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Abstract 

Drinking water treatment plants (DWTPs) are required to supply safe drinking water continuously to 

the consumers to protect public health and sanitation. The adverse effects of climate change can 

influence raw water quality, which is likely to worsen in the future as predicted by numerous climate 

models. The intensity, frequency and duration of precipitation events have been observed to be changed 

throughout the world as a consequence of natural and anthropogenic climate change. Severe and 

untimely precipitation events have the potential to deteriorate the water quality in surface water bodies 

directly and have been associated with water-borne diseases. Many DWTPs in Canada use surface 

water as their raw water source. Heavy precipitation events can lead to a significant increase in 

suspended and dissolved particles in surface water bodies by fluvial erosion and transportation of 

particles, which can result in raw water with elevated turbidity at the intake. Most of the DWTPs are 

designed based on historical data including past weather events. However, with the rapid change in 

precipitation patterns leading to very high turbidity levels in raw water more frequently, it can be quite 

challenging for the DWTPs to maintain regulated water quality during these heavy storm events. 

To control such turbidity spikes in raw water, a DWTP should be robust. Robustness of DWTPs is 

defined as the ability to provide excellent performance under normal conditions and deviate minimally 

during periods of upsets and challenges, maintaining a set finished water quality. The robustness of the 

affected treatment steps needs to be quantified to evaluate the robustness of the DWTPs under normal 

and historical weather scenarios and be improved for future weather scenarios that may occur due to 

climate change. A robustness framework was applied to two full-scale DWTPs (Plant A and Plant B) 

from Southern Ontario to assess their robustness with respect to turbidity for three raw water scenarios: 

(a) baseline turbidity representing normal weather, (b) elevated turbidity representing historical 

precipitation events, and (c) extremely high turbidity representing future precipitation events that is 

beyond general experience. For evaluating scenarios (a) and (b), on-line turbidity data for the calendar 

years 2019 and 2020 were provided by the two plants which have different raw water sources and 

treatment methods. To quantify the robustness of the affected treatment steps for turbidity removal, the 

turbidity robustness index (TRI) was used. A lower value of TRI is desired as it implies that the 

treatment step was robust for the given period. Using the TRI method has the advantage to quantify the 

robustness of treatment units with one index and one classification system irrespective of the different 

geographic locations, raw water sources, treatment techniques, and intensity and duration of 
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precipitation events experienced in the two DWTPs.  The weekly TRIs were calculated for each unit of 

the selected treatment steps during normal weather conditions using the on-line data. A method was 

developed to distinguish the elevated turbidity events representing heavy precipitation from 

background turbidity data and the TRIs corresponding to these periods were separated. However, no 

correlation was observed between higher TRIs and weather events characterized by elevated raw water 

turbidity, which is an indication of robustness with respect to raw water turbidity. The overall 

robustness of the two plants was assessed during the study period. Plant A was found to be more robust 

than Plant B in general. The higher TRIs observed in both plants can be a good tool to evaluate their 

operational regime retroactively and improve the robustness of the treatment steps. 

To assess scenario (c), the full-scale coagulation and sand ballasted clarification (SBC) process of Plant 

A was simulated using modified bench-scale jar tests where spiked water samples with very high 

turbidity were assessed in addition to controls at normal turbidity. A factorial design experiment was 

conducted to determine the significant factors for turbidity removal and optimize the process. The 

outcome of these experiments suggested that the polymer dosage used in the plant is optimum for 

extremely high turbidities, but the coagulant and microsand dosages can be increased for better 

removal. The outcome of the bench-scale simulation can aid in potential pilot- or full-scale studies. 

This study focuses on elevated raw water turbidity caused by heavy precipitation events. It is 

recommended to explore the effects of other climatic events on various raw water quality parameters 

to evaluate and improve the robustness of DWTPs. 



 

 v 

Acknowledgements 

First, I would like to express my gratitude to my supervisors, Dr. Peter M. Huck and Dr. Sigrid Peldszus 

for their invaluable advice, continuous support and motivation throughout this research. I am grateful 

for your immense knowledge, insightful feedback, great effort and time that you put into this work. I 

am thankful to be a part of such an interesting project. 

I would like to thank Kirti S. Nemani for her helpful guidance and treasured support in shaping the 

project. Special thanks to Kimia Aghasadeghi, Katarzyna Maria Jaszczyszyn, Sina Golchi and 

Mahmoud Badawy in the NSERC Chair in Water Treatment for their constructive suggestions and 

willingness to help whenever needed. Thanks to Mark Sobon and Mark Merlau for their technical 

support in the lab, to Steven Ngo for his assistance with zeta potential and TOC/DOC measurements 

and to Lorena Baku for her assistance with numerous administrative tasks. I would like to extend my 

sincere thanks to all the members of the NSERC Chair in Water Treatment and my friends and 

colleagues at the University of Waterloo, whose dedication and pursuit of excellence inspire me every 

day. 

This research was conducted in partnership with Plant A and Plant B. I am deeply grateful to the staff 

of Plant A and B for their guidance and support at every stage of the project by providing plant data 

and resources, sharing their insight into plant operations and answering my many questions. Thanks to 

the staff of Plant A for arranging a field trip to the plant, taking the time to explain every single detail 

of the plant operations, and collecting and shipping the raw water samples and chemicals, without 

which this research would not be possible. 

I would like to extend my thanks to the readers of this thesis, Dr. William A. Anderson and Dr. Stan 

Potapenko. 

Finally, I would like to thank my parents and my sister for their unconditional love and encouragement. 

Thanks to my friends whose love and support have brightened this journey thousands of miles away 

from home. 

This project is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) 

in the form of an Industrial Research Chair in Water Treatment at the University of Waterloo. The 

current Chair partners are listed at https://uwaterloo.ca/nserc-chair-water-treatment/partners . 



 

 vi 

Table of Contents 
Author’s Declaration .............................................................................................................................. ii 

Abstract .................................................................................................................................................. iii 

Acknowledgements ................................................................................................................................. v 

List of Figures ......................................................................................................................................... x 

List of Tables ........................................................................................................................................ xv 

List of Abbreviations .......................................................................................................................... xvii 

Disclaimer ............................................................................................................................................ xix 

Chapter 1 : Introduction .......................................................................................................................... 1 

1.1 Problem Statement ........................................................................................................................ 1 

1.2 Research Objectives and Scope .................................................................................................... 2 

1.3 Structure of the Thesis .................................................................................................................. 3 

Chapter 2 : Literature Review ................................................................................................................. 5 

2.1 Introduction ................................................................................................................................... 5 

2.2 Climate Change and Drinking Water Supply ............................................................................... 5 

2.2.1 Observed Effects of Climate Change of Drinking Water Supply .......................................... 5 

2.2.2 Projected Effects of Climate Change on Drinking Water Supply ......................................... 6 

2.2.3 Impacts of Extreme Weather on Water Quality Parameters .................................................. 8 

2.2.4 Impacts of Extreme Weather on Public Health ................................................................... 11 

2.3 Robustness in Drinking Water Treatment .................................................................................. 12 

2.4 Robustness Framework for Drinking Water Treatment Plants ................................................... 14 

2.4.1 Step 1: Parameters ............................................................................................................... 16 

2.4.2 Step 2: Criteria ..................................................................................................................... 20 

2.4.3 Step 3: Identification ............................................................................................................ 21 



 

 vii 

2.4.4 Step 4: Evaluation ................................................................................................................ 22 

2.4.5 Step 5: Assessment .............................................................................................................. 30 

2.4.6 Step 6: Adaptation ............................................................................................................... 32 

2.5 Identification of Research Needs ................................................................................................ 33 

Chapter 3 : Evaluation of Robustness of Plant A ................................................................................. 35 

3.1 Introduction ................................................................................................................................. 35 

3.2 Materials and Methods ............................................................................................................... 35 

3.2.1 Plant Description ................................................................................................................. 35 

3.2.2 Available Data ..................................................................................................................... 37 

3.2.3 Identification of Invalid Data ............................................................................................... 37 

3.2.4 Data Analysis Approach ...................................................................................................... 42 

3.3 Results and Discussion ............................................................................................................... 44 

3.3.1 Identification of Normal Turbidity and Turbidity Events ................................................... 44 

3.3.2 Robustness of the ACTIFLO® Units ................................................................................... 54 

3.3.3 Robustness of the Filtration Units ....................................................................................... 59 

3.3.4 Overall Robustness of Plant A ............................................................................................. 66 

3.4 Conclusion .................................................................................................................................. 75 

Chapter 4 : Evaluation of Robustness of Plant B ................................................................................. 76 

4.1 Introduction ................................................................................................................................. 76 

4.2 Materials and Methods ............................................................................................................... 76 

4.2.1 Plant Description ................................................................................................................. 76 

4.2.2 Available Data ..................................................................................................................... 78 

4.2.3 Identification of Invalid Data ............................................................................................... 79 

4.2.4 Data Analysis Approach ...................................................................................................... 84 



 

 viii 

4.3 Results and Discussion ............................................................................................................... 86 

4.3.1 Identification of Normal Turbidity and Turbidity Events ................................................... 86 

4.3.2 Robustness of the CFS Units ............................................................................................... 89 

4.3.3 Robustness of Filtration Units ............................................................................................. 97 

4.3.4 Overall Robustness of Plant B ........................................................................................... 105 

4.4 Conclusion ................................................................................................................................ 114 

Chapter 5 : Bench-scale Simulation of the ACTIFLO® Process in Plant A ....................................... 115 

5.1 Introduction ............................................................................................................................... 115 

5.2 The ACTIFLO® Process ........................................................................................................... 115 

5.3 Materials and Methods ............................................................................................................. 117 

5.3.1 Modified Jar Test Procedure .............................................................................................. 118 

5.3.2 Sampling ............................................................................................................................ 120 

5.3.3 Preparation of Spiked Water Samples ............................................................................... 121 

5.3.4 Raw Water Turbidity Scenarios ......................................................................................... 122 

5.4 Results and Discussion ............................................................................................................. 128 

5.4.1 Bench-scale Simulation of the ACTIFLO® Process Water Samples with Regular Turbidity

 .................................................................................................................................................... 128 

5.4.2 Bench-scale Simulation of the ACTIFLO® Process Water Samples with Historical High 

Turbidity ..................................................................................................................................... 130 

5.4.3 Bench-scale Simulation of the ACTIFLO® Process Water Samples with Extremely High 

Turbidity ..................................................................................................................................... 134 

5.4.4 Limitations of the bench-scale Simulation ........................................................................ 142 

5.5 Conclusion ................................................................................................................................ 144 

Chapter 6 : Comparisons, Conclusions and Recommendations ......................................................... 145 

6.1 Comparisons ............................................................................................................................. 145 



 

 ix 

6.1.1 Applicability of the Robustness Framework ..................................................................... 145 

6.1.2 Comparisons between Plant A and Plant B ....................................................................... 146 

6.2 Summary of Conclusions .......................................................................................................... 147 

6.3 Recommendations for Future Studies ....................................................................................... 148 

References ........................................................................................................................................... 150 

Appendices ......................................................................................................................................... 161 

Appendix A: Supplimentary Information of Plant A .................................................................... 161 

Appendix B: Supplimentary Information of Plant B ..................................................................... 175 

Appendix C: Supplimentary Information of Chapter 5 ................................................................. 196 

Appendix D: MATLAB Codes ..................................................................................................... 200 

 

 

 

 



 

 x 

List of Figures 
Figure 2.1: Mean changes in precipitation (Bates et al., 2008) .............................................................. 7 

Figure 2.2: Impacts of climate change on water resources and drinking water quality (Delpla et al., 

2009) ....................................................................................................................................................... 9 

Figure 2.3: Representation of a hypothetical filtration robustness concept (Huck et al., 2001b) ........ 13 

Figure 2.4: Robustness and resilience in the context of DWTPs (Levine et al., 2016) ........................ 14 

Figure 2.5: Robust system design methodology (Zakarian et al., 2007) .............................................. 15 

Figure 2.6: Overall robustness framework (adapted from Nemani, 2021a) ......................................... 16 

Figure 2.7: General turbidimeter optical system (Hach, 2013) ............................................................ 17 

Figure 2.8: Application of reliability, risk and QMRA in DWTP performance assessment (Zhang et 

al., 2012) ............................................................................................................................................... 29 

Figure 3.1: Plant A process flow diagram (figure depicts one treatment train and one filter basin) .... 36 

Figure 3.2: Time series of raw water turbidity data (2019) .................................................................. 38 

Figure 3.3: Time series of raw water turbidity data (2019) with invalid data points removed ............ 41 

Figure 3.4: Time series of raw water turbidity data (2020) with invalid data points removed ............ 41 

Figure 3.5: Time series of raw water data (2019) with turbidity peak events using yearly median raw 

water turbidity (5.81 NTU) ................................................................................................................... 45 

Figure 3.6: Time series of raw water turbidity during turbidity event (mid-December 2019) using 

yearly median raw water turbidity (5.81 NTU) .................................................................................... 47 

Figure 3.7: Time series of raw water turbidity during turbidity event (February 2019) using yearly 

median raw water turbidity (5.81 NTU) ............................................................................................... 48 

Figure 3.8: Time series of raw water turbidity during turbidity event (March-April-May 2019) using 

yearly median raw water turbidity (5.81 NTU) .................................................................................... 50 



 

 xi 

Figure 3.9: Time series of raw water turbidity of spring 2019 using seasonal median raw water 

turbidity (12.2 NTU) ............................................................................................................................. 52 

Figure 3.10: Time series of raw water turbidity (2019) showing normal turbidity and turbidity events

 .............................................................................................................................................................. 53 

Figure 3.11: Time series of raw water turbidity (2020) showing normal turbidity and turbidity events

 .............................................................................................................................................................. 53 

Figure 3.12: Weekly TRIs of the train 1 ACTIFLO® unit (2019) with varying Tgoals ....................... 54 

Figure 3.13: Weekly TRIs of the train 1 ACTIFLO® unit (2019) during normal weather and weather 

events characterized by raw water turbidity (Tgoal = 1.0 NTU) .......................................................... 55 

Figure 3.14: Weekly TRIs of the train 1 ACTIFLO® unit (2020) during normal weather and weather 

events characterized by raw water turbidity (Tgoal = 1.0 NTU) .......................................................... 55 

Figure 3.15: Weekly TRIs of the train 1 ACTIFLO® unit in relation to the maximum values of raw 

water turbidity during weather events .................................................................................................. 57 

Figure 3.16: Weekly average raw water and train 1 ACTIFLO® influent and effluent turbidity (2019)

 .............................................................................................................................................................. 58 

Figure 3.17: Weekly average raw water and train 1 ACTIFLO® influent and effluent turbidity (2020)

 .............................................................................................................................................................. 58 

Figure 3.18: Weekly TRIs of Filter 2 (2019) during normal weather and weather events characterized 

by raw water turbidity (Tgoal = 0.1 NTU) ........................................................................................... 60 

Figure 3.19: Weekly TRIs of Filter 2 (2020) during normal weather and weather events characterized 

by raw water turbidity (Tgoal = 0.1 NTU) ........................................................................................... 60 

Figure 3.20: Weekly TRIs of Filter 7 (2019) during normal weather and weather events characterized 

by raw water turbidity (Tgoal = 0.1 NTU) ........................................................................................... 61 



 

 xii 

Figure 3.21: Weekly TRIs of Filter 7 (2020) during normal weather and weather events characterized 

by raw water turbidity (Tgoal = 0.1 NTU) ........................................................................................... 61 

Figure 3.22: Weekly TRIs of (a) Filter 2 and (b) Filter 7 in relation to the maximum values of raw 

water turbidities during weather events ................................................................................................ 63 

Figure 3.23: Weekly average filter influent and effluent turbidity of Filter 2 in (a) 2019 and (b) 2020

 .............................................................................................................................................................. 64 

Figure 3.24: Weekly average filter influent and effluent turbidity of Filter 7 in (a) 2019 and (b) 2020

 .............................................................................................................................................................. 65 

Figure 3.25: Overall robustness category of Plant A in (a) 2019 and (b) 2020 with equal and unequal 

weightings ............................................................................................................................................. 74 

Figure 4.1: Plant B process flow diagram ............................................................................................ 77 

Figure 4.2: Time series of raw water turbidity data (2019) .................................................................. 80 

Figure 4.3: Time series of raw water turbidity data (2019) with invalid data points removed ............ 81 

Figure 4.4: Time series of raw water turbidity data (2020) with invalid data points removed ............ 81 

Figure 4.5: Timeseries of PACl flow (L/h) (a) line 1, (b) line 2, (c) line 3 and (d) line 4 for the year 

2019 ...................................................................................................................................................... 83 

Figure 4.6: Time series of raw water data (2019) with turbidity peak events using corresponding 

seasonal median raw water turbidity .................................................................................................... 87 

Figure 4.7: Time series of raw water turbidity (2019) showing normal turbidity and turbidity events 88 

Figure 4.8: Time series of raw water turbidity (2020) showing normal turbidity and turbidity events 89 

Figure 4.9: Weekly TRIs of the module 1 CFS unit (2019) with varying Tgoals ................................ 90 

Figure 4.10: Weekly TRIs during normal weather and weather events characterized by raw water 

turbidity of module 1 CFS unit in (a) 2019 and (b) 2020 (Tgoal = 1.0 NTU) ..................................... 91 



 

 xiii 

Figure 4.11: Weekly TRIs during normal weather and weather events characterized by raw water 

turbidity of module 2 CFS unit in (a) 2019 and (b) 2020 (Tgoal = 1.0 NTU) ..................................... 92 

Figure 4.12: Weekly TRIs of the (a) module 1 and (b) module 2 CFS unit in relation to the maximum 

values of raw water turbidity during weather events ............................................................................ 94 

Figure 4.13: Weekly average raw water and module 1 CFS influent and effluent turbidity in (a) 2019 

and (b) 2020 .......................................................................................................................................... 95 

Figure 4.14: Weekly average raw water and module 2 CFS influent and effluent turbidity in (a) 2019 

and (b) 2020 .......................................................................................................................................... 96 

Figure 4.15: Weekly TRIs of Filter 2 (2019) with varying Tgoals ...................................................... 98 

Figure 4.16: Weekly TRIs of Filter 2 in (a) 2019 and (b) 2020 during normal weather and weather 

events characterized by raw water turbidity (Tgoal = 0.1 NTU) .......................................................... 99 

Figure 4.17: Weekly TRIs of Filter 18 in (a) 2019 and (b) 2020 during normal weather and weather 

events characterized by raw water turbidity (Tgoal = 0.1 NTU) ........................................................ 100 

Figure 4.18: Weekly TRIs of (a) Filter 2 and (b) Filter 18 in relation to the maximum values of raw 

water turbidities during weather events .............................................................................................. 102 

Figure 4.19: Weekly average filter influent and effluent turbidity of Filter 2 in (a) 2019 and (b) 2020

 ............................................................................................................................................................ 103 

Figure 4.20: Weekly average filter influent and effluent turbidity of Filter 18 in (a) 2019 and (b) 2020

 ............................................................................................................................................................ 104 

Figure 4.21: Overall robustness category of Plant B in (a) 2019 and (b) 2020 with equal and unequal 

weighting ............................................................................................................................................ 113 

Figure 5.1: Schematic of the ACTIFLO® process (Desjardins et al., 2002) ....................................... 116 

Figure 5.2: Timeline (not to scale) of the ACTIFLO® jar test (adapted from John Meunier Inc., 2005)

 ............................................................................................................................................................ 118 



 

 xiv 

Figure 5.3: Overview of the experiments ........................................................................................... 120 

Figure 5.4: Turbidity of ultra-pure water samples with varying concentrations of kaolin ................. 122 

Figure 5.5: Bench-scale jar test results of raw water samples with regular turbidity during normal 

weather, (a) batch 1 (10 Sep. 2021) and (b) batch 2 (14 Oct. 2021) .................................................. 130 

Figure 5.6: Bench-scale jar test results for water samples with high turbidity collected during a heavy 

precipitation event (14 Dec. 2021) ..................................................................................................... 132 

Figure 5.7: Bench-scale simulation results of spiked water samples with historical high turbidity .. 134 

Figure 5.8: Effects of the factors and interactions .............................................................................. 137 

Figure 5.9: Marginal means plot of the interactions between (a) coagulant and microsand dosage 

(C*M), (b) microsand and polymer dosage (M*P), and (c) polymer and coagulant dosage (P*M) .. 138 

Figure 5.10: Normal distribution of the effects of the main factors and their interactions ................ 139 

Figure 5.11: Residuals of the model with respect to (a) coagulant dosage (coded), (b) microsand 

dosage (coded) and (c) polymer dosage (coded) ................................................................................ 140 

Figure 5.12: Mean zeta potential of different types of water samples (n = 4) .................................... 143 

 



 

 xv 

List of Tables 
Table 1.1: Thesis structure ...................................................................................................................... 3 

Table 2.1: Source of suspended particulates in water (Crittenden et al., 2012) ................................... 18 

Table 2.2: Implication for water quality and treatment based on turbidity type (Health Canada, 2012)

 .............................................................................................................................................................. 19 

Table 2.3: Regulatory limits of turbidity for different filtration techniques (Health Canada, 2012) ... 20 

Table 2.4: Suggested treated water quality targets regarding NOM (Health Canada, 2019) ............... 21 

Table 2.5: Identification of critical and vulnerable steps for turbidity (adapted from Nemani, 2021a)22 

Table 2.6: Decision process for selecting difference weighting factors (Li & Huck, 2008) ................ 26 

Table 2.7: Classification of system operation quality with TRI (adapted from Li, 2004) ................... 27 

Table 2.8: Legend of robustness category based on TRIs (Nemani, 2021b) ........................................ 30 

Table 2.9: Demonstration of determining overall system robustness (Nemani, 2021b) ...................... 31 

Table 3.1: On-line monitoring data obtained from Plant A .................................................................. 37 

Table 3.2: Demonstrations of the method to identify invalid data points ............................................ 39 

Table 3.3: HRTs of different treatment units in Plant A ...................................................................... 44 

Table 3.4: Short duration turbidity event in mid-December 2019 ........................................................ 46 

Table 3.5: Medium duration turbidity event in February 2019 ............................................................ 48 

Table 3.6: Long duration turbidity event in March-April-May 2019 ................................................... 49 

Table 3.7: Yearly and seasonal raw water median turbidities of 2019 ................................................. 51 

Table 3.8: Overall robustness of Plant A by weeks in 2019 using equal weighting ............................ 67 

Table 3.9: Overall robustness of Plant A by weeks in 2019 by unequal weighting (considering the 

ACTIFLO® process is more significant) .............................................................................................. 69 

Table 3.10: Overall robustness of Plant A by weeks in 2019 by unequal weighting (considering the 

filtration process is more significant) ................................................................................................... 71 



 

 xvi 

Table 4.1: On-line monitoring data obtained from Plant B .................................................................. 79 

Table 4.2: PACl line and module shutdown periods based on PACl flow data ................................... 83 

Table 4.3: HRTs of different treatment units in Plant B ....................................................................... 85 

Table 4.4: Yearly and seasonal raw water median turbidities of 2019 and 2020 ................................. 86 

Table 4.5: Overall robustness of Plant B by week in 2019 using equal weighting ............................ 106 

Table 4.6: Overall robustness of Plant B by weeks in 2019 using unequal weighting (considering the 

CFS process is more significant) ........................................................................................................ 108 

Table 4.7: Overall robustness of Plant B by weeks in 2019 using unequal weighting (considering the 

filtration process is more significant) ................................................................................................. 110 

Table 5.1: Data from the full-scale plant on the day of sampling ...................................................... 121 

Table 5.2: Historical turbidity events in Plant A ................................................................................ 123 

Table 5.3: Coded and uncoded values of factors ................................................................................ 125 

Table 5.4: Combinations of coded variables for the factorial design ................................................. 126 

Table 5.5: Results of bench-scale simulations using raw water samples of batches 1 and 2 ............. 128 

Table 5.6: Results of bench-scale simulations using water samples of batch 3 ................................. 131 

Table 5.7: Results of bench-scale simulations for spiked water samples representing historical high 

turbidity events ................................................................................................................................... 133 

Table 5.8: Result of the factorial design experiment with coded independent variables ................... 135 

Table 5.9: t-test and 95% CI of the regression coefficients ................................................................ 136 

Table 5.10: ANOVA table for the factors and their interactions ........................................................ 141 

 



 

 xvii 

List of Abbreviations 
 

ANOVA: analysis of variance 

AOGCM: atmosphere-ocean general circulation model 

BOD: biological oxygen demand 

C: carbon 

CART: classification and regression tree 

CFS: coagulation-flocculation-sedimentation 

CI: confidence interval 

DBP: disinfection by-product 

DOC: dissolved organic carbon 

DOM: dissolved organic matter 

DWTP: drinking water treatment plants 

FTU: formazin turbidity unit 

GAC: granular activated carbon 

GHS: greenhouse gas 

GI: gastrointestinal 

HAA: haloacetic acids 

HRT: hydraulic retention time 

IPCC: Intergovernmental Panel on Climate Change 

MDWL: municipal drinking water license 

ML/D: million liters per day 

NOM: natural organic matter 

NPP: normal probability plot 



 

 xviii 

NTU: nephelometric turbidity unit 

PACl: polyaluminum chloride 

PF: performance function 

POC: particulate organic carbon 

QMRA: quantitative microbial risk assessment 

RPM: revolutions per minute 

SBC: sand ballasted clarification 

SDS: simulated distribution system 

SOP: standard operating procedure 

SRES: special report of emissions scenarios  

SS: suspended solids 

SUVA: specific ultra-violet absorbance 

TCU: True color unit 

TMH: trihalomethanes 

TOC: total organic carbon 

TRI: turbidity robustness index 

USA: United States of America 

UV: ultra-violet 

WTP: water treatment plant 



 

 xix 

Disclaimer 

In several instances in this study, commercial products and/or trade names were mentioned. The use of 

commercial names does not constitute endorsement or recommendation of these products and/or 

instruments by the author. 



1 

 

Chapter 1: Introduction 

1.1 Problem Statement 

Drinking water treatment plants (DWTPs) are required to supply safe drinking water at all times 

(Hartshorn et al., 2015; Huck & Coffey, 2004; Li & Huck, 2008; Upton et al., 2017; Zhang et al., 2012). 

Many DWTPs in Canada use surface water (e.g., lakes, rivers, streams) as their raw water source. Due 

to the rapid changes in climate in the past decades, the duration, intensity, frequency, and timing of 

extreme hydrological events such as heavy precipitation have changed (Delpla et al., 2009; Füssel, 

2009; Kim et al., 2017; Min et al., 2011; Semenza & Menne, 2009; Staben et al., 2015). The water 

quality in surface water bodies tends to show immediate changes to extreme weather conditions (Staben 

et al., 2015). Moreover, the overall increase in global temperature results in early snow-melting (Bates 

et al., 2008). Snow melting and spring storms often occur at the same time and provide the greatest 

negative impact on surface water quality (Pešić et al., 2020). Intense precipitation leads to increased 

turbidity levels in surface water (Atherholt et al., 1998; Bates et al., 2008; Crittenden et al., 2012; Khan 

et al., 2015; Lawler et al., 2006). Elevated raw water turbidity caused by extreme rainfall has been 

associated with several water-borne diseases and gastrointestinal (GI) hospitalizations (Curriero et al., 

2001; De Roos et al., 2017; Delpla et al., 2009; Tinker et al., 2010). Various climate projection models 

predict that the intensity of precipitation is likely to increase in most areas in the world, while the mean 

precipitation would decrease (Bates et al., 2008). Consequently, more frequent heavy precipitation will 

take place in the future resulting in raw water quality parameter changes beyond the general experience, 

and newer and more difficult challenges for the DWTPs. Most water treatment utilities are designed 

based on historical data. When raw water with unusually high turbidity that is beyond the design 

capacity is recorded at the intake, DWTPs may fail to cope with the situation and consequently shut 

down the plant. Following the plant shutdown, if the finished water reservoir capacity is crossed and 

the DWTPs cannot meet the demand, it leads to extensive economic loss and social impacts (Qiu et al., 

2019; Staben et al., 2015).  

Climate change may not be preventable, but necessary measures have to be taken to maintain a set 

finished drinking water quality during extreme events. A DWTP must be robust in order to ensure the 

unchanged and desired performance despite the variations in raw water quality following an extreme 

weather event. Robustness is defined as the competence of a system to perform excellently under 

normal conditions, deviate minimally during periods of challenges, and continue to provide the desired 
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service (Huck & Coffey, 2002). Quantification of robustness is important to ensure and improve the 

robustness of a DWTP. Several researchers have evaluated the robustness of filtration units as well as 

clarification processes based on turbidity (García-Ávila et al., 2021; Hartshorn et al., 2015; Huck & 

Coffey, 2004; Li & Huck, 2008; Zoric et al., 2020). However, there has been limited focus on the 

robustness of the other treatment steps and the overall robustness of full-scale plants. There has been 

only one study that focused on an integrated framework for performance assessment (Zhang et al., 

2012). Furthermore, all these studies emphasize historical data for the water quality parameters 

investigated, which is likely to be invalid very soon considering the current impacts of climate change 

on raw water quality. 

 

1.2 Research Objectives and Scope 

The primary objective of this research is to apply the robustness framework developed by Nemani 

(2021a) to two DWTPs with respect to turbidity to evaluate the robustness of the affected treatment 

steps and provide guidance towards testing and implementing short-term operational responses to 

mitigate the complications caused by a water quality event.  This study mainly focuses on the impact 

on treatment steps of elevated raw water turbidity caused by heavy precipitation. 

The main objectives of this research are: 

1. To apply the robustness framework with respect to turbidity to two drinking water treatment 

plants with different raw water sources and treatment trains.  

2. To simulate the current and projected effects of extreme precipitation on raw water turbidity at 

bench-scale to provide guidance for optimizing the current treatment process accordingly. 

The sub-objectives relating to the first main objective are: 

• Develop a method for separating the turbidity events from background turbidity for Plant A 

and Plant B. 

• Evaluate the robustness of the identified critical treatment steps of Plant A and Plant B using 

the Turbidity Robustness Index (TRI) during normal and historical high turbidity events. 

• Integrate the robustness of different treatment steps and assess the overall robustness of Plant 

A and Plant B. 
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The sub-objectives relating to the second main objective are: 

• Perform bench-scale simulations of the coagulation and sand ballasted clarification (SBC) 

process, commercially known as the ACTIFLO® process in Plant A using raw water samples 

collected during normal weather and historical extreme weather. 

• Perform bench-scale simulations of the ACTIFLO® process in Plant A using spiked water 

samples that reflect the effects of future extreme weather on source water turbidity. 

• Provide guidance for optimizing the ACTIFLO® process in Plant A by using a factorial design 

experiment on spiked water samples that simulates the effects of future extreme weather on 

source water turbidity. 

 

1.3 Structure of the Thesis 

The thesis contains six chapters. Table 1.1 summarizes the key points provided in each chapter. 

 

Table 1.1: Thesis structure 

Chapters Content 

Chapter 1: Introduction • Provides problem statement, research objectives and 

scope, and thesis structure. 

Chapter 2: Literature review • Literature review to provide an overview of climate 

change effects on raw water quality and public health, the 

concept of robustness in DWTPs, the robustness 

framework, and methods developed to evaluate robustness. 

• Identifies research gaps. 

Chapter 3: Evaluation of 

robustness in Plant A 
• Describes the method developed to separate turbidity 

events from background turbidity. 
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• Evaluates the robustness of Plant A for normal and 

historical high turbidity events by analyzing data provided 

by the utility. 

Chapter 4: Evaluation of 

robustness in Plant B 
• Describes the method developed to separate turbidity 

events from background turbidity. 

• Evaluates the robustness of Plant B for normal and 

historical high turbidity events by analyzing data provided 

by the utility. 

Chapter 5: Bench-scale 

simulation of the ACTIFLO® 

process in Plant A 

• Discusses the results of bench-scale simulations of the 

ACTIFLO® process during normal weather and historical 

weather events characterized by turbidity. 

• Discusses the results of bench-scale simulations to 

optimize the ACTIFLO® process for future unprecedented 

extreme weather events. 

Chapter 6: Comparisons, 

conclusions and 

recommendations 

• Assesses the applicability of the robustness framework to 

Plants A and B. 

