
Private Data Exploring, Sampling,
and Profiling

by

Chang Ge

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Chang Ge 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Amol Deshpande
Professor, Department of Computer Science
University of Maryland

Supervisor: Ihab F. Ilyas
Professor, Cheriton School of Computer Science
University of Waterloo

Internal Members: Xi He
Assistant Professor, Cheriton School of Computer Science
University of Waterloo

Florian Kerschbaum
Associate Professor, Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Helen Chen
Professor of Practice, School of Public Health Sciences
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Data analytics is being widely used not only as a business tool, which empowers or-
ganizations to drive efficiencies, glean deeper operational insights and identify new oppor-
tunities, but also for the greater good of society, as it is helping solve some of world’s
most pressing issues, such as developing COVID-19 vaccines, fighting poverty and cli-
mate change. Data analytics is a process involving a pipeline of tasks over the underlying
datasets, such as data acquisition and cleaning, data exploration and profiling, building
statistics and training machine learning models. In many cases, conducting data analytics
faces two practical challenges. First, many sensitive datasets have restricted access and
do not allow unfettered access; Second, data assets are often owned and stored in silos
by multiple business units within an organization with different access control. Therefore,
data scientists have to do analytics on private and siloed data.

There is a fundamental trade-off between data privacy and the data analytics tasks.
On the one hand, achieving good quality data analytics requires understanding the whole
picture of the data; on the other hand, despite recent advances in designing privacy and se-
curity primitives such as differential privacy and secure computation, when näıvly applied,
they often significantly downgrade tasks’ efficiency and accuracy, due to the expensive com-
putations and injected noise, respectively. Moreover, those techniques are often piecemeal
and they fall short in holistically integrating into end-to-end data analytics tasks.

In this thesis, we approach this problem by treating privacy and utility as constraints
on data analytics. First, we study each task and express its utility as data constraints;
then, we select a principled data privacy and security model for each task; and finally, we
develop mechanisms to combine them into end to end analytics tasks. This dissertation
addresses the specific technical challenges of trading off privacy and utility in three popular
analytics tasks.

The first challenge is to ensure query accuracy in private data exploration. Current
systems for answering queries with differential privacy place an inordinate burden on the
data scientist to understand differential privacy, manage their privacy budget, and even
implement new algorithms for noisy query answering. Moreover, current systems do not
provide any guarantees to the data analyst on the quality they care about, namely accuracy
of query answers. We propose APEx, a generic accuracy-aware privacy query engine for
private data exploration. The key distinction of APEx is to allow the data scientist to
explicitly specify the desired accuracy bounds to a SQL query. Using experiments with
query benchmarks and a case study, we show that APEx allows high exploration quality
with a reasonable privacy loss.

iv

The second challenge is to preserve the structure of the data in private data synthe-
sis. Existing differentially private data synthesis methods aim to generate useful data
based on applications, but they fail in keeping one of the most fundamental data proper-
ties of the structured data — the underlying correlations and dependencies among tuples
and attributes. As a result, the synthesized data is not useful for any downstream tasks
that require this structure to be preserved. We propose Kamino, a data synthesis sys-
tem to ensure differential privacy and to preserve the structure and correlations present
in the original dataset. We empirically show that while preserving the structure of the
data, Kamino achieves comparable and even better usefulness in applications of training
classification models and answering marginal queries than the state-of-the-art methods of
differentially private data synthesis.

The third challenge is efficient and secure private data profiling. Discovering functional
dependencies (FDs) usually requires access to all data partitions to find constraints that
hold on the whole dataset. Simply applying general secure multi-party computation pro-
tocols incurs high computation and communication cost. We propose SMFD to formulate
the FD discovery problem in the secure multi-party scenario, and design secure and effi-
cient cryptographic protocols to discover FDs over distributed partitions. Experimental
results show that SMFD is practically efficient over non-secure distributed FD discovery,
and can significantly outperform general purpose multi-party computation frameworks.

v

Acknowledgements

I would like to express my most sincere gratitude to my PhD advisor Prof. Ihab Ilyas.
He has always been my inspiration and my role model as a researcher, a professor, an
entrepreneur, and a human being. Throughout the years, he pulled me back every time
when I was chasing butterfiles, and offered invaluable training in both professionalism and
mentalism, which I will carry and treasure forever.

I would like to extend my sincere thanks to my advisory committee members Prof. Xi
He, and Prof. Florian Kerschbaum for their support, discussions, and their assistance at
every stage of my PhD journey. I would like to offer my special thanks to Prof. Amol
Deshpande for serving as the External Examiner, and to Prof. Helen Chen for serving as
the Internal-External Member of my examining committee. I am deeply grateful to them
for spending time reading and providing valuable comments on my thesis. Without my
examining committee members, this dissertation could not have been possible.

I am extremely grateful and proud to have the best supportive family. I wouldn’t have
had the opportunities to pursue and focus on PhD without their endless love, support,
patience and trust. All words are too weak to express my feelings, and I am forever
indebted to them.

vi

Dedication

This is dedicated to the one I love.

vii

Table of Contents

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Data Analytics on Private Data Silos . 2

1.2 Scope and Challenges . 2

1.2.1 Data Scientist Interacting with Private Data 3

1.2.2 Interaction among Multiple Private Data 4

1.3 Contributions and Outline . 5

1.3.1 Data Exploration . 5

1.3.2 Data Synthesis . 6

1.3.3 Data Profiling . 8

1.3.4 Other Tasks . 8

2 Preliminaries and Related Work 9

2.1 Preliminaries . 9

2.1.1 Relational Data and Constraints . 9

2.1.2 Probabilistic Database . 11

2.1.3 Differential Privacy . 13

2.1.4 Cryptographic Constructions . 14

viii

2.2 Related Work on Specific Private Data Analysis Tasks 16

2.2.1 Private Data Exploration . 16

2.2.2 Private Data Sampling . 19

2.2.3 Private FD Profiling . 22

3 APEx: Accuracy-Aware Differentially Private Data Exploration 25

3.1 Queries and Accuracy . 25

3.1.1 Exploration Queries . 25

3.1.2 Accuracy Measure . 27

3.2 APEx Overview . 29

3.3 Accuracy Translator . 31

3.3.1 Baseline Translation . 32

3.3.2 Special Translation for WCQ . 35

3.3.3 Special Translation for ICQ . 37

3.3.4 Special Translation for TCQ . 40

3.4 Privacy Analysis . 42

3.4.1 Overall Privacy Guarantee . 42

3.5 Query Benchmark Evaluation . 44

3.5.1 Setup . 45

3.5.2 APEx End-to-End Study . 46

3.5.3 Optimal Mechanism Study . 48

3.6 Case Study . 50

3.6.1 Case Study Setting . 51

3.6.2 The ER Model . 51

3.6.3 End-to-End Task Evaluation . 53

3.7 Discussion and Conclusion . 56

3.7.1 Other Aggregation Functions . 56

3.7.2 Conclusion . 57

ix

4 Kamino: Constraint-Aware Differentially Private Data Synthesis 58

4.1 Problem Statement and Solution Overview 58

4.1.1 Problem Statement . 58

4.1.2 A Näıve Attempt . 59

4.1.3 Methodology Overview . 60

4.2 Kamino with Known DC Weights . 63

4.2.1 Private Learning of Tuple Probability 64

4.2.2 Constraint-Aware Database Sampling 66

4.2.3 Constraint-Aware Sequencing . 68

4.3 Learning DC Weights . 70

4.4 Privacy Analysis . 72

4.5 Evaluation . 74

4.5.1 Evaluation Setup . 75

4.5.2 End-to-End Evaluation . 77

4.5.3 Component Evaluation . 79

4.6 Discussion and Conclusion . 84

4.6.1 DC Violation Analysis . 84

4.6.2 Conclusion . 85

5 SMFD: Secure Multi-Party Functional Dependency Discovery 86

5.1 Problem Statement and Solution Overview 86

5.1.1 Problem Statement . 86

5.1.2 A Näıve Attempt . 87

5.1.3 Solution Overview . 87

5.2 Secure FD Discovery . 89

5.2.1 Distributed FD Validation . 89

5.2.2 A Secure FD Discovery Protocol . 90

5.3 Equality-Aware Mixnet . 94

x

5.3.1 Value-Level Equality Testing . 94

5.3.2 Set-Level Equality Testing . 98

5.3.3 Parallelizing MixNet . 100

5.4 Secure Congenial FD Discovery . 100

5.4.1 Distributed cFD Validation . 101

5.4.2 A Secure cFD Discovery Protocol 102

5.5 Evaluation . 103

5.5.1 Experiment Setup . 103

5.5.2 Overhead of SMFD . 104

5.5.3 Efficiency of SMFD . 106

5.5.4 Scalability of SMFD . 107

5.6 Conclusion . 109

6 Conclusion and Future Work 110

6.1 Conclusion . 110

6.2 Future Work . 111

References 114

xi

List of Figures

1.1 Two interactions over the the sensitive dataset: 1) between the data scientist
and the sensitive data; 2) among multiple sensitive datasets. 3

2.1 A simple table example. 10

3.1 Accuracy requirement for ICQ and TCQ. 28

3.2 Privacy cost and empirical accuracy using optimal mechanism chosen by
APEx (optimistic mode) on the 12 queries at default parameter setting
with α ∈ {0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64}|D| and β = 5 × 10−4. On
Adult data, all queries can be answered with empirical error < 0.1 with
privacy budget < 0.1; on NYTaxi data, all queries can be answered with
empirical error < 0.1 with privacy budget < 0.001. When accuracy require-
ment relaxes (i.e., α increases), the privacy cost decreases and the empirical
accuracy decreases for all queries. 46

3.3 Privacy cost and empirical accuracy (F1 score) using optimal mechanism
chosen by APEx (optimistic mode) on QI4 and QT1. 47

3.4 Privacy cost with query specific parameters: (a) Increasing workload size
causes faster privacy cost increase fro WCQ-SM than WCQ-LM. (b) Varying
ICQ threshold c affects privacy cost ICQ-MPM. The closer c relates to the
true count, more attempts is needed, hence more privacy cost. (c) Increasing
TCQ k leads to faster privacy cost increase for TCQ-TM than TCQ-LM. . 49

3.5 Two strategies for blocking. 52

3.6 Two strategies for matching. 53

xii

3.7 Performance of APEx for blocking (BS1, BS2) and matching (MS1, MS2)
tasks with increasing privacy budget B at fixed α = 0.08|D|: the expected
task quality improves with smaller variance as the budget constraint in-
creases and gets stable. Fixing α fixes privacy cost per operation. Thus
increasing B increases the number of queries answered. 55

3.8 Performance of APEx for blocking (BS1, BS2) and matching (MS1, MS2)
at fixed privacy budget B = 1 with increasing α from 0.01|Dt| to 0.64|Dt|.
There exists an optimal α to achieve highest quality at a given privacy
constraint. Increasing α decreases privacy cost per operation. Thus for a
fixed budget this increases the number of queries. However, many queries
each with a low privacy budget is not good for end-to-end accuracy. 55

3.9 Performance of APEx for blocking (BS1, BS2) tasks at |D| = 1000. Com-
pared with Figure 3.7 where α = 0.08|D|, the privacy budget that needs
to achieve good recall increases when data size is smaller. Compared with
Figure 3.8 where B = 1, the optimal α actually increases. 56

4.1 A synthetic Adult data using PrivBayes, PATE-GAN and DP-VAE satisfy-
ing (ε = 1, δ = 10−6)-DP, with and without fixing the integrity violations
(labeled as ‘cleaned’ and ‘standard’, respectively). Each point in Figure 4.1a
represents the testing accuracy for one target attribute. Each point in Fig-
ure 4.1b represents the total variation distance between the true and syn-
thetic Adult. More details are in § 4.5. 59

4.2 Sampling values in an instance (Example 8). 62

4.3 Accuracy and F1 of evaluating classification models, which are tested on
the true dataset and trained on synthetic data by different methods. Each
point represents an averaged classification quality (accuracy or F1) over 9
models for one target attribute using all other attributes as features. Each
box represents a set of classifications, one for each attribute in the schema.
Kamino achieves the overall best accuracy and F1 scores on most datasets. 79

4.4 Total variation distance on α-way marginals, where α = [1, 2]. Each point
represents a total variance distance for one attribute set, and each box rep-
resents total variance distance for all attribute sets. It shows that Kamino
can achieve overall the best (Adult) or close to the best (BR2000, Tax and
TPC-H) variation distance. 80

xiii

4.5 Accuracy and F1 of model training on Kamino, and sub-optimal Kamino
without constraint-aware sampling, sequencing, and neither, using the Adult
dataset as the example. It shows the the Kamino with constraint-aware
components can achieve the best quality in both the learning task and in
the query task. 80

4.6 Task quality of the Kamino and baselines by varying privacy budget (ε, 10−6).
. 81

4.7 Time of end-to-end runs on all datasets. 82

4.8 Varying the number of DCs. 82

4.9 Task quality and execution time by varying the number of resampling per
attribute. 83

5.1 Two partitions of employee dataset. 87

5.2 Architecture of secure multi-party FD discovery. 88

5.3 The FD validation protocol for securely validating a candidate FD using
mixnets. 91

5.4 An example of computing PSI-CA. 93

5.5 A multiplicative, deterministic re-encryption decryption mixnet with 3 work-
ers and 2 parties. 95

5.6 An additive, deterministic re-encryption decryption mixnet with 3 workers
and 2 parties. 99

5.7 The cFD validation protocol for securely validating a candidate cFD using
mixnet. 103

5.8 uFD computation overhead to the plaintext decreases with more threads per
instance. 106

5.9 Cost comparison between SMFD and distributed FD discovery using Multi-
partyPSI, with increasing number of parties on the balance-scale dataset: a)
and b) show the computation and communication cost for uFD, respectively.
SMFD has a linearly cost, while MultipartyPSI incurs an exponential cost.
c) and d) show the costs for cFD. MultipartyPSI requires larger costs and
is more sensitive to the number of parties. 107

5.10 Cost comparison between SMFD and SMCQL. 107

xiv

5.11 Cost of varying the number of workers using 3 parties on the iris dataset. 108

5.12 Cost of varying the data volume using 8 parties and 3 workers on the iris
dataset. 108

xv

List of Tables

3.1 Query benchmarks includes 3 types of exploration queries on 2 datasets. . 45

3.2 Privacy cost using all applicable mechanisms on the 12 queries at α =
{0.02, 0.08}|D| and β = 5 × 10−4. Median of 10 runs is reported for data-
dependent mechanisms. It shows that (a) no single mechanism can always
win or lose, (b) privacy cost of different mechanisms answering the same
query, and privacy cost of same mechanism on different queries can be sig-
nificantly different. Therefore, it is critical to use APEx for choosing optimal
mechanisms. 48

3.3 A cleaner model for blocking strategy 1. 54

4.1 Description of the datasets that are used in the experiments. 75

4.2 Percentage of tuple pairs that violate DCs. Kamino has the closet DC
violations as the truth, while none of the baselines are able to preserves
most of the DCs. 78

4.3 Percentage of DC violations using Kamino, and sub-optimal Kamino w/o
constraint-aware components. 81

5.1 End to end comparison between SMFD and the plaintext-based distributed
FD validation . 105

xvi

Chapter 1

Introduction

Data analysis is a process of inspecting, cleaning, transforming, and modeling data with
the goal of discovering useful information, informing conclusions, and supporting decision-
making [34]. Data analytics is being widely used not only as a business tool, which empow-
ers organizations to drive efficiencies, glean deeper operational insights and identify new
opportunities, but also for the greater good of society, as it is helping solve some of world’s
most pressing issues, such as developing COVID-19 vaccines, fighting poverty, inequality,
and climate change.

In a typical setting for data analytics, the data scientist accesses the data and con-
ducts analytics tasks, such as issuing queries in structured query language (SQL), connect-
ing Tableau [130] to draw interactive visualizations, training neural networks on Tensor-
Flow [10] to forecast sales and etc., as long as the data scientist has the permission to access
the data. However, the prerequisite of having direct data access does not always hold true
when analyzing data in enterprises. Specifically, conducting enterprise data analytics faces
two practical problems. First, many datasets contain sensitive information about persons
and business secrets, and hence those data have restricted access and do not allow unfet-
tered access; Second, there are multiple business units within an organization, and each of
them owns a part of the overall data assets. Because of independence of each business unit
as well as privacy legislations such as GDPR [7], each of the data are owned and stored in
silos by multiple parties, with different access control. Therefore, data scientists have to
do analytics on private and siloed data.

1

1.1 Data Analytics on Private Data Silos

For accessing private data silos, the current practices adopted by enterprises include having
the data scientist go through privacy clearance and approvals, sign non-disclosure agree-
ment, which are lengthy and not scalable. Furthermore, those practices do not provide any
technical guarantees against privacy breaches, which often lead to disastrous consequences
in financial loss [1, 2, 4], reputational damage [3, 89], and most importantly, loss of sensitive
data [6, 18, 87].

The problem of data analytics on private siloed data is fundamentally challenging due
to competing goals. On the one side, achieving good quality data analytics requires under-
standing the whole picture of the data. To the data scientist’s interest, the data scientist
wants to extract useful insights as many as possible. This is done through conducting
a diverse set of tasks to understand the data, from simply eyeballing the data to many
more dedicated tasks, such as exploring data [83], profiling metadata [94], and training
machine learning models [28]. In addition, it is often necessary to combine information
from multiple data silos to form a whole picture of the underlying data [96]. However,
most data scientists are not data privacy and security experts and hence they do not have
the technical capability to defend privacy and security in their jobs. On the other side,
data privacy and security requirements mandate least information leakage. To the interest
of data owner, the data owner wants to prevent data leakage, and ideally, nothing should
be revealed.

Therefore, in order to balance the interest from both sides, data analytics tasks on
private data silos have to make tradeoffs between analytics utility (e.g., statistics, depen-
dencies and trends) and data privacy (e.g., deniability and indistinguishability). However,
it is difficult to implement such a tradeoff in practice, because most existing solutions do not
serve both interests, naturally. For example, in the past decades, many privacy-preserving
techniques have been designed, such as differential privacy [51, 56], secure computation
including homomorphic encryption [110], oblivious polynomial evaluation [131] and many
other remarkable schemes [25, 31, 45]. Those techniques ensure certain level of privacy and
security to the data owner, but they misalign with the practical aspects that data scientist
cares about, such as accuracy, performance and other utility goals.

1.2 Scope and Challenges

To enable data analytics on private siloed data, we identify two common interactions
around sensitive data shown in Figure 1.1. The first interaction is between the data scientist

2

Data scientist Sensitive data

Firewall

Sensitive data

Firewall

1

Figure 1.1: Two interactions over the the sensitive dataset: 1) between the data scientist
and the sensitive data; 2) among multiple sensitive datasets.

and one sensitive dataset, and the other interaction is among multiple sensitive datasets
federated together to complete the task curated by the data scientist.

1.2.1 Data Scientist Interacting with Private Data

For the data scientist interacting with private dataset, we study two common approaches.
The first approach is to bring the data scientist close to the sensitive data, and we en-
able data exploration as an instance of this approach, which allows the data scientist
to interactively issue SQL queries to explore the sensitive data. While there exist gen-
eral purpose differentially private query answering systems, they are not really meant to
support interactive querying, and they fall short in two key respects. First, these systems
place an inordinate burden on the data scientist to understand differential privacy and
differentially private algorithms. For instance, PINQ [126] and wPINQ [145] allow users
to write differentially private programs and ensure that every program expressed satisfies
differential privacy. However, to achieve high accuracy, the data scientist has to be familiar
with the privacy literature to understand how the system adds noise and to identify if the
desired accuracy can be achieved in the first place. εktelo [173] has high level operators
that can be composed to create accurate differentially private programs to answer counting
queries. However, the data scientist still needs to know how to optimally apportion pri-
vacy budgets across different operators. FLEX [93] allows users to answer one SQL query
under differential privacy, but has the same issue of apportioning privacy budget across a
sequence of queries. Second, and somewhat ironically, these systems do not provide any
guarantees to the data scientist on the quality they really care about, namely accuracy
of query answers. In fact, most of these systems take a privacy level as input and make
sure that differential privacy holds, but leave accuracy unconstrained. Therefore, we aim
to design a system that allows data scientist to explore a sensitive dataset held by a data

3

owner by posing a sequence of declaratively specified queries that can capture typical data
exploration workflows. The system aims at achieving the following dual goals: 1) since the
data are sensitive, the data owner would like the system to provably bound the informa-
tion disclosed about any one record to the data scientist; and 2) since privacy preserving
mechanisms introduce error, the data scientist must be able to specify an accuracy bound
on each query.

The second approach for the data scientist interacting with private dataset is from the
other direction, by generating a similar instance and bringing it to the data scientist on the
outside of the firewall. This is usually done through the task of data synthesis, which
samples a synthetic database instance and releases it to the data scientist for running
downstream applications. For applications that consume structured data with predefined
schema in a SQL database, it is important for the synthetic data to keep the structure
of the data — the underlying correlations and dependencies among tuples and attributes.
This structure is often expressed as integrity and schema constraints, such as functional
dependencies [103] or key constraints [59] between attributes and tuples. Otherwise, the
synthesized data is not useful for any downstream tasks that require this structure to be
preserved. In general, generating differentially private synthetic data based on true data
faces fundamental challenges. For example, to answer statistical queries, prior work [30,
55, 65, 159] have shown that the running time for generating a synthetic dataset that
is accurate for answering a large family of statistics (e.g., all α-way marginals) grows
exponentially in the dimension of the data. On the other hand, an efficient private data
generation algorithm fails to offer the same level of accuracy guarantees to all the queries.
Existing practical methods (e.g., [20, 38, 39, 95, 174]) therefore choose to privately learn
only a subset of queries or correlations to model the true data and then sample database
instances based on the learned information. However, the structure of the data is not
explicitly captured by these methods and thus are poorly preserved in the synthetic data.
In particular, all these methods assume tuples in the database instance are independent
and identically distributed (i.i.d.), and sample each tuple independently. As a result, the
structure of data in the output database instance can be significant different from that
in the original data. Therefore, we are motivated to design an end-to-end synthetic data
generator that preserves both the structure of the data and the privacy of individual data
records.

1.2.2 Interaction among Multiple Private Data

The second type of interaction shown in Figure 1.1 is among multiple parties, where each
of them holds a data partition and is federated to complete one task curated by the data

4

scientist. We would like to protect the input data of any party from all other parties, and
this thesis enables the task of data profiling by securely profiling functional dependencies
(FDs) over the union of all private data partitions. Given these partitioning requirements
on the data, the question is how to efficiently discover FDs that hold on the whole dataset,
while minimizing the data leakage in the lack of a single trusted party. In fact, the question
presents a 3-way tradeoff between soundness, privacy and efficiency : soundness requires ex-
changing information among partitions to correctly compute the global set of FDs; privacy
dictates not revealing more than necessary data to other partitions and without revealing
certain information under some acceptable definition of privacy; and efficiency necessitates
the overall process to run in reasonable (e.g., polynomial) time. Näıvly applying current
techniques can be either insecure, incorrect or too expensive. For example, simply com-
puting FDs from each partition separately and intersecting the FD sets might respect the
privacy of each partition, but can lead to invalid FDs on the whole dataset. On the other
hand, exchanging information between partitions to validate global FDs in an encrypted
way might meet both privacy and soundness, but suffers from severe inefficiency. For in-
stance, validating one candidate FD on a dataset requires comparing all needed evidence
from all the partitions. Securely comparing all tuples from all partitions is expensive due
to the lack of scalable cryptographic constructions. General purpose secure multi-party
computation protocols such as garbled circuit [169], homomorphic encryption [110] and
oblivious polynomial evaluation [131] incur high cost already when securely computing one
function among multiple parties [119], rendering an FD discovery algorithm prohibitively
inefficient. Therefore, it would be desirable to design efficient and secure protocols for
discovering FDs.

1.3 Contributions and Outline

To solve the aforementioned challenges in enabling private data analytics, we first study
each task and express its utility as data constraints (e.g., integrity constraints [59, 88,
103]). Then, we select a principled data privacy and security model for each task, such as
input privacy [72] and output privacy [51, 56]. Next, we design mechanisms to combine
them into end to end analytics tasks. Finally, we develop open source systems to support
the evaluation and deployment of each task. The contributions of this dissertation are
summarized as follows.

5

1.3.1 Data Exploration

We propose APEx [68], an accuracy-aware privacy engine for sensitive data exploration
(§ 3). The data scientist can interact with the private data through APEx using declara-
tively specified aggregate queries. Specifically, we make the following contributions:

1. APEx supports three types of aggregate queries (§ 3.1.1): 1) workload counting queries
that capture the large class of linear counting queries (e.g., histograms and CDFs), which
are a staple of statistical analysis; 2) iceberg queries, which capture HAVING queries in
SQL and frequent pattern queries; and 3) top-k queries. These queries form the building
blocks of several data exploration workflows. To demonstrate their applicability in real
scenarios, we express two important data cleaning tasks, namely blocking and pair-wise
matching, using sequences of queries from our language (§ 3.6).

2. In our language, each query is associated with intuitive accuracy bounds that permit
APEx to use differentially private mechanisms that introduce noise while meeting the
accuracy bound (§ 3.1.2).

3. For each query in a sequence, APEx employs an accuracy translator (§ 3.3) that finds a
privacy level and a differentially private mechanism that answers the query while meeting
the specified accuracy bound. For the same privacy level, the mechanism that answers a
query with the least error depends on the query and dataset. Hence, APEx implements
a suite of differentially private mechanisms for each query type, and given an accuracy
bound chooses the mechanism that incurs the least privacy loss based on the input query
and dataset.

4. APEx uses a privacy analyzer (§ 3.4) to decide whether to answer a query such that
the privacy loss to the data owner is always bounded by a budget. The privacy analysis is
novel since 1) the privacy loss of each mechanism is chosen based on the query’s accuracy
requirement; and 2) some mechanisms have a data dependent privacy loss.

In a comprehensive empirical evaluation on real datasets with query and application
benchmarks, we demonstrate that 1) APEx chooses a differentially private mechanism with
the least privacy loss that answers an input query under a specified accuracy bound; and
2) allows data scientists to accurately explore data while ensuring provable guarantee of
privacy to data owners (§ 3.5).

6

1.3.2 Data Synthesis

We consider an important class of structure constraints, the denial constraints (DCs) [88],
and we present Kamino [70], a system for constraint-aware differentially private data
synthesis (§ 4).

Our solution is built on top of the probabilistic database framework [151, 156], which
models a probability distribution over ordinary databases and incorporates the denial con-
strains as parametric factors. Database instances that share similar structural and sta-
tistical correlations with the true data are modeled to have similar probabilities. We
first privately learn a parametric model of the probabilistic database, and then sample a
database instance from the model as a post-processing step. To make it more efficient, we
decompose the joint probability of a database instance into a chain of conditional prob-
abilities, and privately estimate tuple distribution using tuple embedding [165] and the
attention mechanism [19] for mixed data types (categorical and numerical).

As we explicitly consider additional correlation structures compared to prior work,
Kamino can incur more performance cost and utility cost for other applications given the
same level of privacy constraint. Our empirical evaluation shows that the performance over-
head and accuracy payoff are negligible. We also show that while preserving DCs, Kamino
produces synthetic data that have comparable and even better quality for classification ap-
plications and marginal queries than the state-of-the-art methods on differentially private
data synthesis.

We highlight the main contributions of this work as follows:

1. We believe this is the first work to consider denial constraints in differentially private
data synthesis, which are important properties for structured data. We use probabilistic
database framework to incorporate DCs and attribute correlations.

2. We develop an efficient learning and sampling algorithm for Kamino by decomposing
the probabilistic database model into a chain of submodels, based on the given constraints
(§ 4.1 & § 4.2).

3. We design a private learning algorithm in Kamino to learn the weights of given DCs
to allow interpreting them in the model as soft constraints (§ 4.3).

4. We build the prototype for Kamino, the first end-to-end system for differentially private
data generation with DCs, and apply advanced privacy composition techniques to obtain
a tight end-to-end privacy bound (§ 4.4).

7

We evaluate Kamino over real-world datasets and show that the synthetic data have
similar violations to the given DCs as in the true data, and they also achieve the best or
close to best data usefulness in the marginal queries (variation distance) and the learning
tasks (accuracy and F1), compared to the state-of-the-art methods (§ 4.5).

1.3.3 Data Profiling

To solve the problem of discovering global FDs among multiple parties securely and effi-
ciently, we propose SMFD [69], a system with efficient cryptographic protocols to support
discovering FDs in semi-honest multi-party scenarios (§ 5). We highlight the main contri-
butions of SMFD as follows:

1. We define the FD discovery problem in the secure multi-party scenario (§ 5.1.1) and
propose a top-down based framework to validate FDs (§ 5.1.3).

2. We formulate the distributed FD validation problem over multiple partitions (§ 5.2.1),
and provide an efficient solution for discovering FDs in the multi-party scenario (§ 5.2.2).

3. As the building blocks of our solution, we design efficient mix networks to enable secure
equality testing against a semi-honest adversary (§ 5.3).

4. We also propose a relaxed version of FD (referred to as congenial FD) and show that
our framework is able to efficiently and securely discover these FDs (§ 5.4).

With extensive evaluations using real world datasets, we show the linear scalability of
our solution, and empirically demonstrate that our solutions can achieve more than two
orders of magnitude improvement over general purpose secure multi-party computation
solution, in terms of computation and communication costs (§ 5.5).

1.3.4 Other Tasks

This dissertation addresses the specific technical challenges in the three analytics tasks
introduced above, and many other challenges remain unsolved in the diverse spectrum of
data analytics tasks under the scope described by Figure 1.1. We will discuss the challenges
in other data analytics tasks and present directions for future research (§ 6).

The remainder of the dissertation is organized as follows. In § 2, we start with back-
ground and related work. In § 3, we present our approach for accuracy-aware differentially

8

private data exploration. In § 4, we introduce our approach for constraint-aware differen-
tially private data synthesis; and in § 5, we present our approach for secure multi-party
functional dependency discovery. Finally, in § 6, we discuss future directions and conclude
this dissertation.

9

Chapter 2

Preliminaries and Related Work

2.1 Preliminaries

2.1.1 Relational Data and Constraints

We consider the sensitive dataset in the form of a single-table relational schema
R(A1, A2, . . . , Ad) with d attributes, where attr(R) denotes the set of attributes of R.
Each attribute Ai has a domain dom(Ai). The full domain of R is dom(R) = dom(A1) ×
· · · × dom(Ad), containing all possible tuples conforming to R. An instance D of relation
R is a multiset whose elements are tuples in dom(R). Each tuple ti ∈ D has an implicit
identifier i, and ti[Aj] denotes the value taken by the tuple ti for attribute Aj. We let the
domain of the instances be D and use index 1 to refer to the first element in an array.

Functional Dependency

Definition 1. (Functional Dependency) Given a data instance D in schema R, let A be
a set of attributes A ⊆ R and B be an attribute B ∈ R, a functional dependency (FD) f :
A→ B holds on D (i.e., D |= f) if for all tuples t1, t2 ∈ D, t1[A] = t2[A]⇒ t1[B] = t2[B].

Note that we follow the literature to consider only the regular FDs where the B contains
one single attribute. Any irregular FD is equivalent to a set of regular FDs. When B ∈ A,
A → B is trivial. An FD is minimal if @K ⊆ A such that A \K → B is a valid FD. For
K ⊆ R \ A, f ′ : A,K → B is called a specialization of f , i.e., f ′ ∈ Spec(f).

Example 1: Consider the following FDs:

10

f1 : edu→ edu num

f2 : edu, edu num→ edu num

f3 : edu, age→ edu num

f1 states that for any two persons with the same edu, they must have the same edu num.
Given a table D shown by Figure 2.1, it is easy to validate that D |= f1.

age edu edu_num
7& 35 13 Bachelor

7' 42 13 Bachelor

73 27 14 Master

74 55 14 Master

75 67 14 Master

Figure 2.1: A simple table example.

FD f2 is trivial, and FD f3 is not minimal because of f1.

Definition 2. (Attribute Partition) Given an attribute set A and a relational instance
D, the attribute partition of D under A is a disjoint set as πDA = {[t]A|t ∈ D}, where
[t]A = {t′ ∈ D|t[A′] = t′[A′],∀A′ ∈ A}

|πDA | represents the cardinality of the set πDA . Since πDA is a set of tuple sets, we use ‖πDA‖
to denote the cardinality of tuples, which in other words, is equivalent to the cardinality
of D. We use V D

A to represent the set of values of the attribute partition of A on D.

Example 2: Continue with Example 1, The attribute partition on edu is πedu =
{{t1, t2} ,{t3, t4, t5}}, and thus |πedu| = 2.

Definition 3. (Attribute Partition Error) The attribute partition error e(A) of an attribute
set A with respect to an instance D is defined as the minimal number of rows that need to
be removed in order to make A a super key. Mathematically, e(AD) = ‖πDA‖ − |πDA |.

Example 3: Continue with Example 2, The attribute partition error on edu is e(eduD) =
5− 2 = 3, which implies that we need to remove at least 3 rows in order to make attribute
edu as a super key on table D showed by Figure 2.1.

11

Denial Constraints

We express a DC as a first-order formula in the form of φ : ∀ti, tj, · · · ∈ D,¬(P1∧· · ·∧Pm).
Each predict Pi is of the form (v1 o v2) or (v1 o c), where v1, v2 ∈ tx[A], x ∈ {i, j, · · · },
A ∈ R, o ∈ {=, 6=, >,≥, <,≤}, and c is a constant. We will omit universal quantifiers
∀ti, tj, . . . hereafter for simplicity.

Example 4: Consider a database instance D with schema R =
{age, edu num, edu, cap gain, cap loss}, and three DCs:

φ1: ¬(ti[edu] = tj[edu] ∧ ti[edu num] 6= tj[edu num])

φ2: ¬(ti[cap gain] > tj[cap gain] ∧ ti[cap loss] < tj[cap loss])

φ3: ¬(ti[age] < 10 ∧ ti[cap gain] > 1M)

The first DC φ1 expresses the FD f1 from Example 1. The second DC φ2 states that
for any two tuples, if one’s cap gain is greater than the other’s, its cap loss cannot be
smaller. The third DC φ3 is a unary DC that enforces every tuple with age less than 10
cannot have cap gain more than 1 million.

A DC states that all the predicts cannot be true at the same time, otherwise, a violation
occurs. We use V (φ,D) to represent the set of tuples (for unary DCs) or tuple groups (for
non-unary DCs) that violates DC φ in a database instance D. we refer to DC φ as a hard
DC if no violations are allowed (i.e., V (φ,D) = ∅), or a soft DC if a database instance can
have violations. Note that the set of DC violations expands monotonicity with respect to
the size of a database instance, that is for a subset instance D̂ ⊂ D, V (φ, D̂) ⊂ V (φ,D).
We also use Aφ to represent the set of attributes that participate in the DC φ. For example,
Aφ1 = {edu, edu num}.

2.1.2 Probabilistic Database

Probabilistic Database Modeling

The probabilistic database framework [151] has been used in practice [148, 165] to model
observed data that do not fully comply with a given set of DCs. Intuitively, a database
instance with few violations is more likely. Given a set of DCs Φ and their weights {wφ |
φ ∈ Φ}, the probability of an instance D is defined as follows:

Pr(D) ∝
∏
t∈D

Pr(t)× exp(−
∑
φ∈Φ

wφ × |V (φ,D)|) (2.1)

12

where
∏

t∈D Pr(t) models a tuple-independent probabilistic database [151, 156], wherein
each tuple independently comes from a probability distribution over tuples, and |V (φ,D)|
is the size of violations of DC φ on D. Each DC φ is associated with a weight wφ and each
violation of φ contributes a factor of exp(−wφ) to the probability of a random database
instance D. This model captures both hard and soft DCs. For hard DCs, we set weights
to be infinitely large, then a database instance with any violations has a small probability.
For soft DCs, having more violations decreases its probability.

Probabilistic Database Learning

To learn a probabilistic database, one needs to learn the probability of tuples Pr(t) as
well as the weights of DCs wφ. The goal is to find the set of parameters {Pr(t), wφ}
that maximizes the product of the likelihoods of all the training database samples [151].
The observed data will be used to learn the parameters in the model. We assume the
distribution does not change.

The tuple probability can be expressed as the product of a chain of conditional proba-
bilities:

Pr(t) = Pr(t[A1])
k∏
j=2

Pr(t[Aj] | t[A1, · · · , Aj−1]) (2.2)

Each conditional probability is learned as a discriminative model based on tuple embed-
ding [165] and attention mechanism [19]. Similar to word embedding that models words
in vectors of real numbers [127], tuple embedding has been applied to model tuples by
encoding tuples into the space of real numbers [57, 165].

