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Abstract

To cope with the ever-increasing demand for higher data rates, reduced latency, and
improved coverage, new technologies are needed to advance the current state of wireless
communication systems. One of the promising new additions to fifth-generation (5G)
basestations is the use of massive multiple-input multiple-output (MIMO) technology. The
key concept is to equip the basestation with tens or hundreds of radio-frequency (RF)
transceiver chains, all utilizing the same time-frequency resources simultaneously. The
additional degrees of freedom this offers allows the basestation to serve multiple users
in the same resource block and enables multi-fold improvements in spectral efficiency.
Nevertheless, this increase in the number of chains, coupled with the expected increase
in transmission bandwidths, complicates the hardware design process and magnifies the
impact of hardware imperfections on the system performance.

Mitigating hardware limitations and imperfections in conventional single-input single-
output (SISO) transmitters is a well-established discipline, and extending most of the
techniques developed for SISO transmitters to the MIMO case is relatively straightfor-
ward. The most prominent exception to this, however, is digital predistortion (DPD),
which has been the most popular power amplifier (PA) linearization technique for the past
three decades. The successful application of DPD to massive MIMO transmitters faces two
major challenges. First, reducing the size and cost of the basestation necessitates placing
the transmitter antennas in close proximity, which leads to unavoidable inter-antenna cou-
pling. The combination of the PAs’ nonlinearity and inter-antenna coupling gives rise to
nonlinear crosstalk effects that cannot be mitigated using conventional DPD techniques.
This phenomenon is exacerbated by the need to track the dynamic multi-user channel and
update the employed precoding accordingly, the result of which is the constant variation in
the average-power levels transmitted by the different PAs. Second, since tens or hundreds
of low-power PAs are to be employed instead of a single high-power one, the overhead
power budget for per-chain DPD must be reduced to maintain a reasonable overall effi-
ciency. The power overhead incurred includes the power consumed by the real-time DPD
engine, as well as that consumed by the transmitter-observation receiver (TOR) needed to
train the DPD module.

The main objective of this work is developing robust and effective digital signal process-
ing (DSP) techniques that mitigate the combined effects of PA nonlinearity and antenna
crosstalk in massive MIMO transmitters. The thesis starts by investigating the impact
of precoding on the average-power levels transmitted by the different RF chains, and an-
alyzing the effect this has on the active impedances seen by the PAs in the presence of
antenna crosstalk. It is shown that, although precoding is a system-level function that mit-
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igates multi-user channel effects, it has a direct impact on the RF performance of the PAs.
Hence, the DPD and precoding subsystems cannot be operated independently from one
another. Based on this analysis, we propose two solutions to the problem. The first com-
prises a load-dependent DPD architecture and a low-complexity algorithm that reduces
the disparity in average-power levels arising from conventional precoding schemes. The
second solution comprises alternate precoding schemes that fully eliminate the disparity in
average-power levels across the RF chains and, consequently, simplify the required DPD
architecture. Both solutions ensure a stable performance across all channel conditions.

The second objective of this work is reducing the computational and power overheads
of the DPD subsystem. To this end, we propose a computationally efficient algorithm
for estimating the delay and phase offsets between the transmitter and the TOR used for
DPD training. The proposed algorithm is less resource-consuming and more accurate than
the exhaustive search methods employed in the literature. In addition, we propose a low-
complexity real-time DPD architecture that requires less hardware resources to implement,
introduces less latency, and consumes less power when compared with prior works.
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Chapter 1

Introduction

1.1 Motivation

A number of technological advances have fundamentally changed our world, but none more
so than the evolution of consumer electronics. The use of electronic devices permeates into
every facet of our everyday lives; from personal computers and mobile phones to smart
watches and fitness gadgets. The enormous volumes of data generated by these devices,
and the need for handling and transferring them securely and reliably, is what drives the
continuous development in networking and cellular infrastructure. Next-generation cellular
networks should be able to address not only the current demand, but also that expected
with the adoption of new technologies, such as self-driving cars and smart homes. 5G
cellular networks are envisioned to cope with the expected multi-fold increase in data rates
and number of connected devices, all while maintaining a negligible round-trip latency
and a high quality of service [1, 2]. The main challenge to achieving these objectives is
to increase the data throughput of 5G basestations beyond the capabilities of those of
predecessor cellular systems.

While the traditional approaches to increasing system capacity have been to utilize
more spectrum and densify the deployment of access points, these alone will not suffice in
meeting 5G requirements. Improving the spectral efficiency in the utilized band is, thus,
essential. One of the key enabling technologies in 5G basestations is the use of massive
MIMO transceivers [3–5]. A 5G basestation is expected to feature tens or hundreds of
RF transceiver chains, all utilizing the same time-frequency resources simultaneously. The
use of multiple chains, and the additional degrees of freedom this offers, is the only viable
approach to attaining substantial improvements in spectral efficiency [6]. Nevertheless,
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this increase in the number of chains, coupled with the expected increase in transmission
bandwidths, brings about new challenges that were not present in predecessor cellular
systems. Not only does the hardware design process become more challenging, but so does
the implementation of the associated DSP functions.

Modulation
& Coding

Modulation
& Coding

Precoding

PAPR 
Reduction DPD I/Q Imbalance 

Compensation PA
𝑓𝑓𝑅𝑅𝑅𝑅

Up-sampling

DACs

Up-conversion

PAPR 
Reduction DPD I/Q Imbalance 

Compensation PA
𝑓𝑓𝑅𝑅𝑅𝑅

DACs

PAPR 
Reduction DPD I/Q Imbalance 

Compensation
PA

𝑓𝑓𝑅𝑅𝑅𝑅

DACs

⋮ ⋮ ⋮

⋮

𝐾𝐾 Chains𝐿𝐿 Streams

DSP Unit

Channel Estimate

Figure 1.1: Block diagram of a fully digital massive MIMO transmitter.

Fig. 1.1 shows the block diagram of a fully digital massive MIMO transmitter system
that comprises K RF chains and serves L < K users. Each of the K chains employs an up-
conversion unit, a PA, and an antenna. This architecture is to be utilized in transmitters
that cover traditional sub-6 GHz bands, and may also be deployed in their millimeter-wave
counterparts [7]. Besides carrying out the essential functions of modulation, forward error-
coding, channel estimation, and precoding, the DSP unit must also compensate for hard-
ware limitations and imperfections. Digital compensation and pre-processing techniques
for SISO transceiver systems are relatively well-studied [8]. The four main pre-processing
modules in almost every SISO transmitter are upsampling, peak-to-average power ratio
(PAPR) reduction, DPD, and In-phase/Quadrature-phase (I/Q) imbalance compensation.
These modules are also needed in MIMO transmitters as shown in Fig. 1.1.

All four pre-processing functions in Fig. 1.1 are direct extensions of their counterparts
in SISO systems, with the exception of DPD. DPD is almost always necessary to compen-
sate for PA nonlinearity, which degrades the transmitted signal quality and causes spectral
regrowth that interferes with adjacent frequency bands. DPD techniques for SISO systems
are relatively well-studied [9], but extending them to the MIMO case is not straightforward.
This is because of the high level of integration required in 5G basestations to reduce fabri-
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cation and operation costs, whereby the transmitter antennas are situated closely together
and inevitable inter-antenna coupling arises. The combination of the PAs’ nonlinearity
and inter-antenna coupling gives rise to nonlinear crosstalk effects that cannot be miti-
gated by employing a conventional SISO DPD module in each chain [10–12]. This problem
can be circumvented by introducing RF isolators between each PA-antenna pair, which
would isolate each PA from its terminating antenna and protect against crosstalk-induced
effects. However, implementing such a solution is challenging since isolators are bulky and
expensive.

Therefore, effective signal processing techniques are needed to mitigate the resulting
distortions and ensure that signal quality requirements are met. Over the past decade,
there have been numerous works on the MIMO-DPD problem, but it was only recently
that practical solutions were developed [13]. The main problem with these solutions,
however, is that they do not consider the impact precoding has on the RF performance. In
a multi-user MIMO system, precoding serves to mitigate the free-space channel and ensure
that each user terminal receives its intended signal, with little to no interference from
other users. Precoding dictates the average-power levels across the different RF chains
and, consequently, the power levels of the crosstalk signals impacting the different PAs.
Since the free-space channel is time-varying, the employed precoding must be updated
accordingly, which can lead to channel-dependent variations in RF performance. It is,
therefore, crucial to develop a MIMO-DPD solution that takes precoding into account.

Another challenge facing the implementation of DPD in massive MIMO systems is
energy efficiency. Since basestation transmitters are expected to employ tens or hundreds
of low-power PAs instead of a single high-power one, the overhead power margin for per-
chain DPD (as a percentage of the PA transmit power) must be reduced to maintain a
reasonable overall efficiency. The power overhead incurred includes the power consumed
by the logic circuits in the always-running DPD engine and that consumed by the TOR
required to capture the PA output and update the DPD coefficients. Both sources of power
consumption scale up with the instantaneous transmission bandwidth, which is expected
to increase from the current 5-20 MHz to hundreds of MHz.

1.2 Thesis Objectives

This thesis aims at developing efficient and reliable DSP algorithms that address the com-
bined effects of PA nonlinearity and antenna crosstalk in massive MIMO systems. The
objectives of this work are as follows:
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1. Analyzing the effects of antenna crosstalk and precoding on the linearizability of the
PAs in a highly-integrated MIMO system, and developing a MIMO-DPD architecture
that takes these effects into account.

2. Developing new precoding schemes that exploit the additional degrees of freedom
offered in a massive MIMO system, with the aim of reducing the requirements on the
RF front ends and simplifying the DPD subsystem.

3. Devising a low-complexity DPD architecture and training algorithm that reduce the
computational and power overheads of both the real-time DPD engine and the TOR
required for training.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 presents the necessary background theory
for the following chapters. It begins with an overview on massive MIMO systems before
presenting a detailed description of the theory behind SISO DPD, and how it can be
extended to the MIMO case. The chapter also explains the nuances of downlink precoding
and reviews conventional linear precoding methods.

Chapter 3 begins with analyzing the effects of antenna crosstalk and precoding on
the active load impedances seen by the PAs. This analysis is then used to devise a low-
complexity precoding technique and a load-dependent DPD structure that ensure reliable
performance across all operating conditions. The proposed architecture is experimentally
validated on a prototype MIMO transmitter.

Chapter 4 presents the proposed precoding schemes. Unlike conventional precoders,
the proposed ones ensure that all PAs transmit at the same average-power level. The
proposed precoders ease the requirements on the RF front ends and reduce the complexity
of the DPD engine, as exemplified by the numerical simulations and experimental results
presented.

Chapter 5 presents a computationally efficient algorithm for estimating the delay and
phase offsets associated with the TOR used for DPD training. The chapter also presents
a low-complexity real-time DPD architecture that reduces the power consumption of the
DPD engine below that incurred in prior works.

Finally, Chapter 6 concludes this work by summarizing the contributions and outlining
possible directions for future research.
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Chapter 2

Background Theory

This chapter presents the necessary background theory and lays the theoretical foundations
for the following chapters. We start by briefly describing the massive MIMO system archi-
tecture and outlining the main DSP functionalities. We then present a detailed description
of the two DSP challenges tackled in this work, namely, DPD and precoding.

2.1 Introduction to Massive MIMO Systems

2.1.1 The Fully Digital MIMO Architecture

Massive MIMO is one of the key enabling technologies in 5G and future wireless systems.
The basic concept is to equip the basestation with tens or hundreds of RF transceiver
chains, all utilizing the same time-frequency resources simultaneously. The additional
degrees of freedom this offers allows the basestation to serve multiple users in the same
resource block and enables multi-fold improvements in spectral efficiency [4–6]. Fig. 2.1
shows the basic idea behind massive MIMO. A basestation equipped with a large number
of antennas, K, serves L single-antenna user terminals that are not co-located. While the
term ”massive” implies that L � K, significant performance gains can still be obtained
with K/L ratios as small as 2 [14].

During the uplink phase, the basestation has to separate the signals corresponding to
the different users. Whereas during the downlink phase, the basestation precodes the users’
signals so as to counteract the free-space channel and ensure that each terminal receives
only its intended signal (note that the notion of precoding in a MIMO system is completely
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different from that in a SISO one, cf., [15–17]). Accordingly, the basestation must estimate
both the uplink and downlink channels. Both channels are the same in time-division
duplex (TDD) operation, assuming proper reciprocity calibration [18]. In this mode, the
basestation acquires knowledge of the channel from the pilot signals transmitted by the
user terminals during the uplink phase [6].
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(a) Downlink.
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Figure 2.1: The fully digital massive MIMO architecture.

The basestation architecture, shown in Fig. 2.1, is fully digital, in the sense that each
RF chain has a digital input. Less complex hybrid analog-digital architectures, such as
that shown in Fig. 2.2, are also possible [19]. Hybrid architectures offer appreciable reduc-
tions in terms of hardware complexity and power consumption, at the expense of reduced
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flexibility and performance [20]. These sub-optimal architectures are not suitable for de-
ployment in dense sub-6 GHz urban environments, which feature rich multi-path scattering,
but can be cost effective when deployed in line-of-sight (LOS)-dominated millimeter-wave
environments [21,22]. In this work, we only consider the fully digital architecture.
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Figure 2.2: Downlink in a hybrid analog-digital massive MIMO system.

2.1.2 Compensating Hardware Imperfections Using DSP

Besides carrying out the essential functions of modulation, forward error-coding, channel
estimation, and precoding, the DSP unit in a massive MIMO basestation must also address
hardware limitations and imperfections. As shown in Fig. 2.3, the four main pre-processing
modules required in each RF chain are up-sampling, PAPR reduction, DPD, and I/Q
imbalance compensation. Thus, a more realistic depiction of the MIMO transmitter in
Fig. 2.1a is that shown in Fig. 1.1.

The I/Q imbalance compensator serves to mitigate the gain and/or phase imbalances
between the In-phase and Quadrature-phase paths in the up-conversion unit. It is only
necessary if a direct-conversion configuration (also known as zero-intermediate-frequency
(IF)) is utilized [23–25]. The DPD module compensates for PA nonlinearity, which degrades
the transmitted signal quality and causes spectral regrowth that interferes with coexisting
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communication systems. As Fig. 2.3 shows, training the DPD and I/Q imbalance com-
pensator modules requires a dedicated TOR (a directional coupler plus a down-conversion
unit) that captures the PA output signal and feeds it back to the DSP unit. The power
overhead incurred by the TOR decreases the overall system efficiency but helps ensure that
signal quality requirement are met.

DPD PA

Training 
Algorithm

DACs

𝑓𝑓𝑅𝑅𝑅𝑅

Up-conversion

Down-conversion

𝑓𝑓𝑅𝑅𝑅𝑅

I/Q Imbalance 
Compensator

PAPR 
Reduction

Up-sampling

Modulation
& Coding

ADCs

Figure 2.3: A SISO transmitter system with a conventional TOR configuration.

The PAPR reduction module limits the dynamic range of the input signal, which relaxes
the resolution requirements on the digital-to-analog converter (DAC) modules and improves
the power efficiency of the system. This is because amplifying a high-PAPR signal requires
operating the PA in a large average-power-backoff to avoid clipping, which significantly
reduces its efficiency [26]. Finally, up-sampling (usually by a factor of 3 to 5) is needed
to ensure that PAPR reduction does not generate out-of-band noise [27, 28], and that the
DPD module can suppress the out-of-band emissions arising from PA nonlinearity [9].

All pre-processing functions in Fig. 2.3 are readily extendable to the MIMO case, with
the exception of DPD. This is because the combination of the PAs’ nonlinearity and inter-
antenna coupling gives rise to nonlinear crosstalk effects that cannot be fully mitigated by
employing conventional SISO DPD techniques [10–12]. This problem is further exacerbated
by the impact precoding has on the distribution of average-power levels across the RF
chains. Hence, the DPD and precoding subsystems cannot be operated in isolation from
one another. In addition, since basestations are now expected to employ tens or hundreds
of PAs, the overhead margin for per-chain DPD must be reduced, below that allowed in
conventional transmitters, to maintain a reasonable overall efficiency.

To lay out the theoretical foundations for what follows, the remainder of this chapter
provides an in-depth exposition of the two DSP functions tackled in this work, namely,
DPD and precoding.

8



2.2 DPD in MIMO Systems

2.2.1 Overview on SISO DPD
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(b) Baseband-equivalent model.

Figure 2.4: DPD in SISO Systems.

Fig. 2.4a shows a streamlined version of the SISO transmitter system in Fig. 2.3. Here,
the complex baseband input signal x[n] is that obtained after modulation and coding, up-
sampling, and PAPR reduction. The I/Q compensation module, if present, is considered
part of the up-conversion unit during DPD training [23]. All baseband processing in
Fig. 2.4a is carried out at a rate of Fs samples/sec (which is 3-5 times the rate of the
information-bearing signal before up-sampling). The baseband DPD and feedback signals
are denoted as z[n] and y[n] respectively, while their continuous-time passband counterparts
are denoted as zRF (t) and yRF (t) respectively. Below, we show that a direct relation
between the baseband signals (z[n] and y[n]) can be derived. Hence, the system in Fig. 2.4a
can be reduced to its baseband-equivalent form in Fig. 2.4b.
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Modeling PA Nonlinearity

In what follows, we assume that all hardware components in Fig. 2.4a are ideal and that
the nonlinearity in the chain is only due to the PA. Assuming certain regularity conditions
are satisfied, the input-output relationship of nearly any time-invariant nonlinear system
can be represented in terms of a Volterra series. Such representation takes the form [29]

yRF (t) =
∞∑
n=0

Hn [zRF (t)]

=
∞∑
n=0

∫
R

∫
R
· · ·
∫
R
h(τ1, . . . , τn)

n∏
r=1

zRF (t− τr) dτ1 . . . dτn

=
∞∑
n=0

∫
Rn

h(τ n)
n∏
r=1

zRF (t− τr) dτ n, (2.1)

where τ n = [τ1, . . . , τn]T , and dτ n =
∏n

r=1 dτr. In this form of representation, Hn[.] is called
the nth-order Volterra operator and h(τ1, . . . , τn) is the nth-order Volterra kernel. Note that
Volterra kernels generalize the one-dimensional impulse response of linear systems.

If the spectrum of the passband PA input zRF (t) spans a limited bandwidth around the
carrier frequency fRF , then zRF (t) can be expressed in terms of its baseband equivalent
z(t) as

zRF (t) = Re{z(t)ejωRF t} =
1

2

(
z(t)ejωRF t + z∗(t)e−jωRF t

)
, (2.2)

where ωRF = 2πfRF . Substituting this expression in (2.1) gives

yRF (t) =
∞∑
n=0

∫
Rn

h(τ n)

2n

n∏
r=1

(
z(t− τr)ejωRF (t−τr) + z∗(t− τr)e−jωRF (t−τr)

)
dτ n. (2.3)

The expression in (2.3) shows that the PA output contains harmonic components centered
around integer multiples of ωRF . Since only the fundamental spectral component of the
output signal is of interest, we can assume that other harmonics are filtered out at the PA
output. Out of all possible product terms in (2.3), the terms with a carrier component of
ejωRF t can only be obtained from the product of k conjugated terms z∗(t− τr)e−jωRF (t−τr)

and k + 1 non-conjugated terms z(t − τr)e
jωRF (t−τr). These desired terms constitute a

subset of all terms arising from a product with an odd order, i.e., n = 2k + 1. If the
Volterra kernels h(τ n) are assumed to be symmetric functions of their arguments, i.e., any
permutation of the arguments does not alter the function values, then (2.3) reduces to [30]

yRF (t) =
1

2

(
y(t)ejωRF t + y∗(t)e−jωRF t

)
, (2.4)
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where

y(t) =
∞∑
k=0

∫
R2k+1

f(τ 2k+1)
k∏
r=1

z∗(t− τr)
2k+1∏
s=k+1

z(t− τs) dτ 2k+1.