• Compares the results of Plants A and B obtained from 

Chapters 3 and 4. 

• Summarizes key findings of the research based on the 

results of Chapters 3, 4, and 5. 

• Offers recommendations for future research. 
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Chapter 2: Literature Review 

2.1 Introduction 

Safe drinking water is one of the most important factors for protecting public health and sanitation. 

Rapid and unpredictable changes in weather patterns have an adverse effect on raw water sources and 

water quality parameters, thus potentially making the water treatment utilities vulnerable. The presence 

of robustness in the design and operation of DWTPs can substantially overcome the challenges brought 

by the imminent threat of climate change on water quality and aid in continuing to provide high-quality 

drinking water in any situation. This chapter discusses the current and projected impact of climate 

change on raw water quality as well as a robustness framework and its applicability to DWTPs to assess 

and improve the robustness of the said treatment plants. 

 

2.2 Climate Change and Drinking Water Supply 

Extreme weather events caused by climate change include cyclones, hurricanes, typhoons, floods, 

droughts, wildfires, heat waves, cold waves and many more. These events are driven by several factors 

caused by both natural (e.g., geographic location, topography, air temperature, wind speed, cloud cover, 

solar radiation, etc.) and anthropogenic (e.g., air, soil and water pollution, greenhouse gas emission, 

radioactive contamination, etc.) sources (Helmuth, 2002). This section focuses on heavy and/or unusual 

precipitation due to climate change as extreme weather events and its impact on raw water quality. 

 

2.2.1 Observed Effects of Climate Change of Drinking Water Supply 

Surface water resources (e.g., lakes, reservoirs, rivers, and streams) provide drinking water to 

approximately 70% of the population of the United States of America (USA) (Levine et al., 2016). It is 

certain that the surface water bodies respond directly to the fluctuating weather conditions (Staben et 

al., 2015). Climate change influences the intensity, frequency, and duration of extreme hydrological 

events such as excessive precipitation, floods, and droughts (Delpla et al., 2009; Füssel, 2009; Kim et 

al., 2017; Min et al., 2011; Semenza & Menne, 2009; Staben et al., 2015). Precipitation and air 

temperature are dependent on each other since precipitation is mainly driven by the generation and 

transport of water vapor among other factors. 1ºC change in temperature can lead to a 7% increase in 
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water vapor generation (Alduchov & Eskridge, 1996). Extreme precipitation is controlled by water 

vapor, which is increasing due to global warming caused by escalated amounts of greenhouse gases 

(GHGs) in the atmosphere caused by human activities. Well-mixed GHGs are considered as the main 

drivers of tropospheric warming since 1979. The global surface temperature increased from 0.95 to 

1.20ºC from 1900 to 2020, with a larger increase over land (1.59ºC) than over the oceans (0.88ºC). 

From trend analysis of observational data, it is reported that the frequency and intensity of heavy 

precipitation events have increased since the 1950s due to human-induced climate change (IPCC, 

2021). Several studies have reported a statistically significant increase in the frequency of heavy 

precipitation across Europe and North America in certain areas, while the total amount of precipitation 

has decreased (Bates et al., 2008; Groisman et al., 2005). From historical data, it is evident that the 

increase in severe storm events since 1970 is extensively greater than the projections by the simulated 

models for that period. The increasing proportion of heavy rainfall to total rainfall was observed over 

most of the land areas over the late 20th century (Bates et al., 2008). 

 

2.2.2 Projected Effects of Climate Change on Drinking Water Supply 

Multi-model climate projections reveal that the intensity of precipitation will increase in most regions 

in the world, particularly in mid- and high-latitude areas where the mean precipitation will also increase. 

Figure 2.1 shows the annual mean changes in precipitation (%) from fifteen atmosphere-ocean general 

circulation models (AOGCMs) for the Special Report of Emissions Scenarios (SRES) for the period of 

2080-2099 relative to 1980-1999. Increases in precipitation in Canada are projected to be in the range 

of +20% for the annual mean and +30% for winter (IPCC, 2007). 
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Figure 2.1: Mean changes in precipitation (Bates et al., 2008) 

 

From the year 1936 to 2000, in Western USA, England and Canada, peak streamflow has been observed 

1-2 weeks earlier due to early warming-driven snowmelt. Higher temperatures during late winter and 

changes in the timing and amount of precipitation will be very likely to lead to earlier melting and 

significant reductions in the snowpack in the western mountains in North America by the middle of the 

21st century. In projections for mountain snowmelt-dominated watersheds, it is observed that advances 

in snowmelt runoff led to increasing winter and early spring flows and decreasing summer flows (Bates 

et al., 2008). Snow melting combined with storm rainfall has the greatest negative effect on water 

quality (Pešić et al., 2020). 

An increase in temperature up to 2°C is predicted by 2070 in European lakes depending on lake 

characteristics and season (Singh et al., 2014). Deep lakes are most sensitive to global warming because 

of their greater heat storage capacity (George et al., 2007). 
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2.2.3 Impacts of Extreme Weather on Water Quality Parameters 

Increased intensity of precipitation exacerbates various forms of water pollution including sediments, 

nutrients, organic matter, pathogens, pesticides, salts, and toxic chemicals (Bates et al., 2008; Curriero 

et al., 2001; Hurst et al., 2004). Intense rainstorm events lead to an increase in suspended solids (SS), 

resulting in elevated turbidity levels in freshwater (Atherholt et al., 1998; Bates et al., 2008; Crittenden, 

2012; Khan et al., 2015; Lawler et al., 2006) due to fluvial erosion of soil (Bates et al., 2008; Khan et 

al., 2015). Climate and seasonality are the primary drivers to predict the relationship between 

precipitation and turbidity. Spatial features including land cover, discharge area, elevation, type of soil 

and impervious surfaces influence turbidity dynamics in watersheds by affecting sediment source, 

transport, and delivery (Chen & Chang, 2019). Furthermore, heavy precipitation also raises natural 

organic matter (NOM) concentration in surface water bodies (Gregory, 1994; Jung et al., 2014; Sharp 

et al., 2006). Dissolved organic carbon (DOC) concentration can rapidly increase 4-5 times during 

precipitation or snowmelt events flushing terrestrial NOM into water bodies (Saraceno et al., 2009). 

The changes in turbidity can directly affect the change in organic matter quantity in water (Hartshorn 

et al., 2015; Naceradska et al., 2017; Pešić et al., 2020). Besides, NOM levels are observed to remain 

elevated after turbidity and flow have returned to baseline conditions (Gregory, 1994; Ruecker et al., 

2017; Tseng et al., 2000). Delpla et al., (2009) summarize the impact of climate change on surface 

water quality in Figure 2.2, considering the effects (droughts and floods) of the two main factors 

(temperature and rainfall). These impacts depend on natural or man-built environments, and the 

consequences can be different according to the type and characteristics of the water bodies. For streams 

and rivers, the main water quality parameters affected are organic matter and nutrients, whereas 

pathogens and cyanobacteria or cyanotoxins are more related to lakes. Micropollutants (inorganic or 

organic) are also frequently affected in both rivers and lakes. 
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*DOM: dissolved organic matter, DBP: disinfection by-product 

Figure 2.2: Impacts of climate change on water resources and drinking water quality (Delpla et al., 

2009) 

 

NOM is defined as a complex matrix of organic chemicals present in all water bodies, originating from 

natural sources such as biological activity, secretions from metabolic activities, and excretions from 

fish or other aquatic organisms (Crittenden et al., 2012; Health Canada, 2019). As carbon is the key 

constituent of NOM, particulate organic carbon (POC), total organic carbon (TOC), dissolved organic 

carbon (DOC) as well as ultra-violet (UV) absorbance are considered as indicators of organic matter in 

water (Health Canada, 2019). NOM is the major precursor to form disinfection by-products (DBPs) 

during chlorination (Crittenden et al., 2012; Marhaba & Van, 2000; Sharp et al., 2006). Chlorine for 

disinfection reacts with organic substances to form DBPs, some of which are highly toxic and 

carcinogenic compounds such as trihalomethanes (THM) and haloacetic acids (HAA) (Richardson, 

2002; Selvam et al., 2018). A simulated distribution system (SDS) test conducted in Quebec, Canada 

reported that after rainfall events, the concentration of THMs and HAAs were doubled in water samples 

at the distribution system within 20 hours of contact period due to a considerable rise in the organic 
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carbon reactivity of filtered water and linked the increases to a rise in non-brominated DBPs (Delpla & 

Rodriguez, 2016).  

High turbidity from an extreme rainfall event can overwhelm a water treatment infrastructure and 

deteriorate treatment performance (Atherton et al., 1995; Delpla et al., 2009; Fox & Lytle, 1996; Hurst 

et al., 2004). The Bearspaw water treatment plant (WTP) in Calgary, Alberta, experienced 3750 

nephelometric turbidity unit (NTU) of turbidity following an extreme rainfall event in 2013, and Red 

Deer WTP in Alberta faced around 3000 NTU of turbidity spike due to flooding in 2005 (Yarahmadi, 

2019). A study reports that, in 2001, the turbidity in the Tame River in England increased substantially 

by an order of magnitude to >300-500 formazin turbidity unit (FTU) followed by spring storm events 

(Lawler et al., 2006). Turbidity peaks ranging from 53-1021 NTU have been observed after rainfall 

events (>10 mm) in a watershed in Fiji in 2009 and 2010 (Ram & Terry, 2016). The water utility serving 

New York City, USA has recognized heavy precipitation events as one of its major climate change 

related concerns. Intense precipitation events have the ability to elevate turbidity levels in some of the 

main reservoirs of the city up to 100 times the legal limit for source quality at the intake of the utilities, 

which can result in additional treatment and monitoring costs (IPCC, 2007). In 2011, a DWTP in 

Alabama, USA, using the Tennessee River as the raw water source, experienced a surge of finished 

water turbidity of 15 NTU after a severe winter storm, whereas the standard was 0.3 NTU. As a result, 

the DWTP was forced to shut down for 3 days, alarming the residents and resulting in huge economic 

loss. The coagulation-flocculation process was affected by the type and concentration of SS, DOM and 

temperature (Qiu et al., 2019). The treatment process failed to meet the standard due to the storm event, 

indicating that the system lacked robustness. In 2015, as an aftermath of a hurricane in South Carolina, 

USA, more than 500 mm of rainfall had taken place in 5 days, which is 5 times more rain than the 

average precipitation of the entire month, which led to a turbidity spike in water bodies up to 56 NTU 

during the first few days of flooding, whereas the baseline turbidity was lower than 10 NTU. Moreover, 

up to 66% of the total annual DOC export occurred during the 5-day long event and the elevated DOC 

levels in water bodies were observed for 8 weeks (Ruecker et al., 2017). Therefore, controlling the 

effluent water quality should be the first priority in extreme weather conditions (Qiu et al., 2019). Most 

water treatment facilities are designed based on historical meteorological data that includes past records 

of storms and heavy precipitation events. However, DWTPs are now encountering more frequent and 

intense extreme weather conditions that were not experienced in the past. The affected DWTPs are not 
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often prepared to take proper and immediate response actions to mitigate the impacts (Qiu et al., 2019; 

Staben et al., 2015). 

 

2.2.4 Impacts of Extreme Weather on Public Health 

Water-borne diseases are likely to be increased with frequent heavy rainfall as more pathogens can be 

transported by higher runoff following a severe rainfall event (Delpla et al., 2009). Half of the 

waterborne disease outbreaks in the USA during the last half-century were observed to be preceded by 

rainfall events above the 90th percentile of the monthly accumulated rainfall (Curriero et al., 2001). It 

is reported that in Alberta, Canada, the ambient temperature, which somewhat controls precipitation 

events, is strongly, but non-linearly associated with the occurrence of enteric pathogens in water (Bates 

et al., 2008). Rainfall events above the 93rd percentile of the 5-day average accumulated rainfall 

resulted in 2.3 times increased risk of an outbreak (Thomas et al., 2006). Elevated raw water turbidity 

resulting from extreme precipitation has been found to be associated with GI illness (Tinker et al., 

2010). Increase in NOM may also enhance bacterial regrowth in water distribution networks (Abokifa 

et al., 2016). A study in New Jersey, USA, reports to find a positive association between GI 

hospitalizations and rainfall that impacts drinking water sources in warm seasons (Gleason & Fagliano, 

2017). Communities served by public water system are at high risk for GI illness when extreme 

precipitation damages water treatment infrastructures, subsequently compromising the finished water 

quality (Exum et al., 2018). Drinking water turbidity has been discovered to be positively associated 

with acute GI illnesses (De Roos et al., 2017). Moreover, an increase in adenovirus and rotavirus 

concentrations in raw water by approximately 0.5-log was reported in a study in two full-scale DWTPs 

in Quebec, Canada, during two snowmelt and rainfall episodes (Sylvestre et al., 2021). A study in 

Pennsylvania, USA, reported that an increase in finished water turbidity of 0.04 NTU (in compliance 

with federal standards) correlated to a 9% and 31% increase in hospital admissions for elderly and 

pediatric patients (Schwartz et al., 1997; Schwartz et al., 2000). It should be noted that turbidity does 

not provide an indication of water safety from pathogens, but it is useful as an indicator for further 

investigation (Health Canada, 2012). 
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2.3 Robustness in Drinking Water Treatment 

The concept of robustness has been explored in many fields from evolutionary biology to computer 

operating systems. It is the competence of a system to heal, self-repair, self-regulate, self-assemble, 

and/or self-replicate and maintain the desired characteristics despite fluctuations in the behavior of its 

components or the surrounding environment (Li, 2004). Robustness is defined as the ability of a system 

to provide excellent performance under normal conditions and deviate minimally during periods of 

upsets or challenges (Huck & Coffey, 2002). A DWTP is considered robust if its performance is 

insensitive to the variation of source water quality and changing operational conditions, thus continuing 

to achieve the desired drinking water quality (Zhang et al., 2012). DWTPs are expected to provide safe 

drinking water to their customers at all times (Hartshorn et al., 2015; Huck & Coffey, 2004; Li & Huck, 

2008; Upton et al., 2017; Zhang et al., 2012). To fulfill this goal, several drinking water quality 

parameters that have a direct or indirect link to public health, are regulated by the federal or provincial 

government. Five elements were identified to provide safe drinking water under the appropriate 

regulatory framework (Huck et al., 2001a): 

1. Start with the best possible source. 

2. Design and operate appropriate treatment. 

3. Provide secure distribution. 

4. Conduct appropriate monitoring. 

5. Respond appropriately to any adverse monitoring results. 

The concept of robustness typically emphasizes treatment and monitoring, since in most cases it is 

almost impossible to change the raw water source (Huck & Coffey, 2004). The concept of robustness 

is shown graphically in Figure 2.3 in terms of filter performance with varying influent water quality or 

coagulant dose. When a system is robust, the output of the system does not have a wide variation with 

changing operating conditions. Although the peak performance of an optimal system is greater than 

that of a robust system, a robust system may be preferred considering the greater range of operating 

conditions (Huck et al., 2001b). 
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Figure 2.3: Representation of a hypothetical filtration robustness concept (Huck et al., 2001b) 

 

The concept of robustness is closely related to resilience. Resilience of a system is defined as the 

duration of an unsatisfactory condition following a failure event until the original performance is 

recovered (Hashimoto et al., 1982). The resilience of a DWTP is a measure of how quickly the system 

recovers from an upset. It is case-specific and depends on the location, size, availability of trained 

technicians and the number of operators (Zhang et al., 2012). In Figure 2.4, Levine et al. (2016) show 

the capacity reserve of DWTPs as a function of recovery time for different types of climate-related 

disruptions. This concept can be useful to distinguish between robustness and resilience (Nemani, 

2021a). Capacity reserve is defined as the difference between design capacity and minimum treatment 

capacity to maintain the water quality and quantity requirements. After a climate event, in Scenario I, 

it can be observed that there is a lapse in the capacity to provide safe drinking water. In Scenario II, the 

capacity fails to provide the desired service for a while before recovering. Scenarios III and IV reflect 

a breaking point for the system due to insufficient capacity to implement appropriate operational 

changes or upgrades (Levine et al., 2016). A robust system can be explained with Scenario I as the 

system recovered quickly from a climate event and met the desired service criteria for the entire 

duration of the event. 
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Figure 2.4: Robustness and resilience in the context of DWTPs (Levine et al., 2016) 

 

The importance of robustness in DWTPs can be comprehended from the microbial contamination 

incident in Walkerton, Canada, in the year 2000, causing GI symptoms in 1300 individuals and 7 deaths 

(Huck et al., 2001a). Upon investigation and assessment, Huck and Coffey (2004) concluded that the 

Walkerton water system could not be considered robust, and hence the system was unable to prevent 

this tragic incident. 

 

2.4 Robustness Framework for Drinking Water Treatment Plants 

A DWTP should be robust in order to supply drinking water with set finished water quality parameters. 

As mentioned before, most DWTPs are designed based on historical data including past weather events 

(Qiu et al., 2019; Staben et al., 2015). With the growing effects of climate change on raw water quality, 

it is essential for DWTPs to be robust. However, there are numerous variables involved in the process 

of water treatment, and the variation of raw water quality and performance of one treatment step can 
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affect the performance of the following steps, which makes evaluation and assessment of the overall 

performance of DWTPs a very complex problem (Oliveira et al., 2014).  

Zakarian et al. (2007) discussed the necessity for a systematic, well-defined methodology to design 

robust systems, and developed a methodology combining three major techniques: system modeling, 

integration analysis and quality engineering techniques. The overall methodology is illustrated in 

Figure 2.5. 

 

 

Figure 2.5: Robust system design methodology (Zakarian et al., 2007) 

 

In this study, system robustness was achieved by specifying subsystem configurations within the overall 

system to minimize subsystem-to-subsystem interactions and overall system sensitivity to noise factors. 

Although this approach was developed for mechanical and electrical systems, the principle can be 

applied to the concept of robustness in DWTPs by identifying the treatment steps affected by raw water 

quality changes, evaluating the robustness of the identified steps, assessing the overall robustness of 

the utilities, and exploring operational changes to mitigate the impacts by design of experiments. 

Nemani (2021a) proposed a robustness framework for DWTPs to evaluate, synthesize and improve the 

robustness of DWTPs. This framework can be modified to any utility and raw water quality parameters 

and can facilitate the development of improved standard operating procedures (SOPs) according to the 

author. Figure 2.6 shows the main steps of the framework. 
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Figure 2.6: Overall robustness framework (adapted from Nemani, 2021a) 

 

The aspects of each step and their applicability in this study are discussed in the sub-sections 2.4.1 to 

2.4.6. 

 

2.4.1 Step 1: Parameters 

Several raw water quality parameters are affected by increasing heavy precipitation caused by climate 

change. The robustness framework can be applied for different parameters and the robustness of the 

plant can be assessed in terms of the selected parameter(s). Huck and Coffey (2004) listed turbidity, 

NOM, pH, temperature, microorganism concentrations (e.g., Giardia and Cryptosporidium), 

susceptibility to organic and inorganic contamination as key raw water quality parameters regarding 

robustness. These parameters are likely to change during precipitation events and have a direct or 

indirect association with public health as discussed in sub-section 2.2.4. The degree of robustness is a 

function of both average raw water quality, and the extent and rapidity of variation in raw water quality 

parameters (Huck & Coffey, 2004). Several studies have reported elevated turbidity and natural organic 

matter (in terms of TOC, DOC and specific ultraviolet absorbance, SUVA) in raw water sources 

following an extreme precipitation event (Hurst et al., 2019; Lawler et al., 2006; Qiu et al., 2019; 

Ruecker et al., 2017). As discussed before, turbidity can be associated with the presence of organic 

matter (Delpla et al., 2009; Delpla et al., 2015; Pešić et al., 2020) and microorganisms like 

Cryptosporidium (Atherholt et al., 1998; Emelko & Brown, 2002). Turbidity is the most widely used 

parameter for monitoring plant performance because turbidity measurements are simple, rapid, 

economical and can be measured continuously (Gregory, 1994; Health Canada, 2012; Huck et al., 

2001b; Upton et al., 2017). It is considered as an important water quality variable because of its relation 
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to biological oxygen demand (BOD) impact, sediment-associated contaminant transport, and suspended 

sediment effects of organisms and habitats (Lawler et al., 2006). Increase in turbidity in finished 

drinking water can be associated with GI illness (De Roos et al., 2017; Gleason & Fagliano, 2017; 

Tinker et al., 2010) and can be a good indicator of pathogens that may need further investigation. 

Because of its connection to public health, turbidity is a regulated parameter. Moreover, turbidity 

measurements are useful for comparing different water sources or treatment facilities and are used for 

process control and regulatory compliance (Crittenden et al., 2012). Considering all these facts, 

turbidity is selected as the water quality parameter to assess the robustness of the DWTPs in this study. 

 

2.4.1.1 Turbidity 

Turbidity is defined as an expression of the optical property that causes light to be scattered and 

absorbed rather than transmitted with no change in direction or flux level through the sample (Standard 

Methods, 2005). Turbidity in water is caused by the presence of suspended particles that reduce the 

clarity of the water. The size of particles in water can vary from 0.001μm to 100μm. Particles that are 

larger than 1μm, are considered as suspended. Regulations concerning particle measurements are 

generally based on turbidity measurements (Crittenden et al., 2012), although turbidity is not a direct 

measure of suspended particles. It is a general measure based on the light scattering and absorbing 

capacity of suspended particles. Turbidity is expressed in nephelometric turbidity units (NTU) and 

measured with a device called turbidimeter.  

 

Figure 2.7: General turbidimeter optical system (Hach, 2013) 
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The principle of measuring turbidity is that when a beam of light passes through the water, the particles, 

if present, can cause the light to be scattered or absorbed. Figure 2.7 shows a general turbidimeter 

optical system. The instrument generally includes a lamp, lenses, aperture to focus the light, a 90-degree 

detector to monitor scattered light and optionally, a forward-scatter light detector, a transmitted-light 

detector and a back-scatter light detector. The optional detectors may be added to minimize the impact 

of color, stray light and lamp and optical variabilities (Hach, 2013). 

Although particle interference with light depends on the shape, size, number, composition, color, 

refractive index, etc., it has been generalized that the intensity of light scattering increases with 

increasing turbidity (Health Canada, 2012). 

There can be various sources of suspended particles in water, which are listed in Table 2.1. 

 

Table 2.1: Source of suspended particulates in water (Crittenden et al., 2012) 

Source Particulate constituents 

Contact of water with minerals, rocks, and soil 

(e.g., weathering) 

Clay, silt, sand, and other inorganic soils 

Decomposition of organic matter in the 

environment 

Cell fragments 

Living organisms Algae, diatoms, minute animals, fish 

Municipal, industrial, and agricultural sources 

and other human activity 

Clay, silt, grit and other inorganic solids, 

organic compounds, oil, corrosion products 

 

Turbidity is commonly stable over time and ranges from about 1.0 to 20 NTU in lakes and reservoirs, 

excluding storm events. Turbidity in rivers is more variable due to storm events, runoff and changes in 

flow rate in the river and can range from under 10 to over 4000 NTU. Turbidity can change by several 

hundred NTU in a matter of hours in streams and rivers (Crittenden et al., 2012). 

The nature of turbidity has different effects on raw water quality and treatment techniques. Table 2.2 

summarizes some of the water quality and treatment implications for different types of turbidity. 

 



 

 19 

Table 2.2: Implication for water quality and treatment based on turbidity type (Health Canada, 2012) 

Type of turbidity Water quality implications Treatment implications 

Inorganic particles 

(clay, silt, mineral 

fragments, natural 

precipitants, e.g., 

calcium carbonate, 

manganese dioxide, 

iron oxide) 

- Raise/lower pH and alkalinity 

- Source of micronutrients 

- Affect zeta potential 

- Source of metals and metal oxides 

- Cloudy or turbid appearance 

- Affect taste 

 

- Major influence on coagulation, 

flocculation, and sedimentation 

design 

- Harbor or protect microorganisms 

- May require chemical adjustments 

- Can precipitate in the distribution 

system 

Natural organic 

matter (decomposed 

plant and animal 

debris) 

- Source of energy and nutrients for 

microorganisms 

- Cause color 

- Increased disinfectant demand 

- Harbour/protect microorganisms 

- Potential to form DBPs 

Organic 

macromolecules 

 

- Impart taste and odor 

- Possess ion exchange and 

complexing properties, 

association with toxic elements 

and micropollutants 

- Affect pH and zeta potential 

- Potential to form DBPs 

- Major influence on coagulation, 

flocculation, and sedimentation 

design 

- Reduce filter runs 

- Can precipitate in the distribution 

system 

Microorganisms 

(algae, 

cyanobacteria, 

zooplankton, 

bacteria, protozoa) 

 

- Impart taste and odor 

- Potential source of toxins (e.g., 

microcystin-LR) 

 - Can cause microbiologically 

influenced corrosion in system 

- Plug filters 

- Increased disinfectant demand 

- Need multiple barriers to ensure 

effective microbial inactivation 

- Biological growth (biofilm) 
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- Stain fixtures 

- Aesthetic problems: sloughing of 

growths (tanks, filters, reservoirs, 

distribution system 

- Shielding from disinfection 

 

 

2.4.2 Step 2: Criteria 

The criteria of the selected water quality parameter can be set based on the regulatory limit and/or plant-

specific goals. The main purpose of setting a criterion is to have a treatment goal for the selected 

parameter (Nemani, 2021a). 

Turbidity is a regulated parameter. Health Canada (2012) has listed specific guidelines for filtered water 

turbidity, which are summarized in Table 2.3. The Ontario regulations are based on these guidelines. 

 

Table 2.3: Regulatory limits of turbidity for different filtration techniques (Health Canada, 2012) 

Filtration type Regulatory limit 

Conventional and direct 

filtration 

Turbidity level should be always less than or equal to 0.3 NTU for 

95% of the measurements per cycle per month, with a target turbidity 

less than 0.1 NTU. Turbidity can never exceed 1.0 NTU. 

Slow sand and 

diatomaceous earth 

filtration 

Turbidity level should be always less than or equal to 1.0 NTU for 

95% of the measurements per cycle per month. Turbidity can never 

exceed 3.0 NTU. 

Membrane filtration 

(Reverse osmosis, 

Nanofiltration, 

Ultrafiltration, 

Microfiltration) 

Turbidity level should be always less than or equal to 0.1 NTU for 

99% of the measurements per cycle per month, with a target turbidity 

less than 0.1 NTU. Turbidity value greater than 0.1 NTU for more 

than 15 minutes should be investigated immediately. 
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The regulatory limit for turbidity is set for filtered water. However, DWTPs have pre-treatment before 

filtration and may have set turbidity goals for these treatment steps so that the filters are not 

overwhelmed. Some DWTPs may have stricter goals for filtered water to ensure desired finished water 

quality while maintaining the regulatory limits. 

Health Canada (2019) set some suggested targets to provide guidance for other quality parameters 

related to NOM that are not regulated, but are important because of their association with DBP 

formation, which are listed in Table 2.4. 

 

Table 2.4: Suggested treated water quality targets regarding NOM (Health Canada, 2019) 

 Suggested limits 

Parameter 

Source with higher specific 
DBP yield or system with 

extensive distribution 
system 

Source with lower specific 
DBP yield 

Color 5 - 10 TCU < 15 TCU 

UV254 0.02 - 0.04 cm-1 0.02 - 0.07 cm-1 

UV transmittance 90-95% 85-95% 

DOC (for DBP control) < 2 mg/L C < 4 mg/L C 

DOC (for biological stability) < 1.8 mg/L C < 1.8 mg/L C 

TCU: true color unit, C: carbon 
 

 

2.4.3 Step 3: Identification 

There are many treatment steps in a DWTP with different goals to control one or more water quality 

parameters. This step is required to identify the treatment steps that are ‘critical’ and ‘vulnerable’ with 

respect to the removal of the selected water quality parameter, which is selected to be turbidity in this 

study. Nemani (2021a) defines ‘critical’ steps as the water treatment steps that are important for the 
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physical, chemical or biological removal of the selected parameter whereas the ‘vulnerable’ steps are 

defined as the treatment steps that are impacted by the increase or change in the nature of the selected 

parameter. The critical treatment steps with respect to turbidity need to be identified since the evaluation 

of robustness of a given plant is dependent on the performance of these treatment steps. The identified 

critical and vulnerable treatment steps with respect to turbidity by Nemani (2021a) are listed in Table 

2.5. 

 

Table 2.5: Identification of critical and vulnerable steps for turbidity (adapted from Nemani, 2021a) 

Process Criticality Vulnerability 

Intake Varies1 Yes 

Coagulation Yes Yes 

Flocculation Yes Yes 

Sedimentation Yes Yes 

Dissolved air floatation Yes Yes 

Filtration Yes Yes 

Adsorption No Varies2 

Ozonation No Yes 

Disinfection No Yes 

Distribution system No Yes 

1. Depends on the design of the intake system, which may include raw water storage 
2. Depends on the type and point of usage 
 

 
 

2.4.4 Step 4: Evaluation 

The overall system robustness can be achieved with various means. However, due to numerous water 

quality parameters and the related variables in the water treatment systems, the process of evaluating 

and improving robustness can be quite challenging. Quantification of robustness benefits its 

improvement in a rational way (Huck & Coffey, 2004). The robustness of the identified steps with 

respect to turbidity can be evaluated for three scenarios characterized by raw water turbidity: 
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a. Normal turbidity, 

b. Historical high turbidity events, 

c. Unusually high turbidity that is beyond general experience but may occur in the future due to 

climate change. 

Scenarios (a) and (b) can be evaluated using on-line turbidity data from the plant. Scenario (c) can be 

assessed with bench-scale simulations. 

To evaluate scenarios (a) and (b), a tool is required that can quantify the robustness of the identified 

treatment steps. The concept of a robustness index has been used by several researchers with this aim.  

The first filtration robustness index was developed by Coffey et al. (1998) considering the index as a 

function of ripening, turbidity, water production and breakthrough. The index was expressed by the 

following equation: 

!"#$%&'(%%	*'+(,	 = 	 !!"#$!#%&
×	"!"#$"'#(

× #$"'#(
#$"!"#$

     (2.1) 

where, 

Tgoal = average turbidity goal (NTU), 

Tave = average turbidity (NTU), 

Rgoal = maximum ripening turbidity goal (NTU), 

Rmax = maximum ripening turbidity (NTU), 

LORgoal = length of run goal ([time]), 

LORmax = length of run ([time]). 

Equation (2.1) includes various aspects of filter performance. This index aimed to evaluate filter 

robustness. With the aim to evaluate robustness in terms of turbidity, this index was improved by 

interpreting data from pilot- and full-scale filtration systems. Huck et al. (2001b) focused on 

Cryptosporidium removal by granular media filtration and examined various conditions (ripening and 

breakthrough periods, suboptimal coagulation, sudden increase in flow, sudden change in influent water 

quality) where filtration was not optimal. To develop a filtration robustness index with respect to 

particle removal, the following robustness index was introduced by Huck et al. (2001b), and Huck and 

Coffey (2002): 
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where, 

TRI90, TRI95, TRI99 = turbidity robustness index (TRI) using the 90th, 95th and 99th percentile 

turbidity (dimensionless), 

T50, T90, T95, T99 = 50th, 90th, 95th and 99th percentile turbidity (NTU), 

Tgoal = filter turbidity goal (NTU). 

The turbidity goal can be utility- or plant-specific. The first term in Equations (2.2) to (2.4) represents 

the uniformity of performance over a specific duration (e.g., a single filter run or a period of 24 hours). 

The second term represents how well the filter is performing. A lower value of the robustness index 

indicates that the filter effluent water is meeting the goal with relatively low variation for the specific 

duration. In contrast, a higher TRI indicates that either the treatment has failed to meet the goal value, 

or the performance variability is high for the specific duration of time. The lowest possible value of 

TRI is 0.5 when the second term is tending toward zero since the median value is much lower than the 

goal. Furthermore, the TRI value is dependent on the goal value, and it can be comprehended from the 

equations that the TRI value would increase with a stricter goal. 

Huck et al. (2001b) reported that the TRI90 and TRI95 were more suitable to compare major differences 

in filter performance whereas the TRI99 got heavily influenced by noise in the turbidity data. However, 

equal weighting of the two terms in Equations (2.2) to (2.4) cannot reflect some specific operational 

conditions of the system and this was stated as one of the major limitations of this index. 