Consider the discriminative model used in AimNet [165] that predicts the value of target
attribute Aj based on the values of a set of context attributes {A1, . . . , Aj−1}. AimNet
transforms each attribute value into a vector embedding with fixed dimension d. For an
attribute with continuous values ~x ∈ Rd′ , where d′ < d, AimNet first standardizes each
dimension to zero mean and unit variance, and then apply a linear layer followed by a non-
linear ReLU layer to obtain a non-linear transformation of the input: ~z = Bω(A~x+~c) + ~d,

where A, B, ~c, ~d are learned parameters and ω is a ReLU. For each discrete attribute,
AimNet associates it with a learnable lookup table mapping embeddings to domain values.

AimNet relies on the attention mechanism [19] to learn structural dependencies be-
tween different attributes of the input data and uses the attention weights to combine the
representations of inputs into an vector representation (the context vector) for the target
attribute. To predict a target attribute value, it learns the transformation from context

13

vector back to a value in the domain of the target attribute. The output of a discrim-
inative model is the learned representation of all the attributes, and a list of prediction
probabilities for all values of a target attribute with the discrete domain, or the regres-
sion parameters (mean and std) of a Gaussian distribution for a target attribute with a
continuous domain.

2.1.3 Differential Privacy

Differential privacy (DP) [51, 56] aims to protect the output of has emerged as a standard
data privacy guarantee by government agencies [13, 80] and companies [60, 74, 93]. An
algorithm that takes as input a table D satisfies differential privacy if its output does not
significantly change by adding or removing a single tuple in its input.

Definition 4 (Differential Privacy (DP) [51, 56]). A randomized mechanism M achieves
(ε, δ)-DP if for all S ⊆ Range(M) and for any two database instances D,D′ ∈ D that
differ only in one tuple:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

The privacy cost is measured by the parameters (ε, δ). When δ = 0, we say the
randomized mechanismM is ε-DP. Smaller values of ε result in stronger privacy guarantees
as D and D′ are harder to distinguish using the output. Complex DP algorithms can be
built from the basic algorithms following two important properties of differential privacy.

The sequential composition theorem helps assess the privacy loss of multiple differen-
tialy private mechanisms.

Theorem 1 (Sequential Composition [51]). Let M1(·) and M2(·, ·) be algorithms with
independent sources of randomness that ensure (ε1, δ1)- and (ε2, δ2)-differential privacy re-
spectively. An algorithm that outputs both M1(D) = O1 and M2(O1, D) = O2 ensures
(ε1 + ε2, δ1 + δ2)-differential privacy.

Another important property of differential privacy is that post-processing the outputs
does not degrade privacy.

Theorem 2 (Post-Processing [52]). Let M1(·) be an algorithm that satisfies (ε, δ)-
differential privacy. If applying an algorithm M2 the output of M1(·), then the overall
mechanism M2 ◦M1(·) also satisfies (ε, δ)-differential privacy.

14

All steps in the post-processing algorithm do not access the raw data, so they do not
affect the privacy analysis.

Semantics of DP. Prior work [21, 54, 67, 82, 98, 99, 147] offer semantic interpretations
of DP with respect to adversarial knowledge: informally, regardless of external knowledge,
an adversary with access to the sanitized database draws the same conclusions whether
or not one’s data is included in the original database. Ganta et al. [67] formalize the
notion of “external knowledge”, and of “drawing conclusions” respectively via (i) a prior
probability distribution b[·] on the database domain D of size n; and (ii) the corresponding
posterior probability distribution: given a transcript t outputted by mechanism M, the
adversary updates his belief about the database D using Baye’s rule to obtain a posterior
b̂[D|t] = Pr[M(D)=t]b[D]∑

D′ Pr[M(D′)=t]b[D′]
. Consider the hypothetical scenario where person i’s data is

not used, denoted byM(D−i), given a transcript t, the updated posterior belief about the

database D is defined as b̂i[D|t] = Pr[M(D−i)=t]b[D]∑
D′ Pr[M(D′−i)=t]b[D

′]
. A DP mechanism M with proper

privacy parameters (sufficiently small δ) can prevent the adversary from drawing different
conclusions about whether or not person i’s data was used, i.e., the statistical difference
between b̂[·|t] and b̂i[·|t] is small for D drawn from b[·] and t drawn from M(D) with a
high probability [67, 98]. This posterior-to-posterior comparison applies to arbitrary prior
of adversaries, unlike prior-to-posterior approaches [54, 99].

2.1.4 Cryptographic Constructions

ElGamal Encryption

ElGamal encryption [66] is a probabilistic asymmetric encryption scheme. ElGamal can
be defined over a cyclic group Gp of order p with a generator g. p is usually a large prime
number and g is a primitive element of the group. ElGamal encryption consists of three
algorithms: key generation, encryption and decryption, which are formally described in
Algorithm 1.

The KGen algorithm takes two input values: a large prime number p, and the generator
g. The private key x is a random integer uniformly drawn from Zp, and the public key k
is an element in Gp computed from x and g. By the discrete logarithm assumption [50], it
is difficult to infer x from k.

The Enc algorithm takes inputs of a value v and the public key k, and outputs a cipher
text pair (c1, c2). The Dec algorithm decrypts the cipher text pair using private key x.

15

Algorithm 1 ElGamal Scheme

Input: p, g . a large prime, generator
procedure KGen(p, g)

x←$Zp . x is the private key
k ← gx . k is the public key
return (x, k)

end procedure

Input: v, k . plain value, public key
procedure Enc(v, k)

r←$Zp . sample a random value
c1 ← gr

c2 ← v · kr
return (c1, c2)

end procedure

Input: (c1, c2), x . cipher text, private key
procedure Dec((c1, c2), x)

c′1 ← cx1 . updating random parameter
c2 ← c2 · (c′1)−1 . decrypt
return c2

end procedure

Mix Network

A mix network (mixnet, in short) [36] is a cryptographic construct where a chain of workers
establishes hard-to-trace communications between the senders and receivers. The senders
encrypt each message to each worker using public key cryptography and send encrypted
messages to the mixnet, where each worker strips off an encryption layer, does some oper-
ations and shuffles them before enrouting to the next worker sequentially. At the output,
receivers receive cryptographically transformed and randomly permuted messages, making
the end-to-end communications untraceble.

16

2.2 Related Work on Specific Private Data Analysis

Tasks

2.2.1 Private Data Exploration

Data exploration refers to a process in data analysis, where a data scientist uses visual
exploration to understand what is in a dataset and the characteristics of the data. These
characteristics can include size, quantity, and quality aspects such as completeness and
correctness of the data, which are the output results from the exploration step. Therefore,
the input parties would like to have output privacy guarantee for the private data explo-
ration tasks. In this section, we review the approach of private data exploration through
query answering.

As discussed in § 2.1.3, differential privacy [53] has emerged as a popular output privacy
standard in real-world analysis, and has been widely adopted by both the government
agencies [13, 35] and enterprise [60, 74, 78, 92, 122]. In the past decade, differentially
private query answering has been extensively studied, and there are well known techniques
for special tasks such as answering linear counting queries [81, 114, 123], top-k queries [111]
and frequent itemset [116, 172]. Due to the diversity of query types, there is no single
technique that fits all, and hence existing work only study a subset of query types and design
specific mechanisms to answer those queries. For example, PrivateSQL [106] proposes
methods to answer join queries over multiple tables by truncating sensitivity from the
query plans. HDMM [124] designs a compact implicit matrix representation and exploits
this representation to efficiently optimize over (a subset of) the space of differentially
private algorithms with low expected error. As a result, for a given query, there is no clear
winner between these proposed algorithms.

At a lower level, there are programming frameworks such as PINQ [126], wPINQ [145]
and εktelo [173] to allow users to write programs in higher level languages for various tasks.
These systems automatically prove that every program written in this framework ensures
differential privacy. For example, FLEX [93] allows users to answer a SQL query under
a specified privacy budget. However, using those general purpose system poses technical
barriers to the data scientist, as they require the data scientist to specify a privacy level,
and more importantly, to understand how a query is answered. For example, In εktelo [173],
a differentially private program is described as a plan over a high level library of operators.
Operators are organized into classes based on their functionality, which includes data
transformations, data reductions, query selection and execution, and inference methods
to combine noisy answers into a consistent estimate. Understanding and writing those

17

programs are sometimes hard for data scientists, who are in general not privacy experts.

Despite the fact that designing new mechanisms to preserve the output privacy for
more query types is an active research, there is significantly less work on addressing ac-
curacy in differentially private query answering. Since differential privacy is achieved by
randomization and noise is added to the output (or, to the intermediate steps by the
post-processing property by Theorem 2), the noisy outputs do not enjoy the same level
of accuracy compared to those without randomization. To the perspective of data scien-
tists, query accuracy is critical to achieve correctness. In fact, the lose of accuracy has
been a bottleneck to adopt differential privacy in some cases and prioritizing accuracy for
diverse use cases has been a difficult task even for experts [80]. However, those systems
mentioned above only take a privacy level and ensure the differentially private answers for
query answering, but leaving query accuracy unconstrained.

Accuracy constraints in DP. We review the related work of addressing the accuracy
constraints in differentially private query answering.

At the time of designing our accuracy-aware differentially private data exploration
engine (APEx in § 3), the most related work to support accuracy constraints is by Ligett
et al. [117], which allows the data scientist to specify accuracy constraints. Ligett et
al. takes as input a given mechanism with accuracy bound and a set of privacy budgets,
(M,α, β, {ε1 < ε2 < · · · < εT}), and outputs the minimal privacy cost (epsilon) for M
to achieve the accuracy bound. Rather than concentrating on private machine learning
theoretically, our focus is to explore private data with accuracy guarantees. The main
technical differences are highlighted below.

First, the end-to-end problems in APEx and the approach in Ligett et al. [117] are
different. APEx aims to translate a given query with accuracy bound, (q, α, β), to a dif-
ferentially private mechanism that achieves this accuracy bound with the minimal privacy
cost, (M, ε). On the other hand, Ligett et al. [117] takes as input a given mechanism with
accuracy bound and a set of privacy budgets, (M,α, β, {ε1 < ε2 < · · · < εT}), and outputs
the minimal privacy cost (epsilon) for M to achieve the accuracy bound. Unlike Ligett et
al., APEx does not need to take a set of privacy budgets as an input. For the exploration
queries in APEx, there are more than just one differentially private mechanisms for each
query type, and none of these mechanisms dominate the others. Thus, in this sense, the
problem solved by APEx is more general than the one solved by Ligett et al.

The second key difference between the approaches is the following. APEx currently
only supports mechanisms for which the relationship between the accuracy bound and the
privacy loss epsilon can be established analytically. On the other hand, Ligett et al. can
handle arbitrarily complex mechanisms, and use empirical error of the mechanisms to pick

18

the epsilon. In this way, the solution proposed by Ligett et al. applies a larger class of
mechanisms. Nevertheless, for the queries and mechanisms supported by APEx, using
Ligett et al.’s methods would be overkill in two ways: 1) there is an extra privacy cost ε0
to test the empirical error; and 2) since the exploration queries are variations of counts, the
sensitivity of the error will be so high that the noise introduced to the empirical error could
limit our ability to distinguish between different epsilon values. For example, for a simple
counting query of size 1, the maximum privacy cost required in APEx is ln(1/β)/α while
the privacy cost with Ligett et al. is more than ε0 = 16(ln(2T/β))/α. When APEx applies
a data-dependent approach, the privacy cost can be even smaller than ln(1/β)/α. For a
prefix counting query of size L and sensitivity of L, the best privacy cost achieved in APEx
is O(logL), but their ε0 is O(L) as the sensitivity of the error to the final query answer is L
(for both Laplace and strategy-based mechanisms). Similarly, for iceberg counting queries
(ICQ), the sensitivity of error to the final query answer is large and results in a large ε0 for
the differentially private testing. Thus, using the method in Ligett et al. would not help
the currently supported mechanisms and queries in APEx. In the future, we will add more
complex mechanisms into APEx (like DAWA [112], MWEM [79] that add data dependent
noise) and study whether the methods of Ligett et al. can be adapted to our setting.

APEx has attracted many attentions and inspired follow-up works [102, 161] on the
line of explicitly ensuring accuracy guarantee in differentially private query answering.
DPella [161] is a programming framework providing data scientists with support for rea-
soning about privacy, accuracy, and their trade-offs. DPella statically tracks the accuracy
of different data analysis, and provides tight accuracy estimations using taint analysis.
Based on APEx, a recent thesis proposal [102] presents a differentially private framework
that handles multiple data scientists with their individual accuracy guarantees when given
a limited privacy budget.

Private QA for data cleaning. Differentially private query answering provides a way for
the data scientist to explore the data, and can be used to help tune a cleaning workflow on
the private data. Amongst prior work on cleaning private data [41, 77, 85, 109], the most
relevant ones are PrivateClean [109] and HRR [77] as they both use differential privacy too.
However, similarities to APEx stop with that. For PrivateClean [109], it assumes a different
setting, where no active data cleaner is involved. The data owner perturbs the dirty data
without cleaning it, while the data analyst who wants to obtain some aggregate queries
will clean the perturbed dirty data. Moreover, all the privacy perturbation techniques in
PrivateClean are based on record-level perturbation, which 1) only work well for attributes
with small domain sizes; and 2) has asymptotically poorer utility for aggregated queries. At
last, the randomized response technique used for sampling string attributes in PrivateClean
does not satisfy differential privacy – it leaks the active domain of the attribute. As for

19

HRR [77], it deals with multi input party settings, where each input party perturb data
using the local model of differential privacy, and then the computation node applies rules
such as functional dependency (§ 2.1.1) to rectify violations.

2.2.2 Private Data Sampling

There has been extensive literature on releasing synthetic relational data with differential
privacy guarantee [33, 62, 70, 133, 177]. In general, generating differentially private syn-
thetic data is hard, due to the tradeoff between accuracy and privacy [30, 55, 65, 159]. On
the other hand, an efficient private data generation algorithm fails to offer the same level of
accuracy guarantees to all the queries. Existing practical methods (e.g., [20, 38, 39, 95, 174])
therefore choose to privately learn only a subset of correlations to model the true data.
However, the structure of the data is not explicitly captured by these methods and thus
are poorly preserved in the outputs. The main approach for existing method is to privately
learn a data generative model, and then sample independent and identically distributed
tuples as the post-processing step. Depending on how to model the data generative pro-
cess, prior approaches can be categorized into two main classes: 1) statistical approaches,
which focus on exploiting certain statistical property of the dataset; and 2) deep learning
approaches, which train a deep generative model to sample tuples.

Statistical approaches. Statistical approaches produce synthetic data by exploiting the
statistical property of the dataset. We classify two subcategories of methods based on the
the statistical properties they utilize.

One popular subcategory of statistical approaches is through dimensionality reduction.
Due to the hardness of privatizing high-dimensional data with differential privacy guaran-
tee [30, 55, 65, 159], the distribution of the tuples can be estimated by low-dimensional
marginal distributions [146, 167] based on the assumption of conditional independence
among attributes. Those low-dimensional distributions are easier to add noise due to the
relatively lower noise-to-signal ratio [174]. Then, the tuple distribution can be modeled us-
ing probabilistic graphical models [105], such as using the directed network [115, 144, 174]
or undirected graphs [39, 125]. For example, given a dataset, PrivBayes [174] first con-
structs a Bayesian network, which 1) provides a model of correlations among attributes;
and 2) allows to approximate the tuple distribution. After that, it injects noise into each
marginal to ensure differential privacy, and then uses the noisy marginals and the Bayesian
network to construct an approximation of the data distribution. Finally, it samples tuples
from the approximate distribution to construct a synthetic dataset, and then releases the
synthetic data. To improve the scalability and generality, PGM [125] proposes to use an

20

undirected graph to do proper inference over private observations such as resolving in-
consistency from noisy distributions. Nevertheless, under those dimensionality reduction
models, only correlations among dependent attributes are likely to be captured, but corre-
lations that widely exist among conditional independent attributes and more importantly,
tuples such as constraints (§ 2.1.1) are not captured in prior work.

Another subcategory of statistical approaches is the game-based methods [65, 79, 162],
where a set of workload is taken as additional input, and the goal is to sample private
synthetic data, on which the workload performs well. In the game-based methods, pro-
ducing differentially private data is viewed as a zero-sum game [84] between a data player
and a query player. The players adopt an adversarial learning framework (e.g, [73]) to
gradually improve the quality of the synthetic dataset. For example, MWEM [79] can
be viewed as a game, where the data player maintains the distribution over the data do-
main using multiplicative weights [17], and the query player selects a query on which the
maintained distribution has the worst performance, with the goal of separating the syn-
thetic dataset from the real one. For another example, Dual Query [65] considers a dual
formulation of the MWEM problem, where the query player runs multiplicative weights
over the input workload, and the data player generates a tuple that minimizes the error
on selected queries, which can be computed via integer programming. The game-based
methods adopt learning-theoretical frameworks [30, 97], and often provides nearly optimal
theoretical guarantees on workload accuracy. However, in those methods, optimizing for
the specific set of queries increases the chance of over-fitting, and may not generalize in
the presence of dynamic workload.

Statistical methods for private data sampling rely on the certain statistical property
of the dataset, and are often easy to model, interpret and inference. The cons of those
methods usually come from the simplification of modeling real-world relational data due
to their limited representation and learning power. For example, non-linear correlations
between attributes are often not captured by statistical methods [91]. Furthermore, all
above methods only model the correlations between attributes, and have an implicit as-
sumptions that tuples are independent and identically distributed, which is generally not
true in relational data, where correlations among tuples do exist (§ 2.1.1).

Deep learning approaches. Deep learning models have been widely used in synthesizing
unstructured data, such as images [154], videos [37] and natural languages [76]. Unlike
statistical approaches, deep learning approaches for private data sampling can capture
the complex (non-linear) correlations among attributes. In this section, we review two
subcategories of deep learning approaches based on the model they use.

The first category uses the generative adversarial network (GAN [73]), where a gener-

21

ator and discriminator pit one against the other [64, 157, 168, 175]. There is a rich class
of GAN variants that have been used in private data sampling (see the survey [62]), and
in section, we briefly review two representative class based on the modeling training meth-
ods with differential privacy. The training is an iterative process, and differential privacy
can be achieved using DP-SGD [11, 22, 155, 164]. The trained generator serves as the
generative model, and sampling private data is a post-processing step without incurring
more privacy loss (Theorem 2). For example, DPGAN [168] and dp-GAN [175] are two
independent methods proposed to learn differentially private GANs. Both DPGAN and
dp-GAN adopt the idea of DP-SGD framework to train the models privately, but they
slightly differ in their object functions. To be more precise, DPGAN adopts the Wasser-
stein GAN objective [16], while dp-GAN adopts the improved Wasserstein GAN [75], which
is an alternative to weight clipping in order to enforce the Lipschitz constraint.

In addition to the private model training using DP-SGD, private model training can
also leverage the ensembles [139, 140]. In the PATE framework [140], multiple teachers
are trained on disjoint sensitive data (e.g., different users’ data), and uses the teachers’
aggregate consensus answers in a black-box fashion to supervise the training of a student
model. By publishing only the student model (keeping the teachers private) and by adding
carefully-calibrated noise to the aggregate answers used to train the student, the PATE
framework can achieve differential privacy. PATE-GAN [95] adopts the PATE framework
to achieve differential privacy, and proposes a method to train the student discriminator
without requiring publicly available dataset. Specifically, a set of teacher discriminators
are trained separately as the standard teacher models on disjoint partitions of the training
set. A student discriminator is trained with generated samples, labeled by the teachers
using the PATE framework. The generator is trained to minimize its loss with respect to
the student discriminator. As a result, the student model can be trained privately without
public data and the generator can utilize the process to improve the generated samples.

The second category of deep-learning based private data sampling uses auto-
encoder [100], which learns a representation for the private input tuples by training the
network, with differential privacy guarantee [38, 143, 149]. The privately learned represen-
tation can be used to sample tuples first in the latent space, and then convert back to the
database domain. Similar to the methods using GANs, differential privacy can be achieved
by perturbing the gradients using DP-SGD during each iteration of training, or perturb-
ing the objective function by injecting noise. For example, DP-VaeGM [38] is trained on
the private data by perturbing the gradients and is then released to public for generating
synthetic data. As an example of perturbing the objective function, recent work [149]
proposes a functional perturbation mechanism, where the global sensitivity of the loss
function is carefully derived. In each iteration, the difference of input data only influences

22

the coefficients of the model parameters and it only needs to compute the sensitivity of
the coefficients and add perturbation to them. After gaining the sensitivity of objective
function, they add perturbation to every coefficients in the loss function. Finally, they use
it to train and adjust the parameters of the model by minimizing the loss function.

Different from unstructured data, structured data is defined using relational schema
and hence, structure correlations naturally exist, as we have introduced in § 2.1.1. Given
the correlations and dependencies among tuples and attributes, applying deep learning
models on structured data faces at least two issues. First, those models usually take
numeric vectors as input, and popular encoding schemes such as one-hot encoding or
ordinal encoding do not work well on structured data [61], Second, similar to statistical
approaches, methods based on deep models (e.g. [64, 95, 157, 168]) suffer from missing
structure correlations.

Utility goals in private data synthesis. The utility goals in existing differentially
private data synthesis can be classified into two classes. The first class are data-independent
goals, such as k-way marginal distances [158] used by most of the statistical approaches,
misclassification rate [29] by many of the deep learning approaches. The second class are
data-dependent goals, such as query error [65] in the game-based approaches discussed
above.

Our approach in Chapter 4 distinguishes from prior work in three aspects. First, it is a
combination, using both the statistical and deep learning methods to model the distribution
of databases; Second, our method differentiates prior work in that we explicitly consider
the denial constraints [88] enforced among tuples as an utility goal; Last but not least, our
approach lifts the assumption of i.i.d tuples.

2.2.3 Private FD Profiling

Discovering functional dependencies (FDs) has been studied for a long time, and there are
a few surveys [88, 120, 136, 137] to summarize those discovery methods. Prior work on
functional dependency discovery can be categorized into four classes.

The first class includes top-down schema driven approaches, which generate candidate
FDs first using the schema, and then remove invalid FDs [12, 86, 132, 170]. An example
of such method is the TANE algorithm [86], which we have already introduced in § 2.1.1.
The second class include bottom-up data driven algorithms, which compare the data to
find agree or difference sets and induct FDs from observation [63, 121, 166]. For example,
FastFDs [166] builds upon the input data, and creates difference and agree-sets to find

23

all minimal functional dependencies in a depth-first search. Instead of successively check-
ing FD candidates, it searches for sets of attributes that agree on the values in certain
tuple pairs. Intuitively, attribute sets that agree on certain tuple values can functionally
determine only those attributes whose same tuples agree. After the agree sets are com-
puted, it derives all valid FDs by complementing the agree sets into difference-sets and then
maximizing the difference-sets to infer the FDs. The third class FD discovery algorithm
combines both data-driven and schema-driven ideas to narrow down the search space. An
example algorithm is HyFD [138], which adopts an alternating, two-phased discovery strat-
egy. In a first phase, HyFD extracts a small subset of records from the input data and
calculates the FDs of this non-random sample. Because only a subset of records is used
in this phase, it performs particularly column-efficient. The result is a set of FDs that
are either valid or almost valid with respect to the complete input dataset. In a second
phase, HyFD validates the discovered FDs on the entire dataset and refines such FDs that
do not yet hold. This phase is row-efficient, because it uses the previously discovered FDs
to effectively prune the search space. If the validation becomes inefficient, HyFD is able
to switch back into the first phase and continue there with all results discovered so far.
Finally, and most recently, structure learning [105] has been applied to discovery FDs. The
representative method is FDX [176]. Given a dataset, FDX proceeds in two steps: 1)it
estimates the undirected form of the graph that corresponds to the FD model of the input
dataset. This is done by estimating the inverse covariance matrix of the joint distribution
of the random variables that correspond to our FD model; and 2) FDX finds a factorization
of the inverse covariance matrix that imposes a sparse linear structure on the FD model,
and thus, allows to obtain parsimonious FDs.

We note that all above methods generally assume a single dataset without considering
distributed scenarios. A recent work, Distributed FastFDs [153] is to the best of our
knowledge the first effort considering FD discovery over partitions, which adopts a bottom-
up data driven approach. Distributed FastFDs focuses on minimizing communication cost
by computing a full self-join of the dataset and computing evidence from all tuple pairs,
and is expensive to implement in the secure multi-party scenario.

In our approach, we propose a secure FD validation protocol (§ 5). Secure FD vali-
dation can be boiled down to equality testing over sets and can be viewed as private set
intersections over FD attributes. There exists a class of research on solving private set
intersection (PSI, e.g., [101, 104]) and cardinalities (PSI-CA, e.g., [46, 160]). For exam-
ple, recent work [46] explores a few PSI-CA variations and constructs several protocols.
However, all existing solutions are limited to preserving the data privacy during one-time
operation. In a full FD discovery protocol, which prunes the entire search space (§ 2.1.1),
the set operations are frequently and repeatedly used, and näıvly applying them breaks

24

their security guarantees. What’s worse, to validate one FD requires set intersections for
all subset of parties, and using any private set intersection techniques would require O(2m)
intersections given m parties. However, our approach computes the set intersection cardi-
nality for all subsets in O(m), which is optimal, since a sublinear solution cannot exist. In
addition, using private set intersection would leak more information, since each party will
learn the values in intersection. Our approach only outputs the set intersection cardinality
for all subsets.

There is a rich literature on secure multi-party computation (e.g., see surveys [15, 119]).
In the past decades, there exists extensive research on studying general purpose protocols
such as garbled circuit [169], homomorphic encryption [135] and oblivious polynomial eval-
uation [131], and from that, building complex protocols for privacy-preserving data min-
ing [118]. It is not clear how to use these protocols to efficiently compute PSI-CA in O(m).
Furthermore, these protocols suffer from low scalability and inefficiency since a single FD
validation would invoke multiple rounds of general protocols.

In multi-party functional dependency discovery, the privacy goal is input privacy and we
would like to protect party’s data from all other parties and workers. In our approach, we
use mix network (mixnet, in short) [36] to setup untraceable communications. The essence
of a mixnet is to provide anonymity for a batch of inputs, by changing their appearance and
removing the order of arrival information. Based on the cryptographic transformations that
workers do, a recent survey [152] classifies mixnets into different types such as decryption
mixnet [90], and re-encryption mixnet [141] to fit different applications. Our proposed
mixnets extend the literature by hybriding the decryption and re-encryption operations
together per mix on each worker using the ElGamal encryption scheme [66]. Note that our
mixnets use shuffling—a technique that requires at least a circuit of size n log n—in O(n)
public key operations and compare n elements from a large domain to each other, but
as plaintext operations on deterministically encrypted ciphertexts. Using generic secure
computation protocols, these operations would have to be performed on secret shared data.

Recent work on private database federations such as SMCQL [23] provides a practical
way to answer SQL queries, which can be formed to validate FDs by selecting the count of
violations and checking if the count is zero or not. SMCQL evaluates queries obliviously
using Oblivious RAM [71] for secure query evaluation, and exhaustively pads dummy values
for each query operator. However, with cascades of such operators, padding dummy values
accumulates to a blow-up in the output size of each operator and a proportional loss in
query performance [24]. SMCQL is a generic system, while our work is more specialized
for operations in FD discoveries. As we will show empirically in Chapter 5, our method
outperforms over method using private database federations by 1000× in both computation
and communication cost.

25

Chapter 3

APEx: Accuracy-Aware Differentially
Private Data Exploration

3.1 Queries and Accuracy

In this section, we describe our query language for expressing aggregate queries and the
associated accuracy measures. In the rest of the chapter, we assume that the schema and
the full domain of attributes are public.

3.1.1 Exploration Queries

We consider a rich class of aggregate queries that can be expressed in a SQL-like declarative
format:

BIN D ON f(·) WHERE W = {φ1, . . . , φL}
[HAVING f(·) > c]
[ORDER BY f(·) LIMIT k] ;

Each query in our language is associated with a workload of predicates W =
{φ1, . . . , φL}. Based on W , the tuples in a table D are divided into bins. Each bin bi
contains all the tuples in D that satisfy the corresponding predicate φi : dom(R)→ {0, 1},
i.e., bi = {r ∈ D|φ(r) = 1}. As we will see later, bins need not be disjoint. Moreover, a
query has an aggregation function f : dom(R)∗ → R, which returns a numeric answer f(bi)
for each bin bi. The output of this query without the optional clauses (in square brackets)
is a list of counts f(bi) for bin bi.

26

Each query can be specialized using one of two optional clauses: the HAVING clause
returns a list of bin identifiers bi for which f(bi) > c; and the ORDER BY ... LIMIT clause
returns the k bins that have the largest values for f(bi).

In the following sections, we focus on COUNT as the aggregate function and discuss
other aggregates like AVG, SUM, QUANTILE at the end (§ 3.7).

Workload Counting Query (WCQ).

BIN D ON f(·) WHERE W = {φ1, . . . , φL};

Workload counting queries capture the large class of linear counting queries, which are
the bread and butter of statistical analysis and have been the focus of majority of the
work in differential privacy [81, 114]. Standard SELECT...GROUP BY queries in SQL are
expressible using WCQ. For instance, consider a table D having an attribute State with
domain {AL, AK, . . . , WI, WY} and an attribute Age with domain [0,∞). Then, a query
that returns the number of people with age above 50 for each state can be expressed using
WCQ as:

BIN D ON COUNT(∗)
WHERE W = {Age > 50 ∧ State = AL, . . . , Age > 50 ∧ State = WY} ;

Other common queries captured by WCQ include: 1) histogram queries : the workload
W partitions D into |Wh| disjoint bins, e.g. Wh = {0 < Age ≤ 10, 10 < Age ≤ 20, . . . , 90 <
Age} the resulting WCQ returns counts for each bin; and 2) cumulative histograms : we can
define a workload Wp that places tuples in D into a set of inclusive bins b1 ⊆ b2 · · · ⊆ bL,
e.g. Wp = {Age ≤ 10, Age ≤ 20, . . . , Age ≤ 90}. The resulting query outputs a set of
cumulative counts. We call such a Wp a prefix workload.

Iceberg Counting Query (ICQ).

BIN D ON COUNT(∗) WHERE W = {φ1, . . . , φL}
HAVING COUNT(∗)> c ;

An iceberg query returns bin identifiers if the aggregate value for that bin is greater
than a given threshold c. For instance, a query which returns the states in the US with a
population of at least 5 million can be expressed as:

BIN D ON COUNT(∗) WHERE W = {State = AL, ..., State = WY }
HAVING COUNT(∗)>500000000 ;

27

Note that since the answer to the query is a subset of the predicates in W (i.e., a
subset of bin identifiers) but not the aggregate values for these bins, an ICQ is not a linear
counting query.

Top-k Counting Query (TCQ).

BIN D ON COUNT(∗) WHERE W = {φ1, . . . , φL}
ORDER BY COUNT(∗) LIMIT k ;

TCQ first sorts the bins based on their aggregate values (in descending order) and
returns the top k bins identifiers (and not the aggregate values). For example, a query
which returns the three US states with highest population can be expressed as:

BIN D ON COUNT(∗) WHERE W = {State = AL, ..., State = WY }
ORDER BY COUNT(∗) LIMIT 3 ;

3.1.2 Accuracy Measure

To ensure differential privacy, the answers to the exploration queries are typically noisy.
To allow the data scientist to explore data with bounded error, we extend our queries
to incorporate an accuracy requirement. The syntax for accuracy is inspired by that in
BlinkDB [14]:

BIN D ON f(·) WHERE W = {φ1, . . . , φL}
[HAVING f(·) > c]
[ORDER BY f(·) LIMIT k]
ERROR α CONFIDENCE 1− β ;

We next define the semantics of the accuracy requirement for each of our query types.
The accuracy requirement for a WCQ qW is defined as a bound on the maximum error
across queries in the workload W .

Definition 5 ((α, β)-WCQ accuracy). Given a workload counting query qW : D → RL,
where W = {φ1, . . . , φL}. Let M : D → RL be a mechanism that outputs a vector of
answers y on D. Then, M satisfies (α, β)-W accuracy, if ∀D ∈ D,

Pr[‖y − qW (D)‖∞ ≥ α] ≤ β, (3.1)

where ‖y − qW (D)‖∞ = maxj |y[i]− cφi(D)|.

28

Figure 3.1: Accuracy requirement for ICQ and TCQ.

The output of iceberg counting queries ICQ and top-k counting queries TCQ are not
numeric, but a subset of the given workload predicates. Their accuracy measures are
different from WCQ, and depend on their corresponding workload counting query qW .

Definition 6 ((α, β)-ICQ accuracy). Given an iceberg counting query qW,>c : D → O,
where W = {φ1, . . . , φL}, and O is a power set of W . Let M : D → O be a mechanism
that outputs a subset of W . Then, M satisfies (α, β)-ICQ accuracy for qW,>c if for D,

Pr[|{φ ∈M(D) | cφ(D) < c− α}| > 0] ≤ β (3.2)

Pr[|{φ ∈ (W −M(D)) | cφ(D) > c+ α}| > 0] ≤ β (3.3)

A mechanism for ICQ can make two kinds of errors: label predicates with true counts
greater than c as < c (red dots in Figure 3.1), and label predicates with true counts less
than c as > c (blue dots in Figure 3.1). We say a mechanism satisfies (α, β)-ICQ accuracy
if with high probability, all the predicates with true counts greater than c+α are correctly
labeled as > c, and all the predicates with true counts less than c−α are correctly labeled
as < c. The mechanism may make arbitrary mistakes within the range [c− α, c+ α].

29

Definition 7 ((α, β)-TCQ accuracy). Given a top-k counting query qW,k : D → O, where
W = {φ1, . . . , φL}, and O is a power set of W . Let M : D → O be a mechanism that
outputs a subset of W . Then, M satisfies (α, β)-TCQ accuracy if for D ∈ D,

Pr[|{φ ∈M(D) | cφ(D) < ck − α}| > 0] ≤ β (3.4)

Pr[|{φ ∈ (Φ−M(D)) | cφ(D) > ck + α}| > 0] ≤ β (3.5)

where ck is the kth largest counting value among all the bins, and Φ is the true top-k bins.

The intuition behind Definition 7 is similar to that of ICQ and is explained in Figure 3.1:
predicates with count greater than ck +α are included and predicates with count less than
ck − α do not enter the top-k with high probability.

In the rest of the chapter, we will describe how APEx designs differentially private
mechanisms to answer queries with the above defined bounds on accuracy. The advantages
of our accuracy definitions are that they are intuitive (when α increases, noisier answers
are expected) and we can design privacy-preserving mechanisms that introduce noise while
satisfying these accuracy guarantees. On the other hand, this measure is not equivalent
to other bounds on accuracy like relative error and precision/recall which can be very
sensitive to small amounts of noise (when the counts are small, or when lie within a small
range). For instance, if the counts of all the predicates in ICQ lie outside [c− α, c+ α], a
mechanism M that perturbs counts within ±α and then answers an ICQ will have precision
and recall of 1.0 with high probability as it makes no mistakes. However, if all the query
answers lie within [c− α, c+ α], then the precision and recall of the output of M could be
0. Incorporating other error measures like precision/recall and relative error into APEx is
an interesting avenue for future work.

3.2 APEx Overview

This section outlines how APEx translates exploration queries with accuracy bounds into
differentially private mechanisms, and how it ensures the privacy budget B specified by
the data owner is not violated.

Accuracy Translator. Given a query (q, α, β), APEx first uses the accuracy translator
to choose a mechanism M that can 1) answer q under the specified accuracy bounds,
with 2) minimal privacy loss. To achieve these, APEx supports a set of ε-DP mechanisms
that can be used to answer each query type (WCQ, ICQ, TCQ). Multiple mechanisms
are supported for each query type as different mechanisms result in the least privacy loss

30

Algorithm 2 APEx Overview

Input: Dataset D, privacy budget B
1: Initialize privacy loss B0 ← 0, index i← 1
2: repeat
3: Receive (qi, αi, βi) from data scientist
4: M← mechanisms applicable to qi’s type
5: M∗ ← {M ∈M |M.translate(qi, αi, βi).ε

u ≤ B −Bi−1}
6: if M∗ 6= ∅ then
7: // Pessimistic Mode
8: Mi ← argminM∈M∗ M.translate(qi, αi, βi).ε

u

9: // Optimistic Mode
10: Mi ← argminM∈M∗ M.translate(qi, αi, βi).ε

l

11: (ωi, εi)←Mi.run(qi, αi, βi, D)
12: Bi ← Bi−1 + εi, i++
13: return ωi
14: else
15: Bi = Bi−1, i++
16: return ‘Query Denied’
17: end if
18: until No more queries sent by local exploration

depending on the query and the dataset (as shown theoretically and empirically in § 3.3
and § 3.5, respectively).