The n-variate complex-valued functions f(τ 2k+1) are the Volterra kernels of the baseband-
equivalent system in Fig. 2.4b. A physical PA must exhibit a fading memory effect, i.e., its
output cannot depend on the infinite past. This, coupled with the requirement of causality,
limits the domain of integration in (2.4) from R2k+1 to [0, T ]2k+1, where T represents the
maximum memory span of the PA. If the band-limited output signal is sampled at a
sufficiently high rate, i.e., Fs, the relation between the discrete-time baseband input and
output becomes [31]

y[n] =
∞∑
k=0

M∑
l1=0

· · ·
M∑

lk=lk−1

M∑
lk+1=0

· · ·
M∑

l2k+1=l2k

f [l2k+1]
k∏
r=1

z∗[n− lr]
2k+1∏
s=k+1

z[n− ls], (2.5)

where M = dT/Tse, Ts = 1/Fs, l2k+1 = [l1, . . . , l2k+1]T , f [l2k+1] = f(τ 2k+1Ts), z[n] =
z(nTs), and y[n] = y(nTs).

The expression in (2.5) is the general Volterra-series representation of the baseband
PA output y[n] in terms of the baseband input z[n]. The general form depicted in (2.5)
is of little practical value, and a simplified finitely-parameterized representation is needed
for modeling purposes. Over the past two decades, many empirical models have been
developed. The simplest of which is the memory polynomial (MP) model [32]

y[n] =
P−1∑
p=0

M∑
m=0

apm z[n−m]
∣∣z[n−m]

∣∣p. (2.6)

This model can be obtained from the general one in (2.5) by limiting the maximum nonlin-
earity order to P , setting lr = m ∀ r ∈ {1, . . . , 2k + 1}, and writing the baseband Volterra
kernels in the form of coefficients.

Theoretically speaking, the summation over p in (2.6) should only be over even indices.
This is because the product of k conjugated terms z∗[n − m] and k + 1 non-conjugated
terms z[n −m] results in z[n −m]|z[n −m]|2k. Terms with odd p indices in (2.6) cannot
be obtained from the general model in (2.5). Nevertheless, empirical fitting of the input-
output relationship of most PAs to the model in (2.6) yields non-negligible values for
the coefficients corresponding to odd-indexed terms. The explanation for this is that the
general model in (2.5) was formulated under somewhat restrictive assumptions and hence,
does not describe the exact input-output relationship of a physical PA. By including odd
p indices in (2.6), a richer basis set is obtained and the model accuracy is improved [33].
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Synthesizing the Predistorter

The basic principle behind DPD is to apply a nonlinear function to the input signal so
that the tandem connection of the DPD module and the nonlinear PA approximates an
ideal linear PA (see Fig. 2.5). In general, the DPD output is a weighted sum of nonlinear
functions of the input signal samples

z[n] =
P∑
i=1

wiφi(x[n]), (2.7)

where x[n] = [x[n], . . . , x[n −M ]] is a row vector containing the current and previous M
input samples, M is the model memory depth, φ1(.), . . . , φP (.) are the basis functions, and
w1, . . . , wP are the DPD coefficients.

DPD
𝑥𝑥 𝑛𝑛

PA
𝑧𝑧 𝑛𝑛 𝑦𝑦 𝑛𝑛

𝑥𝑥 𝑛𝑛

𝑧𝑧 𝑛𝑛

𝑧𝑧 𝑛𝑛

𝑦𝑦 𝑛𝑛 𝑦𝑦 𝑛𝑛

𝑥𝑥 𝑛𝑛

Figure 2.5: The basic theory behind DPD.

The expression in (2.7) is a Volterra-series representation of the DPD module, with the
functions w1φ1(.), . . . , wPφP (.) representing its Volterra operators. The composite system
formed by the tandem connection of the DPD module and PA can also be expressed in
terms of a Volterra series with, in general, infinitely many operators. The pth-order inverse
theory in [34] states that the DPD operators can be synthesized in a way that ensures all
nonlinear operators of the composite system up to the pth-order are zero. The synthesized
DPD operators, using the method in [34], are composite functions of the PA operators.
Since the PA operators in (2.5) form a closed set under composition, the composed DPD
operators are of the same form as the PA operators. Therefore, the predistorter in (2.7)
should have the same form as the Volterra-based PA model in (2.5), with y[n] and z[n]
replaced by z[n] and x[n] respectively. Obviously, pruned versions of this general model are
needed for practical DPD implementations. The MP model in (2.6), or the more advanced
models in the literature (e.g., [35–38]) can be utilized.
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The predistorter in (2.7) can be directly synthesized from the feedback signal, without
the need for explicitly identifying the PA Volterra operators. The DPD basis functions are
selected beforehand and the coefficients are updated iteratively, using Newton’s method,
until convergence is observed. The adaptation algorithm in [39,40] is derived below.

The objective of the DPD module is to make the PA output be as close as possible to
a scaled version of the original input signal, i.e., y[n] ≈ Gx[n] where G is the desired gain.
The maximum value of G that can be chosen is set by the saturation limit of either the PA
or the DAC(s). The DPD coefficients are those that minimize the following cost function

J(w) =
1

N −M

N−1∑
n=M

(
y[n]

G
− x[n]

)(
y[n]

G
− x[n]

)∗
, (2.8)

where w = [w1, . . . , wP ]T is the vector of coefficients and N is the number of input samples.
Notice that the first M samples have been omitted to avoid the boundary effect. In order
to derive the update equation, a suitable model for the PA is needed. Since most PAs are
only weakly nonlinear, a simple PA model is [40]

y[n] ≈ h0z[n] + η[n], (2.9)

where h0 is a complex-valued constant and η[n] represents the higher-order nonlinear dis-
tortion, which is assumed to be uncorrelated with z[n]. This model may seem rather crude;
for if the PA nonlinearity were negligible, no linearization would be needed. Such simple
model, however, makes the DPD update equation independent of the specific PA non-
linearity and significantly reduces training complexity. Furthermore, the training process
is iterative and the DPD coefficients should converge to, at least, a sub-optimal solution
with enough iterations. With this model, the cost function becomes linear in w, and the
Newton’s update equation for a real-valued cost function with complex-valued arguments
simplifies to [41]

wl ≈ wl−1 − µ
[(

∂2J

∂w∗∂wT

)−1(
∂J

∂w

)∗]
w=wl−1

, (2.10)

where wl denotes the coefficients vector after the lth iteration and µ ∈ (0, 1] is the step
size. The respective elements of the P × 1 vector ∂J

∂w
and the P × P matrix ∂2J

∂w∗∂wT are[
∂J

∂w

]
j

=
∂J

∂wj
,

[
∂2J

∂w∗∂wT

]
ij

=
∂2J

∂w∗i ∂wj
. (2.11)

The derivatives above are Wirtinger derivatives. That is, when differentiating with
respect to wi, w

∗
i is regarded as a constant, and vice versa [41]. Substituting (2.7) and
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(2.9) into (2.8) and differentiating gives

∂J

∂wj
=

1

N −M

N−1∑
n=M

(
y[n]

G
− x[n]

)∗
h0

G
φj(x[n]) (2.12)

∂2J

∂w∗i ∂wj
=

1

N −M

N−1∑
n=M

∣∣∣∣h0

G

∣∣∣∣2φ∗i (x[n])φj(x[n]). (2.13)

Substituting (2.12) and (2.13) into (2.10) and rewriting the result in matrix form yields
the following update equation [39,40]

wl = wl−1 − µG
h0

(
ΦHΦ

)−1
ΦH

( y

G
− x

)
, (2.14)

where x = [x[M ], . . . , x[N − 1]]T and y = [y[M ], . . . , y[N − 1]]T are the input and output
vectors respectively, and

Φ =

 φ1(x[M ]) . . . φP (x[M ])
...

...
φ1(x[N − 1]) . . . φP (x[N − 1])

 .
In practice, the feedback signal exhibits delay and phase offsets from the transmitted

one due to propagation delay and imperfect synchronization. These offsets must be com-
pensated for in order for the DPD iterations to converge reliably. Let g[n], n = 0, . . . , S−1
be the S baseband samples captured by the TOR. Without loss of generality, we assume
that S > N . In Appendix A, we show that the maximum-likelihood (ML) estimates of the
delay, amplifier gain, and phase offset (d0, h0, and θ respectively) are given by 1

d̂0 = argmax
d∈[0,S−N ]

∣∣zHg(d)
∣∣ (2.15)

ĥ0 e
jθ̂ =

(
zHz

)−1
zHg(d̂0), (2.16)

where z = [z[0], . . . , z[N − 1]]T and g(d) = [g[d], . . . , g[d + N − 1]]T . Note that in (2.16),
θ is the combined phase offset due to transmitter circuitry and imperfect synchronization.
This forces the estimate of the amplifier gain (i.e., ĥ0) to be a positive real value. The
delay-compensated output vector is then y = [g[d̂0 + M ], . . . , g[d̂0 + N − 1]]T , and the
modified update equation becomes

wl = wl−1 − τ
(
ΦHΦ

)−1
ΦH

( y

G
e−jθ̂ − x

)
, (2.17)

1While these expressions seem intuitive, we could not find a formal derivation in related literature.
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where τ = µG/ĥ0. It is customary to select the first basis function to be the input itself,
i.e., φ1(x[n]) = x[n]. Hence, a good initial estimate of the DPD coefficients vector is
w0 = [G/ĥ0, 0, . . . , 0]T .

Finally, we note that the matrix inversion required in (2.17) is ill-conditioned. This
is because x[n] is an up-sampled version of the information-bearing signal, which means
that the input samples to the DPD block are linearly dependent. Consequently, the use of
bases of the form φi(x[n]) = x[n− li], which are needed to compensate for the PA’s linear
frequency response [35], increases the condition number of Φ. A simple solution to this
problem is to utilize diagonal regularization (or ridge regression), i.e., the matrix inversion

is regularized by a very small positive constant λ, so that it becomes
(
ΦHΦ + λ IK

)−1

[42]. This form of regularization allows for efficiently updating w using the well-known
recursive least-squares (RLS) algorithm (thereby, circumventing the need for explicit matrix
inversion), and has the added benefit of decreasing the 2-norm of w [42].

The Standard TOR Architecture
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Figure 2.6: The two conventional TOR architectures.

As shown in Fig. 2.4a, training the DPD module requires a dedicated TOR that cap-
tures the transmitted signal and feeds it back to the baseband processing unit. Fig. 2.6
shows the block diagrams of the two conventional TOR architectures. The first is the
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direct-conversion (or zero-IF) architecture, in which an I/Q demodulator down-converts
the feedback signal to baseband and the baseband signal is sampled by two Nyquist-rate
analog-to-digital converter (ADC)s (i.e., FADC ≥ Fs). The second architecture is the
non-zero-IF one, in which a high-speed ADC captures the feedback signal and a digital
down-conversion (DDC) unit down-converts it to baseband. Proper DDC on the pass-
band feedback signal yIF [n] requires that fIF ≥ Fs/2 and FADC ≥ 2(fIF + Fs/2)/n, where
n = b(fIF + Fs/2)/Fsc [43]. The lowest possible ADC sampling rate for which DDC is
possible is 2Fs and this can be achieved by choosing fIF = mFs/2, where m is any non-zero
integer. The first architecture is less demanding in terms of the ADC speed required, but
is prone to I/Q imbalance (due to mismatches in the conversion gains of the quadrature
mixer branches and/or deviation from the ideal 90◦ phase shift).

Performance Metrics

The quality of the PA output signal is often assessed through the evaluation of two per-
formance metrics. The first is the root normalized mean-square error (RNMSE), which
measures the discrepancy between the baseband input signal x[n] and the captured feed-
back signal y[n], i.e.,

RNMSE = 100×

√√√√∑N−1
n=0

∣∣y[n]− αx[n]
∣∣2∑N−1

n=0

∣∣αx[n]
∣∣2 %, (2.18)

where α is the least-squares (LS) estimate of the complex-valued channel gain, i.e.,

α =

∑N−1
n=0 x

∗[n]y[n]∑N−1
n=0

∣∣x[n]
∣∣2 .

The second is the adjacent-channel power ratio (ACPR), which is the ratio of the output
power in the adjacent frequency band Fadj to that in the desired band Fch, i.e.,

ACPR = 10 log10

(∫
Fadj

Φy(f) df∫
Fch

Φy(f) df

)
dB, (2.19)

where Φy(f) is the estimated power spectral density of y[n]. An example to demonstrate
the evaluation of the ACPR metric is shown in Fig. 2.7, which depicts the normalized
output spectrum of an 8-Watt Doherty PA. Here, the center frequency is 3.5 GHz and the
channel bandwidth is 100 MHz, including a guard-band of 0.845 MHz on each side [44].
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Thus, the desired band is Fch = {f : f ∈ [3.450845, 3.549155] GHz} and the lower/upper
bands at ∓ 100-MHz offsets are Fadj,L = {f : f ∈ [3.350845, 3.449155] GHz} and Fadj,U =
{f : f ∈ [3.550845, 3.649155] GHz} respectively. The lower/upper ACPRs before and after
DPD are −33.5/− 30.5 and −58.6/− 58.1 respectively.
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Figure 2.7: The normalized spectrum of an 8-Watt Doherty PA with and without DPD.

2.2.2 Modeling the Behavior of PAs under Crosstalk

As was the case with the SISO model in Section 2.2.1, the MIMO system model is for-
mulated in baseband-equivalent form. Fig. 2.8 shows the incident and reflected waves in
a multi-antenna transmitter system with K parallel paths. Let a1k[n] denote the incident
voltage wave at the input of the kth PA. This signal is amplified by the PA and results in
an output voltage wave b2k[n] that is directed towards the kth antenna. A well-designed an-
tenna emits most of this incident energy into space towards a far-field receiver. Inevitably,
however, a portion of this energy is reflected back towards the PA and other portions are
picked up by the neighboring K − 1 antennas that are in close proximity. The incident
wave on the output port of the kth PA, denoted by a2k[n], is comprised of the reflected wave
from the kth antenna plus the coupled waves from the neighboring K − 1 antennas [45]

a2k[n] =
K∑
i=1

Q−1∑
q=0

λki[q]b2i[n− q], (2.20)
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Figure 2.8: The incident and reflected waves in a multi-antenna system with K chains.

where λki[0], . . . , λki[Q − 1] are the coefficients of the finite impulse response (FIR) filter
that characterizes the coupling from the ith to the kth path. The time-domain FIR filters
in (2.20) can be extracted from the antenna array scattering parameters (S-parameters) as
follows. Given the S-parameters at a finite set of frequencies within the desired bandwidth
{f1, . . . , fL} ∈ [fRF − Fs/2, fRF + Fs/2], the Q-tap filter λki is the LS solution to

Fλki = ski, (2.21)

where

λki =
[
λki[0] . . . λki[Q− 1]

]T
ski =

[
Ski(f1) . . . Ski(fL)

]T
F =


1 e−j2πf

′
1 . . . e−j2πf

′
1(Q−1)

1 e−j2πf
′
2 . . . e−j2πf

′
2(Q−1)

...
...

. . .
...

1 e−j2πf
′
L . . . e−j2πf

′
L(Q−1)

 ,
and f ′i = (fi − fRF )/Fs, i = 1, . . . , L.

The output signal of the kth PA b2k[n] depends not only on its input a1k[n], but also on
the incident wave on its output port a2k[n] [26]. Therefore, the behaviour of each PA in the
array can be described by a dual-input single-output (DISO) Volterra series. The DISO
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models in [10–12] are based on the assumption that a2k[n] is relatively small in magnitude
and hence, |a2k[n]|p ≈ 0∀ p > 1. This assumption significantly simplifies the general DISO
model, as only linear terms of a2k[n] need to be considered. The simplified model reads [11]

b2k[n] =
∞∑
i=0

M∑
l1=0

· · ·
M∑

li=li−1

M∑
li+1=0

· · ·
M∑

l2i+1=l2i

f [l2i+1]
i∏

r=1

a∗1k[n− lr]
2i+1∏
s=i+1

a1k[n− ls]

+
∞∑
i=0

M∑
p1=0

M∑
p2=0

· · ·
M∑

pi+1=pi

M∑
pi+2=0

· · ·
M∑

p2i+1=p2i

g[p2i+1]a2k[n− p1]
i+1∏
u=2

a∗1k[n− pu]

×
2i+1∏
v=i+2

a1k[n− pv]

+
∞∑
i=1

M∑
q1=0

M∑
q2=0

· · ·
M∑

qi=qi−1

M∑
qi+1=0

· · ·
M∑

q2i+1=q2i

h[q2i+1]a∗2k[n− q1]
i∏

a=2

a∗1k[n− qa]

×
2i+1∏
c=i+1

a1k[n− qc], (2.22)

where l2ik+1 = [l1, . . . , l2i+1]T , p2i+1 = [p1, . . . , p2i+1]T , and q2i+1 = [q1, . . . , q2i+1]T . This
model can be considered as a generalization of the well-known polyharmonic distortion
(PHD) models in [46, 47]. Like the general SISO model in (2.5), the above model is only
of theoretical value. Pruned versions of (2.22) were proposed in [10–12]. These models
are dual-input extensions of the SISO MP model in (2.6). For instance, the pruned DISO
model in [11] is given by

b2k[n] =

P1−1∑
p=0

M1∑
m=0

αpma1k[n−m]
∣∣a1k[n−m]

∣∣p
+

P2−1∑
p=0

M2∑
m1=0

M3∑
m2=0

βpm1m2a2k[n−m1]
∣∣a1k[n−m2]

∣∣p
+

P3−3∑
p=0

M4∑
m1=0

M5∑
m2=0

γpm1m2a
∗
2k[n−m1] a2

1k[n−m2]
∣∣a1k[n−m2]

∣∣p. (2.23)

The models in [10–12] were experimentally verified, using active load-pull measurements
[48–50], to be of remarkable accuracy. The authors of [11] showed that the more complex
models in [51,52], which take higher-order effects of a2k[n] into account, yield no appreciable
improvement in modeling accuracy over that obtained with the model in (2.23).
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2.2.3 The Dual-input DPD Architecture

As explained in the previous subsection, the behavior of each PA in the array is affected
by the incident wave on its output port, which in turn is a function of all input signals to
the array. If the antennas are spaced far enough, the contribution from the neighboring
paths can be neglected and the only significant constituent of a2k[n] is that due to b2k[n],
i.e., each PA sees only the reflection of its own output signal. In that case, b2k[n] can
be expressed as a function of a1k[n], and employing conventional SISO DPD in each path
becomes sufficient [53]. In reality, however, a highly integrated design that places all chains
closely together is advantageous in terms of cost and reliability. Hence, antenna crosstalk
cannot be neglected in practice.
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Figure 2.9: A fully digital MIMO system that employs a dual-input DPD architecture [13].

