
been used to better extract discriminative features in a data-driven manner, leading to the
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state-of-the-art performance in building outline vectorization [44, 27, 10, 7]. Nevertheless,
although these deep learning based approaches have significant improvements compared
with traditional feature engineering approaches, they still struggle with building signature
ambiguity and noise effect in aerial images, leading to some key research gaps.

First, although detecting building edges, instead of detecting building corner points,
can better accommodate noise and obstruction effects, effective edge detection approaches
have not been tailor-designed to enhance building vectorization. Most building outline
vectorization approaches highlight the role of building corner points in constructing the
building polygon, and try to accurately estimate and locate building corner points, which
are then connected to form the building polygon [27, 10, 7]. However, building corner points
are subtle targets that are incredibly vulnerable to interference. Moreover, corner points
are small targets that do not enable the large-receptive-field-detector to better leverage
large-scale spatial context [42, 45]. In contrast, building edges are more salient and less
susceptible to noise and complete coverage from shadows and nearby trees. Furthermore,
edges are elongated and larger targets allow the object detector to fully leverage large-scale
spatial context, as shown in Figure 3.1, to improve detection robustness and accuracy.
Nevertheless, given the benefit of edge detection, it is difficult to design a deep learning
based edge detector due to the randomly oriented and aligned nature of building edges.
Recently, a rotated bounding box representation has been successfully utilized for arbitrary-
oriented scene text detection [23], and other rotated object detection [40], which have the
potential to be adapted for building edge detection. Therefore, it is vital to explore rotated
bounding box representations for effective building edge detection that can better resist
the noise and obstruction for enhanced building outline vectorization.

Second, without building segmentation regularization and guidance, edge detection
tends to be either misled by isolated non-building edges, e.g., roadside, or weak building
edges with tree coverage, leading to big commission errors and omission errors. Although
a multi-task learning network that combines building edge detection and building segmen-
tation can enable better usage of segmentation information to improve edge detection, this
approach has not been sufficiently investigated for enhanced building outline vectorization.
Early CNN-based object detection approaches, e.g., Faster R-CNN [32], tend to not lever-
age segmentation masks for improving performance. Although there exists segmentation
masks incorporated object detection approaches such as Mask R-CNN [14], they are not
tailor-designed for building edge detection, e.g., they do not use a rotated bounding box
proposal, and as such, do not allow the accurate detection of rotated objects. Some rotated
bounding box based approaches have been designed, but they tend not to use guidance
from the segmentation task [23, 40]. Therefore, it is critical to design a multi-task learn-
ing strategy that integrates building segmentation with the rotated bounding box based
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(a) (b) (c) (d)

Figure 3.1: (a) Building polygon with corner points highlighted in green. Colored dots in
(b)-(d) illustrate feature sampling points grouped for different points or edges. (b) Point
detector has the most limited field-of-view. (c) Line based edge detector has improved
field-of-view. (d) In comparison, rotated bounding box based edge detector has the largest
receptive field to leverage spatial context.

building edge detection to allow mutual performance improvement of edge detection and
segmentation.

Third, given detected building edges and learned building shape priors, a simple yet ef-
fective geometry-guided building polygon reconstruction method is required to achieve
building outline vectorization. Although a geometry-guided post-processing approach
based on accurate edges could lead to an effective and fast building polygon reconstruc-
tion, it has not been fully explored. Most recent deep learning based approaches tend to
ignore this explicit knowledge integration process [44, 7, 9], and thereby cannot effectively
leverage the learned knowledge regarding the prior geometry shape for building outline
vectorization. In fact, given accurate building edges with relatively low commission and
omission errors, a geometry-guided approach can effectively locate and estimate building
corners by leveraging the interaction among adjacent edges and shape prior knowledge
learned from building segmentation. Therefore, it is important to investigate how to ef-
fectively use building shape information to achieve simple yet effective reconstruction that
transforms the detected building edges into building polygons.

This paper therefore presents the MTED framework consisting of a deep learning based
building edge detection strategy and a geometry-guided building polygon reconstruction
method for improved building outline vectorization as illustrated in Figure 3.2, with the
following key contributions:
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Figure 3.2: The proposed MTED framework consists of a deep learning based building
edge detection strategy described in Section 3.2.1, 3.2.2 and a geometry-guided building
polygon reconstruction method described in Section 3.2.3.