Each mechanism M exposes two functions: M.translate, which translates a query
and accuracy requirement into a lower and upper bound (εl, εu) on the privacy loss if
M is executed, and M.run that runs the differentially private algorithm and returns an
approximate answer ω for the query. The answer ω is guaranteed to satisfy the specified
accuracy requirement. Moreover, M satisfies εu differential privacy. The mechanisms
supported by APEx and the corresponding translate functions are described in § 3.3. In
some cases (e.g., Algorithm 5 in § 3.3.3), the privacy loss incurred by M may be ε ∈ (εl, εu)
that is smaller than the worst case, depending on the characteristics of the dataset.

As described in Algorithm 2, APEx first identifies the mechanismsM that are applica-
ble for the type of the query qi (Line 4). Next, it runs M.translate to get conservative
estimates on privacy loss εu for all these mechanisms (Line 5). APEx picks one of the
mechanisms M from those that can be safely run using the remaining privacy budget,
executes M.run, and returns the output to the data scientist. As we will see there exist
mechanisms where the privacy loss can vary based on the data in a range between [εl, εu],

31

and the actual privacy loss is unknown before running the mechanism. In such cases, APEx
can choose to be pessimistic and pick the mechanism with the least εu (Line 8), or choose
to be optimistic and pick the mechanism with the least εl (Line 10).

Privacy Analyzer. Given a sequence of queries (M1, . . . ,Mi) already executed by the
privacy engine that satisfy an overall Bi−1-differential privacy and a new query (qi, αi, βi),
APEx identifies a set of mechanismsM∗ that all will have a worst case privacy loss smaller
than B−Bi−1 (Line 5). That is, running any mechanism inM∗ will not result in exceeding
the privacy budget in the worst case. If M∗ = ∅, then APEx returns ‘Query Denied’ to
the data scientist (Line 16). Otherwise, APEx runs one of the mechanisms Mi fromM∗ by
executing Mi.run() and the output ωi will be returned to the data scientist. APEx then
increments Bi−1 by the actual privacy loss εi rather than the upperbound εu (Line 12). As
explained above, in some cases εi < εu as different execution paths in the mechanism can
have different privacy loss. Nevertheless, the privacy analyzer guarantees that the execution
of any sequence of mechanisms (M1,M2, . . . ,Mi) before it halts is B-differentially private
(see § 3.4, Theorem 8).

3.3 Accuracy Translator

In this section, we present the accuracy-to-privacy translation mechanisms supported by
APEx and the corresponding run and translate functions. We first present a general
baseline mechanism for all three types of exploration queries including workload counting
query (WCQ), iceberg counting query (ICQ), and top-k counting query (TCQ). Then we
show specialized mechanisms for each type of exploration queries, which consumes smaller
privacy cost under different scenarios than the baseline.

We represent the workload in these three queries in a matrix form, like the prior work for
WCQ [113, 114, 123]. There are many possible ways to transform a workload into a matrix.
Given a workload counting query qW with the set of predicates W = {φ1, . . . , φL}, the
full domain of the relation dom(R) is partitioned based on W to form the new discretized
domain domW (R) such that any predicate φi ∈ W can be expressed as a union of partitions
in the new domain domW (R) and the number of partitions is minimized. For example,
given W = {Age > 50∧ State = AL, . . . , Age > 50∧ State = WY}, one possible partition
is domW (R) = {Age > 50 ∧ State = AL, . . . , Age > 50 ∧ State = WY, Age ≤ 50}.

Let x represent the histogram of the table D over domW (R). The set of corresponding
counting queries {cφ1 , . . . , cφL} for qW can be represented by a matrix W = [w1, . . . ,wL]T

of size L × |domW (R)|. Hence, the answer to each counting query is cφi(D) = wi · x

32

and the answer to the workload counting query is simply Wx. We denote and use this
transformation by W← T (W),x← TW (D). Unlike prior work [113, 114, 123] which aims
to bound the expected total error for one query, APEx aims to bound the maximum error
per query with high probability which is more intuitive in the process of data exploration.

3.3.1 Baseline Translation

The baseline translation for all three query types is based on the Laplace mechanism [53,
56], a classic and widely used differentially private algorithm, which can be used for WCQ,
ICQ, and TCQ. Formally,

Definition 8 (Laplace Mechanism (Vector Form) [53, 56]). Given an L×|domW (R)| query
matrix W, the randomized algorithm LM that outputs the following vector is ε-differentially
private: LM(W,x) = Wx +Lap(bW)L where bW = ‖W‖1

ε
, and Lap(b)L denote a vector of

L independent samples ηi from a Laplace distribution with mean 0 and variance 2b2, i.e.,
Pr[ηi = z] ∝ e−z/b for i = 1, . . . , L.

The constant ‖W‖1 is equal to the sensitivity of queries set defined by the workload
W [113, 114]. It measures the maximum difference in the answers to the queries in W on
any two databases that differ only a single record. Mathematically, it is the maximum of
L1 norm of a column of W.

Algorithm 3 provides the run and translate of Laplace mechanism for all three
query types. This algorithm first transforms the query qW and the data D into matrix
representation W and x. The translate outputs a lower and upper bound (εl, εu) for
each query type with a given accuracy requirement and these two bounds are the same as
Laplace mechanism is data independent. However, these bounds vary among query types.
The run takes the privacy budget computed by translate(q, α, β) (Line 3), and adds
the corresponding Laplace noise [x̃1, . . . , x̃L] to the true workload counts Wx. When q is a
WCQ, the noisy counts are returned directly; when q is an ICQ, the bin ids (the predicates)
that have noisy counts ≥ c are returned; when q is a TCQ, the bin ids (the predicates) that
have the largest k noisy counts are returned. Beside the noisy output, the privacy budget
consumed by this mechanism is returned as well. The following theorem summarizes the
properties of the two functions run and translate.

Theorem 3. Given a query q where q.type ∈ {WCQ, ICQ, TCQ}, Laplace mechanism
(Algorithm 3) denoted by M can achieve (α, β)-q.type accuracy by executing the function
run(q, α, β,D) for any D ∈ D, and satisfy differential privacy with a minimal cost of
translate(q, α, β).εu.

33

Algorithm 3 Laplace Mechanism (LM) (q, α, β,D)

1: Initialize W← T (W = {φ1, . . . , φL}),x← TW (D), α, β
2: function run(q, α, β,D)
3: ε← translate(qW , α, β).εu

4: [x̃1, . . . , x̃L]←Wx + Lap(b)L, where b = ‖W‖1/ε
5: if q.type==WCQ (i.e., qW) then
6: return ([x̃1, . . . , x̃L], ε)
7: else if q.type==ICQ (i.e., qW,>c) then
8: return ({φi ∈W | x̃i > c}, ε)
9: else if q.type==TCQ (i.e., qW,k) then

10: return (argmaxkφ1,...,φL x̃i, ε)
11: end if
12: end function
13: function translate(q, α, β)
14: if q.type==WCQ (i.e., qW) then

15: return (εu = ‖W‖1 ln(1/(1−(1−β)1/L))
α , εl = εu)

16: else if q.type==ICQ (i.e., qW,>c) then

17: return (εu = ‖W‖1(ln(1/(1−(1−β)1/L))−ln 2)
α , εl = εu)

18: else if q.type==TCQ (i.e., qW,k) then

19: return (εu = ‖W‖12(ln(L/(2β)))
α , εl = εu)

20: end if
21: end function

Proof. We first prove privacy for each of the three types of queries, and then prove the
accuracy guarantee.

Privacy Proof for WCQ
Proof: For any pair of neighbouring databases D and D′ such that |D\D′ ∪D′\D| = 1,
given a WCQ query qW , LM adds noise drawn from Lap(b) to query cφi , where b = ‖W‖1/ε.

34

Consider a column vector of counts y = [y1, · · · , yL],

Pr[qW(D) + Lap(bW)L = y]

Pr[qW(D′) + Lap(bW)L = y]

=

∏L
1 Pr[cφi(D) + ηi = yi]∏L
1 Pr[cφi(D

′) + ηi = yi]
=

L∏
1

exp(
−ε|yi−cφi (D)|
‖W‖1)

exp(
−ε|yi−cφi (D

′)|
‖W‖1)

= exp(
ε

‖W‖1

L∑
1

(|yi − cφi(D′)| − |yi − cφi(D)|))

≤ exp(
ε

‖W‖1

L∑
1

(|cφi(D)− cφi(D′)|)) = exp(ε)

Therefore, it satisfies ε = ‖W‖1/b-differential privacy.

Privacy Proof for ICQ and TCQ
Proof: For ICQ (and TCQ, respectively), Line 8 (Line 10) post-processes the noisy
answers only without accessing the true data. By the post-processing property of differ-
ential privacy [52], Laplace mechanism for ICQ (TCQ) satisfies ε = ‖W‖1/b-differential
privacy.

Accuracy Proof for WCQ
Proof: Give a WCQ qW , for any D ∈ D, setting b ≤ α

ln(1/(1−(1−β)1/L))
bounds the failing

probability, i.e.,

Pr[‖LM(W,x)− qW (D)‖∞ ≥ α]

= 1−
∏
i∈[1,L]

(1− Pr[|ηi| > α]) = 1− (1− e−α/b)L ≤ β

Accuracy Proof for ICQ
Proof: Given ICQ qW,>c, for any D ∈ D, setting b ≤ α

ln(1/(1−(1−β)1/L))−ln 2
bounds the

failure probability, i.e.,

Pr[|{φ ∈M(D) | cφ(D) < c− α}| > 0]

= 1−
∏

φ∈W :cφ(D)−c+α<0

(1− Pr[cφ(D)− c+ η > 0])

≤ 1−
∏

φ∈W :cφ(D)−c+α<0

(1− Pr[η > α])

≤ 1− (1− e−α/b/2)L < β

35

The proof for the other condition is analogous.

Accuracy Proof for TCQ
Proof: Given a TCQ qW,k, for any D ∈ D, W.L.O.G. let cφ1(D) ≥ · · · ≥ cφk(D) · · · ≥
cL(D) and the noise added to these counts be η1, . . . , ηL respectively. Let ck = cφk(D)
the kth largest counting value. Setting noise parameter b ≤ α

2 ln(L/(2β))
bounds the failing

probability, i.e.,

Pr[|{φ ∈M(D) | cφ(D) < ck − α}| > 0]

≤ 1− Pr[(max
i>k,cφi (D)<ck−α

ηi <
α

2
) ∧ (min

i≤k
ηi > −

α

2
)]

= Pr[(max
i>k,cφi (D)<ck−α

ηi ≥
α

2
) ∨ (min

i≤k
ηi ≥ −

α

2
)]

≤ (L− k)e−α/(2b)/2 + ke−α/(2b)/2 = Leα/(2b)/2 ≤ β (3.6)

The proof for Pr[|{φ ∈ (Φ−M(D)) | cφ(D) > ck + α}| > 0] ≤ β is analogous.

3.3.2 Special Translation for WCQ

The privacy cost of the Laplace mechanism increases linearly with ‖W‖1, which is the
sensitivity of the workload in the query. For example, a prefix workload has a sensitivity
equals to the workload size L. When L is very large, the privacy cost grows drastically. To
address this problem, APEx provides a special translation for WCQ, called strategy-based
mechanism. This mechanism considers a different strategy workload A such that 1) A has
a low sensitivity ‖A‖1; and 2) rows in W can be reconstructed using a small number of
rows in A.

Let strategy matrix A be a l × |domW (R)| matrix, and A+ denote its Moore-Penrose
pseudoinverse, such that WAA+ = W. Given such a strategy workload A, we can first
answer A using Laplace mechanism (i.e., ŷ = Ax + η, where η ∼ Lap(b)l and b = ‖A‖1

ε
),

and then reconstruct answers to W from the noisy answers to A as a postprocessing step
(i.e., (WA+)ŷ). This approach is formally known as the Matrix mechanism [113, 114] and
shown in the run of Algorithm 4. If a strategy A is used for this mechanism, we denote
it by A-strategy mechanism. In this thesis, we consider several popular strategies in prior
work [113, 114, 123], such as hierarchical matrix H2. Techniques like HDMM [123] can
automatically solve for a good strategy (but this is not our focus).

However, translating the accuracy requirement on WCQ-SM is nontrivial as the answers
to the query qW (D) are linear combinations of noisy answers. The errors are due to the

36

Algorithm 4 WCQ-SM (qW , α, β,D,A)

1: Initialize W← T (W),x← TW (D), α, β,A
2: function run(qW , α, β,D)
3: ε← translate(W, α, β).εu

4: ω ←WA+(Ax + Lap(b)l), where b = ‖A‖1/ε
5: return (ω, ε)
6: end function
7: function translate(qW , α, β)

8: Set u = ‖A‖1‖WA+‖F
α
√
β/2

and l = 0

9: ε = binarySearch(l, u,estimateBeta(·, α, β,WA+))
10: return (εu = ε, εl = ε)
11: end function
12: function estimateBeta(ε, α, β,WA+)
13: Sample size N = 10000 and failure counter nf = 0
14: for i ∈ [1, . . . , N] do
15: Sample noise ηi ∼ Lap(‖A‖1/ε)l
16: if ‖(WA+)ηi‖∞ > α then
17: nf++
18: end if
19: end for
20: βe = nf/N , p = β/100
21: δβ = z1−p/2

√
βe(1− βe)/N

22: return (βe + δβ + p/2) < β
23: end function

sums of weighted Laplace random variables which have non-trivial CDFs for the accuracy
translation. Hence, we propose an accuracy to privacy translation method shown in the
translate function of Algorithm 4. We first set an upper bound u for the privacy to
achieve (α, β)-WCQ accuracy based on Theorem 4 and conduct a binary search on a
privacy cost ε between l and u (Line 9) such that the failing probability to bound the error
by α equals to β. During this binary search, for each ε between l and u, we run Monte
Carlo simulation to learn the empirical failing rate βe to bound the error by α shown in the
function estimateBeta() such that with high confidence 1−p, the true failing probability
βt lies within βe ± δβ. If the empirical failing rate βe is sufficiently smaller than β, then
the upper bound is set to ε; otherwise the lower bound is set to ε. The next value for ε is
(l + u)/2. This search process stops when l and u is sufficiently small. This approach can
be generalized to all data-independent differentially private mechanisms. The simulation
can be done offline. We state the results in Theorem 5.

37

Theorem 4. Given a WCQ qW : D → RL, for a table D ∈ D, let (W,x) = T (W,D).

Let A be a strategy used in Algorithm 4 to answer qW . When ε ≥ ‖A‖1‖WA+‖F
α
√
β/2

, A-strategy

mechanism achieves (α, β)-WCQ accuracy.

Proof. The noise vector added to the final query answer of qW (·) using A-strategy mech-
anism is η̂ = [η̂1, . . . , η̂L] = (WA+)η. Each noise variable η̂i has a mean of 0, and a

variance of σ2
i = ci · (2b2), where ci =

∑l
j=1(WA+)[i, j]2, and hence Pr[|η̂i| ≥ α] ≤ 2cib

2
A

α2 by
Chebyshev’s inequality. By union bound, the failing probability is bounded by

Pr[‖LM(W,x)− qW (D)‖∞ ≥ α]

= Pr[∪i∈[1,L]|ηi| ≥ α] ≤
∑
i∈[1,L]

2cib
2

α2
≤ β

It requires b ≤ α
√
β/2

‖WA+‖F
, hence ε ≥ ‖A‖1/b ≥ ‖A‖1‖WA+‖F

α
√
β/2

.

Theorem 5. Given a workload counting query qW : D → RL. Answering qW with
A-strategy mechanism by executing run(qW , α, β,D) in Algorithm 4 achieves (α, β)-
WCQ accuracy for any D ∈ D with an approximated minimal privacy cost of
translate(qW , α, β).εu.

Proof. Given an ε, the simulation in the function estimateFailingRateMC() ensures
that with high probability 1−p, the true failing probability βt to bound ‖(WA+)η‖∞ by α
lies within βe± δβ. The failing probability to bound βt < βe + δβ is p/2. By union bound,
ε ensures (α, β′)-WCQ accuracy, where β′ < β + δβ + p/2. If (β + δβ)(1 − p/2) + p/2 <
β+ δβ+ p/2 < β, then this ε ensures (α, β)-WCQ accuracy. Beside this estimation, in the
binary search of translate(), we stop when εmin and εmax are sufficiently close. Hence, the
privacy cost returned by translate() is an approximated minimal privacy cost required
for (α, β)-WCQ accuracy.

3.3.3 Special Translation for ICQ

The strategy-based mechanism that we used for WCQ can be adapted to answer ICQ if used
in conjunction with a post-processing step. We also present another novel data dependent
translation strategy for ICQ that may result in different privacy loss for different datasets
given the same accuracy requirement.

38

Strategy-based Mechanism (ICQ-SM)

The data scientist can pose a workload counting query qW with (α, β)-WCQ requirement
via APEx, and then use the noisy answer of qW (D) to learn qW,>c(D) locally. This cor-
responds to a post-processing step of a differentially private mechanism and hence still
ensures the same level of differential privacy guarantee. On the other hand, (α, β)-ICQ
accuracy only requires to bound one-sided noise by α with probability (1− β), and (α, β)-
WCQ accuracy requires to bound two-sided noise with the same probability. Hence, if a
mechanism has a failing probability of β to bound the error for WCQ, then using the same
mechanism has a failing probability of β/2 to bound the error for ICQ.

Multi-Poking Mechanism (ICQ-MPM)

We propose a data-dependent translation for ICQ, which can be used as a subroutine for
mechanisms that involve threshold testing. For ease of explanation, we will illustrate this
translation with a special case of ICQ when the workload size L = 1, denoted by, qφ,>c(·).
Intuitively, when cφ(D) is much larger (or smaller) than c, then a much larger (smaller
resp.) noise can be added to cφ(D) without changing the output of APEx.

Example 5: Consider a query qφ,>c, where c = 100. To achieve (α, β) accuracy for
this query, where α = 10, β = 0.110, the Laplace mechanism requires a privacy cost of
ln(1/(2β))

α
= 2.23 by Theorem 3, regardless of input D. Suppose cφ(D) = 1000. In this case,

cφ(D) is much larger than the threshold c, and the difference is (1000−100)
α

= 90 times of the
accuracy bound α = 10. Hence, even when applying Laplace comparison mechanism with
a privacy cost equals to 2.23

90
≈ 0.25 wherein the noise added is bounded by 90α with high

probability 1 − β, the noisy difference cφ(D) − c + ηsign will still be greater than 0 with
high probability.

This is an example where a different mechanism rather than Laplace mechanism
achieves the same accuracy with a smaller privacy cost. Note that the tightening of the
privacy cost in this example requires to know the value of cφ(D). It is difficult to determine
a privacy budget for poking without looking at the query answer. To tackle this challenge,
we propose an alternative approach that allows of m pokes with increasing privacy cost.
This approach is summarized in Algorithm 5 as Multi-Poking Mechanism (MPM). This

approach first computes the privacy cost if all m pokes are needed, εmax = ln(m/(2β))
α

. The
first poke checks if bins have either sufficiently large noisy differences ỹ with respect to the
accuracy α0 for the current privacy cost (Lines 7-9). If this is true (Line 10), then the set
of predicates with sufficiently large positive differences is returned; otherwise, the privacy

39

Algorithm 5 ICQ-MPM(qW,>c, α, β,D,m)

1: Initialize W← T (W),x← TW (D), α, β,m = 10
2: function run(qW,>c, α, β,D)
3: Compute εmax = translate(qW,>c, α, β).εu

4: Initial privacy cost ε0 = εmax/m
5: ỹ0 = Wx− c+ η0, where η0 ∼ Lap(‖W‖1/ε0)L

6: for i = 0, 1, . . . ,m− 2 do
7: Set αi = ‖W‖1 ln(mL/(2β))/εi
8: W+ ← {φj ∈W | (ỹi[j]− αi)/α ≥ −1}
9: W− ← {φj ∈W | (ỹi[j] + αi)/α ≤ 1}

10: if (W+ ∪W−) = W then
11: return (W+, εi)
12: else
13: Increase privacy budget εi+1 = εi + εmax/m
14: for j = 1, . . . , L do
15: ηi+1[j] = RelaxPrivacy(ηi[j], εi, εi+1) [107]
16: end for
17: New noisy difference ỹi+1 = Wx− c+ ηi+1

18: end if
19: end for
20: return ({φj ∈W | ỹm−1[j] > 0}, εmax)
21: end function
22: function translate(qW,>c, α, β)

23: return εu = ‖W‖1 ln(mL/(2β))
α , εl = εu

m
24: end function

budget is relaxed with additional εmax/m. At (i + 1)th iteration, instead of sampling in-
dependent noise, we apply the RelaxPrivacy algorithm [108] to correlate the new noise
ηi+1 with noise ηi from the previous iteration. In this way, the privacy loss of the first
i+ 1 iterations is εi+1, and the noise added in the i+ 1th iteration is equivalent to a noise
generated with Laplace distribution with privacy parameter b = (1/εi+1). This approach
allows the data scientist to learn the query answer with a gradual relaxation of privacy
cost. This process repeats until all εmax is spent. We show that Algorithm 5 achieves both
accuracy and privacy requirements.

Theorem 6. Given a query qW,>c, Multi-Poking Mechanism (Algorithm 5), achieves
(α, β)-ICQ accuracy by executing function run(qW,>c, α, β,D), with differential privacy
of translate(qW,>c, α, β).εu.

40

Proof. For each φ ∈ W , (i) when qφ(D) < c− α,

Pr[φ ∈MPMα,β
qφ,>c

(D) | cφ(D) < c− α]

=
m−1∑
i=0

Pr[cφ(D)− c+ η − αi + α > 0 | cφ(D)− c+ α < 0]

<
m−1∑
i=0

Pr[ηi > αi] =
m−1∑
i=0

e−αiεi/‖W‖1/2 = m · β/(mL) = β/L

and (ii) when qφ(D) < c+ α,

Pr[φ /∈MPMα,β
φ,>c(D) | cφ(D) > c+ α]

=
m−1∑
i=0

Pr[cφ(D)− c+ η + αi − α < 0 | cφ(D)− c− α > 0]

<
m−1∑
i=0

Pr[ηi < −αi] =
m−1∑
i=0

e−αiεi/‖W‖1/2 = m · β/(mL) = β/L

As |W | = L, the failing probability is bounded by β.

The RelaxPrivacy algorithm [108] correlates new noise ηi+1 with noise ηi from the
previous iteration. In this way, the composition of the first i + 1 iterations is εi+1, and
the noise added in the i + 1th iteration is equivalent to a noise generated with Laplace
distribution with privacy budget εi+1 and the first i iterations also satisfy εi-DP for i =
0, 1, . . . ,m− 1.

The privacy loss of multi-poking mechanism at the worst case (the value returned by
translate) is greater than that of the baseline LM, but this mechanism may stop before
εmax is used up, and hence it potentially saves privacy budget for the subsequent queries.

3.3.4 Special Translation for TCQ

This section provides a translation mechanism, known as Laplace top-k Mechanism (shown
in Algorithm 6). This mechanism is a generalized report-noisy-max algorithm [56]: when
k = 1, it adds noise drawn from Lap(1/ε) to all queries, and only reports the query number
that has the maximum noisy count (and not the noisy count). When k ≥ 1, this mechanism
first perturbs Wx with Laplace noise η ∼ Lap(b)L, where b = k/ε. These predicates are

41

then sorted based on their corresponding noisy counts in descending order, and the first
k boolean formulae are outputted. The privacy cost is summarized in Theorem 7 and the
proof follows that of the report-noisy-max algorithm.

Theorem 7. Given a top-k counting query qW,k(·), where W = {φ1, . . . , φL}, for a table

D ∈ D, Laplace top-k mechanism (Algorithm 6) denoted by LTMα,β
W,k(·), can achieve (α, β)-

TCQ accuracy by executing run(qW,k, α, β,D) with minimal differential privacy cost of
translate(qW,k, α, β).εu.

Proof. Fix D = D′ ∪ {t}. Let (x1, . . . , xL), respectively (x′1, . . . , x
′
L), denote the vector of

answers to the set of linear counting queries qφ1 , . . . , qφL when the table is D, respectively
D′. Two properties are used: (1) Monotonicity of Counts: for all j ∈ [L], xj ≥ x′j; and (2)
Lipschitz Property: for all j ∈ [L], 1 + x′j ≥ xj.

Fix any k different values (i1, . . . , ik) from [L], and fix noises (ηik+1
, . . . , ηiL) drawn from

Lap(k/ε)L−k used for the remaining linear counting queries. Given these fixed noises, for
l ∈ {i1, . . . , ik}, we define

η∗l = min
η

: (xl + η > (max
j∈ik+1,...,iL

xj + ηj)) (3.7)

For each l ∈ {i1, . . . , ik}, we have

x′l + (1 + η∗l) = (1 + x′l) + η∗l ≥ xl + η∗l
> max

j∈ik+1,...,iL
xj + ηj ≥ max

j∈ik+1,...,iL
x′j + ηj

Hence, if ηl ≥ r∗l + 1 for all l ∈ {i1, . . . , ik}, then (i1, . . . , ik) will be the output when the
table is D′ and the noise vector is (ηi1 , . . . , ηik , . . . , ηL). The probabilities below are over
the choices of (ηi1 , . . . , ηik) ∼ Lap(k/ε)k.

Pr[(i1, . . . , ik) | D′, ηii+1
, . . . , ηiL]

≥
∏

l∈{i1,...,ik}

Pr[ηl ≥ 1 + η∗l] ≥
∏

l∈{i1,...,ik}

e−k/ε Pr[ηl ≥ η∗l]

≥ e−ε Pr[(i1, . . . , ik) | D, ηii+1
, . . . , ηiL] (3.8)

Proof of the other direction follows analogously.

Therefore, ε-differential privacy is guaranteed.

42

Algorithm 6 TCQ-LTM(qW,k, α, β,D))

1: Initialize W← T (W),x← TW (D), α, β
2: function run(qW,k, α, β,D)
3: ε← translate(qW,k, α, β).εu

4: (x̃1, . . . , x̃L) = Wx + Lap(b)L, where b = k/ε
5: (i1, . . . , ik) = argmaxki=1,...,Lx̃i
6: return ({φi1 , . . . , φik}, ε)
7: end function
8: function translate(qW,k, α, β)

9: return εu = 2k ln(L/(2β))
α , εl = εu

10: end function

Note that the privacy proof of the report-noisy-max algorithm does not work for releas-
ing both the noisy count and the query number simultaneously. Hence we consider only
releasing the bin identifiers in Algorithm 6. Moreover, the privacy cost of Algorithm 6 is
independent of the workload ‖W‖1. On the other hand, the baseline LM (Algorithm 3)
for answering TCQ queries is different from Algorithm 6. Algorithm 3 uses noise drawn
from Lap(‖W‖1/ε) to release noisy counts for all queries, and then picks the top-k as a
post-processing step. Algorithm 3 allows the noisy counts to be shown to the data sci-
entist without hurting the privacy cost. Hence, Algorithm 3 has a simpler privacy proof
than Algorithm 6 and a privacy loss that depends on the workload. APEx supports both
Algorithm 3 and Algorithm 6 as there is no clear winner between them when k > 1. APEx
chooses the one with the least epsilon for a given accuracy bound.

3.4 Privacy Analysis

The privacy analyzer ensures that every sequence of queries answered by APEx results in
a B-differentially private execution, where B is the data owner specified privacy budget.
According to sequential composition [51], the privacy loss of a set of differentially private
mechanisms (that use independent random coins) is the sum of the privacy losses of each
of these mechanisms. Moreover, postprocessing the outputs of a differentially private
algorithm does not degrade privacy [52].

The main tricky (and novel) part of the privacy proof (described in Section 3.4.1) arises
due to the fact that 1) the ε parameter for a mechanism is chosen based on the scientist’s
query and accuracy requirement, which in turn are adaptively chosen by the data scientist
based on previous queries and answers; and 2) some mechanisms may have an actual

43

privacy loss that is dependent on the data. APEx accounts for privacy based on the actual
privacy loss and not the worst case privacy loss (Algorithm 2, Line 12).

3.4.1 Overall Privacy Guarantee

We show the following guarantee: any sequence of interactions between the data scientist
and APEx satisfies B-differential privacy, where B is the privacy budget specified by the
data owner. In order to state this guarantee formally, we first need the notion of a transcript
of interaction between APEx and the data scientist.

We define the transcript of interaction T as an alternating sequence of queries (with
accuracy requirements) posed to APEx and answers returned by APEx. T encodes the
scientist’s view of the private database. More formally,

• The transcript Ti after i interactions is a sequence
[(q1, α1, β1), (ω1, ε1), . . . , (qi, αi, βi), (ωi, εi)], where (qi, αi, βi) are queries with ac-
curacy requirements, and ωi is the answer returned by APEx and εi the actual privacy
loss.

• Given Ti−1, the data scientist chooses the next query (qi+1, αi+1, βi+1) adaptively. We
model this using a (possibly randomized) algorithm C that maps a transcript Ti−1 to
(qi, αi, βi); i.e., C(Ti−1) = (qi, αi, βi). Note that the scientist’s algorithm C does not
access the private database D.

• Given (qi, αi, βi), APEx select a subset of mechanisms M∗ such that ∀M ∈ M∗,
M.translate(qi, αi, βi).ε

u ≤ B−Bi. Furthermore, ifM∗ is not empty, APEx chooses
one mechanism Mi ∈ M∗ deterministically (either based on εl or εu) to run. The
selection of Mi is deterministic and independent of D.

• If APEx find no mechanism to run (M∗ = ∅), then the query is declined by APEx. In
this case, ωi = ⊥ and εi = 0.

• If the APEx chosen algorithm Mi is LM, WCQ-SM, ICQ-SM or TCQ-LTM, εi = εui ,
where εi is the upperbound on the privacy loss returned by Mi.translate. For ICQ-
MPM, the actual privacy loss can be smaller; i.e., εi ≤ εui .

• Let Pr[Ti|D] denote the probability that the transcript of interaction is Ti given input
database D. The probability is over the randomness in the scientist’s choices C and
the randomness in the mechanisms M1, . . . ,Mi executed by APEx.

Not all transcripts of interactions are realizable under APEx. Given a privacy budget
B, the set of valid transcripts is defined as:

44

Definition 9 (Valid Transcripts). A transcript of interaction Ti is a valid APEx transcript
generated by Algorithm 2 if given a privacy budget B the following conditions hold:

• Bi−1 =
∑i−1

j=1 εj ≤ B, and

• Either ωi = ⊥, or Bi−1 + εui ≤ B.

We are now ready to state the privacy guarantee:

Theorem 8 (APEx Privacy Guarantee). Given a privacy budget B, any valid APEx tran-
script Ti, and any pair of databases D, D′ that differ in one row (i.e., |D\D′∪D′\D| = 1),
we have:

1. Bi =
∑i

j=1 εi ≤ B, and

2. Pr[Ti|D] ≤ eBiPr[Ti|D′].

Proof. (1) directly follows from the definition of a valid transcript and these are the only
kinds of transcripts a data scientist sees when interacting with APEx.

(2) can be shown as follows using induction.

Base Case: When the transcript is empty, Pr[∅|D] ≤ e0Pr[∅|D′].
Induction step: Now suppose for all Ti−1 of that encode valid APEx transcripts of length

i− 1, Pr[Ti−1|D] ≤ eBi−1Pr[Ti−1|D′]. Let Ti = Ti−1||[(qi, αi, βi), (ωi, εi)] be a valid APEx
transcript of length i. Then:

Pr[Ti|D] = Pr[Ti−1|D]Pr[[(qi, αi, βi), (ωi, εi)]|D,Ti−1]

= Pr[Ti−1|D]Pr[C(Ti−1) = (qi, αi, βi)]Pr[Mi(D) = (ωi, εi)]

Note that the data scientist’s choice of query qi and accuracy requirement depends only on
the transcript Ti−1 and not the sensitive database, and thus incurs no privacy loss. Thus,
it is enough to show that

Pr[Mi(D) = (ωi, εi)] ≤ eεiPr[Mi(D
′) = (ωi, εi)]

Case 1: When ωi 6= ⊥ and Mi is LM, WCQ-SM, ICQ-SM, or TCQ-LTM, the mechanism
satisfies εui -DP and εi = εui . Therefore, Pr[Mi(D) = (ωi, εi)] ≤ eεiPr[Mi(D

′) = (ωi, εi)].

Case 2: When ωi 6= ⊥ and Mi is ICQ-MPM, the mechanism satisfies εui -DP across all
outputs. However, when either mechanism outputs (ωi, εi), for εi < εui , we can show that

45

Pr[Mi(D) = (ωi, εi)] ≤ eεiPr[Mi(D
′) = (ωi, εi)]. In the case of ICQ-MPM, if the algorithm

returns after i iterations of the loop, the noisy answer is generated by a DP algorithm with
privacy loss εi = j

m
εui .

Case 3: Finally, when ωi = ⊥ (i.e., the query is declined), the decision to decline depends
on εui of all mechanism applicable to the query (which is independent of the data) rather
than εi (which could depend on the data in the case of ICQ-MPM). Therefore, Pr[Mi(D) =
(ωi, εi)] = Pr[Mi(D

′) = (ωi, εi)] for all D,D′. The proof would fail if the decision to deny
a query depends on εi.

3.5 Query Benchmark Evaluation

Name D Query workload W Query output
QW1 Adult ”capital gain”∈ [0, 50), ”capital gain”∈ [50, 100), ...,”capital gain”∈ [4950, 5000) bin counts
QW2 Adult ”capital gain”∈ [0, 50), ”capital gain”∈ [0, 100), ..., ”capital gain”∈ [0, 5000) bin counts
QW3 NYTaxi ”trip distance”∈ [0, 0.1), ”capital gain”∈ [0, 50), ...,”capital gain”∈ [0, 50) bin counts
QW4 NYTaxi (0 ≤”total amount”< 1∧ ”passenger”= 1),.., (9 ≤”total amount”< 10∧ ”passenger”= 10) bin counts
QI1 Adult ”capital gain”< 50, ”capital gain”< 100,..., ”capital gain”< 5000 bin ids having counts > 0.1|D|
QI2 Adult (0 ≤”capital gain”< 100, ”sex”=’M’),...(4500 ≤”capital gain”< 5000, ”sex”=’F’) bin ids having counts > 0.1|D|
QI3 NYTaxi ”fare amount”∈ [0, 0, 1), ”fare amount”∈ [0.1, 2),..., ”fare amount”∈ [9.9, 10) bin ids having counts > 0.1|D|
QI4 NYTaxi ”total amount”∈ [0, 0, 1), ”total amount”∈ [0.1, 2),..., ”total amount”∈ [9.9, 10) bin ids having counts > 0.1|D|
QT1 Adult ”age”= 0,”age”= 1,...,”age”= 99 top 10 bins with highest counts
QT2 Adult 100 predicates on different attributes, e.g. ”age”= 1, ”workclass”=”private”,... top 10 bins with highest counts
QT3 NYTaxi (”PUID”=1 ∧”DOID”=1), (”PUID”=1 ∧ ”DOID”=2),..,(”PUID”=10 ∧ ”DOID”=10) top 10 bins with highest counts
QT4 NYTaxi 100 predicates on different attributes, e.g. ”pickup date”= 1, ”passenger count”= 1,... top 10 bins with highest counts

Table 3.1: Query benchmarks includes 3 types of exploration queries on 2 datasets.

In this section, we evaluate APEx on real datasets using a set of benchmark queries.
We show that:

• APEx is able to effectively translate queries associated with accuracy bounds into dif-
ferentially private mechanisms. These mechanisms accurately answer a wide variety of
interesting data exploration queries with moderate to low privacy loss.

• The set of query benchmarks show that no single mechanism can dominate the rest
and APEx picks the mechanism with the least privacy loss for all the queries.

3.5.1 Setup

Datasets. Our experiments use two real world datasets. The first data set Adult was
extracted from 1994 US Census release [49]. This dataset includes 15 attributes (6 con-

46

tinuous and 9 categorical), such as “capital gain”, “country”, and a binary “label” in-
dicating whether an individual earns more than 5000 or not, for a total of 32, 561 indi-
viduals. The second dataset, refereed as NYTaxi, includes 9, 710, 124 NYC’s yellow taxi
trip records [5]. Each record consists of 17 attributes, such as categorical attributes (e.g.,
“pick-up-location”), and continuous attributes (e.g., “trip distance”).

Query Benchmarks. We design 12 meaningful exploration queries on Adult and NY-
Taxi datasets, summarized in Table 3.1. These 12 queries cover the three types of ex-
ploration queries defined in § 3.1.1, QW1-4, QI1-4, and QT1-4 corresponds to WCQ,
ICQ, and TCQ respectively. Queries with number 1 and 2 are for Adult, and with num-
ber 3 and 4 are for NYTaxi. The predicate workload W cover 1D histogram, 1D pre-
fix, 2D histogram and count over multiple dimensions. We set β = 0.0005 and vary
α ∈ {0.02, 0.04, 0.08, 0.16, 0.32, 0.64}.

