
A Particle Filter Method of Inference
for Stochastic Differential Equations

by

Pranav Subramani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Data Science

Waterloo, Ontario, Canada, 2022

© Pranav Subramani 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Stochastic Differential Equations (SDE) serve as an extremely useful modelling tool
in areas including ecology, finance, population dynamics, and physics. Yet, parameter
inference for SDEs is notoriously difficult due to the intractability of the likelihood function.
A common approach is to approximate the likelihood by way of data augmentation, then
integrate over the latent variables using particle filtering techniques. In the Bayesian
setting, the particle filter is typically combined with various Markov chain Monte Carlo
(MCMC) techniques to sample from the parameter posterior. However, MCMC can be
excessive when this posterior is well-approximated by a normal distribution, in which case
estimating the posterior mean and variance by stochastic optimization presents a much
faster alternative. This thesis explores this latter approach. Specifically, we use a particle
filter tailored to SDE models and consider various methods for approximating the gradient
and hessian of the parameter log-posterior. Empirical results for several SDE models are
presented.

iii

Acknowledgements

I would like to first thank my advisor, Prof. Martin Lysy for giving me the wonderful
opportunity to work with him on exciting research and for mentoring me through this
thesis. Next, I would like to thank my family for their constant support and help. I’d also
like to take this opportunity to thank Prof. Pascal Poupart and Prof. Gautam Kamath
for their mentorship during my undergraduate days for allowing me to pursue research
with them and for developing a keen curiosity and passion for doing research. I’d like
to thank all of my friends in Waterloo, Jimmy, Sanjay, Simran, Arnab, Dejen and many
more for their constant companionship especially during this pandemic. Finally, I’d like
to thank my research group comprising of Mohan, Jonathan, Michelle, Kanika who have
helped answer questions, discuss different research problems and always served as a useful
sounding board for the research we pursued.

iv

Dedication

This is dedicated to my family.

v

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Outline of Thesis . 2

2 Background Material 4

2.1 Stochastic Differential Equations . 4

2.2 Particle Filters . 5

2.2.1 Bridge Proposal . 7

2.3 Automatic Differentiation . 8

2.4 JAX . 9

3 Methodology 11

3.1 Bayesian Normal Approximation . 11

3.2 Stochastic Optimization with Particle Filtering 12

3.3 Variable Transformations for Stochastic Optimization 13

3.4 Gradient and Hessian Estimation . 13

vi

4 Experimental Evaluation 16

4.1 Brownian Motion with Drift . 16

4.1.1 Bias of Gradients . 18

4.1.2 Inference for Brownmian Motion with Drift 29

4.2 Lotka-Volterra with Additive Noise . 30

4.2.1 Prior Distribution . 31

4.2.2 Results . 31

4.3 Lotka Volterra with Multiplicative Noise 41

5 Discussion of Experimental Results 44

5.1 Inference for Simulation . 44

5.2 Timing and JIT Compilation . 45

5.3 Bias in Automatic Differentiation . 45

5.4 Constraint Satisfied Stochastic Gradient Descent 46

6 Conclusion 47

6.1 Future Research Directions . 47

References 49

A Appendix 54

A.1 Proof of 2.12 . 54

A.2 Brownian Motion Posterior Derivation . 56

vii

List of Figures

4.1 Brownian Motion with Drift - Data . 17

4.2 Score Estimate - 10 observations and 100 particles 18

4.3 Score Estimate - 10 observations and 1000 particles 19

4.4 Score Estimate - 10 observations and 10000 particles 19

4.5 Score Estimate - 100 observations and 100 particles 20

4.6 Score Estimate - 100 observations and 1000 particles 20

4.7 Score Estimate - 100 observations and 10000 particles 21

4.8 Hessian Estimate - 10 observations and 100 particles 22

4.9 Hessian Estimate - 10 observations and 1000 particles 23

4.10 Hessian Estimate - 10 observations and 10000 particles 24

4.11 Hessian Estimate - 100 observations and 100 particles 25

4.12 Hessian Estimate - 100 observations and 1000 particles 26

4.13 Hessian Estimate - 100 observations and 10000 particles 27

4.14 Brownian Motion with Drift - Projection Plot (Closed Form Latents) . . . 28

4.15 Brownian Motion with Drift - Projection Plot with Particle Filter 29

4.16 Brownian Motion with Drift - Inference . 29

4.17 Lotka-Volterra - Low Noise Data . 32

4.18 Lotka-Volterra - Low Noise Projection Plot 33

4.19 Lotka-Volterra - Low Noise Inferred Parameter Densities 34

4.20 Lotka-Volterra - High Noise Data . 35

viii

4.21 Lotka-Volterra - High Noise Projection Plot 36

4.22 Lotka-Volterra - High Noise Inferred Parameter Densities 37

4.23 Lotka-Volterra ODE- Low Noise Projection Plots 38

4.24 Lotka-Volterra ODE- Low Noise Inferred Parameter Density 39

4.25 Lotka-Volterra High Noise Setting with ODE Data 40

4.26 Lotka-Volterra ODE- High Noise Inferred Parameter Density 41

4.27 Lotka-Volterra Multiplicative Noise - Projection Plot 42

4.28 Density Plot Lotka-Volterra Model for parameters 43

5.1 Nonconvexity in subdomain . 45

ix

Chapter 1

Introduction

1.1 Motivation

Stochastic Differential Equations (SDE) have seen widespread adoption in a variety of
academic fields ranging from physics and simulation of dynamics to ecology and finance
[Särkkä and Solin, 2019]. As a result, being able to perform inference for high dimensional
SDEs is a valuable research proposition. However, SDEs are notoriously difficult to perform
inference for and have several pitfalls. Some of the pitfalls involve the complexity of the
models [Picchini, 2014] which involves the number of parameters to infer. That being said,
the most notorious of these difficulties lies in the intractability of the likelihood function.
The pitfalls could also entail the choice of posterior distribution or the magnitude of the
noise compared to the signal. Alternatively, another source of difficulty might arise from
the lack of useful high-performance software for performing inference for SDEs. In the
recent past, the advent of graphic-processing-units for high performance computation in
machine learning can now potentially be leveraged for performing inference for SDEs as
well. Moreover, some of the code that is used for high-performance computing for machine
learning might utilize abstract programming constructs that can be readily adapted for
inference for SDEs.

There have also been several contributions to the advancements of algorithms based on
sequential Monte Carlo (SMC) in the recent past [Wigren et al., 2019, Kudlicka et al., 2020].
These improvements provide significantly better results (which might range from a reduction
in the number of particles used to a reduction in the variance of estimated quantities) for a
variety of models. Some of these advancements could also be utilized within the context of
SDEs which has not been explored by the papers’ respective authors. Given that this thesis

1

mainly utilizes a variant of sequential Monte Carlo that does not deal with the parameters
(i.e. the particle filter), advancements in SMC can potentially be ported directly to this
setting. Furthermore, several programming advancements within the SMC framework are
built on top of domain-specific languages [Murray and Schön, 2018] and there is a lack of
software that utilizes SMC and is carefully finetuned for SDEs.

1.2 Contributions

In this section we outline the major contributions of this work:

• We combine state-of-the-art techniques in particle filtering and stochastic optimization
to propose a method of inference tailors specifically to SDEs.

• We develop high performance software for our parameter estimator.

• We evaluate our methods and software improvements on several SDE models of
interest.

1.3 Outline of Thesis

This thesis is divided into 6 chapters. The introduction deals with the motivation for
inference for stochastic differential equations and the variety of instances they come up
in, then we proceed to give a description of our major research contributions through this
thesis and finally, we present an outline for the thesis. The second chapter dives into the
background material required for this thesis. In particular, we explain several programming
tools and frameworks as well as methods that have been applied for the experiments and
the code that will be released. We also elaborate on the different proposals we can use for
SDEs as well as an introduction to stochastic differential equations and sequential Monte
Carlo. Chapter 3 dives into the methodology of the thesis itself, specifically, what are
the major techniques we are using in this thesis. We talk about the implementation of
the stochastic optimization algorithm within the particle filter. We also go into detail
about the variable transformations required to use the stochastic optimization routines
and finally, we discuss the programming constructs that we needed to utilize in order to
obtain the results. Chapter 4 deals with the experimental section of the thesis where
we outline several experiments that we would like to run in order to empirically validate
our hypothesis regarding the effectiveness of some of the methods. To do this, we perform

2

several experiments in high noise and low noise settings for different models to see how they
would perform. In Chapter 5, we discuss some of these results and qualitatively evaluate
their inference on some of our problems. We then proceed to discuss the issue of bias that
is present within the gradients and notice that our method presents a biased estimate of
the gradient, however, we show that the method is still effective at yielding high-precision
parameter estimates. Finally, we conclude with what we have shown through this thesis
and outline several future directions that are worth pursuing and are made possible as a
consequence of some of the work we have done.