Recently, the authors of [13] proposed a DPD architecture that accounts for the antenna
crosstalk in MIMO systems. Fig. 2.9 shows a K-path fully digital MIMO system with DISO
DPD modules employed in each path. This figure is in baseband-equivalent form, as was
Fig. 2.4b. The kth DPD output constitutes the incident input wave on the kth PA, i.e.,
a1k[n] = zk[n]. The kth DPD module takes two inputs: the first is xk[n] and the second
is â2k[n], which is an estimate of the incident wave at the kth PA output. It is natural
to expect that the DPD model has the same form as the simplified DISO PA model in
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(2.23) [13], i.e.,

zk[n] =

P1−1∑
p=0

M1∑
m=0

ηpmxk[n−m]
∣∣xk[n−m]

∣∣p
+

P2−1∑
p=0

M2∑
m1=0

M3∑
m2=0

µpm1m2 â2k[n−m1]
∣∣xk[n−m2]

∣∣p
+

P3−3∑
p=0

M4∑
m1=0

M5∑
m2=0

εpm1m2 â
∗
2k[n−m1]x2

k[n−m2]
∣∣xk[n−m2]

∣∣p. (2.24)

The incident waves at the PAs’ outputs (referred to as the crosstalk and mismatch (CTMM)
signals henceforth) can be estimated from the K input signals if the following approxi-
mation is made: b2k[n] ≈ Gxk[n]∀ k where G is desired PA gain. In essence, this ap-
proximation is equivalent to assuming that the DPD modules are able to compensate for
all distortions. The CTMM signals are estimated by introducing this approximation in
(2.20) [13]

â2k[n] =
K∑
i=1

Q−1∑
q=0

λ′ki[q]xk[n− q], (2.25)

where λ′ki[q] = Gλki[q]. The DPD module in each path is trained using the conventional
training process described in Section 2.2.1, with the extension that the DPD bases are now
dual-input functions. The output of each PA is captured using a dedicated TOR and the
feedback signals y1[n], . . . , yK [n] are used to train the DPD modules. The feedback signals
are scaled versions of the PAs’ output waves, i.e., yk[n] = γ b2k[n].

The authors of [54] demonstrated that this dual-input architecture is also applicable in
hybrid beamforming systems. In a hybrid beamforming system, such as that depicted in
Fig. 2.2, the antenna array is divided into a number of subarrays with each subarray having
one digital input. The input to each subarray is split into multiple paths with different
phase shifts, before being amplified and transmitted through the antennas. By treating
each subarray as one large PA [55–60], the hybrid beamforming system reduces to a digital
one and the DPD architecture described above becomes applicable, as shown in Fig. 2.10.

Finally, we note that the formulation presented above is based on the assumption that
inter-path coupling occurs only after the PAs (due to antenna crosstalk). If significant
inter-path coupling occurs before the PAs, the input signal to the kth PA (i.e., a1k[n])
would no longer be zk[n], but rather a linear combination of the outputs of all DPD
modules. This would introduce significant distortions that can only be compensated with
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a high-complexity multi-input DPD module in each path [61–65]. In practice, inter-path
coupling before the PAs is indeed negligible and the dual-input DPD architecture proposed
in [13] is effective at eliminating nonlinear distortions.
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Figure 2.10: A hybrid MIMO system that employs a dual-input DPD architecture [54].

2.3 Downlink Precoding

2.3.1 System Model

One of the main DSP functions in a massive MIMO system is precoding. On the downlink,
the basestation precodes the users’ signals prior to transmission to counteract multi-user
channel effects and ensure negligible interference levels at the user terminals. For this to
be possible, the basestation must acquire the channel state information (CSI) beforehand.
In this work, we assume the availability of CSI at the basestation and focus on the pre-
coding problem. We only consider linear precoding schemes, in which the users’ signals
are multiplied by a precoding matrix. The precoding matrix can be chosen according to
different criteria, as will be explained in the next subsection. Although more complex
nonlinear precoding schemes can offer better performance [66], they are generally unfa-
vorable as they require special processing at the receivers’ side. In addition, the spectral
efficiency attained with linear precoding schemes is close to that achieved with nonlinear
ones, especially when the number of antennas is large [66].

22



In a narrowband single-carrier system, the free-space downlink channel can be consid-
ered frequency-independent. Hence, it can be represented as an L ×K matrix H, where
(H)l,k = Hl,k represents the channel coefficient between the kth basestation antenna and

the antenna of the lth user. Fig. 2.11 depicts the baseband-equivalent model of Fig. 2.1a in
a single-carrier scenario. As in Fig. 2.1a, we omit the DSP modules that address hardware
limitations for simplicity.
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Figure 2.11: Linear precoding in a narrowband single-carrier system.

Let v[n] = [v1[n], . . . , vL[n]]T be the vector of user signal samples at the nth time instant.
Without loss of generality, we assume that E [v[n]] = 0L×1 and E

[
v[n]vH [n]

]
= IL, i.e.,

the users’ signals are uncorrelated and normalized to be of unit power each. The data
streams are multiplied by the power control coefficients

√
ξ1, . . . ,

√
ξL, which can be used

to prioritize certain users over others, and the resultant L× 1 vector is then multiplied by
the K × L precoding matrix W to yield the K × 1 vector of precoded signals

x[n] = WΞ
1
2 v[n], (2.26)

where Ξ = diag([ξ1, . . . , ξL]). The average power transmitted by the kth chain is

Pk = E
[∣∣∣eTkWΞ

1
2 v[n]

∣∣∣2] = eTkW Ξ WHek = wkΞwH
k =

L∑
l=1

ξl|Wk,l|2, (2.27)

where ek is a K×1 unit vector with a one in the kth position and zeros in all other positions,
and wk denotes the kth row of W.

The received signals at the users’ side can be arranged in an L × 1 vector u[n] =
[u1[n], . . . , uL[n]]T . Assuming ideal transmitting and receiving hardware, this vector is
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given by
u[n] = HWΞ

1
2 v[n] + η[n], (2.28)

where η[n] is an L × 1 vector of circularly-symmetric zero-mean additive white Gaussian
noise (AWGN) samples with variance σ2, i.e., E

[
η[n]ηH [n]

]
= σ2IL.

In a wideband multi-carrier system, the channel cannot be assumed frequency-flat. The
basestation then needs to estimate N channel matrices H1, . . . ,HN , where N is the number
of subcarriers. Accordingly, N precoding matrices W1, . . . ,WN (one for each subcarrier)
are necessary. For reference, the conventional precoding configuration in an orthogonal
frequency-division multiplexing (OFDM) system is depicted in Fig. 2.12.
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Figure 2.12: Linear Precoding in a MIMO-OFDM system.

2.3.2 Conventional Linear Precoders

In this work, we assume that the power control matrix Ξ is pre-determined and that
the purpose of the precoder, W, is to mitigate channel variations. In this scenario, the
basestation updates the channel estimate Ĥ every coherence interval (usually between 1 to
10 milliseconds [67]) and calculates the precoder accordingly (i.e., W = f(Ĥ)), so that each
user is provided with a consistent quality of service [6]. Many works (e.g., [68–73]) combine
these matrices into one and perform a joint optimization to maximize a certain performance
metric across all users (e.g., the sum spectral efficiency). The approaches therein vary the
relative powers delivered to the users according to the instantaneous estimated channel,
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which makes them inapplicable in the scenario assumed here. Below, we describe the three
conventional linear precoding methods (namely, maximum-ratio transmission (MRT), zero-
forcing (ZF), and minimum mean-square error (MMSE)) [74]. To simplify the notation
below, the estimated channel matrix at the basestation Ĥ is denoted simply as H.

Maximum-Ratio Transmission

The MRT precoder amplifies the signal of interest at each user while disregarding inter-user
interference. This is desirable when the noise power at the user terminals is comparable
with the received power from the basestation. Given that the transmission coefficient of
the desired signal component at the lth user is (HW)l,l, the conventional MRT precoder
minimizes the total transmit power needed to ensure that (HW)l,l = 1 ∀ l ∈ {1, . . . , L},
i.e.,

WMRT = argmin
W∈CK×L

K∑
k=1

Pk s.t. (HW)l,l = 1 ∀ l. (2.29)

Using the Cauchy-Schwarz inequality [75], it can be shown that the solution to this opti-
mization problem is

WMRT = HH diag
([

1/‖h1‖
2, . . . , 1/‖hL‖

2]) , (2.30)

where hl denotes the lth row of H.

Zero-Forcing

On the other hand, ZF precoding suppresses inter-user interference while not necessarily
maximizing the desired signal components at the users. This is because part of the available
transmit power is used to nullify inter-user interference, which is achieved by enforcing the
condition HW = IL. Since L < K, an infinite number of matrices satisfy this condition.
The conventional ZF precoder is that which minimizes the total transmit power, i.e.,

WZF = argmin
W∈CK×L

K∑
k=1

Pk s.t. HW = IL. (2.31)

The solution to this problem is WZF = H† [75]. If H has full rank, which is almost surely
true since its elements are drawn from a continuous distribution, the solution simplifies to
the well-known formula

WZF = HH
(
HHH

)−1
. (2.32)
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MMSE Precoding

Instead of minimizing the total transmit power required to ensure a given performance
metric is met (e.g., HW = IL), one could fix the transmit power and optimize for perfor-
mance. In this sense, the MMSE precoder is the one that achieves the optimal trade-off
between interference suppression and noise mitigation [74]. In order to maintain the rela-
tive quality of service dictated by Ξ, the desired signal component at the lth user should
be proportional to the square-root of its allocated power (i.e.,

√
ξl). Assuming that sim-

ple one-tap equalizers are utilized, the mean-square error (MSE) at the lth user is then

E
[∣∣∣vl[n]− (β

√
ξl)
−1
ul[n]

∣∣∣2], where β ∈ R+ is a constant to be determined. For a fixed

total transmit power Ptot, the MMSE precoder is that which minimizes the average MSE
across all users, i.e.,

{WMMSE, βMMSE} = argmin
W∈CK×L, β∈R+

E
[
‖v[n]− β−1Ξ−

1
2 u[n]‖

2
]

s.t.
K∑
k=1

Pk = Ptot. (2.33)

The solution to the problem above is [74]

WMMSE = βMMSE HHA, (2.34)

where

βMMSE =

√
Ptot

tr (HHAΞAH)

A =

(
HHH +

σ2tr(Ξ−1)

Ptot
Ξ

)−1

.

Note that the expression above is slightly different from that in [74] due to the inclu-
sion of the power control matrix Ξ in the system model. The MMSE precoder can be
considered optimal under any signal-to-noise ratio (SNR); it converges to the ZF pre-
coder as (σ2/Ptot) → 0 and to the MRT precoder as (σ2/Ptot) → ∞ [74]. If Ξ = IL,
the MMSE precoder can be considered as a special case of the regularized ZF precoder

WRZF = αHH
(
HHH + λIL

)−1
, where α and λ are design parameters that can be heuris-

tically optimized [76].
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Chapter 3

Analysis and Mitigation of
Crosstalk-Induced Load Modulation
Effects

In Section 2.3.2, we reviewed the three basic precoding schemes in the literature, which
are MRT, ZF, and MMSE precoding. These precoders are computationally efficient to
implement, and are optimal under a total-transmit-power constraint. However, they result
in channel-dependent disparities in the average-power levels across the different RF chains.
These disparities could result in extreme crosstalk-induced load modulation behavior that
cannot be handled by the dual-input DPD architecture in Section 2.2.3.

In this chapter, we analyze the combined effect of antenna crosstalk and precoding
on the active impedances seen by the PAs in a MIMO transmitter, and propose a robust
solution that mitigates these effects. The proposed solution comprises 1) a low-complexity
algorithm that reduces the disparity in average-power levels arising from the conventional
precoders, and 2) a load-dependent DPD architecture that ensures a consistent performance
across all channel conditions.

3.1 Full Transmitter Model

Fig. 3.1 re-depicts the block diagram of the fully digital MIMO transmitter in Fig. 1.1. The
figure now includes the linear precoding and power allocation models in Fig. 2.11, and the
dual-input DPD architecture in Fig. 2.9. I/Q compensation modules were omitted from
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Figure 3.1: Detailed block diagram of an L-user K-chain massive MIMO transmitter that
employs a dual-input DPD architecture.

the figure since a non-zero-IF transmitter architecture was employed for the experiments
in this thesis. As the figure depicts, the L user signals are multiplied by the power control
coefficients and the precoding matrix, yielding theK signals x1[n], . . . , xK [n]. The precoded
signals are up-sampled and fed to the PAPR reduction modules, resulting in the K signals
s1[n], . . . , sK [n]. These signals are processed by the dual-input DPD architecture, and the
DPD outputs are up-converted to passband, fed to the PA array, and transmitted through
the antennas. The output signal of each PA is sampled by a directional coupler and down-
converted to baseband for use in DPD training. Note that time dependence has been
omitted from the figure for better legibility, i.e., xk , xk[n].

3.2 Analyzing the Effects of Antenna Crosstalk and

Precoding on the PA Behavior

The efficiency, linearity, and output power of any PA are functions of the average power
of its input signal as well as the active impedance at its output port. Because of antenna
crosstalk, the average active impedance seen by each PA depends not only on its termi-
nating antenna, but also on the signals transmitted by the neighboring PAs. Whenever
the channel estimate is updated, a new precoding matrix is calculated, which changes the
power levels and the cross-correlation properties of the signals fed to the PAs. This changes
the relative strength of the crosstalk signal impinging on each PA output port and the ex-
tent to which it modulates the active impedance seen by that PA. Below, we analyze how
the active impedances seen by the PAs depend on the precoding matrix and the antenna
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array S-parameters. In this analysis, we ignore the pre-processing modules in Fig. 3.1 since
they have no effect on the average-power levels.

Assume the L user signals to be continuous-wave (CW) tones at an arbitrary frequency
f with unit amplitudes and arbitrary phases, i.e., vl[n] = ej2πfn+θl ∀ l = 1, . . . , L. Since we
are only interested in the reflection coefficients at the frequency of interest, we can omit
time dependence to simplify notation, i.e., vl(f) = ejθl . Given the precoding and power
allocation matrices W and Ξ, and assuming that all PAs have unity voltage gain at the
frequency of interest, the incident wave vectors at the K antenna ports in Fig. 3.1 can then
be calculated from (2.26) as

b2(f) =

 b21(f)
...

b2K(f)

 = WΞ
1
2 Θ(f), (3.1)

where Θ(f) = [ejθ1 , . . . , ejθL ]
T

. Given the antenna S-parameters matrix at the frequency
of interest

S(f) =

S11(f) . . . S1K(f)
...

. . .
...

SK1(f) . . . SKK(f)

 ,
the active reflection coefficient at the kth antenna port is then

Γk(f) =
a2k(f)

b2k(f)
=

∑K
i=1 Ski(f) b2i(f)

b2k(f)
. (3.2)

The above procedure gives the kth active reflection coefficient under one specific CW

stimulus [ejθ1 , . . . , ejθL ]
T

. With modulated signals, the input signal incident on each PA
can be considered as a superposition of CW tones with continuously varying amplitudes
and phases. The average active reflection coefficient at any frequency Γ̄k(f) is that which
minimizes the sum of squared errors to the active reflection coefficients across all possible
input amplitudes and phases, i.e.,

Γ̄k(f) = argmin
Γ∈C

E
[
|a2k(f)− Γb2k(f)|2

]
= argmin

Γ∈C
E
[
|a2k(f)|2 − Γ∗a2k(f)b∗2k(f)− Γb2k(f)a∗2k(f) + |Γ|2|b2k(f)|2

]
. (3.3)

The average active reflection coefficient Γ̄k(f) is then obtained using Wirtinger calculus [41],
i.e., differentiating with respect to Γ∗ and treating Γ as a constant. Differentiating (3.3)
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and setting the result to zero gives

−E
[
a2k(f)b∗2k(f)

]
+ Γ̄k(f)E

[
|b2k(f)|2

]
= 0,

or equivalently,

Γ̄k(f) =
E
[
a2k(f)b∗2k(f)

]
E
[
|b2k(f)|2

] . (3.4)

Given W, Ξ, and Θ(f), the incident and reflected waves at the kth antenna port can be
expressed as

b2k(f) = wkΞ
1
2 Θ(f)

a2k(f) = sk(f)b2(f) = sk(f)W Ξ
1
2 Θ(f), (3.5)

where sk(f) denotes the kth row of S(f). Substituting (3.5) in (3.4) gives

Γ̄k(f) =
E
[
sk(f)W Ξ

1
2 Θ(f)ΘH(f)Ξ

1
2 wH

k

]
E
[
wkΞ

1
2 Θ(f)ΘH(f)Ξ

1
2 wH

k

]
=

sk(f)W ΞwH
k

wkΞwH
k

, (3.6)

where the fact that E
[
Θ(f)ΘH(f)

]
= IL was utilized. The average active reflection

coefficient defined in (3.6) is a frequency-dependent metric that reduces to the kth antenna
reflection coefficient Skk(f) if no crosstalk is present. This metric can also be expressed in
impedance form as

Z̄k(f) = Z0
1 + Γ̄k(f)

1− Γ̄k(f)
, (3.7)

where Z0 is the reference impedance of the system. As will be experimentally shown in
Section 3.5, evaluating Γ̄k(f) at the center frequency of operation is sufficient for predicting
the performance under wideband modulated signals.

Finally, it is important to emphasize that the active load modulation phenomenon
described above only occurs because the input signals to the PAs are correlated (due to
precoding). If the K input signals to the PAs were uncorrelated, the incident and reflected

wave vectors would become b2(f) = [ejθ1 , . . . , ejθK ]
T

and a2k(f) = sk(f)b2(f) respectively.
Accordingly, E[b2i(f)b∗2j(f)] = 0 ∀ i 6= j. Substituting these in (3.4) yields

Γ̄unc.
k (f) =

E [sk(f)b2(f)b∗2k(f)]

E
[
|b2k(f)|2

] = Skk(f). (3.8)
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Therefore, if the crosstalk signal affecting a given PA is uncorrelated with its driving
stimulus, the instantaneous active impedance will vary equally in all directions around the
nominal value Skk(f). In such case, crosstalk-induced instability is of no concern.
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Figure 3.2: Layout of a 16-element antenna array and its S-parameters.

The conventional precoders introduced in Section 2.3.2 minimize the total transmit-
ted power by the basestation but result in large disparities in the average-power levels
across chains. These disparities correspond to significant variations in the average active
impedances seen by the PAs (because the denominator of Γ̄k(f) is Pk = wkΞwH

k , so the
magnitude of Γ̄k(f) increases as Pk decreases relative to the other chains). To demonstrate
this, we plot the average active impedances obtained with conventional ZF, across 107

channel realizations, for the 16-element antenna array layout shown in Fig. 3.2. These
impedances were calculated at 3.5 GHz using (3.7). The number of users was L = 4,
all users were allocated the same power (i.e., Ξ = IL), and the channel matrices were
generated according to a Rayleigh fading model, i.e., the elements of H were generated
as independent, zero-mean, and unit-variance circularly-symmetric complex Gaussian ran-
dom variables. Fig. 3.3 shows the results, where it can be seen that the extent of load
modulation at any antenna port depends on its relative position in the array. This is be-
cause the antenna elements in the center are subject to more crosstalk than those at the
corners. For the particular array in Fig. 3.2, coupling in the vertical direction (E-plane) is
stronger than that in the horizontal direction (H-plane). Hence, an antenna at the top or
bottom edges is subject to more crosstalk than one at the left or right edges.
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Figure 3.3: The average active impedances for the array in Fig. 3.2 with conventional ZF
across 107 channel realizations. The red dots indicate the antenna reflection coefficients.
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3.3 The Proposed Solution

Conventional precoders are computationally efficient to implement but give rise to substan-
tial channel-dependent load modulation behavior, as Fig. 3.3 shows. In this section, we
demonstrate how the performance of the conventional precoders can be improved, without
a substantial increase in complexity.

3.3.1 Eliminating Extreme Cases

As Fig. 3.3 shows, conventional precoding may result in extreme loads that are outside the
unit circle on the Smith chart, leading to potential instability. Such extreme cases arise
when one PA is transmitting at a much lower average-power level than the neighboring
PAs. These cases can be eliminated by modifying the conventional precoders using the
following method. The method is first demonstrated on the ZF precoder before extending
it to the two other precoders.