Metrics. For each query (q, α, β), APEx outputs (ε, ω) after running a differentially
private mechanism, where ε is the actual privacy loss and ω is the noisy answer. The
empirical error of a WCQ qW (D) is measured as ‖ω− qW (D)‖∞/|D|, the scaled maximum
error of the counts. The empirical errors of ICQ qW,>c(D) and TCQ qW,k(D) are measured
as ‖α‖∞/|D|, the scaled maximum distance of mislabeled predicates.

Implementation Details. APEx is implemented using python-3.4, and is run on a
machine with 64 cores and 256 GB memory. We run APEx with optimistic mode. For
strategy mechanism, we choose H2 strategy (a hierarchical set of counts [113, 114, 123]) for
all queries. The code, data and evaluation metrics are open sourced on GitHub: https:

//github.com/cgebest/APEx.

3.5.2 APEx End-to-End Study

We run APEx for the 12 queries shown in Table 3.1 with different accuracy requirements
from 0.01|D| to 0.64|D| and β = 0.0005. We show in Figure 3.2 that a line connects points
(α, εu) where εu is the upper bound on the privacy loss for the mechanism chosen by APEx
for the given α. For all the queries except QI2 and QI3, the mechanism chosen for each
α incurs an actual privacy cost at ε = εu and the only variation in the empirical error,
so the corresponding (α̂/|D|, ε) of 10 runs is shown as boxplots. For QI2 and QI3, both
the empirical error and the actual privacy cost (α̂/|D|, ε) vary across runs and hence are
plotted as points in Figure 3.2.

The empirical error α is always bounded by the theoretical α for all the queries. The
gap between the theoretical line and the actual boxplots/points are: 1) the analysis of the

47

https://github.com/cgebest/APEx
https://github.com/cgebest/APEx

Theoretical Bound

0.0

0.2

0.4

0.6

10−3 10−2.5 10−2 10−1.5

Privacy Cost

Em
pi

ric
al

 E
rro

r

QW1
Theoretical Bound

0.0

0.2

0.4

0.6

10−2.5 10−2 10−1.5 10−1

Privacy Cost
Em

pi
ric

al
 E

rro
r

QW2
Theoretical Bound

0.0

0.2

0.4

0.6

10−5 10−4.5 10−4 10−3.5

Privacy Cost

Em
pi

ric
al

 E
rro

r

QW3
Theoretical Bound

0.0

0.2

0.4

0.6

10−5.5 10−5 10−4.5 10−4

Privacy Cost

Em
pi

ric
al

 E
rro

r

QW4

Theoretical Bound

0.0

0.2

0.4

0.6

10−2.5 10−2 10−1.5 10−1

Privacy Cost

Em
pi

ric
al

 E
rro

r

QI1
Theoretical Bound

0.0

0.2

0.4

0.6

10−3 10−2.5 10−2 10−1.5

Privacy Cost

Em
pi

ric
al

 E
rro

r
QI2

Theoretical Bound

0.0

0.2

0.4

0.6

10−5.5 10−5 10−4.5 10−4

Privacy Cost

Em
pi

ric
al

 E
rro

r

QI3
Theoretical Bound

0.0

0.2

0.4

0.6

10−5 10−4.5 10−4 10−3.5 10−3

Privacy Cost

Em
pi

ric
al

 E
rro

r

QI4

Theoretical Bound

0.0

0.2

0.4

0.6

10−3 10−2.5 10−2 10−1.5 10−1

Privacy Cost

Em
pi

ric
al

 E
rro

r

QT1
Theoretical Bound

0.0

0.2

0.4

0.6

10−2 10−1.5 10−1 10−0.5 100

Privacy Cost

Em
pi

ric
al

 E
rro

r

QT2
Theoretical Bound

0.0

0.2

0.4

0.6

10−5.5 10−5 10−4.5 10−4 10−3.5

Privacy Cost

Em
pi

ric
al

 E
rro

r

QT3
Theoretical Bound

0.0

0.2

0.4

0.6

10−4.5 10−4 10−3.5 10−3 10−2.5

Privacy Cost

Em
pi

ric
al

 E
rro

r

QT4

alpha 0.64|D| 0.32|D| 0.16|D| 0.08|D| 0.04|D| 0.02|D| 0.01|D|

Figure 3.2: Privacy cost and empirical accuracy using optimal mechanism chosen by
APEx (optimistic mode) on the 12 queries at default parameter setting with α ∈
{0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64}|D| and β = 5 × 10−4. On Adult data, all queries
can be answered with empirical error < 0.1 with privacy budget < 0.1; on NYTaxi data,
all queries can be answered with empirical error < 0.1 with privacy budget < 0.001. When
accuracy requirement relaxes (i.e., α increases), the privacy cost decreases and the empir-
ical accuracy decreases for all queries.

error is not tight due to the use of union bound; 2) for mechanism with data dependent
translation (QI2 and QI3), the actual privacy cost is far from the upperbound εu resulting
a left shift of the points from the theoretical line. The privacy cost for QW1 and QW2 for
Adult dataset is in the range of (10−4, 10−1) for all α values. This privacy cost is 2-3 orders
larger than the privacy cost for QW3 and QW4 on the NYTaxi dataset, because given the
same ratio α/|D|, the queries on NYTaxi has a larger α than Adult because of data size.

To further understand the relation between our accuracy requirement with commonly
used error metric, we use F1 score to measure the similarity between the correct answer set
and noisy answer set outputted from the mechanism. Figure 3.3 presents the F1 score of
two queries: QI4 of an ICQ, and QT1 of a TCQ. In QT1, when α from 0.02|D| to 0.64|D|,
the median F1 score decreases from 0.9 to 0.15, which has a steeper gradient than the
changes in Figure 3.2 and a closer trend with the theoretical α. In QI4, the F1 score is
even more consistent with α and the empirical error shown in Figure 3.2. This shows that

48

0.00

0.25

0.50

0.75

1.00

10−5 10−4.5 10−4 10−3.5 10−3

Privacy Cost

F1
QI4

0.00

0.25

0.50

0.75

1.00

10−3 10−2.5 10−2 10−1.5 10−1

Privacy Cost

F1

QT1

alpha 0.64|D| 0.32|D| 0.16|D| 0.08|D| 0.04|D| 0.02|D| 0.01|D|

Figure 3.3: Privacy cost and empirical accuracy (F1 score) using optimal mechanism chosen
by APEx (optimistic mode) on QI4 and QT1.

our (α, β) accuracy requirement is still a good indicator in data exploration process.

3.5.3 Optimal Mechanism Study

We run all the applicable mechanisms for the 12 queries from Table 3.1 at α ∈
{0.02|D|, 0.08|D|} and show the median of the actual privacy costs in Table 3.2. The
privacy cost with the least value is in bold for the given query and accuracy. Indeed,
APEx picks the mechanisms with these least privacy cost for all the 12 queries. APEx can
save more than 90% of the privacy cost of the baseline translation (LM), such as QW2,
QW3, QT2,QT4, and all the ICQ. In particular, the baseline mechanism LM is highly
dependent on the sensitivity of the query. For example, the workload in QW2 (a cumu-
lative histogram query) and QT2 (counts on many attributes) has a high sensitivity, so
the cost of WCQ-LM is 20 times larger than WCQ-SM for QW2 at α = 0.08|D|, and the
cost of TCQ-LM is 760X more expensive than TCQ-LTM for QT2 at α = 0.02|D, where
WCQ-SM and TCQ-LTM are the optimal mechanisms chosen by APEx for QW2 and QT2
respectively.

The optimal mechanism chosen by APEx can change query parameters: workload size
L, threshold c in ICQ, and k in TCQ. Figure 3.4 shows the effects of these parameters.

Vary Workload Size L. Figure 3.4a shows the privacy cost of the baseline mechanism
WCQ-LM and the special mechanism WCQ-SM when varying workload size using QW1

49

Mechanism Query-α
QW1-0.02|D| QW1-0.08|D| QW2-0.02|D| QW2-0.08|D| QW3-0.02|D| QW3-0.08|D| QW4-0.02|D| QW4-0.08|D|

WCQ-LM 0.01874 0.00469 1.87430 0.46858 0.00629 0.00157 0.00006 0.00002
WCQ-SM 0.09880 0.02383 0.10451 0.02251 0.00036 0.00008 0.00033 0.00009

QI1-0.02|D| QI1-0.08|D| QI2-0.02|D| QI2-0.08|D| QI3-0.02|D| QI3-0.08|D| QI4-0.02|D| QI4-0.08|D|
ICQ-LM 1.76786 0.44197 0.01768 0.00442 0.00006 0.000015 0.00593 0.00148
ICQ-SM 0.10271 0.02682 0.10506 0.02517 0.00033 0.00008 0.00034 0.00008
ICQ-MPM 0.63644 0.31822 0.00636 0.00371 0.00003 0.000014 0.00640 0.00178

QT1-0.02|D| QT1-0.08|D| QT2-0.02|D| QT2-0.08|D| QT3-0.02|D| QT3-0.08|D| QT4-0.02|D| QT4-0.08|D|
TCQ-LM 0.03536 0.00884 266.24590 66.56148 0.00012 0.00003 1.40857 0.35214
TCQ-LTM 0.35358 0.08840 0.35358 0.08840 0.00119 0.00030 0.00119 0.00030

Table 3.2: Privacy cost using all applicable mechanisms on the 12 queries at α =
{0.02, 0.08}|D| and β = 5 × 10−4. Median of 10 runs is reported for data-dependent
mechanisms. It shows that (a) no single mechanism can always win or lose, (b) privacy
cost of different mechanisms answering the same query, and privacy cost of same mecha-
nism on different queries can be significantly different. Therefore, it is critical to use APEx
for choosing optimal mechanisms.

and QW2 templates. WCQ-LM is highly dependent on the sensitivity of the query. Hence,
the privacy cost of WCQ-LM on QW1 changes very slowly with the workload size as
the sensitivity of the workload in QW1 is 1 while the privacy cost on QW2 is linear to
workload size L because the the sensitivity of cumulative histogram is L. On the other
hand, WCQ-SM incurs similar privacy cost on QW1 and QW2, since both queries share
the same workload size and accuracy parameters. The privacy cost of WCQ-SM for QW1
and QW2 are similar as they are using the same H2 strategy matrix. Their difference in
Table 3.2 is mainly due to different runs of privacy cost estimation using MC simulation.
However, their accuracy can be different, as QW2 with a cumulative histogram workload
needs to add up logL number of noisy counts from the strategy matrix for one of its largest
count. On the other hand, the histogram counts from QW1 requires only one noisy count.
Similar findings have been observed on other query types and mechanisms; therefore, we
omit to show other plots here.

Vary counting threshold c. Figure 3.4b shows the actual privacy cost of mechanisms
for QI2 with different thresholds. All the mechanisms for ICQ except ICQ-MPM, have a
fixed privacy cost which is dependent of the data and the query (including c). However, we
observe an interesting trend for the actual privacy cost used by ICQ-MPM as c increases.
The smallest privacy cost which takes place after c = 0.8 is 1/10 of the upper bound of
ICQ-MPM. The privacy cost of ICQ-MPM depends on the number of poking times before
returning a output, which is related to the distance between the threshold and the true
counts associated to the predicates. If the predicates are far from the threshold, the fewer

50

● ● ● ● ●
10−1.5

10−1

10−0.5

100

100.5

101

100 200 300 400 500
Workload Size L

P
riv

ac
y

C
os

t

● LM,QW1 LM,QW2 SM,QW1 SM,QW2

Privacy Cost for QW1/QW2

(a) Vary Workload Size

●●● ● ● ●● ● ● ● ● ● ● ●

10−2.5

10−2

10−1.5

10−1

0.00 0.25 0.50 0.75 1.00
ICQ c wrt |D|

Pr
iva

cy
 C

os
t

● ICQ−LM ICQ−MPM ICQ−SM

Privacy Cost for QI2

(b) Vary ICQ c

● ● ● ● ●

10−1

100

101

102

10 20 30 40 50
TCQ k

P
riv

ac
y

C
os

t

● LM,QT3 LM,QT4 LTM,QT3 LTM,QT4

Privacy Cost for QT3/QT4

(c) Vary TCQ k

Figure 3.4: Privacy cost with query specific parameters: (a) Increasing workload size causes
faster privacy cost increase fro WCQ-SM than WCQ-LM. (b) Varying ICQ threshold c
affects privacy cost ICQ-MPM. The closer c relates to the true count, more attempts is
needed, hence more privacy cost. (c) Increasing TCQ k leads to faster privacy cost increase
for TCQ-TM than TCQ-LM.

number of poking is required and hence a smaller privacy budget is spent. On the other
hand, if the true count is very close to the threshold, then it requires a small noise and hence
all the budget to decide the label of this predicate with confidence. When c = 0.01|D|,
98% predicates are within the range [c − α, c + α], and hence to confidently decide the
label for all these predicates require more poking and hence a larger privacy cost. Consider
the many predicates having counts close to 0.01|D|, the cost of ICQ-MPM is high. As c
increases to 0.10|D|, all predicates have sufficient different counts as c, then 1 or 2 times
of poking are sufficient. When c continue increases to 0.32|D|, there is a single predicate
that with true count (which is 0.3117|D|) closer to c , it again requires more pokings to
make a confident decision. A similar behavior is seen when c is around 0.6050|D|.

Moreover, in the bad cases where c is close to true counts, the actual privacy cost
of ICQ-MPM might be more expensive than the baseline ICQ-LM. For example, when
c = 0.01|D|, ICQ-LM is better. This is a case where APEx under optimistic mode fails to
choose ICQ-LM as the optimal mechanism.

Vary top threshold k. Figure 3.4c shows the sensitivity of privacy cost of TCQ-LM
and TCQ-TM with respect to varying k, using QT3 and QT4 as examples. The privacy
cost of TCQ-LM is independent of k as shown in Figure 3.4c, but the cost of TCQ-LTM
increases linearly with k. The privacy cost of TCQ-LTM for both QT3 and QT4 have the
same privacy cost, because its cost only depends on k and the accuracy parameters, but
the privacy cost of LTM for QT3 and QT4 are very different because the HD QT4 has
larger sensitivity.

51

In summary, we see that the optimal mechanism with the least privacy cost changes
among queries and even the same query with different parameters. This shows there is a
great need for systems like APEx to provide translation and identify optimal mechanisms.

3.6 Case Study

In this section, we design an application benchmark based on entity resolution to show
that 1) we can express real data exploration workflow using our exploration language; 2)
APEx allows entity resolution workflow to be conducted with high accuracy and strong
privacy guarantee; and 3) APEx allows trade-off between privacy and final task quality for
a given exploration task.

3.6.1 Case Study Setting

Entity Resolution (ER) is an application of identifying table records that refer to the same
real-world object. In this case, we use the citations [48] dataset to perform exploration
tasks. Each row in the table is a pair of citation records, with a binary label indicat-
ing whether they are duplicates or not. All the citation records share the same schema,
which consists of 3 text attributes of title, authors and venue, and one integer attribute
of publication year. A training set D of size 4000 is sampled from citations such that
every record appears at most once. Two exploration tasks for entity resolution on D are
considered: blocking and matching. These two tasks are achieved by learning a boolean
formula P (e.g. in DNF) over similarity predicates. We express a similarity predicate p as a
tuple (A, t, sim, θ) ∈ attr(R)×T×S×Θ, where A ∈ attr(R) is an attribute in the schema
t ∈ T is a transformation of the attribute value, and sim ∈ S is a similarity function that
usually takes a real value often restricted to [0, 1], and θ ∈ Θ is a threshold. Given a pair
of records (r1, r2), a similarity predicate p returns either ‘True’ or ‘False’ with semantics:
p(r1, r2) ≡ (sim(t(r1.A), t(r2.A)) > θ).

In this case study, the exploration task for blocking is to find a boolean formula Pb
that identifies a small set of candidate matching pairs that cover most of the true matches,
known as high recall, with a small blocking cost (a small fraction of pairs in the data that
return true for Pb). The exploration task for matching is to identify a boolean formula Pm
that identifies matching records that achieves high recall and precision on Dt. Precision
measures whether Pm classifies true non-matches as matches, and recall measures the
fraction of true matches that are captured by Pm. The quality of this task is measured by
F Pm

1 , the harmonic mean of precision and recall.

52

(q1, 𝛼): What is the number of Null values for all attributes?
For each (𝐴, 𝐴′): BIN D ON COUNT(*) WHERE W = {𝐴 IS NULL OR 𝐴 ′ IS NULL }

c1: Cleaner chooses 2 attributes with least Nulls: 𝐴𝑖 ∈ {𝑡𝑖𝑡𝑙𝑒, 𝑎𝑢𝑡ℎ𝑜𝑟𝑠},
initializes disjunction of predicates 𝑂 = ∅

q2: Show transformations for ‘title’
c2: Cleaner chooses a subset of transformations: t∈ {2grams, SpaceTokenization}

q3: Show similarity functions for ‘2grams(title)’
c3: Cleaner chooses a subset of similarity functions: sim ∈ {Jaccard, Cosine}

q4: Show the range of similarity thresholds for ‘cosine(2grams(title))’
c4: Cleaner chooses 𝜃 ∈ [0.5, 1]

(q5a, 𝛼): What is the fraction of the remaining matches caught by p?
BIN D ON COUNT(*) WHERE W = {¬𝑂 AND p AND label=‘MATCH’}

(q5b, 𝛼): What is the fraction of the remaining non-matches caught by p?
BIN D ON COUNT(*) WHERE W = {¬𝑂 AND p AND label=‘NON-MATCH’}

A set of candidate predicates 𝑃 = { p: sim t Ai) , t(Ai
′ > 𝜃}

c5a: Cleaner forms WCQ queries using predicates p by descending 𝜃
c5b: Cleaner chooses a criterion for predicate p:

if it catches >50% of remain_matches and <10% of remain_non-matches.

c6: Cleaner chooses to update 𝑂 = 𝑂 ∨ 𝑝,
updates remain_matches (remain_non_matches) with answer to q5a (q5b)

…

(q1’, 𝛼): What are the top-2 attributes with least Nulls?
BIN D ON COUNT(*) WHERE W={𝐴𝑖 IS NULL OR 𝐴𝑖

′ IS NULL }
ORDER BY COUNT(*) LIMIT 2

(q5a’, 𝛼): Is the fraction of the remaining matches caught by p > 50%?
BIN D ON COUNT(*) WHERE W = {¬𝑂 AND p AND label=‘MATCH’}

HAVING COUNT(*) > 0.5 × remain_matches
(q5b’, 𝛼): Is the fraction of the remaining non-matches caught by p < 10%?

BIN D ON COUNT(*) WHERE W = {¬𝑂 AND p AND label=‘NON-MATCH’}
HAVING COUNT(*) > 0.9 × remain_non_matches

A set of candidate predicates 𝑃 = { p: sim t Ai) , t(Ai
′ > 𝜃}

c5a: Cleaner forms an ICQ query of predicates p in descending 𝜃
c5b: Cleaner chooses a criterion for predicate p:

if it catches >50% of remain_matches and <10% of remain_non_matches.

c6: Cleaner chooses to update 𝑂 = 𝑂 ∨ 𝑝,
updates remain_matches (remain_non_matches) with answer to q5a’ (q5b’)

(a) Strategy instance 1 for blocking

(q1, 𝛼): What is the number of Null values for all attributes?
For each (𝐴, 𝐴′): BIN D ON COUNT(*) WHERE W = {𝐴 IS NULL OR 𝐴 ′ IS NULL }

c1: Cleaner chooses 2 attributes with least Nulls: 𝐴𝑖 ∈ {𝑡𝑖𝑡𝑙𝑒, 𝑎𝑢𝑡ℎ𝑜𝑟𝑠},
initializes disjunction of predicates 𝑂 = ∅

q2: Show transformations for ‘title’
c2: Cleaner chooses a subset of transformations: t∈ {2grams, SpaceTokenization}

q3: Show similarity functions for ‘2grams(title)’
c3: Cleaner chooses a subset of similarity functions: sim ∈ {Jaccard, Cosine}

q4: Show the range of similarity thresholds for ‘cosine(2grams(title))’
c4: Cleaner chooses 𝜃 ∈ [0.5, 1]

(q5a, 𝛼): What is the fraction of the remaining matches caught by p?
BIN D ON COUNT(*) WHERE W = {¬𝑂 AND p AND label=‘MATCH’}

(q5b, 𝛼): What is the fraction of the remaining non-matches caught by p?
BIN D ON COUNT(*) WHERE W = {¬𝑂 AND p AND label=‘NON-MATCH’}

A set of candidate predicates 𝑃 = { p: sim t Ai) , t(Ai
′ > 𝜃}

c5a: Cleaner forms WCQ queries using predicates p by descending 𝜃
c5b: Cleaner chooses a criterion for predicate p:

if it catches >50% of remain_matches and <10% of remain_non-matches.

c6: Cleaner chooses to update 𝑂 = 𝑂 ∨ 𝑝,
updates remain_matches (remain_non_matches) with answer to q5a (q5b)

…

(q1’, 𝛼): What are the top-2 attributes with least Nulls?
BIN D ON COUNT(*) WHERE W={𝐴𝑖 IS NULL OR 𝐴𝑖

′ IS NULL }
ORDER BY COUNT(*) LIMIT 2

(q5a’, 𝛼): Is the fraction of the remaining matches caught by p > 50%?
BIN D ON COUNT(*) WHERE W = {¬𝑂 AND p AND label=‘MATCH’}

HAVING COUNT(*) > 0.5 × remain_matches
(q5b’, 𝛼): Is the fraction of the remaining non-matches caught by p < 10%?

BIN D ON COUNT(*) WHERE W = {¬𝑂 AND p AND label=‘NON-MATCH’}
HAVING COUNT(*) > 0.9 × remain_non_matches

A set of candidate predicates 𝑃 = { p: sim t Ai) , t(Ai
′ > 𝜃}

c5a: Cleaner forms an ICQ query of predicates p in descending 𝜃
c5b: Cleaner chooses a criterion for predicate p:

if it catches >50% of remain_matches and <10% of remain_non_matches.

c6: Cleaner chooses to update 𝑂 = 𝑂 ∨ 𝑝,
updates remain_matches (remain_non_matches) with answer to q5a’ (q5b’)

(b) Strategy instance 2 for blocking

Figure 3.5: Two strategies for blocking.

Using exploration queries supported by APEx, we can express two exploration strategies
for each task: BS1 (MS1) using WCQ only to complete blocking (matching) task, and BS2
(MS2) using ICQ/TCQ to conduct the blocking (matching) task. Each strategy generates
a sequence of exploration queries which interact with APEx and constructs a boolean
formula for the corresponding task. For each strategy, we randomly sample a concrete
cleaner from our cleaner model and report mean and quartiles of its cleaning quality over
100 runs.

3.6.2 The ER Model

The data scientist typically narrows down the choices through a sequence of actions, con-
sisting of issuing queries and making choices based on the answer of issued query. We use
a strategy to denote a class of actions that use the same set of queries but make different
choices. Figure 3.5 shows the strategies for the blocking task. These two strategies are
different as they use different query types, though they share the same criteria of decision
choices. In particular, the queries q1, q5 in the strategy shown in Figure 3.5a are WCQ,
while the queries q1′, q5′ in Figure 3.5b are TCQ and ICQ respectively. This case exempli-
fies how a cleaning engineer constructs a single path (disjunction) of predicates to form a
blocking function, though a real function can be more complex [58]. Similarly, Figure 3.6
illustrates two matching strategies using WCQ (Figure 3.6a) and ICQ/TCQ (Figure 3.6b),
respectively, where the matching function is formed as a conjunction of predicates.

The ER model encodes the space of all the parameters involved in the data scientist’s

53

(q1, 𝛼): What is the number of Null values for all attributes?
For each (𝐴, 𝐴′): BIN D ON COUNT(*) WHERE W = {𝐴 IS NULL OR 𝐴 ′ IS NULL }

(q5a, 𝛼): What is the fraction of the captured matches pruned by p?
BIN D ON COUNT(*) WHERE W={𝑂 AND p AND label=‘MATCH’}

(q5b, 𝛼): What is the fraction of the remaining non-matches pruned by p?
BIN D ON COUNT(*) WHERE W={𝑂 AND p AND label=‘NON-MATCH’}

A set of candidate predicates 𝑃 = { p: sim t Ai) , t(Ai
′ > 𝜃}

c5a: Cleaner forms a WCQ query of predicates p in descending 𝜃
c5b: Cleaner chooses a criterion for predicate p:

if it prunes <1% of captured_matches and >50% of captured_non_matches.

c6: Cleaner chooses to update 𝑂 = 𝑂 ∧ 𝑝,
updates captured_matches (captured_non_matches) with answer to q5a (q5b)

…

(q5a’, 𝛼): Is the fraction of the remaining matches pruned by p > 1%?
BIN D ON COUNT(*) WHERE W = {𝑂 AND p AND label=‘MATCH’}

HAVING COUNT(*) > 0.01 × captured_matches
(q5b’, 𝛼): Is the fraction of the remaining non-matches pruned by p < 50%?
BIN D ON COUNT(*) WHERE W = {𝑂 AND p AND label=‘NON-MATCH’}

HAVING COUNT(*) > 0.5 × captured_non_matches

A set of candidate predicates 𝑃 = { p: sim t Ai) , t(Ai
′ > 𝜃}

c5a: Cleaner forms an ICQ query of predicates p in descending 𝜃
c5b: Cleaner chooses a criterion for predicate p:

if it prunes <1% of captured_matches and >50% of captured_non_matches.

…

(q1’, 𝛼): What are the top-2 attributes with least Nulls?
BIN D ON COUNT(*) WHERE W={𝐴𝑖 IS NULL OR 𝐴𝑖

′ IS NULL }
ORDER BY COUNT(*) LIMIT 2

c6: Cleaner chooses to update 𝑂 = 𝑂 ∧ 𝑝,
updates captured_matches (captured_non_matches) with answer to q5a’ (q5b’)

(a) Strategy instance 1 for matching (MS1)

(q1, 𝛼): What is the number of Null values for all attributes?
For each (𝐴, 𝐴′): BIN D ON COUNT(*) WHERE W = {𝐴 IS NULL OR 𝐴 ′ IS NULL }

(q5a, 𝛼): What is the fraction of the captured matches pruned by p?
BIN D ON COUNT(*) WHERE W={𝑂 AND p AND label=‘MATCH’}

(q5b, 𝛼): What is the fraction of the remaining non-matches pruned by p?
BIN D ON COUNT(*) WHERE W={𝑂 AND p AND label=‘NON-MATCH’}

A set of candidate predicates 𝑃 = { p: sim t Ai) , t(Ai
′ > 𝜃}

c5a: Cleaner forms a WCQ query of predicates p in descending 𝜃
c5b: Cleaner chooses a criterion for predicate p:

if it prunes <1% of captured_matches and >50% of captured_non_matches.

c6: Cleaner chooses to update 𝑂 = 𝑂 ∧ 𝑝,
updates captured_matches (captured_non_matches) with answer to q5a (q5b)

…

(q5a’, 𝛼): Is the fraction of the remaining matches pruned by p > 1%?
BIN D ON COUNT(*) WHERE W = {𝑂 AND p AND label=‘MATCH’}

HAVING COUNT(*) > 0.01 × captured_matches
(q5b’, 𝛼): Is the fraction of the remaining non-matches pruned by p < 50%?
BIN D ON COUNT(*) WHERE W = {𝑂 AND p AND label=‘NON-MATCH’}

HAVING COUNT(*) > 0.5 × captured_non_matches

A set of candidate predicates 𝑃 = { p: sim t Ai) , t(Ai
′ > 𝜃}

c5a: Cleaner forms an ICQ query of predicates p in descending 𝜃
c5b: Cleaner chooses a criterion for predicate p:

if it prunes <1% of captured_matches and >50% of captured_non_matches.

…

(q1’, 𝛼): What are the top-2 attributes with least Nulls?
BIN D ON COUNT(*) WHERE W={𝐴𝑖 IS NULL OR 𝐴𝑖

′ IS NULL }
ORDER BY COUNT(*) LIMIT 2

c6: Cleaner chooses to update 𝑂 = 𝑂 ∧ 𝑝,
updates captured_matches (captured_non_matches) with answer to q5a’ (q5b’)

(b) Strategy instance 2 for matching (MS2)

Figure 3.6: Two strategies for matching.

decisions c1-c6. Table 3.3 summarizes the space of all the parameters for c1-c6 in blocking
strategy 1. From c1 to c4, the program chooses (i) a subset of attributes x1 of size ranging
from 2 up to the total number of attributes |attr(R)|, (ii) a subset of transformations x2

from T = {2grams, 3grams, SpaceTokenization}, (iii) a subset of similarity functions x3

from S = {Edit, SmithWater, Jaro, Cosine, Jaccard,Overlap,Diff}, and (iv) x6 thresh-
olds from the range of [x4, x5], where x4 ∈ (0, 0.5), x5 ∈ (0.5, 1), and x6 ∈ {2, 3, 4, 5, 6}.
The cross product of these choices form a set of predicates P , and c5a picks an ordering
x7, one of the permutation of P . In c5b, the model sets the criterion for pruning or keep-
ing a predicate p from the top list of P . In particular, the model sets x8 and x9 as the
minimum fraction of the remaining matches caught and the maximum fraction of the re-
maining non-matches caught by p∨O respectively, where x8 ∈ [0.2, 0.5] and x9 ∈ [0.1, 0.2].
These values are reset as x8 = x8/x10 and x9 = x9x10 where x10 ∈ {2, 3} if all predicates
have been checked but O = ∅. In c6, the model considers three possible styles of cleaners
on trusting the noisy answers: neutral style corresponds to trust the noisy answers; for
optimistic (pessimistic) style, the data scientist trusts the values by adding (subtracting)
α/5 to (from) the noisy answers. If these criterion are met and the blocking cost over Dt is
less than a fixed cutoff threshold (e.g., a hardware constraint, we set 550). An instance of
all variables C = (x1, . . . , x11) in Table 3.3 forms a concrete cleaner. The model for other
strategies is similarly constructed.

3.6.3 End-to-End Task Evaluation

We report the end-to-end performance of APEx on the four exploration strategies.

54

Table 3.3: A cleaner model for blocking strategy 1.

A cleaner model C = {x1, . . . , x11} for c1-c6 in Figure 3.5a
c1 Choose x1, an ordered subset of attributes with least Nulls, where x1 ∈

{2, 3, |attr(R)|}
c2 Choose x2, an ordered subset of transformations from T, where |x2| ∈ {1, 2, 3}
c3 Choose x3, an ordered subset of similarity functions from S, where |x3| ∈

{2, 3, 4, 5, 6}
c4 Choose a lower bounds x4 and a upper bound x5 of threshold range, where x5 ∈

(0.5, 1), x4 ∈ (0, 0.5), and evenly choose x6 thresholds in order of either ASC or
DSC, and x6 ∈ {2, 3, 4, 5, 6}

c5a Predicate p is sequentially selected based the order of x7 ∈ Permute(x1×x2×x3×
x6)

c5b Chooses a criterion for predicate p: if it catches < x8 fraction of the remaining
matches and > x9 fraction of remaining non-matches, where x8 ∈ [0.2, 0.5] and
x9 ∈ [0.1, 0.2]. Reset x8 = x8/x10 and x9 = x10x9, x10 ∈ {2, 3} if all queries have
been asked but O = ∅.

c6 Choose method x11 ∈ {neutral, optimistic, pessimistic} to take tolerance into
account. If conditions are met, and the blocking cost is less than cutoff threshold,
add p to the output O and remove it from P .

Vary Privacy Constraint. Given an exploration strategy from BS1, BS2, MS1, MS2
on training data D, a sequence of queries is generated based on its interaction with APEx
until the privacy loss exceeds the privacy constraint B specified by the data owner. The
accuracy requirement for this set of experiments is fixed to be α = 0.008|Dt|, β = 0.0005.
The privacy constraint varies from 0.1 to 2. Each exploration strategy is repeated 100
times under a given privacy constraint and we report the output quality of these 100 runs
at different privacy constraint.

Figure 3.7 shows the exploration quality (recall for blocking task and F1 for matching
task) of 100 runs of each exploration strategy at B = {0.1, 0.2, 0.5, 1, 1.5, 2}. We observe
that the expected task quality (median and variance) improves as the budget constraint
increases and gets stable after, for example reaching B ≥ 1 for MS1. Since we fixed α, the
privacy loss for each exploration query is also fixed. Thus, B directly controls the number
of queries APEx answers before halting. For small B < 0.2, only a few queries are answered
and the cleaning quality is close to random guessing. As B increases, more queries can be
learned about the dataset. After B reaches a certain value around 1.0, APEx can answer
sufficient number of queries; therefore obtaining high accuracy. For MS2, when it reaches

55

●
●

●

●
●●●●
●

●
●●●
●

●
●
●
●●●

●

●

●

●●●●

●

●

●●
●
●

●

●
● ●

●

●
●●●●
●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.5 1 1.5 2
Privacy Budget (B)

R
ec

al
l

BS1, |D|=4000, alpha/|D|=0.08

●●●●●●●●●●●●●●

●

●

●●

●

●●●

●
●
●●●●●

●

●

●

●

● ●

●●

●●●●●

●●●

●

●●

●●

●

●

●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.5 1 1.5 2
Privacy Budget (B)

R
ec

al
l

BS2, |D|=4000, alpha/|D|=0.08

●●●● ●
●●●
●●●

●

●●
●

●

●

●●
●●●

●

●

●

●

● ●●
●

●

●

●

●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.5 1 1.5 2
Privacy Budget (B)

F1

MS1, |D|=4000, alpha/|D|=0.08

●●

●

●

●

●●

●

●
●●●●

●

●
●
●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.5 1 1.5 2
Privacy Budget (B)

F1

MS2, |D|=4000, alpha/|D|=0.08

Figure 3.7: Performance of APEx for blocking (BS1, BS2) and matching (MS1, MS2) tasks
with increasing privacy budget B at fixed α = 0.08|D|: the expected task quality improves
with smaller variance as the budget constraint increases and gets stable. Fixing α fixes
privacy cost per operation. Thus increasing B increases the number of queries answered.

●●●●●●●
●
●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●●

●

●●●●

●

●●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.01 0.02 0.04 0.08 0.16 0.32 0.64
alpha / |D|

R
ec

al
l

BS1, |D|=4000, B=1

●●●●●●●●

●
●
●●●●●

●

●

●

●

● ●●

●
●

●

●

●

●●

●

●●●●● ●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●●●

●

●

●

●

●●

●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.01 0.02 0.04 0.08 0.16 0.32 0.64
alpha / |D|

R
ec

al
l

BS2, |D|=4000, B=1

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.01 0.02 0.04 0.08 0.16 0.32 0.64
alpha / |D|

F1

MS1, |D|=4000, B=1

●

●

●

●

●●●●

●

●

●

●

●●

●
●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.01 0.02 0.04 0.08 0.16 0.32 0.64
alpha / |D|

F1

MS2, |D|=4000, B=1

Figure 3.8: Performance of APEx for blocking (BS1, BS2) and matching (MS1, MS2) at
fixed privacy budget B = 1 with increasing α from 0.01|Dt| to 0.64|Dt|. There exists an
optimal α to achieve highest quality at a given privacy constraint. Increasing α decreases
privacy cost per operation. Thus for a fixed budget this increases the number of queries.
However, many queries each with a low privacy budget is not good for end-to-end accuracy.

good F1 score at B = 1, more noisy answers can mislead the MS2 strategy to add more
predicates to the blocking conjunction function, and decrease the quality.

The privacy cost used by each ICQ and TCQ is generally less than what has spent
on the corresponding WCQ, as less information is shown to the data scientist. Given the
same privacy budget, e.g. when B = 0.5, more queries can be answered in BS2 than BS1,
results in a 25% better recall. We observe the same trend in MS1 and MS2. This shows
that it is important for APEx to support translation for different types of queries for better
end-to-end accuracy.