3

Chapter 2

Background Material

In this chapter we outline the different background material required to read this thesis.
In particular, we note that the background includes both theoretical contributions arising
from stochastic differential equations as well as practical techniques utilizing software
advancements in recent years. It also outlines the workhorse algorithm for sequential
Monte Carlo and some of the advancements in that domain.

2.1 Stochastic Differential Equations

To begin, we describe what class of problems we are dealing with. LetX(t) = (X1(t), . . . , Xd(t))
denote a d-dimensional stochastic process. Then X(t) is said to satisfy a stochastic
differential equation (SDE) [Oksendal, 2013] if it can be written as

dX(t) = Λθ(X(t)) dt+Σθ(X(t))1/2 dB(t), (2.1)

where Λθ(X) is a d-dimensional drift function, Σθ(X) is a d×d positive-definite diffusion
matrix, andB(t) is d-dimensional Brownian motion. We shall provide a precise construction
of the stochastic process satisfying (2.1) momentarily. For now, we just mention two
fundamental properties of SDEs:

• X(t) has almost-surely continuous sample paths.

• X(t) satisfies the Markov property:

p(X(t) | {X(u) : u ≤ s < t},θ) = p(X(t) |X(s),θ). (2.2)

4

The SDE inference problem is that of estimating the unknown model parameters θ
from noisy SDE observations, Y 0:N = (Y 0, . . . ,Y N) with:

Y n
ind∼ g(Y n |Xn,θ), (2.3)

where Xn = X(tn), and for simplicity we assume hereafter that tn = n∆t. We will also
assume that the initial value of the SDE at time t0 = 0 has the prior distribution

X0 ∼ π(X0 | θ). (2.4)

This will result in the following likelihood:

L(θ | Y 0:N) =

∫ [
π(X0 | θ) ·

N∏
n=0

g(Y n |Xn,θ) ·
N∏

n=1

p(Xn |Xn−1,θ)

]
dX0:N . (2.5)

To utilize the above expression, we need the SDE transition density p(Xn |Xn−1,θ), which
is seldom present in a closed form. To alleviate this, we approximate the likelihood function
by the Euler (Euler-Maruyama) [Maruyama, 1955] discretization method. Namely, for
m ≥ 1, let X(m)

n = X(n∆t/m) be the value of the SDE at time t = n∆t/m, such that
X(m)

mn = Xn = X(tn). As ∆tm = ∆t/m→ 0, the normal approximation

X(m)
n |X(m)

n−1 ∼ N (X
(m)
n−1 +Λθ(X

(m)
n−1)∆tm,Σθ(X

(m)
n−1)∆tm) (2.6)

becomes increasingly accurate. In this sense, the Euler approximation of resolution m to
the likelihood function is

L̂m(θ | Y 0:N) =

∫ [
π(X

(m)
0 | θ) ·

N∏
n=0

g(Y n |X(m)
nm ,θ) ·

Nm∏
n=1

φ(X(m)
n |X(m)

n−1,θ)

]
dX

(m)
0:Nm,

(2.7)

where φ(X(m)
n | X(m)

n−1,θ) is the PDF of the normal distribution in (2.6), and we obtain

L̂m(θ | Y 0:N)→ L(θ | Y 0:N) as m→∞ [Pedersen, 1995].

2.2 Particle Filters

The high dimensional integral (2.7) is at the heart of the computational challenge for
SDE inference. A particularly effective method to stochastically approximate it is with a
particle filter [Gordon et al., 1993]. In order to present the algorithm in a general context,

5

we first set up some preliminaries with respect to the variables we will be using. Let xt and
yt denote respectively the (latent) state and (observed) measurement variables at times
t = 0, . . . T , and consider a model of the form

x0 ∼ π(x0 | θ)
xt | xt−1 ∼ f(xt | xt−1,θ)

yt | xt ∼ g(yt | xt,θ).

(2.8)

Model (2.8) is called a state-space model. In the SDE context of (2.7), we have xt =

(X
(m)
(t−1)m+1, . . . ,X

(m)
tm) and yt = Y t. The goal is to estimate the observed data likelihood

L(θ | y0:T) =

∫
π(x0 | θ) ·

T∏
t=0

g(yt | xt,θ) ·
T∏
t=1

f(xt | xt−1,θ) dx0:T . (2.9)

The particle filter requires one to specify proposal distributions q0(x0 | y0,θ) and q(xt |
xt−1,yt,θ) for the initial and subsequent state variables, respectively, from which we can
both sample from and evaluate the log-density of the distribution function. Algorithm 1
below presents a basic particle filter which both approximates L(θ | y0:T) and draws a
sample from the latent variable distribution p(x0:T | θ,y0:T).

Algorithm 1 Particle Filter with Multinomial Resampling

x1:N
0

iid∼ q0(x0 | y0,θ) // sample first time point
wi

0 = g(y0 | x0,θ)π(x0 | θ)/q0(x0 | y0,θ)
for t ≥ 1 do

vit−1 = wi
t−1/

∑N
i=1(w

i
t−1)

At ∼ Multinomial(N,vt)

xi
t
ind∼ q(xt | x

At
i

t−1,yt,θ)

wi
t = g(yt | xi

t)f(x
i
t | x

At
i

t−1,θ)/q(x
i
t | x

At
i

t−1,yt,θ)

end

L̂(θ | y0:T) =
∏T

t=0

(
1
N

∑N
i=1w

i
t

)
JT ∼ Multinomial(1,vT) // index of particle at time T
for t = T · · · 1 do

Jt−1 = AJt
t // index of same particle at time t− 1

end

x0:T = (xJ0
0 , . . . ,xJT

T)

Return L̂(θ | y0:T),x0:T

6

There has been a large body of work focused on different resampling schemes and
comparing them[Douc and Cappé, 2005, Johansen and Doucet, 2008], but for this thesis
we focus on the multinomial on the multinomial resampler. Similarly, we also have
a wide variety of particle filters to choose from. For example, the auxiliary particle
filter [Pitt and Shephard, 1999, Johansen and Doucet, 2008] uses a look-ahead strategy to
improve sampling from p(x0:T | θ,y0:T). Another common approach to filtering is to utilize
Markov-Chain Monte Carlo (MCMC) steps within the SMC algorithm [Doucet et al., 2009].
Particularly, we can use MCMC updates for the parameters of interest [Ronquist et al., 2021].
However, we do not pursue these extensions of Algorithm 1 here, focusing rather on the
critical choice of proposal distribution which we discuss below.

2.2.1 Bridge Proposal

Perhaps the simplest of particle filter proposal distributions are are q0 = π and q = f .
This is called a bootstrap filter [Gordon et al., 1993]. However, the bootstrap filter tends
to perform poorly when the observed variables yt have low noise about xt, in that the
particle weights tend to collapse onto a single particle. This is known as the particle
degeneracy problem [Doucet et al., 2009]. Fortunately, a much better proposal distribution
has been developed for SDEs [Durham and Gallant, 2002, Stramer and Yan, 2007]. Before
describing this so-called bridge proposal, consider the following proposition:

Proposition 1 If
W ∼ N (µW ,ΣW)

X |W ∼ N (W + µX|W ,ΣX|W)

Y |X,W ∼ N (AX,Ω),

(2.10)

then[
W
Y

]
∼ N

([
µW

µY = A[µW + µX|W]

]
,

[
ΣW ΣWA′

AΣW ΣY = A(ΣW +ΣX|W)A′ +Ω

])
, (2.11)

such that

W | Y ∼ N
(
µW +ΣWA′Σ−1

Y (Y − µY),ΣW −ΣWA′Σ−1
Y AΣW

)
. (2.12)

Proposition 1 is proved in the Appendix (A).