First, the conventional ZF precoder WCon,ZF and the resulting average-power levels
PCon

1 , . . . , PCon
K are computed, from H and Ξ, using (2.32) and (2.27) respectively. The

objective is to increase the average-power levels in the chains with the lowest powers by
perturbing the conventional precoder WCon,ZF with αG for some α ∈ R, where G is chosen
such that the chains with the highest powers are unaffected. This reduces the disparity in
average-power levels among the chains and eliminates extreme load modulation cases. We
make use of the following lemma

Lemma. Let A be an L×K matrix, where K > L. If B is a full-rank matrix constructed
from A by replacing at most K − L columns with zeros, then AB† = IL. Moreover, if the
kth column of B is an all-zero vector, the corresponding row in B† is all-zero as well.

Proof. See [72], Lemma 1.

Let Ω denote the set containing the indices of the R chains with the lowest average-
power levels (the choice of R will be explained shortly). Also, let HΩ be obtained from H
by keeping the R columns whose indices are in Ω and replacing the rest with zeros, i.e.,

HΩ = H diag ([ω1, . . . , ωK ]) , (3.9)

where ωk = 1 if k ∈ Ω and 0 otherwise. If R ≥ L and the elements of H are drawn from
a continuous distribution, it is almost surely true that HΩ is of full rank. Accordingly, its
pseudoinverse

G = H†Ω = HH
Ω

(
HΩHH

Ω

)−1
(3.10)
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is well-defined. From the above lemma, HG = IL and the only non-zero rows in G are
those whose indices are in Ω. Therefore, a new precoder defined as W = WCon,ZF + αG
preserves the ZF condition and allows increasing the average-power levels in the R chains
with the lowest powers while keeping the rest intact. In this work, R is chosen as

R =

{
max(B,L), if B 6= 0

bK/2c, if B = 0
, (3.11)

where B is the number of chains whose average-power levels are less than one fourth of
the maximum, i.e., B = card({k : PCon

k ≤ PCon
max/4}), where PCon

max = maxk P
Con
k . The 1/4

factor is heuristically chosen based on the worst-case scenario for the center patches in the
array in Fig. 3.2. The above choice assumes that bK/2c ≥ L (or K ≥ 2L) since G is well-
defined only if R ≥ L. If B = 0, there will be no extreme load modulation cases, and the
following procedure can be skipped altogether. Nevertheless, the RF performance can still
be improved by reducing the disparity in average-power levels. As will be shown through
numerical simulations below, setting R = bK/2c yields the best results on average.

For k ∈ Ω, define fk(α) as the difference between PCon
max and the average power in the

kth chain when the precoding matrix is W = WCon,ZF + αG, i.e.,

fk(α) =
(
wCon,k + α g

k

)
Ξ
(
wCon,k + α g

k

)H − PCon
max

= α2 g
k
Ξ gH

k
+ 2αRe{g

k
Ξ wH

Con,k}+ PCon
k − PCon

max , (3.12)

where wCon,k and g
k

denote the kth rows of WCon,ZF and G respectively, and the fact that

PCon
k = wCon,kΞwH

Con,k was utilized. The function fk(α) is quadratic in α with two roots

α
[1]
k , α

[2]
k that can be computed using the quadratic formula, i.e.,

α
[1,2]
k =

−Re{g
k
Ξ wH

Con,k} ∓
√(

Re{g
k
Ξ wH

Con,k}
)2

+ g
k
Ξ gH

k
(PCon

max − PCon
k )

g
k
Ξ gH

k

. (3.13)

Note that the roots are real-valued since g
k
ΞgH

k
∈ R+ and PCon

k < PCon
max ∀ k ∈ Ω (i.e.,

the quantity under the square root is strictly positive). In addition, the two roots have

opposite signs (i.e., α
[1]
k < 0 < α

[2]
k ) since fk(0) < 0 ∀ k ∈ Ω.

Given the roots of all R functions {fk(α), k,∈ Ω}, define αopt as the root that has
minimum absolute value, i.e.,

αopt = argmin
x∈{α[1]

k ,α
[2]
k }k∈Ω

|x|. (3.14)
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Since fk(α) is quadratic, we have fk(α) ≤ 0 ∀α[1]
k ≤ α ≤ α

[2]
k . Hence, with αopt selected

as in (3.14), all R chains in Ω will have average-power levels that are less than or equal
PCon

max with at least one of them exactly equal to it. The proposed ZF precoder can then be
constructed as

WProp =
(
WCon,ZF + αoptG

)
/
(
1 + αopt

)
. (3.15)

where the 1/(1 + αopt) factor is to ensure that HWProp = IL. The above procedure for
improving the conventional ZF precoder can also be applied to the MRT precoder since
the G matrix in (3.10) satisfies the MRT condition in (2.29). The procedure can also be
straightforwardly extended to the MMSE case in (2.34) by replacing G with

HH
Ω

(
HΩHH

Ω +
σ2tr(Ξ−1)

Ptot
Ξ

)−1

.

In the proposed method, the K − R rows of WCon with the highest powers are fixed
while the rest are adjusted to increase their average-power levels, before normalizing by
the factor 1/(1+αopt). This process can be repeated for a second time if needed, where the
starting point becomes WProp instead of WCon. The method above can be considered as
one modified iteration of the procedure in [72]. Therein, the conventional ZF precoder is
modified through K−L steps, where one row is fixed in the first step, two rows are fixed in
the second step, and so on. If B = 0 (i.e., no extreme cases), choosing the optimal number
of rows to fix is key to obtaining the highest performance gain with the least number of
iterations. Fixing too many rows limits the degrees of freedom available, whereas fixing too
few rows results in only minor adjustments. Fig. 3.4 shows the impact this choice has on
the reduction in power disparity maxk Pk/mink Pk for L = 4, K ≥ 2L and Ξ = IL across
105 Rayleigh channel realizations. As the figure shows, fixing dK/2e rows (or equivalently,
adjusting bK/2c rows) at a time yields the biggest reduction in power disparity.

To illustrate the effect of the proposed method on the power distribution across chains,
numerical simulations for different settings of L and K were performed. Let PProp

k denote
the average-power level of the kth chain after two iterations of the proposed ZF method.
Three quantities were estimated and averaged across 105 Rayleigh channel realizations: 1)
the reduction in maximum per-chain power (maxk P

Con
k /maxk P

Prop
k ), 2) the reduction in

power disparity (maxk P
Con
k /mink P

Con
k ) /(maxk P

Prop
k /mink P

Prop
k ), and 3) the increase in

total power (
∑K

k=1 P
Prop
k /

∑K
k=1 P

Con
k ). The three quantities are plotted in dB scale vs.

the K/L ratio in Fig. 3.5 for L = 2, 4, and 6. As the figure shows, the proposed method
reduces the maximum per-chain power and the disparity in transmitted powers among the
different chains, at the expense of marginally increasing the total transmit power. Finally,
Fig. 3.6 shows the average active impedances obtained after two iterations of the proposed
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ZF method for the antenna array in Fig. 3.2, where it can be seen that no impedances are
outside the unity circle.
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Figure 3.6: The average active impedances for the array in Fig. 3.2 with and without the
proposed method applied to conventional ZF precoding.
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3.3.2 Load-Dependent DPD Coefficient Sets

Eliminating extreme cases will not be sufficient in practice if the standard DPD architec-
ture is employed. In [13], the precoding matrix W is bypassed during training and the
DPD modules are fed with K independently generated (and hence, uncorrelated) signals
x1[n], . . . , xK [n] (see Fig. 3.1). With uncorrelated stimuli, the synthesized average active
impedances become equal to their nominal values, i.e., Γ̄k(f) = Skk(f) ∀ k, as (3.8) shows.
Therefore, when precoding is subsequently employed, the trained DPD can perform poorly
if the average active impedances are far from their nominal values. Although the proposed
method in Section 3.3.1 significantly reduces the load modulation associated with conven-
tional precoding techniques, the average active loads can still be somewhat far from the
nominal values (see Fig. 3.6).

To maintain good linearity across all channel conditions at each PA output, we propose
to utilize multiple average-load-dependent and power-dependent DPD coefficient sets. By
training the DPD subsystem under multiple different channel conditions, each trained
coefficient set would only cover a portion of the two-dimensional power-load space at each
PA output. This improves the transmitter’s resilience to variations in average powers and
average active loads around the training points. With this arrangement, the dual-input
DPD architecture can more effectively handle the instantaneous variations in powers and
active loads.

For each PA, the Smith chart can be divided into regions according to the magnitude
and phase of the average load deviation at the center frequency f0

∆k = Γ̄k(f0)− Skk(f0) =
ŝk(f0)W ΞwH

k

wkΞwH
k

, (3.16)

where ŝk(f0) is the kth row of S(f0) with Skk(f0) set to zero. One example of such division
is shown in Fig. 3.7 with 5 regions. If the Smith chart is divided into N∆ regions and the
power range is divided into NP intervals, N∆×NP coefficient sets per PA would be needed.
The precoding matrix used for training a given set need not yield an average load that is
exactly at the region centroid since the coefficient sets can be subsequently updated online.

In practice, the PAs’ behavior may change with time due to changes in the surround-
ing environment (e.g., temperature, humidity,..) and/or operating conditions (e.g., center
frequency, signal bandwidth,..). Hence, online training of the DPD modules is often neces-
sary. The CTMM module in Fig. 3.1 can only be trained offline with uncorrelated signals,
as will be shown in the next section. On the other hand, the DPD modules can be trained
with any signals. Given the precoding and power allocation matrices within any coherence
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Figure 3.7: Dividing the Smith chart for each PA into regions.

interval, the K average load deviations ∆1, . . . ,∆K at the PAs’ outputs and the average-
power levels P1, . . . , PK can be calculated using (3.16) and (2.27) respectively. Then, for
each PA, only one of the N∆ × NP coefficient sets is updated, according to the intervals
into which ∆k and Pk fall, using the standard DPD update equation in (2.17).

With a sufficient number of load deviation regions, the DPD model used need not be
complex. In this work, we use a simplified version of the DISO model in (2.24). Following
the notation in Fig. 3.1, the DPD model in the kth chain is given by

zk[n] = ψk(sk[n])

+
P−1∑
p=0

M∑
m=0

βkpmâ2k[n−m]
∣∣sk[n−m]

∣∣p
+

P−3∑
p=0

M∑
m=0

γkpmâ
∗
2k[n−m] s2

k[n−m]
∣∣sk[n−m]

∣∣p, (3.17)

where P is the non-linearity order, M is the memory depth, sk[n] is a row vector containing
the samples of sk[n], and ψk(.) is a conventional SISO DPD function that has no dependence
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on the CTMM signal â2k[n]. The SISO function used in this work is a pruned combination
of the models in [32] and [36], i.e.,

ψk(sk[n]) =
N−1∑
p=0

M(p)∑
m=0

τ kpm sk[n−m]
∣∣sk[n−m]

∣∣p
+

N−1∑
p=1

M(p)∑
m=1

εkpm sk[n−m]
∣∣sk[n]

∣∣p
+ s2

k[n]
N−3∑
p=0

M(p+2)∑
m=1

ϑkpm s
∗
k[n−m]

∣∣sk[n]
∣∣p

+ s∗k[n]
N−3∑
p=0

M(p+2)∑
m=1

εkpm s
2
k[n−m]

∣∣sk[n]
∣∣p. (3.18)

where N is the SISO non-linearity order, MS is the SISO memory depth, and M(p) =
bMS(1 − p

N−1
)c is the proposed memory-pruning function. Finally, the kth CTMM signal

is computed, using Q-tap FIR filters, as

â2k[n] =
∑
i 6=k

Q−1∑
q=0

λ′ki[q]sk[n− q], (3.19)

where the terms corresponding to i = k have been omitted from the original CTMM
equation in (2.25) as they can be absorbed into the SISO function ψk(sk[n]). If the number
of antennas is large, coupling between far-spaced antennas can be considered negligible.
Hence, the summation on i in (3.19) need not be over all K − 1 chains.

3.4 Estimating the Antenna S-Parameters

Calculating the coefficients of the CTMM module, as well as determining the average load
deviations at the PA outputs using (3.16), requires knowledge of the antenna array S-
parameters. If these are known in advance, the CTMM coefficients can be calculated using
(2.21) with a slight modification. Since the baseband processing rate (i.e., Fs) is 3 to 5
times the modulation bandwidth, the input signals to the CTMM module s1[n], . . . , sK [n]
do not span the whole baseband bandwidth [−Fs/2, Fs/2]. Accordingly, the calculated
CTMM filters should favor the in-band portion of the baseband spectrum. This can be
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achieved by multiplying both sides of (2.21) with a diagonal weighting matrix that assigns
more weight to the in-band frequencies.

Alternatively, if the S-parameters are unknown, the CTMM coefficients can be esti-
mated using the following procedure. This procedure is a generalization of that in [13],
which is only valid for single-tap CTMM filters (i.e., Q = 1). As will be experimentally
shown in Section 3.5, using multiple-tap CTMM filters is necessary to compensate for
frequency-selective antenna behavior, especially with large modulation bandwidths.

The output signal of the kth PA can be modeled, as a function of the K input signals
to the PAs z1[n], . . . , zK [n], using a simplified version of the dual-input PA model in (2.23)
and (2.20), i.e.,

yk[n] = ψk(zk[n])

+
P−1∑
p=0

M∑
m=0

ηkpma2k[n−m]
∣∣zk[n−m]

∣∣p
+

P−3∑
p=0

M∑
m=0

µkpma
∗
2k[n−m] z2

k[n−m]
∣∣zk[n−m]

∣∣p, (3.20)

where the crosstalk signal at the kth antenna port is

a2k[n] =
∑
i 6=k

Q−1∑
q=0

λki[q]zk[n− q]. (3.21)

The structure of the PA model used in this work is identical to that of the DPD model
in (3.17)-(3.19), as is customary [13]. Note that the kth DPD output zk[n] is a function
of the chain input sk[n] and the corresponding CTMM signal â2k[n], while the kth PA
output yk[n] is a function of the predistorted signal zk[n] and the corresponding crosstalk
signal a2k[n]. Because of the first-order approximations made in Section 2.2.3, the CTMM
coefficients are linearly related to the antenna coefficients as λ′ki[q] = Gλki[q], where G
is the PA gain. Hence, estimating the CTMM coefficients is equivalent to estimating the
antenna coefficients.

The CTMM coefficients are estimated separately for each chain. For the kth chain,
the objective is to estimate K − 1 coefficient vectors λki = [λki[0], . . . , λki[Q− 1]]T , i 6= k.
The first step is to LS fit the kth PA output signal yk[n] to a SISO model ψk(zk[n]) then
subtract the fitted model from it to obtain the following signal

vk[n] = yk[n]− ψk(zk[n]). (3.22)
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Known: 𝜐𝜐𝑘𝑘 𝑛𝑛 = 𝑦𝑦𝑘𝑘 𝑛𝑛 − 𝜓𝜓𝑘𝑘 𝒛𝒛𝑘𝑘[𝑛𝑛]

Set: 𝜆̂𝜆𝑘𝑘𝑘𝑘 𝑞𝑞 = � 1, 𝑞𝑞 = 0
0, otherwise , ∀𝑖𝑖 ≠ 𝑘𝑘

Use �𝝀𝝀𝑘𝑘 in (3.21) to compute 𝑎𝑎2𝑘𝑘 𝑛𝑛

Compute the basis matrix 𝑨𝑨𝑘𝑘 in (3.24) and 
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Estimate �𝝀𝝀𝑘𝑘 from (3.27) and normalize

Accuracy 
?

�𝝀𝝀𝑘𝑘, �𝜼𝜼𝑘𝑘 , �𝝁𝝁𝑘𝑘found
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Figure 3.8: Flowchart for identifying the CTMM coefficients of the kth path.

The dual-input PA and antenna coefficients can then be obtained from this signal using
the iterative procedure shown in Fig. 3.8. Note that this procedure is only possible if the
K input signals are linearly independent i.e., the DPD and CTMM modules are bypassed
and the PAs are fed with K uncorrelated signals. Therefore, this procedure can only be
carried out offline (with no precoding or DPD employed).

The antenna coefficients are initially set to λki = [1, 0, . . . , 0]T , ∀ i 6= k. In step 1 of the
procedure, the antenna coefficients are used to compute the crosstalk signal using (3.21),
and the dual-input coefficient vectors ηk = {ηkpm},µk = {µkpm} are estimated by fitting the
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signal υk[n] to the dual-input bases in (3.20), i.e.,

vk[n] =
P−1∑
p=0

M∑
m=0

ηkpma2k[n−m]
∣∣zk[n−m]

∣∣p
+

P−3∑
p=0

M∑
m=0

µkpma
∗
2k[n−m] z2

k[n−m]
∣∣zk[n−m]

∣∣p. (3.23)

In matrix form, the dual-input coefficient vectors ηk,µk can be estimated as[
η̂k

µ̂k

]
= A†kυk, (3.24)

where υk is a vector containing the samples of υk[n], and Ak is the basis matrix for the
model in (3.23).

In Step 2, the antenna coefficients are re-estimated by fitting the signal υk[n] to the
model below

υk[n] =
∑
i 6=k

Q−1∑
q=0

λki[q]
P−1∑
p=0

M∑
m=0

η̂kpmzi[n−m− q]
∣∣zk[n−m]

∣∣p
+
∑
i 6=k

Q−1∑
q=0

λ∗ki[q]
P−3∑
p=0

M∑
m=0

µ̂kpmz
∗
i [n−m− q] z2

k[n−m]
∣∣zk[n−m]

∣∣p, (3.25)

whose basis are computed using the dual-input coefficient vectors η̂k, µ̂k estimated in the
previous step. This relation can be expressed in a more compact form as

υk = Bkλk + Ykλ
∗
k, (3.26)

where λk is a Q(K − 1)× 1 vector obtained by stacking all the λki; i 6= k vectors, υk is as
above, and Bk,Yk are the basis matrices for the model in (3.25). The equation above can
be solved for λ̂k by splitting it into its real and imaginary parts, yielding[

Re{λ̂k}
Im{λ̂k}

]
=

[
Re{Bk + Yk} Im{Yk −Bk}
Im{Bk + Yk} Re{Bk −Yk}

]† [
Re{υk}
Im{υk}

]
(3.27)

The two steps of the procedure above are iterated several times until convergence is ob-
served. Finally, we note that the solution for the antenna coefficients λ̂k and the PA
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coefficients η̂k, µ̂k is not unique, since multiplying one set by an arbitrary factor while
reciprocally scaling the other will result in the same output. This ambiguity also carries
over to the CTMM coefficients since they are linearly related to the antenna coefficients.
To avoid this, we follow the same approach in [13]: After step 2, we normalize the λ̂k
vector so that the maximum absolute of its entries is 1.

3.5 Experimental Results

Figure 3.9: A photograph of the measurement setup.

The effectiveness of the proposed methods is now validated through measurements on
a two-user four-chain fully digital prototype transmitter operating at a center frequency of
3.5 GHz. A photograph of the setup is shown in Fig. 3.9. The transmitter consists of two
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Keysight M8190A dual-channel arbitrary waveform generator (AWG)s, four Minicircuits
ZHL-42W driver amplifiers, four custom-designed PAs, and a four-element patch antenna
array. The antenna array, shown in Fig. 3.10, is a 2x2 rectangular patch configuration with
a worst-case crosstalk level of 20 dB. The PA module, shown in Fig. 3.11, is a class-AB
design based on Wolfspeed’s CGHV1F006 Gallium Nitride (GaN) transistor with a peak
output power of 4 Watts. The PAs’ outputs are sampled using four Anaren XC3500P-20S
directional couplers and fed to a four-channel Keysight DSOS404A oscilloscope for signal
monitoring and DPD training.