Vary Accuracy Requirement. This section shows the task quality of each exploration
strategy at different accuracy requirements under a fixed privacy constraint B = 1.0. For
each α ∈ {0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64}|D|, the exploration strategy interacts with
APEx until the privacy loss exceeds B = 1.0. Each exploration is repeated 100 times and
we report the quality of the constructed boolean formula of these 100 runs. As shown
in Figure 3.8, the quality of the four exploration strategies all improves first as accuracy
requirement relaxes and then degrades again under B = 1.0. This is because when there

56

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●●●

● ●

●●●●

●●●●●●●

●

●●

●

●●

●

●●●
●●●
●●●●●●
●●
●●
●
●
●●●
●
●
●
●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.5 1 1.5 2
Privacy Budget (B)

R
ec

al
l

BS1, |D|=1000, alpha/|D|=0.08

●
●

●

●

●

●

●
●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.5 1 1.5 2
Privacy Budget (B)

R
ec

al
l

BS2, |D|=1000, alpha/|D|=0.08

●

●

●
●● ●●●

● ●

●●●●

●●

●●●

●

●

●●●

●

●

●●

●

●

●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.01 0.02 0.04 0.08 0.16 0.32 0.64
alpha / |D|

R
ec

al
l

BS1, |D|=1000, B=1

●

●

●

●●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●●●
●
●●

●

●●●●●●

●
●●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●
●
●●

●

●●●●

●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.01 0.02 0.04 0.08 0.16 0.32 0.64
alpha / |D|

R
ec

al
l

BS2, |D|=1000, B=1

Figure 3.9: Performance of APEx for blocking (BS1, BS2) tasks at |D| = 1000. Compared
with Figure 3.7 where α = 0.08|D|, the privacy budget that needs to achieve good recall
increases when data size is smaller. Compared with Figure 3.8 where B = 1, the optimal
α actually increases.

is a privacy constraint, APEx only allows a limited number of queries to be answered.
Given this fixed privacy budget B = 1 and a fixed accuracy requirement α, the number of
queries can be answered is bounded and related to α. When α first increases from 0.01|D|
to 0.08|D|, more queries can be answered and give more information on which predicates
to choose. However, as α keeps growing, the answers get noisier and misleading, resulting
in the drop in quality, even though more questions can be answered.

Vary Data Size. We also experimented with the same strategies with a different data
size |D| = 1000, using blocking strategies shown in Figure 3.9 as examples to study the
affects of data size. Comparing with Figure 3.7 where α is fixed at 0.08|D|, the privacy
cost to achieve optimal recall is larger when |D| is smaller. BS1 and BS2 can achieve very
good recall when |D| = 4000 given a privacy budget B = 1, but they requires at least
B = 1.5 to reach similar quality when |D| = 1000. On the other hand, comparing with
Figure 3.8 where the privacy budget is fixed B = 1, the optimal α for smaller |D| is very
close. BS1 and BS2 reach the highest recall at about α = 0.16 ·1000 = 160 which is close to
the optimal α = 0.8 · 4000 = 320 when |D| = 4000. Thus suggest an interesting direction
for future work: choosing the optimal α for different queries in an exploration process.

3.7 Discussion and Conclusion

3.7.1 Other Aggregation Functions

Besides supporting linear counting queries, our algorithms in APEx can be easily extended
to support SUM() queries. Queries for MEDIAN() (and percentile) can be supported by
first querying the CDF (using a WCQ), and finding the median from that. GROUPBY
can be expressed as a sequence of two queries: first query for values of an attribute with

57

COUNT(*) > 0 (using ICQ), and then query the noisy counts for these bins (using WCQ).
Similarly, if the aggregated function f() in HAVING differs from the aggregated function
g(), APEx can express it as a sequence of two queries: first query for bins having f() > c
(using ICQ), and then apply g() on these bins (using WCQ).

However, no differentially private algorithms can accurately report MAX() and MIN().
Non-linear queries such as AVG() and STD() can have very sensitive error bounds to noise
when computed on a small number of rows (like the measures discussed in § 3.1.2). Hence,
supporting non-linear queries would need new translation mechanisms. Moreover, APEx
can support queries with foreign key joins (that do not amplify the contribution of one
record), but designing accurate differentially private algorithms for queries with general
joins is still an active area of research.

3.7.2 Conclusion

We proposed APEx, a framework that allows the data scientist to interact with sensitive
data while ensuring that their interactions satisfy differential privacy. Using experiments
with query benchmarks and entity resolution application, we established that APEx allows
high exploration quality with a reasonable privacy loss.

APEx opens many interesting future research directions. First, more functionalities can
be added to APEx: a) a recommender which predicts the subsequent interesting queries
and advises the privacy cost of these queries to the data scientist; b) an inferencer which
uses historical answers to reduce the privacy cost of a new incoming query; and c) a sampler
which incorporate approximate query processing to have 3-way trade-off between efficiency,
accuracy, and privacy. More translation algorithms from accuracy to privacy, especially
for data-dependent mechanisms and non-linear queries can be implemented in APEx to
further save privacy budget throughout the exploration. We show the exploration queries
in APEx to support entity resolution tasks. These exploration queries can be extended
to support other exploration tasks, e.g., schema matching, feature engineering, tuning
machine learning workloads. This would also require extending our system to handle
relations with multiple tables, constraints like functional dependencies. APEx turns the
differentially private algorithm design problem on its head – it minimizes privacy loss
given an accuracy constraint. This new formulation has applications on sensitive data
exploration and can trigger an entirely new line of research.

58

Chapter 4

Kamino: Constraint-Aware
Differentially Private Data Synthesis

4.1 Problem Statement and Solution Overview

To solve the shortcomings of the current differentially private data synthesis approaches
mentioned in § 1.2, we state our problem definition and provide a high-level description of
our approach.

4.1.1 Problem Statement

Given a private database instance D∗ with schema and domain, a set of denial constraints
Φ with information about their hardness, and a differential privacy budget (ε, δ), we would
like to design a process P that generates a useful synthetic database instance D′ as D∗ (e.g.,
the same statistics and attribute correlations) while meeting two additional requirements:

R1. (Data Consistency) We consider data consistency with respect to the set of denial
constraints Φ from the input: for each DC φ ∈ Φ, D∗ and D′ have a similar number
of violations, i.e., |V (φ,D′)| ≈ |V (φ,D∗)|.

R2. (Privacy Guarantee) The process P that outputs D′ achieves (ε, δ)-differential privacy:
for any set of output instances D outputted by P , Pr(P (D1) ∈ D) ≤ eε Pr(P (D2) ∈
D) + δ, for any two neighboring D1 and D2 differing in one record.

59

●

●

●

● ●

●

●

0.00

0.25

0.50

0.75

1.00

PrivBayes PATE−GAN DP−VAE
Method

A
cc

ur
ac

y

Standard Cleaned
(a) Accuracy

●

●
●
●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

PrivBayes PATE−GAN DP−VAE
Method

V
ar

ia
tio

n
D

is
ta

nc
e

Standard Cleaned
(b) 2-way marginal

Figure 4.1: A synthetic Adult data using PrivBayes, PATE-GAN and DP-VAE satisfying
(ε = 1, δ = 10−6)-DP, with and without fixing the integrity violations (labeled as ‘cleaned’
and ‘standard’, respectively). Each point in Figure 4.1a represents the testing accuracy
for one target attribute. Each point in Figure 4.1b represents the total variation distance
between the true and synthetic Adult. More details are in § 4.5.

DC constraints Φ are public in our problem and can be modeled as part of the adversary’s
prior. This subsumes the special case when Φ are not public to the adversary. The
semantic privacy results by Ganta et al. [67, 98] (§ 2.1.3) are applicable to our problem
and prior work on DP data synthesis, and hence this work will focus on the design of a DP
mechanism. We will leave the mechanism design for stronger semantic privacy guarantees
to future work.

4.1.2 A Näıve Attempt

We use the following example to show that 1) the synthetic data generated by state-of-the-
art private data synthesis methods has missing DCs; and 2) a post-cleaning step with the
state-of-the-art data cleaning technique [148] on the synthetic data can improve the data
consistency, but it is at the cost of the usefulness of the synthetic for other applications.

Example 6: Consider the Adult dataset [49] consisting of 15 attributes with denial con-
straints [88], such as ‘two tuples with the same education category cannot have different
education numbers’, and ‘tuples with higher capital gain cannot have lower capital loss’.
There is no single violation of these constraints in the true data, but the synthetic data
generated by the state-of-the-arts including PrivBayes [174], PATE-GAN [95], and DP-
VAE [38] have up to 32% of the tuple pairs failing these constraints (Table 4.2).

60

However, näıvly repairing the incorrect structure constraints in the synthetic data can
compromise the usefulness. We applied state-of-the-art data cleaning method [148] to
fix the violations in the synthetic data generated by the aforementioned three methods.
Then we evaluated their usefulness in training classification models and building 2-way
marginals. Figure 4.1 shows that the repaired synthetic data (labeled as ‘cleaned’) have
lower classification quality (i.e., smaller accuracy score) and poorer marginals (i.e., larger
distance) compared to the synthetic data with violations (labeled as ‘standard’). Though
the repaired synthetic data managed to comply with structure constraints, they become
less useful for training models and releasing marginal statistics.

4.1.3 Methodology Overview

Recall from § 2.1.2, the probabilistic database model is a parametric model to describe the
probability of instances. We adopt the probabilistic database model to represent databases
with denial constraints. There are two main steps: 1) privately learn the unknown param-
eters in the probabilistic database model with samples from the true data; and 2) sample
a database instance based on the learned probabilistic database model. However, both
steps are challenging. First, it is well known that finding the analytical solution of the pa-
rameters of a probabilistic database without privacy concerns is #P-complete [150, 156],
and approximate methods such as gradient descent may not converge to a global opti-
mum [151], due to the large sampling space of tuples (cross product of all attributes’
domain sizes) and of instances (exponential to the number of possible tuples). Second,
prior work [30, 55, 65, 159] show that there is no efficient DP algorithm that can gener-
ate a database, which maintains accurate answers for an exponential family of learning
concepts (e.g. the set of parameters in the probabilistic database model).

To tackle both the efficiency and the privacy challenge, we factorize the probability
distribution of a database instance into a set of conditional probabilities given a subset of
tuples and attributes, and learn them accordingly. We sample an instance based on the
learned conditional probabilities.

Probabilistic database decomposition. We express the probability distribution of
a database instance in Eqn. (2.1) into a chain of conditional probabilities based on two
sequences 1) a sequence of tuple ids; and 2) a sequence of attributes.

First, given a sequence of tuple ids (1, 2, . . . , n) in D, for any DC φ, the set of its viola-
tions in D, i.e., V (φ,D), can be iteratively computed by adding new violations introduced
by tuple ti with respect to its prefix tuples D:i = [t1, t2, · · · , ti−1] (with D:1 = ∅) from D,

61

for i = 1, . . . , n. Let V (φ, ti | D:i) denote the set of new violations caused by tuple ti with
respect to D:i. Then we have

|V (φ,D)| = |V (φ, t1)|+ |V (φ, t2 | D:2)|+ · · ·+ |V (φ, tn | D:n)|

=
n∑
i=1

|V (φ, ti | D:i)| (4.1)

This allows us to decompose Eqn. (2.1) as

Pr(D) ∝

(
n∏
i=1

Pr(ti)

)
× exp

(
−
∑
φ∈Φ

wφ

n∑
i=1

|V (φ, ti | D:i)|

)

=
n∏
i=1

[
Pr(ti)× exp

(
−
∑
φ∈Φ

wφ × |V (φ, ti | D:i)|

)]
(4.2)

Next, we define a schema sequence S as an ordered list of all attributes in the schema.
Similarly, let S:j represent all prefix attributes of the jth attribute in S and S:1 = ∅ for the
purpose of uniform representation. This schema sequence allows us further decompose the
set of violations. Let ΦAj represent the set of DCs in Φ that can be fully expressed with
the first j attributes in S, but cannot be expressed with only the first j − 1 attributes.

Example 7: Continue with Example 4, given a schema sequence S =
[age, edu num, edu, cap gain, cap loss], we can verify that ΦA3 = {φ1}, as the at-
tributes {edu num, edu} for φ1 are covered by the first 3 attributes in S, but not the first
2 attributes.

Notice that for a DC φ ∈ ΦAj , given a tuple ti, its number of violations |V (φ, ti | D:i)|
only depends on the values of the first j attributes in S (i.e., S:j+1). As a result, we can
rewrite the weighted sum of violations from Eqn. (4.2) as follows:

∑
φ∈Φ

wφ × |V (φ, ti | D:i)| =
k∑
j=1

∑
φ∈ΦAj

wφ × |V (φ, ti | D:i)|

=
k∑
j=1

∑
φ∈ΦAj

wφ × |V (φ, ti[S:j+1] | D:i[S:j+1])| (4.3)

Based on the same schema sequence S, the tuple probability Pr[ti] can be written as∏k
j=1 Pr (ti[Aj] | ti[S:j]) by the chain rule.

62

age edu_num edu cap_gain cap_loss
39 13 Bachelors

50 13 ?
38 9

42 10

;#
;$
;&
;'

Domain

value

Cond.

Pro.

#Vios Sampling

Pro.

Bachelors 0.3 0 1

HS-grad 0.3 1 0

Some-college 0.4 1 0

Figure 4.2: Sampling values in an instance (Example 8).

Finally, we have the database probability in Eqn. (4.2) expressed as

Pr(D) ∝
k∏
j=1

n∏
i=1

[
Pr(ti[Aj] | ti[S:j+1])×

exp(−
∑
φ∈ΦAj

wφ × |V (φ, ti[S:j+1] | D:i[S:j+1])|)
]

(4.4)

Eqn. (4.4) in fact presents an iterative process to sample a database instance D based
on (i) the schema sequence (j ∈ [1, k]), and (ii) the tuple id sequence (i ∈ [1, n]). Unlike
the tuple id sequence, the schema sequence specifies an ordering of attributes, where each
attribute solely depends on the prefix attributes to make correct prediction. However, it is
challenging to find the optimal schema sequence [42], and hence we apply a greedy heuristic
algorithm to derive a good one. In this work, we assume Pr[ti] are the same for all tuples.
Therefore, we just need to learn k (conditional) probabilities Pr(t[Aj]|t[S:j+1]), the weight
of DCs wφ, and the number of DC violations with respect to the prefix tuples. We will use
the following example to illustrate the sampling process.

Example 8: Continue with Examples 4 and 7. Consider all three DCs be hard with in-
finitely large weight wφ. Suppose we have already privately learned the conditional distri-
butions from the true data. The construction of D′ of 4 tuples works as follows.

We start with the first attribute age. From t1 to t4, we sample a value independently
based on the distribution Pr(t[age]). Then, we move on to the second attribute, edu num.
There is no DC between age and edu num, each cell from t1 to t4 is filled with a sample
based on the conditional distribution Pr(t[edu num] | t[age]).

Next, for the third attribute edu (shown in Figure 4.2), DC φ1 becomes active as
all its relevant attributes (edu num, edu) have been seen in the sequence. A cell value
Bachelors is directly sampled for t1[edu] from the the conditional distribution Pr(t[edu] |
t[edu num = 13, age = 39]). For t2[edu], let’s say the noisy conditional distributions

63

of edu given age = 50 and edu num = 13 are: (Bachelors, 0.3), (HS-grad, 0.3) and
(Some-college, 0.4). Consider the infinitely large weight for φ1, edu values other than
Bachelors will cause violations to t1 and hence their probabilities become very small.
Therefore, Bachelors is sampled with high probability.

After all cells are filled, we get a synthetic instance D′. Optionally, the Markov Chain
Monte Carlo (MCMC) sampling [134] could be applied to improve the accuracy by ran-
domly choosing a cell ti[Aj] to re-sample, conditioning on all other cells D′ \ {ti[Aj]}. This
step repeats for a fixed number of times or till convergence.

System overview. Algorithm 7 describes the overall process of our solution Kamino.
Kamino first chooses a schema sequence S based on the schema R, domain D, and DCs Φ
(Line 2). Then it finds a suitable parameter set Ψ for the subsequent algorithms to ensure
the overall privacy loss is bounded by (ε, δ)-DP (Line 3). The algorithms TrainModel(·)
and LearnWeight(·) privately learn the tuple distribution and weights of the DCs from
the private true data D∗ (Lines 4-5). Last, Kamino applies a constraint-aware sampling
algorithm to generate a synthetic database instance. We first present the key algorithms
(Algorithms 10, 8 and 9) when the weights of DCs are given in § 4.2, and then explain how
to learn the DC weights (Algorithm 11) in § 4.3. Last, privacy analysis and parameter
search (Algorithm 12) are explained in § 4.4.

Our system assumes the inputs are static, since we rely on the database instance to
learn the generative process (i.e., Algorithms 8, 9 and 11), and on the DCs to learn the
weights and attribute sequence. However, Kamino can tolerate small input changes as
long as the data distribution and DCs are intact. For now, if DC changes resulting in a
different sequence, we re-run Kamino; if the changes significantly shift the distribution,
we re-run the generative process. Future work can apply general DP techniques [47] for
dynamically growing databases for better utility.

4.2 Kamino with Known DC Weights

For simplicity of presentation, in this section, we consider the weights of the constraints are
given (e.g., the weights for hard DCs are set infinitely large). We first present our private
learning algorithm for the tuple probability and then the database sampling algorithm.
Last, we show our choice of schema sequence in Kamino.

64

Algorithm 7 Constraint-aware differentially private data synthesis

Input: Private instance D∗, schema R, domain D
Input: DCs Φ, privacy budget (ε, δ)

1: procedure Kamino(D∗, R,D,Φ, ε, δ)
2: S ← Sequencing(R,D,Φ) . Algorithm 10
3: Ψ← SearchDParas(ε, δ,D, S) . Algorithm 12
4: M ← TrainModel(D∗, S,D,Ψ) . Algorithm 8
5: W ← LearnWeight(D∗,Φ, S,M,Ψ) . Algorithm 11
6: D′ ← Synthesize(S,M,Φ,D,W) . Algorithm 9
7: return D′

8: end procedure

4.2.1 Private Learning of Tuple Probability

Recall Equ. (2.2) that, given a schema sequence S = [A1, A2, . . . , Ak], the tuple probability
becomes Pr[t] = Pr(t[A1]) ·

∏k
j=2 Pr (t[Aj] | t[A1, . . . , Aj−1]). Instead of learning a single

distribution over the full domain of a tuple, we learn the probability distribution of the
first attribute in the sequence and (k−1) number of conditional probabilities. For the first
attribute, we apply Gaussian mechanism [56] to learn its distribution. For each of remaining
(k−1) condition probabilities, we learn it as a discriminative model. In particular, for each
conditional probability Pr (t[Aj] | t[A1, . . . , Aj−1]), we train a discriminative sub-model that
uses context attributes (A1, . . . , Aj−1) to predict the target attribute Aj. We denote this
sub-model by MX,y, where X = S:j and y = S[j]. We also apply the tuple embedding to
privately learn a unified representation with a fixed dimensionality for each attribute in
the tuple (§ 2.1.2). The training of each discriminative sub-model on the samples from the
true data is optimized and privatized using DPSGD [11, 22, 155, 164].

Algorithm 8 describes how Kamino privately learns the probability distribution of the
first attribute in the sequence S, denoted by M∅,S[1], and the parameters in the (k − 1)
discriminative sub-models MS:j ,S[j] for j ∈ [2, k]. It takes as input of the true database
instance D∗ with domain D, the schema sequence S (to be discussed in § 4.2.3), as well as
learning parameters (number of iterations T , batch size b, learning rate η, and quantizing
q bins for numerical attributes) and noise parameters (σg and σd for Gaussian noise, L2

norm clip threshold for gradients C). The configuration of these parameters is presented
in § 4.4 to ensure the overall privacy loss of Kamino is bounded by the given budget (ε, δ).

Following the attribute order in S, we start with the first attribute S[1] and apply
Gaussian mechanism to the true distribution of S[1] (Line 2-4). If the first attribute has a

65

Algorithm 8 Probabilistic data model training

Input: D∗,D, S . True instance, domain, schema sequence
Input: n, k, η, q . cardinality, dimensions, lr, quantization
Input: σg, σd . Noise scales in Ψ
Input: C, T, b . L2 norm clip/#iterations/batch size in Ψ

1: procedure TrainModel(D∗, S,D,Ψ)
2: H ← counts of (quantized) values in D∗ for 1st attr. S[1]
3: Add noise drawn from N (0, 2σ2

g) to each count in H
4: M∅,S[1] ← distribution of S[1] based on H, and add it to M
5: Initialize embedding for attribute S[1]
6: for j ∈ [2, k] do
7: X = S:j, load embedding . Context attributes
8: y = S[j], initialize embedding . Target attribute
9: Initialize discriminative model MX,y . [165]

10: L(θy, t)← loss function on imputing target y
11: for e ∈ [T] do . For each of iteration
12: De ← random sample on D∗[X, y] with prob b/n
13: For each t ∈ De, compute ge(t)← ∇θyL(θy, t)

14: ḡe(t)← max(1,
‖ge(t)‖2

C
) . Clip gradient

15: g̃e ← (
∑

t∈De ḡe(t) +N (0, σ2
dC

2I))/b . Add noise
16: θy ← θy − η × g̃e . Gradient descent
17: end for
18: Add MX,y to M
19: Save embedding and attention weights for S:j+1

20: end for
21: return M
22: end procedure

continuous domain, we partition its domain into q bins. Starting from the second attribute
in S, we train the discriminative model. We first load the initial values of the parameters of
each sub-model from previous training if they exist (Line 7). Depending on the data type
of the target attribute, a cross entropy (for categorical target attribute) or mean squared
(for numerical target attribute) loss function on predicting the target attribute value is
also set before model training (Line 10).

Each discriminative model MS:j ,S[j] is learned via backpropagation for T iterations
(Line 11-17). At each iteration, we randomly sample a set of training tuples De, with

66

sampling probability b/n (i.e., E(|De|) = b), and on each of the training tuple, the gradient
w.r.t model parameters is computed (Line 13). We clip the L2 norm of the gradient by the
threshold C (Line 14), and add noise to clipped gradient (Line 15) with sensitivity equal
to clipping threshold C, before updating the parameters via gradient descent (Line 16).
After one discriminative model is trained, we add it to our probabilistic data model M
(Line 18). Since we iteratively expand the context attributes as more sub-models are
trained, we save the currently trained embeddings of attributes [X, y] (Line 19), and reuse
in the initialization of context attributes of the next sub-model (Line 7). The final output
from Algorithm 8 is the probabilistic data model M , which will be used to sample tuple
values in § 4.2.2.

Algorithm 8 consists of 1 + (k − 1)× T rounds of access to the true database instance
D∗. Each access is privatized using the Gaussian mechanism or the DPSGD. By the
composibility of differential privacy, Algorithm 8 satisfies differential privacy. We will
analyze the privacy cost in § 4.4. The time complexity is linear to n+ b(k − 1)T , which is
the expected number of tuples that are sampled for training. An optimization for efficiency
is to train each MX,y in parallel without reusing previously trained embeddings (Line 7),
and we will evaluate this trade-off in § 4.5.3.

4.2.2 Constraint-Aware Database Sampling

After we have privately learned the tuple probability, the next step is to sample a database
instance D′ of size n based on the learned data model M and the given DC weights as
summarized in Algorithm 9.

Given a schema sequence S, we first independently sample a value for the first attribute
in S of all the n tuples based on its noisy probability distribution represented by M∅,S[1]

(Line 2). Depending on S[1]’s data type, categorical values are sampled directly; while
for numerical values, we first sample a bin, and randomly take a value from the domain
represented by the bin.

From the second attribute in S onward, for each attribute Aj and each tuple ti, we
sample a value for ti[Aj] conditioned on (1) the attributes of ti that have been assigned a
value, i.e., ti[S:j] = c, and (2) the tuples that have been sampled before ti, i.e. D′:i[S:j+1].
For each v from the domain of Aj (or a selected set of values of size d if Aj has a continuous
or extremely large domain size), we first extract the conditional probability

Pr(t[Aj] = v | t[S:j] = c)

67

from the learned discriminative sub-model MS:j ,S[j], and denote it by pv|c (Line 6). If
the target attribute Aj has a discrete domain, the conditional probability pv|c takes the
probability that MS:j ,S[j] predicts the target attribute Aj = v given the context attributes
S:j = c. If the target attribute Aj has a continuous domain, the discriminative model is
based on regression model and outputs a Gaussian distribution mean µ and std σ given the
context attributes S:j = c. We sample d number of candidates from this distribution and
assign each candidate v with a probability pv|c ∝ { 1

σ
√

2π
exp(−1

2
(v−µ

σ
)2)}. The other values

in the domain are assigned with probability 0. We denote the candidate set by D(S[j]).

Next, we compute the number of DC violations vioφ,v|D′ if we assign ti[Aj] = v:

|V (φ, ti[S:j] = c ∧ ti[Aj] = v | D′:i[S:j+1])|

for each DC violation φ ∈ ΦAj (Line 8). Last, we sample a value v based on the combined
probability

P [v] ∝ pv|c · exp(−
∑
φ∈ΦAj

wφ × vioφ,v|D′))

and update the jth attribute of ti (Line 10). The final output is a synthetic database
instance D′ of size n with the same schema as the true database instance D∗.

Without the constraint-aware sampling (Line 7-9), the sampling process results in a set
of i.i.d. tuple samples. This resulted instance can fail to preserve even simple constraints
such as FDs (e.g., φ1) or single-tuple DCs (e.g., φ3), because not all the domain values
appear in the true data D∗. Such values can be sampled due to noisy distribution and
hence lead to DC violations. By adjusting the sampling probability based on the violations
caused by the new cell value of a tuple (Line 10), we can control the additional number of
violations due to the noisy distribution learned.

General MCMC sampling requires re-sampling of the entire full D′ with all attributes,
and hence at least k−1 more conditional distributions need to be learned. However, in the
private setting with a fixed privacy budget, learning more distributions will compromise
the accuracy of each learned distribution. Therefore, Kamino uses a constrained MCMC
based on the same set of conditional distributions. As we loop over each attribute (Line 3-
13), it re-samples random cell values for this attribute, conditioned on all other sampled
values (Line 12).

The time complexity of checking one DC’s violations for all n values is O(dn) (for
an unary DC) or O(dn2) (for a binary DC). This can be optimized by exploiting the
property of hard functional dependencies, and we will evaluate one optimization in § 4.5.3.
In addition, when m > 0 for MCMC, the sampling algorithm has an additional cost of

68

Algorithm 9 Constraint-aware database instance sampling

Input: S,M,Φ,D . Schema sequence, data model, DCs, domain
Input: W,L,N . Weight vector (Alg. 11), sample size, #round

1: procedure Synthesize(S,M,Φ,D)
2: D′[S[1]]← sample from distribution M∅,S[1]

3: for j ∈ [2, k] do . Schema sequence S
4: for i ∈ [1, n] do . Tuple id sequence
5: c← ti[S:j] . Values for context attributes of ti
6: {pv|c | v ∈ D(S[j])} ←MS:j=c,S[j]

7: for v ∈ D(S[j]) and φ ∈ ΦS[j] do
8: vioφ,v|D′ ← num. of vio. of φ if ti[S[j]] = v
9: end for

10: Update ti[S[j]] = v where v is sampled with P [v] ∝ pv|c ·exp(−
∑

φ∈ΦS[j]
wφ×

vioφ,v|D′)
11: end for
12: Resample m random cells tr[S[j]] or till convergence
13: end for
14: return D′

15: end procedure

O(mkd+|Φ|dnm). The overall complexity of constraint-aware sampling isO(nkd+|Φ|dn2+
mkd+ |Φ|dnm).

We expect the synthetic database instance has similar number of violations as the truth.
We provides a theoretical analysis at the end (§ 4.6.1).

4.2.3 Constraint-Aware Sequencing

Given a fixed privacy budget, the goal is to identify a good schema sequence, where the
set of attributes that can well discriminate attribute Aj should appear before Aj in the
sequence. Unlike prior work [44, 171] that spend part of the privacy budget in learning
a good sequence, we make use of the input DCs Φ and the domain D. This heuristic
approach incurs no privacy cost since the true database instance D∗ is not queried.

Specifically, we propose a rule-based, instance-independent method to ensure that for
an FD X → Y in Φ, we have X ahead of Y in S (unless Y → X too). Algorithm 10
describes the process of finding a schema sequence S. For the list of FDs Σ = [X1 →

69

Algorithm 10 Constraint-aware attribute sequencing

Input: R,D,Φ . Input schema, domain, and DCs
1: procedure Sequencing(R,D,Φ)
2: Σ← FDs from Φ sorted by increasing domain size of LHS
3: Initialize S ← []
4: for all X → Y ∈ Σ do
5: Sort attributes X by its domain size
6: For all A ∈ [X, Y], append A to S if A 6∈ S
7: end for
8: Append attributes in (R−S) to S in an order of increasing domain size, and return
S

9: end procedure

Y1, . . . , Xm → Ym], we sort the list Σ by the minimal domain size of an attribute from X
(i.e., ∃A1 ∈ X1,∀A2 ∈ X2, |D(A1)| ≤ |D(A2)|) (Line 2). For each FD, we greedily add its
left hand side and right hand side attributes into the final schema sequence S (Line 4-7).
For the rest of attributes that do not participate in FDs, we order them by ascending
domain size and append to S (Line 8). The complexity is O(k|Σ|+ log k), consisting costs
of sorting FDs and attributes.

Our sequencing algorithm relies on the given FDs as a subset of DCs. In cases that
Φ does not include any FDs (i.e., Σ = ∅), Algorithm 10 returns a sequence based on the
domain size. Following this sequence, each discriminative sub-model (§ 4.2.1) will have
the smallest possible domain size for its context attributes (cross-product of all context
attributes’ domain sizes), and hence each sub-model can be more accurately learned. For
example, consider [A1, A2, A3] with domain sizes 2, 3, 5, respectively. The overall context
attribute domain size is 8 (=2+6), instead of 20 on the reversed sequence.

Optimizations for extreme domain sizes. For attributes with small domain size, we
can group adjacent attributes in the schema sequence into one hyper attribute, and learn
one discriminative sub-model instead of multiple sub-models. As a result, less privacy
budget will be consumed. For example, applying Algorithm 10 on the BR2000 dataset [174]
with 38k tuples resulted in a schema sequence starting with 7 binary attributes. In this
case, we can create a hyper attribute of domain size 27 to replace the group of the binary
attributes. After the synthetic hyper attribute value is generated, we can un-group it to
individual attributes and check violations if any. On the other end, the distribution of
attributes with very large domain size may not be learned well, due to insufficient amount
of training data. For example, the Tax dataset [43] with 30k tuples has one zip attribute

70

Algorithm 11 Learning DC weights

Input: D∗,Φ, S . True instance, DCs, schema sequence
Input: σw, Tw, Lw . Noise scale/#iteration/sample size in Ψ
Input: bw, Sw . Batch size in Ψ, sensitivity (Lemma 1)

1: procedure LearnWeight(D∗,Φ, S,M,Ψ)
2: Initialize weight vector W of length |Φ| if unknown
3: Take a random sample D̂ from D∗ with a probability Lw/n
4: Drop tuples from the sample if |D̂| > Lw
5: Compute violation matrix V of size (|D̂| × |Φ|) from D̂
6: Add noise drawn from N (0, S2

wσ
2
w) to each value in V

7: Set negative values in V to zero
8: for Aj ∈ S and e ∈ [Tw] do
9: ids← sample b ids from [1, Lw] with prob bw/Lw

10: for each i ∈ ids do
11: O ← exp(−

∑
φl∈ΦAj

W [l] · V [i][l])

12: Update W via back propagation by max O
13: end for
14: end for
15: return W
16: end procedure

with domain size of 18k. The training sample of size b× T in Algorithm 8 may not cover
all values in the domain, and hence learned distribution can have large variance. In this
case, we can apply Gaussian mechanism to its true distribution, and sample independently
without relying on the context attributes.

4.3 Learning DC Weights

Kamino so far assumes the weights of DCs W are known. For example, the weights for
hard DCs (no violations in the true data) are set to be infinitely large. However, for soft
DCs, the weights are usually unknown and need to be estimated. We follow the intuition
that if a DC is observed with many violations in the training data, then its weight will be
set small. Otherwise, if there is no violation, then its weight will be set large. Based on
this intuition, we design Algorithm 11 to first privately learn the number of violations to
each DC and then estimate the weights as a post-processing step.

71

We transform the given data instance D into a violation matrix V of size |D|×|Φ|, where
each value V [i][l] represents the number of violations to the lth DC in Φ caused by tuple
ti with respect to all other tuples in D, i.e., V (φl, ti | D− {ti}). Based on the transformed
data, the objective is to maximize the exponential part represented in Eqn. (2.1). However,
the violation matrix based on the full true instance is highly sensitive to the change of one
tuple. For binary DCs that involve two tuples, changing one tuple can incur up to O(n)
additional number of violations.

To bound the sensitivity of the violation matrix, we sample a small set of tuples D̂
of size Lw as the training example (Line 4). Each tuple from the true instance D∗ is
independently sampled with probability Lw/n (i.e., E(|D̂|) = Lw). If the resulted sample
has a size greater than Lw, we randomly drop tuples to crop the size to Lw. This allows
us to bound the sensitivity of the violation matrix, and also reduces the time complexity
from O(|Φ|n2) to O(|Φ|L2

w).

Lemma 1. The L2 sensitivity of the violation matrix for Φ that contains only unary and
binary DCs is Sw = |φu| + |φb| ×

√
L2
w − Lw, where |φu| and |φb| represent the number of

unary DCs and the number of binary DCs in Φ, respectively.

Proof. Consider a pair of neighboring instances by changing one tuple. If a DC is an unary
DC, then the differing tuple can change the violation count by 1. If the DC is a binary
DC, the differing tuple may violate all other Lw − 1 tuples in the instance. Thus, the L2

norm of the maximum violation count change Sw is:

Sw = (|φu| ×
√

1) + (|φb| ×
√

12 + 12 + · · ·+ 12 + (Lw − 1)2)

= |φu| × 1 + |φb| ×
√
Lw − 1 + (Lw − 1)2

= |φu|+ |φb| ×
√
L2
w − Lw

Hence, we apply Gaussian mechanism to perturb the violation matrix V over the sam-
ples and post-process all the negative noisy counts to zeros (Lines 5-7). Then we loop over
each attribute Aj ∈ S for Tw iterations (Line 8). For each Aj, we sample b rows from the
noisy V to update weights W for the set of active DCs related to Aj (Lines 8-14). We
will analyze the privacy cost in § 4.4. The time complexity of this post-processing step is
O(|Φ|bTw) in terms of the number of tuples that are used for learning.

72

4.4 Privacy Analysis

Kamino involves at most three processes that require access to the true database in-
stance:

M1: Learning the distribution of the first attribute in the schema sequence (Algorithm 8
Line 2-4);

M2: Training k − 1 discriminative models (Algorithm 8 Line 6-20);

M3: Learning the DC weights if unknown (Algorithm 11).

Each process has been privatized using the Gaussian mechanism or DPSGD. The other
steps (Algorithm 9 and Algorithm 10) not accessing the true database do not incur privacy
loss. Hence, we can show Kamino achieves DP by simple sequential composition [51] and
post-processing property [52] of DP. However, this does not give us the tightest privacy
bound. Instead, we apply Rényi DP (RDP) [128], a generalized privacy notion and its
advanced composition techniques for the privacy analysis of Kamino.

Definition 10 (Rényi-DP [128]). A randomized algorithm M with domain D is (α, ε)-
RDP at order α > 1, for any pair of neighboring database instances D,D′ ∈ D that differ
in one tuple. Let PD and PD′ be the output probability density of M(D) and M(D′),

respectively. It holds that: 1
α−1

logEx∼M(D′)

(
PD(x)
PD′ (x)

)α
≤ ε.

We state the RDP cost of Kamino as follows. Both the post-processing and compos-
ability properties apply to RDP. Specifically, if a sequence of adaptive mechanisms M1,
M2, · · · , Mk satisfy (α, ε1)-, (α, ε2)-, · · · , (α, εk)-RDP, then the composite privacy loss is
(α,
∑k

i=1 εi)-RDP.

As we applied the Gaussian mechanism on sampled data, we summarize the RDP
privacy loss of a generalized mechanism, the sampled Gaussian mechanism (SGM) [129].

Lemma 2. Given a database D and query f : D → Rd, returning f({x ∈ D |
x is sampled with probability r}) + N (0, S2

fσ
2Id) results in the following RDP cost for an

integer moment α 1

Rσ,r(α) =

{
α

2σ2 r = 1∑α
k=0

(
α
k

)
(1− r)α−krk exp(α

2−α
2σ2) 0 < r < 1

We analyze the RDP cost of each step in Kamino and result in the following total cost.

1Analysis on general fractional moments is in related work [129].

73

Theorem 9. The total RDP cost of Kamino with parameter configuration set Ψ =
{σg, σd, σw, b, T, k, Lw, iw . . .} (Algorithm 7) is

RΨ(α) =
α

2σ2
g

+ T (k − 1)×
α∑
k=0

(
α

k

)
(1− b

n
)α−k(

b

n
)k exp(

α2 − α
2σ2

d

)

+ iw

α∑
k=0

(
α

k

)
(1− Lw

n
)α−k(

Lw
n

)k exp(
α2 − α

2σ2
w

),

where iw is a binary indicator for M3 (DC weight learning).

Proof. Kamino has the following adaptive SGMs:

• For M1, the sampling rate is 1, RM1(α) = α/2σ2
g .