Recall that for SDEs we have xt = (X
(m)
(t−1)m+1, . . . ,X

(m)
tm) and yt = Y t. Now suppose

that the SDE measurements are multivariate normal:

Y t
ind∼ N (AX

(m)
tm ,Ω). (2.13)

7

The bridge proposal for xt then proceeds recursively as follows:

1. Without loss of generality, let t = 1, and assume that for fixed 0 ≤ n < m − 1
the proposal value X

(m)
(t−1)m+n = X(m)

n is given. Now suppose we wish to specify the

proposal distribution for X
(m)
n+1.

2. Assume that X(t) is a Brownian motion with drift for t ∈ (n
m
∆t,∆t):

dX(t) = Λn dt+Σ1/2
n dB(t), (2.14)

where Λn = Λθ(X
(m)
n) and Σn = Σθ(X

(m)
n). This means that for any n

m
∆t ≤ s ≤

s+ u ≤ ∆t we have

X(s+ u) |X(s) ∼ N (X(s) + uΛn, uΣn), (2.15)

To obtain the proposal forX
(m)
n+1, we apply the formula to (W ,X,Y) = (X

(m)
n+1,X

(m)
m ,Y 1),

for which we have

X
(m)
n+1 ∼ N (X(m)

n +∆tmΛn,∆tmΣn)

X(m)
m |X(m)

n+1 ∼ N (X
(m)
n+1 + k∆tmΛn, k∆tmΣn)

Y 1 |X(m)
m ,X

(m)
n+1 ∼ N (AX(m)

m ,Ω),

(2.16)

where k = m− n, such that in the formula we have

µW = X(m)
n +Λn∆tm, ΣW = ∆tmΣn,

µY = A[X(m)
n + k∆tmΛn], ΣY = k∆tmAΣnA

′ +Ω.
(2.17)

2.3 Automatic Differentiation

Automatic differentiation [Baydin et al., 2015] has seen much adoption in recent years
due to advances in machine learning. We note that the primary algorithm for parameter
learning of deep neural networks requires backpropagation [Rumelhart et al., 1986] which
involves computing the partial derivatives of the loss function. Modern software [Abadi et al., 2015,
Paszke et al., 2019] includes tools like traced arrays which allows for the efficient representation
of the graph of computations that occur during program execution. This representation
is then utilized to compute the partial derivatives for forward and reverse mode auto-
differentiation.

8

Now, we describe a simple example of automatic differentiation.

y = f(g(θ)) (2.18)

Now, we utilize the substitution a0 = θ, a1 = g(a0), a2 = f(a1). Now, we have:

y =
d

da1
f(a1) ·

d

da0
g(a0) (2.19)

This gives us the ability to compute the values as functions of the previous inputs to
it in a computational graph. This naturally fits into the framework of GPUs and can
also be utilized in CPUs. Furthermore, automatic differentiation is also a core tenet of
several frameworks in the Python ecosystem for high performance computing. The efficient
computing of gradients also allows for several improvements to algorithms. Particularly, if
we wish to use gradient based moves for MCMC, we can make use of automatic differentiation
for this. In the next section we elaborate on one such framework.

2.4 JAX

JAX[Frostig et al., 2018] is a high performance computation library built in Python. It
combines automatic differentiation, Just In-Time Compilation (JIT) and vectorization to
achieve extremely fast runtimes and low memory utilizations for machine learning and
related areas. JAX possesses a JIT compiler that traces the expressions that are evaluated
in a function and then constructs a jax expression (jaxpr) which is then utilized by the
XLA [Sabne, 2020] (Accelerated Linear Algebra) compiler. These traced expressions are
performed with the help of a traced array which is a JAX-specific object. JAX is built
using the same API as Numpy [Harris et al., 2020] which makes it easy to use in place of
existing libraries employing numerical computation in Python.

Vectorization is also an essential component to JAX whether it be parallelization across
hardware or across dimensions in data objects. JAX provides two language primitives
vmap and pmap which allow the user to parallelize across data dimensions and devices
respectfully. These JAX primitives also integrate seamlessly with the JIT ecosystem (so
long as the function being mapped is JIT compatible) which provide runtime and memory
benefits[Subramani et al., 2021].

JIT compilation is not compatible with any Python code, particularly, control flow and
loops are not immediately conducive to being JIT compiled. There are workarounds and
constructs that exist within the JAX ecosystem that circumvent these issues, however, it is

9

important to note that prototyping code in JAX is non-trivial especially if the code intends
to be JIT compiled. Furthermore, JIT compilation in an interpreted language happens in
the first iteration, therefore, one may expect that the first iteration of the function runs
much slower than the other iterations. That being said, the runtime is significantly longer
if the code is not JIT compiled versus what it would be if it were JIT compiled.

To provide the reader with an understanding of the efficacy of JIT compilation, we
refer the reader to a model described in Chapter 4 for 100 particles and 100 observations
for several iterations and deliver the mean running time with the standard deviation. The
model itself is 3-dimensional. The non-JIT compiled code takes 1.31s ± 19.8ms per loop
iteration whereas the code that is JIT compiled 1.22ms ± 2.76µs which is roughly 1000x
faster. Note that this is specific to this particular example, the runtime can be longer or
shorter depending on the code that is being statically compiled.

10

Chapter 3

Methodology

In this section we outline our primary algorithm for combining stochastic optimization
and particle filtering. We also elaborate on some of the considerations that need to be
taken with respect to the search space for optimization, particularly for variables that are
constrained. Finally, we comment on the computational techniques that we employ to
build these algorithms efficiently.

3.1 Bayesian Normal Approximation

In the Bayesian context, inference for the state-space model (2.8) (and for the SDE state-
space model (2.7) in particular) in conducted via the posterior distribution

p(θ | y0:T) ∝ L(θ | y0:T)π(θ),

where π(θ) is the parameter prior. Often this parameter posterior is explored using
MCMC sampling techniques. However, this can be somewhat excessive when the number
of observations T is sufficiently large. This claim is justified by the so-called Bayesian
normal approximation [Gelman et al., 1995], which roughly states that for the state-space
model (2.8), under the same hypotheses and asymptotic conditions for which the maximum
likelihood estimator (MLE) of θ is approximately normal, the posterior distribution p(θ |
y0:T) is also approximately normal,

θ | y0:T
iid∼ N (θ̂, Σ̂), (3.1)

11

where θ̂ = argmax log p(θ | y0:T), Σ̂ = [d2

dθ2 log p(θ̂ | y0:T)]
−1, and log p(θ | y0:T) = ℓ(θ |

y0:T) + log π(θ). When the Bayesian normal approximmation (3.1) is justified, instead of
applying MCMC to conduct full Bayesian inference.

3.2 Stochastic Optimization with Particle Filtering

The algorithm that will be in the section below is quite simple. In a nutshell, we first run
the particle filter and then take the gradient of the log-likelihood of the particle filter with
respect to the parameters and step in that direction with some fixed ε. We can either
repeat this procedure until a preset convergence tolerance has been obtained or for a fixed
number of iterations. For the former, we note that the advantage is that we will always
have arrived at a converged optima while in the latter, we may still have not converged.
The advantage for the latter approach is that we now have a fixed computational budget
that is quantifiable while in the former we do not. For the purposes of the experiments in
this thesis, we restrict ourselves to a fixed computational budget.

Algorithm 2 Gradient Descent on the Log Posterior, θ

Result: θ̂
Initialize N ← number of particles
Initialize y0:T ← observations
Initialize ε← learning rate
Initialize θ̂
for i in 1 : K do

ℓ(θ̂)← particleFilter(y0:T , N , θ̂)
θ̃ ← ∇θ(ℓ(θ̂) + π(θ̂))
θ̂ ← ε · θ̃ − θ̂

end

Note that for the above algorithm we have K parameters, N iterations and M is the
number of particles. We should also note that we are utilizing automatic differentiation
to differentiate through the particle filter. ℓ is also the log-likelihood of the data in the
algorithm above. This still optimizes for the posterior as discussed in the previous section.
Additionally, this algorithm does not entail the computational techniques which are utilized
to make this both memory and runtime efficient.