To overcome this limitation, Li and Huck (2008) developed a modified robustness index using unequal 

weighting with weighting factors that can be adjusted accordingly: 
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where, 

TRI90D = turbidity robustness index (TRI) using the 90th percentile turbidity (dimensionless), 

T50, T90 = 50th and 90th percentile turbidity (NTU), 

Tgoal = filter turbidity goal (NTU), 

A1, A2 = weighting factors (dimensionless). 

If the weighting factor A1 is set to be higher than A2, it indicates that the index emphasizes the variation 

in performance, whereas when A2 is higher than A1, it means that the index is focusing on the average 

performance. The sum of A1 and A2 is equal to 1. 

The TRI was multiplied by 100 for convenience. Based on the examination of data, it was observed 

that the preliminary indication of robustness for a given run can be determined by the upper half of the 

cumulative turbidity distribution curve (i.e., by the turbidity values above the 50th percentile). Since it 

is good to have five or more points to determine the trend of a line, Li (2004) chose the 	 %#"%$%&'
,	 %("%$%&'

 

,	 %)"%$%&'
 ,	 %*"%$%&'

 and 	 %!"%$%&'
 values (where T50, T60, T70, T80, T90 = 50th, 60th, 70th, 80th and 90th 

percentile turbidity, NTU) as the points to determine the water quality changes for a given filter run. 

For each cycle, a quantity W was calculated with Equation (2.6). 

-	 = 	 . %#"
%$%&'

+	 %("%$%&'
+	 %)"%$%&'

+	 %*"%$%&'
+	 %!"%$%&'

/ × 10  (2.6) 

Since the sum was not a large number, it was multiplied by a value of 10 to amplify the value of W. A 

critical value N is used to provide an initial determination of the robustness of a specific filter run. The 

value of N was set to be 50 because a value of 50 would be obtained if the 50th and 90th percentile 

turbidity values remain at the goal value of filtration. The procedure of selecting different weighing 

factors by comparing W and N is summarized in Table 2.6. 
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Table 2.6: Decision process for selecting difference weighting factors (Li & Huck, 2008) 

Systems Comparison with W and N If Then 

Robust ! ≤ 	$ 

%+,
%-,

≤	 %-,%./01
 &2 > &3 

%+,
%-,

>	 %-,%./01
 &2 < &3 

Less robust ! > 	$ 

%+,
%-,

≤	 %-,%./01
 &2 < &3 

%+,
%-,

>	 %-,%./01
 &2 > &3 

 

Li (2004) used different ratios (0.6/0.4, 0.75/0.25, 0.8/0.2, 0.9/0.1) for selecting the high and low values 

of the weighting factors (A1 and A2) and concluded that the ratio of 0.9/0.1 has more impact in 

determining TRI of a filtration unit for a specific filter run. However, it was recommended in the study 

to find a more reasonable ratio based on the statistical analysis with a large amount of data from 

different systems. In the present study, due to the selected timeframe to evaluate the robustness of the 

identified steps and the large volume of data sets, the 90th percentile turbidity may be influenced by 

the noise in the data set. To resolve this issue, the ratio 0.6/0.4 was selected for the weighting factors 

A1 and A2, which puts a greater emphasis on the 2nd term (T50/Tgoal) of Equation (2.5), if the system is 

initially identified as robust or vice versa according to Table 2.6. 

Li (2004) proposed a classification system based on the values of TRI, which is described in Table 2.7. 

The TRI classes imply how the treatment step was performing during the filter run or selected 

timeframe based on the variation of T50 and T90 with respect to Tgoal. This classification system was 

originally developed for filter runs by analyzing the on-line filter effluent turbidity data for one of the 

full-scale DWTPs investigated. 
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Table 2.7: Classification of system operation quality with TRI (adapted from Li, 2004) 

Class TRI range Implication Mathematical significance 

Very stable < 60 

The system produces high 

quality water for the entire 

run. 

(1) T50, T90 @ 50% of Tgoal, or 

(2) T50 << Tgoal and T90 > 50% of 

Tgoal. 

Stable 60 - 100 

The system produces high 

quality water for the entire 

run. 

(1) T50, T90 = 60-75% of Tgoal, or  

(2) T50 = 60-75% of Tgoal and T90 @ 

Tgoal. 

Slightly 

disturbed 
100 - 130 

The system produces high 

quality water for most of the 

run. 

(1) T50, T90 @ Tgoal, or  

(2) T50 < Tgoal and T90 => 30% over 

Tgoal. 

Moderately 

disturbed 
130 - 160 

The system produces water 

that is not high quality for a 

short duration during the 

run. 

(1) T50, T90 => 30-50% over Tgoal, or 

(2) T50 => 20% over Tgoal and T90 => 

60-80% over Tgoal. 

Upset 160 - 200 

The system produces water 

that is not high quality for 

most of the run. 

(1) T50, T90 => 50-80% over Tgoal. 

Severely 

upset 
> 200 

The system does produce 

high quality water at no time 

during the run. 

(1) T50, T90 => 100% over Tgoal. 

 

Although the TRI was first developed for filters, in several studies, the TRI method was used to evaluate 

the robustness of the other treatment steps for a given period. Hurst et al. (2004) used Equation (2.3) to 

evaluate the robustness of the coagulation and clarification process of a DWTP in England for different 

raw water conditions during certain rainstorm events and concluded that the TRI was an excellent 

method for analyzing and compacting large volumes of data. 
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Harshton et al. (2015) commented that the selecting process of the ratio of A1 and A2 was somewhat 

arbitrary and the non-constant variability of data, which may appear due to extreme weather events 

resulting in elevated turbidity levels and higher variability, was not considered. An adapted version of 

the robustness index replacing the weighting factors A1 and A2 by a concept of G%, which is the 

percentage of time when the turbidity was below Tgoal. They developed Equation (2.7) to evaluate filter 

robustness. 

/!*%&' 	= 	 011 − (%
*&&4 ×

!)*
!+*
+ !+*

!!"#$
	× (%

*&&6  (2.7) 

According to this method, more emphasis is put on the second term of Equation (2.7), when the effluent 

turbidity is lower than the goal most of the time during a given run. If the effluent turbidity is always 

lower than the goal, the weighting factor for the first term of Equation (2.7) would be zero, and the TRI 

calculated with this equation would not consider the variability in performance. Thus, this approach 

does not focus on variability in performance when the filters seem to be working well, which can be an 

important aspect to calculate TRI even though the effluent turbidity is lower than the goal turbidity.   

Upton et al. (2017) discussed the effect of skewness and kurtosis of the data set in calculating TRI and 

indicated that the 95th percentile turbidity does not distinguish between the different turbidity risks, 

which can be interpreted by considering the skewness and kurtosis. The operational causes of elevated 

filtrate turbidity were framed as a machine learning classification problem and the Classification and 

Regression Tree (CART) algorithm was applied to model the conditions associated with poor filtration 

performance. Although the CART algorithm is a good diagnostic tool to describe these conditions, it 

lacks the simplicity to be applied at a full-scale DWTP on a regular basis. Moreover, this algorithm was 

developed for rapid gravity filtration, and its applicability to different filtration techniques and/or 

treatment steps has not been explored yet. 

Zhang et al. (2012) introduced a framework to assess the performance of traditional DWTPs by 

integrating the concept of reliability, robustness, and Quantitative Microbial Risk Assessment (QMRA) 

for three treatment steps, unit 1: coagulation-flocculation-sedimentation (CFS), unit 2: filtration and 

unit 3: disinfection, and used TRI (Equation 2.3) to develop performance functions (PFs) for individual 

CFS and filtration units as well as the combined units. The framework is illustrated in Figure 2.8. 
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Figure 2.8: Application of reliability, risk and QMRA in DWTP performance assessment (Zhang et 

al., 2012) 

 

This framework incorporates different aspects of performance assessment. However, it includes more 

than one water quality parameter, which makes the framework somewhat complex to apply to a full-

scale DWTP. 

There have been only two studies (Harshton et al., 2015; Upton et al., 2017) that compared the original 

TRI concept with other methods for evaluating robustness to date, so it is difficult to assess which one 

is more accurate than the other. However, considering the simplicity and availability of on-line turbidity 

data, the TRI concept developed by Li and Huck (2008) is proven to be a useful tool to evaluate the 

robustness of individual treatment steps (García-Ávila et al., 2021; Hurst et. al., 2004; Zhang et al., 

2012; Zoric et al., 2020). This method allows evaluation of TRIs of each critical treatment step 

throughout the plant. These TRIs can be folded into an overall robustness assessment, which can be 

useful to evaluate the performance of the overall DWTP under normal weather and weather events 
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caused by the rising impacts of climate change. Therefore, in this study, the robustness index developed 

by Li and Huck (2008) for evaluating filter performance for a given filter run has been modified for 

different critical treatment steps based on Table 2.6. 

 

2.4.5 Step 5: Assessment 

The various evaluation methods of the robustness index determine the robustness of a specific treatment 

step for a given duration. However, to comprehend the complete impact of the selected raw water 

quality parameter changes due to climate change, the overall robustness of the plant should be assessed. 

This step aims to integrate the results from Step 4: Evaluation and determine the overall robustness of 

a plant. As discussed in sub-section 2.4.4, there have been several studies to evaluate the robustness of 

individual treatment steps, but none of them attempted to assess the overall robustness of DWTPs. For 

evaluating robustness with respect to turbidity, the TRIs would indicate the robustness of each critical 

treatment step for a given duration. Nemani (2021b) has assigned a robustness category number to the 

classifications of the system operations based on TRI which is listed in Table 2.8. 

 

Table 2.8: Legend of robustness category based on TRIs (Nemani, 2021b) 

Robustness category 
number 

Class TRI range 

1 Very stable < 60 

2 Stable 60 - 100 

3 Slightly disturbed 100 - 130 

4 Moderately disturbed 130 - 160 

5 Upset 160 - 200 

6 Severely upset > 200 
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Table 2.9: Demonstration of determining overall system robustness (Nemani, 2021b) 

Type of data 

TRI and TRI categories 

Overall 
robustness 
category 

Overall 
system 

robustness 
Intake, Tgoal = 

25 NTU 
Robustness 

category 
CFS, Tgoal = 

2.0 NTU 
Robustness 

category 
Filtration, Tgoal = 

2.0 NTU 
Robustness 

category 

Historical data 

(2019-2020) from 

a DWTP in 

southern Ontario 

21 1 60 2 45 1 1 Very stable 

28 1 82 2 46 1 1 Very stable 

81 1 67 2 47 1 2 Stable 

39 1 84 4 47 1 2 Stable 

Hypothetical 

scenarios 

50 1 250 6 70 2 3 
Slightly 

disturbed 

25 1 200 6 180 5 4 
Moderately 

disturbed 

250 6 180 5 300 6 6 
Severely 

upset 
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To evaluate the overall TRI of a DWTP, the following approach was proposed. The TRIs calculated 

for each critical treatment step would be assigned to a robustness category number according to Table 

2.8. The average robustness category number would be calculated and rounded to the nearest integer, 

which would be considered as the overall robustness category. The class corresponding to the overall 

robustness category number would be determined from Table 2.8, and this class would indicate the 

overall robustness class of the plant for the given duration. 

Nemani (2021b) demonstrated the first iteration of the procedure in Table 2.9 with historical data and 

hypothetical scenarios by taking the arithmetic average of the robustness categories of each critical step 

to calculate the overall robustness category. 

 

However, each treatment process may have different levels of significance to remove turbidity. Taking 

the arithmetic average to calculate the overall robustness category would not consider the fact that one 

treatment may be more significant than the other in terms of removing turbidity. To resolve this issue, 

unequal weighting factors can be assigned to the treatment steps according to their level of significance 

with respect to turbidity removal, and the overall robustness of the plant can be assessed in a more 

logical way. 

 

2.4.6 Step 6: Adaptation 

Based on the outcome of Step 4: Evaluation and Step 5: Assessment, if any of the identified treatment 

steps are found to be less robust with respect to the selected water quality parameter, short-term 

operational responses will be explored to make the specific treatment step more robust, thus improving 

the overall robustness of the system. This can include adjusting the dosage of coagulants and other 

chemicals, changing coagulation type, addition of coagulant aid, pH adjustments, mixing speed and 

duration and surface loading rate for the CFS process, and hydraulic rate, filter run time and backwash 

duration for the filtration process (Nemani, 2021a). 

In this study, a bench-scale test has been conducted to assess the performance of a critical treatment 

step with respect to turbidity removal of a DWTP in Southern Ontario for current and predicted future 

weather scenarios by simulating raw water quality that may occur due to the adverse effect of heavy 
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precipitation. Spiked raw water samples were prepared in the lab and modified jar test was conducted 

to simulate the ACTIFLO® process in Plant A. A factorial design experiment was performed to optimize 

the ACTIFLO® parameters for raw water with extremely high turbidity.  The detailed analysis can be 

found in Chapter 5. 

 

2.5 Identification of Research Needs 

Since most of the DWTPs are designed based on historical data including past heavy precipitation 

events, the system is likely to encounter unforeseeable challenges and may even fail under more 

extreme adverse weather events caused by unusual, untimely, and more frequent and heavy 

precipitation that changes raw water quality parameters in ways that were never experienced in the past. 

Therefore, there is an urgent need to comprehend the associated cause and effects and develop 

knowledge and tools that can diagnose the consequences of these events on treatment beforehand and 

direct to proper measures to improve the robustness of the plants so that they can withstand these events. 

When the raw water quality worsens beyond the design capacity, most of the DWTPs tend to shut down 

during storm events and rely on their reservoirs until the event is passed. This may result in huge 

economic and social impact on the served population, if the reservoir capacity is crossed. Considering 

the rapid change in precipitation nature, intensity and frequency, long-term changes like 

implementation of newer designs and treatment techniques to the pre-existing DWTPs cannot exhibit 

immediate outcomes. However, if the pre-existing operations within the DWTPs can be modified 

accordingly, it would ensure that the system is robust against extreme weather events in the near future 

as well as save the capital cost. The outcome of the short-term operational changes may aid to plan and 

implement long-term measures later. Therefore, a robustness framework is imperative for water 

treatment systems to evaluate and assess the robustness of different treatment steps as well as the overall 

system so that the limitations and complications can be pinned down, and short-term operational 

changes can be attempted and implemented to prepare the system for more adverse weather effects in 

the future. Turbidity is an important parameter in water treatment since it has proven to be very 

responsive to changes in weather by numerous studies. Filter effluent turbidity is a regulated parameter. 

In addition, due to its ability to indicate changes in other water quality parameters and microbiological 

quality of water, link to public health, simplicity in measurement and availability of continuous on-line 

data at several points of the treatment process, evaluation of robustness of different treatment processes 
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with respect to turbidity can lead to a better understanding of the robustness of DWTPs and assist to 

develop dynamic approaches to improve their robustness. While there have been several studies that 

focused on assessing the robustness of treatment steps in terms of turbidity, a complete framework is 

required to work as a proactive assessment tool in order to guide and prepare DWTPs for the upcoming 

challenges of climate change impacts on source water. 
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Chapter 3: Evaluation of Robustness of Plant A 

3.1 Introduction 

Plant A is a DWTP located in southern Ontario. The Grand River is the only source of raw water in this 

plant. The Grand River watershed is the largest watershed in Southern Ontario, encompassing almost 

7,000 km2 in consultation with the provinces and territories of area. About 80% of the watershed is 

used for agriculture. Around 500,000 people live in the five municipalities around the watershed 

(Loomer & Cooke, 2011). Discharge from urban runoff, agricultural lands, and wastewater treatment 

plants into the Grand River and tributaries make the Grand River a moderately to heavily impacted 

surface water body (Hamouda et al., 2016). The particles discharged upstream of Plant A are 

transported to the intake during heavy precipitation, significantly increasing the turbidity in the raw 

water. According to the plant operators, the plant is experiencing more frequent and severe unseasonal 

precipitation events in recent years, which may pose a challenge to maintain regulated water quality 

parameters including turbidity, which is the selected water quality parameter in this study. Health 

Canada (2012) has recommended regulatory guidelines for turbidity for different filtration techniques 

(listed in Chapter 2: Table 2.3) and DWTPs have different turbidity goals for the other treatment steps. 

A robust DWTP performs consistently regardless of the variations in the raw water quality (Zhang et 

al., 2012). This chapter mainly focuses on two steps of the robustness framework (Chapter 2: Figure 

2.6), Step 4: Evaluation which is to evaluate the robustness of the critical treatment steps of the plant 

that can be affected by elevated raw water turbidity, and Step 5: Assessment which is to assess the 

overall robustness of the plant with respect to turbidity removal for calendar years 2019 and 2020. 

 

3.2 Materials and Methods 

3.2.1 Plant Description 

Plant A has the capacity to treat 150 million liters of water per day (ML/D). The raw water from the 

Grand River is not directly pumped from the river, it enters the plant through a canal. Low lift pumps 

are used to pump the water from the canal to the plant (Staff of Plant A, December 2020). 
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Figure 3.1: Plant A process flow diagram (figure depicts one treatment train and one filter basin) 

 

Figure 3.1 shows the treatment process flow of Plant A. The water pumped by the low lift pumps is 

divided into two parallel treatment trains and moves on to the next treatment step, which is coagulation 

with polyaluminum chloride (PACl), followed by SBC. In Plant A, the ACTIFLO® process is used, 

which is one of the commercially available technologies for SBC. ACTIFLO®, developed by Veolia 

Water Technologies, is a compact system in which microsand (pure silica) and polymer (anionic) is 

used to increase the weight of flocs resulting in faster floc settling than in the conventional CFS method 

(Desjardins et al., 2002; Plum et al., 1998).  

Each ACTIFLO® unit consists of an injection tank with a hydrocyclone rapid mixer, a coagulation tank, 

a maturation tank, and a sedimentation tank. The SBC effluent water from each train moves to the 

ozone contact chamber for that train. 

After ozonation, the water moves to the filters through one pipe, mixing the effluent water from the two 

trains of SBC. There are eight deep bed bio-filters, each containing 1.6 m of anthracite over 0.4 m of 

sand. Biological filtration is employed in this plant with the dual objectives of particle and organics 

removal. 

Filtration is followed by UV disinfection, and chlorine and chloramine disinfection. The water is then 

moved to the underground treated water reservoir, which has a capacity of 18 million liters. With high 

lift pumps, the finished water is finally moved to the distribution system (Staff of Plant A, December 

2020). 
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3.2.2 Available Data 

The plant framework (discussed in Chapter 2: section 2.4), developed by Nemani (2021a) was applied 

to Plant A. The timeframe of the study was selected to be two calendar years, 2019 and 2020. The 

selected water quality parameter in this study is turbidity. According to Step 3: Identification of the 

framework (discussed in Chapter 2: sub-section 2.4.3), the critical treatment steps that are affected by 

turbidity are, coagulation and SBC, i.e., the ACTIFLO® process, and filtration. On-line turbidity and 

flow data for the years 2019 and 2020 were requested from the plant as well as the dimensions for all 

the tanks and basins. Table 3.1 provides an overview of the available data.  

 

Table 3.1: On-line monitoring data obtained from Plant A 

Location Frequency Frequency 

Raw water turbidity December 2018 to December 2020 Every 5-minutes 

ACTIFLO® effluent turbidity January 2019 to December 2020 Every 5-minutes 

Filter effluent turbidity January 2019 to December 2020 Every 1-minute 

Raw water flow rate January 2019 to December 2020 Every 5-minutes 

Pre-treatment train 1 and 2 flow rate January 2019 to December 2020 Every 5-minutes 

Filtration units (1 to 8) flow rate January 2019 to December 2020 Every 1-minute 

 

 

3.2.3 Identification of Invalid Data 

Before analyzing the data, it is important to remove the data points that do not represent the actual 

condition of the plant. According to the plant operators, these data can result from instrumental error 

or recordings during maintenance and repair activities, and/or plant shutdowns. The methods developed 

to identify and remove the invalid data points from the data sets after consulting with the plant operators 

are discussed in sub-sections 3.2.3.1 to 3.2.3.3. 
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3.2.3.1 Raw water turbidity data 

The raw water turbidity data of the year 2019 were plotted in a time series in Figure 3.2. In this figure, 

some data points were observed to be very high compared to the adjacent data points. There can be two 

reasons behind this: 

1. The turbidity of the raw water rose drastically for 5-10 minutes and then returned to the 

previous lower level. 

2. The on-line turbidimeter recorded a wrong value due to instrumental error or maintenance work 

during the time of recording. 

 

Figure 3.2: Time series of raw water turbidity data (2019) 

 

In the case of the second reason, the data points must be removed before analysis because they do not 

represent the actual turbidity of the raw water. However, it is not acceptable to remove data that 

represent actual turbidity peaks in the raw water, which are very important in this study. Therefore, a 

method was developed that can identify and remove the invalid data points without removing actual 

turbidity peaks in the raw water. 
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This method takes the median turbidity for an hour, so it assumes that turbidity peaks lasting less than 

an hour are not considered as weather events. First, the median of the turbidity values before and 30 

minutes (total 1 hour) after “suspected” (suspected to be invalid) data will be calculated. If that 

“suspected” data is x% above the calculated median, that data will be considered invalid. In short, 

invalid data = x% above the hourly median. 

The value of x was varied from 50 to 200, to determine which value of x removes the obvious (from 

visual observation) invalid data without removing significant turbidity peaks that represent actual 

weather events in the Grand River. Finally, the optimum value of x was selected to be 100 as higher 

values of x cannot remove all the obvious invalid data points, whereas lower values of x remove 

turbidity peaks that are clearly caused by weather events. Therefore, the final method to identify invalid 

data points from raw water turbidity data is, invalid data = 100% above the hourly median. The time 

series of raw water turbidity data with varying values of x can be found in Appendix A (Figure A.1). 

To illustrate the method, two example raw water turbidity data sets from 2019 are shown in Table 3.2. 

The data suspected to be invalid are indicated with asterisk (*). 

 

Table 3.2: Demonstrations of the method to identify invalid data points 

Example Data Set - 1 Example Data Set - 2 

Date and Time Turbidity (NTU) Date and Time Turbidity (NTU) 

2019-05-13 8:45 3.40 2019-03-17 19:10 158 

2019-05-13 8:50 3.40 2019-03-17 19:15 157 

2019-05-13 8:55 3.47 2019-03-17 19:20 159 

2019-05-13 9:00 5.41 2019-03-17 19:25 159 

2019-05-13 9:05 5.41 2019-03-17 19:30 159 

2019-05-13 9:10 5.41 2019-03-17 19:35 159 

2019-05-13 9:15 200* 2019-03-17 19:40 160* 

2019-05-13 9:20 2.44 2019-03-17 19:45 158 
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2019-05-13 9:25 2.42 2019-03-17 19:50 158 

2019-05-13 9:30 2.40 2019-03-17 19:55 158 

2019-05-13 9:35 2.40 2019-03-17 20:00 158 

2019-05-13 9:40 2.40 2019-03-17 20:05 158 

2019-05-13 9:45 2.40 2019-03-17 20:10 159 

Median turbidity (NTU) 3.40 Median turbidity (NTU) 158 

100% above the median 6.80 < 200 100% above the median 316 > 160 

Remarks Invalid data point Remarks Valid data point 

 

Due to the size of the data set, it is very difficult to manually search data that are suspected to be invalid. 

Hence, two MATLAB functions (Appendix D: Code D.1 and D.2) were developed and applied to every 

data point for the raw water turbidity data sets for 2019 and 2020, and the invalid data points were 

removed prior to analysis. 

The time series of the raw water turbidity data after removing the invalid data points for the year 2019 

is shown in Figure 3.3. 189 out of 105109 (0.18%) data were removed as invalid data. The same method 

is applied to the raw water turbidity data for the year 2020 and 89 out of 105397 (0.08%) data were 

removed. The time series of the raw water turbidity data after removing the invalid data points for the 

year 2020 is shown in Figure 3.4. 
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Figure 3.3: Time series of raw water turbidity data (2019) with invalid data points removed 

 

Figure 3.4: Time series of raw water turbidity data (2020) with invalid data points removed 
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3.2.3.2 ACTIFLO® Effluent Turbidity Data 

The flow rates of train 1 and train 2 determine the validity of the ACTIFLO® effluent turbidity data. If 

the flow rate is zero, it implies that there was no water going into the plant for coagulation and SBC, 

which may occur due to plant shutdowns for various reasons. The minimum flow rate required for the 

ACTIFLO® process is 35 ML/D in Plant A (Staff of Plant A, April 2021), so if the flow rate is less than 

35 ML/D, it indicates that the plant and/or the ACTIFLO® units are being shut down or started up from 

a shutdown. Hence, turbidity values recorded in the online turbidimeter during these periods do not 

represent the actual condition and can be removed as invalid data points. A MATLAB function 

(Appendix D: Code D.3) was used to identify and remove the data points corresponding to flow rates 

less than 35 ML/D from the ACTIFLO® effluent turbidity data sets. Overall, 7.36% of the data were 

removed. 

 

3.2.3.3 Filter Effluent Turbidity Data 

Similar to the previous sub-section, the flow rates of each filter determine the validity of the filter 

effluent turbidity data. If the flow rate is zero, it implies that there was no water going into the filter 

which may occur due to filter backwash, maintenance work, and/or plant shutdowns for various reasons. 

As mentioned before, Plant A has 8 filters and usually 6 of them run simultaneously, keeping 2 filters 

on stand-by. After backwash, for the first 35 minutes of a filter run, the effluent water goes to waste 

(Staff of Plant A, April 2021), also called the filter-to-waste period. The turbidity values recorded in 

the on-line turbidimeter during the filter-to-waste periods were removed as invalid data. Therefore, the 

turbidity data corresponding to filter flow rates equal to zero and the first 35 minutes of a filter run were 

identified and removed for every filter using a MATLAB function (Appendix D: Code D.4). Overall, 

30.4% of the data were removed. 

 

3.2.4 Data Analysis Approach 

The plant framework developed by Nemani (2021a) was applied in this study. The fourth step 

“evaluation” in the plant framework (discussed in Chapter 2: sub-section 2.4.4) focused on quantifying 

the concept of robustness for treatment steps that are affected by changes in raw water quality 

parameters, which in this study is elevated turbidity caused by heavy and unusual precipitation events. 
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Thus, it is necessary to distinguish between the raw water turbidity levels during normal weather and 

weather events that can cause a significant increase in turbidity at the intake. The raw water turbidity 

data was used to establish two weather scenarios: 

1. Normal weather 

2. Weather events, characterized by elevated turbidity in the raw water. 

The TRI concept developed by Li and Huck (2008) was used to evaluate the turbidity of the coagulation 

and SBC process, i.e., the ACTIFLO® process and the filtration process for the above-mentioned 

weather scenarios. Li and Huck (2008) used the length of a filter run as the duration of each TRI 

calculation. For evaluating the robustness of the ACTIFLO® process, the duration of each TRI 

calculation was selected to be a week since most of the extreme weather events vary from 4 days to 2 

weeks. The TRIs were calculated using Equations 2.5 and 2.6, and Table 2.6. Changing the duration 

from the duration of one filter run to one week incorporates a much larger volume of data which is why 

the 90th percentile turbidity (T90) is heavily influenced by the noise in the data set. To neutralize this 

issue, the high and low values of the weighting factors A1 and A2 were selected to be 0.6 and 0.4 instead 

of 0.9 and 0.1 to shift more weight to the average performance of the treatment units. The timeframe 

for TRI calculation was selected to be one week for the filters as well so that the TRIs of different 

treatment steps are comparable with one another, and later can be used to evaluate the overall robustness 

of the plant. The overall robustness of the plant with respect to turbidity was assessed by a method 

developed by Nemani (2021b) as discussed in Chapter 2: sub-section 2.4.5. 

The flow rate data were used to determine the hydraulic retention times of the treatment units. Hydraulic 

retention time (HRT) of water treatment units is defined as the ratio between the unit volume and flow 

rate that represents the average residence time of water within the unit (Crittenden et al., 2012). The 

calculation of HRTs for different treatment units is important for the analysis. If the ACTIFLO® effluent 

turbidity data of a given treatment unit were compared with the raw water data for the same timeframe, 

the comparison would not be accurate as it would take some time for the raw water to flow from the 

intake and pass the whole ACTIFLO® process. The HRTs of different tanks within the treatment 

processes were calculated using the median flow rates to offset the data points so that the comparison 

between raw water turbidity data, and ACTIFLO® unit and filter effluent turbidity data are more logical. 

The HRTs of the treatments units in Plant A using the median flow rates are shown in Table 3.3. 
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Table 3.3: HRTs of different treatment units in Plant A 

Unit Hydraulic Retention Time (HRT) 

ACTIFLO® unit (trains 

1 and 2) 

Injection tank 5m 24s 

Coagulation tank 5m 14s 

Maturation tank 16m 30s 

Sedimentation tank 26m 54s 

Total 54m 

Ozonation unit (trains 1 and 2) 1h 28m 

Filtration unit (Filters 1 to 8) 1h 43m 

 

 

3.3 Results and Discussion 

3.3.1 Identification of Normal Turbidity and Turbidity Events 

As discussed in sub-section 3.2.4, to evaluate the robustness of the critical treatment steps, it is 

important to separate the calculated TRIs based on weather to determine whether the treatment steps 

are affected by weather events or not, which is the main indication of robustness for the factor being 

addressed in this research. From the time series of the raw water turbidity (Figures 3.3 and 3.4), some 

turbidity peaks can be observed that indicate precipitation-related weather events in the area. However, 

there should be a specific criterion to select these peaks and establish them as turbidity events, which 

refers to precipitation-related weather events characterized by raw water turbidity. Two methods were 

developed to identify and separate the normal turbidity and turbidity events. The development process 

and applicability of these two methods are discussed in sub-sections 3.3.1.1 and 3.3.1.2. 
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3.3.1.1 Method 1: Yearly Median Raw Water Turbidity 

The yearly median of the raw water turbidity data was calculated. If the turbidity values are y% over 

the yearly median, they are considered as turbidity events. Therefore, turbidity event = y% above the 

yearly median, for at least one hour. 

According to this method, the elevated turbidity levels have to continue for at least an hour to be 

considered as a weather event. Turbidity peaks lasting less than an hour are considered as invalid data 

in this study and removed prior to the analysis as has been discussed in sub-section 3.2.3.1. 

The yearly median turbidity of the year 2019 was 5.81 NTU. The value of y was ranged from 25 to 100, 

and the method was applied to the raw water turbidity data of 2019, which is shown in Figure 3.5. 

 

Figure 3.5: Time series of raw water data (2019) with turbidity peak events using yearly median raw 

water turbidity (5.81 NTU) 

 

To check the applicability of the method, three weather events were selected based on their durations. 
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1. Short duration turbidity event 

The short duration turbidity event occurred in mid-December 2019, which may have caused by heavy 

precipitation. The details of this event are described in Table 3.4 and shown in Figure 3.6. For the value 

of y ranging from 25% to 100%, the duration of this event varied by 1 day 4 hours, and the median 

turbidities varied by 2 NTU. Therefore, if the value of y is decreased, more data before and after the 

turbidity peak is considered as a turbidity event as shown in Figure 3.6. However, one particular value 

of y cannot be selected with certainty after scrutinizing this short duration turbidity event only. 