• For M2, the sampling rate is set to b/n, and SGM is applied T × (k − 1) times. Thus,
RM2(α) = T (k − 1)×

∑α
k=0

(
α
k

)
(1− b

n
)α−k(b

n
)k exp(α

2−α
2σ2
d

).

• For M3, the sampling rate is Lw/n. Thus, RM3(α) =
∑α

k=0

(
α
k

)
(1 −

Lw
n

)α−k(Lw
n

)k exp(α
2−α
2σ2
w

).

By the composition property [128] of RDP, the total RDP cost is:

RKamino(α) =
α

2σ2
g

+
α∑
k=0

(
α

k

)
(1− Lw

n
)α−k(

Lw
n

)k exp(
α2 − α

2σ2
w

)+

T (k − 1)×
α∑
k=0

(
α

k

)
(1− b

n
)α−k(

b

n
)k exp(

α2 − α
2σ2

d

)

By the tail bound property of RDP [128], we can convert the RDP cost of Kamino to
(ε, δ)-DP, where ε is computed by

εΨ(δ) = min
α
RΨ(α) +

log(1/δ)

α− 1
, (4.5)

for a given δ. The order α is usually searched within a range [163].

In practice, the overall privacy budget (ε, δ) is specified as an input to Kamino, and
one needs to judiciously set the privacy parameters in Ψ. Setting these parameters is
non-trivial as they are volatile to input datasets. To automatically assign parameters,

74

Algorithm 12 Searching DP parameters

Input: ε, δ,D, S . Privacy budget, domain, schema sequence
1: procedure SearchDParas(ε, δ,D, S)
2: C ← 1, σd ← 1.1, η ← 10−4 . norm clip, noise scale, lr
3: σg ∈ [0.1/|D(S[1])|, 4

√
log(1.25/δ)/ε], σd ∈ [1, 1.5]

4: b ∈ [16, 32], T ∈ [n/min(b), 5n/min(b)]
5: Initialize σg, σd to the minimal, and T, b to the maximal
6: if DC weights unknown then
7: εw, Lw ← 100, σw ←

√
2 log (1.25/δw)/εw

8: bw ← 1, Tw ← Lw/bw
9: end if

10: while εΨ(δ) > ε do . Eqn. (4.5)
11: If T > Tmin, then decrease T
12: If σd < σdmax, then increase σd
13: If σg < σgmax, then increase σg
14: If b > bmin, then decrease b
15: end while
16: return Ψ, a set consisting of all above parameters
17: end procedure

Kamino provides a parameter search algorithm, summarized in Algorithm 12. It takes
the privacy budget (ε, δ) and outputs a set of parameters Ψ that ensures that the overall
privacy cost does not exceed (ε, δ). It starts with a default setting based on prior experi-
mental heuristics [27, 163] and the domain information D. The noise parameters including
(σg, σd, σw, b, T, Lw) are boldly set to give the best possible accuracy (Line 5). If this pri-
vacy cost of this configuration is higher than ε (Line 10), then we use a priority order to
decide which parameter to tune (Lines 11-14). This process is repeated till the privacy loss
is capped at total budget. The time complexity is linear to the size of parameter space.

4.5 Evaluation

In this section, we evaluate the synthetic data generated by Kamino with three utility
metrics: 1) consistency with DC constraints in the true data; 2) usefulness in training clas-
sification models; and 3) accuracy in answering α-way marginal queries. We show:

• Kamino preserves data consistency, while state-of-the-art methods fail to preserve most

75

Table 4.1: Description of the datasets that are used in the experiments.
Dataset n k Domain size Hard DCs DCs (omitting the universal quantifier)

Adult 32,561 15 ≈ 252 Yes
φa1 : ¬(ti[edu] = tj[edu] ∧ ti[edu num] 6= tj[edu num])
φa2 : ¬(ti[cap gain] > tj[cap gain] ∧ ti[cap loss] < tj[cap loss])

BR2000 38,000 14 ≈ 216 No
φb1 : ¬(ti[a13] = tj[a13] ∧ ti[a11] < tj[a11] ∧ ti[a3] > tj[a3])
φb2 : ¬(ti[a12] 6= tj[a12] ∧ ti[a13] ≤ tj[a13] ∧ ti[a5] ≥ tj[a5])
φb3 : ¬(ti[a5] ≤ tj[a5] ∧ ti[a3] > tj[a3] ∧ ti[a12] 6= tj[a12] ∧ ti[a11] > tj[a11])

Tax 30,000 12 ≈ 271 Yes

φt1 : ¬(ti[zip] = tj[zip] ∧ ti[city] 6= tj[city])
φt2 : ¬(ti[areacode] = tj[areacode] ∧ ti[state] 6= tj[state])
φt3 : ¬(ti[zip] = tj[zip] ∧ ti[state] 6= tj[state])
φt4 : ¬(ti[state] = tj[state] ∧ ti[has child] = tj[has child] ∧ ti[child exemp] 6= tj[child exemp])
φt5 : ¬(ti[state] = tj[state] ∧ ti[marital] = tj[marital] ∧ ti[single exemp] 6= tj[single exemp])
φt6 : ¬(ti[state] = tj[state] ∧ ti[salary] > tj[salary] ∧ ti[rate] < tj[rate])

TPC-H 20,000 9 ≈ 242 Yes

φh1 : ¬(ti[c custkey] = tj[c custkey] ∧ ti[c nationkey) 6= tj[c nationkey]
φh2 : ¬(ti[c custkey] = tj[c custkey] ∧ ti[c mktsegment) 6= tj[c mktsegment]
φh3 : ¬(ti[c custkey] = tj[c custkey] ∧ ti[n name) 6= tj[n name]
φh4 : ¬(ti[n name) = tj[n name] ∧ ti[n regionkey] 6= tj[n regionkey])

DCs. Kamino is practically efficient.

• While Kamino is not designed for particular tasks, it can achieve comparable and even
better quality in the learning and query task, compared to methods that are designed
for these tasks.

• The constraint-aware sampling and sequencing are effective to keep data consistency.

• Kamino scales linearly with the number of DCs.

4.5.1 Evaluation Setup

Datasets. We choose 4 different datasets with mixed data types and DCs, listed in
Table 4.1. First, the Adult dataset [49] consists of 15 census attributes and 2 hard DCs.
Second, the BR2000 dataset [174] has a smaller domain size than the Adult dataset, but
it has 3 soft DCs with unknown weights. The third dataset, Tax [43], has a very large
domain size, e.g., zip (≈ 215) and city (≈ 214) and 6 hard DCs. Last, TPC-H [9], a
synthethic dataset that joins three tables (Orders, Customer and Nation) and removes
unique attributes such as orderkey and comment. The final table consists of 20,000 orders
with 9 numerical and categorical attributes. The set of hard DCs are obtained by the
foreign key and primary key constraints.

Baselines. Four state-of-the-arts to allow the synthesis of relational data with DP guar-
antees are considered: 1) PrivBayes [174], a statistical method based on Bayesian network;
2) PATE-GAN [95], a GAN-based method that trains a data generator using the PATE’s
student-teacher model [140]; 3) DP-VAE [38], which samples from the latent space of a pri-
vately trained auto-encoder [100]; and 4) The winning solution of the NIST challenge [133]
(labeled as NIST), which applies probabilistic inference [125] over marginals.

76

PATE-GAN and DP-VAE require the input dataset to be encoded into numeric vectors,
and we apply the best encoding scheme empirically [61]. Additionally, PATE-GAN requires
one labeled attribute to train a set of conditional generators, where each generator produces
synthetic data conditioning on one value in the domain of the labeled attribute. We choose
the attribute with smallest domain size from each dataset as the labeled attribute, and
generate the same number of tuples as in the true data, although it reveals the true
histogram of the labeled attribute and favors answering marginal queries. Finally, NIST
requires a set of marginals as input for inference. We use marginals over every single
attribute, and over 10 randomly chosen attribute pairs.

Evaluation Metrics. We evaluate a synthetic database instance D′ of the same size as
the true data D∗ using three metrics.

Metric I: DC Violations. Since all known DCs are binary, we measure the percentage of
tuple pairs that violate DCs in an instance D of size n, i.e., 100 · |V (φ,D)|/

(
n
2

)
.

Metric II: Model training. We consider 9 classification models (LogisticRegression, Ad-
aBoost, GradientBoost, XGBoost, RandomForest, BernoulliNB, DecisionTree, Bagging,
and MLP). On every single attribute of a dataset, we train all models to classify one
binary label (e.g., income is more than 50k or not, age is senior or not, occupation is gov-
ernment job or not) using all other attributes as features. The quality of the learning task
on one attribute is represented by the average of all models. Accuracy and F1 are reported
for learning quality. Each model is trained using 70% of the synthetic database instance,
and evaluate the accuracy and F1 using the same 30% of the true database instance. We
also show the results of training and testing on the true dataset labeled as Truth.

Metric III: α-way marginals. For each attribute combination A, we compute the α-way

marginal, h : D → R|D(A)| on the synthetic data D′ and true data D∗, respectively, and
then report the total variation distance [158] as maxa∈D(A) |h(D′)[a]− h(D∗)[a]|.

Implementation details. Kamino was implemented in Python 3.6 and tested with
m = 0 by default. For the discriminative sub-models, we integrated the code from AimNet
in the HoloClean2 system. For the baselines (PrivBayes3, PATE-GAN4, DP-VAE and
NIST5), we reused the code from their authors with all default parameters. All the 9
models in the learning task were implemented using standard libraries [8, 40] and trained

2https://github.com/HoloClean/holoclean/
3https://sourceforge.net/projects/privbayes/
4https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/pategan/
5https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/

de-identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/rmckenna

77

https://github.com/HoloClean/holoclean/
https://sourceforge.net/projects/privbayes/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/pategan/
https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/rmckenna
https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/rmckenna

with default parameters, except that we set random state = 0 whenever possible, for the
purpose of reproducibility. We report the mean and standard deviation of 3 runs for each
test. All experiments were conducted on a machine with 12 cores and 64GB RAM. The
code, data and evaluation metrics are open sourced on GitHub: https://github.com/

cgebest/kamino.

4.5.2 End-to-End Evaluation

We compare Kamino with all four baselines at a fixed privacy budget (ε = 1, δ = 10−6).

Experiment 1: DC Violations

We show that synthetic data generated by Kamino has a similar number of DC violations
as the true database instance. Table 4.2 lists the percentage of tuple pairs that violate
each of the given DC. On the Adult, Tax and TPC-H datasets, Kamino incurs zero
violations, which is consistent to the observations in the true database instances. On the
BR2000 dataset, the overall numbers of DC violations on the synthetic instance output by
Kamino are the closest to those on the truth among all approaches. The baselines fail to
preserve most of the DCs. For instance, the hard DC φa1 on the Adult dataset has about
11.3%, 32%, and 20.3% violations in the synthetic data generated by PrivBayes, DP-AVE
and PATE-GAN, respectively. Although NIST does not have violations like Kamino, it it
because NIST filled the entire edu num column with the same value. For another instance,
all the hard DCs induced by the foreign key and primary key constraints in the TPC-H
dataset, are preserved only in Kamino.

Experiment 2: Model Training

Figure 4.3 shows the accuracy and F1 on classifying all attributes. Each data point in
Figure 4.3 represents an average of 9 classification models for classifying one target at-
tribute, and we use the box plot to show classification quality on all attributes for each
of the dataset. As Figure 4.3 shows, Kamino achieves the best overall accuracy and F1
on most datasets: the mean of all attributes in Kamino is the closest to the truth, and
other quartiles are the best for majority of the tests comparing to the baseline systems.
For instance, on Adult, training and testing on the true database instance gives average
accuracy of 0.88. The models on the synthetic data by Kamino is 0.82, which outperforms
PATE-GAN (0.77), PrivBayes (0.68), NIST (0.66), and DP-VAE (0.54).

78

https://github.com/cgebest/kamino
https://github.com/cgebest/kamino

Table 4.2: Percentage of tuple pairs that violate DCs. Kamino has the closet DC violations
as the truth, while none of the baselines are able to preserves most of the DCs.

DC Truth PrivBayes DP-VAE PATE-GAN NIST Kamino
φa1 0.0 11.3±0.3 32.0±0.2 20.3±0.0 0.0±0.0 0.0±0.0
φa2 0.0 1.4±0.6 13.2±0.1 24.8±0.1 0.0±0.0 0.0±0.0
φb1 0.4 1.6±0.0 0.0±0.0 0.4±0.0 0.0±0.0 0.6±0.0
φb2 0.9 2.6±0.2 15.6±0.2 0.2±0.0 28.1±6.8 0.6±0.0
φb3 0.5 1.4±0.1 0.0±0.0 0.1±0.0 0.0±0.0 0.3±0.2
φt1 0.0 0.0±0.0 0.0±0.0 0.0±0.0 7.4±1.3 0.0±0.0
φt2 0.0 0.8±0.0 0.0±0.0 0.8±0.0 0.4±0.0 0.0±0.0
φt3 0.0 0.0±0.0 0.0±0.0 0.0±0.0 8.0±1.7 0.0±0.0
φt4 0.0 0.4±0.0 98.9±0.0 2.1±0.0 0.0±0.0 0.0±0.0
φt5 0.0 0.5±0.0 99.0±0.0 4.0±0.0 0.0±0.0 0.0±0.0
φt6 0.0 0.4±0.0 24.5±0.1 0.9±0.0 0.0±0.0 0.0±0.0
φh1 0.0 0.2±0.0 16.7±0.2 5.1±0.1 64.0±45.2 0.0±0.0
φh2 0.0 0.2±0.0 15.7±0.1 4.4±0.1 53.4±37.7 0.0±0.0
φh3 0.0 0.2±0.0 15.3±0.2 5.1±0.1 64.0±45.2 0.0±0.0
φh4 0.0 0.6±0.0 30.1±0.1 1.2±0.0 3.2±0.0 0.0±0.0

Experiment 3: α-way Marginals

Figure 4.4 shows the total variation distance for all attributes or attribute combinations on
each of the dataset. Each data point represents a total variation distance of the distribu-
tions between the true database instance and the synthetic database instance, for a certain
attribute (1-way) or an attribute set (2-way). As it shows, Kamino has the smallest or
close to the smallest variation distances. Taking the first 1-way marginal on the Adult
dataset as an example, Kamino has a mean of 0.11, which is second to the smallest mean
of PATE-GAN (0.09), and a maximal distance of 0.34, which is the smallest comparing to
PATE-GAN (0.37), PrivBayes (0.65), NIST (0.89), and DP-VAE (1.0).

Experiment 4: Execution time

Since Kamino explicitly checks DC violations during sampling, it is expected to take
longer running time than baseline methods that generate i.i.d samples. In our evaluation,
NIST and PrivBayes were the most efficient on all datasets, and took at most 217±13
and 1,367±561 seconds, respectively. Because of training deep models on encoded data,

79

●

●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

A
cc

ur
ac

y

Adult

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

A
cc

ur
ac

y

BR2000

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

A
cc

ur
ac

y

Tax

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

A
cc

ur
ac

y

TPC−H

●

●
●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

F
1

Adult

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

F
1

BR2000

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

F
1

Tax

●
●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Truth

Method

F
1

TPC−H

Figure 4.3: Accuracy and F1 of evaluating classification models, which are tested on the
true dataset and trained on synthetic data by different methods. Each point represents
an averaged classification quality (accuracy or F1) over 9 models for one target attribute
using all other attributes as features. Each box represents a set of classifications, one for
each attribute in the schema. Kamino achieves the overall best accuracy and F1 scores
on most datasets.

running time of DP-VAE and PATE-GAN on all datasets fell into the range of 20 minutes
to 13 hours. For Kamino, the running time on all datasets were in 5-16 hours, which is
still practically efficient.

Figure 4.7 profiles Kamino’s execution time of each process (sequencing, model train-
ing, computing violation matrix and learn DC weights for soft DCs, and sampling). As
Figure 4.7 shows, performance of Kamino is dominated by training and sampling, which
together take more than 99% of the total time.

4.5.3 Component Evaluation

Experiment 5: Effectiveness of constraint-aware components

Recall that our approach takes DCs into account when it samples synthetic values (§ 4.2.2)
and generate the schema sequence (§ 4.2.3). In this experiment, we compare Kamino with
three sub-optimal Kamino that do not have the constraint-aware components:

• Replace constraint-aware sampling (Algorithm 9) in Kamino with sampling tuples
independently, labeled as “RandSampling”;

• Replace constraint-aware sequencing (Algorithm 10) by a random sequence, labeled as
“RandSequence”;

80

●

●

●

●

●

●

●

● ●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

1−way, Adult

●

●

●●●

0.00

0.25

0.50

0.75

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

1−way, BR2000

●
●

●0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

1−way, Tax

●

●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

1−way, TPC−H

●
●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

2−way, Adult

●●

●

●●●●●
●
●
●●
●●●●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

2−way, BR2000

●●

●

●

●●●

●

●●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

2−way, Tax

●

●

●●

●●

●

●
●●
●
●●

●

●

●

●●

●

0.00

0.25

0.50

0.75

1.00

DP−VAE
NIST

PrivBayes

PATE−GAN
Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

2−way, TPC−H

Figure 4.4: Total variation distance on α-way marginals, where α = [1, 2]. Each point
represents a total variance distance for one attribute set, and each box represents total
variance distance for all attribute sets. It shows that Kamino can achieve overall the best
(Adult) or close to the best (BR2000, Tax and TPC-H) variation distance.

0.6

0.7

0.8

0.9

1.0

Rand
Both

Rand
Sampling

Rand
Sequence

Kamino Truth

Method

A
cc

ur
ac

y

Adult

(a) Accuracy

0.00

0.25

0.50

0.75

1.00

Rand
Both

Rand
Sampling

Rand
Sequence

Kamino Truth

Method

F
1

Adult

(b) F1

●

●

●

●

0.0

0.2

0.4

0.6

Rand
Both

Rand
Sampling

Rand
Sequence

Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

Adult, 1−way

(c) 1-way marginal

●
●

●

●

●

●

●

0.0

0.2

0.4

0.6

Rand
Both

Rand
Sampling

Rand
Sequence

Kamino

Method

V
ar

ia
tio

n
D

is
ta

nc
e

Adult, 2−way

(d) 2-way marginal

Figure 4.5: Accuracy and F1 of model training on Kamino, and sub-optimal Kamino
without constraint-aware sampling, sequencing, and neither, using the Adult dataset as
the example. It shows the the Kamino with constraint-aware components can achieve the
best quality in both the learning task and in the query task.

• Replace both components above, labeled as “RandBoth”.

Table 4.3 compares DC violations of the synthetic data generated by Kamino and
by sub-optimal Kamino without constraint-aware components. First, we see that with-
out constraint-aware sampling component (Algorithm 9), the synthetic data generated by
RandSampling and RandBoth have more violations than the other two methods. Sec-
ond, the constraint-aware sequencing component (Algorithm 10) is also important. Take
φa1 : edu → edu num as an example, RandBoth (without the constraint-aware sequenc-
ing) results in a higher number of DC violations than RandSampling. This is because
that edu is not necessarily placed before edu num in a random schema sequence, and the
noisy model cannot preserve the correlation between these two attributes. Similar, without

81

●
●

● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.4 0.8 1.6 Inf
Epsilon

A
cc

ur
ac

y

● DP−VAE
NIST

PrivBayes
PATE−GAN

Kamino

Adult

(a) Accuracy

● ●

●
● ●

●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.4 0.8 1.6 Inf
Epsilon

F
1

● DP−VAE
NIST

PrivBayes
PATE−GAN

Kamino

Adult

(b) F1

●

● ●
●

●

●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.4 0.8 1.6 Inf
Epsilon

V
ar

ia
tio

n
D

is
ta

nc
e

● DP−VAE
NIST

PrivBayes
PATE−GAN

Kamino

Adult, 1−way

(c) 1-way marginal

●

● ● ●
●

●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.4 0.8 1.6 Inf
Epsilon

V
ar

ia
tio

n
D

is
ta

nc
e

● DP−VAE
NIST

PrivBayes
PATE−GAN

Kamino

Adult, 2−way

(d) 2-way marginal

Figure 4.6: Task quality of the Kamino and baselines by varying privacy budget (ε, 10−6).

Table 4.3: Percentage of DC violations using Kamino, and sub-optimal Kamino w/o
constraint-aware components.

DC Truth Kamino RandSequence RandSampling RandBoth
φa1 0 0.0±0.0 0.0±0.0 0.4±0.0 9.1±8.5
φa2 0 0.0±0.0 0.0±0.0 36.8±0.3 26.1±11.0

constraint-aware components, quality downgrades in both learning and query task shown
in Figure 4.5.

We omit the presentation of non-private runs for similar observations. We believe that
the constraint-aware components can also be incorporated into the baseline systems, but
we skip the comparison because it requires significant re-design of the baseline systems.

Experiment 6: Kamino vs Accept-Reject Sampling

Kamino’s constraint-aware sampling (Algorithm 9) explicitly constructs the target distri-
bution and directly samples from it for filling a cell (Line 10). Another sampling method
is the accept-reject (AR) sampling [134], which samples one value at a time, and accepts
this value probabilistically based on its violations. For soft DCs, AR-sampling can be an
alternative, but it does not work well for hard DCs.

We first evaluate Kamino using AR-sampling on the Adult dataset with hard DCs.
AR-sampling does not work well when hard DCs are present. If a sampled value incurs any
violations, then its accept ratio (i.e., exp(−

∑
φ∈ΦAj

wφ× vioφ,v|D′), where v is the sampled

value of attribute Aj) diminishes to 0, since wφ = ∞. As a result, AR-sampling needs
re-sampling multiple times until a value can be accepted, depending on the other cells that
have been filled with sampled values. For efficiency purpose, we allow at most 300 samples
per cell: if no values can be accepted, we take the last sampled value and as a result,
violations can occur. Kamino with AR-sampling does produce violations for the two DCs

82

77.97%

78.48%

78.75%
20.65%

22.03% 21.52%
21.25%

78.83%
0

20000

40000

60000

Adult BR2000 Tax TPC−H
Dataset

T
im

e
(s

ec
on

ds
)

Seq. Tra. Vio. DC.W. Sam.

Figure 4.7: Time of
end-to-end runs on all
datasets.

● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2 4 8 16 32 64 128
Number of DCs

Tr
ai

ni
ng

 Q
ua

lit
y

● Accuracy F1

Adult

(a) Model Training

● ● ● ●
● ● ●

0.0

0.2

0.4

0.6

2 4 8 16 32 64 128
Number of DCs

V
ar

ia
tio

n
D

is
ta

nc
e

● 1−way 2−way

Adult

(b) Marginal Distance

0

20000

40000

60000

80000

2 4 8 16 32 64 128
Number of DCs

T
im

e
(s

ec
on

ds
)

Seq. Tra. Vio. DC.W. Sam.

Adult

(c) Time Complexity

Figure 4.8: Varying the number of DCs.

φ1
a (0.4±0.0) and φ2

a (37.2±0.0). The execution time of Kamino with AR-sampling takes
7.5 hours, which is 1.9× longer.

On the BR2000 dataset with soft DCs, Kamino with AR-sampling completes in 1.26
hours (0.24 hour for the AR-sampling step) on average, which is faster than the constraint-
aware sampling (3.9 hours). AR-sampling converges faster due to its relatively high accept
ratio. For DC violations and task qualities, we observe that Kamino with AR-sampling
performs similarly with Kamino.

Experiment 7: Varying Privacy Budget

We show the impact of the privacy budget in the task qualities using the Adult dataset
as the example. Figure 4.6 compares the data usefulness by varying the privacy budget
parameter (ε, δ) at different ε = [0.1, 0.2, 0.4, 0.8, 1.6] with a constant δ = 10−6. ε = ∞
refers to non-private Kamino and baselines. First of all, increasing the privacy budget
leads to overall better quality in both the learning and the query tasks. Consistent with
the observations in Figures 4.3-4.4, Kamino always achieves the best in training quality
(Figures 4.6a-4.6b) and close to best marginal distances (Figures 4.6c-4.6d) at different
privacy budgets. The averaged model accuracy over all attributes on Kamino is 0.8
at privacy budget (ε = 0.2, δ = 10−6), which outperforms DP-VAE (0.54), NIST(0.66),
PrivBayes (0.68) and PATE-GAN (0.77) at 5× larger ε = 1.

Experiment 8: Scalability of DCs

In this experiment, we vary the number of DCs from the input to Kamino. Due to the lack
of large numbers of ground DCs, we generate the input DCs by discovering approximate
DCs [142] to simulate the knowledge from the domain expert.

83

● ● ● ● ● ● ● ●
● ● ●

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3
m / n

Tr
ai

ni
ng

 Q
ua

lit
y

● Accuracy F1

Adult

(a) Model Training

● ● ● ● ● ● ● ● ● ● ●

0.0

0.2

0.4

0.6

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3
m / n

V
ar

ia
tio

n
D

is
ta

nc
e

● 1−way 2−way

Adult

(b) Marginal Distance

0

20000

40000

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3
m / n

T
im

e
(s

ec
on

ds
)

Seq. Tra. Vio. DC.W. Sam.

Adult

(c) Time Complexity

Figure 4.9: Task quality and execution time by varying the number of resampling per
attribute.

Figure 4.8 shows the task quality and time profiling as increasing the number of soft DCs
from 2 to 128, under the fixed privacy budget (ε = 1, δ = 10−6) on the Adult dataset. Since
the DC weights are noisy and approximately learned using a subset of data (Algorithm 11),
increasing the number of DCs implies more noisy adjustment for the sampling probabilities
(Algorithm 9). As a result, task quality is expected to decrease given a finite privacy
budget. Figure 4.8a and Figure 4.8b show that as the number of DCs increases to 128,
task quality only degrades by 0.04.

As the number of DCs increases, more time is required to compute the violation matrix,
learn DC weights, and to sample. In particular, for Kamino’s constraint-aware sampling
process (Algorithm 9), introducing more DCs will linearly increases the time to check
DC violations for each of the DCs. Since the total execution time is dominated by the
sampling process, the total execution time of Kamino scales linearly with the number of
DCs. Figure 4.8c shows that when the number of DC increases from 2 to 128, the total
execution time increases only by 3×.

Experiment 9: Varying the Number of Re-sampling in MCMC

Recall that Kamino’s sampling process adopts MCMC by re-sampling m random cells
after each column is synthesized (Algorithm 9). Figure 4.9 shows the effects of m, which
is represented as a ratio over dataset cardinality n on the x-axis. Comparing to no re-
sampling, the re-sampling up to m = 3n using the same probabilistic data model improves
accuracy (by up to 0.03), F1 (by up to 0.02), and both 1-way and 2-way marginal distances
(by 0.01 and 0.02, respectively). Meanwhile, more re-sampling requires longer execution
time (by up to 4×).

84

Experiment 10: Efficiency Optimizations

This section presents two optimization techniques to speed up Kamino under certain con-
ditions. The first technique is to train Kamino’s probabilistic data models (Algorithm 8)
in parallel, where each model MX,y is trained on a separate machine and tuple embed-
dings are initialized randomly, instead of reusing previously trained ones. Without reusing
the tuple embeddings, we observe that although all task qualities drop 0.01 on the Adult
dataset, the training time becomes 3.5× faster.

The second optimization is to exploit the special property of DCs. One special DC is
the hard functional dependencies (e.g., keys), where the right-hand-side attribute has only
one unique value given the left-hand-side values. Instead of checking violations for the set
of candidate values, we can find the correct value from previously synthesized data. We
scale up the TPC-H dataset to 1 million rows with the same set of DCs. Kamino can
complete in 10 hours by leveraging the fact that all DCs are hard functional dependencies.

4.6 Discussion and Conclusion

4.6.1 DC Violation Analysis

Consider in the non-private setting and assume that the true database has no violations
for the given set of DCs. Intuitively, we can learn an accurate probabilistic database model
according to the learnability theorem (Theorem 14 [151]). When sampling from the learned
probabilistic database model, the sampled synthetic database instance should have a small
number of DC violations. Formally, we state the following theorem.

Theorem 10. Given a true database instance D∗ with no constraint violations for a set
of DCs Φ, we learn the probabilistic database model D and sample a synthetic database
instance D′ ∼ D based on Eqn. (4.2). The sampled D′ incurring any DC violations has a
low probability.

Proof. Let Θ represent the parameter set for the tuple probability, and W denote the
weight vector of DCs. Given the true database instance D∗ with no DC violations, the
parameters can be found by maximizing the likelihood of D∗, i.e.,

Θ∗,W ∗ = arg max
Θ,W

Πt∈D∗ Pr(t; Θ)

Z
(4.6)

85

where

Z =
∑

D∈DV=0

Πt∈D Pr(t; Θ)+∑
D∈DV 6=0

Πt∈D Pr(t; Θ) exp(−
∑
φ∈Φ

wφ|V (φ,D)|)

and DV=0 represents the set of database instances with no DC violations. To maximize
the likelihood of D∗, the weight wφ for each DC are set to be very large (i.e., wφ →∞).

Finally, suppose ∃φ ∈ Φ, such that |V (φ,D′)| 6= 0, and consider the probability of
sampling D′:

Pr(D′; Θ∗,W ∗) =
Πt∈D′ Pr(t)× exp(−

∑
φ∈Φwφ|V (φ,D′)|)

Z
(4.7)

Since wφ →∞ (Eqn. (4.6)) and |V (φ,D′)| 6= 0, then Pr(D′; Θ∗,W ∗)→ 0.

According to Theorem 10, the synthetic database instance D′ is most likely to have
no violations. In § 4.5.2, we empirically show that |V (φ,D′)| = 0 for all hard DCs on all
output instances.

More generally, even if the true database has a small number of DC violations (i.e.,
the low-noise condition [151]), we are still able to learn the parameters of the probabilistic
database model D accurately. In addition, the sampling process follows the chain rule
(Eqn. (4.4)) for Eqn. (4.2) and hence, allows an instance to be sampled correctly from D.
As a result, the true and the synthetic database instances come from the same distribution.
The probability of a synthetic instance depends on the the softness of the DCs (Eqn. (4.7)).

Finding the error bound of DC violations for general DCs with differential privacy
guarantee is an exciting future work.

4.6.2 Conclusion

In this work, we are motivated to design a synthetic data generator that can preserve both
the structure of the data, and the privacy of individual data records. We present Kamino,
an end-to-end data synthesis system for constraint-aware differentially private data synthe-
sis. Kamino takes as input a database instance, along with its schema (including denial
constraints), and produces a synthetic database instance. Experimental results show that
Kamino can preserve the structure of the data, while generating useful synthetic data for
applications of training classification models and answering marginal queries, comparing
to the state-of-the-art methods.

86

Chapter 5

SMFD: Secure Multi-Party
Functional Dependency Discovery

5.1 Problem Statement and Solution Overview

5.1.1 Problem Statement

Assume a dataset D in schema R, which is horizontally partitioned into D1 to Dm: D =
∪mi=1Di. Let S denote the set of all FDs that are valid on the dataset D: S = {f | D |= f},
and let Si be the set of all FDs that are valid on a partition Di: Si = {f | Di |= f}. Let
Ŝ represent the intersection of all Si: Ŝ = ∩mi=1Si. It is clear that S ⊆ Ŝ, as we showed in
the example from § 1.

Recall in § 2.1.1, an FD A→ B is trivial when B ∈ A. We also call an FD minimal if
@K ⊆ A such that A \K → B. Let

∑
be the set of all non-trivial and minimal FDs on

D,
∑
|= S, i.e., any f ∈ S can be either in

∑
or implied by

∑
.

The problem is to securely find
∑

against semi-honest adversaries, where each honest-
but-curious party Pi(i ∈ [1,m]) owns a private Di and follows the protocol honestly, but
tries to infer information from other parties.

87

5.1.2 A Näıve Attempt

One might think of solving the problem by intersecting FDs from different partitions. We
use the following case as a counter example.

Example 9: Consider the following FDs:

f1 : edu→ edu num f2 : country → income

f1 states that for any two persons with the same edu, they must have the same edu num.
f2 states country determines income. Because f1 and f2 are valid FDs on individual
partition D1 and D2, f1, f2 ∈ S1 and f1, f2 ∈ S2, and hence f1, f2 ∈ Ŝ = S1 ∩ S2. By
examining the tuples from individual partitions, it is clear that f1 and f2 are valid FDs on
both D1 and D2.

edu edu_num marital occupation country income
7& Bachelors 13 Single Exec-mag Canada >50K

7' Bachelors 13 Married Exec-mag Canada >50K

73 HS-grad 9 Divorced Exec-mag Canada >50K

74 11th 7 Married Handlers USA ≤50K

75 Bachelors 13 Married Sales USA ≤50K

edu edu_num marital occupation country income
7& HS-grad 9 Divorced Sales Canada ≤50K

7' HS-grad 9 Single Craft-repair Canada ≤50K

73 As-acdm 12 Single Server Canada ≤50K

74 Bachelors 13 Divorced Exec-mag Canada ≤50K

75 11th 7 Married Exec-mag USA >50K

J6

J7

Figure 5.1: Two partitions of employee dataset.

However, by examining the tuples from D = D1 ∪ D2, f2 is not valid on D, due to
violations such as D1.t1[country] = D2.t1[country], but D1.t1[income] 6= D2.t1[income].

5.1.3 Solution Overview

Figure 5.2 depicts the architecture of our solution. Our framework adopts a top-down
approach [120] to prune the FD search space. Assume there are m parties numbered from

88

Worker 1

Worker w

……

……

Party mParty 1

Check&'())

Probabilistic
encrypted inputs

Deterministic re-encryption
decryption mix network

Prune the lattice

+,-. |)012.

Figure 5.2: Architecture of secure multi-party FD discovery.

1 to m, each holding a database partition Di(i ∈ [1,m]), and a mix network chain consisting
of w workers sequentially from worker 1 to w.

We first construct a set containment lattice. Each node in the lattice represents a
set of attributes, and every edge in the lattice represents a candidate FD [86]. In order
to prune the space of possible FDs, for each candidate FD f , all the m parties jointly
validate the candidate FD, which is represented by the functionality of CheckFD(f). The
validation process involves two types of actions: 1) all the parties prepare necessary inputs
and encrypt using probabilistic encryption; and 2) the encrypted messages are sent to a
deterministic re-encryption decryption mix network. A mix network which consists of a
chain of w workers, securely computes on the inputs and and eventually returns the validity
of f , which will be used to prune the lattice in the next round. The process runs until all
the edges have been properly traversed.

Note that traversing the lattice can be guided by any schema driven search algo-
rithms [12, 86, 132, 170], and is not the contribution of this work. The scope of this
work focuses on the fundamental functionality CheckFD(f) that is used to prune the
candidate space.

The details of the solution will be discussed as follows: § 5.2 explains the CheckFD(f)
flow and the end-to-end solution. Two deterministic re-encryption decryption mix net-
works, which are used together to securely validate candidate FDs will be introduced in
§ 5.3.

89

5.2 Secure FD Discovery

Recall in § 5.1.3 that our solution is based on validating candidate FD to prune the search
space. We first formulate the distribuetd FD validation in § 5.2.1, and then introduce the
FD discovery protocol in § 5.2.2.

5.2.1 Distributed FD Validation

The main observation is that in order to validate a candidate FD f , one needs to compare
all the attributes relevant to f across the partitions. Based on traditional FD validation
on a single dataset [86], we can extend the FD validation rule on distributed partitions as
follows:

Lemma 3. (Distributed FD Validation) A dataset D in schema R is partitioned into D1

to Dm: D = ∪mi=1Di. An FD A→ B holds on D if and only if e(AD) = e((A ∪B)D).

Example 10: Consider D = D1 ∪ D2 in Figure 5.1. For the candidate FD f1:

πedu = {Bachelors, HS-grad, 11th, As-acdm}, and hence e(eduD) = 10 − 4 = 6.
Similarly, πedu,edu num = {(Bachelors,13),(HS-grad,9),(11th,7),(As-acdm,12)}. and
e((edu, edu num)D) = 6. Therefore, D |= f1.

However, for the candidate FD f2: e(ethnicityD) 6= e((ethnicity, income)D); therefore,
D 6|= f2.

Based on Lemma 3, we can further formalize the attribute partition error over multiple
parties. For any attribute set A ⊆ R, the cardinality of m-set union1 satisfies:

‖πDA‖ =
m∑
i=1

‖πDiA ‖ (5.1)

Meanwhile, the size of attribute partitions satisfies:

|πDA | =
m∑
i=1

|πDiA | −
∑

1≤i<j≤m

|V Di
A ∩ V

Dj
A |

+
∑

1≤i<j<k≤m

|V Di
A ∩ V

Dj
A ∩ V Dk

A |+ · · ·

+ (−1)m−1|
m⋂
i=1

V Di
A |

(5.2)

1We assume each tuple has its own tuple id and partition id; therefore no identical tuples exist.

90

Where V Di
A is the set of values of attribute partition of attribute set A on partition Di.