We begin by demonstrating the importance of utilizing multi-tap FIR filters in the
CTMM module. For this, the DPD modules were trained using four independently gen-
erated (and hence, uncorrelated) 100-MHz OFDM signals with 8-dB PAPR and an up-
sampling ratio of 5 (i.e., Fs = 500 MHz). This is the maximum expected bandwidth in
sub-6 5G systems [44]. The dual-input DPD parameters in (3.17)-(3.19) were set to P = 5
and M = 1, and the SISO parameters were set to N = 8 and MS = 5. This amounted to
69 coefficients in total (53 SISO + 16 dual-input). The length of the CTMM filters was set
to both Q = 3 and Q = 1. Table 3.1 shows the RNMSE and lower/upper ACPR values at
the individual PA outputs with both SISO and DISO DPD models, while Fig. 3.12 shows
the resulting spectra. As expected, SISO DPD exhibits poor linearization performance
because of the non-negligible antenna crosstalk. The table also shows that using one-tap
CTMM filters yields unsatisfactory results because of the frequency-selectivity of the an-
tenna S-parameters over the 100-MHz modulation bandwidth. For the antenna array used
here, the minimum CTMM filter length for satisfactory linearization performance is Q = 3.

Table 3.1: RNMSE (%) and Lower/Upper ACPRs (dB) at the outputs of the four PAs
with different DPD configurations.

DPD Type PA 1 PA 2 PA 3 PA 4

None
8.4%

-36.2/-32.7

11.8%

-34.9/-33.6

8.9%

-37.3/-31.0

12.2%

-35.0/-34.0

SISO
3.2%

-45.1/-46.4

3.2%

-46.3/-46.8

3.1%

-45.3/-44.6

2.8%

-46.2/-46.9

DISO (Q = 1)
1.7%

-46.7/-48.0

1.5%

-48.2/-48.5

1.5%

-46.7/-46.6

1.4%

-48.1/-48.5

DISO (Q = 3)
0.7%

-51.7/-51.3

0.7%

-52.2/-51.4

0.8%

-50.1/-50.0

0.8%

-52.3/-51.9

45



3.2 3.3 3.4 3.5 3.6 3.7 3.8

Frequency (GHz)

-40

-35

-30

-25

-20

-15

-10

-5

0

M
a

g
n

it
u

d
e

 (
d

B
)

S(1,1)

S(1,2)

S(1,3)

S(1,4)

S(2,2)

S(2,3)

S(2,4)

S(3,3)

S(3,4)

S(4,4)

Figure 3.10: The antenna array in the anechoic chamber and its S-parameters.

Figure 3.11: The PA module.
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Figure 3.12: Spectra of the individual PA outputs with different DPD configurations.

Next, we demonstrate the need for the proposed schemes in Section 3.3. For each
PA, the Smith chart was divided into N∆ = 5 regions, and the power range was divided
into NP = 3 intervals, resulting in 15 coefficient sets per PA. Fig. 3.13 shows the load
deviation regions and the training loads for one of the four PAs. The CTMM module
and the coefficient sets at the center load (at which Γ̄k(f) = Skk(f)) were trained with
100-MHz uncorrelated OFDM signals. Five channel matrices that yield extreme loads at
one PA were then picked, and the conventional ZF precoder was applied to each. Only one
iteration of the proposed scheme in Section 3.3.1 was carried out, yielding the adjustments
shown with the red arrows in Fig. 3.13. The five selected channels gave ordinary loads for
the three other PAs, so their results are omitted for brevity.
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Figure 3.13: The training and verification loads for one of the four PAs.

Table 3.2 shows the RNMSE and lower/upper ACPR values obtained at the output of
the designated PA, for the five selected channels, under three scenarios: i) conventional ZF
precoding and DPD, ii) proposed ZF precoding and conventional DPD (single coefficient
set trained with uncorrelated signals), and iii) proposed ZF precoding and load-dependent
DPD. As expected, the proposed precoding technique substantially improves linearization
performance by reducing the variations in average-power levels and active impedances. In
addition, further improvements can be obtained by utilizing multiple coefficient sets per
PA. The extent of these improvements, however, depends on the number of coefficient sets
utilized (i.e., N∆ and NP ) and the characteristics of the PA itself. Accordingly, better
results can be obtained by utilizing smaller load deviation regions that are tailored to
the specific PA nonlinearity. These regions need not be of the regular geometrical shapes
depicted in Fig. 3.13. It is, therefore, crucial that the PAs be pre-characterized in order to
determine the optimal load deviation regions and power intervals.
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Table 3.2: RNMSE (%) and ACPR (dB) results for one of the four PAs under different
precoding and DPD configurations.

Channel #
Con. precoding

& con. DPD

Prop. precoding

& con. DPD

Prop. precoding

& prop. DPD

1
11.4%

-45.9/-48.4

0.8%

-51.6/-53.2

0.8%

-51.6/-53.2

2
5.1%

-43.8/-43.8

5.3%

-49.0/-46.3

1.0%

-50.2/-49.7

3
15.9%

-42.6/-41.7

2.1%

-48.6/-46.7

2.3%

-51.2/-50.6

4
17.3%

-42.3/-40.7

3.5%

-50.5/-48.9

2.2%

-52.5/-52.4

5
12.6%

-41.8/-39.9

7.2%

-47.8/-47.0

1.2%

-49.5/-49.6

3.6 Summary

In this chapter, we presented a thorough analysis of the impact of precoding on the RF
performance of massive MIMO transmitters exhibiting non-negligible antenna crosstalk. It
was shown that the disparity in average-power levels arising from conventional precoding
schemes (MRT, ZF, and MMSE) leads to substantial variations in the average active loads
seen at the PA outputs. This load modulation behavior gives rise to channel-dependent
variations in the RF performance and linearity of the PAs. Based on this analysis, a robust
solution that mitigates such behavior was proposed. The proposed solution comprises a
low-complexity technique that reduces the power disparity arising from the conventional
precoders, and a load-dependent DPD architecture that mitigates the residual distortions.
The proposed solution was experimentally validated on a prototype MIMO system with
100-MHz OFDM signals, where excellent linearization performance across all channel con-
ditions was observed.
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Chapter 4

Crosstalk-Aware Precoding

In Chapter 3, it was shown that conventional precoding schemes result in large channel-
dependent disparities in average-power levels across the different RF chains, which can
have adverse effects on the RF performance. Using the relatively low-complexity method
in Section 3.3.1, these disparities can be somewhat, but not fully, mitigated. Consequently,
maintaining a consistent performance across all channel conditions necessitates employing
multiple load-dependent and power-dependent DPD coefficient sets, in conjunction with
the method in Section 3.3.1. The disadvantages of this solution, however, are the increased
DPD training duration and the need to pre-characterize the PAs’ behavior.

In this chapter, an alternative solution to the problem is presented. We propose three
linear precoding schemes that result in equal average-power levels across all RF chains,
no matter what the channel conditions are. Computing the precoders proposed in this
chapter is more computationally complex than modifying the conventional precoders using
the scheme in Section 3.3.1. Nevertheless, the precoders proposed here fully eliminate the
disparities in average-power levels, which means that only one DPD coefficient set per PA
would be needed. In addition, forcing all RF chains to transmit the same average power
simplifies the hardware design and pre-processing required. For instance, the clipping
limits in all PAPR reduction modules can be set to the same value, which makes all signals
have the same dynamic range. Consequently, the scaling settings of the DACs and the
gain settings of the driver-stage amplifiers preceding the PAs can be set the same across
all chains.
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4.1 Equal-Average-Power Precoding

4.1.1 MRT

The conventional MRT precoder minimizes the total transmit power needed to ensure that
[HW]l,l = 1 ∀ l = 1, . . . , L but results in a significant disparity in the average transmitted
powers across chains. Such disparity can be minimized by changing the objective func-
tion in (2.29) to be the maximum per-chain power, instead of the total transmit power.
Accordingly, we define the minimax MRT precoder to be the solution to

WMm−MRT = argmin
W∈CK×L

max
k∈{1,...,K}

Pk s.t. (HW)l,l = 1 ∀ l. (4.1)

Unlike the conventional MRT precoder, the minimax precoder defined above does not
posses a closed-form solution. Nevertheless, the optimization problem in (4.1) is a convex
second-order cone program (SOCP) that can be solved efficiently using primal-dual interior-
point methods [77].

Since the elements of H are drawn from a continuous distribution, it is almost surely
true that Hl,k 6= 0 ∀ l, k. As the following theorem shows, if this condition is satisfied, the
minimax MRT precoder results in equal average-power levels across all chains. Thus, it is
referred to, henceforth, as the equal-power (EP) MRT precoder.

Theorem. If Hl,k 6= 0 ∀ l, k, the precoder defined in (4.1) yields equal average-power levels
across all chains.

Proof. Since Hl,k 6= 0 ∀ l, k, the constrained optimization over KL variables in (4.1) can be
reduced to one over (K−1)L variables by eliminating the L equality constraints (HW)l,l =∑K

k=1Hl,kWk,l = 1 for l = 1, . . . , L. Without loss of generality, we eliminate the L variables
in the mth-row Wm,1, . . . ,Wm,L by substituting for the equality constraints in the expression
of Pm. Using the element form of (2.27), the optimization problem above can be rewritten
as

min
{Wk,l}l=1,...,L

k 6=m

max
k∈{1,...,K}

Pk (4.2)

where, ∀ k ∈ {1, . . . , K},

Pk =


∑L

l=1 ξl

∣∣∣(1−∑s 6=mHl,sWs,l)/Hl,m

∣∣∣2, k = m∑L
l=1 ξl|Wk,l|2, k 6= m.
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As evident from (4.2), the choice of the nth-row precoding coefficients Wn,1, . . . ,Wn,L,
where n ∈ {1, . . . , K}, n 6= m, affects only Pm and Pn. Either Pm or Pn can be made
equal to zero by appropriately choosing the nth-row coefficients while keeping those in
all the other rows fixed, i.e., setting Wn,l = 0 ∀ l yields Pn = 0 while setting Wn,l =
(1−

∑
s6=m,nHl,sWs,l)/Hl,n ∀ l yields Pm = 0.

Therefore, an optimal solution to the problem in (4.2) must result in Pn = Pm ∀m,n ∈
{1, . . . , K}. Suppose a claimed solution results in m = argmaxk Pk (i.e., Pm = maxk Pk)
with Pn 6= Pm for some n. Then, the nth-row coefficients can be altered so that Pn <
P new
n = P new

m < Pm. This is because Pm and Pn are both continuous functions of
Wn,1, . . . ,Wn,L. If Ps < Pm ∀s 6= m,n, then a better solution has been obtained since
P new
m < Pm. Otherwise, the same process can be repeated again ∀s;Ps = Pm, where each

time P new
s < max(Ps, P

new
m ).

To illustrate the differences between the conventional and EP MRT precoders, numer-
ical simulations for different settings of L and K were performed. All users were allocated
the same power (i.e., Ξ = IL) and the channel matrices were generated according to a
Rayleigh fading model. Let PEP

k and PCon
k denote the average-power levels of the kth

chain under EP and conventional MRT precoding respectively. Three quantities were
estimated and averaged across 105 realizations: 1) the reduction in maximum per-chain
power (maxk P

Con
k /maxk P

EP
k ), 2) the reduction in power disparity (maxk P

Con
k /mink P

Con
k )

/(maxk P
EP
k /mink P

EP
k ), and 3) the increase in total power (

∑K
k=1 P

EP
k /

∑K
k=1 P

Con
k ). The

three quantities are plotted in dB scale vs. the K/L ratio in Fig. 4.1 for L = 2, 4, and 6.
From the figure, it can be seen that the EP precoder appreciably reduces the maximum
per-chain power, at the expense of marginally increasing the total transmit power. More
importantly, the disparity in transmitted powers among the different chains is significantly
reduced.

4.1.2 Regularized ZF

Similarly, the minimax ZF precoder can be defined as the solution to the following SOCP

WMm−ZF = argmin
W∈CK×L

max
k∈{1,...,K}

Pk s.t. HW = IL. (4.3)

This precoder was first proposed in [69]. It is also similar to that in [78], which minimizes
the maximum per-chain power subject to individual signal-to-interference-and-noise ratio
(SINR) constraints at each user.
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Figure 4.1: The differences in average-power levels due to utilizing the EP-MRT precoder
instead of the conventional MRT precoder.

In the majority of cases, especially for large K/L ratios, the minimax ZF precoder
results in equal average-power levels across all chains, but may not always do so. Equal
average-power levels can be enforced by regularizing the ZF condition. Accordingly, an EP
regularized zero-forcing (RZF) precoder can be defined as

{WEP−RZF, tEP−RZF} = argmin
W∈CK×L, t∈R+

‖HW − IL‖2
F + λt s.t. Pk = t ∀ k. (4.4)

where λ ∈ R+ is a regularization parameter. Obtaining near-ZF performance requires
choosing a small λ, but not too small that it causes numerical instability. Unlike the
problem in (4.3), the problem defined above is non-convex because of the quadratic equality
constraints. Nevertheless, it can be solved using the method of Lagrange multipliers [79].
The Lagrangian function is given by

L(W, t, µ1, . . . , µK) = ‖HW − IL‖2
F + λt+

K∑
k=1

µk(e
T
kW Ξ WHek − t), (4.5)

where the matrix form of (2.27) was utilized. Using the following identities [80]

‖HW − IL‖2
F = ‖Cw − vec(IL)‖2

eTkW Ξ WHek = wHBkw, (4.6)
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where

w = vec(W)

C = IL ⊗H

Bk = Ξ⊗ eke
T
k ∀k,

the Lagrangian in (4.5) can be rewritten as

L(w, t, µ1, . . . , µK) = ‖Cw − vec(IL)‖2 + λt+
K∑
k=1

µk(w
HBkw − t). (4.7)

Note that quadratic forms wHBkw ∀k possess no imaginary part since the Bk matrices
are real-valued. The Lagrangian function can be expressed in terms of only real-valued
parameters as

L(wR,wI , t, µ1, . . . , µK) = ‖CRwR −CIwI − vec(IL)‖2 + ‖CIwR + CRwI‖2 + λt

+
K∑
k=1

µk(w
T
RBkwR + wT

I BkwI − t), (4.8)

where

wR = Re{w}, wI = Im{w},
CR = Re{C}, CI = Im{C}.

A stationary point of the Lagrangian can then be found by setting its derivatives to zero
and solving the resultant system of equations:

1

2

∂L
∂wR

= CT
R(CRwR −CIwI − vec(IL)) + CT

I (CIwR + CRwI)

+
K∑
k=1

µkBkwR = 0(KL)×1

1

2

∂L
∂wI

= −CT
I (CRwR −CIwI − vec(IL)) + CT

R(CIwR + CRwI)

+
K∑
k=1

µkBkwI = 0(KL)×1

∂L
∂t

= λ−
K∑
k=1

µk = 0

∂L
∂µk

= wT
RBkwR + wT

I BkwI − t = 0 ∀k. (4.9)
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Note that standard vector differentiation rules were utilized [80].

The set of 2KL + K + 1 nonlinear equations in (4.9) can be iteratively solved for the
variables (wR,wI , t, µ1, . . . , µK) using Newton’s trust-region methods [79]. For this, we
define the set of functions fi(wR,wI , t, µ1, . . . , µK), i = 1 . . . , 2KL+K + 1 as f1(.)

...
fKL(.)

 =
1

2

∂L

∂wRfKL+1(.)
...

f2KL(.)

 =
1

2

∂L

∂wI

f2KL+1(.) =
∂L

∂t f2KL+2(.)
...

f2KL+K+1(.)

 =


∂L

∂µ1
...
∂L

∂µK

 . (4.10)

Finding the solution to the system of equations fi(.) = 0, i = 1 . . . , 2KL+K + 1 requires
evaluating the Jacobian matrix of derivatives [79]. In Appendix B, we show that the
Jacobian matrix for the set of functions in (4.10) is given by

J(.) =


∂f1

∂wT
R

∂f1

∂wT
I

∂f1

∂t

∂f1

∂µ1

. . .
∂f1

∂µK
...

...
...

...
...

∂f2KL+K+1

∂wT
R

∂f2KL+K+1

∂wT
I

∂f2KL+K+1

∂t

∂f2KL+K+1

∂µ1

. . .
∂f2KL+K+1

∂µK



=



CT
RCR + CT

I CI + A −CT
RCI + CT

I CR 0(KL)×1 B1wR . . . BKwR

−CT
I CR + CT

RCI CT
I CI + CT

RCR + A 0(KL)×1 B1wI . . . BKwI

01×(KL) 01×(KL) 0 −1 . . . −1

2 wT
RB1 2 wT

I B1 −1 0 . . . 0
...

...
...

...
. . .

...
2 wT

RBK 2 wT
I BK −1 0 . . . 0


,

(4.11)
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where

A =
K∑
k=1

µkBk =
K∑
k=1

µk(Ξ⊗ eke
T
k ) = Ξ⊗ diag

([
µ1 . . . µK

])
.

The system of equations in (4.10), and its Jacobian in (4.11), are used to iteratively
compute the EP-RZF precoder. Finally, an initial guess at the solution can be obtained
by dropping the equality constraints in (4.4), i.e.,

W0 = argmin
W∈CK×L

(
‖HW − IL‖2

F +
λ

K
‖W‖2

F

)
= HH

(
HHH +

λ

K
IL

)−1

. (4.12)

The solution to the optimization problem in (4.12) can be found in [75, Section 6.1.4]. The
initial estimates of the parameters (wR,wI , t, µ1, . . . , µK) are then

w0
R = Re

{
vec(W0)

}
, t0 =

‖W0‖2
F

K
,

w0
I = Im

{
vec(W0)

}
, µ0

k =
λ

K
∀k, (4.13)

where the estimates of µ1, . . . , µK were obtained from the definition of ∂L/∂t in (4.9).

Using the same simulation settings in the previous subsection and λ = 10−4, the power
distribution differences between the EP-RZF and conventional ZF precoders were sim-
ulated and averaged across 105 channel realizations. The results, depicted in Fig. 4.2,
show a similar trend to the MRT results in Fig 4.1. In addition, the average ZF error
1
L2‖HWEP−RZF − IL‖2

F was evaluated, and is displayed in Fig. 4.3. The figure shows that
the performance loss associated with regularization is negligible for K/L ≥ 2.