 

Table 3.4: Short duration turbidity event in mid-December 2019 

Percentage 

(%) above 

the yearly 

median 

(5.81 NTU) 

Trigger 

turbidity 

of the 

events 

(NTU) 

Event 

start date 

and time 

Event end 

date and 

time 

Event 

Duration 

Median 

turbidity 

of the 

event 

(NTU) 

Maximum 

turbidity 

of the 

event 

(NTU) 

25% 7.26 
12/11/2019 

17:10 

12/14/2019 

15:55 
2d 22h 45m 13.0 19.4 

50% 8.72 
12/11/2019 

21:15 

12/14/2019 

9:20 
2d 12h 5m 14.0 19.4 

75% 10.1 
12/12/2019 

1:20 

12/14/2019 

3:45 
2d 2h 25m 14.6 19.4 

100% 11.6 
12/12/2019 

3:55 

12/13/2019 

22:05 
1d 18h 10m 15.2 19.4 
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Figure 3.6: Time series of raw water turbidity during turbidity event (mid-December 2019) using 

yearly median raw water turbidity (5.81 NTU) 

 

2. Medium duration turbidity event 

The medium duration turbidity event occurred in February 2019, which may have been caused by 

unseasonal heavy precipitation resulting in snow-melting and runoff in the Grand River. The details of 

this event are described in Table 3.5 and shown in Figure 3.7. For the value of y ranging from 25% to 

100%, the duration of this event varied by more than 6 days, and the median turbidities varied by 30.4 

NTU. For the higher values (75-100%) of y, it is evident in Figure 3.7 that some elevated turbidity 

values are being cut off from the turbidity event, which may be critical to the analysis. As listed in 

Table 3.5, the median turbidity of the event was 26.8 NTU for y = 50%, which increased to 36.2 NTU 

for y = 75%. This substantial change in median turbidity values was not observed in the short duration 

turbidity event. Therefore, it is obvious that the higher values (75-100%) of y do not consider some 

elevated turbidity values as turbidity events. 
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Table 3.5: Medium duration turbidity event in February 2019 

Percentage 

(%) above 

the yearly 

median 

(5.81 NTU) 

Trigger 

turbidity 

of the 

events 

(NTU) 

Event 

start date 

and time 

Event 

end date 

and time 

Event 

Duration 

Median 

turbidity 

of the 

event 

(NTU) 

Maximum 

turbidity 

of the 

event 

(NTU) 

25% 7.26 
2/5/2019 

12:05 

2/18/2019 

7:35 
12d 19h 30m 11.8 95.6 

50% 8.72 
2/5/2019 

14:20 

2/14/2019 

15:45 
9d 1h 25m 26.8 95.6 

75% 10.1 
2/5/2019 

15:50 

2/13/2019 

3:00 
7d 11h 10m 36.2 95.6 

100% 11.6 
2/5/2019 

17:10 

2/12/2019 

4:45 
6d 11h 35m 42.2 95.6 

 

 

Figure 3.7: Time series of raw water turbidity during turbidity event (February 2019) using yearly 

median raw water turbidity (5.81 NTU) 
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3. Long duration turbidity event 

The long event occurred from mid-March to the first week of May 2019, mostly caused by spring run-

off and heavy precipitation. The details of this event are described in Table 3.6 and shown in Figure 

3.8. For the value of y ranging from 25% to 100%, the duration of this event varied by almost 6 days, 

and the median turbidities varied by 2 NTU. Thus, the variation in median turbidity of the event is 

similar to the short event, but drawing a conclusion regarding the selection of an appropriate value of y 

became even more complicated.  

 

Table 3.6: Long duration turbidity event in March-April-May 2019 

Percentage 

(%) above 

the yearly 

median 

(5.81 NTU) 

Trigger 

turbidity 

of the 

events 

(NTU) 

Event 

start date 

and time 

Event 

end date 

and time 

Event 

Duration 

Median 

turbidity 

of the 

event 

(NTU) 

Maximum 

turbidity 

of the 

event 

(NTU) 

25% 7.26 
3/11/2019 

2:45 

5/11/2019 

13:05 
61d 10h 20m 14.6 159.6 

50% 8.72 
3/11/2019 

17:00 

5/11/2019 

13:05 
60d 20h 5m 15.0 159.6 

75% 10.1 
3/11/2019 

19:50 

5/11/2019 

13:05 
60d 17h 15m 15.2 159.6 

100% 11.6 
3/12/2019 

5:05 

5/6/2019 

22:45 
55d 17h 40m 16.6 159.6 
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Figure 3.8: Time series of raw water turbidity during turbidity event (March-April-May 2019) using 

yearly median raw water turbidity (5.81 NTU) 

 

The limitation of using the yearly median to find weather events is evident in the case of this event. 

From Figure 3.8, it can be observed that there are multiple peaks, unlike Figures 3.6 and 3.7. Although 

there have been several weather events from March to May 2019, this method considers them as one 

big event. The baseline turbidity during these months was higher because of snow-melting and spring 

runoff, but since this method considered the yearly median, it failed to separate multiple events during 

this period. Therefore, the yearly median turbidity cannot be used to select weather events characterized 

by turbidity, and another method was developed which aims to overcome the limitations of this method. 

 

3.3.1.2 Method 2: Seasonal Median Raw Water Turbidity 

The year is separated into 4 seasons (winter, spring, summer, and fall) and the median turbidity of each 

season is calculated, which are shown in Table 3.7. 
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Table 3.7: Yearly and seasonal raw water median turbidities of 2019 

Season Winter Spring Summer Fall Yearly 

Duration 
Dec 2018 - 

Feb 2019 

Mar 2019 - 

May 2019 

Jun 2019 - 

Aug 2019 

Sep 2019 - 

Nov 2019 

Jan 2019 - 

Dec 2019 

Median 

turbidity 

(NTU) 

5.21 12.2 6.00 4.40 5.81 

 

The differences between the respective seasonal and the yearly median turbidities for winter, summer, 

and fall varied from -0.6 to +1.4 NTU, but in spring it varied by +6.4 NTU, indicating the baseline 

turbidity was higher in spring than in other seasons, and the weather events cannot be separated using 

the yearly median turbidity. 

Therefore, the revised method is: if the turbidity values are y% above the seasonal median, they will be 

considered as weather event turbidity. In short, turbidity event = y% above the seasonal median, for at 

least one hour. 

This method was applied to the raw water turbidity data for spring 2019. Figure 3.9 shows that using 

the seasonal median turbidity distinguishes among multiple weather events successfully. 

Using the seasonal median turbidity instead of the yearly median turbidity should not have any 

significant difference in the other seasons since the seasonal median turbidities are close to the yearly 

median turbidity. The time series plots of raw water turbidity for the other seasons are in Appendix A 

(Figure A.2). 
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Figure 3.9: Time series of raw water turbidity of spring 2019 using seasonal median raw water 

turbidity (12.2 NTU) 

 

As observed in Figures 3.6 to 3.9 (and Figure A.2 in Appendix A), the higher values (75-100%) of y 

eliminate turbidity data that clearly indicates the start and end of an event whereas a low value (25%) 

of y takes some of the baseline turbidity values as weather events. Therefore, the optimum value of y is 

selected to be 50% to identify weather events from raw water turbidity data, and the final method is: 

turbidity event = 50% above the seasonal median turbidity, for at least one hour. Two MATLAB 

functions (Appendix D: Code D.5 and D.6) were used to apply this method to the raw water data points 

and identify the weather events characterized by the raw water turbidity. Figures 3.10 and 3.11 show 

the time series of raw water turbidity of the year 2019 and 2020 respectively indicating normal turbidity 

levels and turbidity events characterized by raw water turbidity. 
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Figure 3.10: Time series of raw water turbidity (2019) showing normal turbidity and turbidity events  

 

Figure 3.11: Time series of raw water turbidity (2020) showing normal turbidity and turbidity events 
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3.3.2 Robustness of the ACTIFLO® Units 

According to Step 4: Evaluation of the plant framework, the TRIs were calculated for the ACTIFLO® 

units with Equation 2.5. To calculate the TRIs for every week of the year 2019 and 2020, a goal turbidity 

is required as stated in Step 2: Criteria of the plant framework. There is no regulatory limit set for 

coagulation and SBC effluent water since it is not the final treatment step to remove turbidity. DWTPs 

generally have a goal turbidity for conventional CFS or SBC effluent water so that elevated effluent 

turbidity cannot overwhelm the filters and/or fail to produce filtered water maintaining the regulatory 

limit (listed in Chapter 2: Table 2.3).  In Plant A, the goal turbidity (Tgoal) of the ACTIFLO® effluent 

water is 1.0 NTU (Staff of Plant A, April 2021). A stricter goal (Tgoal = 0.5 NTU) was selected during 

the initial analysis to observe the effects of different turbidity goals in calculating TRIs. In Figure 3.12, 

the TRIs of the train 1 ACTIFLO® unit for the year 2019 are calculated for two TRI goals, 0.5 NTU 

shown by the blue bars and 1.0 NTU shown by the orange bars. The lower the turbidity goal, the stricter 

the criterion, which should lead to higher TRI values. All the TRIs with Tgoal = 0.5 NTU are higher 

than those with Tgoal = 1.0 NTU as expected. The classes of the TRIs are discussed later in this chapter. 

 

Figure 3.12: Weekly TRIs of the train 1 ACTIFLO® unit (2019) with varying Tgoals 

 

According to the plant operators, the goal turbidity of the ACTIFLO® units in Plant A is 1.0 NTU, 

which is why the goal value of 1.0 NTU was used to calculate the TRIs of the ACTIFLO® units in 

5 10 15 20 25 30 35 40 45 50
Week no. (2019)

0

50

100

150

200

250

TR
I

Tgoal = 0.5 NTU
Tgoal = 1.0 NTU

Very 
Stable 

Stable 

Slightly 
Disturbed 

Moderately 
Disturbed 

Upset 

Severely 
Upset 



 

 55 

further analysis. Figures 3.13 and 3.14 show the weekly TRIs of the train 1 ACTIFLO® unit for the 

years 2019 and 2020 respectively. 

 

Figure 3.13: Weekly TRIs of the train 1 ACTIFLO® unit (2019) during normal weather and weather 

events characterized by raw water turbidity (Tgoal = 1.0 NTU) 

 

Figure 3.14: Weekly TRIs of the train 1 ACTIFLO® unit (2020) during normal weather and weather 

events characterized by raw water turbidity (Tgoal = 1.0 NTU) 
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The blue bars represent the TRIs during normal weather and the red bars represent the TRIs 

corresponding to the weeks that were affected by weather events, which were identified using the 

method developed in sub-section 3.3.1.2. Most of the TRIs fall into the “stable” (60-100) class, which 

indicates that the 50th and the 90th percentile turbidity were below the goal turbidity and the 

ACTIFLO® units always maintained desired quality (effluent turbidity < 1.0 NTU) for the respective 

weeks. For 7 weeks in 2019 and 8 weeks in 2020 the TRIs fall into the “slightly disturbed” (100-130) 

class, which indicate that either both 50th and 90th percentile turbidity was close to the goal turbidity 

and/or the 90th percentile turbidity was greater than the goal turbidity in some cases and the ACTIFLO® 

units produced effluent water with desired quality most of the time during the given weeks. This should 

be noted that the classification system regarding the TRI values was developed based on the turbidity 

data analysis for filter runs, so the name of the classes may not be as precise in this case as this is an 

entirely different treatment step with different duration, but the mathematical interpretation of TRI 

should be valid. 

The definition of robustness implies that if the performance of a system is observed to exacerbate during 

upsets, the system would not be considered robust. However, there is no visible trend in Figures 3.13 

and 3.14 that shows that the TRIs are only higher during weather events, which indicates the 

ACTIFLO® units were robust. Similar results are found for train 2, which is shown in Appendix A 

(Figure A.3). 

Although there is no observed difference between TRIs during normal weather and weather events, to 

confirm the visual observation from Figures 3.13 and 3.14, in Figure 3.15 the TRIs corresponding to 

weather events as characterized by raw water turbidity were plotted against the maximum or ‘peak’ 

turbidity of the event, which represents the extremity of the event. A similar figure has been plotted for 

train 2, which can be found in Appendix A (Figure A.4). However, no positive correlation (R2 ≈ 0) was 

observed between the TRIs and peak turbidities of a weather event, implying that weather events did 

not affect TRIs in 2019 and 2020, confirming that the ACTIFLO® operation of Plant A was robust 

according to the definitions used in this analysis. 
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Figure 3.15: Weekly TRIs of the train 1 ACTIFLO® unit in relation to the maximum values of raw 

water turbidity during weather events 

 

In addition to the TRI plots, in order to visualize the overall performance of the ACTIFLO® units, the 

weekly average raw water turbidities are plotted against the weekly average train 1 ACTIFLO® effluent 

turbidity for the years 2019 and 2020 in Figures 3.16 and 3.17 respectively to observe the weekly 

turbidity removal by the ACTIFLO® units. 

In both figures, the weekly average train 1 ACTIFLO® effluent turbidities are below the goal turbidity 

1.0 NTU during both normal weather and weather events characterized by turbidity. Train 2 ACTIFLO® 

unit shows similar results, which can be found in Appendix A (Figure A.5). After ozonation, the effluent 

water from both trains is mixed and flows through a common pipe, before it enters the filter gallery. 

Overall, the two ACTIFLO® units successfully removed 82.0% to 98.7% on average (Table A.1 in 

Appendix A) per week of raw water turbidity throughout the years 2019 and 2020. 
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Figure 3.16: Weekly average raw water and train 1 ACTIFLO® influent and effluent turbidity (2019) 

 

Figure 3.17: Weekly average raw water and train 1 ACTIFLO® influent and effluent turbidity (2020) 
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3.3.3 Robustness of the Filtration Units 

In Plant A, filtration is the last step to remove particles, i.e., turbidity. In 2019 and 2020, the ACTIFLO® 

units of Plant A removed about 92% of the raw water turbidity on average, and the filters removed the 

rest, maintaining finished water turbidity within the regulatory limits. To evaluate the robustness of the 

filtration units with TRI, a goal turbidity is required as specified by Step 2: Criteria (Chapter 2: sub-

section 2.4.2) in the plant framework. Plant A follows the regulatory limit set by the Government of 

Ontario based on Health Canada (2012), which states that the effluent turbidity of every filter must be 

less than or equal to 0.3 NTU for at least 95% of the measurement per cycle per month, with a target of 

less than 0.1 NTU, and the turbidity can never exceed 1.0 NTU. Plant A strictly maintains the effluent 

turbidity of each filter below 0.1 NTU. If the effluent turbidity exceeds 0.2 NTU, the water is directed 

to waste and if it increases over 0.3 NTU, the filter will automatically shutdown (Staff of Plant A, 

December 2020). Considering these facts, the goal turbidity of the filter is selected to be 0.1 NTU. 

Since there are 8 filters in Plant A, only the data analysis result of 2 representative filters (Filter 2 from 

the north side and Filter 7 from the south side of the plant) is discussed in this chapter. The results of 

the other filters can be found in Appendix A (Figures A.6 and A.7). 

Figures 3.18 and 3.19 show the weekly TRIs of Filter 2 for the years 2019 and 2020 respectively. The 

blue bars represent the TRIs during normal weather and the red bars represent the TRIs corresponding 

to the weeks that were affected by weather events characterized by raw water turbidity. Most of the 

TRIs fall into the “stable” (60-100) class and for 4 weeks in 2019 and 4 weeks in 2020 the TRIs fall 

into the “slightly disturbed” (100-130) class. The TRI falls into “moderately disturbed” (130-160) class 

during one week in 2020. 

 



 

 60 

 

Figure 3.18: Weekly TRIs of Filter 2 (2019) during normal weather and weather events characterized 

by raw water turbidity (Tgoal = 0.1 NTU) 

 

Figure 3.19: Weekly TRIs of Filter 2 (2020) during normal weather and weather events characterized 

by raw water turbidity (Tgoal = 0.1 NTU) 
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Figure 3.20: Weekly TRIs of Filter 7 (2019) during normal weather and weather events characterized 

by raw water turbidity (Tgoal = 0.1 NTU) 

 
Figure 3.21: Weekly TRIs of Filter 7 (2020) during normal weather and weather events characterized 

by raw water turbidity (Tgoal = 0.1 NTU) 
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Similarly, Figures 3.20 and 3.21 show the weekly TRIs of Filter 7 for the years 2019 and 2020 

respectively. The blue bars represent the TRIs during normal weather and the red bars represent the 

TRIs corresponding to the weeks that were affected by weather events characterized by raw water 

turbidity. Most of the TRIs fall into the “stable” (60-100) class, for 4 weeks in 2019 and 2 weeks in 

2020 the TRIs fall into “slightly disturbed” (100-130) class, and for 1 week of 2020 the TRI falls into 

the “moderately disturbed” (130-160) class. 

The “stable” TRIs indicate that the 50th and the 90th percentile turbidities were below the goal turbidity 

and the filters always maintained desired quality (effluent turbidity < 0.1 NTU) for the respective 

weeks. The “slightly disturbed” TRIs indicate that either both the 50th and 90th percentile turbidities 

were close to the goal turbidity and/or the 90th percentile turbidity was greater than the goal turbidity 

in some cases and the filters produced effluent water with desired quality most of the time during the 

given weeks. The “moderately disturbed” TRIs indicate that both the 50th and 90th percentile turbidity 

were greater than the goal turbidity and the filters did not generate effluent water with desired quality 

for a short duration during the given weeks. From Figures 3.18 to 3.21 and A.6 and A.7, it is observed 

that there are some TRIs that fall into the “moderately disturbed” class but there was no weather event 

taking place during those weeks. Although the “moderately disturbed” TRIs imply that the performance 

of the filters was not satisfactory during a short period of time in the given weeks, they do not always 

correspond to the weather events characterized by raw water turbidity, indicating that the reason behind 

this undesirable performance is not weather-related. It should be noted that the classification system 

based on the TRI values (Li & Huck 2008) was developed based on the turbidity data analysis for 

individual filter runs. Therefore, the name of the classes may not be as accurate in this case as the 

duration that was considered to calculate TRIs is much larger than a filter run, but the mathematical 

interpretation of TRI should be valid. Moreover, these TRIs were calculated considering Tgoal = 0.1 

NTU, which is one-third of the regulatory limit (0.3 NTU) making this analysis a bit strict, which can 

act as a safety factor in the future if any operational changes are needed to be made. 

Similar to the ACTIFLO® unit TRIs, there is no visible trend in Figures 3.18 to 3.21 that shows that the 

TRIs are only higher during weather events, which indicates that Filters 2 and 7 were robust. Similar 

results were found for the other filters, which are shown in Appendix A (Figures A.6 and A.7). 
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(a)                                                                    (b) 

Figure 3.22: Weekly TRIs of (a) Filter 2 and (b) Filter 7 in relation to the maximum values of raw 

water turbidities during weather events 

 

Although there is no observed difference between TRIs during normal weather and weather events, to 

confirm the visual observation from Figures 3.18 to 3.21, in Figure 3.22 the TRIs corresponding to 

weather events as characterized by raw water turbidity were plotted against the maximum or ‘peak’ 

turbidity of the event. However, no positive correlation (R2 ≈ 0) has been observed between the TRIs 

and peak turbidities of a weather event, implying that weather events did not affect TRIs in 2019 and 

2020. This confirms that Filters 2 and 7 of Plant A were robust with respect to higher raw water 

turbidity. Similar results were found for the other filters, which are shown in Appendix A (Figure A.8), 
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(a) 

 
(b) 

Figure 3.23: Weekly average filter influent and effluent turbidity of Filter 2 in (a) 2019 and (b) 2020 
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(a) 

 
(b) 

Figure 3.24: Weekly average filter influent and effluent turbidity of Filter 7 in (a) 2019 and (b) 2020 
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Figures 3.23 and 3.24 show that all the Filter 2 and Filter 7 effluent turbidities are below the goal 

turbidity 0.1 NTU during normal weather and weather events. The effluent water from all the filters is 

mixed and the water moves to the UV disinfection units. Overall, the process culminating in the eight 

filters successfully removes 98.1% to 99.9% (Table A.1 in Appendix A) of raw water turbidity per 

week on average throughout the years 2019 and 2020, maintaining the effluent turbidity below 0.1 

NTU, which is well below the regulatory limit (0.3 NTU). 

 

3.3.4 Overall Robustness of Plant A 

Since in Plant A the two critical treatments steps for turbidity are the ACTIFLO® process and filtration, 

the overall robustness of the plant is dependent on the robustness of these two steps. As the two 

treatment trains are parallel and identical, the average TRI of the train 1 and 2 ACTIFLO® units 

represents the total TRI of the ACTIFLO® process. Again, since all the filters are operated randomly 

throughout the year, the average TRI of the eight filters represents the total TRI of the filtration step 

(Staff of Plant A, April 2021). To calculate the overall TRI of the plant, the overall robustness category 

(Chapter 2: Table 2.8) developed by Nemani (2021b) was used. According to the first iteration of this 

method, the overall robustness category is the average of the TRIs of all the critical treatment steps in 

the plant. However, one step can be more significant than the other in terms of removing turbidity. 

Thus, the overall robustness of Plant A can be assessed considering the following scenarios: 

1. Equal weighting of the ACTIFLO® and filtration process assuming both processes are equally 

important. 

2. Unequal weighting: 

i. The ACTIFLO® process is more significant as it removed around 92% of the raw water 

turbidity on average per week in 2019 and 2020 and aims to provide filter influent 

water with turbidity less than or equal to 1.0 NTU. 

ii. The filtration process is more significant as it is the final step to remove turbidity. 

The overall robustness category and the overall robustness class evaluated by equal weighting of the 

two processes for the year 2019 is demonstrated in Table 3.8. 
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Table 3.8: Overall robustness of Plant A by weeks in 2019 using equal weighting 

Week no. 

2019 

ACTIFLO® Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 110 3 86 2 3 slightly disturbed 

2 97 2 86 2 2 stable 

3 91 2 80 2 2 stable 

4 99 2 81 2 2 stable 

5 89 2 78 2 2 stable 

6 104 3 91 2 3 slightly disturbed 

7 99 2 87 2 2 stable 

8 101 3 82 2 3 slightly disturbed 

9 104 3 86 2 3 slightly disturbed 

10 102 3 80 2 3 slightly disturbed 

11 106 3 91 2 3 slightly disturbed 

12 93 2 88 2 2 stable 

13 97 2 94 2 2 stable 

14 105 3 88 2 2 stable 

15 95 2 90 2 2 stable 

16 104 3 90 2 3 slightly disturbed 

17 101 3 95 2 3 slightly disturbed 

18 95 2 103 3 3 slightly disturbed 

19 91 2 108 3 3 slightly disturbed 

20 92 2 92 2 2 stable 

21 116 3 99 2 3 slightly disturbed 

22 108 3 93 2 3 slightly disturbed 

23 97 2 95 2 2 stable 

24 95 2 92 2 2 stable 

25 91 2 91 2 2 stable 
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26 102 3 96 2 3 slightly disturbed 

27 98 2 94 2 2 stable 

28 96 2 94 2 2 stable 

29 95 2 94 2 2 stable 

30 92 2 93 2 2 stable 

31 96 2 97 2 2 stable 

32 89 2 88 2 2 stable 

33 95 2 94 2 2 stable 

34 98 2 101 3 3 slightly disturbed 

35 96 2 96 2 2 stable 

36 92 2 91 2 2 stable 

37 111 3 96 2 3 slightly disturbed 

38 89 2 99 2 2 stable 

39 88 2 91 2 2 stable 

40 87 2 94 2 2 stable 

41 84 2 92 2 2 stable 

42 92 2 94 2 2 stable 

43 89 2 98 2 2 stable 

44 101 3 99 2 3 slightly disturbed 

45 94 2 80 2 2 stable 

46 83 2 78 2 2 stable 

47 91 2 80 2 2 stable 

48 104 3 85 2 3 slightly disturbed 

49 95 2 81 2 2 stable 

50 106 3 91 2 3 slightly disturbed 

51 90 2 78 2 2 stable 

52 91 2 81 2 2 stable 

 

For the unequal weighting scenarios, the ratio between weighting factors was selected to be 0.6/0.4. 

The overall robustness category and the overall robustness class evaluated by higher weighting of the 
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ACTIFLO® process and higher weighting of the filtration process for the year 2019 are demonstrated 

in Table 3.9 and 3.10 respectively. 

 

Table 3.9: Overall robustness of Plant A by weeks in 2019 by unequal weighting (considering the 

ACTIFLO® process is more significant) 

Week no. 

2019 

ACTIFLO® Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 110 3 86 2 3 slightly disturbed 

2 97 2 86 2 2 stable 

3 91 2 80 2 2 stable 

4 99 2 81 2 2 stable 

5 89 2 78 2 2 stable 

6 104 3 91 2 3 slightly disturbed 

7 99 2 87 2 2 stable 

8 101 3 82 2 3 slightly disturbed 

9 104 3 86 2 3 slightly disturbed 

10 102 3 80 2 3 slightly disturbed 

11 106 3 91 2 3 slightly disturbed 

12 93 2 88 2 2 stable 

13 97 2 94 2 2 stable 

14 105 3 88 2 3 slightly disturbed 

15 95 2 90 2 2 stable 

16 104 3 90 2 3 slightly disturbed 

17 101 3 95 2 3 slightly disturbed 

18 95 2 103 3 2 stable 

19 91 2 108 3 2 stable 
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20 92 2 92 2 2 stable 

21 116 3 99 2 3 slightly disturbed 

22 108 3 93 2 3 slightly disturbed 

23 97 2 95 2 2 stable 

24 95 2 92 2 2 stable 

25 91 2 91 2 2 stable 

26 102 3 96 2 3 slightly disturbed 

27 98 2 94 2 2 stable 

28 96 2 94 2 2 stable 

29 95 2 94 2 2 stable 

30 92 2 93 2 2 stable 

31 96 2 97 2 2 stable 

32 89 2 88 2 2 stable 

33 95 2 94 2 2 stable 

34 98 2 101 3 2 stable 

35 96 2 96 2 2 stable 

36 92 2 91 2 2 stable 

37 111 3 96 2 3 slightly disturbed 

38 89 2 99 2 2 stable 

39 88 2 91 2 2 stable 

40 87 2 94 2 2 stable 

41 84 2 92 2 2 stable 

42 92 2 94 2 2 stable 

43 89 2 98 2 2 stable 

44 101 3 99 2 3 slightly disturbed 

45 94 2 80 2 2 stable 

46 83 2 78 2 2 stable 

47 91 2 80 2 2 stable 

48 104 3 85 2 3 slightly disturbed 

49 95 2 81 2 2 stable 
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50 106 3 91 2 3 slightly disturbed 

51 90 2 78 2 2 stable 

52 91 2 81 2 2 stable 

 

 

Table 3.10: Overall robustness of Plant A by weeks in 2019 by unequal weighting (considering the 

filtration process is more significant) 

Week no. 

2019 

ACTIFLO® Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 110 3 86 2 2 stable 

2 97 2 86 2 2 stable 

3 91 2 80 2 2 stable 

4 99 2 81 2 2 stable 

5 89 2 78 2 2 stable 

6 104 3 91 2 2 stable 

7 99 2 87 2 2 stable 

8 101 3 82 2 2 stable 

9 104 3 86 2 2 stable 

10 102 3 80 2 2 stable 

11 106 3 91 2 2 stable 

12 93 2 88 2 2 stable 

13 97 2 94 2 2 stable 

14 105 3 88 2 2 stable 

15 95 2 90 2 2 stable 

16 104 3 90 2 2 stable 

17 101 3 95 2 2 stable 
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18 95 2 103 3 3 slightly disturbed 

19 91 2 108 3 3 slightly disturbed 

20 92 2 92 2 2 stable 

21 116 3 99 2 2 stable 

22 108 3 93 2 2 stable 

23 97 2 95 2 2 stable 

24 95 2 92 2 2 stable 

25 91 2 91 2 2 stable 

26 102 3 96 2 2 stable 

27 98 2 94 2 2 stable 

28 96 2 94 2 2 stable 

29 95 2 94 2 2 stable 

30 92 2 93 2 2 stable 

31 96 2 97 2 2 stable 

32 89 2 88 2 2 stable 

33 95 2 94 2 2 stable 

34 98 2 101 3 3 slightly disturbed 

35 96 2 96 2 2 stable 

36 92 2 91 2 2 stable 

37 111 3 96 2 2 stable 

38 89 2 99 2 2 stable 

39 88 2 91 2 2 stable 

40 87 2 94 2 2 stable 

41 84 2 92 2 2 stable 

42 92 2 94 2 2 stable 

43 89 2 98 2 2 stable 

44 101 3 99 2 2 stable 

45 94 2 80 2 2 stable 

46 83 2 78 2 2 stable 

47 91 2 80 2 2 stable 
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48 104 3 85 2 2 stable 

49 95 2 81 2 2 stable 

50 106 3 91 2 2 stable 

51 90 2 78 2 2 stable 

52 91 2 81 2 2 stable 

 

Similar tables for the year 2020 can be found in Appendix A (Tables A.2 to A.4). 

To visualize the overall robustness of the plant in 2019 and 2020 with different weighting scenarios, a 

histogram is plotted in Figure 3.23, which summarizes the findings in Tables 3.8 to 3.10, and A.2 to 

A.4. 
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Figure 3.25: Overall robustness category of Plant A in (a) 2019 and (b) 2020 with equal and unequal 

weightings 

 

It should be noted that the “slightly disturbed” class implies that the system performed excellently 

during most of the period, and no overall system robustness was found to be greater than 3, which refers 

to the “slightly disturbed” class (Chapter 2: Table 2.8).  

From Figure 3.25, it is clear that changing the weighting of the treatment processes has an effect on the 

overall robustness category. With equal weighting of the two processes, larger number of “slightly 

disturbed” TRIs are observed, but its applicability is not ideal. If the robustness category of one process 

is equal to 3, and the other is 2, the arithmetic average is 2.5, which becomes 3 with upper rounding 

corresponding to the “slightly disturbed” class. Thus, using the same weighting may not be logical since 

different processes have different purposes. 
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to the filtration process, for 8 weeks in two years, the overall system was in the “slightly disturbed” 

class, among which 2 weeks (25%) were affected by weather events according to the method described 

in sub-section 3.3.1.2. Therefore, it can be said that the ACTIFLO® process is more sensitive to elevated 

turbidity in raw water, which is expected because it is the first process to encounter the turbidity rise in 

raw water. These results also indicate that the system was “slightly disturbed” in some weeks when the 

turbidity was considered normal, and there may be operational factors behind this. Therefore, the 

overall robustness of the plant did not depend on raw water turbidity events. 

 

3.4 Conclusion 

Due to the geographic location and raw water source of Plant A, it is very vulnerable to elevated 

turbidity in the raw water caused by weather events. Nevertheless, the TRIs of the ACTIFLO® and 

filtration process, which are the critical treatment steps in terms of turbidity removal, suggest that the 

treatment steps are meeting the goal turbidity of each step. No positive correlation is found between 

weather events characterized by elevated turbidity and the TRIs of these treatment steps. Finally, the 

overall plant robustness indicates that Plant A has successfully delivered treated water with desired 

quality in terms of turbidity in the years 2019 and 2020. 
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Chapter 4: Evaluation of Robustness of Plant B 

4.1 Introduction 

Plant B is a DWTP located in southern Ontario, using Lake Ontario as the source. As of 2021, the plant 

supplies drinking water to a large municipal residential system serving a population of 536,917 (Ontario 

Regulation, 2021). Since the plant draws water from Lake Ontario and the opening of the intake pipe 

is at a substantial distance from the shore, the raw water is less likely to be affected by municipal and 

agricultural runoff like rivers and creeks. During heavy precipitation events, the plant experiences 

elevated turbidity in the raw water, which is mostly caused by the wind direction (easterly wind) 

transporting particles from resuspended sediments and run-off towards intake pipes. The plant used to 

face 2-3 heavy precipitation events per year, but the number has increased to 4-5 in recent years (Staff 

of Plant B, July 2021). With the rise of climate change, more frequent and severe unseasonal 

precipitation events may occur in the near future. This may pose a challenge to maintain regulated water 

quality parameters including turbidity, which is the selected water quality parameter in this study. 

Health Canada (2012) has suggested regulatory limits for turbidity for different filtration techniques 

(listed in Table 2.3). This chapter aims to apply two steps of the robustness framework (shown in Figure 

2.6) to Plant B, Step 4: Evaluation, which is to evaluate the robustness of the critical treatment steps of 

the plant that can be affected by elevated raw water turbidity, and Step 5: Assessment, which is to assess 

the overall robustness of the plant with respect to turbidity removal for calendar years 2019 and 2020. 

 

4.2 Materials and Methods 

4.2.1 Plant Description 

Plant B is a conventional treatment plant. The monthly drinking water production of Plant B ranged 

from 186 to 235 ML/D in the year 2021, while the Municipal Drinking Water License (MDWL) daily 

rated capacity was 926 ML/D. It has three raw water intake pipes with 1.22 m, 1.52 m, and 2.44 m 

diameters, which can draw raw water from Lake Ontario at distances of 640 m, 915 m, and 945 m from 

the shore. Two intake pipes (1.52 m and 2.44 m diameters) are currently in use (Ontario Regulation, 

2021; Staff of Plant B, January 2022). 