Eqn. (5.1) − Eqn. (5.2) leads to:

e(AD) =
m∑
i=1

e(ADi) +
∑

1≤i<j≤m

|V Di
A ∩ V

Dj
A |

−
∑

1≤i<j<k≤m

|V Di
A ∩ V

Dj
A ∩ V Dk

A |+ · · ·

+ (−1)m|
m⋂
i=1

V Di
A |

(5.3)

From Eqn. (5.3), the final attribute error consists of two parts: 1) the sum of attribute
errors on each partition

∑m
i=1 e(A

Di); and 2) the rest of power set intersection cardinality
(PSI-CA). Every party Pi is able to compute e(ADi) and V Di

A locally since Di belongs to
Pi. To validate an FD A→ B, one simply needs to compute and compare the equality of
e(AD) and e((A ∪B)D) based on Eqn. (5.3).

5.2.2 A Secure FD Discovery Protocol

We arbitrarily choose one party to act as the moderator, who drives a classical schema-
driven FD discovery algorithm such as TANE [86], and instructs FD validations.

Figure 5.3 illustrates the protocol to securely fulfil the CheckFD(f) function: given a
candidate FD f : A → B as input, the protocol consists of three steps: 1) on attribute
sets A and AB, it computes the power set intersection cardinality (PSI-CA) if not done
yet. Each party encrypts and sends its set of values for the attribute partition via a
multiplicative deterministic re-encryption decryption mixnet (§ 5.3.1). The output of the
mixnet is the encrypted set of values for the attribute partition, based on which, the
moderator intersects all sets directly over encrypted values for both attribute sets A and
AB, and returns the cardinalities; 2) each party computes local attribute partition errors
on A and AB and encrypts them to send the difference to an additive deterministic re-
encryption decryption mixnet (§ 5.3.2). Meanwhile, the moderator also encrypts and sends
the difference of PSI-CA of attribute sets A and AB as input. The output of the mixnet is
the encrypted error difference; finally 3), the moderator concludes the validity of candidate
FD based on the output of second mixnet: A → B is true if and only if the encrypted
value equals to 1.

91

CheckFD(f) : FD Validation Protocol for f : A→ B

Moderator P1, . . . ,Pm Mixnet

If A is new run on A

Compute set V Di
A

∀viA ∈ V
Di
A , Encrypt(viA,K)

Multiplicative mixnet

SA =
{{

(vD1
A)M

}
, . . . ,

{
(vDmA)M

}}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PSI-CA(SA) : cardA

Run AB : cardAB

Compute e(ADi),

e(ABDi)

Encrypt(ge(A
Di)−e(ABDi),K)

Compute the card diff
Encrypt(gcardA−cardAB ,K)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Additive mixnet

r = g[e(AD)−e((AB)D)]M

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

r = 1 =⇒ true

Figure 5.3: The FD validation protocol for securely validating a candidate FD using
mixnets.

The two mixnets in above protocol will be explained in details later in § 5.3.1 and
§ 5.3.2, respectively. In the rest of this section, we present an efficient approach to compute
PSI-CA.

A näıve way to compute PSI-CA is that for each set intersection, we intersect the
encrypted values directly from the sets. Given there are m partitions, the number of
intersections is 2m −m− 1, which is expensive.

To reduce the exponential cost of PSI-CA, Algorithm 13 presents a linear approach to
efficiently compute PSI-CA for a set of m sets. The intuition is that rather than computing
intersections, we count the contribution of each value to PSI-CA, which is determined by
the number of its occurrence in all partitions. For example, if an value occurs three times in
any of the three partitions, then that value will contribute to PSI-CA by being intersected in

92

Algorithm 13 Power set intersection cardinality

Input: S . set of m sets to be intersected
1: procedure PSI-CA(S)
2: card← 0
3: imap < int, int > . (key, occurrance)
4: for t ∈ [1,m], ∀k ∈ S[t] do
5: imap[k] + + . increase the counter
6: end for
7: cmap < int, int > . (occurrance, contribution)
8: for all occ ∈ imap.values do
9: if occ ≥ 2 then . element occurs than once

10: if ¬cmap.contains(occ) then
11: cntrbtn← 0
12: for i← occ; i ≥ 2;−−i do
13: c← Ci

occ . i-combination
14: if i mod 2 == 0 then . flipping signs
15: cntrbtn← cont+ c
16: else
17: cntrbtn← cont− c
18: end if
19: end for
20: cmap(occ)← cntrbtn
21: end if
22: card← card+ cmap.get(occ)
23: end if
24: end for
25: return card
26: end procedure

one 3-set intersection and three 2-set intersections. This method simply requires traversing
all the elements only once. We use two simple map structures to keep counting: 1) imap
stores the mapping of encrypted elements as the keys, and values are the counter of key
occurrences; 2) cmap stores the occurrence of an encrypted element as the key, and its
contribution to the set intersection cardinalities in Eqn. (5.3) (§ 5.2.1).

Figure 5.4 gives an example to compute PSI-CA using Algorithm 13 with an input set
S consisting of three sets, each of which is a set of encrypted values from a partition. In

93

! = { $, &, ' , $, &, (, &, (}

element occurrence

$ 2
& 3
' 1
(2

*+$,
occurrence contribution
2 -.. = 1
3 −-11 + -1. = 2

'+$,

'$4(= 1 + 2 + 1 = 4

Figure 5.4: An example of computing PSI-CA.

§ 5.3, we will explain in details how each value is probabilistically encrypted but still can
be deterministically compared for equality. Given the example input of S in Figure 5.4, we
can easily reason out that the PSI-CA equals to card = 4 by Eqn. (5.3) (§ 5.2.1). With
Algorithm 13, the process starts with a single scan on each elements in order to build the
imap structure (Line 3−6). After the traverse, imap stores the occurrences for all values
from partitions. For example, element a appears twice in S. Then, imap is sequentially
visited to build the cmap (Line 7−24), which stores the contribution of each occurrence to
the final PSI-CA. For instance, the occurrence of element b is 3 in S, then it contributes
to the overall cardinalities by showing up in one 3-set intersection (−C3

3), and three 2-set
intersections (C2

3). The cmap is adaptively built and can be reused. For instance, (2, 1)
was inserted when it visited (a, 2) in imap, and can be reused when visiting (d, 2). In
the meantime of building cmap, the final cardinality is iteratively calculated (Line 22):
card = 1 + 2 + 1.

In fact, the cmap can be built offline as a pre-processing step. Recall in Figure 5.2
(§ 5.1), the CheckFD(f) is iteratively invoked. Although the elements (in encrypted
format) of each run are different, the cardinality only depends on the occurrences regardless
of the elements. Hence, computing PSI-CA only requires one-pass scan of all encrypted
elements to construct the imap, while the cmap serves as a lookup table. Therefore, the
complexity of PSI-CA is linear to the number of elements.

94

5.3 Equality-Aware Mixnet

In this section, we propose two versions of mixnets that enable secure equality testing on
the input values. The first mixnet (§ 5.3.1) enables value-level equality check, which allows
comparing the equality of input messages without revealing the messages themselves. The
second mixnet (§ 5.3.2) supports comparing the sum of integer set to a given value. We
will also prove the security of both mixnets.

5.3.1 Value-Level Equality Testing

The first mixnet is designed to achieve the following goal: given a set of input values
{v1, . . . , vm}, where vi is the confidential message from party Pi, and a boolean functionality
fv(·) taking two input values and outputting true if inputs are equal, the mixnet can securely
fulfil fv(·) on all pairs from the input set.

We now introduce the multiplicative deterministic re-encryption decryption mixnet us-
ing examples. Figure 5.5 shows one such mixnet with 3 workers labelled from W1 to W3

sequentially. There are 2 parties numbered as P1 and P2, with input values a′ and b′ re-
spectively, which are to communicate via the mixnet. The input values are usually hashed
into Gp using a hash function H(·). Initially (step 0.1), each worker generates a pair of
keys (described in § 2.1.4) and distributes the public keys to all parties and workers. Then
(step 0.2), each party fully encrypts its values using all the public keys before sending the
encrypted values to the first worker of the mixnet (step 0.3).

Algorithm 14 Fully encrypting a single value

Input: v . an integer to be encrypted
Input: K . the set of all public keys

1: procedure Encrypt(v,K)
2: (c1, c2)← Enc(c2,

∏
k∈K k)

3: return (c1, c2)
4: end procedure

Algorithm 14 describes the encryption process that occurs on each party. All operations
are performed in Gp, and for simplicity we omit this in Algorithm 14 and in the rest of
the description. The encrypted value is represented as a pair in the form of (c1, c2), which
is encrypted under the product of the public keys. Intuitively, the encryption process is
to encrypt multiply layers where each layer is secured by a key from one of the mixnet
worker.

95

Party P1 Party P2

0.1, Sync K {gx, gy, gz } value : a = H(a′) value : b = H(b′)

0.2, Encrypt(value,K) (gr1 , agr1xgr1ygr1z) (gr2 , bgr2xgr2ygr2z)

0.3, Send values to mixnet ⇓

. Worker W1. Keys: (x, gx) .

1.0, Initialize secret re-encryption key: x′←$Zp
1.1, Decrypt (gr1 , agr1ygr1z) (gr2 , bgr2ygr2z)

1.2, Re-encrypt (gr1x
′
, ax

′
gr1x

′(y+z)) (gr2x
′
, bx
′
gr2x

′(y+z))

1.3, Re-randomize s1
1←$Zp, (gr1x

′+s11 , ax
′
g(r1x′+s11)(y+z)) s2

1←$Zp, (gr2x
′+s21 , bx

′
g(r2x′+s21)(y+z))

1.4, Permute and send to next ⇓

. .Worker W2. Keys: (y, gy). .

2.0, Initialize secret re-encryption key: y′←$Zp
2.1, Decrypt let m1

1 = r1x
′ + s1

1, (g
m1

1 , ax
′
gm

1
1z) let m2

1 = r2x
′ + s2

1, (g
m2

1 , bx
′
gm

2
1z)

2.2, Re-encrypt (gm
1
1y
′
, ax

′y′gm
1
1y
′z) (gm

2
1y
′
, bx
′y′gm

2
1y
′z

)

2.3, Re-randomize s1
2←$Zp, (gm

1
1y
′+s12 , ax

′y′g(m1
1y
′+s12)z) s2

2←$Zp, (gm
2
1y
′+s22 , bx

′y′g(m2
1y
′+s22)z)

2.4, Permute and send to next ⇓

. .Worker W3. Keys: (z, gz). .

3.0, Initialize secret re-encryption key: z′←$Zp
3.1, Decrypt let m1

2 = m1
1y
′ + s1

2, (g
m1

2 , ax
′y′) let m2

2 = m2
1y
′ + s2

2, (g
m2

2 , bx
′y′)

3.2, Re-encrypt ax
′y′z′ bx

′y′z′

Figure 5.5: A multiplicative, deterministic re-encryption decryption mixnet with 3 workers
and 2 parties.

Each worker in the mixnet does the following operations:

0) Initialization (step .0). For each run, every worker generates a fresh secret re-encryption
key that will be used for re-encryption in step .2.

1) Decryption (step .1). Since the value was encrypted with the worker’s public key,
the worker decrypts it using its private key. Consider the encrypted value from P1 in
Figure 5.5, W1 uses its private key x and the random variable gr1 and constructs a new
random variable gr1x, which is then used to divide the encrypted value agr1xgr1ygr1z as a
denominator. Hence, the encrypted value is decrypted to agr1ygr1z.

96

2) Re-encryption (step .2). The decrypted value is deterministically re-encrypted by the
secret re-encryption key. Continue above example, W1 re-encrypts agr1ygr1z by exponenti-
ating with its secret re-encryption key x′, to ax

′
gr1x

′ygr1x
′z. Similarly, the random value is

also updated.

3) Re-randomize the encrypted value (step .3). This is simply realized by freshly encrypting
a value of 1 and homomorphically multiplying it to the cipher text.

4) Permute the values, and send to the next worker (step .4). This step adds an additional
protection to hide the ordering. Each worker does the same set of operations until the
values flow out from the last worker.

Algorithm 15 Mixneting a single value

Input: (c1, c2) . cipher text to be re-encrypted
Input: x . private key of the running party
Input: x′ . secret re-encryption key of the running party

1: procedure Re-Encrypt((c1, c2))
2: c2 = Dec((c1, c2), x) . decrypt
3: (c1, c2) = (cx

′
1 , c

x′
2) . encrypt with re-encryption key

4: (c′1, c
′
2) = Enc(1,Π) . Π: product of next pubkeys

5: (c1, c2) = (c1 × c′1, c2 × c′2) . re-randomize
6: return (c1, c2)
7: end procedure

Algorithm 15 describes the mixnet operations that occur on the workers. As the output
of the mixnet, the input values are permuted and deterministically encrypted by the secret
re-encryption keys of all workers. Thus, equality checking is realized by directly comparing
the encrypted values.

Let Πv denote a multiplicative deterministic re-encryption decryption mixnet, we have
the following theorem:

Theorem 11. Πv securely implements the functionality fv(·) in the presence of semi-honest
adversary given at least one party and one worker are not controlled by the adversary.

Proof. The functionality fv(·) is fulfilled by comparing the equality of encrypted values,
and outputs true or false as the final output of the protocol. Correctness is immediate, so
we proceed to the privacy proof. We consider that both the parties and the workers can
be controlled by the semi-honest adversary. Let Sim be a simulator, A be a semi-honest
adversary, and the input information regarding to the group be I = {Gp, H(·)}.

97

Suppose adversary A controls party P1, workers W1 and W2 using Figure 5.5 as the
running example. The actual view of A consists of four messages m1−4. In Figure 5.5,
m1 and m2 correspond to the encrypted value (gr2 , bgr2xgr2ygr2z) from honest P2, and m3

and m4 represent a value from the permuted, re-encrypted set {ax′y′z′ , bx′y′z′} from honest
worker W3 (step 3.2), respectively. The task of Sim is to output four messages that are
indistinguishable given only its input, i.e. without the secret values from the honest parties.

For (m1,m2), A can further decrypt m2 using the private keys of W1 and W2, leav-
ing the value only encrypted with gr2z. Both gr2 and gz are known to A; however,
according to the DDH assumption [32], for the triplet (gr2 , gz, gr2z), A is not able to
distinguish gr2z from a random element, which is generated by Sim. In addition, for
{m3,m4}, given the output of fv(·), Sim can construct a simulated set S by drawing
two random elements (or, drawing one random element if fv(·) = false). The adver-
sary A is not able to distinguish S from the real set {m3,m4}, except with negligible
probability. Therefore, the simulator Sim is able to output messages that are indistin-
guishable given only its input. To formally present the view of adversary A, we have

{Sim(I, gz, a′, x, y, x′, y′, fv(a
′, b′))} c≡ {V iewΠv

A (I, a′, b′, x, y, z, x′, y′, z′)}.
The other two cases where worker W1 and worker W2 respectively remains honest follow

a similar simulation algorithm, and hence we omit them here in the proof.

Let n represent the average number of values per party from a total of m parties, and
let w workers form the multiplicative deterministic re-encryption decryption mixnet. The
communication cost in the mixnet is O(nmw), and the computation cost is O(nmw) in
terms of modular exponentiation.

The proposed public-key based multiplicative deterministic re-encryption decryption
mixnet provides a powerful protocol for many useful computations over encrypted data.
This includes: 1) equality comparison directly on encrypted data, which is one fundamental
primitive in numerous applications. If two values are equal, then their encrypted values
are also equal. We showed this when computing PSI-CA in § 5.2.2; 2) set union and
intersection cardinalities. For instance, when P1 and P2 encrypt a set of values, this re-
encryption mixnet can securely compute set union cardinality and intersection cardinality;
3) homomorphic multiplication and division operations. For example, ax

′y′z′ × bx
′y′z′ =

(a× b)x′y′z′ .
The multiplicative deterministic re-encryption decryption mixnet can be easily extended

as well. For example, after the process shown in Figure 5.5, the workers can initiate a
second round of decryption-only process, to decrypt the value (a×b)x′y′z′ for multiplicative
operations, or the union/intersected elements for set union/intersection problems. We leave
these straightforward extensions to readers for exercise.

98

5.3.2 Set-Level Equality Testing

The second mixnet is designed to achieve the following goal: given a set of input integers
{v1, . . . , vm}, where vi is the confidential integer from party Pi, and a boolean functionality
fs(·) taking input set and outputting true if the sum of inputs is 0, fs(·) can be securely
fulfilled.

We now present the second mixnet, called additive deterministic re-encryption decryp-
tion mixnet to achieve above set-level equality testing. An additive mixnet shares many
properties with multiplicative mixnet, and is more efficient for additive operations.

Figure 5.6 shows an example of such additive deterministic re-encryption decryption
mixnet using three workers and two parties. We highlight the differences from the multi-
plicative deterministic re-encryption decryption mixnet (§ 5.3.1): 1) instead of encrypting
an integer directly, each party encrypts its value v to gv; 2) worker W1 multiplies the
encrypted values from parties. This step constructs the sum of input values (on the ex-
ponent); 3) each worker goes through an re-encryption process for the additive value, and
eventually the last worker gets 1 if the sum equals to 0.

Let Πs denote an additive deterministic re-encryption decryption mixnet, we can derive
the following theorem:

Theorem 12. Πs securely implements the functionality fs(·) in the presence of semi-honest
adversary given at least one party and one worker are not controlled by the adversary.

Proof. The last worker fulfils the functionality fs(·). If the sum of set is zero, then the en-
crypted value equals to one. Consider a simulator Sim, input information I = {Gp, H(·)} a
worst case scenario where the adversary A controls P1, workers W1 and W2 using Figure 5.6
as the example. The actual view of A consists of three messages m1−3. In Figure 5.6, m1

and m2 correspond to the encrypted value (gr2 , gbgr2xgr2ygr2z) from honest P2, and m3

corresponds to the re-encrypted value g(a+b)x′y′z′ from honest worker W3 (step 3.2). Sim-
ilar to the proof for Theorem 11, A is not able to distinguish (m1,m2) because of DDH
assumption. As for m3, given the output of fs(·), Sim can output a random value (or, 1
if fs(·) = true). The adversary cannot distinguish this from m3, since x′, y′, and z′ are
freshly chosen for each run.

Therefore, the simulator Sim is able to generate messages that are indistin-
guishable given only its input. To form the view of adversary A, we have

{Sim(I, gz, a′, x, y, x′, y′, fs(a
′, b′))} c≡ {V iewΠs

A (I, a′, b′, x, y, z, x′, y′, z′)}.

99

Party P1 Party P2

0.1, Sync K {gx, gy, gz } value : a = H(a′) value : b = H(b′)

0.2, Encrypt(gvalue,K) (gr1 , gagr1xgr1ygr1z) (gr2 , gbgr2xgr2ygr2z)

0.3, Send values to mixnet ⇓

. Worker W1. Keys: (x, gx) .

1.0, Initialize secret re-encryption key: x′←$Zp
1.1, Multiply let r = r1 + r2, (g

r, ga+bgrxgrygrz)

1.2, Decrypt (gr, ga+bgrygrz)

1.3, Re-encrypt (grx
′
, g(a+b)x′grx

′(y+z))

1.4, Re-randomize s1←$Zp, grx
′+s1 , g(a+b)x′g(rx′+s1)(y+z))

1.5, Send to next ⇓

. Worker W2. Keys: (y, gy) .

2.0, Initialize secret re-encryption key: y′←$Zp
2.1, Decrypt let m1 = rx′ + s1, (g

m1 , g(a+b)x′gm1z)

2.2, Re-encrypt (gm1y′ , g(a+b)x′y′gm1y′z)

2.3, Re-randomize s2←$Zp, (gm1y′+s2 , g(a+b)x′y′g(m1y′+s2)z)

2.4, Send to next ⇓

. Worker W3. Keys: (z, gz) .

3.0, Initialize secret re-encryption key: z′←$Zp
3.1, Decrypt let m2 = m1y

′ + s2, (g
m2 , g(a+b)x′y′)

3.2, Re-encrypt g(a+b)x′y′z′

Figure 5.6: An additive, deterministic re-encryption decryption mixnet with 3 workers and
2 parties.

Similar to the multiplicative deterministic re-encryption decryption mixnet, the ad-
ditive deterministic re-encryption decryption mixnet also has a linear computation and
communication cost. For a setting with m parties and w workers, both the computation
and communication cost are O(m+ w) in terms of modular exponentiation.

The proposed additive deterministic re-encryption decryption mixnet can efficiently
empower a category of additive comparisons. This includes: 1) value-to-value equality
check. To compare whether a = b, we can construct a set of {a,−b} as the input to the
mixnet. If the encrypted output is 1, then it implies a = b; 2) value-to-set evaluation. The

100

mixnet provides a way to evaluate the sum of the set to a value t. Consider a set of size
n, the input n+ 1 values (n values from the set in addition to −t) can be evaluated using
the mixnet; 3) set-to-set sum comparison. Comparing the equality of the sum of two sets
can be securely implemented by adding all values from one set and all inverted value from
the other.

5.3.3 Parallelizing MixNet

While the mixnets incur linear costs, they can be further scaled out to multiple chains for
performance improvement.

Consider two chains C1 and C2, each of them consists of w1 and w2 workers respec-
tively. w1 and w2 are not necessarily to be equal, but for simplicity, we assume two chains
are of same length. For the multiplicative deterministic re-encryption decryption mixnet,
continuing the example in Figure 5.5, C1 consists of 3 workers with secret re-encryption
keys x′1, y′1 and z′1 respectively. Let C2 have 3 workers with secret re-encryption keys x′2,
y′2 and z′2. Let P1 go with C1, and P2 go with C2. The output of the two chains would be
ax
′
1y
′
1z
′
1 and bx

′
2y
′
2z
′
2 . If the exponents are equivalent (i.e., x′1y

′
1z
′
1 = x′2y

′
2z
′
2), then the equality

check of input values does work across different chains. In the following, we describe the
pre-processing model to generate secret re-encryption keys.

Consider a trusted oracle O and a cyclic group Zp. At the beginning, O randomly fix
a value M ∈ Zp. Given w, which is the length of a chain C, O randomly samples w − 1
values s1, ..., sw−1 ∈ Zp, and sets sw = M × (s1× ...× sw−1)−1. si corresponds to the secret
re-encryption key on worker Wi. O sends si to worker Wi via a secure channel. O reuses
M when it needs to generate a new set of keys. Obviously an value v is always encrypted
to vM regardless of chains.

The above process also works for the additive deterministic re-encryption decryption
mixnet. In practice, O can be easily implemented using secure computations [26].

5.4 Secure Congenial FD Discovery

So far, we adopted the traditional definition of FD (Definition 1) in the secure multi-party
settings, and required the discovered FDs to hold on the whole dataset. In this section, we
relax that requirement; we define fc as an FD that holds on any of the partition. Note that
fc might not be an valid FD on the whole dataset. For example, in Figure 5.1, f2 is valid

101

on both D1 and D2, but is not an valid FD on D. Formally, let
∑

c represent the set of

all non-trivial and minimal FDs that are valid on every partition Di(i ∈ [1,m]):
∑

c |= Ŝ.
For the purpose of distinction, we call an FD f ∈

∑
the union FD (uFD, in short), and

an FD fc ∈
∑

c the congenial FD (cFD, in short).

To contrast the utility of cFD with uFD, consider the following: after learning the set
of uFDs, each party learns two pieces of profiling information: 1) the set of uFDs, which
holds globally on the entire dataset; and 2) all the local FDs that are invalid on other
partitions, because they were not part of uFDs. On the other hand, by learning the set
of cFDs, each party will know: 1) a superset of uFDs; and 2) a subset of local FDs that
is invalid on other partitions. Both pieces are useful profiling information (especially the
pruned local FDs). Another way to leverage cFD is in pruning the search space of the FD
discovery algorithm (§ 5.1.3): f ∈

∑
is true either f ∈

∑
c or ∃fc ∈

∑
c that f ∈ Spec(fc).

All the parties do not need to validate a candidate FD f if it has no chance of being an
uFD given the set of cFDs (e.g., if the left hand side attributes of f does not intersect with
that of any fc ∈

∑
c).

We first propose the distributed cFD validation in § 5.4.1, and then present a voting-
based protocol for secure cFD validation in § 5.4.2.

5.4.1 Distributed cFD Validation

In the case of cFD, rather than validating all data across partitions, discovering cFD only
requires to validate the agreement by all parties. Intuitively, for a given candidate cFD, if
every party agrees its validity on its data partition, then the candidate is a valid cFD.

In general, for each candidate cFD fc : A→ B, a näıve way to validate it is that each
party Pi can compute attribute errors e(ADi) and e((AB)Di) locally on their data, and
determine the validity using Lemma 3 (§ 5.2.1). But this general approach would require
to compute the attribute partitions every time for each validation. In order to avoid such
cost, we propose that each party first computes its FD set Si using its data partition, and
then infers the validity of a given candidate cFD fc using Si. This approach is inspired by
the following property of the cFD:

Property 1. Given a set of m FD sets S = {S1, ..., Sm}, where Si is the set of all minimal,
non-trivial FDs on partition Di. A congenial FD fc on S satisfies that ∀S ∈ S,∃f ∈ S, fc ∈
Spec(f). A congenial FD fc is minimal if @f ′c that fc ∈ Spec(f ′c) and f ′c is a congenial FD.

Example 11: Consider the following FDs in Figure 5.1:

102

Algorithm 16 cFD inference

Input: f : A→ B . candidate cFD to be evaluated
Input: S . set of all minimal non-trivial FDs of the party

1: procedure Infer(f, S)
2: for all A′ → B ∈ S do
3: A∗ = A ∪ A′
4: if A∗ ≡ A then . check specialization
5: return 1
6: end if
7: end for
8: return 0
9: end procedure

f3 : occupation→ income f4 : martial→ income

f5 : occupation,marital→ income

By examining D1, f3 ∈ S1, and f5 ∈ Spec(f3). Similarly on D2, f4 ∈ S2, and f5 ∈
Spec(f4). Hence, f5 in a congenial FD. Furthermore, f5 is also minimal because neither f3

nor f4 is an valid congenial FD.

Algorithm 16 utilizes Property 1 to do inference using a party’s FDs only. The idea
is to check whether the candidate cFD can be specialized by any of its FDs which share
the same right-hand side attribute B. If the candidate cFD can be specialized by all the
parties, then the candidate is a true cFD. This leads to the solution for securely verifying
candidate cFDs: every party securely votes either 1 if the candidate is a valid FD on
its data partition, or 0 if not; and then we can construct an additive deterministic re-
encryption decryption mixnet to securely check whether the sum of all votes is equal to
the total number of parties.

5.4.2 A Secure cFD Discovery Protocol

The prerequisite in cFD protocol is to discover the set of all minimal and non-trivial FDs Si
by each party from its data Di. This can be done locally by every party running an existing
FD discovery algorithm, e.g., [86]. Similarly to the uFD discovery protocol in § 5.2.2, we
arbitrarily choose a moderator to initialize the search space and drive pruning. To prune
the search space (§ 5.1.3), Figure 5.7 shows such a protocol to implement CheckFD(fc)
for a given candidate cFD fc. First, the moderator instructs all parties to vote either 1

103

CheckFD(fc) : cFD Validation Protocol for fc : A→ B

Moderator P1, . . . ,Pm Mixnet

to vote fc : A→ B

Infer(fc, Si) : votei

Encrypt(gvotei ,K)

Encrypt(g−m,K)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Additive Mixnet

r = g[
∑m
i=1 votei−m]M

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

r = 1 =⇒ true

Figure 5.7: The cFD validation protocol for securely validating a candidate cFD using
mixnet.

if the candidate is valid on their data, or 0 otherwise. Each party runs Algorithm 16 on
the candidate fc and their own FD set Si, and sends its encrypted vote to an additive
deterministic re-encryption decryption mixnet (§ 5.3.2). In addition, the encrypted inverse
of the number of parties (i.e., −m) is also sent as an input. The output r of the mixnet is
an encrypted value, indicating whether all parties voted 1 or not. If r = 1, then all parties
have voted 1, meaning fc is a true cFD.

5.5 Evaluation

5.5.1 Experiment Setup

Datasets. We choose 8 datasets from the UCI ML repository [49]. These datasets have
different number of columns, rows and FDs. The details are listed in Table 5.1.

To simulate the data partitions that are held on parties, we horizontally chunk the
datasets into m disjoint and even parts where m is the number of parties. For repro-
ducibility purposes, a scale factor SF is used to represent the number of chunks that
each partition has. Every partition is composed of SF number of consecutive chunks in a

104

round-robin sequence. By default, SF is 1 for all datasets. Although data size is evenly
distributed, the values of attribute partitions (used in uFD discovery) and local FDs (used
in cFD discovery) can have skewness.

Metrics. We measure two end-to-end costs: 1) computation cost, measured by the overall
FD discovery time; 2) communication cost, counted by the bytes which are transferred
through all the nodes. Every setting reports the mean and standard error of 3 runs.

Implementation details. We conducted all experiments on AWS platform. Each party
or worker was deployed on an EC2 instance locating in spread networks across us-west
regions. Each instance has 72 vCPU and 144 GB memory. The solutions are implemented
in C++ with gcc-5.4.0, and run on the Ubuntu-14.04.

Security parameters are fixed as follows: both the length of generator g in ElGamal
and the length of keys are set to be 256 bits. p has a length of 3072 bits.

In additional, we also compared our solution (tagged by SMFD) with distributed FD
validation using two general purpose MPC protocols: 1) MultipartyPSI [104], for multi-
party private set intersection. We integrate their code2 by replacing the mixnet with set
intersections among parties. Specifically, for uFD, we compute the set intersections in
Eqn. (5.3). Due to the limitation that MultipartyPSI requires all parties have same-sized
sets, we assign each party to own the full dataset to avoid the overhead of padding. cFD
protocol is implemented by intersecting votes of all parties. 2) SMCQL [23], for secure SQL
querying over the union of its source databases, and serves as a general approach to discover
uFDs. Due to the limitation of the current implementation3, we compute the attribute
partition errors e(A) and e(AB) by issuing two SQL queries to select count(distinct

A) and count(distinct AB), respectively. SMCQL was tested with two databases on
the same host. SMFD’s code, data and evaluation metrics are open sourced on GitHub:
https://github.com/cgebest/smfd.

5.5.2 Overhead of SMFD

Table 5.1 shows the end to end cost comparison between the proposed SMFD and the
non-secure plaintext-based distributed FD validation, in a setting of 3 parties, 3 workers,
where each party or worker node uses 128 threads for public key operations. The security

2https://github.com/osu-crypto/MultipartyPSI
3https://github.com/smcql/smcql
4based on the partition strategy in § 5.5.1.

105

https://github.com/cgebest/smfd
https://github.com/osu-crypto/MultipartyPSI
https://github.com/smcql/smcql

Table 5.1: End to end comparison between SMFD and the plaintext-based distributed FD
validation

Comput. (Sec) Comm. (MB) Comput. (Sec) Comm. (MB)

Dataset
of
Col

of
Row

of
uFD

SM
FD

Plain
Text

Over
head

SM
FD

Plain
Text

Over
head

of
cFD4

SM
FD

Plain
Text

Over
head

SM
FD

Plain
Text

Over
head

iris 5 150 4 7.6 0.5 15 9.8 0.1 98 4 3.0 0.3 10 0.4 0.01 40
balance-scale 5 625 1 9.0 0.5 18 13.8 0.1 138 1 3.5 0.4 9 0.5 0.01 50
chess 7 28056 1 420.5 2.9 143 1304.9 11.5 113 1 20.4 2.0 10 2.7 0.06 45
abalone 9 4177 137 1819.5 11.6 157 5644.7 104.7 54 159 64.1 6.2 10 8.4 0.19 44
nursery 9 12960 1 532.5 31.5 17 1333.6 65.8 20 9 94.6 9.1 10 12.4 0.29 43
breast-cancer 11 699 46 1508.1 98.8 15 3190.6 35.4 90 77 421.0 69.5 6 55.0 1.36 40
bridges 13 108 142 1726.8 197.8 9 2130.0 47.2 45 127 753.0 130.0 6 98.6 2.53 39
echocardiogram 13 132 538 1342.3 137.0 10 1958.0 30.5 64 420 506.2 92.3 5 66.2 1.70 39

overhead using all datasets is often within one order of magnitude for both uFD and cFD
discoveries, for both computation and communication costs.

The computation overhead stems from public key operations, and the communication
overhead is due to ciphertext expansion. As Table 5.1 shows, FD discovery costs are highly
data dependent. The overall cost is dominated by two factors: 1) the cost of validating one
FD, and 2) the number of FDs that require validation. The first factor is determined by the
size of attribute partition values for uFD, which usually but not necessarily increases with
the number of rows; while for cFD, the cost is independent because we process only votes
from parties. Meanwhile, the second factor is determined by the number of columns and
FDs. Larger number of columns lead to more complex lattice with more FD candidates;
while a true FD can prune out all its specialization from the lattice.

The overhead of discovering uFD is usually heavier than cFD, because in uFD discovery,
the values of attribute partitions pass through the mixnet, and number of values can be
large. Therefore, the computation cost of uFD can be reduced by using multiple threads,
where multiple threads can work on values in parallel.

To show the benefit of parallel processing, Figure 5.8 illustrates the uFD computation
overhead using different threads per party and worker node. Using more threads reduces
the overhead, implying that our solution can benefit more from modern hardware. Even
using 8 threads, the overhead is still often within one order of magnitude. The overhead
can be further reduced by scaling out to multiple mixnet chains (§ 5.3.3) and here we omit
because of similar behaviour. In the rest of experiments, we show results using one thread
per node and one mixnet chain.

106

●

●
● ●

101

101.5

102

102.5

8 16 32 64 128
#Threads per node

T
im

e
ov

er
he

ad
 to

 p
la

in
te

xt

●abalone
balance−scale

breast−cancer
bridges

chess
echocardiogram

iris
nursery

Figure 5.8: uFD computation overhead to the plaintext decreases with more threads per
instance.

5.5.3 Efficiency of SMFD

Comparison to MultipartyPSI. We compare SMFD with distributed FD vaidation
using MultipartyPSI [104]. Note that MultipartyPSI has a weaker security model since
parties learn the intersected values.

Figure 5.9a and Figure 5.9b illustrate the costs for discovering uFD. Recall § 5.2.1 that
for each uFD validation, there are 2m −m − 1 intersections for m parties. Although one
set intersection using MultipartyPSI is cheaper because of the use of symmetric key cryp-
tography instead of public key cryptography, the exponential number of sets overwhelms
the overall performance. For example, in Figure 5.9a, when the number of parties is small,
MultipartyPSI runs faster. With more parties, the benefit of faster processing per inter-
section is soon diminished by the exponential number of intersections. When there are
8 or more parties, SMFD starts to outperform MultipartyPSI. In contrast, SMFD costs
increase since more parties are sending data to the mixnet; however, computing PSI-CA
only incurs linear complexity (§ 5.2.2).

Figure 5.9c and Figure 5.9d show the costs of discovering uFD. MultipartyPSI requires
larger costs than SMFD and is more sensitive to the number of parties.

Comparison to SMCQL. Figure 5.10a compares the execution time of discovering uFDs.
On balance-scale dataset, SMCQL takes more than 22 hours to finish validating all uFDs,
while SMFD completes in 146 seconds. On iris dataset, SMCQL takes 3.2 hours, and
SMFD finishes in 121 seconds. On both datasets, SMFD is two orders of magnitude faster.

107

● ●
●

●

●

●

0

1000

2000

3000

3 4 5 6 7 8
#Party

T
im

e
(s

ec
)

● MultipartyPSI SMFD

(a) Comp. Cost uFD

● ●
●

●

●

●

0

1000

2000

3000

3 4 5 6 7 8
#Party

M
B

● MultipartyPSI SMFD

(b) Comm. Cost uFD

●

●

●

●

●

●

10

20

3 4 5 6 7 8
#Party

T
im

e
(s

ec
)

● MultipartyPSI SMFD

(c) Comp. Cost cFD

●

●

●

●

●

●

0

5

10

15

3 4 5 6 7 8
#Party

M
B

● MultipartyPSI SMFD

(d) Comm. Cost cFD

Figure 5.9: Cost comparison between SMFD and distributed FD discovery using Multi-
partyPSI, with increasing number of parties on the balance-scale dataset: a) and b) show
the computation and communication cost for uFD, respectively. SMFD has a linearly
cost, while MultipartyPSI incurs an exponential cost. c) and d) show the costs for cFD.
MultipartyPSI requires larger costs and is more sensitive to the number of parties.

100

101

102

103

104

105

balance−scale iris
Data

T
im

e
(s

ec
)

SMFD SMCQL

(a) Computation Cost

100

101

102

103

104

105

balance−scale iris
Data

M
B

SMFD SMCQL

(b) Communication Cost

Figure 5.10: Cost comparison between SMFD and SMCQL.