4.1.3 MMSE

Under a fixed per-chain power level τ , an EP-MMSE precoder can be defined by modifying
the MMSE precoding problem in (2.33), i.e.,

{WEP−MMSE, βEP−MMSE} = argmin
W∈CK×L, β∈R+

E
[
‖v[n]− β−1Ξ−

1
2 u[n]‖

2
]

s.t. Pk = τ ∀ k. (4.14)
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Figure 4.2: The differences in average-power levels due to utilizing the EP-RZF precoder
instead of the conventional ZF precoder.
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Figure 4.3: The average ZF error due to the utilization of the EP-RZF precoder.
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The objective function in (4.14) can be simplified as follows

E
[
‖v[n]− β−1Ξ−

1
2 u[n]‖

2
]

= E
[
‖v[n]− β−1Ξ−

1
2 (HWΞ

1
2 v[n] + η[n])‖

2
]

= E
[
tr

(
v[n]vH [n]− 2 β−1Re

{
Ξ−

1
2 HWΞ

1
2 v[n]vH [n]

}
+ β−2

[
Ξ−

1
2 HWΞ

1
2 v[n]vH [n]Ξ

1
2 WHHHΞ−

1
2 + Ξ−

1
2η[n]ηH [n]Ξ−

1
2

])]
= L+ β−1tr

(
β−1

[
Ξ−1HW Ξ WHHH + σ2Ξ−1

]
− 2 Re{HW}

)
, (4.15)

where we have utilized the facts E
[
v[n]vH [n]

]
= IL and E

[
η[n]ηH [n]

]
= σ2IL, and the

cyclic properties of the trace operator. Using (4.15) and the matrix form of (2.27), the
Lagrangian function of the problem in (4.14) is then

L(W, β, µ1, . . . , µK) = L+ β−1tr

(
β−1

[
Ξ−1HW Ξ WHHH + σ2Ξ−1

]
− 2 Re{HW}

)
+

K∑
k=1

µk(e
T
kW Ξ WHek − τ). (4.16)

Using the following identities [80]

tr(Ξ−1HW Ξ WHHH) = wHQw

eTkW Ξ WHek = wHBkw

tr(HW) = hTw, (4.17)

where

w = vec(W), Q = Ξ⊗ (HHΞ−1H),

h = vec(HT ), Bk = Ξ⊗ eke
T
k ∀k,

the Lagrangian in (4.16) can be rewritten as

L(w, β, µ1, . . . , µK) = L+ β−2(wHQw + σ2tr(Ξ−1))− 2β−1Re{hTw}

+
K∑
k=1

µk(w
HBkw − γ). (4.18)
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Note that quadratic form wHQw is real-valued since Q is Hermitian (i.e., QH = Q). The
Lagrangian function can be expressed in terms of only real-valued parameters as

L(wR,wI , β, µ1, . . . , µK) = L+ β−2

(
wT
RQRwR + wT

I QRwI + 2wT
I QIwR + σ2tr(Ξ−1)

)
− 2β−1(hTRwR − hTI wI) +

K∑
k=1

µk(w
T
RBkwR + wT

I BkwI − τ),

(4.19)

where

wR = Re{w}, wI = Im{w},
hR = Re{h}, hI = Im{h},
QR = Re{Q}, QI = Im{Q}.

Note that, since QH = Q, we have QT
R = QR and QT

I = −QI . A stationary point of the
Lagrangian can be found by setting its derivatives to zero and solving the resultant system
of equations:

1

2
β2 ∂L
∂wR

= QRwR −QIwI − β hR + β2

K∑
k=1

µkBkwR = 0(KL)×1

1

2
β2 ∂L
∂wI

= QRwI + QIwR + β hI + β2

K∑
k=1

µkBkwI = 0(KL)×1

1

2
β3 ∂L

∂β
= β(hTRwR − hTI wI)−wT

RQRwR + wT
I QRwI + 2wT

I QIwR + σ2tr(Ξ−1) = 0

∂L
∂µk

= wT
RBkwR + wT

I BkwI − γ = 0 ∀k. (4.20)

To compute the EP-MMSE precoder, the set of 2KL + K + 1 nonlinear equations
in (4.20) need to be iteratively solved for the optimal variables using Newton’s trust-
region methods. For this, we define the set of functions fi(wR,wI , β, µ1, . . . , µK), i =
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1 . . . , 2KL+K + 1 as  f1(.)
...

fKL(.)

 =
1

2
β2 ∂L

∂wRfKL+1(.)
...

f2KL(.)

 =
1

2
β2 ∂L

∂wI

f2KL+1(.) =
1

2
β3 ∂L

∂β f2KL+2(.)
...

f2KL+K+1(.)

 =


∂L

∂µ1
...
∂L

∂µK

 (4.21)

In Appendix B, we show that the Jacobian matrix for the set of functions fi(.) = 0, i =
1 . . . , 2KL+K + 1 in (4.21) is given by

J(.) =


∂f1

∂wT
R

∂f1

∂wT
I

∂f1

∂β

∂f1

∂µ1

. . .
∂f1

∂µK
...

...
...

...
...

∂f2KL+K+1

∂wT
R

∂f2KL+K+1

∂wT
I

∂f2KL+K+1

∂β

∂f2KL+K+1

∂µ1

. . .
∂f2KL+K+1

∂µK



=



QR + β2A −QI −hR + 2βAwR β2B1wR . . . β2BKwR

QI QR + β2A hI + 2βAwI β2B1wI . . . β2BKwI

β hTR − 2 wT
RQR − 2 wT

I QI −β hTI − 2 wT
I QR + 2 wT

RQI hTRwR − hTI wI 0 . . . 0

2 wT
RB1 2 wT

I B1 0 0 . . . 0
...

...
...

...
. . .

...
2 wT

RBK 2 wT
I BK 0 0 . . . 0


(4.22)

where

A =
K∑
k=1

µkBk =
K∑
k=1

µk(Ξ⊗ eke
T
k ) = Ξ⊗ diag

([
µ1 . . . µK

])
.
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The conventional MMSE precoder in (2.34) with Ptot = Kτ can be used as an initial guess
at the solution and the Lagrangian multipliers can initially be set to zero, i.e., µ0

k = 0 ∀k.

The power distribution differences between the EP and conventional MMSE precoders
are similar to those shown in Figs. 4.1 and 4.2. Finally, it is worthwhile comparing the
performance of the three proposed EP precoders under a fixed maximum per-chain power
level τ . Note that the EP-MRT and EP-RZF precoders are not defined under a fixed
power level. Hence, they must be scaled to ensure that Pk = τ ∀k. The performance of the
different precoders is assessed by evaluating the average SINR at the users’ side. Given
the precoding and channel matrices W,H, the SINR at the lth user (in dB) is given by

10 log10

( ξl

∣∣∣(HW)l,l

∣∣∣2∑
m 6=l ξm

∣∣∣(HW)l,m

∣∣∣2 + σ2

)
.

The average user’s SINR is plotted in Fig. 4.4 versus the ratio of the total basestation power
to the noise power, i.e., Kτ/σ2, for L = 4, K = 12,Ξ = IL and λ = 10−4. As expected, the
MMSE precoder has the best performance under any SNR scenario. Furthermore, since
the K/L ratio is large and λ is close to zero, the EP-RZF precoder is indistinguishable
from the minimax ZF precoder.
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Figure 4.4: Comparison between the proposed EP precoders given a fixed maximum per-
chain power level τ for L = 4, K = 12, and Ξ = IL.
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4.2 The Average Active Impedances under EP Pre-

coding

If all chains are transmitting the same average power, the crosstalk-induced load deviation
becomes restricted within a circular boundary on the Smith chart. The maximum load
deviation at the kth antenna port at any frequency can be calculated by rearranging the
formula for the average active reflection coefficient in (3.6) as

Γ̄EP
k (f)− Skk(f) =

∑
i 6=k Ski(f) wiΞwH

k

wkΞwH
k

(4.23)

Taking the absolute value of both sides yields

∣∣Γ̄EP
k (f)− Skk(f)

∣∣ =

∣∣∣∣∣
∑

i 6=k Ski(f) wiΞwH
k

wkΞwH
k

∣∣∣∣∣
(a)

≤
∑

i 6=k |Ski(f)|
∣∣wiΞwH

k

∣∣
|wkΞwH

k |
(b)

≤
∑

i 6=k |Ski(f)|
√
|wiΞwH

i | |wkΞwH
k |

|wkΞwH
k |

(c)
=

∑
i 6=k |Ski(f)|

√
PiPk

Pk
(d)
=
∑
i 6=k

|Ski(f)| , (4.24)

where (a) follows from the triangle inequality, (b) from the Cauchy-Schwarz inequality, (c)
from (2.27), and (d) from the fact that Pi = Pk ∀ i, k under EP precoding. This limit
corresponds to a circle of radius

∑
i 6=k |Ski(f)| around the nominal reflection coefficient

value Skk(f).

Using the same simulation settings and channel realizations in Section 3.2, the average
active impedances for the array in Fig. 3.2 under both conventional ZF and the proposed
EP-RZF precoding were evaluated and plotted as the blue and red crosses in Fig. 4.5
respectively. The red circles in the figure indicate the maximum load deviation under EP
precoding as given by (4.24). As the results show, EP precoding significantly reduces the
extent of load modulation through forcing all chains to transmit the same average power.
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Figure 4.5: The average active impedances for the array in Fig. 3.2 under both conven-
tional ZF and the proposed EP-RZF precoder. The red circles indicate the maximum load
deviation under EP precoding as per (4.24).
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4.3 Experimental Validation

The effectiveness of the proposed EP precoders is now validated through measurements
on the 2-user 4-chain setup used in Section 3.5. In a 2-user 4-chain system, the EP-
RZF precoder requires, on average, about 1.7 dB less maximum per-chain power than
the conventional ZF precoder does to deliver the same power to the users (see Fig. 4.2).
In order to fully utilize the PAs’ transmission capability, the EP-RZF precoder can be
normalized so that the per-chain power level is the same as the max level required by the
conventional ZF precoder. This increases the power delivered to the users at the expense
of operating the PAs in a more nonlinear region. Nevertheless, as will be shown below, the
proposed EP precoders improve the performance of the DPD subsystem and consequently,
enable higher power delivery without violating signal quality requirements.

The DPD modules were trained using four independently generated 100-MHz OFDM
signals with 9-dB PAPR, resulting in only one coefficient set per PA. The dual-input DPD
parameters in (3.17)-(3.19) were set to P = 5,M = 1, and Q = 3, and the SISO parameters
were set to N = 8 and MS = 6. Once DPD training had been performed, the full setup was
run 200 times. Each time, two 100-MHz OFDM signals and a Rayleigh channel matrix were
randomly generated, and both conventional ZF and normalized EP-RZF precoding were
applied to the two user signals. Fig. 4.6 shows the RNMSE and upper-side ACPR values
obtained in the four chains at each measurement run, and Fig. 4.7 shows the average
active impedances at the center frequency (3.5 GHz) across these runs. Because of the
large number of channel realizations plotted in Fig. 4.7, it is not possible to label all loads
with their corresponding measurement indices. Hence, only a few interesting cases were
labeled. The red circles in the figure indicate the maximum load deviation limits under
EP precoding, which were calculated using (4.24).

When compared with the conventional precoders, the proposed ones can significantly
reduce load modulation effects since they eliminate the relative variation in average-power
levels across chains. As shown in Fig. 4.6, the EP-RZF precoder reduced the ACPR and
RNMSE in each chain by up to 10 dB and 12% respectively, all while delivering 1.7 dB
more power to the users on average. Fig. 4.8 shows the RNMSE at the two user terminals,
where it can be seen that the EP-RZF precoder reduced the RNMSE experienced by
users 1 and 2 by up to 3% and 7% respectively. It is worthy of note that the RNMSE
reductions brought by the EP precoder at the user side are less significant than those at
the individual PA outputs. This is because the signal at any user terminal is a linear
combination of the PA output signals and not all PAs experience RNMSE degradation
at the same time. Nevertheless, the proposed EP precoders ensure that user-side signal
quality requirements are met across all channel conditions. More importantly, the proposed
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precoders stabilize the transmitter’s RF performance and guard against crosstalk-induced
PA instability, which could result in uncontrollable oscillations. Furthermore, the proposed
precoders reduce the required maximum per-chain power level (see Figs. 4.1 and 4.2), which
enables the use of smaller PAs and improves the energy efficiency of the MIMO transmitter.

4.4 Discussion

The improvements in power distribution obtained with EP precoding are substantially big-
ger than those obtained with the low-complexity method in Section 3.3.1, as evident from
comparing Figs. 4.2 and 3.5. However, this comes at the expense of a substantial increase
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Figure 4.6: The measured RNMSE and ACPR values across 200 channel realizations.
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in complexity since computing any of the EP precoders entails solving a system of nonlin-
ear equations. For instance, the EP-RZF precoder can be computed by iteratively solving
the system in (4.10), where each iteration involves obtaining an approximate solution to
J(.)x = −f(.) using Steihaug’s conjugate gradient method [79]. Since the Jacobian matrix
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Figure 4.7: The average active impedances at the PA outputs across the 200 channel
realizations. The red circles indicate the maximum load deviation under EP precoding.
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J(.) in (4.11) is sparse (around 80% of its elements are zeros when K/L = 4) and only an
approximate solution is needed, one could roughly estimate the cost of each iteration to be
2.5-3 times the cost of the conventional ZF precoder. Given that around 7 iterations are
needed on average (the exact number depends on the channel realization), the EP-RZF
precoder is roughly 15-20 times more computationally complex than the conventional ZF
one. The same rough estimate applies to the EP-MRT and EP-MMSE precoders as well.
On the other hand, the method in Section 3.3.1 requires only one or two iterations, where
each iteration involves solving a system of linear equations that is of the same size as the
system required for computing the corresponding conventional precoder. The additional
cost incurred in (3.13)-(3.15) is all but offset by the fact that multiple columns of HΩ are
zeroed in (3.9). Thus, the modified precoders in Section 3.3.1 are only about 2-3 times
more computationally complex than the conventional ones.

Nevertheless, the EP precoders proposed in this chapter represent a more robust so-
lution to the problem at hand. With EP precoding, there is no need for multiple DPD
coefficient sets nor pre-characterizing the PAs’ behavior. Furthermore, as evident from
comparing Figs. 4.2 and 3.5, EP precoding yields more reduction in the maximum per-
chain power level than that obtained with the method in Section 3.3.1, which enables the
use of smaller PAs. Finally, forcing all RF chains to transmit the same average power
simplifies the hardware design of the driver-stage amplifiers preceding the PAs and the
pre-processing required (since all signals will have the same dynamic range).
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4.5 Summary

In this chapter, we proposed three linear precoding schemes that serve as hardware-friendly,
albeit more computationally complex, substitutes to the three basic precoders (MRT, ZF,
and MMSE). The proposed precoders result in equal average-power levels across all RF
chains, independently of the channel conditions. With these precoders employed, the extent
of crosstalk-induced load modulation at the PAs’ outputs is significantly reduced, and only
one DPD coefficient set per PA is needed. In addition, the proposed precoders simplify
the control and scaling settings of the DACs and driver-stage amplifiers preceding the PAs.
Numerical simulations and experiments showed that the proposed precoders substantially
improve the transmitter’s resilience to variations in channel conditions.
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Chapter 5

Reducing the Computational
Complexity of the DPD Subsystem

The energy efficiency of the DPD subsystem can be improved in two ways. The first is re-
ducing the power consumption of the TOR needed to train the DPD modules. This can be
achieved by operating the TOR ADC below the Nyquist rate, which yields no loss in per-
formance as recent works have shown. The second approach to improving energy efficiency
is to reduce the power consumption of the real-time DPD engine. This entails employing
low-computationally-complex DPD models and minimizing the hardware resources utilized
in the DSP logic circuits.

In this chapter, we address these two approaches and propose new techniques that
reduce the computational and power overheads incurred in prior works. Specifically, we
devise a computationally efficient algorithm to estimate the delay and phase offsets between
the transmitter and the sub-Nyquist TOR. The proposed algorithm improves upon the
exhaustive search methods employed in prior works. In addition, we propose a piece-wise-
based DPD model that requires less hardware resources to implement and introduces less
latency when compared with similar works in the literature.

5.1 Low-Complexity Synchronization in Sub-Nyquist

TOR Architectures

Recent works on DPD have explored the use of under-sampling (or sub-Nyquist) ADCs.
The rationale behind earlier works [40,81–84] was to band-limit the feedback signal, so as
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to prevent aliasing when sampling it with low-rate ADCs. This approach, however, limits
the extent to which out-of-band emissions can be reduced because the band-limiting filter
biases the DPD coefficients towards eliminating the distortion within the captured portion
of the PA output spectrum, with no direct control over that in the omitted segments.
Later works [85,86] demonstrated that excellent out-of-band performance can be achieved
using ADCs with arbitrarily low sampling rates, as long as their analog bandwidth covers
the whole PA output spectrum and no band-limiting filters are inserted. Nevertheless, the
works in [85, 86] utilized the direct-conversion architecture in Fig. 2.6a, which is prone to
I/Q imbalance. This problem was circumvented in [87, 88], where it was shown that only
one branch of the I/Q demodulator and one sub-Nyquist ADC are sufficient. The authors
of [89, 90] took this concept one step further, and showed that the sub-Nyquist ADC can
also be used in a non-zero-IF configuration.

The main problem with the works in [89,90] is the reliance on exhaustive search methods
for estimating the delay and phase offsets between the sub-Nyquist TOR and the trans-
mitter. In what follows, we propose a computationally efficient algorithm for estimating
these offsets. The proposed algorithm substantially reduces the DPD training duration by
minimizing the time required for synchronization.

5.1.1 Updating the DPD Coefficients

We start by reviewing the DPD training architecture in [89, 90], albeit in a more rigorous
fashion. The sub-Nyquist TOR architecture is shown in Fig. 5.1, in which the ADC
sampling rate is a sub-multiple of the baseband processing rate, i.e., FADC = Fs/D where
D is a positive integer. Unlike the conventional non-zero-IF architecture in Fig. 2.6b, the
sub-Nyquist architecture places no restrictions on fIF or FADC (i.e., both can be arbitrarily
low), and no DDC is performed. Nevertheless, the analog bandwidth of the ADC must
still cover the whole spectrum of the feedback signal f ∈ [fIF − Fs/2, fIF + Fs/2]. Note
that setting fIF = 0 yields the architecture in [87,88].

𝑦𝑦𝐼𝐼𝐼𝐼 𝑡𝑡
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𝑦𝑦𝐼𝐼𝐼𝐼 𝐷𝐷𝑛𝑛
ADC
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𝐹𝐹𝑠𝑠
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Figure 5.1: The sub-Nyquist TOR architecture.
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The DPD update equation in (2.17) can be rewritten in the following form

wl = wl−1 − τ∆w, (5.1)

where ∆w is the LS solution to

Φ∆w =
( y

G
e−jθ̂ − x

)
. (5.2)

Since DDC is not possible with arbitrarily low fIF and FADC, the objective is to express
the DPD update vector ∆w in (5.2) in terms of the passband feedback samples yIF [n],
rather than their unobtainable baseband equivalents y[n].

The passband signal yIF (t) and its baseband equivalent y(t) are related by yIF (t) =
Re{y(t)ej2πfIF t}. If the ADC sampling frequency is the same as the baseband processing
rate (i.e., D = 1) then

yIF [n] = Re{y(nTs)e
j2πfIF (nTs)} = Re{y[n]ej2πΩn}, (5.3)

where Ts = 1/Fs, and Ω = fIF/Fs. Define the following diagonal matrix

T = ejθ̂diag
([
ej2πΩ(M) . . . ej2πΩ(N−1)

])
, (5.4)

where M is the memory depth of the DPD model. The LS solution to the system of
equations in (5.2) is unaltered if we multiply both sides by T since T is a unitary matrix,
i.e., THT = I [42]. Multiplying both sides of (5.2) by T then taking the real part gives

Re{TΦ}Re{∆w} − Im{TΦ} Im{∆w} = Re

{
T
( y

G
e−jθ̂ − x

)}
,

or equivalently [89,90],

Υ

[
Re{∆w}
Im{∆w}

]
=
(yIF
G
− xIF

)
, (5.5)

where yIF = Re{Tye−jθ̂} = [yIF [M ], . . . , yIF [N − 1]]T is the vector of passband feedback
samples and

Υ =
[
Re{TΦ} −Im{TΦ}

]
xIF = Re{Tx}.

Note that (5.3) was utilized. Equation (5.5) expresses the real and imaginary parts of the
update vector ∆w in terms of the passband feedback yIF [n] and the baseband input x[n],
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as desired. As before (see Section 2.2.1), the explicit matrix inversion
(
ΥTΥ

)−1
need not

be evaluated, as the RLS algorithm can be used to compute a regularized solution.

Now, if the ADC operates at a rate of Fs/D, where D is a positive integer, the received
passband samples are yIF [Dn] = yIF (DnTs), which corresponds to sampling only every
Dth entry of the yIF vector in (5.5). By keeping the corresponding rows of Υ,xIF and
dropping the rest, the reduced system of equations can be solved for the real and imaginary
parts of ∆w. Since the full-rate input signal x[n] is known, the preserved rows of Υ can
be fully computed, and the number of columns is unchanged. Therefore, under-sampling
introduces no loss in performance, as long as enough rows are kept. In theory, there is
no limit to how large the under-sampling factor D can be but in practice, some hardware
constraints (e.g., clock jitter) may impose an upper bound on D.