1. A rotated bounding box based building edge detection approach is introduced to
overcome the drawbacks of detecting building corner points by better accommodating
noise and obstruction effects in aerial images.

2. A multi-task learning strategy is designed to integrate building segmentation with
building edge detection to improve edge detection and segmentation performance
through mutual guidance and regularization.

3. A simple yet effective geometry-guided building polygon reconstruction method is
designed to effectively leverage building shape information for transforming detected
building edges into building polygons.

This paper is organized as follows. Section 3.2 introduces the detailed implementation of
the proposed framework. Section 3.3 presents the results of comparative experiments with
several state-of-the-art building outline vectorization approaches. Section 3.4 concludes
this study.
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3.2 Methodology

As illustrated in Figure 3.2, the proposed MTED framework consists of three key com-
ponents: (1) rotated bounding box detector for building edge detection, (2) building seg-
mentation in multi-task learning network, and (3) a geometry-guided building polygon
reconstruction, which are described in detail below.

3.2.1 Rotated Bounding Box for Building Edge Detection

To address the randomly orientated nature and also to better accommodate the noise
effect, a rotated bounding box (RBB) approach is designed to represent building edges for
enhanced edge detection. Specifically, each RBB is represented by a tuple (x, y, l, w, θ),
where (x, y) denotes the center of the RBB, l, w and θ are respectively the length, width,
and orientation of the RBB. Therefore, a building edge with endpoints (x1, y1) and (x2, y2),
is represented as

x =
x1 + x2

2

y =
y1 + y2

2

l =
√

(x2 − x1)2 + (y2 − y1)2

w = A

θ = arctan

(
y2 − y1
x2 − x1

)
(3.1)

where A is a hyperparameter applied to all bounding boxes. A sufficiently large A value
enables RBBs bigger field-of-view to better accommodate noise and obstruction as shown
in Figure 3.1(d).

To predict RBBs, two loss functions for respectively bounding box classification and
regression are designed. Given K true classes beside background class, the classification
loss for true class u ∈ {1, 2, . . . , K} is defined as

Lclass(p, u) = − log pu (3.2)

where p = (p0, p1, . . . , pK) is a discrete probability distribution computed by a softmax
over the K + 1 outputs of a fully connected layer. The regression loss is defined between
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a ground truth tuple v = (vx, vy, vl, vw, vθ) and a predicated tuple t = (tx, ty, tl, tw, tθ)

Lbox(t, v) =
∑

i∈{x,y,l,w,θ}

smoothL1(ti − vi)

where smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise

(3.3)

As illustrated in Figure Figure 3.2, we use ResNet-101 [15] with Feature Pyramid
Network (FPN) [21], which combines semantic features from different resolutions, as the
backbone to build a feature map from the input image. The Rotation Region Proposal
Network (RRPN) [23] is adopted to generate candidate bounding boxes of building edges.
RRPN is capable of sampling anchors with three sets of parameters, namely scales, aspect
ratios, and angles. In comparison to the Region Proposal Network (RPN) [32] used in
Mask R-CNN, RRPN enables the proposal of anchors at different orientations instead of
axis-aligned anchors only. To pair with RRPN, the Rotation Region-of-Interest (RRoI) [23]
pooling layer extracts features inside any valid region of interest (RoI) from the feature
map produced by the backbone and converts them into a feature map with a fixed spatial
extent determined by hyperparameters H ×W . The features from the ResNet-101+FPN
backbone are pooled for each RBB to generate a RBB tuple representation, which is
optimized through backpropagation based on the above loss functions.

3.2.2 Building Segmentation in Multi-Task Learning Network

In addition to the RBB classification task and regression task defined in the previous
section, a building semantic segmentation task is introduced to enhance building edge
detection through mutual guidance and regularization. The segmentation mask loss is an
average binary cross-entropy loss that is only defined for the true class associated with
each RoI as

Lmask(b
∗, b) = − 1

m2

m−1∑
i=0

m−1∑
j=0

[bij log b
∗
ij

+ (1− bij) log(1− b∗ij)]

(3.4)

where m is the width and height of the mask, b∗ij and bij denote the values of the label at
location (i, j) for the predicted mask and the ground truth mask respectively.

In the multi-task learning network, we define the multi-task loss L = Lclass+Lbox+Lmask

to train the three tasks simultaneously.