12

Notice that the algorithm did not utilize any of the advancements made to stochastic
optimization which has been the workhorse algorithm for deep learning over the past
decade. This may include improvements to stochastic optimization like ADAM [Kingma and Ba, 2014].

3.3 Variable Transformations for Stochastic Optimization

Several variables require specific consideration to ensure that we can perform stochastic
optimization on an unconstrained scale. Note that, if we were to perform stochastic
optimization directly on the parameter space with constraints, depending on the step size,
we may potentially have an undefined likelihood. The primary variable transformations
we use for a variable, α are:

• if α ∈ R+, then, α→ log(α).

• If α < 0, let α→ log(−α).

• If α ∈ [a, b], let α→ log(α−a
b−α

). This is commonly referred to as the logit transform.

3.4 Gradient and Hessian Estimation

The first method of obtaining a gradient and hessian estimate for SDEs through particle
filters is to differentiate through the particle filter. We may perform this with the help
of automatic differentiation where we run the particle filter and obtain the gradient with
respect to the parameters. This method is highlighted in Algorithm 3.2. While this method
would yield an estimate of the gradient and hessian, these estimates are biased. Recent
work [Corenflos et al., 2021] highlights a theoretical result which shows that this method
is in fact biased.

In order to perform any form of inference for models, under the assumption that our
parameters are normally distributed, we must obtain an estimate of the mean and the
variance (additionally, the covariance between the parameters are important to obtain as
well). In [Poyiadjis et al., 2011], a method is provided to infer estimates of the gradient
and hessian for the particle filter where the resampling is performed with the multinomial
resampling scheme. The method utilizes pointwise estimates that they compute for the
gradient and the second derivative. They first use Fisher’s identity for the score (first

13

derivative), which is

∇ log p(y0:T | θ) =
∫
∇p(x0:T ,y0:T | θ) · p(x0:T |y0:T ,θ)dx0:T (3.2)

Additionally, they also present the following identity for the observed information matrix.

−∇2 log p(y0:T | θ) = ∇ log p(y0:T | θ)∇ log p(y0:T | θ)T −
∇2p(y0:T | θ)
p(y0:T | θ)

, (3.3)

with

∇2p(y0:T) | θ
p(y0:T | θ)

=

∫
∇ log p(x0:T ,y0:T , | θ)∇ log p(x0:T ,y0:T , | θ)T · p(x0:T |y0:T ,θ)dx0:T

+

∫
∇2 log p(x0:T ,y0:T ,θ) · p(x0:T |y0:T ,θ)dx0:T .

(3.4)
Since all terms can be computed with expectations with respect to p(x0:T | θ,y0:T), we
can approximate these expectations by exhaustively calculating each of the N particle
trajectories x0:T in Algorithm 1. This however requires saving the entire history of the
particle filter and also duplicates a number of computations. Algorithm 3 of [Poyiadjis et al., 2011]
below performs the desired calculations while avoiding both of these pitfalls.

14

Algorithm 3 Particle Filter with Score and Hessian Estimates

x1:N
0

iid∼ q0(x0 | y0,θ) // sample first time point
wi

0 = g(y0 | x0,θ)π(x0 | θ)/q0(x0 | y0,θ)
α1:N
0 ← 0

β1:N
0 ← 0

for t ≥ 1 do

vit−1 = wi
t−1/

∑N
i=1(w

i
t−1)

At ∼ Multinomial(N,vt)

xi
t
ind∼ q(xt | x

At
i

t−1,yt,θ)

wi
t = g(yt | xi

t)f(x
i
t | x

At
i

t−1,θ)/q(x
i
t | x

At
i

t−1,yt,θ)

αi
n = αi

n−1 +∇ log g(yn|xi
n) +∇ log f(xi

n|x
At

i
n−1)

βi
n = βi

n−1 +∇2 log g(yn|xi
n) +∇2 log f(xi

n|x
At

i
n−1)

end

L̂(θ | y0:T) =
∏T

t=0

(
1
N

∑N
i=1w

i
t

)
ST =

∑T
i=0W

i
Tα

i
T

ΣT = STS
T
T −

∑N
i=0 W

i
T (α

i
Tα

(i)T
T + βi

T)

Return L̂(θ | y0:T),ST ,ΣT

These values of the score and hessian can then be used in a stochastic optimization
routine or for comparison with closed form methods. The authors also elucidate about how
there is a path degeneracy[Doucet et al., 2009] problem for algorithm 3. They provide an
improved version of the algorithm for which we refer the reader to the original paper[Poyiadjis et al., 2011].

15

Chapter 4

Experimental Evaluation

In this section we will comment about different experiments that we conduct in order to
obtain inference results for our proposed method. We will begin by describing a model
(Brownian Motion with Drift) that will serve as a benchmark for experiments involving
identifying biased gradients and then we proceed to further experiments for different
models.

4.1 Brownian Motion with Drift

The model is
x0 ∼ π(x0) ∝ 1

xt ∼ N (xt−1 + µ∆t, σ2∆t)

yt ∼ N (xt, τ
2),

(4.1)

with θ = (µ, σ, τ). Note that with π(x0) ∝ 1, we may condition on y0 and obtain x0 | y0 ∼
N (y0, τ

2). In this case, the marginal likelihood is defined as

L(θ) = p(y1:T | y0,θ) (4.2)

rather than by p(y0:T | θ). The reason is that the latter expression requires one to integrate
over x0 ∼ π(x0), which can only be done when π(x0) is a proper prior. However, for our
choice of π(x0) ∝ 1 this is not the case. On the other hand, p(y1:T | y0,θ) only requires us
to integrate over p(x0 | y0,θ), which only requires this distribution to be proper, as is the
case here.

16

Data and Latent Variable

Figure 4.1: The x-axis is the time and the y-axis is the value of the variable at different
points in time. We should note that the observations are made under noise.

Brownian motion with drift is a simple model that will serve as a benchmark for further
experiments. Note that in this particular model, we have access to the closed form of L(θ)
(derived in Appendix A). Since our method is an approximation method, it will serve
as a reasonable sanity check and debugging tool to ensure that our method is not only
technically sound, but also empirically verifiable.

In this chapter we empirically evaluate the methods discussed in Chapter 3. However,
before proceeding with the simulation studies, we briefly detour to evaluate the bias present
in the two methods that we consider in Chapter 3.

17

4.1.1 Bias of Gradients

This section describes in detail the procedure we employ to determine the bias present
in different methods we may use to compute gradients and hessians. We use multiple
trials of the two methods, namely, taking the gradient of the particle filter using automatic
differentiation versus the approximation of the score and hessian methods [Poyiadjis et al., 2011].
In order to do so, we compare three methods given below:

• Accumulator Method: Using the α, β terms which are used to estimate the score
(first derivative) and the hessian (the second derivative) information.

• Auto Method: This method involves differentiating with respect to the particle filter
and obtaining the results for the score and hessian.

• Analytic Method: This involves computing the gradient and hessian of the exact
likelihood (4.2) via automatic differentiation.

We compare the scores and hessians derived from these three methods in order to see
whether our estimators for the inferred parameters are unbiased. We note that the plots
below confirm our hypothesis that they are in fact biased for the Auto method. Particularly,
we also find out that the accumulator method is an unbiased estimate of the score. To
generate the plots below, we run the experiments for either 10 or 100 observations and for
100, 1000, 10000 particles.

Figure 4.2: The estimates of the gradient for 10 observations and 100 particles. The line
in red represents the analytic value of the score function.

18

Figure 4.3: The estimates of the gradient for 10 observations and 1000 particles. The line
in red represents the analytic value of the score function.

Figure 4.4: The estimates of the gradient for 10 observations and 10000 particles. The line
in red represents the analytic value of the score function.

19

Figure 4.5: The estimates of the gradient for 100 observations and 100 particles. The line
in red represents the analytic value of the score function.

Figure 4.6: The estimates of the gradient for 100 observations and 1000 particles. The line
in red represents the analytic value of the score function.