It is worthwhile emphasizing that this architecture does not violate the Nyquist –Shan-
non sampling theorem. As the well-known theorem dictates, the full-rate feedback signal
yIF [n] cannot be reconstructed from the sub-sampled one due to aliasing. Nevertheless, we
are not interested in obtaining the missing samples, but rather in estimating a finite set
of parameters that characterize the PA’s nonlinear behavior. Equation (5.5) represents a
system of linear equations in 2P unknowns (where P is the number of DPD coefficients)
that are to be estimated from the feedback samples. Solving this system of equations re-
quires at least 2P feedback samples, and the quality of the obtained solution (in the sense
that it properly linearizes the PA) improves with increasing the number of samples. These
samples can be obtained at any rate and even at irregular intervals.

5.1.2 Estimating Delay and Phase Offsets

A critical component of the DPD training routine is the delay and phase alignment al-
gorithm. Below, the optimal ML algorithm for estimating the delay and phase offsets
between z[n] and yIF [n] is derived.

ML Derivation

Using (5.3) and (2.9), the passband feedback signal yIF (t) can be expressed in terms of
the I and Q components of the baseband predistorted signal z(t) = zI(t) + jzQ(t), in the
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presence of real-valued AWGN η(t), as

yIF (t) ≈ Re{h0 z(t− t0)ej(2πfIF (t−t0)+θ)}+ η(t)

= h0 zI(t− t0) cos(2πfIF (t− t0) + θ)

− h0 zQ(t− t0) sin(2πfIF (t− t0) + θ) + η(t), (5.6)

where t0 is the system delay, h0 is the channel gain, and θ is the combined phase offset
due to transmitter circuitry and phase incoherence. Note that h0 is restricted to being a
positive real value as the phase of the system response is absorbed into θ. The equation
above represents a good approximation if the PA is weakly nonlinear.

The full-rate case is when the passband signal is sampled at the same rate as the
transmitter DACs, i.e., D = 1 in Fig. 5.1. If this rate is Fs, the received samples can be
expressed as

yIF [n] = h0 zI [n− n0] cos(2πΩ(n− n0) + θ)

− h0 zQ[n− n0] sin(2πΩ(n− n0) + θ) + η[n], (5.7)

where Ω = fIF/Fs and n0 = t0Fs = t0/Ts. Note that yIF [n] = yIF (nTs) and the same
applies for zI [n], zQ[n], and η[n].

Let N be the number of signal-containing samples of zk[n] = zI [n]+ jzQ[n] and M > N
be the total number of received samples of yIF [n] where the extra M −N samples contain
no signal component, i.e., only AWGN. Assume, for now, that n0 is an integer and define
the following two signals

r[n] = zI [n] cos(2πΩn)− zQ[n] sin(2πΩn)

s[n] = −zI [n] sin(2πΩn)− zQ[n] cos(2πΩn). (5.8)

It follows that (5.7) can be expressed as

yIF [n] = η[n] +


0, 0 ≤ n < n0

α1r[n− n0] + α2s[n− n0], n0 ≤ n < n0 +N

0, n0 +N ≤ n < M

, (5.9)
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where α1 = h0 cos θ and α2 = h0 sin θ. Since η[n] is AWGN, the likelihood function is [91]

p(yIF ;α1, α2, n0) =
1(√

2πσ2
)M n0−1∏

n=0

exp
(−y2

IF [n]

2σ2

)

·
n0+N−1∏
n=n0

exp

(
−1

2σ2

(
yIF [n]− α1r[n− n0]− α2s[n− n0]

)2
)

·
M−1∏

n=n0+N

exp

(
−y2

IF [n]

2σ2

)
, (5.10)

where σ2 is the noise power. The negative of the logarithm of the likelihood function, after
omitting constant factors, can be expressed as

C(α1, α2, n0) =

n0−1∑
n=0

y2
IF [n] +

M−1∑
n=n0+N

y2
IF [n]

+

n0+N−1∑
n=n0

(
yIF [n]− α1r[n− n0]− α2s[n− n0]

)2
(5.11)

Changing the summation index of the last term gives

C(α1, α2, n0) =

n0−1∑
n=0

y2
IF [n] +

M−1∑
n=n0+N

y2
IF [n] +

N−1∑
n=0

(yIF [n+ n0]− α1r[n]− α2s[n])2

=

n0−1∑
n=0

y2
IF [n] +

M−1∑
n=n0+N

y2
IF [n] + (yIF (n0)−Hα)T (yIF (n0)−Hα) , (5.12)

where yIF (n0) = [yIF [n0], . . . , yIF [n0 + N − 1]]T , H = [r s], r = [r[0], . . . , r[N − 1]]T ,
s = [s[0], . . . , s[N − 1]]T , and α = [α1, α2]T . The ML estimates of the three parameters
(α1, α2, n0) are obtained by maximizing the likelihood function in (5.10), or equivalently,
minimizing C(α1, α2, n0). For any n0, the C(α1, α2, n0) is quadratic in α and is minimized
by [91]

α̂ =
(
HTH

)−1
HTyIF (n0). (5.13)
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Substituting this back in (5.12) yields

C(α̂1, α̂2, n0) =

n0−1∑
n=0

y2
IF [n] +

M−1∑
n=n0+N

y2
IF [n]

+
([

I−H
(
HTH

)−1
HT
]

yIF (n0)
)T
·
([

I−H
(
HTH

)−1
HT
]

yIF (n0)
)

=

n0−1∑
n=0

y2
IF [n] +

M−1∑
n=n0+N

y2
IF [n] + yTIF (n0)

(
I−H

(
HTH

)−1
HT
)

yIF (n0)

=
M−1∑
n=0

y2
IF [n]− yIF

T (n0)H
(
HTH

)−1
HTyIF (n0), (5.14)

where the fact that yTIF (n0)yIF (n0) =
∑N−1

n=0 y
2
IF [n + n0] =

∑n0+N−1
n=n0

y2
IF [n] was used.

Since the first term is not a function of n0, the ML estimate of n0 is simply obtained by
maximizing

yTIF (n0)H
(
HTH

)−1
HTyIF (n0). (5.15)

Now, if the passband signal is sampled at a rate of Fs/D, where D ∈ Z+, D > 1, the
received samples are yD[m] = yIF [Dm], m = 0, . . . ,MD − 1. Assuming DMD > N (i.e.,
enough samples are collected), the negative of the logarithm of the likelihood function now
becomes

C(α1, α2, n0) =

dn0
D
e−1∑

m=0

y2
D[m] +

MD−1∑
m=bn0+N−1

D
c+1

y2
D[m]

+

bn0+N−1
D

c∑
m=dn0

D
e

(
yD[m]− α1r[Dm− n0]− α2s[Dm− n0]

)2
(5.16)

Unlike the case where D = 1, the indices of the involved samples of r[Dm − n0] and
s[Dm − n0] in the last term now depend upon the remainder of the division of n0 by D,
which we denote by l, i.e., l = n0 mod D. Assuming that N is divisible by D, then if
l = 0, the involved indices are n = Dm, m = 0, . . . , N/D − 1, while if l 6= 0, they become
n = Dm+ (D− l), m = 0, . . . , N/D− 1. A concise way of writing this is n = Dm+ p(n0),
where p(n0) = (−n0) mod D.

Therefore, the H matrix is split into D matrices of N/D rows each: H0, . . . ,HD−1,
where Hp is the matrix formed by selecting the rows with indicesDm+p, m = 0, . . . , N/D−
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1. The ML estimate of n0 is then obtained by maximizing

yTD(n0)Hp(n0)

(
HT
p(n0)Hp(n0)

)−1
HT
p(n0)yD(n0), (5.17)

where yD(n0) = [yD[ dn0

D
e ], . . . , yD[ bn0+N−1

D
c ]]T , and p(n0) is as above.

Algorithm Steps for D = 1

Let gIF [n], n = 0, . . . ,M−1 be the M passband samples captured at a rate of Fs. Without
loss of generality, we assume that M > N , where N is the number of transmitted samples.
First, compute H = [r s], where r = [r[0], . . . , r[N − 1]]T , s = [s[0], . . . , s[N − 1]]T , and

r[n] = Re{z[n] ej2πΩn}
s[n] = −Im{z[n] ej2πΩn}. (5.18)

From which, compute the 2 × 2 weighting matrix W = (HTH)
−1

. Next, for all integers
d = 0, . . . ,M −N , compute

v(d) = HTgIF (d) =

[∑N−1
n=0 r[n] gIF [n+ d]∑N−1
n=0 s[n] gIF [n+ d]

]
, (5.19)

where gIF (d) = [gIF [d], . . . , gIF [d+N−1]]T . The integer part of the delay is then estimated
as

d̂0 = argmax
d∈[0,M−N ]

vT (d) W v(d). (5.20)

Simply put, the integer part of the delay is found through cross-correlating the feedback
signal with two transformed variants of z[n], then weighting the result by the pre-computed
matrix W. The remaining fractional delay ζ ∈ (−0.5, 0.5) can be estimated by interpolat-
ing the integral-argument likelihood function L(d) = vT (d) W v(d) around d̂0 and finding
the maximum. It can then be compensated for using fractional delay filters [92]. Note that
the fractional part of the delay should not be applied to gIF [n] as the signal is aliased. In
all further computations, it is to be applied to the full-rate signal involved (x[n], z[n], or
the columns of H). Finally, the nominal amplifier gain h0 and phase offset θ are estimated
from gIF (d̂0) and the fractionally-delayed H as[

α̂1

α̂2

]
= WHTgIF (d̂0)

ĥ0 e
jθ̂ = α̂1 + jα̂2. (5.21)

If the TOR has a high SNR, it suffices to perform the operations above using B < N
samples.
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Algorithm Steps for D > 1

Let gD[n] = gIF [Dn], n = 0, . . . ,MD−1 be the MD passband samples captured at a rate of
Fs/D, where D ∈ Z+. The captured signal is first up-sampled by inserting D−1 zeros after
every sample to form the signal qIF [n], n = 0, . . . , DMD − 1. Note that no interpolation is
employed. Without loss of generality, we assume that DMD > N and that N is divisible
by D. As before, the signals r[n], s[n], and the H matrix are to be computed first.

The main difference from the case where D = 1 is that D weighting matrices are
computed, instead of one. The N -rows H matrix is split into D matrices: H0, . . . ,HD−1

of N/D rows each, where Hp is the matrix formed by selecting the rows with indices

Dm + p,m = 0, . . . , N/D − 1. The pth weighting matrix is then Wp = (HT
p Hp)

−1
, p =

0, . . . , D − 1. For all integers d = 0, . . . , DMD −N , compute

v(d) = HTqIF (d) =

[∑N−1
n=0 r[n] qIF [n+ d]∑N−1
n=0 s[n] qIF [n+ d]

]
p(d) = (−d) mod D, (5.22)

where qIF (d) = [qIF [d], . . . , qIF [d+N−1]]T . The integer part of the delay is then estimated
as

d̂0 = argmax
d∈[0,M−N ]

vT (d) Wp(d) v(d). (5.23)

As before, the remaining fractional delay can be estimated by interpolating the likelihood
function and finding the maximum. The nominal amplifier gain and phase offset are then
estimated as

p0 = (−d̂0) mod D[
α̂1

α̂2

]
= Wp0H

T
p0

qD(d̂0)

ĥ0 e
jθ̂ = α̂1 + jα̂2, (5.24)

where qD(d̂0) denotes the vector obtained from qIF (d̂0) by omitting the zeros that were
inserted in the beginning. The indices of the zeros that were removed from qIF (d̂0) indicate
the indices of the rows that are to be removed from the matrix equation in (5.5).

Finally, we compare the proposed alignment algorithm to those in prior works [87–90].
If i) all weighting matrices are identical (i.e., Wp = W0 ∀ p ∈ {1, . . . , D−1}), ii) the I and Q
components of z[n] are uncorrelated, and iii) fIF = 0, then the proposed algorithm reduces
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to that in [88]. Since the first two conditions are not necessarily satisfied in practice, the
method in [88] (which is only valid for fIF = 0) will not always yield accurate estimates.
Furthermore, the proposed algorithm is much more efficient than the two-dimensional
search methods in [87,89,90] as it requires only a one-dimensional search (cross-correlation)
to estimate the delay offset. The phase offset is directly estimated afterwards, using (5.24),
with no additional search.

5.1.3 Experimental Validation

The 4-chain measurement setup in Section 3.5 was used to validate the sub-Nyquist training
architecture. The DPD modules were trained using four independently-generated 100-MHz
OFDM signals with 8-dB PAPR. The up-sampling factor was set to 5, thereby making
Fs = 500 MHz. Since the analog bandwidth of the used oscilloscope covers the spectrum
of the RF signal around 3.5 GHz, no external down-conversion was employed, i.e., fIF =
fRF = 3.5 GHz. The dual-input DPD parameters in (3.17)-(3.19) were set to P = 5,
M = 1 and Q = 3, and the SISO parameters were set to N = 8 and MS = 5.

In sub-Nyquist mode, it is not possible to evaluate the conventional RNMSE and ACPR
metrics since the full-rate baseband output samples y[n] cannot be obtained from the under-
sampled passband ones yIF [Dn]. Nevertheless, an alternative form of the RNMSE metric in
(2.18) can be computed by comparing the time-aligned vector of received passband samples
qD(d̂0) with xD, which is an up-converted, down-sampled, and amplitude-adjusted version
of the baseband input vector x. This vector is obtained as

xD = Bp0(BT
p0

Bp0)
−1

BT
p0

qD(d̂0), (5.25)

where Bp0 is computed the same way Hp0 is in (5.24), but with z[n] replaced by x[n].

Since the oscilloscope used here can be operated at speeds higher than the Nyquist rate
of the captured signals, we opted to utilize the conventional RNMSE and ACPR metrics
to characterize the DPD performance. The DPD modules were first trained with the
oscilloscope operating in sub-Nyquist mode and the alternative RNMSE metric in (5.25)
was used to monitor the performance. After convergence had been observed, the output
signals were then captured at the Nyquist rate to calculate the conventional performance
metrics. Table 5.1 shows the results obtained with four different sub-sampling factors
D = 1, 2, 5, and 10, which correspond to setting FADC to 500, 250, 100 and 50 MSPS
respectively. The results in Table 5.1 are very similar across all settings, which confirms
the efficacy of the sub-Nyquist training architecture and the accuracy of the proposed
algorithm. The small variations are likely attributable to measurement noise.
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Table 5.1: RNMSE (%) and lower/upper ACPR (dB) at the outputs of the four PAs with
different sub-sampling factors D.

DPD Type PA 1 PA 2 PA 3 PA 4

None
8.4%

-36.2/-32.7

11.8%

-34.9/-33.6

8.9%

-37.3/-31.0

12.2%

-35.0/-34.0

D = 1
1.1%

-51.5/-51.1

1.0%

-51.1/-51.0

1.2%

-49.9/-49.9

1.3%

-51.7/-51.6

D = 2
1.1%

-50.9/-51.0

0.9%

-50.8/-50.3

1.0%

-49.9/-49.9

1.0%

-51.8/-51.7

D = 5
1.2%

-51.1/-51.0

1.0%

-52.2/-51.7

1.0%

-50.0/-50.0

1.0%

-51.9/-51.7

D = 10
1.1%

-50.4/-50.3

1.0%

-51.1/-50.6

1.1%

-49.7/-49.8

1.0%

-51.4/-51.4

5.2 Hardware-Efficient Implementation of the DPD

Engine

The power consumption of the DPD engine can be substantially reduced by employing
piece-wise models instead of the conventional ones based on global polynomials (e.g.,
[32, 35–38]). Piece-wise models comprise multiple sub-models that cover non-overlapping
regions of the input signal range, where the sub-model used at a given instant depends
on the magnitude of the input signal at that instant. The associated savings in hardware
resources stem from the fact that the sub-models need only cover a limited range of the
overall PA response. Consequently, they can have fewer coefficients and be of lower order
than a conventional polynomial model. Among the numerous piece-wise-based DPD mod-
els in the literature (e.g., [93–99]), the model in [94] seems to hold the most promise since
it enforces continuity between the different sub-regions using a low-complexity technique.

The main drawback of the model in [94] is the need for the square-root function,
which is difficult to implement efficiently in practice. In the following, we alleviate this
requirement by redefining the piece-wise DPD model in terms of the squared magnitude of
the input signal and utilizing sub-regions with unequal lengths. In addition, we propose a
parallelization architecture that improves upon the one in [100].
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5.2.1 Linear Interpolation and Extrapolation with Unequal Seg-
ments

Let f(x; α,Φ) be a complex-valued piece-wise linear (PWL) function of the positive real-
valued argument x, where α = [α0, . . . , αN ] ∈ RN+1

+ and Φ = [φ0, . . . , φN ] ∈ CN+1.
The region over which the function is defined is split into N segments of unequal lengths
according to the thresholds vector α, where α0 = 0. The function values at the thresholds
are given by the vector Φ, i.e., f(αk; α,Φ) = φk. In each interval [αk, αk+1], the function
is defined as a straight line between points (αk, φk) and (αk+1, φk+1), that is,

f(x; α,Φ) = φk +

(
φk+1 − φk
αk+1 − αk

)
(x− αk), αk ≤ x ≤ αk+1 (5.26)

This can be rewritten to highlight the contribution of φk and φk+1 to the PWL as

f(x; α,Φ) =

(
1− x− αk

αk+1 − αk

)
φk +

(
1 +

x− αk+1

αk+1 − αk

)
φk+1, αk ≤ x ≤ αk+1. (5.27)

Similarly, in the interval [αk−1, αk], the function is defined as a straight line between points
(αk−1, φk−1) and (αk, φk), i.e.,

f(x; α,Φ) =

(
1− x− αk−1

αk − αk−1

)
φk−1 +

(
1 +

x− αk
αk − αk−1

)
φk, αk−1 ≤ x ≤ αk. (5.28)

Since these are the only two regions where point (αk, φk) contributes to f(x; α,Φ), its
contribution over the entire region [0, αN ] is φkΛk(x), where

Λ0(x) =

1− x

α1

, 0 ≤ x ≤ α1

0, otherwise.

Λk(x) =


1 +

x− αk
αk − αk−1

, αk−1 ≤ x ≤ αk

1− x− αk
αk+1 − αk

, αk ≤ x ≤ αk+1

0, otherwise.

ΛN(x) =

1 +
x− αN

αN − αN−1

, αN−1 ≤ x ≤ αN

0, otherwise.
(5.29)
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Note that, since α−1 and αN+1 are undefined, the upper segment is omitted for Λ0(x) and
the lower one is omitted for ΛN(x). The overall PWL can then be expressed as a linear
combination of the N + 1 basis functions as

f(x; α,Φ) =
N∑
k=0

φkΛk(x). (5.30)

The PWL in (5.30) is non-zero only over the region 0 ≤ x ≤ αN , which is adequate if
the input argument x does not exceed the maximum threshold αN . Nevertheless, in the
event that x ≥ αN , the last PWL segment defined over [αN−1, αN ] must be extrapolated.
In other words,

f(x; α,Φ) =

(
1− x− αN−1

αN − αN−1

)
φN−1 +

(
1 +

x− αN
αN − αN−1

)
φN , x ≥ αN−1. (5.31)

As seen from (5.31), both points (αN−1, φN−1) and (αN , φN) contribute to the extrapolated
region. Thus, the basis functions associated with these two points must be redefined as

ΛN−1(x) =


1 +

x− αN−1

αN−1 − αN−2

, αN−2 ≤ x ≤ αN−1

1− x− αN−1

αN − αN−1

, x ≥ αN−1

0, otherwise.