23



3.2.3 Geometry-Guided Reconstruction

Given detected edges, we post-process them to achieve building polygon reconstruction
based on prior knowledge concerning building shapes and edge interaction patterns. Specif-
ically, we first determine the relative order of building edges based on learned building
shape information as shown by the pseudo-code in Algorithm 1. The predictions are pre-
processed before being used as inputs. The segmentation mask is traced to produce a
contour of the building consisting of a sequence of points {CY }. Any bounding boxes that
do not intersect with the contour are ignored as anomalies. By reversing the calculations
in (3.1), we get a sequence of building edge line segments {LX} originally represented by
the rotated bounding boxes. In the next step, we find the index of the contour point that
is closest to the midpoint M of each line segment. Lastly, input line segments are sorted
based on those indexes to output the sequence of ordered line segments {OZ}.

Algorithm 1 Relative order of building edges

Input: Line segments {LX}, Contour points {CY }
Output: Ordered line segments {OZ}

1: X ← length(LX)
2: Y ← length(CY )
3: for x← 1, X do ▷ Find the index of the contour point that is

closest to the midpoint of each line segment
4: M ← midpoint(Lx)
5: for y ← 1, Y do
6: distancey ← distanceBetween(M,Cy)
7: end for
8: indexx ← indexOfMin(distance1, distance2, . . . , distanceY )
9: end for
10: for y ← 1, Y do ▷ Sort line segments based on indexes found
11: for x← 1, X do
12: if indexx = y then
13: Appended Lx to OZ

14: end if
15: end for
16: end for

Based on this relative order, we use simple yet effective geometry guidance to recon-
struct the building polygon as shown by the pseudo-code in Algorithm 2. For every pair of
adjacent building edge line segments Ofirst and Osecond in {OZ}, we compute the point of
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intersection I of the lines of which the two line segments are respectively a part of. Then
we find the two points C1 and C2 that are closest to each other on the two line segments
Ofirst and Osecond. If the distance between the point I and one of two points C1 and C2

is less than or equal to 10 pixels, the point I is appended to the sequence of vertex points
{VA}. Otherwise, the midpoint M between C1 and C2 is found and the two points P1 and
P2 that are the closest points to M on Ofirst and Osecond respectively are appended to the
sequence of {VA}. The final sequence of vertex points {VA} composes the reconstructed
building outline polygon.

Algorithm 2 Building polygon reconstruction

Input: Ordered line segments {OZ}
Output: Polygon vertex points {VA}

1: Z ← length(OZ)
2: for first← 1, Z do ▷ Apply algorithm to every pair of adjacent

building edge line segments
3: second← (first+ 1) mod Z
4: I ← pointOfIntersectionOfLines(Ofirst, Osecond)
5: C1, C2 ← closestPointsOnLineSegments(Ofirst, Osecond)
6: distance1 ← distanceBetween(I, C1)
7: distance2 ← distanceBetween(I, C2)
8: if min(distance1, distance2) ≤ 10 then
9: Appended I to VA

10: else
11: M ← midpoint(C1, C2)
12: P1 ← closestPointOnLineSegment(Ofirst,M)
13: P2 ← closestPointOnLineSegment(Osecond,M)
14: Appended P1 to VA

15: Appended P2 to VA

16: end if
17: end for
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3.3 Experiments

3.3.1 Dataset

We evaluate and compare our method using a benchmark selection of building instances
from the Aerial Imagery for Roof Segmentation (AIRS) dataset [8] which provides very-
high-resolution optical aerial images at 7.5 cm resolution and strictly aligned building
ground truths. This selection contains 10,164 building instance samples that have been
previously benchmarked in studies [7]. We follow the same experimental data setup to
compare performance with previous studies on building vectorization. Each sample has
a background padding region equal to 40% of the building bounding box size capturing
surrounding context, plus an additional 30 pixel padding to accommodate a random 0 to
30 pixels offset from the center of the building to avoid the bias of center location. We use
the same training set and testing set separation as in the previous studies, where 80% and
20% of the samples are used respectively. In this study, we further divide the training set
and use 75% and 25% of the samples for training and validating respectively. The ground
truth building polygons are pre-possessed to use rotated bounding box representations for
building edges and mask representations for buildings.