20

Figure 4.7: The estimates of the gradient for 100 observations and 10000 particles. The
line in red represents the analytic value of the score function.

Now that we know that our score estimates derived from the accumulator method, we
have some confirmation that our estimates of the score that we obtain using that method is
unbiased. We benchmark these results of the score estimates obtained with the accumulator
method against those obtained by the automatic differentiation method. Next, we compute
the hessians of both the methods that we are benchmarking and compare it against the
analytic solution.

21

Figure 4.8: The estimates of the hessian for 10 observations and 100 particles. The line in
red represents the analytic estimate of the hessian element.

22

Figure 4.9: The estimates of the hessian for 10 observations and 1000 particles. The line
in red represents the analytic estimate of the hessian element.

23

Figure 4.10: The estimates of the hessian for 10 observations and 10000 particles. The line
in red represents the analytic estimate of the hessian element.

24

Figure 4.11: The estimates of the hessian for 100 observations and 100 particles. The line
in red represents the analytic estimate of the hessian element.

25

Figure 4.12: The estimates of the hessian for 100 observations and 1000 particles. The line
in red represents the analytic estimate of the hessian element.

26

Figure 4.13: The estimates of the hessian for 100 observations and 10000 particles. The
line in red represents the analytic estimate of the hessian element.

We observe that the accumulator method significantly outperforms the auto method in
terms of bias of the score and hessian and therefore, we use it in our results. We also note
that the hessian being symmetric implies that the lower triangular elements (excluding the
diagonal itself) is the same as its symmetric counterpart. Any differences seen between

27

them can be attributed to a different key being used for them. Thus, for the remainder of
this section, we utilize the accumulator method to obtain our results since it is unbiased.

We now outline the projection plots of the data. The projection plots are obtained
by holding all other variables constant at the value it was initialized to in the simulation
and varying the single variable of interest (for instance, µ). The projection plots are
demonstrable convex when all other variables are held constant, however, one would expect
that as we optimize over the multidimensional vector θ, the problem would no longer be
convex. The y-axis on 4.14 is the exact likelihood, which we have access to for this particular
model (since it is contains a closed form likelihood). There is also no randomness that is
present in the generation of 4.14.

Projection Plot BM Model

Figure 4.14: The y-axis is the exact likelihood and the x-axis is the different values for the
particular parameter. It is important to note that each of these plots is a 1-dimensional
representation of the parameter, holding other parameters constant.

Figure 4.15 is obtained by instead using the particle filter to obtain an estimate of
the log-likelihood instead of utilizing the exact likelihood. Thus, we obtain a stochastic
estimate of the 1-dimensional projection plots where the stochasticity is governed by the
generation of the random keys. It is important to note that as the number of particles
approaches infinity, we would observe that Figure 4.15 converges to 4.14. As we can see
from both Figure 4.14 and 4.15, while the extremities of the plots are not entirely the same,
the models of the plot are located in roughly the same region. It is also important to note
that viewing a subsection of the plot under a more fine lens would reveal that there is a
great deal of local non-convexity.

28

Projection Plot BM Model with the Particle Filter

Figure 4.15: The y-axis is the approximate log likelihood obtained using the particle filter
and the x-axis is the same as Figure 4.14. We note that certain parameters are more
non-convex (that is to say that they have several regions of non-convexity) compared to
others.

4.1.2 Inference for Brownmian Motion with Drift

Now, we estimate the parameters for the model and perform inference for the same. We
run the stochastic optimization algorithm for 1000 iterations with 500 particles with a
learning rate of 0.01 and obtain our converged estimates for the score and information. We
use a starting value of [1.0, 1.0, 1.0] for the parameters.

Figure 4.16: Inference for the brownian motion with drift model. The red line corresponds
to the true parameter values that we use for the simulation.

29

4.2 Lotka-Volterra with Additive Noise

The Lotka-Volterra model [Wangersky, 1978, Lotka, 1925, Lotka, 1920] is a set of ordinary
differential equations that is supposed to model the growth of predator and prey in a given
population. The equations typically model the change in the prey and predator populations
as a function of the interaction between the two. In particular, if the predator and the
prey interact, the total number of prey will reduce. There has been a plethora of work
done on the model which takes into consideration some of the assumptions present in the
Lotka-Volterra models. Additionally, if left alone, the predators will become extinct, and
similarly if left alone, the prey subpopulation will continue to grow.

In this example, we are interested in the ODE version of the Lotka-Volterra model,
which in terms of the prey variable xH and the predator variable xL is given by

dxH

dt
= αxH − βxHxL,

dxL

dt
= δxHxL − γxL.

(4.3)

Since we have xL, xH > 0, it is convenient to rewrite the ODE in terms of XH = log(xH)
and xL = log(xL):

dXH

dt
= α− β exp(XL),

dXL

dt
= δ exp(xH)− γ.

(4.4)

The measurement model is on Y n = (Y H
n , Y L

n) and is given by

Y H
n

ind∼ N (exp(XH(n∆t)), τ 2H)

Y L
n

ind∼ N (exp(XL(n∆t)), τ 2L).
(4.5)

The parameters of the model are thus θ = (α, β, γ, δ, σH , σL, τH , τL).

Inference here can be conducted by approximately solving the ODE using numerical
methods. Typically this is done using deterministic solvers. Here however we wish to
explore a simple stochastic solver which transforms the ODE in to the SDE model on
X(t) = (XH(t), XL(t)) given by

dXL(t) = (α− β exp(XL(t))) dt+ σH dBH(t)

dXH(t) = (−γ + δ exp(XH(t))) dt+ σL dBL(t).
(4.6)

30

4.2.1 Prior Distribution

Let Zi = exp(X i
0), i = H,L, and Z0 = (ZH , ZL). Then for the choice of prior

Z0 ∼ π(Z0) ∝ 1, (4.7)

we have

Zi | Y 0,θ
ind∼ TruncatedNormal(Y i

0 , τ
2
i)), (4.8)

where the truncation is for Zi > 0. Thus, we can sample implement a perfect importance
sampler by sampling directly from p(x0 | y0,θ). While the corresponding log-weights are
constant, they are not equal to zero. That is, the weight of particle x0 is given by

w(x0) =
π(x0 | θ)p(y0 | x0,θ)

q(x0 | y0,θ)
, (4.9)

where for the perfect importance sampler we have the proposal distribution

q(x0 | y0,θ) = p(x0 | y0,θ) =
π(x0 | θ)p(y0 | x0,θ)∫
π(x0 | θ)p(y0 | x0,θ) dx0

, (4.10)

such that w(x0) =
∫
π(x0 | θ)p(y0 | x0,θ) dx0. In this particular case, this boils down to

w(x0) =
∏

i=H,L

∫ ∞

0

ϕ((Zi − Y i
0)/τi)/τi dZi =

∏
i=H,L

Φ(Y i
0/τi), (4.11)

where ϕ(·) and Φ(·) are the PDF and CDF of N (0, 1).

4.2.2 Results

In this section, we provide all of the results for the simulation studies involving the Lotka-
Volterra model which is derived from an underlying ODE.

31

Data for Lotka-Volterra Model with Particle Filter

Figure 4.17: This figure consists of the observations and the latent variable that are sampled
from the model.

We then proceed to display the projection plots for the different parameters. For these
plots we set the bounds for each of the variables to be: [0.1, 2.0], [0.1, 2.0], [3.0, 5.0], [0.1, 2.0],
[0.01, 4.], [0.01, 4.], [0.01, 2.], [0.01, 2.] for Θ = [α, β, γ, δ, σh, σl, τh, τl] and we plot 100 points
in that range for each parameter. It should be noted that much like the previous projection
plots, while plotting θi, we hold all θj such that j ̸= i constant at its true parameter value.
For the projection plots, use a resolution number of 2. It should be noted that the higher
the resolution number the more fine-grained the approximation is and as a result, we expect
our stochastic optimization to perform better.

32

Projection Plot Lotka-Volterra Model with Particle Filter

Figure 4.18: This figure consists of the projection plot for all parameters in the Lotka-
Volterra model in the low-noise setting. The resolution number for this particular plot is
2.