Figure 5.10b shows the comparison of communication cost. SMCQL intensively in-
serts dummy tuples to pad intermediate results during its execution, so it is expected that
communication cost is expensive. On balance-scale dataset, SMFD costs 8MB, while SM-
CQL transfers more than 200GB. On iris dataset, SMFD consumes 7MB, outperforming
SMCQL’s 7178MB by three orders of magnitude.

Note that SMCQL was tested on the same host, and the difference of computation cost
in distributed scenario is expected to be amplified by its communication cost.

5.5.4 Scalability of SMFD

Scalability of varying the number of workers. Figure 5.11 shows the costs of varying
the number of workers. The costs of computation and communication increase linearly
with the number of workers, for both types of FDs.

108

●

●

●

●

●

●

200

300

400

500

3 4 5 6 7 8
#Worker

T
im

e
(s

ec
)

(a) Comp. Cost uFD

●

●

●

●

●

●

10

15

20

25

3 4 5 6 7 8
#Worker

M
B

(b) Comm. Cost uFD

●

●

●

●

●

●

4

6

8

10

12

3 4 5 6 7 8
#Worker

T
im

e
(s

ec
)

(c) Comp. Cost cFD

●

●

●

●

●

●

0.4

0.5

0.6

0.7

3 4 5 6 7 8
#Worker

M
B

(d) Comm. Cost cFD

Figure 5.11: Cost of varying the number of workers using 3 parties on the iris dataset.

●

●

●

●

●

●

●

●

500

1000

1 2 3 4 5 6 7 8
Scale Factor

T
im

e
(s

ec
)

(a) Comp. Cost uFD

●

●

●

●

●

●

●

●

20

40

60

1 2 3 4 5 6 7 8
Scale Factor

M
B

(b) Comm. Cost uFD

●

●

●

● ● ● ● ●

4.8

5.0

5.2

5.4

1 2 3 4 5 6 7 8
Scale Factor

T
im

e
(s

ec
)

(c) Comp. Cost cFD

●

●

●

● ● ● ● ●

0.75

0.78

0.81

0.84

1 2 3 4 5 6 7 8
Scale Factor

M
B

(d) Comm. Cost cFD

Figure 5.12: Cost of varying the data volume using 8 parties and 3 workers on the iris
dataset.

Adding more workers does not affect FD candidates, but only affects the performance
of mixnet. Recall that in a mixnet chain (§ 5.3), all workers collaborate in a sequential way,
and they share the same type of job. Hence, the cost increases linearly with the number
of workers.

Scalability of varying data volume. Figure 5.12 measures the cost of changing data
volume per party. Figure 5.12a and Figure 5.12b show that costs increase with SF for
discovering uFDs. Generally, the larger data volume on each party, the larger the attribute
partition set is expected. Therefore, both the execution time and transferred bytes increase.

However, uFD highly correlates with the FDs that are discovered by each party, and
the size of candidate uFD is not static. When SF is small, increasing the data volume
per party invalidates more uFDs, and consequently triggers more inference (Algorithm 16).
When SF > 4, increasing data volume per party does not provide more insights, and hence
it is expected the cost remains the same. Figure 5.12c and Figure 5.12d illustrate such
trend.

109

5.6 Conclusion

This chapter focuses on discovering FDs in the secure multi-party scenario against semi-
honest adversaries. We formulate discovering FDs, design secure constructions for FD
validation, and present efficient protocols to enable secure multi-party FD discovery. Our
experimental results show the linear scalability of our protocols and over 2 orders of mag-
nitude performance benefit compared to the general purpose secure multi-party computa-
tion.

110

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we focus on enabling data analytics on private siloed data and solved
the technical challenges in three specific analytics tasks when interacting with private
datasets.

The first task is accuracy-aware differentially private data exploration. Current systems
for answering queries with differential privacy place an inordinate burden on the data sci-
entist to understand differential privacy, manage their privacy budget, and even implement
new algorithms for noisy query answering. Moreover, current systems do not provide any
guarantees to the data scientist on the quality they care about, namely accuracy of query
answers. To solve the problem, we propose APEx, a novel system that allows data scien-
tist to pose adaptively chosen sequences of queries along with required accuracy bounds.
By translating queries and accuracy bounds into differentially private algorithms with the
least privacy loss, APEx returns query answers to the data scientist that meet the accuracy
bounds, and proves to the data owner that the entire data exploration process is differen-
tially private. Our comprehensive experimental study on real datasets demonstrates that
APEx can answer a variety of queries accurately with moderate to small privacy loss, and
can support data exploration for entity resolution with high accuracy under reasonable
privacy settings.

The second task is constraint-aware differentially private data synthesis. Existing differ-
entially private data synthesis methods aim to generate useful data based on applications,
but they fail in keeping one of the most fundamental data properties of the structured

111

data — the underlying correlations and dependencies among tuples and attributes. As
a result, the synthesized data is not useful for any downstream tasks that require this
structure to be preserved. To solve the problem, we propose Kamino, a data synthesis
system to ensure differential privacy and to preserve the structure and correlations present
in the original dataset. Kamino takes as input of a database instance, along with its
schema (including integrity constraints), and produces a synthetic database instance with
differential privacy and structure preservation guarantees. We empirically show that while
preserving the structure of the data, Kamino achieves comparable and even better useful-
ness in applications of training classification models and answering marginal queries than
the state-of-the-art methods of differentially private data synthesis.

The third task is secure and efficient functional dependency (FD) discovery over multi-
parties. Discovering functional dependencies usually requires access to all data partitions to
find constraints that hold on the whole dataset. Simply applying general secure multi-party
computation protocols incurs high computation and communication cost. In SMFD, we
formulate the FD discovery problem in the secure multi-party scenario. We propose secure
constructions for validating candidate FDs, and present efficient cryptographic protocols to
discover FDs over distributed partitions. Experimental results show that solution is prac-
tically efficient over non-secure distributed FD discovery, and can significantly outperform
general purpose multi-party computation frameworks.

6.2 Future Work

The increasing concern of data privacy poses significant challenges to utilize private data
assets. This dissertation provides first a few steps toward enabling private data science,
where data privacy constraint is automatically and holistically integrated into data science
pipelines. Our approach to this vision follows the similar pattern as that in this thesis,
which starts with understanding the challenges in each data science task, and then designs
novel solutions to solve specific problems. Three of which we believe as natural extensions
to this dissertation are the following.

Private Data Preparation. Data preparation is the process of manipulating raw data
into a consumption-ready form, and it involves many tasks such as data integration, data
cleaning, data augmentation and data wrangling. Data preparation is essential as a pre-
requisite for data-driven applications. Conducting data preparation is time-consuming and
heavily requires human-in-the-loop, such as to write rules to extract the correct informa-
tion, identify transformations to normalize values and provide domain knowledge to match

112

schema. There has been an on-going effort to achieve self-serve data preparation, and
recent works adopt machine learning to automate the data preparation process. However,
those machine learning based solutions are data-hungry and still need human involvement
to label and annotate training data, which becomes problematic when data have sensi-
tive information. Automating private data preparation presents an exciting spectrum of
research opportunities, and we plan to start with the following directions. First, data an-
notation is a complex subjective process and is often difficult to form into explicit queries
or data properties. Based on the techniques that we developed for private data access via
privacy query engine and synthetic data, we plan to investigate an useful access interface
layer for private data annotation. Second, considering the open availability of public infor-
mation, such as public datasets and pre-trained language models, it would be interesting
to leverage the prior information, which can be useful and incurs no privacy cost, to aid
private data preparation.

Private Workload Synthesis. Many of the design choices of database architecture such
as storage layout and index structures involve tuning by accessing a representative set of
data and query (a.k.a., workload). Despite the long history of research on automating
this tuning process, such as using rule-based models to find the best parameters and more
recently applying reinforcement learning to learn instance-optimized components, there is
still no turn-key solution to fit all scenarios with different combinations of data, workload
and hardware. Therefore, DBAs and cloud database vendors often need to access the data
and workload to tune database architecture and explain decisions. In particular, database
workload can breach data privacy in various ways: 1) a SQL query itself may have sensitive
literals; 2) the choice of operators in a query plan reflects certain data statistics (e.g., using
a loop join in the query plan implies high selectivity for the query condition.); and 3) the
cardinality of each operator in a query plan directly reveals the statistics of the private
data. When sensitive data and workload prevent direct access for applying traditional
tuning practices, database systems are likely to suffer from suboptimal performance. From
the techniques that we designed for private data synthesis, we would like to expand to
synthesize private workload for tuning data systems.

Federated Knowledge Graph Construction. Data silos, or broadly interpreted,
knowledge silos widely exist due to security and privacy constraints. Based on the tech-
niques that we developed for federated data profiling, I would like to tackle the construction
of federated knowledge graphs. A knowledge graph (KG) is a heterogeneous graph com-
posed of nodes as entities and edges as relations, and knowledge is represented as a factual
triple of entities connected by a relation. Ubiquitous KGs have been shown to be effective
in facilitating search, mining and other complex data-driven tasks. Therefore, federating
KGs becomes critical to support rich data services. Federated KG construction under secu-

113

rity and privacy guarantee presents a wide range of open challenges and opportunities. In
particular, we plan to tackle two critical aspects as follows. First, the privacy constraint on
knowledge silos requires redesigning the full stack of privacy-preserving KG tasks, involving
knowledge extraction, representation, integration, as well as query answering. We intend
to develop innovative algorithms and scalable systems for each of the KG tasks. Second,
in contrast to traditional KG evaluation, which has benefited from open and rich set of
data sources such as Wikidata and DBpedia, due to the sensitive nature of knowledge silos,
they are often sparse and have limited access for debugging and evaluation. Based on the
techniques that we developed for synthesizing relational data, investigating synthetic KGs
to facilitate the evaluation and development of federated KG construction is an exciting
future work.

114

References

[1] Amazon gets record $888 million eu fine over data viola-
tions. https://www.bloomberg.com/news/articles/2021-07-30/

amazon-given-record-888-million-eu-fine-for-data-privacy-breach.
Accessed: 2022-03-13.

[2] British airways fined £20m for data breach affecting 400,000 cus-
tomers. https://www.telegraph.co.uk/technology/2020/10/16/

ico-fines-british-airways-20m-data-breach/. Accessed: 2022-03-13.

[3] Companies need to take responsibility for protecting sensitive user data. https:

//www.entrepreneur.com/article/242355. Accessed: 2022-03-13.

[4] Equifax agrees to settlement of up to $700 million over 2017
data breach. https://www.theverge.com/2019/7/22/20703497/

equifax-ftc-fine-settlement-2017-data-breach-compensation-fund. Ac-
cessed: 2022-03-13.

[5] Tlc trip record data. http://www.nyc.gov/html/tlc/html/about/trip_record_

data.shtml.

[6] Yahoo says hackers stole data on 500 million users in 2014. https://www.nytimes.
com/2016/09/23/technology/yahoo-hackers.html. Accessed: 2022-03-13.

[7] Regulation (eu) 2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing directive 95/46/ec (general
data protection regulation). OJ, 2016-04-27.

[8] scikit-learn, machine learning in python, Version 0.23.2.

[9] The tpc benchmark h (tpc-h), Version 2.18.0.

115

https://www.bloomberg.com/news/articles/2021-07-30/amazon-given-record-888-million-eu-fine-for-data-privacy-breach
https://www.bloomberg.com/news/articles/2021-07-30/amazon-given-record-888-million-eu-fine-for-data-privacy-breach
https://www.telegraph.co.uk/technology/2020/10/16/ico-fines-british-airways-20m-data-breach/
https://www.telegraph.co.uk/technology/2020/10/16/ico-fines-british-airways-20m-data-breach/
https://www.entrepreneur.com/article/242355
https://www.entrepreneur.com/article/242355
https://www.theverge.com/2019/7/22/20703497/equifax-ftc-fine-settlement-2017-data-breach-compensation-fund
https://www.theverge.com/2019/7/22/20703497/equifax-ftc-fine-settlement-2017-data-breach-compensation-fund
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html

[10] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[11] Mart́ın Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In CCS, pages
308–318. ACM, 2016.

[12] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. DFD: efficient functional
dependency discovery. In CIKM, pages 949–958, 2014.

[13] John M. Abowd. The U.S. census bureau adopts differential privacy. In KDD, page
2867, 2018.

[14] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. Blinkdb: queries with bounded errors and bounded response times
on very large data. In EuroSys, pages 29–42. ACM, 2013.

[15] David W. Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt Nielsen,
Jakob Illeborg Pagter, Nigel P. Smart, and Rebecca N. Wright. From keys to
databases - real-world applications of secure multi-party computation. Comput. J.,
61(12):1749–1771, 2018.

[16] Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-
sarial networks. In ICML, volume 70 of Proceedings of Machine Learning Research,
pages 214–223. PMLR, 2017.

[17] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory Comput., 8(1):121–164, 2012.

[18] Brooke Auxier, Lee Rainie, Monica Anderson, Andrew Perrin, Madhu Kumar, and
Erica Turner. Americans and privacy - concerned confused and feeling lack of control
over their personal information. Pew Research Center, 2019.

116

[19] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. In ICLR, 2015.

[20] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry,
and Kunal Talwar. Privacy, accuracy, and consistency too: a holistic solution to
contingency table release. In PODS, pages 273–282, 2007.

[21] Raef Bassily, Adam Groce, Jonathan Katz, and Adam D. Smith. Coupled-worlds
privacy: Exploiting adversarial uncertainty in statistical data privacy. In FOCS,
pages 439–448. IEEE Computer Society, 2013.

[22] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. FOCS. pages 464–473.
IEEE Computer Society, 2014.

[23] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel N. Kho, and Jen-
nie Rogers. SMCQL: secure query processing for private data networks. PVLDB,
10(6):673–684, 2017.

[24] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.
Shrinkwrap: Efficient sql query processing in differentially private data federations.
PVLDB, 12(3), November 2018.

[25] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled cir-
cuits. In CCS, pages 784–796. ACM, 2012.

[26] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[27] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. J. Mach. Learn. Res., 13:281–305, 2012.

[28] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[29] Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. In-
formation science and statistics. Springer, 2007.

[30] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-
interactive database privacy. In STOC, pages 609–618. ACM, 2008.

117

[31] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In EUROCRYPT, volume 5479 of Lecture Notes
in Computer Science, pages 224–241. Springer, 2009.

[32] Dan Boneh. The decision diffie-hellman problem. In Algorithmic Number Theory,
Third International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25,
1998, Proceedings, pages 48–63, 1998.

[33] Claire McKay Bowen and Fang Liu. Comparative study of differentially private data
synthesis methods. Statistical Science, 35(2):280–307, May 2020.

[34] Meta S Brown and S Kudyba. Transforming unstructured data into useful informa-
tion. In Big Data, Mining, and Analytics: Components of Strategic Decision Making.
Taylor & Francis, 2014.

[35] U.S. Census Bureau. Lehd origin-destination employment statistics (2002-2017),
Accessed on 2020-11-30.

[36] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[37] R. Chawla. Deepfakes : How a pervert shook the world. International Journal for
Advance Research and Development, 4:4–8, 2019.

[38] Qingrong Chen, Chong Xiang, Minhui Xue, Bo Li, Nikita Borisov, Dali Kaafar, and
Haojin Zhu. Differentially private data generative models. CoRR, abs/1812.02274,
2018.

[39] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. Differentially private high-
dimensional data publication via sampling-based inference. In SIGKDD, pages 129–
138, 2015.

[40] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
SIGKDD, pages 785–794. ACM, 2016.

[41] Fei Chiang and Dhruv Gairola. Infoclean: Protecting sensitive information in data
cleaning. ACM J. Data Inf. Qual., 9(4):22:1–22:26, 2018.

[42] David Maxwell Chickering. Learning bayesian networks is np-complete. In AISTATS,
pages 121–130. Springer, 1995.

118

[43] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial constraints. PVLDB,
6(13):1498–1509, 2013.

[44] Diego Colombo and Marloes H. Maathuis. Order-independent constraint-based
causal structure learning. J. Mach. Learn. Res., 15(1):3741–3782, 2014.

[45] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint
Arch., page 86, 2016.

[46] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private computation
of cardinality of set intersection and union. In CANS, pages 218–231, 2012.

[47] Rachel Cummings, Sara Krehbiel, Kevin A. Lai, and Uthaipon Tao Tantipongpipat.
Differential privacy for growing databases. In NeurIPS, pages 8878–8887, 2018.

[48] Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, and
Pradap Konda. The magellan data repository. https://sites.google.com/site/

anhaidgroup/projects/data.

[49] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[50] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Information Theory, 22(6):644–654, 1976.

[51] Cynthia Dwork. Differential privacy. In ICALP, volume 4052, pages 1–12. Springer,
2006.

[52] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In EURO-
CRYPT, volume 4004, pages 486–503. Springer, 2006.

[53] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, 2006.

[54] Cynthia Dwork and Moni Naor. On the difficulties of disclosure prevention in sta-
tistical databases or the case for differential privacy. J. Priv. Confidentiality, 2(1),
2010.

[55] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan.
On the complexity of differentially private data release: efficient algorithms and
hardness results. In STOC, pages 381–390. ACM, 2009.

119

https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data

[56] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[57] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad
Ouzzani, and Nan Tang. Distributed representations of tuples for entity resolution.
Proc. VLDB Endow., 11(11):1454–1467, 2018.

[58] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. Data Eng., 2007.

[59] David W. Embley. Key. In Encyclopedia of Database Systems, Second Edition.
Springer, 2018.

[60] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: randomized
aggregatable privacy-preserving ordinal response. In CCS, pages 1054–1067. ACM,
2014.

[61] Ju Fan, Tongyu Liu, Guoliang Li, Junyou Chen, Yuwei Shen, and Xiaoyong Du.
Relational data synthesis using generative adversarial networks: A design space ex-
ploration. Proc. VLDB Endow., 13(11):1962–1975, 2020.

[62] Liyue Fan. A survey of differentially private generative adversarial networks. In The
AAAI Workshop on Privacy-Preserving Artificial Intelligence, 2020.

[63] Peter A. Flach and Iztok Savnik. Database dependency discovery: A machine learn-
ing approach. AI Commun., 12(3):139–160, August 1999.

[64] Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and Patrick Du-
verger. Differentially private generative adversarial networks for time series, contin-
uous, and discrete open data. In SEC, pages 151–164, 2019.

[65] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhi-
wei Steven Wu. Dual query: Practical private query release for high dimensional
data. In ICML, volume 32, pages 1170–1178, 2014.

[66] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

[67] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam D. Smith. Com-
position attacks and auxiliary information in data privacy. In ACM SIGKDD, pages
265–273. ACM, 2008.

120

[68] Chang Ge, Xi He, Ihab F. Ilyas, and Ashwin Machanavajjhala. APEx: Accuracy-
aware differentially private data exploration. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD, pages 177–194, 2019.

[69] Chang Ge, Ihab F. Ilyas, and Florian Kerschbaum. Secure multi-party functional
dependency discovery. Proc. VLDB Endow., 13(2):184–196, 2019.

[70] Chang Ge, Shubhankar Mohapatra, Xi He, and Ihab F. Ilyas. Kamino: Constraint-
aware differentially private data synthesis. Proc. VLDB Endow., 14(10):1886–1899,
2021.

[71] O. Goldreich. Towards a theory of software protection and simulation by oblivious
rams. In STOC, pages 182–194, 1987.

[72] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004.

[73] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial net-
works. CoRR, abs/1406.2661, 2014.

[74] Andy Greenberg. Apple’s ‘differential privacy’ is about collecting your data—but
not your data. Wired, 2016.

[75] Ishaan Gulrajani, Faruk Ahmed, Mart́ın Arjovsky, Vincent Dumoulin, and Aaron C.
Courville. Improved training of wasserstein gans. In NIPS, pages 5767–5777, 2017.

[76] Rahul Gupta. Data augmentation for low resource sentiment analysis using genera-
tive adversarial networks. In ICASSP, pages 7380–7384. IEEE, 2019.

[77] Qilong Han, Qianqian Chen, Liguo Zhang, and Kejia Zhang. HRR: a data cleaning
approach preserving local differential privacy. Int. J. Distributed Sens. Networks,
14(12), 2018.

[78] Samuel Haney, Ashwin Machanavajjhala, John M. Abowd, Matthew Graham, Mark
Kutzbach, and Lars Vilhuber. Utility cost of formal privacy for releasing national
employer-employee statistics. In SIGMOD, pages 1339–1354. ACM, 2017.

[79] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm
for differentially private data release. In NIPS, pages 2348–2356, 2012.

121

[80] Michael B. Hawes. Implementing differential privacy: Seven lessons from
the 2020 united states census. Harvard Data Science Review, 4 2020.
https://hdsr.mitpress.mit.edu/pub/dgg03vo6.

[81] Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, and Dan Zhang.
Principled evaluation of differentially private algorithms using dpbench. In SIGMOD,
pages 139–154. ACM, 2016.

[82] Xi He, Ashwin Machanavajjhala, and Bolin Ding. Blowfish privacy: tuning privacy-
utility trade-offs using policies. In SIGMOD, pages 1447–1458, 2014.

[83] Hans Hinterberger. Exploratory data analysis. In Encyclopedia of Database Systems,
Second Edition. Springer, 2018.

[84] Justin Hsu, Aaron Roth, and Jonathan R. Ullman. Differential privacy for the analyst
via private equilibrium computation. In STOC, pages 341–350. ACM, 2013.

[85] Yu Huang, Mostafa Milani, and Fei Chiang. Privacy-aware data cleaning-as-a-service.
Inf. Syst., 94:101608, 2020.

[86] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: an effi-
cient algorithm for discovering functional and approximate dependencies. Comput.
J., 42(2):100–111, 1999.

[87] IBM. Cost of a data breach report. 2020.

[88] Ihab F. Ilyas and Xu Chu. Data Cleaning. ACM, 2019.

[89] John Jablonski. Reputation damage control: Insuring the cost of mitigating reputa-
tional harm following a cyber-attack or data breach. USLAW Magazine, 2015.

[90] Anja Jerichow, Jan Müller, Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waid-
ner. Real-time mixes: a bandwidth - efficient anonymity protocol. IEEE Journal on
Selected Areas in Communications, 16(4):495–509, 1998.

[91] Xiaoqian Jiang, Zhanglong Ji, Shuang Wang, Noman Mohammed, Samuel Cheng,
and Lucila Ohno-Machado. Differential-private data publishing through component
analysis. Trans. Data Priv., 6(1):19–34, 2013.

[92] Aaron Johnson and Vitaly Shmatikov. Privacy-preserving data exploration in
genome-wide association studies. In SIGKDD, pages 1079–1087. ACM, 2013.

122

[93] Noah M. Johnson, Joseph P. Near, and Dawn Song. Towards practical differential
privacy for SQL queries. Proc. VLDB Endow., 11(5):526–539, 2018.

[94] Theodore Johnson. Data profiling. In Encyclopedia of Database Systems, Second
Edition. Springer, 2018.

[95] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. PATE-GAN: generating
synthetic data with differential privacy guarantees. In ICLR, 2019.

[96] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zäıd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Kho-
dak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova,
Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh,
Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated
learning. Found. Trends Mach. Learn., 14(1-2):1–210, 2021.

[97] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam D. Smith. What can we learn privately? SIAM J. Comput., 40(3):793–826,
2011.

[98] Shiva Prasad Kasiviswanathan and Adam Smith. On the ’semantics’ of differential
privacy: A bayesian formulation. J. Priv. Confidentiality, 6(1), 2014.

[99] Daniel Kifer and Ashwin Machanavajjhala. Pufferfish: A framework for mathematical
privacy definitions. ACM Trans. Database Syst., 39(1):3:1–3:36, 2014.

[100] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR,
2014.

[101] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In
CRYPTO, pages 241–257, 2005.

[102] Karl Knopf. Framework for Differentially Private Data Analysis with Multiple Ac-
curacy Requirements, page 2890–2892. ACM, 2021.

123

[103] Solmaz Kolahi. Functional dependency. In Encyclopedia of Database Systems, Second
Edition. Springer, 2018.

[104] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
Practical multi-party private set intersection from symmetric-key techniques. In
CCS, pages 1257–1272, 2017.

[105] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and
Techniques. MIT Press, 2009.

[106] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-
jjhala, Michael Hay, and Gerome Miklau. Privatesql: A differentially private SQL
query engine. Proc. VLDB Endow., 12(11):1371–1384, 2019.

[107] Fragkiskos Koufogiannis, Shuo Han, and George J. Pappas. Gradual release of sen-
sitive data under differential privacy. CoRR, abs/1504.00429, 2015.

[108] Fragkiskos Koufogiannis, Shuo Han, and George J. Pappas. Gradual release of sen-
sitive data under differential privacy. J. Priv. Confidentiality, 7(2), 2016.

[109] Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Ken Goldberg, and Tim
Kraska. Privateclean: Data cleaning and differential privacy. In SIGMOD, pages
937–951. ACM, 2016.

[110] K.E. Lauter, W. Dai, and K. Laine. Protecting Privacy Through Homomorphic
Encryption. Springer International Publishing AG, 2021.

[111] Jaewoo Lee and Christopher W. Clifton. Top-k frequent itemsets via differentially
private fp-trees. In SIGKDD, pages 931–940. ACM, 2014.

[112] Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. A data- and workload-aware
query answering algorithm for range queries under differential privacy. Proc. VLDB
Endow., 7(5):341–352, 2014.

[113] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor.
Optimizing linear counting queries under differential privacy. In PODS, pages 123–
134. ACM, 2010.

[114] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Rastogi.
The matrix mechanism: optimizing linear counting queries under differential privacy.
VLDB J., 24(6):757–781, 2015.

124

[115] Haoran Li, Li Xiong, Lifan Zhang, and Xiaoqian Jiang. Dpsynthesizer: Differentially
private data synthesizer for privacy preserving data sharing. Proc. VLDB Endow.,
7(13):1677–1680, 2014.

[116] Ninghui Li, Wahbeh H. Qardaji, Dong Su, and Jianneng Cao. Privbasis: Frequent
itemset mining with differential privacy. Proc. VLDB Endow., 5(11):1340–1351, 2012.

[117] Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, and Zhiwei Steven Wu. Ac-
curacy first: Selecting a differential privacy level for accuracy constrained ERM. In
NIPS, pages 2566–2576, 2017.

[118] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. J. Cryptology,
15(3):177–206, 2002.

[119] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-
preserving data mining. IACR Cryptology ePrint Archive, 2008:197, 2008.

[120] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies
from data - A review. IEEE Trans. Knowl. Data Eng., 24(2):251–264, 2012.

[121] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of functional
dependencies and armstrong relations. In EDBT, 2000.

[122] Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes Gehrke, and Lars
Vilhuber. Privacy: Theory meets practice on the map. In ICDE, pages 277–286.
IEEE Computer Society, 2008.

[123] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala. Opti-
mizing error of high-dimensional statistical queries under differential privacy. Proc.
VLDB Endow., 11(10):1206–1219, 2018.

[124] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.
HDMM: optimizing error of high-dimensional statistical queries under differential
privacy. CoRR, abs/2106.12118, 2021.

[125] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. Graphical-model based esti-
mation and inference for differential privacy. In ICML, volume 97, pages 4435–4444,
2019.

[126] Frank McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In SIGMOD, pages 19–30. ACM, 2009.

125

[127] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In
NIPS, pages 3111–3119, 2013.

[128] Ilya Mironov. Rényi differential privacy. In CSF, pages 263–275. IEEE Computer
Society, 2017.

[129] Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi differential privacy of the sampled
gaussian mechanism. CoRR, abs/1908.10530, 2019.

[130] Dan Murray. Tableau Your Data! Fast and Easy Visual Analysis with Tableau Soft-
ware. Wiley Publishing, 1st edition, 2013.

[131] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Comput.,
35(5):1254–1281, 2006.

[132] Noel Novelli and Rosine Cicchetti. FUN: an efficient algorithm for mining functional
and embedded dependencies. In ICDT, pages 189–203, 2001.

[133] National Institute of Standards and Technology. Differential privacy synthetic data
challenge, 2018.

[134] Art B. Owen. Monte Carlo theory, methods and examples. 2013.

[135] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238, 1999.

[136] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix
Naumann. Data profiling with metanome. PVLDB, 2015.

[137] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional de-
pendency discovery: An experimental evaluation of seven algorithms. Proc. VLDB
Endow., 8(10):1082–1093, 2015.

[138] Thorsten Papenbrock and Felix Naumann. A hybrid approach to functional depen-
dency discovery. In SIGMOD, 2016.

[139] Nicolas Papernot, Mart́ın Abadi, Úlfar Erlingsson, Ian J. Goodfellow, and Kunal
Talwar. Semi-supervised knowledge transfer for deep learning from private training
data. In ICLR. OpenReview.net, 2017.

126

[140] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar,
and Úlfar Erlingsson. Scalable private learning with PATE. In ICLR, 2018.

[141] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anonymous channel
and all/nothing election scheme. In EUROCRYPT, pages 248–259, 1993.

[142] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. Discovery
of approximate (and exact) denial constraints. Proc. VLDB Endow., 13(3):266–278,
2019.

[143] NhatHai Phan, Yue Wang, Xintao Wu, and Dejing Dou. Differential privacy preser-
vation for deep auto-encoders: an application of human behavior prediction. In
AAAI, pages 1309–1316. AAAI Press, 2016.

[144] Haoyue Ping, Julia Stoyanovich, and Bill Howe. Datasynthesizer: Privacy-preserving
synthetic datasets. In SSDBM, pages 42:1–42:5. ACM, 2017.

[145] Davide Proserpio, Sharon Goldberg, and Frank McSherry. Calibrating data to sen-
sitivity in private data analysis. Proc. VLDB Endow., 7(8):637–648, 2014.

[146] Wahbeh H. Qardaji, Weining Yang, and Ninghui Li. Priview: practical differentially
private release of marginal contingency tables. In SIGMOD, pages 1435–1446, 2014.

[147] Vibhor Rastogi, Michael Hay, Gerome Miklau, and Dan Suciu. Relationship privacy:
output perturbation for queries with joins. In PODS, pages 107–116. ACM, 2009.

[148] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean: Holis-
tic data repairs with probabilistic inference. PVLDB, 10(11):1190–1201, 2017.

[149] Jiahui Ren, Xian Xu, Zhihuan Yao, and Huiqun Yu. Recommender systems based
on autoencoder and differential privacy. In COMPSAC, pages 358–363. IEEE, 2019.

[150] Matthew Richardson and Pedro M. Domingos. Markov logic networks. Machine
Learning, 62(1-2):107–136, 2006.

[151] Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and Theodoros
Rekatsinas. A formal framework for probabilistic unclean databases. In ICDT, pages
6:1–6:18, 2019.

[152] Krishna Sampigethaya and Radha Poovendran. A survey on mix networks and their
secure applications. Proceedings of the IEEE, 94(12):2142–2181, 2006.

127

[153] Hemant Saxena, Lukasz Golab, and Ihab F. Ilyas. Distributed discovery of functional
dependencies. In ICDE, pages 1590–1593, 2019.

[154] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and
Russell Webb. Learning from simulated and unsupervised images through adversarial
training. In CVPR, pages 2242–2251. IEEE Computer Society, 2017.

[155] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient
descent with differentially private updates. In GlobalSIP, pages 245–248. IEEE,
2013.

[156] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic
Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2011.

[157] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. DP-CGAN: differ-
entially private synthetic data and label generation. CoRR, abs/2001.09700, 2020.

[158] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer series
in statistics. Springer, 2009.

[159] Jonathan Ullman and Salil P. Vadhan. Pcps and the hardness of generating private
synthetic data. In TCC, pages 400–416, 2011.

[160] Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with application
to association rule mining. J. Comput. Secur., 13(4):593–622, 2005.

[161] Elisabet Lobo Vesga, Alejandro Russo, and Marco Gaboardi. A programming lan-
guage for data privacy with accuracy estimations. ACM Trans. Program. Lang. Syst.,
43(2):6:1–6:42, 2021.

[162] Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Zhiwei Steven Wu.
New oracle-efficient algorithms for private synthetic data release. In ICML, volume
119 of Proceedings of Machine Learning Research, pages 9765–9774. PMLR, 2020.

[163] Christopher Waites. Pyvacy: Towards practical differential privacy for deep learning.
https://github.com/ChrisWaites/pyvacy, 2019.

[164] Oliver Williams and Frank McSherry. Probabilistic inference and differential privacy.
In NIPS, pages 2451–2459, 2010.

128

[165] Richard Wu, Aoqian Zhang, Ihab F. Ilyas, and Theodoros Rekatsinas. Attention-
based learning for missing data imputation in holoclean. In MLSys, 2020.

[166] Catharine Wyss, Chris Giannella, and Edward L. Robertson. Fastfds: A heuristic-
driven, depth-first algorithm for mining functional dependencies from relation in-
stances - extended abstract. In DaWaK, 2001.

[167] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via
wavelet transforms. IEEE Trans. Knowl. Data Eng., 23(8):1200–1214, 2011.

[168] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially
private generative adversarial network. CoRR, abs/1802.06739, 2018.

[169] A. C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167, 1986.

[170] Hong Yao, H. J. Hamilton, and C. J. Butz. Fdmine: discovering functional depen-
dencies in a database using equivalences. In ICDM, pages 729–732, 2002.

[171] Sandeep Yaramakala and Dimitris Margaritis. Speculative markov blanket discovery
for optimal feature selection. In ICDM, pages 809–812, 2005.

[172] Chen Zeng, Jeffrey F. Naughton, and Jin-Yi Cai. On differentially private frequent
itemset mining. Proc. VLDB Endow., 6(1):25–36, 2012.

[173] Dan Zhang, Ryan McKenna, Ios Kotsogiannis, Michael Hay, Ashwin Machanava-
jjhala, and Gerome Miklau. EKTELO: A framework for defining differentially-private
computations. In SIGMOD, pages 115–130. ACM, 2018.

[174] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui
Xiao. Privbayes: private data release via bayesian networks. In SIGMOD, pages
1423–1434, 2014.

[175] Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially private releasing via deep
generative model. CoRR, abs/1801.01594, 2018.

[176] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. A statistical perspective
on discovering functional dependencies in noisy data. In SIGMOD, pages 861–876.
ACM, 2020.

[177] Tianqing Zhu, Gang Li, Wanlei Zhou, and Philip S. Yu. Differentially private data
publishing and analysis: A survey. IEEE Trans. Knowl. Data Eng., 29(8):1619–1638,
2017.

129

	List of Figures
	List of Tables
	Introduction
	Data Analytics on Private Data Silos
	Scope and Challenges
	Data Scientist Interacting with Private Data
	Interaction among Multiple Private Data

	Contributions and Outline
	Data Exploration
	Data Synthesis
	Data Profiling
	Other Tasks

	Preliminaries and Related Work
	Preliminaries
	Relational Data and Constraints
	Probabilistic Database
	Differential Privacy
	Cryptographic Constructions

	Related Work on Specific Private Data Analysis Tasks
	Private Data Exploration
	Private Data Sampling
	Private FD Profiling

	APEx: Accuracy-Aware Differentially Private Data Exploration
	Queries and Accuracy
	Exploration Queries
	Accuracy Measure

	APEx Overview
	Accuracy Translator
	Baseline Translation
	Special Translation for WCQ
	Special Translation for ICQ
	Special Translation for TCQ

	Privacy Analysis
	Overall Privacy Guarantee

	Query Benchmark Evaluation
	Setup
	APEx End-to-End Study
	Optimal Mechanism Study

	Case Study
	Case Study Setting
	The ER Model
	End-to-End Task Evaluation

	Discussion and Conclusion
	Other Aggregation Functions
	Conclusion

	Kamino: Constraint-Aware Differentially Private Data Synthesis
	Problem Statement and Solution Overview
	Problem Statement
	A Naïve Attempt
	Methodology Overview

	Kamino with Known DC Weights
	Private Learning of Tuple Probability
	Constraint-Aware Database Sampling
	Constraint-Aware Sequencing

	Learning DC Weights
	Privacy Analysis
	Evaluation
	Evaluation Setup
	End-to-End Evaluation
	Component Evaluation

	Discussion and Conclusion
	DC Violation Analysis
	Conclusion

	SMFD: Secure Multi-Party Functional Dependency Discovery
	Problem Statement and Solution Overview
	Problem Statement
	A Naïve Attempt
	Solution Overview

	Secure FD Discovery
	Distributed FD Validation
	A Secure FD Discovery Protocol

	Equality-Aware Mixnet
	Value-Level Equality Testing
	Set-Level Equality Testing
	Parallelizing MixNet

	Secure Congenial FD Discovery
	Distributed cFD Validation
	A Secure cFD Discovery Protocol

	Evaluation
	Experiment Setup
	Overhead of SMFD
	Efficiency of SMFD
	Scalability of SMFD

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	References