3.3.2 Training Setup

The minimum and maximum input image sizes of the multi-task learning network are set to
256 pixels and 512 pixels respectively to accommodate buildings with different dimensions.
Input images with both sides smaller than 256 pixels or larger than 512 pixels are scaled
into the input range without changing the aspect ratio to minimize image degradation.
For sampling anchors, we use scales of 16, 32, 64, 128 and 256, aspect ratios of 1:1,
1:2, 1:4, 1:8 and 1:16, and angles of π

2
, π

3
and π

6
to cover building edges with various

length and orientation combinations. We find that a constant bounding box width A of
10 pixels works with those sampling parameter sets giving strong results. We set base
learning rate of 0.0025, SGD optimizer with momentum of 0.9, and weight decay of 0.0001.
Data augmentations are disabled, and other hyperparameters use the same values from the
Mask R-CNN implementation. The ResNet-101+FPN backbone of our multi-task learning
network is initialized with weights from a model pretrained on ImageNet [34]. Our model
is trained for 3 epochs with 400 warn-up iterations using a batch size of 4 on an NVIDIA
GeForce RTX 2080 Ti GPU with 11GB of memory.
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(a)

(b)

(c)

(d)

Ground Truth

(e)

Baseline Polygon-RNN PolygonCNN MTED

Figure 3.3: Examples of building vectorization results produced by the baseline method,
Polygon-RNN [4], PolygonCNN [7], and the proposed MTED framework. Ground truth
polygons are shown in blue with corner points highlighted in green. Generated result
polygons are shown in red with corner points highlighted in yellow.
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3.3.3 Results and Analysis

Figure 3.3 shows examples of building vectorization results produced by the proposed
MTED framework compared with the baseline method, Polygon-RNN [4], and state-of-
the-art PolygonCNN [7]. The baseline method uses the same building segmentation pro-
duced by the MTED method to trace building contours, followed by applying the Dou-
glas–Peucker (DP) algorithm [11] with a threshold of 1 pixel to generate building polygons.
Polygons generated by the baseline method reproduce the building outlines with good accu-
racy and have high coverage of the buildings, which shows that the building segmentation
produced by the multi-task learning network can provide accurate building shape prior
knowledge for polygon reconstruction purposes. In contrast, Polygon-RNN generates over-
simplified polygons with poor coverage and missing building corner points, resulting in
distorted building outlines. Although building polygons generated by PolygonCNN have
high coverage and simplified vector representations compared with the baseline method
that uses the DP algorithm for polygon simplification, it fails to correctly locate building
corner points under the effect of noise and obstruction. For example, Figure 3.3(b)(d)
shows redundant points that are generated around shadows, Figure 3.3(c)(e) shows build-
ing outlines with irregular curves at the location of tree coverage and weak building edges.
In comparison, the MTED method generates building polygons using clean vector repre-
sentations with sharp structures and well-located corner points.

Table 3.1 summaries the experimental results on the testing set between the baseline
method, DARNet [10], Polygon-RNN [4], PolygonCNN [7], and the proposed MTED frame-
work. We compare the methods in terms of intersection-over-union (IoU) [22] and vertex
accuracy proposed in previous studies [7]. The vertex-based metrics of F1-score, precision,
and recall are named VertexF, VertexP, and VertexR respectively. The MTED method out-
performs the state-of-the-art PolygonCNN in all vertex-based metrics by a large margin,
translating to fewer missing building corner points and fewer incorrectly predicted points.
Although IoU of the MTED method lands below PolygonCNN, the standing of the MTED
method is not hindered due to the fact that IoU is a metric that evaluates segmentation
performance in terms of pixel counts. The limitation of IoU in evaluating vectorization
performance can be shown visually by comparing the baseline method, PolygonCNN, and
MTED method in Figure 3.3. Our MTED method shows the best overall building vector-
ization results despite the small loss of IoU. The MTED with separate trainings method
is an ablation experiment, where building edge detection task and building segmentation
task are trained separately, which shows the performance improvement brought by training
the two tasks simultaneously in the MTED framework.
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Table 3.1: Summary of experimental results on 2,033 images in the testing set. IoU is
computed based on the segmentation masks delineated by the building polygons. VertexF,
VertexP and VertexR are computed as the average values at buffer sizes from 1 to 5 pixels.