 



 

 77 

 

 

Figure 4.1: Plant B process flow diagram 
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Figure 4.1 shows the treatment process flow of Plant B. The water is pumped by the low lift pump from 

the intake pipes. There are 3 traveling screens at the low lift pumping station to screen the water before 

pumping the water into the treatment plant (Ontario Regulation, 2021). 

The intake water is split into two parallel treatment trains (modules 1 and 2). The facility employs year-

round pre-chlorination at the intake, followed by coagulation (rapid mix), flocculation, and 

sedimentation as pre-treatment. PACl is injected as a coagulant. Additional chlorine is also added to 

ensure disinfection. Five PACl pumps draw from two PACl tanks to pump PACl to four rapid mix 

tanks. The suspended solids in the water collide with one another due to the action of the mixers the 

coagulant assists in their clumping together. The flocs are carried along with the outflow from the rapid 

mix tanks into the flocculation tanks and then the sedimentation tanks, where the flocs settle to the 

bottom of the tanks. The effluent water moves to the filters (Eramosa Engg. Inc. et al., 2015; Singh, 

2018). 

There are 24 dual media filters containing sand (depth: 150-230 mm) and granular activated carbon 

(GAC) (depth: 740 mm). As shown in Figure 4.1, sedimentation tank 1 can only feed Filters 1 to 12, 

and tank 4 can only feed Filters 13 to 24. Tanks 2 and 3 can feed all the filters if the interconnecting 

valve is open. If the interconnecting valve is closed, tanks 1 and 2 can only feed Filters 1 to 12, and 

tanks 3 and 4 can only feed Filters 3 and 4, separating the treatment process into two independent trains 

(Staff of Plant B, January 2022). A chlorine residual is present through filtration, where the GAC 

adsorbs any remaining chlorine (Singh, 2018). 

After filtration, the effluent water from Filters 1 to 12 moves to clearwell 1, and the effluent water from 

Filters 13 to 24 moves to clearwell 2. Chlorine is added again in the clearwells. Ammonia is added 

before the treated water enters the distribution system to convert chlorine into mono-chloramine to help 

maintain stable chloramine residuals (Ontario Regulation, 2021; Singh, 2018). 

Using the high lift pumps, the finished water is finally moved to the distribution system (Ontario 

Regulation, 2021). 

 

4.2.2 Available Data 

The plant framework (discussed in Chapter 2: section 2.4), developed by Nemani (2021a) was applied 

to Plant B. The timeframe of the study was selected to be two calendar years, 2019 and 2020, the same 
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as Plant A. The selected water quality parameter in this study is turbidity. According to Step 3: 

Identification of the framework (discussed in Chapter 2: sub-section 2.4.3), the critical treatment steps 

that are affected by turbidity are, CFS and filtration. On-line turbidity and flow data from January 2019 

to December 2020 were requested from the plant as well as the dimensions for all the tanks and basins. 

Table 4.1 provides an overview of the available data. 

 

Table 4.1: On-line monitoring data obtained from Plant B 

Location Frequency 

Raw water turbidity Every 5-minutes 

CFS (modules 1 and 2) effluent turbidity Every 5-minutes 

Filter (1 to 24) effluent turbidity Every 1-minute 

Pre-treatment (modules 1 and 2) flow rate Every 5-minutes 

Filtration units (1 to 24) flow rate Every 1-minute 

PACl flow rate (lines 1 to 4) Every 1-minute 

 

4.2.3 Identification of Invalid Data 

Similar to Plant A, the data points that do not represent the actual condition of Plant B were removed 

before analysis. According to the plant operators, these data can result from instrument errors or 

recordings during maintenance and repair activities, and/or plant shutdowns. The same methods that 

were developed to identify and remove the invalid data points from the data set for Plant A were applied 

to Plant B, and modified where required after consulting with the plant operators. The methods were 

modified to identify the invalid data points from the CFS and filter effluent turbidity data. 
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4.2.3.1 Raw Water Turbidity Data 

The raw water turbidity data of the year 2019 were plotted in a time series in Figure 4.2. Similar to 

Plant A (shown in Figure 3.2), in this figure, some data points were observed to be very high compared 

to the adjacent data points. 

 

Figure 4.2: Time series of raw water turbidity data (2019) 

 

From Chapter 3: sub-section 3.2.3.1, the final method to identify invalid data points from raw water 

turbidity data is as follows: invalid data = 100% above the hourly median. This is the same method that 

was developed for Plant A. MATLAB functions (Appendix D: Code D.1 and D.2) were used to remove 

the invalid data points prior to analysis. 

The time series of the raw water turbidity data after removing the invalid data points for the year 2019 

is shown in Figure 4.3. 161 out of 105108 (0.15%) data points were removed as invalid data. The same 

method is applied to the raw water turbidity data for the year 2020, which is shown in Figure 4.4. 232 

out of 105396 (0.22%) data points were removed as invalid data. 
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Figure 4.3: Time series of raw water turbidity data (2019) with invalid data points removed 

 

Figure 4.4: Time series of raw water turbidity data (2020) with invalid data points removed 
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4.2.3.2 CFS Effluent Turbidity Data 

The validity of the CFS effluent turbidity data can be determined by analyzing the following data: 

1. Pre-treatment water flow rates to the rapid mix tanks. 

2. PACl flow rates to the rapid mix tanks. 

If the pre-treatment water flow rate is zero, it implies that there was no water going into the coagulation 

tanks, which may occur due to plant/module shutdowns for various reasons. If the flow rate is below 5 

ML/D, no coagulant is added to the coagulation tanks (Eramosa Engg. Inc. et al., 2015; Staff of Plant 

B, July 2021). Thus, if the pre-treatment water flow rate is less than 5 ML/D, it indicates that the plant 

and/or the CFS units are being shut down or started up from a shutdown. 

In addition to the pre-treatment water flow rates, the PACl flow rate also determines the validity of the 

CFS effluent turbidity data. Figure 4.5 shows the time series of PACl flow data of each line for the year 

2019. A similar figure for the year 2020 can be found in Appendix B (Figure B.1). From Figures 4.5 

and B.1, it is observed that one or more PACl lines were shut down during the study period as the flow 

continued to be zero. 
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(c)                                                                                      (d) 

Figure 4.5: Timeseries of PACl flow (L/h) (a) line 1, (b) line 2, (c) line 3 and (d) line 4 for the year 
2019 

 

Lines 1 and 2 feed the module 1 CFS unit and lines 3 and 4 feed the module 2 CFS unit. If the total 

PACl flow of lines 1 and 2 is equal to zero, it implies that no coagulation was taking place during those 

periods in module 1. The total flow of lines 3 and 4 has similar implications. From Figures 4.5 and B.1, 

Table 4.2 was generated indicting the shutdown periods of the PACl lines and corresponding modules. 

 

Table 4.2: PACl line and module shutdown periods based on PACl flow data 

Line/Module Shutdown periods 

PACl line 1 
13 May 2019 to 3 June 2019, 19 February 2020 to 4 June 2020, 19 August 
2020 to 12 November 2020. 

PACl line 2 13 May 2019 to 5 June 2019, 19 February 2020 to 8 June 2020. 

CFS module 1 13 May 2019 to 3 June 2019, 19 February 2020 to 4 June 2020. 

PACl line 3 16 October 2019 to 16 February 2020, 13 November 2020 to 20 November 
2020. 

PACl line 4 
7 June 2019 to 22 August 2019, 19 September 2019 to 30 September 2019, 
25 October 2019 to 18 February 2020, 12 June 2020 to 16 June 2020. 

CFS module 2 25 October 2019 to 16 February 2020. 
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Hence, turbidity values recorded in the online turbidimeter during these periods do not represent the 

actual condition and can be removed as invalid data points. A MATLAB function (Appendix D: Code 

D.8) was used to identify and remove the data points corresponding to raw water flow rates less than 5 

ML/D and PACl flow rates in both lines for the corresponding module equal to zero from the CFS 

effluent turbidity data sets. Overall, 21.3% of the data were removed. 

 

4.2.3.3 Filter Effluent Turbidity Data 

Similar to the previous sub-section, the flow rates of each filter determine the validity of the filter 

effluent turbidity data. If the flow rate is zero, it implies that there was no water going into the filter 

which may occur due to filter backwash, maintenance work, and plant shutdowns for various reasons. 

As mentioned before, Plant B has 24 filters and usually, 12 to 18 of them run simultaneously while the 

others are kept on stand-by (Staff of Plant B, July 2021). After backwash when putting filters to service 

again, filters are operated at 5 ML/D flow rate for around 20 minutes and the effluent turbidity is 

checked (Staff of Plant B, January 2022). If the effluent turbidity is under the regulatory limit (0.3 

NTU), the filters are ramped up to a higher flow rate (15 to 22 ML/D) (Staff of Plant B, July 2021). In 

the study period, no effluent turbidity data in the first 20 minutes of a filter run was found to be greater 

than 0.3 NTU. Therefore, the turbidity data corresponding to filter flow rates equal to zero were 

identified and removed for every filter using a MATLAB function (Appendix D: Code D.9). 

As discussed in sub-section 4.2.1, due to the interconnecting valve it cannot be said that Filters 1 to 12 

were not operated when the CFS unit of module 1 was shut down, and Filters 13 to 24 were not operated 

when the CFS unit of module 2 was shut down, because tanks 2 and 3 can feed all the filters if the 

interconnecting valve is open. The opening and closing log of all the valves connecting the 

sedimentation tanks and the filters during the study period was provided by the utility, which was used 

to determine when the filters were not operating, and the corresponding filter effluent turbidity data 

were removed. Overall, 45.7% data were removed. 

 

4.2.4 Data Analysis Approach 

The plant framework developed by Nemani (2021a) was applied in this study. Step 4: Evaluation in the 

plant framework (discussed in Chapter 2: sub-section 2.4.4) focused on quantifying the robustness of 
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the treatment steps that are affected by changes in the selected raw water quality parameter(s), which 

is elevated turbidity caused by heavy and unusual precipitation events in this study. Thus, it is necessary 

to distinguish between the raw water turbidity levels during normal weather and weather events that 

can cause a significant increase in turbidity at the intake. The same two scenarios as Plant A were 

established for Plant B using raw water turbidity data, which are: 

1. Normal weather characterized by baseline raw water turbidity. 

2. Weather events, characterized by elevated turbidity in the raw water. 

The same methods discussed in Chapter 3: sub-section 3.2.4 were used to evaluate the TRIs of the CFS 

units and the filters. The HRTs of different tanks within the CFS processes were calculated using the 

median flow rates, and then used to offset the turbidity data points so that the comparisons between raw 

water turbidity data, and CFS unit and filter effluent turbidity data are more logical. The HRTs of the 

treatments units in Plant B using the median flow rates are shown in Table 4.3. 

 

Table 4.3: HRTs of different treatment units in Plant B 

Unit 
Hydraulic Retention 

Time (HRT) 

CFS unit 

Module 1 

Coagulation tank 3m 20s 

Flocculation tank 1h 59m 

Sedimentation tank 5h 19m 

Total 7h 22m 

Module 2 

Coagulation tank 3m 23s 

Flocculation tank 2h 1m 

Sedimentation tank 5h 24m 

Total 7h 29m 
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4.3 Results and Discussion 

4.3.1 Identification of Normal Turbidity and Turbidity Events 

As discussed in Chapter 3: sub-section 3.2.4, to evaluate the robustness of the critical treatment steps, 

it is important to separate the calculated TRIs based on weather to determine whether the treatment 

steps are affected by weather events or not. From the time series of the raw water turbidity (Figures 4.3 

and 4.4), some turbidity peaks can be observed that indicate precipitation-related weather events in the 

area. For Plant A, two methods were developed using yearly (Chapter 3: sub-section 3.3.1.1) and 

seasonal (Chapter 3: sub-section 3.3.1.2) median raw water turbidity. The latter was selected because 

the difference between yearly and seasonal median turbidities in Plant A was too high for the spring 

season, and so the method using the yearly median turbidity could not distinguish between separate 

weather events. However, in Plant B the difference between the yearly and seasonal median raw water 

turbidity is not that high. Table 4.4 shows the yearly and seasonal median raw water turbidity of Plant 

B for the years 2019 and 2020. 

 

Table 4.4: Yearly and seasonal raw water median turbidities of 2019 and 2020 

Season Winter Spring Summer Fall Yearly 

Duration 
Jan 2019 - 

Feb 2019 

Mar 2019 - 

May 2019 

Jun 2019 - 

Aug 2019 

Sep 2019 - 

Nov 2019 

Jan 2019 - 

Dec 2019 

Median 

turbidity 

(NTU) 

0.99 1.87 1.14 1.94 1.39 

Duration 
Dec 2019 - 

Feb 2020 

Mar 2020 - 

May 2020 

Jun 2020 - 

Aug 2020 

Sep 2020 - 

Nov 2020 

Jan 2020 - 

Dec 2020 

Median 

turbidity 

(NTU) 

1.48 1.08 2.40 1.01 1.45 
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The differences between the respective seasonal and the yearly median turbidities varied from -0.40 to 

+0.55 NTU in 2019 and -0.44 to +0.95 NTU in 2020, which is substantially lower compared to Plant 

A. The revised method developed for Plant A (turbidity event = y% above the seasonal median, for at 

least one hour) was applied to the raw water turbidity data of Plant B varying the value of y from 25% 

to 100%, which is shown in Figure 4.6. 

 

Figure 4.6: Time series of raw water data (2019) with turbidity peak events using corresponding 

seasonal median raw water turbidity 

 

In Figure 4.6, it is very difficult to visualize the data points that are not green, which represents the 

turbidity data that are 100% above the seasonal median raw water turbidity. Since the seasonal median 

turbidities are very low compared to the peak turbidities, this method is considering almost all the raw 

water turbidity data points as weather events, which is not possible. Therefore, the method developed 

for Plant A cannot be applied to Plant B. 

According to the plant operators, if the raw water turbidity is lower than 10 NTU, it is considered 

normal (Staff of Plant B, July 2021). To make this analysis a bit stricter, the following method was used 

to identify normal weather and weather events: turbidity event = 100% above the seasonal median + 5 

Baseline turbidity 
25% above yearly median 
50% above yearly median 
75% above yearly median 
100% above yearly median 
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NTU, for at least one hour. The value “5 NTU” was selected so that the baseline turbidity values that 

represent normal weather cannot exceed 10 NTU. For instance, in the case of the season summer 2020, 

the median turbidity is 2.40 NTU, which is the highest median raw water turbidity in the study period. 

According to this method, if the raw water turbidity in summer 2020 is below 9.80 NTU, it represents 

normal weather characterized by raw water turbidity. 

Figures 4.7 and 4.8 show the time series of raw water turbidity of the year 2019 and 2020 respectively, 

indicating normal turbidity levels and turbidity events characterized by raw water turbidity using this 

method. 

 

Figure 4.7: Time series of raw water turbidity (2019) showing normal turbidity and turbidity events 
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Figure 4.8: Time series of raw water turbidity (2020) showing normal turbidity and turbidity events 

 

4.3.2 Robustness of the CFS Units 

According to the fourth step “evaluation” of the plant framework, the TRIs were calculated for the CFS 

units with Equation 2.5. To calculate the TRIs for every week of the year 2019 and 2020, a goal turbidity 

is required as stated in Step 2: Criteria of the plant framework. There is no regulatory limit set for CFS 

effluent water, since it is not the final treatment step to remove turbidity. DWTPs generally have a goal 

turbidity for conventional CFS effluent water so that elevated effluent turbidity cannot overwhelm the 

filters and/or fail to produce filtered water maintaining the regulatory limit (listed in Table 2.3).  In 

Plant B, the goal turbidity (Tgoal) of the CFS effluent water is 1.0 NTU. A stricter goal (Tgoal = 0.5 

NTU) was selected during the initial analysis to observe the effects of different turbidity goals in 

calculating TRIs. In Figure 4.9, the TRIs of the module 1 CFS unit for the year 2019 are calculated for 

two TRI goals, 0.5 NTU shown by the blue bars, and 1.0 NTU shown by the orange bars. The lower 

the turbidity goal, the stricter the criterion, which should lead to higher TRI values. All the TRIs with 

Tgoal = 0.5 NTU are higher than those with Tgoal = 1.0 NTU as expected. The classes of the TRIs are 

discussed later in this section. 
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Figure 4.9: Weekly TRIs of the module 1 CFS unit (2019) with varying Tgoals 

 

According to the plant operators, the goal turbidity of the CFS units in Plant B is 1.0 NTU, so the goal 

value of 1.0 NTU was used to calculate the TRIs of the CFS units in further analysis. Figures 4.10 and 

4.11 show the weekly TRIs of modules 1 and 2 CFS units respectively for the years 2019 and 2020. 

The blue bars represent the TRIs during normal weather and the red bars represent the TRIs 

corresponding to the weeks that were affected by weather events, which were identified using the 

method developed in sub-section 4.3.1. The empty spaces in the figure represent unit shutdown during 

the corresponding weeks due to maintenance or repair work. 
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(a) 

 
(b) 

Figure 4.10: Weekly TRIs during normal weather and weather events characterized by raw water 

turbidity of module 1 CFS unit in (a) 2019 and (b) 2020 (Tgoal = 1.0 NTU) 
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(a) 

 
(b) 

Figure 4.11: Weekly TRIs during normal weather and weather events characterized by raw water 

turbidity of module 2 CFS unit in (a) 2019 and (b) 2020 (Tgoal = 1.0 NTU) 
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For 27 weeks in the study period (104 weeks), TRIs fall into the “stable” (60-100) class, which indicates 

that the 50th and the 90th percentile turbidity were below the goal turbidity and the CFS unit always 

maintained the desired quality (effluent turbidity < 1.0 NTU) for the respective weeks. 

For 46 weeks in the study period, the TRIs fall into the “slightly disturbed” (100-130) class, which 

indicates that either both 50th and 90th percentile turbidity was close to the goal turbidity and/or the 

90th percentile turbidity was greater than the goal turbidity in some cases. The CFS unit produced 

effluent water with the desired quality most of the time during the given weeks. 

For 13 weeks in the study period, the TRIs fall into the “moderately disturbed” (130-160) class, which 

indicates that both 50th and 90th percentile turbidity was higher than the goal turbidity. The CFS unit 

could not produce effluent water with the desired quality for a short duration (around 30% of the week) 

during the given weeks. 

For one week in the study period, the TRI falls into the “upset” (160-200) class, and for one week the 

TRI falls into the “severely upset” (>200) category, which indicate that both 50th and 90th percentile 

turbidity was almost two times higher than the goal turbidity. The CFS unit could not produce effluent 

water with the desired quality. 

It should be noted that the classification system regarding the TRI values was developed based on the 

turbidity data analysis for filter runs, so the name of the classes may not be as precise in this case as 

this is an entirely different treatment step with different duration, but the mathematical interpretation 

of the TRI should be valid. 

The definition of robustness implies that if the performance of a system is observed to exacerbate during 

upsets, the system would not be considered robust. In Figures 4.10 and 4.11, it is observed that the TRIs 

corresponding to weather events (red bars) are mostly (75 out of 80) greater than 130, which indicates 

that the performance of the CFS units may not be robust, according to the definition used in this 

analysis. 

The high TRI values during normal weather (blue bars) were investigated and it was found that the 

influent turbidity was very low. It is reasonable to infer that there were not enough particles in the water 

to react with the coagulant, which resulted in a higher CFS effluent water turbidity. 

To investigate the effect of the extremity of weather events on TRI, Figure 4.12 was generated. In this 

figure, the TRIs corresponding to weather events as characterized by raw water turbidity were plotted 
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against the maximum or ‘peak’ turbidity of the event, which represents the extremity of the event. 

However, no positive correlation (R2 ≈ 0) was observed between the TRIs and peak turbidities of a 

weather event, implying that the peak turbidity of the weather events did not affect TRIs in 2019 and 

2020. 

   
(a)                                                                     (b) 

Figure 4.12: Weekly TRIs of the (a) module 1 and (b) module 2 CFS unit in relation to the maximum 

values of raw water turbidity during weather events 

 

In addition to the TRI plots, in order to visualize the overall performance of the CFS units, the weekly 

average raw water turbidities are plotted against the weekly average module 1 and module 2 CFS 

effluent turbidity for the years 2019 and 2020 in Figures 4.13 and 4.14 respectively to observe the 

weekly turbidity removal by the CFS units. 
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(a) 

 
(b) 

Figure 4.13: Weekly average raw water and module 1 CFS influent and effluent turbidity in (a) 2019 

and (b) 2020 
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(a)  

 
(b) 

Figure 4.14: Weekly average raw water and module 2 CFS influent and effluent turbidity in (a) 2019 

and (b) 2020 
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In both figures, it is observed the weekly average module 1 and 2 CFS effluent turbidities are above the 

goal turbidity (1.0 NTU) during some weather events characterized by turbidity (indicated with green 

circles in the figures), which explains the high TRIs during these events. For the TRIs in the “upset” 

and “severely upset” class, the weekly average CFS effluent turbidities were lower than the goal 

turbidity. However, the 90th percentile turbidity was significantly higher than the goal turbidity, which 

resulted in these “upset” and “severely upset” TRIs. In module 1, for 2 weeks in 2019 and 1 week in 

2020 and in module 2 for 2 weeks in 2019, the weekly average CFS effluent turbidity is found to be 

higher than the weekly average raw water turbidity. In these cases, the raw water turbidity was very 

low, which may have impacted the coagulation mechanism. 

 

4.3.3 Robustness of Filtration Units 

In Plant B, filtration is the last step to remove particles, i.e., turbidity. To evaluate the robustness of the 

filtration units with TRI, a goal turbidity is required as specified by the second step “criteria” (Chapter 

2: sub-section 2.4.2) in the plant framework. Plant B follows the regulatory limit set by the Government 

of Ontario based on Health Canada (2012), which states that the effluent turbidity of every filter must 

be less than or equal to 0.3 NTU for at least 95% of the measurement per cycle per month, with a target 

of less than 0.1 NTU, and the turbidity can never exceed 1.0 NTU (listed in Chapter 2: Table 2.3). Since 

there are 24 filters in Plant B, only the data analysis result of two representative filters (Filter 2 from 

module 1 and Filter 18 from module 2) is discussed in this chapter. Filter 2 represents the average 

performance of all the filters in Plant B. Filter 18 shows some of the highest TRIs observed in this 

analysis, so it was chosen to discuss the worst-case scenario. The TRIs of the other filters are shown in 

Appendix B (Figures B.2 to B.8). 

Initially, the TRIs were calculated using two goals, 0.3 NTU and 0.1 NTU to observe the effect of goal 

turbidity values in TRI calculation. Figure 4.15 shows the TRIs of Filter 2 for the year 2019 for the two 

goals, 0.3 NTU shown by the orange bars and 0.1 NTU shown by the blue bars. All the TRIs with Tgoal 

= 0.3 NTU are lower than those with Tgoal = 0.1 NTU as expected. The class of the TRIs is discussed 

later in this chapter. 
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Figure 4.15: Weekly TRIs of Filter 2 (2019) with varying Tgoals 

 

According to the plant operators, Plant B aims to maintain the filter effluent turbidity below 0.1 NTU, 

so the goal turbidity was used as 0.1 NTU for all the filters in further analysis. 

Figures 4.16 and 4.17 show the weekly TRIs of Filter 2 and Filter 18 respectively for the years 2019 

and 2020. The blue bars represent the TRIs during normal weather and the red bars represent the TRIs 

corresponding to the weeks that were affected by weather events characterized by raw water turbidity. 

The empty spaces in the figure represent filter shutdown during the corresponding weeks due to 

maintenance or repair work. 
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(a) 

 
(b) 

Figure 4.16: Weekly TRIs of Filter 2 in (a) 2019 and (b) 2020 during normal weather and weather 

events characterized by raw water turbidity (Tgoal = 0.1 NTU) 
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(a) 

 
(b) 

Figure 4.17: Weekly TRIs of Filter 18 in (a) 2019 and (b) 2020 during normal weather and weather 

events characterized by raw water turbidity (Tgoal = 0.1 NTU) 
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For both Filters 2 and 18, most of the TRIs fall into the “stable” (60-100) class, which indicates that the 

50th and the 90th percentile turbidity were below the goal turbidity, and the filters always maintained 

the desired quality (effluent turbidity < 0.1 NTU) for the respective weeks. 

For Filter 2, the TRIs fall into the “slightly disturbed” (100-130) class for 11 weeks during the study 

period (104 weeks). For Filter 18, the TRIs fall into the “slightly disturbed” (100-130) class for 15 

weeks during the study period. These TRIs indicate that either both 50th and 90th percentile turbidity 

was close to the goal turbidity and/or the 90th percentile turbidity was greater than the goal turbidity in 

some cases and the filters produced effluent water with desired quality most of the time during the 

given weeks. For Filter 2, none of the TRIs are observed beyond this class. 

The TRI falls into the “moderately disturbed” (130-160) class for 3 weeks for Filter 18. The 

“moderately disturbed” TRIs indicate that both the 50th and 90th percentile turbidity were greater than 

the goal turbidity and the filters did not generate effluent water with desired quality for a short duration 

(almost 30% of the time) during the given weeks. 

For Filter 18, the TRIs fall into the “upset” (160-200) class for 3 weeks and into the “severely upset” 

(>200) category for 2 weeks during the study period, which indicates that both 50th and 90th percentile 

turbidity was almost two times higher than the goal turbidity and the filter could not produce effluent 

water with desired quality. 

The weekly TRI plots for the other filters can be found in Appendix B (Figures B.2 to B.8), which show 

similar results. In most filters, the TRIs are in the “stable” and “slightly disturbed” class like Filter 2, 

which implies that the filters were successful to keep the effluent turbidity at 0.1 NTU. However, for 

some filters like Filter 18, some high TRIs (>130) were observed.  For these TRIs, although the filter 

effluent turbidity met the regulatory limit, which is 0.3 NTU for 95% of the measurements per cycle 

per month, the effluent turbidity exceeded the target turbidity, which is 0.1 NTU. This implies that the 

filters met the regulatory limits set by the Government of Ontario, but could not meet the target set by 

Health Canada (2012) during the weeks corresponding to the high TRIs. Thus, the analysis of the filter 

effluent turbidity data using TRI can be a useful tool for utilities to investigate their operational details 

during those weeks and take appropriate measures to improve the performance of the filters. 

Filter 7 was shut down for decades and put in service at the end of 2020, which is why no on-line 

turbidity data was available to calculate TRI except for the last two weeks of 2020 (Staff of Plant B, 

July 2021). 
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From Figures 4.16 and 4.17, and B.2 to B.8, some high TRI values are observed but there was no 

weather event taking place during those weeks. Although these high TRIs imply that the performance 

of the filters was not satisfactory during some periods in the given weeks, they do not always correspond 

to the weather events characterized by raw water turbidity, indicating that the reason behind this 

undesirable performance is not weather-related. It should be noted that the classification system for the 

TRI values was developed based on the turbidity data analysis for individual filter runs. Therefore, the 

names of the classes may not be as accurate in this case as the duration that was considered to calculate 

TRIs is much larger than a filter run, but the mathematical interpretation of TRI should be valid. 

 

 
(a)                                                                         (b) 

Figure 4.18: Weekly TRIs of (a) Filter 2 and (b) Filter 18 in relation to the maximum values of raw 

water turbidities during weather events 

 

Although there is no observed difference between TRIs during normal weather and weather events, to 

confirm the visual observation from Figures 4.16 and 4.17, in Figure 4.18 the TRIs corresponding to 

turbidity events were plotted against the maximum or ‘peak’ turbidity of the event. However, no 

positive correlation (R2 ≈ 0) has been observed between the TRIs and peak turbidities of a weather 

event, implying that weather events did not affect TRIs in 2019 and 2020, confirming that Filters 2 and 

18 of Plant B were robust with respect to higher raw water turbidity. Similar results were found for the 

other filters, which are shown in Appendix B (Figures B.9 to B.12). 
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(a) 

 
(b) 

Figure 4.19: Weekly average filter influent and effluent turbidity of Filter 2 in (a) 2019 and (b) 2020 
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(a) 

 
(b) 

Figure 4.20: Weekly average filter influent and effluent turbidity of Filter 18 in (a) 2019 and (b) 2020 
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In addition to the TRI plots, in order to visualize the overall performance of the filters, the weekly 

average filter influent turbidities are plotted against the weekly average Filter 2 and Filter 18 effluent 

turbidity for the years 2019 and 2020 in Figures 4.19 and 4.20 to observe the weekly turbidity removal 

by these two filters. These figures show that almost all the weekly average Filter 2 and Filter 18 effluent 

turbidities are below the goal turbidity of 0.1 NTU. For 2 weeks in Filter 2 and 2 weeks in Filter 18, 

the weekly average turbidities are found a bit higher than 0.1 NTU, but well below the regulatory limit 

(0.3 NTU). The effluent water from Filters 1 to 12 moves to clearwell 1 and the effluent water from 

Filters 13 to 24 moves to clearwell 2. After disinfection, the water from clearwells 1 and 2 enters the 

distribution system with the high lift pump. Overall, 76.8% to 99.9% (Table B.1 in Appendix B) of raw 

water turbidity is removed after filtration per week on average throughout the years 2019 and 2020, 

maintaining the effluent turbidity below the regulatory limit. 

 

4.3.4 Overall Robustness of Plant B 

Since the two critical treatments steps for turbidity are the CFS process and filtration, the overall 

robustness of the plant is dependent on the robustness of these two steps. As the treatment trains are 

parallel and identical, the average TRI of the modules 1 and 2 CFS units represents the total TRI of the 

CFS process. Again, since all the filters are operated randomly throughout the years, the average TRI 

of the 24 filters represents the total TRI of the filtration step. To calculate the overall TRI of the plant, 

the overall robustness category (Chapter 2: Table 2.8) developed by Nemani (2021b) was used. The 

overall robustness of Plant B can be assessed considering the following scenarios: 

1. Equal weighting of the CFS and filtration process assuming both processes are equally 

important. 

2. Unequal weighting:  

i. The CFS process is more significant. 

ii. The filtration process is more significant as it is the final step to remove turbidity. 

The overall robustness category and the overall robustness class evaluated by equal weighting of the 

two processes for the year 2019 are demonstrated in Table 4.5. 
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Table 4.5: Overall robustness of Plant B by week in 2019 using equal weighting 

Week 
no. 

2019 

CFS Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 131 4 75 2 3 slightly disturbed 

2 135 4 83 2 3 slightly disturbed 

3 110 3 83 2 3 slightly disturbed 

4 107 3 77 2 3 slightly disturbed 

5 123 3 87 2 3 slightly disturbed 

6 127 3 85 2 3 slightly disturbed 

7 136 2 81 2 2 stable 

8 99 2 76 2 2 stable 

9 98 2 79 2 2 stable 

10 178 5 80 2 4 moderately disturbed 

11 94 2 77 2 2 stable 

12 112 3 75 2 3 slightly disturbed 

13 113 3 79 2 3 slightly disturbed 

14 108 3 84 2 3 slightly disturbed 

15 104 3 81 2 3 slightly disturbed 

16 100 3 80 2 3 slightly disturbed 

17 96 2 81 2 2 stable 

18 90 2 81 2 2 stable 

19 93 2 81 2 2 stable 

20 117 3 98 2 3 slightly disturbed 

21 103 3 128 3 3 slightly disturbed 

22 123 3 125 3 3 slightly disturbed 
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23 176 5 105 3 4 moderately disturbed 

24 107 3 94 2 3 slightly disturbed 

25 90 2 93 2 2 stable 

26 99 2 97 2 2 stable 

27 117 3 103 3 3 slightly disturbed 

28 92 2 95 2 2 stable 

29 110 3 92 2 3 slightly disturbed 

30 99 2 94 2 2 stable 

31 102 3 109 3 3 slightly disturbed 

32 113 3 99 2 3 slightly disturbed 

33 110 3 98 2 3 slightly disturbed 

34 101 3 92 2 3 slightly disturbed 

35 107 3 93 2 3 slightly disturbed 

36 109 3 94 2 3 slightly disturbed 

37 111 3 97 2 3 slightly disturbed 

38 107 3 98 2 3 slightly disturbed 

39 140 4 112 3 4 moderately disturbed 

40 121 3 92 2 3 slightly disturbed 

41 105 3 91 2 3 slightly disturbed 

42 183 5 89 2 4 moderately disturbed 

43 99 2 96 2 2 stable 

44 111 3 85 2 3 slightly disturbed 

45 136 4 84 2 3 slightly disturbed 

46 118 3 89 2 3 slightly disturbed 

47 126 3 85 2 3 slightly disturbed 

48 127 3 87 2 3 slightly disturbed 

49 137 4 92 2 3 slightly disturbed 

50 120 3 90 2 3 slightly disturbed 
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51 104 3 91 2 3 slightly disturbed 

52 119 3 95 2 3 slightly disturbed 

 

For the unequal weighting scenarios, the ratio between weighting factors was selected to be 0.6/0.4, the 

same as Plant A. The overall robustness category and the overall robustness class evaluated by a higher 

weighting of the CFS and filtration process for the year 2019 are demonstrated in Table 4.6 and Table 

4.7 respectively. 