The plots seem amenable to the accumulator method in general. We should note that
for this particular example, while we have σh and σl as parameters within our stochastic
optimization routine, we do not remove them at the time of parameter estimation.This
set of experiments with the Lotka-Volterra Model has nres = [2, 4, 8, 16], the number of
observations is 100, dt = 0.1 and Θ = [α, β, γ, δ, σh, σl, τh, τl] = [1.0, 1.0, 4.0, 1.0, 0.0001, 0.0001, 0.1, 0.1].
This is the low-noise setting for the Lotka-Volterra model. For the inference results, we use
the Adam [Kingma and Ba, 2014] optimizer with a learning rate of 0.01 and it is initialized
to be all [1.0, 1.0, 4.0, 1.0, 0.0001, 0.0001, 0.1, 0.1] on the log scale. We run these experiments
for 100 iterations. Theoretically, we must note that the σl and σh parameters are almost
exactly zero in our setting. However, for the purposes of simulation, we set it to be an
extremely small value and compute the results. For this particular problem, we initialize
the problem at the true values used for simulation.

To obtain our results for stochastic optimization, we run the accumulator algorithm 3
with 500 particles for 1000 iterations and with a step size of 0.01. This yields the point
estimates for our parameters. To obtain the inference plots, we take the estimate of the
hessian that we derive. We also assume for simplicity that our parameters are distributed

33

as a N (θ̂, Σ̂) where θ̂ is the estimate of our stochastic optimization procedure. In totality,
the stochastic estimates from the optimization procedure take around 33s to run for 1000
iterations.

Density Lotka-Volterra Model with Particle Filter

Figure 4.19: The true value of the parameters which is obtained from the simulation is the
line in red in the plots and the density is obtained from our samples. We also transform
the variables to their appropriate scale. The lines in red correspond to the true values of
the parameters used to simulate the data in the low-noise setting.

Next, we analyze the same problem but for τl = 0.25 and τh = 0.25 which is termed as
the high noise setting for the problem.

34

Lotka-Volterra Model Data - High Noise Setting

Figure 4.20: This figure consists of the observations and the latent variable that are sampled
from the model.

As we see in figure 4.20, the data has more noise in it compared to the low noise setting.

35

Projection Plot Lotka-Volterra Model with Particle Filter

Figure 4.21: This figure consists of the projection plot for all parameters in the Lotka-
Volterra model in the high-noise setting. The resolution number for this plot is 2.

In this case as well, the projection plots seem reasonable as we would expect. We do
notice some slight deviation in the values of γ and β that are noticeable.

36

Density Plot Lotka-Volterra Model for parameters

Figure 4.22: The true value of the parameters which is obtained from the simulation is the
line in red in the plots and the density is obtained from our samples. We also transform the
variables to their appropriate scale. The lines in red correspond to the true values of the
parameters used to simulate the data in the high-noise setting. The density for resolution
number 2 is blue, 4 is green, 8 is yellow and 16 is black

Now that we have obtained our results for the Lotka-Volterra model in both the high and
low-noise settings, we proceed to sampling data from the underlying ordinary differential
equation that we use to obtain the stochastic differential equation. Once again, we produce
the projection plots and the inference results. Once again, we categorize it into the high
and low noise settings. We first sample 21 observations in the low noise setting and use it
as the data for our model. That is to say that in this setting, we discard the simulated yi
and rely on the estimates of the state variables.

37

Projection Plot Lotka-Volterra Model with Particle Filter

Figure 4.23: This figure consists of the projection plot for all parameters in the Lotka-
Volterra model in the low-noise setting with data simulated from the underlying ODE.
The resolution number used for this plot is 2.

Next, we plot the density for the parameters that we wish to infer and obtain the
variance by adding a small additive constant to the diagonal to ensure positive definiteness.

38

Density Plot Lotka-Volterra Model for parameters

Figure 4.24: The true value of the parameters which is obtained from the simulation is the
line in red in the plots and the density is obtained from our samples. We also transform
the variables to their appropriate scale. The lines in red correspond to the true parameter
values we have for the experiment. The resolution number for this plot is 2.

Finally, we evaluate the Lotka-Volterra model with the underlying ode data in the high
noise setting.

39

Projection Plot for Lotka-Volterra Model with Particle Filter

Figure 4.25: This figure consists of the projection plot for all parameters in the Lotka-
Volterra model in the high-noise setting with data from the underlying ODE. This plot
was generated with resolution number 2.

Next, we infer the parameters as we did in the previous settings.

40

Density Plot Lotka-Volterra Model for parameters

Figure 4.26: The true value of the parameters which is obtained from the simulation is the
line in red in the plots and the density is obtained from our samples. We also transform
the variables to their appropriate scale. The lines in red correspond to the true parameter
values we have for the experiment. The resolution number used to obtain these results is
2.

4.3 Lotka Volterra with Multiplicative Noise

This model is the SDE variant of the previous model, but does not possess an underlying
ODE. There has also been a large body of work [Ryder et al., 2018] that focuses on this
particular variant of the model with different techniques for bayesian inference such as
variational inference. This is out of the scope of this particular thesis, however, we should
note that our results are obtained significantly faster than the neural-net based counterpart.
The SDE is given by X t = (Ut, Vt)[

dUt

dVt

]
=

[
αUt − βUtVt

βUtVt − γVt

]
dt+

[
αUt + βUtVt −βUtVt

−βUtVt γVt + βUtVt

]1/2
dBt. (4.12)

However, the SDE is actually approximated on the log scale, Zt = logX t. The noisy
observations are given by

yn
ind∼ N (exp(Zn), diag(τ

2)). (4.13)

41

Figure 4.27: The projection plots for the different parameters in the Lotka-Volterra model
with multiplicative noise. We are interested in the inference of α, β, γ. The resolution
number used to obtain this plot is 10.

In this particular setting we are only concerned with α, β and γ. The projection plots
indicate that the variables seem amenable to stochastic optimization (except for τ , but
we are not concerned at the moment with inferring τ). Next, we run our stochastic
optimization algorithm over the particle filter for 1000 iterations, with a learning rate (step
size) or 0.01 and we obtain the converged estimates of θ. For this particular experiment,
the values of θ that we use are [0.5, 0.0025, 0.3], we run the Adam optimizer with a learning
rate of 0.01 from the initial value of [1.0, 1.0, 1.0]. Finally, we used 50 observations for this
experiment.

42

Figure 4.28: The densities are given for the Lotka-Volterra model with the parameter value
used for simulation given as the red like and the parameters are the titles of the subplot.
The resolution number used to obtain this plot is 10.

43

Chapter 5

Discussion of Experimental Results

In this chapter we go into detail about interpreting the results from Chapter 4. We first
summarize some of the timing improvements and caveats to them, followed by a qualitative
evaluation of the simulated inference results, then an evaluation of the results using the
real data and understanding the issues present with the variance.

5.1 Inference for Simulation

The inference that we obtained from the experiments in Chapter 4 through the simulated
data are very promising for our proposed approach. In particular we note that the mode
that we find for the parameters are very close to if not exactly at the true value that we
used for the model.The challenges in the variance is likely as a consequence of the fact
that we are simulating the likelihood at every step, which is a function of the key we are
using. Since the key changes iteration to iteration, our likelihood also changes which makes
finding a stable hessian challenging. We also note that the local optima that we arrive at is
also stable, this is to say that when we vary the learning rate, we still observe that we are
converged at the local optima. This serves as a useful sanity check, because if we consider
a projection plot and visualize a subdomain within the plot, we notice quickly that the
likelihood is very non-convex within that subdomain. We provide one such plot below:

44

Figure 5.1: The plot reduces the x values that we search over and as a result, we obtain a
magnified view of the likelihood in a very small domain.

5.2 Timing and JIT Compilation

We first note that all of the results presented in the experiments section of the paper
include the timing for JIT compilation as well as the runtime of the algorithm itself. As
we mentioned in Chapter 2, it is important to note that the intial time of the JIT compile
step is a fixed one-time cost and is never incurred again for the entirety of the execution.
As a consequence, we note that some of our results are impressive since we would only have
to JIT it once and then we can run it on multiple datasets. This is to say that our timings
for the experiments are slightly more than what we would expect and the amortized cost
of the JIT compilation step is negligible if we run it on several datasets. Additionally, we
note that it is not particularly easy to ensure that the code for the particle filter or custom
resampling steps is JIT compatible. This incurs significant overhead when developing code
for a particular applications. That being said, it is important to weight the amount of
time it would take to create code that is JIT compatible versus the additional runtime
that would be incurred by not carefully crafting the code to adhere to JIT standards.