Method IoU VertexF VertexP VertexR

Baseline 88.4% 20.3% 14.5% 33.5%

DARNet [10] 77.1% 5.9% 4.9% 7.3%

Polygon-RNN [4] 67.7% 37.1% 47.8% 30.4%

PolygonCNN [7] 88.6% 41.7% 40.8% 42.6%

MTED with separate trainings 83.1% 48.8% 54.0% 44.4%

MTED 85.8% 51.7% 57.8% 46.8%

3.4 Conclusion

In this paper, we present the multi-task edge detection framework, combining deep learn-
ing based building edge detection strategy and geometry-guided polygon reconstruction
method for improved building outline vectorization. A rotated bounding box based build-
ing edge detection approach is introduced to increase robustness to noise and obstruction.
Moreover, a multi-task learning strategy is designed to integrate building segmentation
with building edge detection in the MTED framework to take advantage of spatial context
and regularization. Finally, a simple yet effective geometry-guided building polygon recon-
struction method is designed to effectively leverage learned building shape prior knowledge
and transform predicted building edges into building polygons. The experimental results
on the testing set of the very-high-resolution AIRS dataset demonstrate that our MTED
framework improves the state-of-the-art performance significantly in terms of vertex accu-
racy metrics VertexF, VertexP, and VertexR, as well as produces the best overall vector-
ization results with clean vector representations, sharp structures, and well-located corner
points.
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Chapter 4

Conclusion

4.1 Summary

In conclusion, automatic building extraction from remote sensing images is an essential task
in supporting various applications. Existing traditional knowledge-based approaches and
generic deep learning based approaches provide insufficient accuracy for high-precision ap-
plications. This thesis proposes two deep learning based methods aiming at enhanced build-
ing extraction from high-resolution remote sensing images. In Chapter 2, the topography-
aware multi-resolution fusion learning method for building footprint extraction is designed
and implemented to overcome the limitation of CNN-based building segmentation methods
on the accurate delineation of boundaries. Experimental results on the SpaceNet build-
ings dataset show improvement in boundary integrity and overall accuracy of extracted
footprints compared with state-of-the-art methods. In Chapter 3, the multi-task edge
detection framework for building outline vectorization is designed and implemented with
increased robustness to noise and obstruction, leading to enhanced accuracy and precision
of extracted building polygons. Comparative experimental results on the AIRS dataset
demonstrates improvement over state-of-the-art methods in vertex accuracy and overall
quality of vector representation generated.

4.2 Future work

There are many directions I want to explore for future work in this field. I want to point
out a few limitations of the works presented in this thesis. First, high pixel-based cover-
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age of building annotation is hard to achieve with a high level of shape regularization at
the same time. The work in Chapter 3 demonstrates signification improvement in vertex-
based metrics but is subjected to lower IoU. At the same time, the work in Chapter 2
demonstrates improvement in both coverage-based metric IoU and boundary-based metric
tCA though in less remarkable amounts. The possibility of incorporating additional priors
such as graph-based relationships into deep learning networks to further improve trade-offs
between shape preservation and building coverage can be investigated. Second, the build-
ing vectorization framework proposed in Chapter 3 is only capable of extracting building
polygons for single building instances. Autonomic extraction of building polygons where
multiple buildings appear in a single image is not well studied in the literature. Modifi-
cations that have to be made to the proposed framework to accommodate such changes
in input data can be investigated. Third, both works in this thesis utilize deep learning
models based on CNNs, which are widely adopted in computer vision applications. In the
meantime, recent development in deep learning architectures has brought transformers,
which are deep learning models initially designed for natural language processing, into the
field of computer vision. Those new architectures adopt the self-attention mechanisms
of transformers and have shown competitive results in image processing tasks. Adopting
transformers based deep learning models in the proposed frameworks has the potential to
improve overall performance.

4.3 Final remarks

This thesis has presented two works that enhanced the quality of building annotations
extracted from high-resolution remote sensing images. The methods in the works utilized
effective CNN-based deep learning techniques to improve the accuracy and precision of
building segmentation and building vectorization. The works covered two common cat-
egories of optical remote sensing imagery, i.e., satellite imagery and aerial imagery, with
different levels of spatial resolutions and thus have a high potential for adaptation to
various input data. Evaluation results showed significant improvement brought by the
two methods in building boundary integrity and building vector representation accuracy
respectively. The improvement provided by the works in the automation of building ex-
traction could benefit many high-precision applications including mapping, navigation, and
surveying.
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