 

Table 4.6: Overall robustness of Plant B by weeks in 2019 using unequal weighting (considering the 

CFS process is more significant) 

Week 
no. 

2019 

CFS Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 131 4 75 2 3 slightly disturbed 

2 135 4 83 2 3 slightly disturbed 

3 110 3 83 2 3 slightly disturbed 

4 107 3 77 2 3 slightly disturbed 

5 123 3 87 2 3 slightly disturbed 

6 127 3 85 2 3 slightly disturbed 

7 136 2 81 2 2 stable 

8 99 2 76 2 2 stable 

9 98 2 79 2 2 stable 

10 178 5 80 2 4 moderately disturbed 

11 94 2 77 2 2 stable 

12 112 3 75 2 3 slightly disturbed 

13 113 3 79 2 3 slightly disturbed 
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14 108 3 84 2 3 slightly disturbed 

15 104 3 81 2 3 slightly disturbed 

16 100 3 80 2 3 slightly disturbed 

17 96 2 81 2 2 stable 

18 90 2 81 2 2 stable 

19 93 2 81 2 2 stable 

20 117 3 98 2 3 slightly disturbed 

21 103 3 128 3 3 slightly disturbed 

22 123 3 125 3 3 slightly disturbed 

23 176 5 105 3 4 moderately disturbed 

24 107 3 94 2 3 slightly disturbed 

25 90 2 93 2 2 stable 

26 99 2 97 2 2 stable 

27 117 3 103 3 3 slightly disturbed 

28 92 2 95 2 2 stable 

29 110 3 92 2 3 slightly disturbed 

30 99 2 94 2 2 stable 

31 102 3 109 3 3 slightly disturbed 

32 113 3 99 2 3 slightly disturbed 

33 110 3 98 2 3 slightly disturbed 

34 101 3 92 2 3 slightly disturbed 

35 107 3 93 2 3 slightly disturbed 

36 109 3 94 2 3 slightly disturbed 

37 111 3 97 2 3 slightly disturbed 

38 107 3 98 2 3 slightly disturbed 

39 140 4 112 3 4 moderately disturbed 

40 121 3 92 2 3 slightly disturbed 

41 105 3 91 2 3 slightly disturbed 
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42 183 5 89 2 4 slightly disturbed 

43 99 2 96 2 2 stable 

44 111 3 85 2 3 slightly disturbed 

45 136 4 84 2 3 slightly disturbed 

46 118 3 89 2 3 slightly disturbed 

47 126 3 85 2 3 slightly disturbed 

48 127 3 87 2 3 slightly disturbed 

49 137 4 92 2 3 slightly disturbed 

50 120 3 90 2 3 slightly disturbed 

51 104 3 91 2 3 slightly disturbed 

52 119 3 95 2 3 slightly disturbed 

 

 

Table 4.7: Overall robustness of Plant B by weeks in 2019 using unequal weighting (considering the 

filtration process is more significant) 

Week 
no. 

2019 

CFS Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 131 4 75 2 3 slightly disturbed 

2 135 4 83 2 3 slightly disturbed 

3 110 3 83 2 2 stable 

4 107 3 77 2 2 stable 

5 123 3 87 2 2 stable 

6 127 3 85 2 2 stable 

7 136 2 81 2 2 stable 

8 99 2 76 2 2 stable 
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9 98 2 79 2 2 stable 

10 178 5 80 2 3 slightly disturbed 

11 94 2 77 2 2 stable 

12 112 3 75 2 2 stable 

13 113 3 79 2 2 stable 

14 108 3 84 2 2 stable 

15 104 3 81 2 2 stable 

16 100 3 80 2 2 stable 

17 96 2 81 2 2 stable 

18 90 2 81 2 2 stable 

19 93 2 81 2 2 stable 

20 117 3 98 2 2 stable 

21 103 3 128 3 3 slightly disturbed 

22 123 3 125 3 3 slightly disturbed 

23 176 5 105 3 4 moderately disturbed 

24 107 3 94 2 2 stable 

25 90 2 93 2 2 stable 

26 99 2 97 2 2 stable 

27 117 3 103 3 3 slightly disturbed 

28 92 2 95 2 2 stable 

29 110 3 92 2 2 stable 

30 99 2 94 2 2 stable 

31 102 3 109 3 3 slightly disturbed 

32 113 3 99 2 2 stable 

33 110 3 98 2 2 stable 

34 101 3 92 2 2 stable 

35 107 3 93 2 2 stable 

36 109 3 94 2 2 stable 



 

 112 

37 111 3 97 2 2 stable 

38 107 3 98 2 2 stable 

39 140 4 112 3 3 slightly disturbed 

40 121 3 92 2 2 stable 

41 105 3 91 2 2 stable 

42 183 5 89 2 3 slightly disturbed 

43 99 2 96 2 2 stable 

44 111 3 85 2 2 stable 

45 136 4 84 2 3 slightly disturbed 

46 118 3 89 2 2 stable 

47 126 3 85 2 2 stable 

48 127 3 87 2 2 stable 

49 137 4 92 2 3 slightly disturbed 

50 120 3 90 2 2 stable 

51 104 3 91 2 2 stable 

52 119 3 95 2 2 stable 

 

Similar tables for the year 2020 can be found in Appendix B (Tables B.2 to B.4). 

To visualize the overall robustness of the plant in 2019 and 2020 with different weighting scenarios, a 

histogram is plotted in Figure 4.21, which summarizes the finding in Tables 4.5 to 4.7, and B.2 to B.4. 
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Figure 4.21: Overall robustness category of Plant B in (a) 2019 and (b) 2020 with equal and unequal 

weighting 
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From Figure 4.21, it is clear that changing the weighting of the treatment processes has an effect on the 

overall robustness category. With equal weighting of the two processes and more weighting on the CFS 

process, larger number of “slightly disturbed” and “moderately disturbed” TRIs are observed. This is 

caused by the high TRIs of the CFS units in some weeks. 

Putting more weight on the filtration process seems more logical as it is the final step to remove 

turbidity. With unequal weighting (more weight on the filtration process), it is found that the system 

was “slightly disturbed” for 11 weeks in 2019 and 19 weeks in 2020. The system was in the “moderately 

disturbed” class for only 1 week in 2019. It should be noted that the “slightly disturbed” class implies 

that the system performed excellently during most of the period, and no overall system robustness, 

except for week no. 23 in 2019, was found to be greater than 3, which refers to the “slightly disturbed” 

class (listed in Table 2.8). 12 (39%) of those weeks had weather events characterized by higher raw 

water turbidity. These results indicate that the system was “slightly disturbed” and “moderately 

disturbed” in some weeks (61% during the study period) when the turbidity was considered normal, 

and there may be some operational factors behind this. Therefore, the overall robustness of the plant 

did not depend on raw water turbidity events. 

 

4.4 Conclusion 

The raw water turbidity of Plant B is relatively low most of the time, which is expected because the 

source water of Plant B is one of the Great Lakes. The plant uses the conventional CFS process, which 

performs adequately most of the time, but the performance was unsatisfactory during some weeks as 

indicated by the higher (>130) TRIs. The filters are meeting the regulatory limit (0.3 NTU, 95% of the 

measurements per cycle per month), but the high TRIs imply that the filter effluent turbidity exceeded 

the target turbidity (0.1 NTU) in some weeks. No positive correlation is found between weather events 

characterized by elevated turbidity and the TRIs of the filters, indicating that the filters were robust 

with respect to high raw water turbidity. There can be several operational factors behind the high TRIs 

of the filters. Hence, the TRI is a useful tool as it helps the utilities to pinpoint the times of less robust 

operational performance of the filters in the past and re-evaluate their operational process to make the 

filters more robust. In conclusion, the high TRIs of the CFS units and some filters indicate that the 

overall treatment process in Plant B may be vulnerable in the future if the occurrence of more severe, 

unusual and untimely precipitation events increase given the current trend of climate change.  
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Chapter 5: Bench-scale Simulation of the ACTIFLO® Process in 

Plant A 

5.1 Introduction 

The last step of the robustness framework discussed in Chapter 2: sub-section 2.4.6 is Step 6: 

Adaptation, which is to improve the robustness of the treatment steps by making short-term operational 

changes. The coagulation and SBC process, commercially named the ACTIFLO® process of Plant A 

has been identified as a critical treatment step and the robustness of this step has been evaluated in 

Chapter 3. The ACTIFLO® process has been found to be quite robust in terms of turbidity removal 

during normal weather and weather events characterized by raw water turbidity. However, it is 

unknown how the ACTIFLO® units will perform, if the raw water turbidity increases beyond general 

experience due to an extreme weather event. In this chapter, bench-scale jar tests were performed to 

simulate the full-scale ACTIFLO® process on water samples with baseline turbidity representing 

normal weather and with elevated turbidity representing historical weather events. Finally, a factorial 

design experiment was conducted on water samples representing extremely high turbidity to determine 

the significant parameters affecting the ACTIFLO® process. The results of this analysis provide 

information that would be helpful in optimizing the treatment step. It is possible that detailed 

optimization of the full-scale process could require additional work beyond bench-scale studies. 

 

5.2 The ACTIFLO® Process 

Most surface water based DWTPs use the conventional CFS process to remove a large portion of 

particles and sometimes organic matter from raw water (Desjardins et al., 2002). However, some plants 

including Plant A use ballasted flocculation, followed by ballasted clarification, which is a relatively 

new technology. This process involves the injection of a ballasting agent during flocculation to increase 

the size and density of the flocs (Lapointe et al., 2017; Zafisah et al., 2020). Typically, microsand is 

used as a ballasting agent, and the process is called SBC. Ballasted flocs have greater mass than micro 

flocs that are produced in the conventional CFS process, which affects the size of the flocs and increases 

the settling velocity (Desjardins et al., 2002; Dianous & Dernaucourt, 1991; Ghanem et al., 2007; He 

et al., 2019). Moreover, ballasting agents have low surface charge density compared to colloidal 

particles in water. Hence, the addition of ballasting agents does not chemically disrupt the interaction 
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between the coagulant/flocculant and colloidal particles (Young & Edwards, 2003; Zafisah et al., 2020). 

SBC process offers a more compact process leading to a smaller system footprint, faster start-up, higher 

settling rate, and treated water with equal or better quality than conventional CFS systems (Desjardins 

et al., 2002; Lapointe & Barbeau, 2018; Zafisah et al., 2020). The time required for 80% turbidity 

removal can decrease from 10 minutes to 3 minutes when conventional flocculation is replaced by 

ballasted flocculation (Dianous & Dernaucourt, 1991). 

The capacity of an ACTIFLO® unit can be up to 800,000 m3/d (Haarbo et al., 1998). The full-scale 

ACTIFLO® process is shown in Figure 5.1. 

 

 

Figure 5.1: Schematic of the ACTIFLO® process (Desjardins et al., 2002) 

 

One ACTIFLO® unit consists of four tanks: coagulation tank, injection tank, maturation tank and 

sedimentation tank. Coagulant is added to the raw water in the coagulation tank to destabilize the 

colloids. The coagulated water then enters the injection tank where microsand and polymer are 

introduced simultaneously to initiate floc formation. The polymer helps the microsand to become 

attached to the flocs. Both coagulation and injection tanks are equipped with mixers with high mixing 
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intensity. The flocs grow in the maturation tank at a lower mixing intensity, keeping the ballasted flocs 

in suspension (Desjardins et al., 2002; Plum et al., 1998). The flocculation mixing gradient, G can be 

as high as 700/s without floc breakage, but it is typically kept at 60-200/s at full-scale plants, which is 

adequate and cost-effective (Dianous & Dernaucourt, 1991). The water finally moves to the settling 

tank. Microsand is incorporated into the flocs through polyelectrolyte bridges, making the flocs heavier, 

which increases their settling velocity in the lamella separator. The flocs settle very quickly on the large 

surface developed by the lamellae, where a laminar counterflow settling takes place. The water passes 

the lamella and leaves the plant over outlet weirs above the lamellas. The settled mixture of sludge and 

microsand is recirculated and the microsand is separated from the sludge by the hydrocyclone, which 

is an intense vortex, and then redirected to the injection tank maintaining a typical microsand 

concentration of 2-4 g/L, ensuring very low sand loss. The on-going loss of is adjusted by feeding 

microsand as required in the injection tank. The microsand-free sludge is diverted into the sewer or 

sludge treatment units depending on the applicable regulations. The sludge flow generally makes up 

6% of the total water flow treated (Desjardins et al., 2002; Guibelin et al., 1990; Plum et al., 1998). At 

the designed flow rate, the surface loading rate in a typical ACTIFLO® unit is 40 m3/hr/m2. This loading 

rate corresponds to hydraulic contact times of respectively 2, 2, 6 and 3 minutes in the coagulation, 

injection, maturation and settling tanks at common design conditions (Desjardins et al., 2002). 

 

5.3 Materials and Methods 

Modified jar tests were performed to simulate the full-scale ACTIFLO® process at bench-scale in the 

laboratory. Three chemicals (coagulant, polymer and microsand) were obtained from Plant A, which 

are used in the full-scale ACTIFLO® units in Plant A: 

i. Coagulant: Polyaluminum chloride (PACl), manufactured by Kemira Chemicals Inc. (product 

name: Kemira SternPAC) was used as the coagulant. The chemical formula of PACl is 

Al13(OH)20(SO4)2Cl15. 

ii. Microsand: Silica, mainly in the form of quartz was used as the ballasting agent (product 

name: filter sand and gravel, all grades), manufactured by Anthrafilter Media and Coal Ltd. 

iii. Polymer: Anionic polymer is used in the plant (product name: FLOPAMTM AN 934 PWG), 

manufactured by SNF Canada Ltd. 
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The modified jar tests were performed on two types of water: 

i. Raw water samples: Raw water samples were collected from the plant intake during normal 

weather when the turbidity was considered regular, and during a heavy precipitation event 

when the turbidity increased due to the weather. 

ii. Spiked water samples: The turbidity of the raw water samples was spiked artificially in the 

laboratory to achieve historical high turbidity and extremely high turbidity beyond general 

experience by adding industrial mineral clay (kaolin, manufactured by Sigma-Aldrich) in raw 

water samples collected from Plant A. 

The methods used in the laboratory to perform the bench-scale tests are discussed in subsections 5.3.1 

to 5.3.4. 

 

5.3.1 Modified Jar Test Procedure 

To simulate the ACTIFLO® process at bench scale, a modified jar test procedure was developed by 

John Meunier Inc. (2005). The simulation method has proven to reproduce results that are very close 

to full-scale unit results (Desjardins et al., 2002; He et al., 2019; Lapointe et al., 2017; Lapointe & 

Barbeau, 2018; Murujew et al., 2020; Nam et al., 2013; Zafisah et al., 2020). Figure 5.2 shows the 

timeline of the jar tests used in the bench-scale simulation. The duration of each process adjusted to 

reflect the full-scale durations in Plant A. 

 

Figure 5.2: Timeline (not to scale) of the ACTIFLO® jar test (adapted from John Meunier Inc., 2005) 
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A standard jar test apparatus (PB-700™ Jar Tester, Phipps and Bird™, Richmond, Virginia) was used 

for the experiments. As mentioned previously, the chemicals for the jar tests were collected from the 

plant. The coagulant (PACl) and the polymer were sent as stock solutions. The microsand was sent in 

dry form. 

One liter of raw water was measured by a graduated cylinder and square beakers were filled with the 

raw water. The raw water turbidity in each beaker was measured using a turbidimeter (2100Q Portable 

Turbidimeter, Hach, Canada). For each jar, the apparatus was equipped with a single, flat impeller. The 

mixing paddles were set between 0.5 and 1.0 cm from the bottom of the beaker to ensure the ballast 

stays in suspension. The mixing speed was adjusted to 150 revolutions per minute (RPM). After 

initiating stirring, the appropriate amount of coagulant was added to the jar at time zero. Two minutes 

after adding coagulant, required amounts of microsand and polymer were added. After the 

supplementary maturation contact time, the apparatus was turned off to stop stirring and allow the water 

to settle. The lamellar settling of the full-scale units could not be reproduced in jar tests. Preliminary 

results from previous studies suggest that 15 seconds was sufficient for settling in the jar test, but it is 

practical to keep the water for 3 minutes (Desjardins et al., 2002). The clarified water was sampled 

from 5 to 10 cm below the supernatant surface for two settling times, after 3 minutes and an additional 

15 minutes. The sampling after 15 minutes was done to ensure maximum settling. After sampling, the 

clarified water quality parameters were measured. 

The experiments were divided into three phases. The overview of the experimental design is shown in 

Figure 5.3. 



 

 120 

 

Figure 5.3: Overview of the experiments 

 

5.3.2 Sampling 

As shown in Figure 5.3, in phase 2, bench-scale tests were performed on water samples collected from 

the intake of Plant A. Samples were collected in 3-gallons plastic jars. Three batches of raw water 

samples were collected for this study. The first two batches of samples were collected during normal 

weather and the last one was collected during a precipitation event, which caused elevated turbidity in 

the raw water. Table 5.1 lists the relevant data of the day of samplings. The tests were done within 3 

days after the samples were collected. 
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Table 5.1: Data from the full-scale plant on the day of sampling 

Sampling 

date 

Raw water 

turbidity 

(NTU) 

Coagulant 

dosage 

(mg/L) 

Microsand 

dosage 

(g/L) 

Polymer 

dosage 

(mg/L) 

ACTIFLO® 

effluent 

turbidity 

(NTU) 

Percentage 

of turbidity 

removal 

(%) 

10-Sep-21 5.12 35.0 1.6 0.17 0.22 95.8 

14-Oct-21 5.08 50.0 1.0 0.13 0.34 93.4 

14-Dec-21 37.4 40.0 1.9 0.22 0.70 98.1 

 

 

5.3.3 Preparation of Spiked Water Samples 

Several researchers have used industrial mineral clay, kaolin to prepare water samples with high 

turbidity in the laboratory (He et al., 2019; Lee et al., 2010; Nam et al., 2013; Okuda et al., 1999; 

Zafisah et al., 2020). In this study, to prepare spiked water samples with high turbidity for the 

experiments in phases 2 and 3, kaolin (hydrated aluminum silicate), manufactured by Sigma-Aldrich, 

was used. Initially, to provide an indication of how much would be required, different amounts of kaolin 

were added to ultra-pure water, which resulted in synthetic water with very high turbidity, which is 

shown as phase 1 in Figure 5.3. Figure 5.4 shows the turbidity of water samples after adding varying 

concentrations of kaolin to ultra-pure water. The limit of the turbidimeter was 999 NTU. The turbidity 

of ultra-pure water crossed this limit after adding 0.6 g/L of kaolin. 
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Figure 5.4: Turbidity of ultra-pure water samples with varying concentrations of kaolin 

 

Figure 5.4 was used as a reference to prepare water samples with desired turbidity levels in the later 

experiments. 

 

5.3.4 Raw Water Turbidity Scenarios 

For phases 2 and 3 of the experiment shown in Figure 5.3, jar tests were conducted on three raw water 

turbidity scenarios that may occur due to varying weather at the raw water source. The scenarios and 

the methodologies used for each scenario are discussed in sub-sections 5.3.4.1 to 5.3.4.3. 

 

5.3.4.1 Regular Turbidity Representing Normal Weather 

For the first scenario in phase 2 (shown in Figure 5.3), the ACTIFLO® process in Plant A was simulated 

at bench-scale on water samples collected from the plant intake when the weather was considered 

normal, and the raw water turbidity was average or lower than average for the corresponding season. 

The purpose of these tests is to observe how well the results of bench-scale simulations of the 

ACTFLO® unit work at regular turbidity conditions compared to the full-scale plant. The coagulant, 
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microsand and polymer dosage data were collected from the plant during the day of sampling. These 

dosages were used in the jar tests and the post-jar test water turbidity was compared with the full-scale 

ACTIFLO® effluent turbidity, which are listed in Table 5.1. 

 

5.3.4.2 Historical High Turbidity Representing Past Weather Events 

For the second scenario in phase 2 (shown in Figure 5.3), the ACTIFLO® process was simulated at 

bench-scale on water samples with elevated turbidity that occurred due to a heavy precipitation event 

in the past. Plant A does not have any specific regime or SOPs for storm events that increase raw water 

turbidity. During storm events, the operators in the plant change the dosages based on experience (Staff 

of Plant A, June 2021). From the raw water turbidity data collected from the plant, some of the elevated 

turbidity events in 2019 were identified. The events were selected in a way so that all the turbidity 

events with different intensities during all seasons were covered. The ACTIFLO® operations during 

those events were simulated at bench-scale. Table 5.2 lists the mean and peak turbidities of the events 

and the dates when the peak turbidities were observed along with the coagulant, microsand and polymer 

dosages that were used on those dates. 

 

Table 5.2: Historical turbidity events in Plant A 

Event no. Event 1 Event 2 Event 3 Event 4 Event 5 

Season Winter Spring Spring Spring Fall 

Date 07-Feb-19 17-Mar-19 02-Apr-19 29-Apr-19 04-Nov-19 

Mean (daily) raw 

water turbidity 

(NTU) 

80.0 125 65.2 31.2 27.0 

Maximum raw water 

turbidity (NTU) 
96.6 159 88.5 34.4 32.6 

Coagulant dosage 

(mg/L) 
37.7 40.0 40.0 35.0 40.0 
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Microsand dosage 

(g/L) 
2.3 1.1 1.1 1.3 1.6 

Polymer dosage 

(mg/L) 
0.28 0.27 0.22 0.13 0.22 

ACTIFLO® effluent 

turbidity (NTU) 
0.91 0.81 0.57 0.66 0.69 

Percentage of 

turbidity removal 

(%) 

98.9 99.4 99.1 97.9 97.4 

 

Two types of water samples were used for these tests: 

i. Direct sampling: Water samples were collected during a storm event on 14 December 2021, 

which caused elevated turbidity in the raw water. The same coagulant, microsand and polymer 

dosages that were used in the full-scale plant on the day of sampling (shown in Table 5.1) were 

used in the jar tests. 

ii. Spiked water sample: Water samples were prepared by adding the appropriate amount of 

kaolin to the raw water collected from Plant A (batch 2) representing historical high turbidity 

levels in Table 5.2. Jar tests were performed using the dosages listed in Table 5.2 that were 

used during these events to observe how well the bench-scale simulation of the ACTFLO® unit 

using kaolin works at elevated turbidity conditions in the plant. The characteristics of the 

particles in these water samples would differ from those in the actual raw water samples. 

 

5.3.4.3 Extremely High Turbidity Representing Future Weather Events 

In phase 3 (shown in Figure 5.3), the ACTIFLO® process was simulated at bench-scale on water 

samples with extremely and unusually high turbidity that was not experienced yet in Plant A, but may 

occur in the future due to extreme weather events caused by climate change. The water samples with 

very high turbidity (400-500 NTU) were prepared by adding 0.35 g/L of kaolin to the raw water. The 

characteristics of the particles in these water samples are very likely to differ from those in the actual 
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raw water samples. Since the dosages of coagulant, microsand and polymer have been found to have 

the most impact on turbidity removal on jar tests, a factorial design was conducted by using these three 

dosages as the independent variables to determine the significant parameter(s) and optimize the process. 

A full factorial design was performed with center point replicates using spiked raw water samples (batch 

3) with turbidity ranging from 400 to 500 NTU, which was not observed in the raw water of Plant A in 

the years 2019 and 2020 as shown in Figures 3.3 and 3.4. The dependent variable or the yield in the 

factorial experiment was the percentage of turbidity removed after 15 minutes of settling. For the 

factorial design, the low values of the independent variables were selected as the highest dosages used 

in the plant from past data, and the high values were selected by doubling these low values. The middle 

values were calculated from the high and low values. In these experiments, coded values of the 

independent variables were used as it has been found beneficial to identify the relative impact of the 

parameters by comparing the factor coefficients (Ezemagu et al., 2021). The high and low coded and 

uncoded values of the independent variables are related by the following equation: 

!"#$#	&'()$ = 	 !"#$%&%	()*+&,-&)"!"#$%
&

   (5.1) 

Table 5.3 lists the coded and uncoded values of the independent variables for the experiments in the 

jar tests representing the high, low and middle levels. 

 

Table 5.3: Coded and uncoded values of factors 

Independent variables Symbols Coded value Uncoded value 

Coagulant dosage C 

+1 100 mg/L 

 0 75 mg/L 

-1 50 mg/L 

 Microsand dosage M 

+1 8.0 g/L 

 0 6.0 g/L 

-1 4.0 g/L 



 

 126 

Polymer dosage P 

+1 0.56 mg/L 

 0 0.42 mg/L 

-1 0.28 mg/L 

 

The coded values +1, 0 and -1 represent the high, middle and low values of the independent variables 

respectively. Since there are three factors, the factorial design was a 2.23 full factorial design with each 

run replicated and 3 center point replications, which means 19 experimental runs in total. The order in 

which each run, statistically known as a treatment, was conducted was randomized to minimize the 

unpredicted variations in the observed responses caused by uncontrolled irrelevant issues (Ezemagu et 

al., 2021). Table 5.4 lists the treatments of the experiments. 

 

Table 5.4: Combinations of coded variables for the factorial design 

Treatments ID Replicates 
Coagulant 

dosage (C) 

Microsand 

dosage (M) 

Polymer 

dosage (P) 

1 (1) 2 -1 -1 -1 

2 C 2 +1 -1 -1 

3 M 2 -1 +1 -1 

4 P 2 -1 -1 +1 

5 C*M 2 +1 +1 -1 

6 M*P 2 -1 +1 +1 

7 P*C 2 +1 -1 +1 

8 C*M*P 2 +1 +1 +1 

9 center point 3 0  0  0 
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The design responses obtained from the factorial design experiments were analyzed by fitting the yield 

to a second-order polynomial model. The relationship between the expected response and the coded 

independent variables is shown by a second-order polynomial regression equation in Equation 5.2. 

+. =	,/ +	,0! +	,-. + ,1/ + ,0-!. + ,-1./ +	,10/! +	,0-1!./ +	$. 	,       (5.2) 

where, b0 is the intercept, bC, bM and bP are the coefficients for linear terms for C, M and P respectively, 

bCM, bMP, bPC and bCMP are the coefficients for interaction terms for C*M, M*P, P*C and C*M*P 

respectively. The statistical error (ei) in Equation (5.2) can be estimated using Equation (5.3). 

!! = #!	#$% −	#!	&!'	, ' = 1	)*	+	  (5.3) 

where, ei represents the residual, which is the difference between the experimental value of yield 

(Yiexp) and the fitted value (Yi fit), and n is the total number of experimental runs. 

Residual plots were used to check the nature of the residuals in the regression model. The coefficient 

of determination, R2 and adjusted R2 were calculated. R2 is loosely interpreted as the proportion of the 

variability in the data explained by the model. R2 can be calculated using Equation (5.4). 

,( = 1 − )**
**+ ,  (5.4) 

where RSS is the residual sum of squares and SST is the total sum of squares. The value of R2 ranges 

from 0 to 1. Larger values are more desirable since it would mean the model is able to explain a higher 

ratio of the variability. The adjusted R2 is a variation of the ordinary R2 which incorporates the number 

of factors in the model. 

,,-.( = 1 − /01
/0%

)**
**+ ,  (5.5) 

where, p is the number of factors. The adjusted R2 is a measure of the adequacy of the model. It should 

be always less than R2 (Montgomery, 2013). 

A hypothesis test was done on the coefficients by means of the Student’s t-test of the null hypothesis 

that a coefficient equals zero. The 95% confidence intervals (CIs) of the coefficients were also 

calculated. 

The effects of each factor and their interactions were calculated. The effect for a factor represents the 

predicted change in the mean response when the factor changes from the low level to the high level. 

Effects are twice the value of the coded coefficients. The sign of the effect indicates the direction of the 
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relationship between the term and the response (Montgomery, 2013). The normal probability plot 

(NPP) of the effects of the factors and interactions was used to determine the significant parameter(s). 

Marginal means plots were used to comprehend the interaction between the factors. 

Analysis of variance (ANOVA) was used as a model-independent approach to find the significant 

parameter(s). ANOVA states the total variability in the data measured by the total corrected sum of 

squares and can be partitioned into a sum of squares of the differences between the treatment averages 

and the grand average plus a sum of squares of the differences of observations within treatments from 

the treatment average (Montgomery, 2013). The statistical significance of the factors and their 

interactions were determined using F-value (Fisher’s test), and the variation of the calculated F-value 

(F-probe) with the critical F-value at 95% confidence level by p-value (probability). Hence the 

significance level, α is equal to 5% and if the p-value for a factor is found to be less than 0.05, the factor 

would be statistically significant. 

 

5.4 Results and Discussion 

5.4.1 Bench-scale Simulation of the ACTIFLO® Process Water Samples with Regular 
Turbidity 

The jar tests were performed on two batches of water samples collected from the intake of Plant A. The 

coagulant, polymer and microsand dosages that were used on the day of sampling were used in the jar 

tests as well. The raw water turbidity in each jar, dosages and the post-jar test turbidities are summarized 

in Table 5.5. 

 

Table 5.5: Results of bench-scale simulations using raw water samples of batches 1 and 2 

 Batch no. Batch 1 (10 Sep. 2021) Batch 2 (14 Oct. 2021) 

Sample no. 1 2 3 1 2 3 

Raw water turbidity (NTU) 8.23 6.71 6.66 3.75 3.63 3.66 

Coagulant dosage (mg/L) 35.0 50.0 
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Microsand dosage (g/L) 1.6 1.0 

Polymer dosage (mg/L) 0.17 0.13 

Mean (n=3) post-jar test water 

turbidity (NTU) 

(Settling time = 15 min) 

1.04 0.64 0.65 0.93 0.88 0.89 

Percentage (%) of turbidity 

removal 
87.4 90.5 90.2 75.2 75.8 75.7 

 

The raw water turbidity of batches 1 and 2 were recorded as 5.12 NTU and 5.08 NTU respectively 

(listed in Table 5.1). However, as shown in Table 5.5, the turbidity varied from 8.23 NTU to 6.66 NTU 

for batch 1 and 3.63 NTU to 3.75 NTU for batch 2 in the sampling containers. This variation was 

observed because particle distribution in the raw water is not homogenous. When the raw water was 

poured into different containers, the unequal distribution of particles caused different turbidity in 

different sampling containers. 

The results of the jar tests for batch 1 and batch 2 water samples were plotted in Figure 5.5. The goal 

turbidity of the full-scale ACTIFLO® unit in Plant A is 1.0 NTU. For one sample in batch 1, the post-

jar test water turbidity is a little higher than the goal. For all the other samples in batches 1 and 2, the 

post-jar test water turbidity was lower than the goal. The full-scale ACTIFLO® effluent turbidity for 

batches 1 and 2 were 0.22 NTU and 0.34 NTU respectively. All the jar tests resulted in higher post-jar 

test turbidity than the full-scale units. Nonetheless, the turbidity was found to be below the goal 

turbidity after the jar test in almost all cases and the jar tests removed 75.2% to 90.5% of raw water 

turbidity, which indicates that the bench-scale simulation can fairly reproduce the full-scale unit and 

can be used as an initial decision-making tool. 
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(a)                                                                   (b) 

Figure 5.5: Bench-scale jar test results of raw water samples with regular turbidity during normal 

weather, (a) batch 1 (10 Sep. 2021) and (b) batch 2 (14 Oct. 2021) 

 

5.4.2 Bench-scale Simulation of the ACTIFLO® Process Water Samples with Historical 
High Turbidity 

The jar tests were performed on the water samples collected during a heavy precipitation event on 14 

December 2021 (batch 3). Although the average raw water turbidity was 37.4 NTU recorded in the 

plant, the turbidity varied from 25.6 NTU to 63.0 NTU from container to container. This was caused 

by the non-homogenous distribution of particles in each sampling container. However, the variation in 

batch 3 was much larger than in batches 1 and 2. Since the raw water turbidity of batch 3 was 

substantially higher than the previous batches, there were more particles in the raw water, which led to 

a higher variation of turbidity in the sampling containers. The coagulant, polymer and microsand 

dosages that were used in the plant on the day of sampling were used in the jar tests as shown in Table 
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5.1. The raw water turbidity in each jar, dosages and the post-jar test turbidities are summarized in 

Table 5.6. 