5.3 Bias in Automatic Differentiation

One of the experimental results that was observed was the fact that there was bias
present in the Auto method. This bias can be attributed to the multinomial resampling
step. Multinomial resampling is compatible with automatic differentiation but when we

45

differentiate the particle filter with respect to it, it imposes some bias on the estimated
gradient. This is highlighted in theoretical work [Corenflos et al., 2021] where they prove
that the gradient estimated through the multinomial resampling step is in fact biased. Due
to the recent nature of this work, our implementation and verification of the bias present in
the gradients occurred simultaneously to this work. As mentioned earlier, the multinomial
resampling step is a non-continuous operation and as a result, gradients cannot propagate
through it.

5.4 Constraint Satisfied Stochastic Gradient Descent

In the experiments we have seen, most, if not all the constraints were satisfied with a
log-exp transformation scheme. This coupled with Ito’s lemma allowed us to efficiently
obtain an unconstrained scale for the parameters and the latent variables which in turn
provided us with stochastic gradient estimates. However, we should note that for more
complicated constraints, for example θi ∈ [0, 10] ∩ Z, we would need a more sophisticated
approach. The first possibility is to utilize a form a constrained optimization that would
allow us to effectively optimize over the particle filter without worrying about undefined
likelihoods. The second possibility is to potentially rederive a version of Ito’s lemma that
might suit the particular constraint. The final possibility is to take the floor or ceiling
of the converged value to obtain an integer, however, this deals with the issue of biases
present in our obtained values which we discuss in detail below.

46

Chapter 6

Conclusion

In this chapter we summarize our contributions through this thesis. Firstly, we show that
our method performs well for the simulation studies that we look at. In particular, we
obtain precise estimates of our parameters of inference for the different examples. We also
combine several existing methods that work on diverse problems and craft a solution that
is specific to SDEs.

We also showcase several methods for SDE inference and make use of the latest technological
advances in the space of Just In Time compilation and parallelization to ensure that our
methods have low runtime and memory utilization.

We present a high-performance library that integrates all of these methods using JAX.
We document all of our code and ensure that our methods are tested, robust and scalable.
This allows us to port inference to high dimensional settings, multi-cpu settings as well
as utilize automatic computation of gradients present in JAX’s automatic differentiation
framework. Furthermore, the open-sourcing of this library will also allow other researchers
to make use of the methods we have developed and ported for SDE inference.

6.1 Future Research Directions

• We present several algorithms that are utilized for SDE inference, but several advancements
in the literature of Sequential Monte Carlo is yet to be implemented. In particular,
techniques like SMC2 [Chopin et al., 2013] , Auxiliary particle filters or SMC with
MCMC moves [Chopin et al., 2020] are potential directions for future research which
might be fruitful.

47

• Fully differentiable particle filters [Jonschkowski et al., 2018, Corenflos et al., 2021]
are an exciting avenue for further exploration. In our work, the resampling step is not
differentiable and we elaborate on the bias induced by this in the discussion section.
It is possible to construct fully differentiable particle filters which might circumvent
such issues and also yield theoretically favourable results like unbiasedness.

• There are several additional score and information methods that build on the original
implementation of Doucet. Some of these algorithms have a runtime that is quadratic
in the number of particles and is computationally more expensive than the approach
we employ in this thesis. However, their estimates are lower variance and might be
interesting to investigate.

48

References

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Software available
from tensorflow.org.

[Andrieu et al., 2010] Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov
chain monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 72(3):269–342.

[Baydin et al., 2015] Baydin, A., Pearlmutter, B., Radul, A., and Siskind, J. (2015).
Automatic differentiation in machine learning: A survey. arxiv preprint arxiv:
150205767.

[Chopin et al., 2013] Chopin, N., Jacob, P. E., and Papaspiliopoulos, O. (2013). Smc2: an
efficient algorithm for sequential analysis of state space models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 75(3):397–426.

[Chopin et al., 2020] Chopin, N., Papaspiliopoulos, O., et al. (2020). An introduction to
sequential Monte Carlo. Springer.

[Corenflos et al., 2021] Corenflos, A., Thornton, J., Deligiannidis, G., and Doucet, A.
(2021). Differentiable particle filtering via entropy-regularized optimal transport. In
International Conference on Machine Learning, pages 2100–2111. PMLR.

49

[Del Moral et al., 2006] Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential
monte carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(3):411–436.

[Douc and Cappé, 2005] Douc, R. and Cappé, O. (2005). Comparison of resampling
schemes for particle filtering. In ISPA 2005. Proceedings of the 4th International
Symposium on Image and Signal Processing and Analysis, 2005., pages 64–69. IEEE.

[Doucet et al., 2009] Doucet, A., Johansen, A. M., et al. (2009). A tutorial on particle
filtering and smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-
704):3.

[Durham and Gallant, 2002] Durham, G. B. and Gallant, A. R. (2002). Numerical
techniques for maximum likelihood estimation of continuous-time diffusion processes.
Journal of Business & Economic Statistics, 20(3):297–338.

[Frostig et al., 2018] Frostig, R., Johnson, M. J., and Leary, C. (2018). Compiling machine
learning programs via high-level tracing. Systems for Machine Learning, pages 23–24.

[Gelman et al., 1995] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995).
Bayesian data analysis. Chapman and Hall/CRC.

[Gordon et al., 1993] Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993). Novel
approach to nonlinear/non-gaussian bayesian state estimation. In IEE Proceedings F-
radar and signal processing, volume 140, pages 107–113. IET.

[Harris et al., 2020] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Ŕıo, J. F., Wiebe,
M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy. Nature,
585(7825):357–362.

[Johansen and Doucet, 2008] Johansen, A. M. and Doucet, A. (2008). A note on auxiliary
particle filters. Statistics & Probability Letters, 78(12):1498–1504.

[Jonschkowski et al., 2018] Jonschkowski, R., Rastogi, D., and Brock, O. (2018).
Differentiable particle filters: End-to-end learning with algorithmic priors. arXiv preprint
arXiv:1805.11122.

50

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[Kudlicka et al., 2020] Kudlicka, J., Murray, L. M., Ronquist, F., and Schön, T. B. (2020).
Probabilistic programming for birth-death models of evolution using an alive particle
filter with delayed sampling. In Uncertainty in Artificial Intelligence, pages 679–689.
PMLR.

[Lotka, 1920] Lotka, A. J. (1920). Analytical note on certain rhythmic relations in organic
systems. Proceedings of the National Academy of Sciences, 6(7):410–415.

[Lotka, 1925] Lotka, A. J. (1925). Elements of physical biology. Williams & Wilkins.

[Lysy and Tong, 2017] Lysy, M. and Tong, J. (2017). msde: Bayesian inference for
multivariate stochastic differential equations. R package version, 1(2).

[Maruyama, 1955] Maruyama, G. (1955). Continuous markov processes and stochastic
equations. Rendiconti del Circolo Matematico di Palermo, 4(1):48–90.

[Murray, 2013] Murray, L. M. (2013). Bayesian state-space modelling on high-performance
hardware using libbi. arXiv preprint arXiv:1306.3277.

[Murray and Schön, 2018] Murray, L. M. and Schön, T. B. (2018). Automated learning
with a probabilistic programming language: Birch. Annual Reviews in Control, 46:29–43.

[Oksendal, 2013] Oksendal, B. (2013). Stochastic differential equations: an introduction
with applications. Springer Science & Business Media.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang,
E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J.,
and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning
library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc.

[Pedersen, 1995] Pedersen, A. R. (1995). A New Approach to Maximum Likelihood
Estimation for Stochastic Differential Equations Based on Discrete Observations.
Scandinavian Journal of Statistics, 22(1):55–71.

[Picchini, 2014] Picchini, U. (2014). Inference for sde models via approximate bayesian
computation. Journal of Computational and Graphical Statistics, 23(4):1080–1100.

51

[Pitt and Shephard, 1999] Pitt, M. K. and Shephard, N. (1999). Filtering via Simulation:
Auxiliary Particle Filters. Journal of the American Statistical Association, 94(446):590–
599. tex.ids= pitt.shephard22 publisher: [American Statistical Association, Taylor &
Francis, Ltd.].

[Poyiadjis et al., 2011] Poyiadjis, G., Doucet, A., and Singh, S. S. (2011). Particle
approximations of the score and observed information matrix in state space models
with application to parameter estimation. Biometrika, 98(1):65–80.

[Ronquist et al., 2021] Ronquist, F., Kudlicka, J., Senderov, V., Borgström, J., Lartillot,
N., Lundén, D., Murray, L., Schön, T. B., and Broman, D. (2021). Universal probabilistic
programming offers a powerful approach to statistical phylogenetics. Communications
biology, 4(1):1–10.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors. nature, 323(6088):533–536.

[Ryder et al., 2018] Ryder, T., Golightly, A., McGough, A. S., and Prangle, D. (2018).
Black-box variational inference for stochastic differential equations. In International
Conference on Machine Learning, pages 4423–4432. PMLR.

[Sabne, 2020] Sabne, A. (2020). Xla : Compiling machine learning for peak performance.

[Särkkä and Solin, 2019] Särkkä, S. and Solin, A. (2019). Applied stochastic differential
equations, volume 10. Cambridge University Press.

[Stramer and Yan, 2007] Stramer, O. and Yan, J. (2007). On simulated likelihood of
discretely observed diffusion processes and comparison to closed-form approximation.
Journal of Computational and Graphical Statistics, 16(3):672–691.

[Subramani et al., 2021] Subramani, P., Vadivelu, N., and Kamath, G. (2021). Enabling
fast differentially private sgd via just-in-time compilation and vectorization. Advances
in Neural Information Processing Systems, 34.

[Svedin et al., 2021] Svedin, M., Chien, S. W., Chikafa, G., Jansson, N., and Podobas, A.
(2021). Benchmarking the nvidia gpu lineage: From early k80 to modern a100 with
asynchronous memory transfers. In Proceedings of the 11th International Symposium on
Highly Efficient Accelerators and Reconfigurable Technologies, pages 1–6.

[Wangersky, 1978] Wangersky, P. J. (1978). Lotka-volterra population models. Annual
Review of Ecology and Systematics, 9(1):189–218.

52

[Wigren et al., 2019] Wigren, A., Risuleo, R. S., Murray, L., and Lindsten, F. (2019).
Parameter elimination in particle gibbs sampling. Advances in Neural Information
Processing Systems, 32.

53

Appendix A

A.1 Proof of 2.12

In order to prove the above statement, we first have to observe that p(W,X, Y) is a
multivariate normal and thus we must obtain the mean and variance. Then, letZW ,ZX ,ZY

be independent vectors of independent and identically distributed normal random variables
of size corresponding to the dimensions of W ,X,Y then we have

W = µW +Σ
1/2
W ZW

X = W + µX|W +Σ
1/2
X|WZX

= µW + µX|W +Σ
1/2
W ZW +Σ

1/2
X|WZX

Y = AX +Σ
1/2
Y ZY

= A[µW + µX|W +Σ
1/2
W ZW +Σ

1/2
X|WZX] +Ω1/2ZY

= A[µW + µX|W] +A[Σ
1/2
W ZW +Σ

1/2
X|WZX] +Ω1/2ZY .

(A.1)

54

The following steps will be computing the covariance between each of the variables using
the equations derived above

cov(W ,X) = cov(µW +Σ
1/2
W ZW ,µW + µX|W +Σ

1/2
W ZW +Σ

1/2
X|WZX)

= cov(Σ
1/2
W ZW ,Σ

1/2
W ZW +Σ

1/2
X|WZX)

= ΣW

cov(W ,Y) = cov
(
µW +Σ

1/2
W ZW ,A[µW + µX|W] +A[Σ

1/2
W ZW +Σ

1/2
X|WZX] +Ω1/2ZY

)
= cov

(
Σ

1/2
W ZW ,A[Σ

1/2
W ZW +Σ

1/2
X|WZX] +Ω1/2ZY

)
= ΣWA′

cov(X,Y) = cov
(
µW + µX|W +Σ

1/2
W ZW +Σ

1/2
X|WZX ,A[µW + µX|W]

+ A[Σ
1/2
W ZW +Σ

1/2
X|WZX] +Ω1/2ZY

)
= cov

(
Σ

1/2
W ZW +Σ

1/2
X|WZX ,A[Σ

1/2
W ZW +Σ

1/2
X|WZX] +Ω1/2ZY

)
= (ΣW +ΣX|W)A′.

(A.2)
Similarly, we have the variance of each variable

var(W) = var(µW +Σ
1/2
W ZW)

= ΣW

var(X) = var(µW + µX|W +Σ
1/2
W ZW +Σ

1/2
X|WZX)

= ΣW +ΣX|W

var(Y) = var(A[µW + µX|W] +A[Σ
1/2
W ZW +Σ

1/2
X|WZX] +Ω1/2ZY)

= A(ΣW +ΣX|W)A′ +Ω.

(A.3)

Now, we move on to a proof for (3) Given the joint distribution from (2), we can directly
apply the formula for the conditional distribution of a multivariate normal to obtain
p(W |Y) ∼ N (µW |Y ,ΣW |Y). In this context we have

µW |Y = µW +ΣWA′Σ−1
Y (Y − µY)

ΣW |Y = ΣW −ΣWA′Σ−1
Y AΣW

(A.4)

which completes the final formulation.

55

A.2 Brownian Motion Posterior Derivation

The exact likelihood is defined as p(y1:T | y0,θ) rather than p(y0:T | θ). The reason is that
the latter expression requires one to integrate over x0 ∼ π(x0), which can only be done
when π(x0) is a proper prior. However, for our choice of π(x0) ∝ 1 this is not the case. On
the other hand, p(y1:T | y0,θ) only requires us to integrate over p(x0 | y0,θ), which only
requires the posterior to be proper (which is always the case for valid Bayesian inference).

Conditioned on x0 and θ, the Brownian latent variables x1:T are multivariate normal
with

E[xt | x0,θ] = x0 + µt,

Cov(xs, xt | x0,θ) = σ2min(s, t).
(A.5)

Conditioned on x0:T and θ, the measurement variables y1:T are multivariate normal with

E[yt | x0:T ,θ] = x1:T ,

Cov(ys, yt | x0:T ,θ) = τ 2δst.
(A.6)

Therefore, the marginal distribution of y1:T is multivariate normal with

E[yt | x0,θ] = x0 + µt,

Cov(ys, yt | x0,θ) = σ2min(s, t) + τ 2δst.
(A.7)

For the given choice of prior, we have x0 | y0 ∼ N (y0, τ
2) for the initial observation y0.

Integrating over x0, the marginal distribution of y1:T is MVN with

E[yt | y0,θ] = y0 + µt,

Cov(ys, yt | y0,θ) = σ2min(s, t) + τ 2(δst + 1).
(A.8)

This concludes our derivation.

56

	List of Figures
	Introduction
	Motivation
	Contributions
	Outline of Thesis

	Background Material
	Stochastic Differential Equations
	Particle Filters
	Bridge Proposal

	Automatic Differentiation
	JAX

	Methodology
	Bayesian Normal Approximation
	Stochastic Optimization with Particle Filtering
	Variable Transformations for Stochastic Optimization
	Gradient and Hessian Estimation

	Experimental Evaluation
	Brownian Motion with Drift
	Bias of Gradients
	Inference for Brownmian Motion with Drift

	Lotka-Volterra with Additive Noise
	Prior Distribution
	Results

	Lotka Volterra with Multiplicative Noise

	Discussion of Experimental Results
	Inference for Simulation
	Timing and JIT Compilation
	Bias in Automatic Differentiation
	Constraint Satisfied Stochastic Gradient Descent

	Conclusion
	Future Research Directions

	References
	Appendix
	Proof of 2.12
	Brownian Motion Posterior Derivation