 

Table 5.6: Results of bench-scale simulations using water samples of batch 3 

Sample no. 1 2 3 4 5 6 

Raw water turbidity (NTU) 25.6 29.1 31.4 61.5 62.8 63.0 

Coagulant dosage (mg/L) 40.0 

Microsand dosage (g/L) 1.9 

Polymer dosage (mg/L) 0.22 

Mean (n=3) post-jar test water turbidity 

(NTU) 

(Settling time = 15 min) 

3.94 5.30 6.29 11.0 16.8 14.7 

Percentage (%) of turbidity removal 84.6 81.8 80.0 82.1 73.2 76.7 

 

The results for batch 3 water samples are plotted in Figure 5.6. As stated previously, the goal turbidity 

of the full-scale ACTIFLO® unit in Plant A is 1.0 NTU. For all the samples in batch 3, the post-jar test 

water turbidity was significantly higher than the goal. The full-scale ACTIFLO® effluent turbidity was 

0.70 NTU. All the jar tests resulted in much higher post-jar test turbidity than the full-scale units. As 

shown in Figure 5.5, the post-jar test turbidity was also higher than the full-scale ACTIFLO® effluent 

turbidity for batches 1 and 2, but the difference is not as high as batch 3. One reason may be the high 

raw water turbidity in batch 3. Moreover, the raw water turbidity in batch 3 was significantly higher 

than that of batches 1 and 2, but there is not much difference in the coagulant, microsand and polymer 

dosage that were used in the full-scale plant. In fact, the coagulant dosage used for batch 3 was much 

lower (40 mg/L) than that of batch 2 (50 mg/L), which worked for the full-scale plant, but may have 

caused the higher post-jar turbidity in batch 3 at bench-scale. Furthermore, the full-scale impeller 

design, lamella settling and the upflow velocity of the water could not be replicated in jar tests 

(Desjardins et al., 2002), which is why the post-jar test turbidity varied from the full-scale effluent 
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turbidity and the variation becomes larger with increasing raw water turbidity. However, the jar tests 

removed 73.2% to 84.6% of raw water turbidity, indicating that the bench-scale jar tests can be used as 

an initial tool to optimize the full-scale although the accuracy may be a bit lower. 

  

 

 
Figure 5.6: Bench-scale jar test results for water samples with high turbidity collected during a heavy 

precipitation event (14 Dec. 2021) 

 

To recreate the turbidity events listed in Table 5.2, spiked raw water samples were prepared by adding 

kaolin to the raw water collected from Plant A with the same turbidity as the mean turbidity of the 

events. However, it is almost impossible to prepare a spiked water sample with an exact turbidity value, 

so the spiked water turbidity was kept between the daily mean and peak turbidity during the events and 

the same coagulant, microsand and polymer dosages as in the full-scale plant (listed in Table 5.2) were 

applied in the jar tests. Table 5.7 shows the results of the jar tests using the spiked water samples 

representing some historical high turbidity events experienced in Plant A. 
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Table 5.7: Results of bench-scale simulations for spiked water samples representing historical high 

turbidity events 

Event no. Event 1 Event 2 Event 3 Event 4 Event 5 

Sample no. 1 2 3 4 5 

Spiked raw water turbidity (NTU) 91.4 141 70.2 33.7 27.8 

Coagulant dosage (mg/L) 37.7 40.0 40.0 35.0 40.0 

Microsand dosage (g/L) 2.3 1.1 1.1 1.3 1.6 

Polymer dosage (mg/L) 0.28 0.27 0.22 0.13 0.22 

Mean (n=3) post-jar test water turbidity 

(NTU) 

(Settling time = 15 min) 

19.5 21.6 17.6 6.04 8.85 

Percentage (%) of turbidity removal 78.7 84.8 75.0 82.1 68.1 

 

Figure 5.7 illustrates the result of the jar tests simulating the historical turbidity events in Plant A. 

Applying the same coagulant, microsand and polymer dosages that were used during these events in 

the full-scale units removed 68.1% to 84.8% turbidity at bench-scale, but all the post-jar test turbidities 

were significantly higher than both the goal and full-scale ACTIFLO® effluent raw water turbidity. The 

difference between the post-jar test turbidity and full-scale effluent turbidity is much higher than that 

of batches 1, 2 and 3. One reason may be that the characteristics of the particles in the spiked water 

were different from the actual raw water as the raw water was spiked artificially using kaolin. Moreover, 

the raw water turbidity during the events was significantly higher than that of batches 1, 2 and 3, but 

the coagulant dosages that were used in the plant during those events, were lower or equal to the 

coagulant dosages that were used in the plant during normal weather (batch 1 and 2). These coagulant 

dosages worked in the full-scale plant with similar or increased microsand and polymer dosages (listed 

in Table 5.2). However, at bench-scale, the post-jar test turbidity varied significantly from the full-scale 

effluent turbidity, and other limitations (impeller design, absence of lamella settling and upflow 

velocity of water, etc.) may have played a role. Nonetheless, the percentage of turbidity removal 
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Raw water turbidity Post-jar test water turbidity Goal turbidity Full-scale ACTIFLO® effluent turbidity 

suggests that the jar tests can remove a considerable amount of the spiked water turbidity, which can 

be used for further investigation to optimize the full-scale ACTIFLO® process. 

 

 

Figure 5.7: Bench-scale simulation results of spiked water samples with historical high turbidity 

 

5.4.3 Bench-scale Simulation of the ACTIFLO® Process Water Samples with Extremely 
High Turbidity 

The jar tests were performed on spiked water samples that were prepared in the laboratory by adding 

kaolin to the raw water collected from Plant A. Table 5.8 lists the results of the factorial design 

experiments on water samples with extremely high turbidity that may occur in the future due to climate 

change. The post-jar test turbidity of these tests varied from 11.3 NTU to 193 NTU, which are 

significantly higher than the goal turbidity, 1.0 NTU. Although the spiked water turbidity for each run 

was very high, the percentage of turbidity removal for almost all the experimental runs are higher than 

the jar tests for spiked water samples with historical high turbidity (listed in Table 5.7). The reason 

behind this higher removal may be the increased coagulant, microsand and polymer dosages since the 

low values of these dosages in the factorial design were the highest dosages used in the plant in the 

years 2019 and 2020. The difference between post-jar test turbidities of the duplicate runs is observed 

to be very close except for run 7. The post-jar test turbidities were substantially higher for this run, and 
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the difference between the two duplicates was 52 NTU. In run 7, higher dosages of coagulant and 

polymer were used, but the microsand dosage was low (P*C). The reason behind the low removal in 

this run may be the lower dosage of microsand compared to the coagulant and polymer dosages, because 

the flocs in the jars did not have enough ballasting agent to attach and settle. The higher post-jar test 

turbidity led to more unsettled particles in the jars, which resulted in more variation in turbidity than in 

any other run. 

 

Table 5.8: Result of the factorial design experiment with coded independent variables 

Run ID Coagulant 

dose (a) 

Microsand 

dose (b) 

Polymer 

dose (c) 

Spiked 

water 

turbidity 

(NTU) 

Post-jar 

test 

turbidity 

(NTU) 

Yield, Y = 

Percent 

turbidity 

removal 

(%) 

1-1 (1) -1 -1 -1 462 28.9 93.7 

1-2 (1) -1 -1 -1 441 21.1 95.2 

2-1 C +1 -1 -1 432 23.2 94.6 

2-2 C +1 -1 -1 422 18.0 95.7 

3-1 M -1 +1 -1 443 25.6 94.2 

3-2 M -1 +1 -1 477 25.3 94.7 

4-1 P -1 -1 +1 440 41.2 90.6 

4-2 P -1 -1 +1 469 37.1 92.1 

5-1 C*M +1 +1 -1 467 11.3 97.6 

5-2 C*M +1 +1 -1 448 14.4 96.8 

6-1 M*P -1 +1 +1 436 45.4 89.6 

6-2 M*P -1 +1 +1 479 36.7 92.3 
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7-1 P*C +1 -1 +1 443 141 68.2 

7-2 P*C +1 -1 +1 439 193 56.0 

8-1 C*M*P +1 +1 +1 462 32.1 93.1 

8-2 C*M*P +1 +1 +1 452 37.9 91.6 

9-1 center 

point 

0 0 0 426 16.6 96.1 

9-2 center 

point 

0 0 0 422 12.3 97.1 

9-3 center 

point 

0 0 0 468 17.4 96.3 

 

The results of the factorial design experiment were analyzed by a second-order polynomial model. The 

fitted model is: 

Y = 90.8 – 3.01C + 3.98M – 5.57P + 4.08CM + 3.48MP – 3.91PC + 3.58CMP + e  (5.6) 

To find the significant effects or interactions, the t-test was performed and 95% CI of the coefficients 

were calculated, which are listed in Table 5.9. 

 

Table 5.9: t-test and 95% CI of the regression coefficients 

Coefficients t-probe 95% CI 

b0 (intercept)  90.8  93.6 [88.7 93.0] 

bC -3.06 -2.89 [-5.38 -0.73] 

bM  3.98  3.76 [1.65 6.30] 

bP -5.57 -5.27 [-7.89 -3.24] 

bCM  4.08  3.86 [1.75 6.41] 

bMP  3.48  3.29 [1.15 5.81] 
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bPC -3.91 -3.70 [-6.24 -1.59] 

bCMP  3.58  3.38 [1.25 5.90] 

 

The value of t-critical was found to be 2.20 for a = 5%. All of the absolute values of t-probe were found 

to be higher than t-critical, which means all the factors and the interactions are significant. The CIs of 

the coefficients also indicate that the errors associated with the coefficients are not larger than the 

coefficients, and the CIs do not include zero which represents that the model is a good fit. 

To visualize the effects of different factors and their interactions, the effect (percentage of turbidity 

removal) of each factor and their interactions are plotted in Figure 5.8. 

 

Figure 5.8: Effects of the factors and interactions 

 

Although from the t-test it was found that all the factors and their interactions were significant, from 

Figure 5.8 it is visible that they have different levels of significance. If the microsand dosage (M), and 
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increase. Similarly, if the coagulant dosage (C), polymer dosage (P) and the combination of coagulant 

and polymer dosage (P*C) are changed from high value to low value, the mean percent turbidity 

removal would increase. 

The marginal means plots are presented in Figure 5.9 to understand the nature of interactions between 

the main factors. It is visible that all the factors are correlated. The coagulant and microsand dosages 

(C*M) have the most interaction, followed by microsand and polymer dosages (M*P), and the polymer 

and coagulant dosages (P*C), which is similar to the findings from the effects of the factors in Figure 

5.8. 

 

Figure 5.9: Marginal means plot of the interactions between (a) coagulant and microsand dosage 

(C*M), (b) microsand and polymer dosage (M*P), and (c) polymer and coagulant dosage (P*M) 
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The NPP of the effects of the main factors and their interactions are shown in Figure 5.10. From this 

figure, it is visible that the polymer dosage is the most significant effect as it deviates from the normal 

distribution of the other effects. 

 

Figure 5.10: Normal distribution of the effects of the main factors and their interactions 

 

The coefficient of determination, R2 of the model is found to be 0.90, which is close to 1.0 indicating 

that the predicted and experimental responses were close and 90% of the data fit the model and 90% of 

the variability in the yield is associated to the independent variables. However, the adjusted R2 was 

found to be 0.85, which indicates that the accuracy of the model may be adequate.  

The nature of the residuals can be a good indicator of the model fit. Figure 5.11 shows the residual plots 

with the independent variables (data shown in Appendix C: Table C.2). The residuals are scattered both 

above and below the zero line, but all the residuals for the center-points are positive. This indicates that 

the fit of the model may be adequate since the experimental values of the percentage of turbidity 

removal for the all center-point runs were higher than the predicted values. 
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Figure 5.11: Residuals of the model with respect to (a) coagulant dosage (coded), (b) microsand 

dosage (coded) and (c) polymer dosage (coded) 

 

The ANOVA table shown in Table 5.10 was generated from the experimental data to determine the 

statistical significance of the factors and their interactions. From Table 5.10, it is observed that the p-

value for the microsand dosage (M), polymer dosage (P) and the interaction of coagulant and microsand 

dosage (C*M) are less than or equal to 0.05, which indicates that these are the significant factors in the 

factorial design experiments from a model-independent approach.  
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Table 5.10: ANOVA table for the factors and their interactions 

Source 
Sum of 

squares 

Degree of 

freedom 

Mean sum 

of squares 
F-probe p-value 

C 126.0 1 126.0 2.87 0.118 

M 213.0 1 213.0 4.86  0.050* 

P 417.7 1 417.7 9.53  0.010* 

C*M 224.5 1 224.5 5.12  0.045* 

M*P 163.3 1 163.3 3.72 0.080 

P*C 206.4 1 206.4 4.71 0.053 

C*M*P 172.3 1 172.3 3.93 0.073 

Error 482.2 11 43.84   

Total 2005.4 18    

*significant (<= 0.05) 

 

To summarize the findings from the analysis of the factorial design experiments, it is observed that 

polymer dosage is the most significant factor and increasing the polymer dosage without increasing the 

microsand dosage can result in decreased turbidity removal. The excess polymer can trap the coagulated 

particles in the settled water (Desjardins et al., 2002), which may lead to higher post-jar test turbidity. 

The role of polymer in the ACTIFO® system is to assist the bridging action between microsand and 

pre-formed flocs (Desjardins et al., 2002; He et al., 2019; Lapointe et al., 2017; Zafisah et al., 2020). 

However, if the polymer dosage is high, but the microsand dosage is low, the flocs cannot settle as 

effectively, leading to higher post-jar test turbidity. The microsand dosage has also been found 

significant in some analyses and increasing the microsand dosage can lead to higher turbidity removal 

by adding more ballasting agent for the flocs to attach with. The role of microsand is unquestionable 

since ballasted flocculation is based on the use of microsand (Desjardins et al., 2002). Coagulant dosage 

was not found to be significant, but increasing both coagulant and microsand dosage can lead to higher 
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removal since increased coagulant dosage can destabilize the particles and form flocs in the water and 

the microsand acts as the ballasting agent for the flocs to settle. Therefore, optimal turbidity removal 

can be achieved by using low polymer dosage, and high coagulant and microsand dosages. It should be 

noted that the low values in these experiments are the highest dosages that have been used in the full-

scale plant. Hence, the results of this factorial design experiment suggest that the polymer dosage used 

in the plant is optimum for extremely high turbidities, but the coagulant and microsand dosages can be 

increased for better removal. 

 

5.4.4 Limitations of the bench-scale Simulation 

There are some differences observed between the post-jar test turbidity and full-scale ACTIFLO® 

effluent turbidity in the jar tests that simulate the full-scale procedure at bench-scale with the raw water 

samples collected from the plant. Although the jar test is essentially a batch reactor simulating a flow-

through system, the upflow velocity of water, lamellar settling, exact impeller and basin design of the 

full-scale units cannot be simulated in jar tests (Desjardins et al., 2002), which may be the reason behind 

the variations. 

In the bench-scale simulations using the spiked water samples representing the historical high turbidity 

events and unprecedented extremely high turbidity events, it has been observed that higher removal 

efficiency was achieved when the spiked water turbidity was very high. The percentage of turbidity 

removal for the jar tests using the raw water samples of batch 3 (shown in Table 5.6) was lower than 

that for most of the runs of the factorial design experiments (shown in Table 5.8). The spiked water 

samples were prepared by adding kaolin to the raw water samples of batch 3, so the property of kaolin 

may have affected the overall nature of turbidity and thus the simulation results. This can be explained 

by the zeta potential of the raw and spiked water samples, which is summarized in Figure 5.12 (data 

shown in Appendix C: Table C.1). The green bars correspond to the average zeta potential, for the raw 

water samples it was -12.3 mV but in the spiked water samples, the average zeta potential was found 

to be -18.5 mV. The error bars in the figure represent the maximum and minimum zeta potential of the 

samples. The addition of kaolin increases the turbidity, but it also adds more negatively charged 

particles to the water. One explanation could be that the particles react more with the positively charged 

coagulant (ranging from +18.2 to +26.2 mV for the used dosages, data shown in Appendix C: Table 

C.1), which resulted in higher turbidity removal in the jar tests. 
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Figure 5.12: Mean zeta potential of different types of water samples (n = 4) 

 

It has been observed during the experiments that the turbidity of spiked water samples tended to 

decrease if stirring was stopped, whereas the turbidity of raw water samples was almost constant. Kaolin 

has a higher density than the typical particles in the raw water and settles very quickly. The rate of 

settling depends on the kaolin concentration. It has been found that for lower concentrations of kaolin 

(0.025 to 0.050 g/L), the turbidity (27.7 to 70.2 NTU) dropped by 2-5 NTU, and for higher 

concentrations of kaolin (0.35 to 0.55 g/L), the turbidity (496 to 874 NTU) dropped by 15-20 NTU in 

a span of 2 minutes. To understand the influence of kaolin in the jar tests, two jar tests were performed 

on spiked water with 432 and 468 NTU turbidity (same as the factorial design experiments) without 

adding any chemicals. It was found that only mixing, followed by sedimentation removed 128 and 143 

NTU of turbidity respectively. Thus, it is obvious that higher removals were achieved in the 

experiments using spiked raw water samples which may not be representative of the raw water with 

elevated turbidity caused by a heavy precipitation event. The particle characteristics in the spiked water 

samples seem to differ with respect to settleability and zeta potential compared to the actual raw water 

samples at the intake. Therefore, the bench-scale simulations using spiked water samples can be 

considered as a primary tool, and the results obtained from these experiments can aid in potential bench-
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scale studies using soil sediments collected from the bottom of the intake to prepare spiked water 

samples to improve the robustness of the ACTIFLO® process. 

 

5.5 Conclusion 

The bench-scale simulations on raw water samples with regular turbidity representing the normal 

weather fairly reproduced the operations of the full-scale ACTIFLO® units, keeping the effluent 

turbidity below the goal turbidity of the full-scale unit. The simulation on the water samples collected 

during the heavy precipitation events and spiked water samples with historical high turbidity 

representing the past weather events showed adequate removal although the post-jar test turbidity was 

significantly higher than the full-scale effluent turbidity, which may have been caused by the limitations 

of bench-scale (impeller design, lamellar settling, upflow velocity of water, etc.). The results obtained 

from the factorial design performed on spiked water samples with extremely high turbidity representing 

future weather events were fitted into a second-order polynomial model, which represented the 

experimental outputs with moderate accuracy. The significant factors obtained from the analysis of the 

model suggest that a lower dosage of polymer and higher dosage of microsand with a higher dosage of 

coagulant can lead to higher turbidity removal. Although the bench-scale tests have some limitations, 

the implication of these tests can be used in future studies. 
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Chapter 6: Comparisons, Conclusions and Recommendations 

6.1 Comparisons 

The robustness framework was applied to two DWTPs with different raw water sources and treatment 

trains. There can be two aspects of comparison: how the robustness framework was tailored to these 

plants, and how the results vary for similar treatment steps in the plants. 

 

6.1.1 Applicability of the Robustness Framework 

Step 1 – Parameters: For both plants, the first step of the robustness framework was the same because 

the selected water quality parameter in this study was turbidity. 

Step 2 – Criteria: Filter effluent turbidity is a regulated parameter. As both plants are in Ontario, they 

follow the same provincial regulations regarding drinking water quality. The criteria set by the staff of 

Plants A and B were at least as stringent as prescribed regulated values. However, as Plant A uses bio-

filtration and Plant B uses conventional dual media filtration, the criteria set by the staff of the two 

plants can be different. 

Step 3 – Identification: The critical treatment steps were the ACTIFLO® and filtration for Plant A, 

and conventional CFS and filtration for Plant B. Both ACTIFLO® and conventional CFS processes 

removed the particles from the raw water before filtration. It should be noted that Plant A has ozonation 

between the ACTIFLO® units and filtration, however since ozonation is not a particle removal step, it 

is not considered in the analysis. 

Step 4 – Evaluation: The robustness of the identified critical steps of both plants was quantified using 

the same tool, TRI. However, the method to identify turbidity events from background turbidity was 

different. From the raw water turbidity data, it is visible that the baseline turbidity of Plant A is much 

higher than Plant B, and Plant A experienced much longer and more frequent elevated turbidity events 

than Plant B. This is expected because the raw water source of Plant A is a river, so the raw water is 

more influenced by heavy precipitation events. In contrast, the source water of Plant B is one of the 

Great Lakes, which is why the baseline raw water turbidity is very low. During heavy precipitation 

events, the raw water turbidity in Plant B increases, but not as much as in Plant A. Due to these 

variances, slightly different methods were applied to separate the turbidity events from background 
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turbidity. Therefore, for this step of the robustness framework, the same tool (TRI) can be applied to 

quantify robustness, but to compare the robustness based on turbidity events, the method to separate 

the events needed to be modified based on the raw water source. 

Step 5 – Assessment: The average robustness class was used in both plants to assess the overall 

robustness of the plants. However, the importance of different treatment steps for the removal of 

turbidity can vary from plant to plant. To calculate the overall robustness class, the weights of different 

steps were varied in each plant to give an identification of their contribution to turbidity removal. 

Step 6 – Adaptation: This step can be very different from plant to plant and from one treatment step 

to another. In this study, only the ACTIFLO® process in Plant A was optimized at bench-scale by 

modified jar tests. To optimize the conventional CFS units at bench-scale, the conventional jar test is 

the most popular approach. Bench-scale setups can be designed for the filtration step to find short-term 

operational responses to make the steps more robust. Based on the results of the bench-scale 

experiments, pilot-scale set-ups can be planned for more detailed analysis. 

Therefore, all the steps of the robustness framework were efficiently applied to Plant A and Plant B 

(except for step 6), which are very different in terms of raw water source and treatment trains. The 

results obtained from the application of the framework can be a diagnostic tool for the water treatment 

utilities to improve the robustness of their plants. 

 

6.1.2 Comparisons between Plant A and Plant B 

The ACTIFLO® process in Plant A and the CFS process in Plant B have the same goal: achieving a 

turbidity of 1.0 NTU. Almost all the TRIs of the ACTIFLO® units of Plant A fell into the “stable” (60-

100) class, only a few fell into the “slightly disturbed” (130-160) class. For the same goal, the TRIs of 

the CFS units of Plant B were found to be much higher. Most of them fell into the “slightly disturbed” 

(130-160) class. Some of them fell into the “moderately disturbed” (130-160), “upset” (160-200) and 

“severely upset” (>200) classes. Some of the very high TRIs observed in the CFS units of Plant B can 

be explained by the very low raw water turbidity as there were not enough particles to react with the 

coagulant and achieve good floc formation. However, this was not an issue with the ACTIFLO® units 

for two reasons: the raw water turbidity in Plant A was never as low as in Plant B, and the particles 

were attached to the ballasting agent (microsand) by the polymer. For both plants, no noteworthy trend 
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was found between elevated raw water turbidity and high TRIs. This is encouraging from an operational 

perspective. 

The filter performance of both plants was rather similar. The goal turbidity was 0.1 NTU for each 

individual filter in both plants. For both plants, most of the TRIs fell into the “stable” (60-100) class, 

only a few in the “slightly disturbed” (130-160) class, and one or two in the “moderately disturbed” 

(130-160) class. However, the high TRIs do not always correspond to the weather events characterized 

by raw water turbidity, indicating that the reason behind this is not weather-related. All the filters in 

both plants met the regulatory criterion set by the Government of Ontario (effluent turbidity < 0.3 NTU, 

95% of the measurements per cycle per month). 

The overall robustness of both plants was found to be stable for most weeks during the study period. 

The higher overall robustness categories could not be related to weather events characterized by raw 

water turbidity in the plants. 

 

6.2 Summary of Conclusions 

This study focused on the treatment steps that are more likely to be affected by elevated raw water 

turbidity due to heavy precipitation events caused by climate change. The following conclusions were 

made by applying the robustness framework to the two DWTPs: 

• Plant A is very susceptible to elevated turbidity in their raw water caused by heavy precipitation 

events as it uses a river as its source. However, the TRIs of the critical treatment steps with 

respect to turbidity, which are the ACTIFLO® and filtration process indicate that the treatment 

steps are successful in maintaining the effluent turbidity under the regulatory limits. The overall 

plant robustness suggests that Plant A has effectively delivered treated water with desired 

quality during the study period. 

• The raw water turbidity of Plant B was relatively low most of the time during the study period 

since the source water is one of the Great Lakes. The TRIs of the critical treatment steps with 

respect to turbidity, which are the CFS and filtration process, indicate that the treatment steps 

were adequate in maintaining the effluent turbidity under the regulatory limits. Some of the 

high TRIs of the CFS process and their association with the weather events characterized by 

elevated turbidity suggest that the CFS process may be vulnerable in the future, if the 
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occurrence of more severe, unusual, and untimely precipitation events becomes more common 

given the current trend of climate change. 

• In both plants, most of the higher (>130) TRIs were not associated with any weather events 

characterized by raw water turbidity, which implies that the plants were robust during the study 

period. Therefore, the reason behind the high TRIs was not weather-related. However, the high 

TRIs can be a good indicator for the operators to review and assess the performances of the 

treatment steps in the corresponding weeks and re-evaluate their operational regimes. 

• The bench-scale simulations of the ACTIFLO® units reproduced the full-scale performance 

with adequate accuracy. The factorial design experiment on spiked water samples representing 

unprecedented turbidity events that may occur in the future due to climate change predicted 

that, in the ranges tested, the polymer dosage used in the plant at present is optimum, but higher 

dosage of microsand with a higher dosage of coagulant can lead to higher turbidity removal. 

The spiked water samples may not be representative of the actual raw water experiencing the 

same level of turbidity, but these experiments can aid in potential pilot- or full-scale studies to 

improve the robustness of the ACTIFLO® process for extremely high raw water turbidity. 

• All the steps of the robustness framework were successfully applied to the two DWTPs with 

different raw water and treatment trains. The applicability of the framework implies that the 

robustness framework can be tailored for any utility and used as a comprehensive tool to assess 

and improve the robustness of the DWTPs. 

 

6.3 Recommendations for Future Studies 

Based on the above-mentioned conclusions, the recommendations for future research are summarized 

below: 

• In this study, only the effects of heavy precipitation events on raw water were considered as a 

consequence of climate change. However, the occurrence of several natural and anthropogenic 

climate-induced phenomena, such as drought, wildfire, cyclones, glacial melting, etc. 

throughout the world may have diverse repercussions on drinking water quality. There is an 

urgent need to evaluate and improve the robustness of the DWTPs that are likely to be affected 

by these events. 
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• Other than turbidity, unprecedented, intense and untimely precipitation events caused by 

climate change affect other raw water quality parameters, such as NOM and characteristics and 

microbiological quality of water. The robustness framework can be modified for these 

parameters and applied to the DWTPs to evaluate and improve their robustness. 

• The TRI method used to quantify the robustness of the critical treatment steps with respect to 

turbidity has proven to be an effective tool, but it is only based on the 50th and 90th percentile 

values in the data set. The potential of new or modified robustness indices can be explored, 

which is not too complicated to apply to a full-scale DWTP and can incorporate the other 

statistical parameters of the data set, such as the distribution of the data. 

• In this study, the sixth step, adaptation of the robustness framework, was applied to only one 

critical step (ACTIFLO® process in Plant A) at bench-scale by modified jar tests due to time 

limitations. There is scope to design experiments to simulate the other critical steps at bench-

scale and pilot-scale to find short-term operational responses to improve the robustness of these 

steps, if the raw water quality deteriorates beyond general experience due to climate change in 

the future. 

• The spiked water samples used in the bench-scale experiments were prepared with kaolin, 

which may not exemplify the real raw water condition because of the higher specific weight 

and negative charge of the kaolin particles, as well as the fact that they have not interacted with 

other components of the water such as NOM. Raw water samples collected from the plants can 

be spiked using soil sediments collected from the bottom of the intake, and can be an alternate 

way to carry out the experiments that may be more representative of the particles of the raw 

water. 
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Appendices 

Appendix A: Supplementary Information of Plant A 

 

 

Figure A.1: Time series of raw water turbidity data (2019) with invalid data points removed varying 

values of x, (a) x = 25%, (b) x = 50%, (c) x = 75%, (d) x = 150%, (e) x = 200% (invalid data = x% 

above the hourly median) 
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(a)                                                                  (b) 

 
(c) 

Figure A.2: Time series of raw water turbidity showing normal and weather events characterized by 

turbidity using seasonal median turbidity for (a) winter 2019, (b) summer 2019 and (c) fall 2019 

  

Figure A.3: Weekly TRIs of the train 2 ACTIFLO® unit during normal and weather events 

characterized by raw water turbidity (Tgoal = 1.0 NTU) 
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Figure A.4: Weekly TRIs of the train 2 ACTIFLO® unit in relation to the maximum values of raw 

water turbidities during weather events 

 

 

 

 

Figure A.5: Weekly average raw water and train 2 ACTIFLO® influent and effluent turbidity for 

2019 and 2020 
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Figure A.6: Weekly TRIs of Filters 1, 3 and 4 during normal weather and weather events 

characterized by raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Figure A.7: Weekly TRIs of Filters 5, 6 and 8 during normal weather and weather events 

characterized by raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Figure A.8: Weekly TRIs of Filters 1, 3-6 and 8 in relation to the maximum values of raw water 

turbidities during weather events 
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Table A.1: Weekly average percentage of turbidity removal by the overall ACTIFLO® (train 1 and 2) 

and filtration process (Filters 1 to 8) 

Week 
no. 

2019 2020 

Percent 
turbidity 

removal by the 
ACTIFLO® 

units (%) 

Percent turbidity 
removal by the 

ACTIFLO® units 
and Filters (%) 

Percent 
turbidity 

removal by the 
ACTIFLO® 

units 

(%) 

Percent turbidity 
removal by the 

ACTIFLO® units 
and Filters (%) 

1 94.4 99.5 91.2 99.2 

2 90.0 99.2 97.5 99.8 

3 87.6 99.0 97.2 99.9 

4 89.0 99.2 88.9 99.4 

5 83.3 98.8 87.0 99.2 

6 98.0 99.9 83.1 98.9 

7 93.0 99.6 83.2 98.9 

8 92.0 99.4 85.0 98.8 

9 96.4 99.8 82.7 98.9 

10 92.0 99.4 89.8 99.3 

11 98.7 99.9 95.9 99.8 

12 97.0 99.7 94.2 99.6 

13 97.5 99.7 96.0 99.6 

14 97.7 99.8 96.3 99.6 

15 96.3 99.6 92.8 99.2 

16 96.4 99.6 89.6 99.1 

17 97.4 99.7 91.6 99.1 

18 96.7 99.6 92.6 99.3 

19 94.1 99.3 91.1 99.3 

20 85.4 98.1 92.7 99.4 

21 90.7 98.9 90.1 99.1 

22 93.7 99.3 94.3 99.3 

23 92.3 99.1 94.7 99.3 
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24 94.1 99.4 92.8 99.2 

25 91.9 98.9 94.5 99.3 

26 86.7 98.4 95.3 99.3 

27 86.0 98.4 93.0 99.0 

28 92.6 99.0 95.4 99.3 

29 93.0 99.2 95.6 99.3 

30 91.2 99.0 92.9 99.0 

31 94.2 99.3 94.7 99.3 

32 93.2 99.2 93.9 99.1 

33 89.0 98.8 89.0 98.3 

34 93.4 99.3 93.3 99.1 

35 93.8 99.2 95.9 99.5 

36 89.7 98.6 95.3 99.4 

37 89.6 98.6 94.0 99.3 

38 92.8 98.8 92.8 99.4 

39 93.8 99.1 94.4 99.3 

40 92.7 98.9 93.6 99.4 

41 92.0 98.6 93.1 99.3 

42 91.1 98.4 91.7 99.2 

43 93.3 98.9 91.0 99.2 

44 96.2 99.6 88.5 99.1 

45 92.0 99.1 90.4 99.2 

46 87.8 98.8 88.9 99.2 

47 90.0 99.0 86.5 99.1 

48 93.4 99.5 85.5 99.1 

49 89.6 99.1 82.0 99.0 

50 93.5 99.6 90.7 99.6 

51 87.0 99.0 90.3 99.5 

52 85.0 98.9 87.8 99.4 
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Table A.2: Overall robustness of Plant A by weeks in 2020 by equal weighting 

Week 
no. 

2020 

ACTIFLO® Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 100 2 85 2 2 stable 

2 129 3 80 2 3 slightly disturbed 

3 101 3 80 2 3 slightly disturbed 

4 101 3 78 2 3 slightly disturbed 

5 99 2 81 2 2 stable 

6 96 2 80 2 2 stable 

7 93 2 78 2 2 stable 

8 107 3 79 2 3 slightly disturbed 

9 103 3 81 2 3 slightly disturbed 

10 108 3 92 2 3 slightly disturbed 

11 114 3 92 2 3 slightly disturbed 

12 118 3 84 2 3 slightly disturbed 

13 98 2 89 2 2 stable 

14 95 2 89 2 2 stable 

15 107 3 93 2 3 slightly disturbed 

16 97 2 98 2 2 stable 

17 98 2 108 3 3 slightly disturbed 

18 94 2 91 2 2 stable 

19 94 2 87 2 2 stable 

20 94 2 97 2 2 stable 

21 99 2 103 3 3 slightly disturbed 

22 85 2 89 2 2 stable 

23 90 2 91 2 2 stable 

24 102 3 95 2 3 slightly disturbed 
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25 89 2 91 2 2 stable 

26 86 2 91 2 2 stable 

27 98 2 100 3 3 slightly disturbed 

28 89 2 98 2 2 stable 

29 85 2 92 2 2 stable 

30 87 2 101 3 3 slightly disturbed 

31 102 3 96 2 3 slightly disturbed 

32 101 3 108 3 3 slightly disturbed 

33 83 2 96 2 2 stable 

34 80 2 92 2 2 stable 

35 83 2 94 2 2 stable 

36 82 2 85 2 2 stable 

37 90 2 85 2 2 stable 

38 95 2 85 2 2 stable 

39 83 2 93 2 2 stable 

40 92 2 83 2 2 stable 

41 81 2 82 2 2 stable 

42 90 2 86 2 2 stable 

43 105 3 88 2 3 slightly disturbed 

44 98 2 98 2 2 stable 

45 88 2 86 2 2 stable 

46 89 2 82 2 2 stable 

47 99 2 83 2 2 stable 

48 96 2 83 2 2 stable 

49 93 2 80 2 2 stable 

50 113 3 80 2 3 slightly disturbed 

51 100 3 76 2 3 slightly disturbed 

52 98 2 74 2 2 stable 
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Table A.3: Overall robustness of Plant A by weeks in 2020 by unequal weighting (considering the 

ACTIFLO® process is more significant) 

Week 
no. 

2020 

ACTIFLO® Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 100 2 85 2 2 stable 

2 129 3 80 2 3 slightly disturbed 

3 101 3 80 2 3 slightly disturbed 

4 101 3 78 2 3 slightly disturbed 

5 99 2 81 2 2 stable 

6 96 2 80 2 2 stable 

7 93 2 78 2 2 stable 

8 107 3 79 2 3 slightly disturbed 

9 103 3 81 2 3 slightly disturbed 

10 108 3 92 2 3 slightly disturbed 

11 114 3 92 2 3 slightly disturbed 

12 118 3 84 2 3 slightly disturbed 

13 98 2 89 2 2 stable 

14 95 2 89 2 2 stable 

15 107 3 93 2 3 slightly disturbed 

16 97 2 98 2 2 stable 

17 98 2 108 3 2 stable 

18 94 2 91 2 2 stable 

19 94 2 87 2 2 stable 

20 94 2 97 2 2 stable 

21 99 2 103 3 2 stable 

22 85 2 89 2 2 stable 

23 90 2 91 2 2 stable 
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24 102 3 95 2 3 slightly disturbed 

25 89 2 91 2 2 stable 

26 86 2 91 2 2 stable 

27 98 2 100 3 2 stable 

28 89 2 98 2 2 stable 

29 85 2 92 2 2 stable 

30 87 2 101 3 2 stable 

31 102 3 96 2 3 slightly disturbed 

32 101 3 108 3 3 slightly disturbed 

33 83 2 96 2 2 stable 

34 80 2 92 2 2 stable 

35 83 2 94 2 2 stable 

36 82 2 85 2 2 stable 

37 90 2 85 2 2 stable 

38 95 2 85 2 2 stable 

39 83 2 93 2 2 stable 

40 92 2 83 2 2 stable 

41 81 2 82 2 2 stable 

42 90 2 86 2 2 stable 

43 105 3 88 2 3 slightly disturbed 

44 98 2 98 2 2 stable 

45 88 2 86 2 2 stable 

46 89 2 82 2 2 stable 

47 99 2 83 2 2 stable 

48 96 2 83 2 2 stable 

49 93 2 80 2 2 stable 

50 113 3 80 2 3 slightly disturbed 

51 100 3 76 2 3 slightly disturbed 

52 98 2 74 2 2 stable 
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Table A.4: Overall robustness of Plant A by weeks in 2020 by unequal weighting (considering the 

filtration process is more significant) 

Week 
no. 

2020 

ACTIFLO® Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 100 2 85 2 2 stable 

2 129 3 80 2 2 stable 

3 101 3 80 2 2 stable 

4 101 3 78 2 2 stable 

5 99 2 81 2 2 stable 

6 96 2 80 2 2 stable 

7 93 2 78 2 2 stable 

8 107 3 79 2 2 stable 

9 103 3 81 2 2 stable 

10 108 3 92 2 2 stable 

11 114 3 92 2 2 stable 

12 118 3 84 2 2 stable 

13 98 2 89 2 2 stable 

14 95 2 89 2 2 stable 

15 107 3 93 2 2 stable 

16 97 2 98 2 2 stable 

17 98 2 108 3 3 slightly disturbed 

18 94 2 91 2 2 stable 

19 94 2 87 2 2 stable 

20 94 2 97 2 2 stable 

21 99 2 103 3 3 slightly disturbed 

22 85 2 89 2 2 stable 

23 90 2 91 2 2 stable 
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24 102 3 95 2 2 stable 

25 89 2 91 2 2 stable 

26 86 2 91 2 2 stable 

27 98 2 100 3 3 slightly disturbed 

28 89 2 98 2 2 stable 

29 85 2 92 2 2 stable 

30 87 2 101 3 3 slightly disturbed 

31 102 3 96 2 2 stable 

32 101 3 108 3 3 slightly disturbed 

33 83 2 96 2 2 stable 

34 80 2 92 2 2 stable 

35 83 2 94 2 2 stable 

36 82 2 85 2 2 stable 

37 90 2 85 2 2 stable 

38 95 2 85 2 2 stable 

39 83 2 93 2 2 stable 

40 92 2 83 2 2 stable 

41 81 2 82 2 2 stable 

42 90 2 86 2 2 stable 

43 105 3 88 2 2 stable 

44 98 2 98 2 2 stable 

45 88 2 86 2 2 stable 

46 89 2 82 2 2 stable 

47 99 2 83 2 2 stable 

48 96 2 83 2 2 stable 

49 93 2 80 2 2 stable 

50 113 3 80 2 2 stable 

51 100 3 76 2 2 stable 

52 98 2 74 2 2 stable 
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Appendix B: Supplementary Information of Plant B 

 

         (a)                                                                           (b) 

 

        (c)                                                                           (d) 

Figure B.1: Timeseries of PACl flow (L/h) – Line 1 to 4 (2020) 
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Normal weather Weather event 

 

 

 

Figure B.2: Weekly TRIs of Filters 1, 4, and 5 during normal weather and weather events 

characterized by raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Normal weather Weather event 

 

 

 

Figure B.3: Weekly TRIs of Filters 6 to 8 during normal weather and weather events characterized by 

raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Normal weather Weather event 

 

 

 

Figure B.4: Weekly TRIs of Filters 9 to 11 during normal weather and weather events characterized 

by raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Normal weather Weather event 

 

 

 

Figure B.5: Weekly TRIs of Filters 12 to 14 during normal weather and weather events 

characterized by raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Normal weather Weather event 

 

 

 

Figure B.6: Weekly TRIs of Filters 15 to 17 during normal weather and weather events 

characterized by raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Normal weather Weather event 
 

 

 

 

Figure B.7: Weekly TRIs of Filters 19 to 21 during normal weather and weather events 

characterized by raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Normal weather Weather event 

 

 

 

Figure B.8: Weekly TRIs of Filters 22 to 24 during normal weather and weather events 

characterized by raw water turbidity in 2019 and 2020 (Tgoal = 0.1 NTU) 
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Figure B.9: Weekly TRIs of Filters 1 and 4-8 in relation to the maximum values of raw water 

turbidities during weather events 
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Figure B.10: Weekly TRIs of Filters 9-14 in relation to the maximum values of raw water turbidities 

during weather events 
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Figure B.11: Weekly TRIs of Filters 15-17 and 19-21 in relation to the maximum values of raw water 

turbidities during weather events 
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Figure B.12: Weekly TRIs of Filters 22-24 in relation to the maximum values of raw water turbidities 

during weather events 
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Table B.1: Weekly average percentage of turbidity removal by the overall CFS (modules 1 and 2) 

and filtration process (Filters 1 to 24) 

Week no. 

2019 2020 

Percent 
turbidity 

removal by the 
CFS units (%) 

Percent 
turbidity 

removal by the 
CFS units and 

Filters (%) 

Percent 
turbidity 

removal by the 
CFS units (%) 

Percent turbidity 
removal by the 
CFS units and 

Filters (%) 

1 27.8 78.8 95.2 99.4 

2 59.0 68.3 98.0 99.1 

3 70.9 83.5 98.6 99.6 

4 61.8 86.8 97.8 99.4 

5 72.1 66.6 98.8 98.0 

6 72.7 81.9 98.6 99.3 

7 94.0 81.2 99.9 98.8 

8 89.0 67.3 99.6 97.0 

9 80.0 59.8 99.1 97.1 

10 88.9 61.3 99.4 97.1 

11 81.3 57.3 98.4 97.3 

12 79.6 84.4 98.4 99.1 

13 74.6 82.3 98.4 98.9 

14 81.4 59.5 98.4 97.4 

15 92.7 48.3 99.7 96.2 

16 83.6 5.5 99.1 91.8 

17 78.3 63.2 98.4 97.8 

18 92.7 62.5 99.6 97.5 

19 95.0 57.5 99.7 95.2 

20 80.4 62.7 99.4 96.9 

21 54.0 65.0 97.4 97.7 

22 61.9 37.2 97.7 94.9 

23 63.1 62.1 96.5 96.3 
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24 62.1 83.9 95.4 98.3 

25 62.8 75.7 96.0 97.1 

26 64.0 87.4 96.2 98.4 

27 59.9 88.6 96.1 98.4 

28 71.8 85.9 97.3 98.2 

29 35.7 87.0 95.7 98.0 

30 36.6 83.6 95.2 97.7 

31 43.8 82.9 95.0 98.4 

32 55.4 84.5 96.4 98.4 

33 54.6 84.9 96.0 97.9 

34 53.2 89.5 95.4 98.4 

35 65.2 87.7 97.1 99.1 

36 62.7 62.8 96.8 96.9 

37 80.0 72.6 98.4 94.9 

38 74.9 69.6 95.9 97.1 

39 76.4 68.8 98.1 77.9 

40 90.2 41.9 99.1 76.8 

41 83.9 90.0 99.0 98.1 

42 86.2 67.1 98.8 97.3 

43 84.0 77.0 98.9 98.5 

44 78.1 82.9 98.2 98.5 

45 63.6 55.4 98.5 95.5 

46 78.7 39.3 99.0 95.5 

47 32.5 78.7 96.3 98.7 

48 93.2 70.6 99.8 97.8 

49 64.5 54.9 99.1 94.8 

50 -65.8 95.5 93.6 99.7 

51 -43.9 91.4 93.5 99.8 

52 93.2 80.4 99.8 99.3 
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Table B.2: Overall robustness of Plant B by weeks in 2020 by equal weighting 

Week 
no. 

2020 

CFS Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 136 4 84 2 3 slightly disturbed 

2 119 3 99 2 3 slightly disturbed 

3 128 3 103 3 3 slightly disturbed 

4 116 3 110 3 3 slightly disturbed 

5 94 2 112 3 3 slightly disturbed 

6 127 3 120 3 3 slightly disturbed 

7 96 2 103 3 3 slightly disturbed 

8 97 2 80 2 2 stable 

9 105 3 78 2 3 slightly disturbed 

10 90 2 81 2 2 stable 

11 102 3 85 2 3 slightly disturbed 

12 112 3 86 2 3 slightly disturbed 

13 119 3 86 2 3 slightly disturbed 

14 100 2 113 3 3 slightly disturbed 

15 156 4 102 3 4 moderately disturbed 

16 86 2 97 2 2 stable 

17 106 3 92 2 3 slightly disturbed 

18 98 2 97 2 2 stable 

19 96 2 93 2 2 stable 

20 121 3 99 2 3 slightly disturbed 

21 106 3 104 3 3 slightly disturbed 

22 115 3 106 3 3 slightly disturbed 

23 119 3 102 3 3 slightly disturbed 

24 93 2 91 2 2 stable 
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25 122 3 95 2 3 slightly disturbed 

26 93 2 90 2 2 stable 

27 108 3 100 3 3 slightly disturbed 

28 90 2 110 3 3 slightly disturbed 

29 97 2 98 2 2 stable 

30 103 3 101 3 3 slightly disturbed 

31 109 3 99 2 3 slightly disturbed 

32 89 2 90 2 2 stable 

33 95 2 93 2 2 stable 

34 94 2 95 2 2 stable 

35 128 3 101 3 3 slightly disturbed 

36 105 3 91 2 3 slightly disturbed 

37 92 2 86 2 2 stable 

38 103 3 88 2 3 slightly disturbed 

39 93 2 94 2 2 stable 

40 109 3 104 3 3 slightly disturbed 

41 131 3 84 2 3 slightly disturbed 

42 99 2 84 2 2 stable 

43 147 4 89 2 3 slightly disturbed 

44 100 3 83 2 3 slightly disturbed 

45 112 3 86 2 3 slightly disturbed 

46 103 3 88 2 3 slightly disturbed 

47 124 3 83 2 3 slightly disturbed 

48 95 2 79 2 2 stable 

49 173 5 76 2 4 moderately disturbed 

50 153 4 78 2 3 slightly disturbed 

51 113 3 75 2 3 slightly disturbed 

52 124 3 74 2 3 slightly disturbed 
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Table B.3: Overall robustness of Plant B by weeks in 2020 by unequal weighting (considering the 

CFS process is more significant) 

Week 
no. 

2020 

CFS Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 136 4 84 2 3 slightly disturbed 

2 119 3 99 2 3 slightly disturbed 

3 128 3 103 3 3 slightly disturbed 

4 116 3 110 3 3 slightly disturbed 

5 94 2 112 3 2 stable 

6 127 3 120 3 3 slightly disturbed 

7 96 2 103 3 2 stable 

8 97 2 80 2 2 stable 

9 105 3 78 2 3 slightly disturbed 

10 90 2 81 2 2 stable 

11 102 3 85 2 3 slightly disturbed 

12 112 3 86 2 3 slightly disturbed 

13 119 3 86 2 3 slightly disturbed 

14 100 2 113 3 2 stable 

15 156 4 102 3 4 moderately disturbed 

16 86 2 97 2 2 stable 

17 106 3 92 2 3 slightly disturbed 

18 98 2 97 2 2 stable 

19 96 2 93 2 2 stable 

20 121 3 99 2 3 slightly disturbed 

21 106 3 104 3 3 slightly disturbed 

22 115 3 106 3 3 slightly disturbed 
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23 119 3 102 3 3 slightly disturbed 

24 93 2 91 2 2 stable 

25 122 3 95 2 3 slightly disturbed 

26 93 2 90 2 2 stable 

27 108 3 100 3 3 slightly disturbed 

28 90 2 110 3 2 stable 

29 97 2 98 2 2 stable 

30 103 3 101 3 3 slightly disturbed 

31 109 3 99 2 3 slightly disturbed 

32 89 2 90 2 2 stable 

33 95 2 93 2 2 stable 

34 94 2 95 2 2 stable 

35 128 3 101 3 3 slightly disturbed 

36 105 3 91 2 3 slightly disturbed 

37 92 2 86 2 2 stable 

38 103 3 88 2 3 slightly disturbed 

39 93 2 94 2 2 stable 

40 109 3 104 3 3 slightly disturbed 

41 131 3 84 2 3 slightly disturbed 

42 99 2 84 2 2 stable 

43 147 4 89 2 3 slightly disturbed 

44 100 3 83 2 3 slightly disturbed 

45 112 3 86 2 3 slightly disturbed 

46 103 3 88 2 3 slightly disturbed 

47 124 3 83 2 3 slightly disturbed 

48 95 2 79 2 2 stable 

49 173 5 76 2 4 moderately disturbed 

50 153 4 78 2 3 slightly disturbed 

51 113 3 75 2 3 slightly disturbed 
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52 124 3 74 2 3 slightly disturbed 

 

 

Table B.4: Overall robustness of Plant B by weeks in 2020 by unequal weighting (considering the 

filtration process is more significant) 

Week 
no. 

2020 

CFS Units Filters Plant 

TRI Category TRI Category 
Overall 

Robustness 
Category 

Overall System 
Robustness 

1 136 4 84 2 3 slightly disturbed 

2 119 3 99 2 2 stable 

3 128 3 103 3 3 slightly disturbed 

4 116 3 110 3 3 slightly disturbed 

5 94 2 112 3 3 slightly disturbed 

6 127 3 120 3 3 slightly disturbed 

7 96 2 103 3 3 slightly disturbed 

8 97 2 80 2 2 stable 

9 105 3 78 2 2 stable 

10 90 2 81 2 2 stable 

11 102 3 85 2 2 stable 

12 112 3 86 2 2 stable 

13 119 3 86 2 2 stable 

14 100 2 113 3 3 slightly disturbed 

15 156 4 102 3 3 slightly disturbed 

16 86 2 97 2 2 stable 

17 106 3 92 2 2 stable 

18 98 2 97 2 2 stable 

19 96 2 93 2 2 stable 
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20 121 3 99 2 2 stable 

21 106 3 104 3 3 slightly disturbed 

22 115 3 106 3 3 slightly disturbed 

23 119 3 102 3 3 slightly disturbed 

24 93 2 91 2 2 stable 

25 122 3 95 2 2 stable 

26 93 2 90 2 2 stable 

27 108 3 100 3 3 slightly disturbed 

28 90 2 110 3 3 slightly disturbed 

29 97 2 98 2 2 stable 

30 103 3 101 3 3 slightly disturbed 

31 109 3 99 2 2 stable 

32 89 2 90 2 2 stable 

33 95 2 93 2 2 stable 

34 94 2 95 2 2 stable 

35 128 3 101 3 3 slightly disturbed 

36 105 3 91 2 2 stable 

37 92 2 86 2 2 stable 

38 103 3 88 2 2 stable 

39 93 2 94 2 2 stable 

40 109 3 104 3 3 slightly disturbed 

41 131 3 84 2 2 stable 

42 99 2 84 2 2 stable 

43 147 4 89 2 3 slightly disturbed 

44 100 3 83 2 2 stable 

45 112 3 86 2 2 stable 

46 103 3 88 2 2 stable 

47 124 3 83 2 2 stable 

48 95 2 79 2 2 stable 



 

 195 

49 173 5 76 2 3 slightly disturbed 

50 153 4 78 2 3 slightly disturbed 

51 113 3 75 2 2 stable 

52 124 3 74 2 2 stable 
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Appendix C: Supplementary Information of Chapter 5 

Table C.1: DOC and zeta potential of water samples, coagulant and polymer 

Water samples DOC (mg/L) Zeta potential (mV) 

Raw water - batch 2 (1) 8.92 -13.1 
Raw water - batch 2 (2) 8.80 -12.8 
Raw water - batch 3 (1) 8.63 -11.8 
Raw water - batch 3 (2) 7.09 -11.3 

Coagulated water - batch 2 12.1 -13.9 
Coagulated water - batch 3 8.44 -13.5 

Spiked water (kaolin dosage = 0.025 g/L) 8.27 -15.4 
Spiked water (kaolin dosage = 0.1 g/L) 7.79 -17.9 
Spiked water (kaolin dosage = 0.4 g/L) 8.08 -18.7 
Spiked water (kaolin dosage = 0.5 g/L) 7.65 -21.9 

FD: spiked water (kaolin dosage = 0.35 g/L) 8.77 -18.6 
FD: spiked coagulated water (run 1-1) 9.74 -15.7 
FD: spiked coagulated water (run 2-1) 8.96 -14.8 
FD: spiked coagulated water (run 3-1) 9.99 -16.5 
FD: spiked coagulated water (run 4-1) 9.31 -16.5 
FD: spiked coagulated water (run 5-1) 10.2 -16.9 
FD: spiked coagulated water (run 6-1) 10.3 -17.6 
FD: spiked coagulated water (run 7-1) 9.57 -17.2 
FD: spiked coagulated water (run 8-1) 10.5 -16.3 
FD: spiked coagulated water (run 9-1) 10.1 -17.1 

Coagulant (50 mg/L) in ultra-pure water 0.90 +26.2 
Coagulant (40 mg/L) in ultra-pure water 0.82 +18.4 
Coagulant (30 mg/L) in ultra-pure water 0.69 +18.2 
Polymer (0.10 mg/L) in ultra-pure water 0.10   
Polymer (0.15 mg/L) in ultra-pure water 0.15   
Polymer (0.20 mg/L) in ultra-pure water 0.23   

FD: factorial design  
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Table C.2: Residuals values of the model 

Run Yi exp Yi fit ei = Yi exp – Yi fit 

1-1 93.7 95.5 -1.8 

1-2 95.2 95.5 -0.3 

2-1 94.6 96.2 -1.6 

2-2 95.7 96.2 -0.5 

3-1 94.2 95.5 -1.3 

3-2 94.7 95.5 -0.8 

4-1 90.6 92.4 -1.8 

4-2 92.1 92.4 -0.3 

5-1 97.6 98.2 -0.7 

5-2 96.8 98.2 -1.5 

6-1 89.6 92.0 -2.4 

6-2 92.3 92.0 0.3 

7-1 68.2 63.2 5.0 

7-2 56.0 63.2 -7.1 

8-1 93.1 93.4 -0.3 

8-2 91.6 93.4 -1.8 

9-1 96.1 90.8 5.3 

9-2 97.1 90.8 6.3 

9-3 96.3 90.8 5.5 
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Figure C.1: Raw water (batch 3, turbidity 37.4 NTU) before and after addition of 0.35 g/L of kaolin 

(spiked water turbidity = 477 NTU) 

 

 
(a)      (b) 

Figure C.2: Settled floc after jar tests on raw water samples of (a) batch 2 and (b) batch 3 
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(a)      (b) 

Figure C.3: Spiked water samples with extremely high turbidity: (a) before and (b) after jar test 
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Appendix D: MATLAB Codes 

Code D.1: Checks the validity of data for x = 25%, 50%, 75%, 100%, 150% and 200% (invalid data = 
x% over the hourly median turbidity) 

function [raw_invalid_yn] = raw_invalid_detect(turb) 
n = numel(turb); %n = no of data 
for ij = 7:n %validity of the 1st 6 data was checked manually 
    if turb(ij,1) > 1.25*median(turb(ij-6:ij+6)) 
        turb(ij,2) = 1; %1 = invalid, 0 = valid 
    else turb(ij,2) = 0; 
    end 
end 
for ij = 7:n 
    if turb(ij,1) > 1.5*median(turb(ij-6:ij+6)) 
        turb(ij,3) = 1;  
    else turb(ij,3) = 0; 
    end 
end 
for ij = 7:n 
    if turb(ij,1) > 1.75*median(turb(ij-6:ij+6)) 
        turb(ij,4) = 1;  
    else turb(ij,4) = 0; 
    end 
end 
for ij = 7:n 
    if turb(ij,1) > 2*median(turb(ij-6:ij+6)) 
        turb(ij,5) = 1;  
    else turb(ij,5) = 0; 
    end 
end 
for ij = 7:n 
    if turb(ij,1) > 2.5*median(turb(ij-6:ij+6)) 
        turb(ij,6) = 1;  
    else turb(ij,6) = 0; 
    end 
end 
for ij = 7:n 
    if turb(ij,1) > 3*median(turb(ij-6:ij+6)) 
        turb(ij,7) = 1;  
    else turb(ij,7) = 0; 
    end 
end 
raw_invalid_yn = turb; %c1=rawturb c2=25 c3=50 c4=75 c5=100 c6=150 c7=200 
 
 
 
 
 



 

 201 

Code D.2: Removes the invalid data for x = 25%, 50%, 75%, 100%, 150% and 200% 

function [rawturb_wo_200, rawturb_wo_150, rawturb_wo_100, rawturb_wo_75, 
rawturb_wo_50, rawturb_wo_25] = raw_invalid_delete(raw_invalid_yn) 
n = height(raw_invalid_yn); 
for ij = 1:n 
    if raw_invalid_yn(ij,7) == 1 %1 = invalid data 
        raw_invalid_yn(ij,1) = NaN; 
    end 
end 
rawturb_wo_200 = raw_invalid_yn(:,1); 
for ij = 1:n 
    if raw_invalid_yn(ij,6) == 1 
        raw_invalid_yn(ij,1) = NaN; 
    end 
end 
rawturb_wo_150 = raw_invalid_yn(:,1); 
for ij = 1:n 
    if raw_invalid_yn(ij,5) == 1 
        raw_invalid_yn(ij,1) = NaN; 
    end 
end 
rawturb_wo_100 = raw_invalid_yn(:,1); 
for ij = 1:n 
    if raw_invalid_yn(ij,4) == 1 
        raw_invalid_yn(ij,1) = NaN; 
    end 
end 
rawturb_wo_75 = raw_invalid_yn(:,1); 
for ij = 1:n 
    if raw_invalid_yn(ij,3) == 1 
        raw_invalid_yn(ij,1) = NaN; 
    end 
end 
rawturb_wo_50 = raw_invalid_yn(:,1); 
for ij = 1:n 
    if raw_invalid_yn(ij,2) == 1 
        raw_invalid_yn(ij,1) = NaN; 
    end 
end 
rawturb_wo_25 = raw_invalid_yn(:,1); 
 
 
 
 
Code D.3: Removes corresponding ACTIFLO® effluent turbidity data for flow <35ML/D 

function [turb_wo_lowflow] = actiflo_low_flow_delete(flow,turb) 
n = numel(flow); 
for ij = 1:n 
    if raw_flow(ij) < 35 
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        turb(ij) = NaN; 
    end 
end 
    turb_wo_lowflow = turb([1:end],1); 
 
 
 
Code D.4: Removes corresponding filter effluent turbidity data for zero flow and filter-to-waste period 

(Plant A) 

function [turb_wo] = filter_lowflow_del(turb,flow) 
n = numel(flow); 
for ij = 1:n 
    if flow(ij,1) == 0 
        flow(ij,1) = NaN; 
    end 
end 
flow_0 = flow; %all zero flow is replaced by NaN 
 
for ij = 1:n 
    if isnan(flow_0(ij,1)) && ~isnan(flow_0(ij+40,1)) %filter is not 
running for at least 40 minutes = shutdown or backwash, but not filter-to-
waste 
        flow_0(ij:ij+35,1) = NaN; %filter to waste = 1st 35 mins of a 
filter cycle 
    end 
end 
flow_0_fw = flow_0; %all zero flow and filter-to-waste flow is replaced by 
NaN 
for ij = 1:n 
    if isnan(flow_0_fw(ij,1)) 
        turb(ij,1) = NaN; 
    end 
end 
turb_wo = turb; 
 
 
 
 
 
Code D.5: Identifies data over seasonal median turbidity for y = 25%, 50%, 75% and 100% (turbidity 

event = y% over seasonal median) 

function [percent_above] = event_detect (event_turb, seas_med) 
n = height(event_turb); %n=no. of data 
for ij = 1:n  
    if event_turb(ij,1) > seas_med*1.25 
        event_turb(ij,2) = 1; %1=event 
    else event_turb(ij,2) = 0; %0=not event 
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    end 
end 
for ij = 1:n  
    if event_turb(ij,1) > seas_med*1.5 
        event_turb(ij,3) = 1; 
    else event_turb(ij,3) = 0; 
    end 
end 
for ij = 1:n  
    if event_turb(ij,1) > seas_med*1.75 
        event_turb(ij,4) = 1; 
    else event_turb(ij,4) = 0; 
    end 
end 
for ij = 1:n  
    if event_turb(ij,1) > seas_med*2 
        event_turb(ij,5) = 1; 
    else event_turb(ij,5) = 0; 
    end 
end 
%c1=turb c2=25% c3=50% c4=75% c5=100% 
percent_above = event_turb; 
 
 
 
Code D.6: Removes the baseline turbidity for y = 25%, 50%, 75% and 100% 
 
function [event25, event50, event75, event100] = event_separation 
(event_turb) 
n = height(event_turb); % n=no. of data 
for ij = 1:n  
    if event_turb(ij,2) == 0 %0=not event, 1=event 
        event_turb(ij,1) = NaN; 
    end 
end 
event25 = event_turb(1:end,1); 
for ij = 1:n  
    if event_turb(ij,3) == 0 
        event_turb(ij,1) = NaN; 
    end 
end 
event50 = event_turb(1:end,1); 
for ij = 1:n  
    if event_turb(ij,4) == 0  
        event_turb(ij,1) = NaN; 
    end 
end 
event75 = event_turb(1:end,1); 
for ij = 1:n  
    if event_turb(ij,5) == 0  
        event_turb(ij,1) = NaN; 
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    end 
end 
event100 = event_turb(1:end,1); 
 
 
 
Code D.7: Calculation of TRI 

function [tri] = tri(turb,tgoal) 
m = 1; 
w = floor(numel(turb)/52); %1 week = w data points 
n = w; 
for ii = 1:52 %52 weeks in a year 
    x = m; 
    y = n; 
    t50 = prctile(turb(x:y,1),50); 
    t60 = prctile(turb(x:y,1),60); 
    t70 = prctile(turb(x:y,1),70); 
    t80 = prctile(turb(x:y,1),80); 
    t90 = prctile(turb(x:y,1),90); 
    w = (t50+t60+t70+t80+t90)*10/tgoal; 
    if w <= 50 
        a1 = 0.6; 
    else 
        a1 = 0.4; 
    end 
    a2 = 1-a1; 
    tri90(ii) = ((a1*t90/t50) + (a2*t50/tgoal))*100; 
    m = n+1; 
    n = n+w; 
end 
 
 
 
 
Code D.8: Removes corresponding CFS effluent turbidity data for flow <5ML/D and zero PACl flow 
(Plant B) 

function [turb_wo_lowflow] = cfs_low_flow_delete(flow,turb,pacl_1,pacl_2) 
n = numel(flow); 
for ij = 1:n 
    if flow(ij) < 5 
       turb(ij) = NaN; 
    end 
end 
pacl = pacl_1 + pacl_2; 
for ij = 1:n 
    if pacl(ij) == 0 
        turb(ij) = NaN; 
    end 
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end 
    turb_wo_lowflow = turb([1:end],1); 
 
 

Code D.9: Removes corresponding filter effluent turbidity data for zero flow (Plant B) 

function [turb_wo_lowflow] = filter_low_flow_delete(flow,turb) 
n = numel(flow); 
for ij = 1:n 
    if flow(ij) == 0 
       turb(ij) = NaN; 
    end 
end 
    turb_wo_lowflow = turb([1:end],1); 

 