ΛN(x) =

1 +
x− αN

αN − αN−1

, x ≥ αN−1

0, otherwise.
(5.32)

All other basis functions Λ0(x), . . . ,ΛN−2(x) are those given by (5.29). The PWL function
defined here is a generalization of the one with equal segments in [94].

5.2.2 PWL-Based DPD Model

The DISO DPD model used in this section is derived from the one in (3.17)-(3.19) by
replacing the polynomials with PWL functions and setting the memory-pruning function
to M(p) = MS. Following the notation in Fig. 3.1, the DPD model in each chain is given
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by

z[n] =

MS∑
m=0

s[n−m] f
(∣∣s[n−m]

∣∣2; α, βm
)

+

MS∑
m=1

s[n−m] f
(∣∣s[n]

∣∣2; α, γm
)

+ s2[n]

MS∑
m=1

s∗[n−m] f
(∣∣s[n]

∣∣2; α, ζm
)

+ s∗[n]

MS∑
m=1

s2[n−m] f
(∣∣s[n]

∣∣2; α, ηm
)

+
M∑
m=0

â2[n−m] f
(∣∣s[n−m]

∣∣2; α, τm
)

+
M∑
m=0

â∗2[n−m] s2[n−m] f
(∣∣s[n−m]

∣∣2; α, ϑm
)
, (5.33)

where βm, γm, ζm, ηm, τm, ϑm are the model coefficients, MS and M are the SISO and
DISO memory depths respectively, and the CTMM signal â2[n] is computed using (3.19).
Note that the subscript indicating the chain index was removed to improve clarity, i.e.,
z[n] , zk[n], s[n] , sk[n], and â2[n] , â2k[n].

During training, each PWL function in (5.33) is replaced by its equivalent form in
(5.30). If the PWL thresholds α1, . . . , αN are pre-selected in advance, the model becomes
linear in the coefficients {βmk , γmk , ζmk , ηmk , τmk , ϑmk } and training can be carried out using
conventional methods. Otherwise, both the model coefficients and PWL thresholds can
be jointly optimized using a similar procedure to those in [98, 101]. Once the coefficients
are determined, a PWL function such as f(x; α,Φ) is implemented by first determining
the interval [αk, αk+1) in which its argument x lies using comparators. Then ,the result is
used to look-up the appropriate slope Ak and offset Bk of the linear function Akx + Bk

that describes f(x; α,Φ) in that interval. From (5.26), the coefficients Ak, Bk in the kth

interval can be expressed as

Ak =
φk+1 − φk
αk+1 − αk

, Bk = φk − αkAk. (5.34)

In this work, we pre-select the thresholds as αk = k2Γ/N2 for k = 0, . . . , N , where
Γ = max(|s[n]|2). Since the PWLs are functions of |s[n]|2, rather than |s[n]|, this choice
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of thresholds corresponds to dividing the amplitude-modulation to amplitude-modulation
(AM/AM) curve of the PA into equal segments as in [94] (see Fig. 5.2a). If the thresholds
were chosen as αk = kΓ/N to give equal-length PWL segments, the AM/AM curve would
be split unequally as in Fig. 5.2b. The latter choice would result in intervals with very
few input samples, which might result in numerical instability during training. This equal-
segment splitting is a compromise between having enough PWL segments in the most
nonlinear region of the AM/AM curve, and having enough samples in each of them.
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Figure 5.2: Selecting the PWL thresholds as: (a) αk = k2/N2; (b) αk = k/N .

5.2.3 Parallelizing the DPD Engine

Modern RF-DACs run at speeds of several GSPS. These speeds far exceed the maximum
clock rate possible in commercially available DSP hardware, such as field-programmable
gate array (FPGA)s. This mismatch in data rates is handled by parallelizing the functions
implemented in the FPGA logic cores into multiple streams that can then be combined by
the DAC, as shown in Fig. 5.3. Below, a simple approach to parallelizing the DPD engine
is propsoed. For illustration purposes, the approach is demonstrated on a simplified SISO
DPD function given by

z[n] = αs3[n] + βs3[n− 1],

where s[n] is assumed real-valued. Extending the following approach to the DISO DPD
model in (5.33) is straightforward.
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Figure 5.3: Block diagram of a parallelized DPD engine.

The input signal to the DPD system s[n] is split into P lanes s0[n], . . . , sP−1[n], where
the signal in the pth lane is sp[n] = s[p+Pn], n = 0, 1, . . . . The objective is to redistribute
the input samples so that it is possible to implement P parallel DPD engines that compute
the P lanes of the predistorted signal z0[n], . . . , zP−1[n], where each DPD engine operates
at 1/P of the total rate. The proposed parallelization architecture is demonstrated in
Fig. 5.4 with P = 3. The sample distribution network is comprised of a set of serial-in
parallel-out shift registers. The number of buffer stages is D = dM/P e + dpipe, where M
is the memory depth and dpipe is the number of pipelining stages needed to compute the
nonlinear function that is multiplied with u[n]. In this simplified example, M = 1, P = 3,
and the nonlinear function is u2[n], which can be computed in one clock cycle; hence,
D = d1/3e + 1 = 2. For the PWL functions in (5.33) and complex-valued input, a fully
pipelined implementation requires dpipe = 5 clock cycles.

The samples of the P input signals s0[n], . . . , sP−1[n] are redistributed to form the
signals u0[n], . . . , uP−1[n] using the formula

up[n−m] = sr[n+ c−D], (5.35)

where

r = (M + p−m) mod P

c = b(M + p−m)/P c.

As shown in Fig. 5.4, this rearrangement makes it possible to employ a DPD module in
each branch since all M samples up[n − 1], . . . , up[n − M ] are now available at the pth

branch. Note that that all multiplication and addition operations in Fig. 5.4 should be
pipelined for maximum throughput, but post-distribution pipelining was omitted from the
figure to improve clarity.

Since the sample distribution network is placed at the input stage, the signals up[n]
and u2

p[n] are available to compute all sorts of cross-products (e.g.,
∑

m up[n−m]u2
p[n−m],
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Figure 5.4: Illustrating the parallelization architecture using a simple DPD model: z[n] =
αs3[n] + βs3[n− 1] with P = 3. Each color corresponds to a different path.

∑
m up[n−m]u2

p[n],. . . ) with no additional wiring. This is in contrast to the architecture
in [100], in which a different sample distribution network is needed for every type of cross-
product term. Although both architectures utilize the same number of multipliers and
adders, the proposed one can considerably reduce the number of inter-connections and
buffer registers, which relaxes the timing constraints associated with on-chip routing.

5.2.4 Experimental Validation

The first experiment compares the PWL-based DPD model proposed in this section with
both the conventional model in (3.18) and the PWL-based one in [94]. The PA used
for this experiment was an 8-Watt Doherty GaN design and the test signal was an 8-dB
PAPR 100-MHz OFDM signal up-sampled by a factor of 5. The AWG and oscilloscope
shown in Fig. 3.9 were used to generate the input signal and capture the PA output signal
respectively. Since this experiment involves only one PA, the dual-input terms in (5.33)
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were omitted, i.e.,

z[n] =

MS∑
m=0

s[n−m] f
(∣∣s[n−m]

∣∣2; α, βm
)

+

MS∑
m=1

s[n−m] f
(∣∣s[n]

∣∣2; α, γm
)

+ s2[n]

MS∑
m=1

s∗[n−m] f
(∣∣s[n]

∣∣2; α, ζm
)

+ s∗[n]

MS∑
m=1

s2[n−m] f
(∣∣s[n]

∣∣2; α, ηm
)

(5.36)

The memory depth was set to MS = 6 for both PWL-based and conventional models in
(5.36) and (3.18) respectively. The number of segments in (5.36) was set to N = 5 while the
nonlinearity order in (3.18) was set toN = 8. Table 5.2 shows the RNMSE and lower/upper
ACPR results obtained with both DPD models, and Fig. 5.5 shows the resulting spectra.
The table and figure also show the results when the proposed PWL functions (i.e., unequal
segments of |s[n]|2) are replaced by those in [94] (i.e., equal segments of |s[n]|).

In Table 5.2, the computational complexity of each of the three DPD models is as-
sessed by counting the number of real-valued floating-point operation (RFLOP)s per input
sample. Real-valued addition, multiplication, and comparison, are counted as 1 RFLOP
each, while the square-root operation is counted as 6 RFLOPs (as is customary). The
results show that PWL-based models deliver better performance than that obtained with
conventional polynomial models, while being less complex to implement. This is because
utilizing multiple low-order sub-models, instead of a global high-order one, allows for a
more accurate representation of amplitude-dependent physical phenomena in PA transis-
tors.

Table 5.2: Comparison between PWL-based and conventional DPD models.

DPD Model RFLOPs per sample RNMSE (%) ACPR (dB)

None - 17.3 -28.1/-31.0

Polynomial 455 0.91 -48.5/-48.2

With PWL in [94] 450 0.81 -50.3/-49.5

With proposed PWL 408 0.82 -50.2/-49.5
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Figure 5.5: Output spectrum of an 8-Watt Doherty PA with both PWL-based and con-
ventional DPD models.

In all experiments presented so far, a computer running MATLAB was used to com-
pute the predistorted signals. For the next experiment, the proposed DPD model was
implemented on a commercially available FPGA in order to more accurately assess its
run-time complexity. The model in (5.36) with N = 6 and MS = 4 was implemented
on a Xilinx Ultrascale+ MPSoC ZCU102 evaluation board, where the fourth set of terms

(i.e., s∗[n]
∑MS

m=1 s
2[n−m] f

(∣∣s[n]
∣∣2; α, ηm

)
) were omitted to reduce the model complex-

ity. The test signal was an 8-dB PAPR 200-MHz OFDM signal over-sampled by a factor
of 5, yielding a total bandwidth of 1 GHz. This bandwidth exceeds the MPSoC maximum
clock rate, so the DPD model was implemented with a parallelization factor of P = 4,
i.e., the core clock frequency was 250 MHz. The predistorted signal was up-sampled and
up-converted to a center frequency of 2.5 GHz by an AD9162 DAC from Analog Devices.
The up-converted signal was fed to a 15-Watt Wolfspeed CGH27015-TB PA and its output
was captured with a Keysight DSOS404A oscilloscope, as shown in Fig. 5.6.

The input signal to the DPD engine is represented in fixed-point format to minimize
the hardware resources utilized. Hence, with each numerical operation, the bit-width of
the signal increases and those extra bits must be truncated before the next numerical
operation. Consequently, it is crucial to optimize all numerical operations for the specific
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Figure 5.6: Measurement setup for the FPGA-based experiment.

device in use. Fig. 5.7 shows the block diagram of the DSP slice in the MPSoC FPGA.
This slice features a pre-adder, a 27 × 18 asymmetric multiplier and a post-accumulator
unit, along with other logic functions. As an example of the device-specific optimizations
implemented, the PWL coefficients were represented in 27 bits while the squared signal
magnitude |s[n]|2 was truncated to 18 bits.

Figure 5.7: High-level block diagram of the DSP48E2 slice in Xilinx FPGAs [102].

Table 5.3 shows the FPGA resources utilized in each of the four parallel DPD branches.
The table shows the number of look-up table (LUT) slices, flip-flops (FFs) and DSP slices
utilized per branch by the proposed DPD model as well as those utilized when the proposed
PWL functions (i.e., unequal segments of |s[n]|2) are replaced by those in [94] (i.e., equal
segments of |s[n]|). The square-root function for the model in [94] was implemented us-
ing Xilinx’ coordinate-rotation digital computer (CORDIC) logic core. This ultra-efficient
implementation involves no multiplications or divisions, but only additions, subtractions,
bit-shift, and LUT operations. The downside of this efficient implementation is the signifi-
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cant increase in latency (as Table 5.3 shows) and the restriction imposed on the maximum
clock frequency. For the device in use, the maximum clock frequency supported by the
CORDIC square-root core is only 254 MHz [103].

Table 5.3: FPGA Resources utilized per branch with N = 6 and M = 4.

LUT slices FFs DSP slices
Latency in

clock cycles

With PWL in [94] 5617 4028 61 34

With Proposed PWL 5286 3023 61 16
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Figure 5.8: Output spectrum of the Wolfspeed CGH27015-TB PA with and without the
proposed PWL-based DPD.

Fig. 5.8 shows the output spectrum of the PA with and without the proposed DPD
implementation, where it can be seen that a 1-GHz linearization bandwidth was achieved
with a core clock of 250 MHz. DPD improved the RNMSE and lower/upper ACPRs from
4.5% and -34.7/-35.7 dB to 1.1% and -47.1/-47.3 dB respectively. The PWL scheme in [94]
gives nearly identical results but, as shown in Table 5.3, requires more resources, increases
latency, and restricts the maximum clock frequency possible. Although other less-resource-
efficient implementations of the square-root function can enable a higher clock frequency,
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this problem can be avoided altogether by employing the proposed PWL implementation.
Finally, with the proposed parallelization architecture, the number of cross-branch con-
nections needed to implement the PWL DPD model in (5.36) is about one third of that
required by the architecture in [100] since this model employs three types of cross terms.

5.3 Summary

In this chapter, we proposed two techniques that reduce the computational and power
overheads of the DPD subsystem. First, a computationally efficient algorithm for estimat-
ing the delay and phase offsets between the transmitter and the TOR was presented. The
proposed algorithm is more accurate and less resource-consuming than the two-dimensional
exhaustive search methods employed in prior works. Second, a PWL-based DPD model,
along with its parallelized implementation, was presented. The proposed model requires
less hardware resources to implement and introduces less latency when compared with
similar works in the literature. The proposed model was implemented on a commercially
available FPGA, and was used to achieve a 1-GHz linearization bandwidth with a core
clock frequency of only 250 MHz.
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Chapter 6

Conclusion

Massive MIMO technology has emerged as one of the main pillars of 5G and future wire-
less systems. Through the utilization of tens or hundreds of RF transceiver chains, a 5G
basestation can serve multiple users in the same time-frequency resource block, thereby sub-
stantially improving the spectral efficiency. Nevertheless, the adoption of massive MIMO
technology in 5G basestations is met with a number of challenges. One of these is mit-
igating the hardware limitations and imperfections of all RF chains in real time. Most
required digital compensation techniques in MIMO systems are straightforward extensions
of their counterparts in SISO systems, with the most prominent exception being DPD. In
a highly integrated MIMO transmitter, a DPD module must not only compensate for PA
nonlinearity, but also for nonlinear crosstalk effects arising from unavoidable inter-antenna
coupling. Furthermore, since tens or hundreds of low-power PAs are to be employed instead
of a single high-power one, the overhead power budget for per-chain DPD (as a percentage
of the PA transmit power) must be reduced to maintain a reasonable overall efficiency.
The power overhead incurred includes the power consumed by the logic circuits in the
always-running DPD engine and that consumed by the TOR required to capture the PA
output and update the DPD coefficients.

This thesis has addressed the above-mentioned challenges facing the successful applica-
tion of DPD in massive MIMO transmitters, and provided effective solutions that minimize
the computational and power overheads incurred. The key contributions are as follows:
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6.1 Summary of Contributions

1. In this work, we have analyzed the impact of precoding on the RF performance
of massive MIMO transmitters exhibiting non-negligible antenna crosstalk. It was
shown that the disparity in average-power levels arising from conventional precod-
ing schemes (MRT, ZF, and MMSE) leads to substantial variations in the average
active loads seen at the PA outputs. This load modulation behavior gives rise to
channel-dependent variations in the RF performance and linearity of the PAs. We
demonstrated that, although precoding is a system-level function that serves to mit-
igate multi-user channel effects, it has a direct impact on the RF performance of the
PAs. Hence, the DPD and precoding subsystems should not be operated indepen-
dently from one another.

2. Based on the aforementioned analysis, we proposed two solutions that ensure excel-
lent linearity across all channel conditions. The first comprises a load-dependent DPD
architecture and a low-complexity algorithm that reduces the disparity in average-
power levels arising from the conventional precoders. The second comprises alternate
precoding schemes that fully eliminate the disparity in average-power levels across
the RF chains and, consequently, simplify the required DPD architecture. The pro-
posed solutions exploit the additional degrees of freedom offered by the fact that the
number of users is less than the number of chains in a MIMO system. Both solu-
tions were experimentally validated on a prototype two-user four-chain MIMO system
with 100-MHz OFDM signals, where the obtained results confirmed the efficacy of
the proposed methods. Although these results were obtained using a relatively small
MIMO transmitter, similar trends are expected in larger systems, as evident from
the numerical simulations and theoretical analysis provided.

3. Finally, we proposed two techniques that reduce the computational and power over-
heads of the DPD subsystem. First, we formulated a computationally efficient al-
gorithm for estimating the delay and phase offsets between the transmitter and the
TOR used for DPD training. The proposed algorithm is more accurate and less
resource-consuming than the exhaustive search methods employed in the literature.
Second, we presented a PWL-based DPD model, along with its parallelized imple-
mentation, that requires less hardware resources to implement and introduces less
latency when compared with prior works. The proposed model was implemented on
a commercially available FPGA, where it achieved a 1-GHz linearization bandwidth
with a core clock frequency of only 250 MHz.
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6.2 Future Work

This work has investigated the effects of precoding and antenna crosstalk on the lineariz-
ability of the PAs in a massive MIMO system, and provided robust solutions that stabilize
the RF performance across all channel conditions. Yet, these solutions were validated on
a relatively small MIMO transmitter, and in a controlled lab environment. Thus, future
research on the subject must be carried out on larger prototype transmitters, with more
complex PA and antenna designs, to allow for a better understanding of performance-
complexity trade-offs in realistic deployment scenarios. Moreover, future testing and in-
vestigation should be carried out with the transmitter deployed in an outdoor environment
that features rich multi-path scattering, instead of an anechoic chamber. This would enable
a more accurate prediction of the overall system performance in dense urban environments.

In addition, a realistic prototype transmitter should have all DSP functionalities im-
plemented on signal processing hardware (e.g., FPGAs). In this work, however, all multi-
channel experiments were carried out with a computer running MATLAB as the DSP unit
(because of the limited availability of equipment). Since the use of FPGAs here was limited
to a single-channel setting, some of the challenges associated with the FPGA implementa-
tion of multi-channel DPD were not addressed. Of particular significance are the timing
constraints associated with on-chip routing. If the cross-channel routing structure is not
properly designed, the maximum FPGA clock frequency can be severely limited. Another
challenge is the limited DSP resources available on commercial FPGAs. Accordingly, it
is expected that multiple FPGA chips would be needed to implement all required DSP
functions, which would bring about the challenge of inter-chip synchronization and data
transfer.

Finally, an interesting area of research is extending the proposed techniques and algo-
rithms in this work to the multi-band transmission case. If the basestation transmitter
covers multiple non-contiguous frequency bands, the employed DPD in each band must
eliminate inter-band distortion as well. Multi-band DPD techniques in SISO systems are
relatively well-studied, but there are virtually no works on multi-band MIMO-DPD.
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Appendix A

Estimating Delay and Phase Offsets
in Conventional TOR Architectures

Using Fig. 2.4b and the PA model in (2.9), the baseband feedback signal y[n] can be
expressed in terms of the baseband predistorted signal z[n], in the presence of circularly-
symmetric complex-valued AWGN η[n], as

y[n] ≈ h0e
jθ z[n− n0] + η[n], (A.1)

where n0 is the system delay, h0 is the nominal channel gain, and θ is the combined phase
offset due to transmitter circuitry and phase incoherence. Note that h0 is restricted to
being a positive real value as the phase of the system response is absorbed into θ. The
equation above represents a good approximation if the PA is weakly nonlinear.

Let N be the number of signal-containing samples of z[n] and S > N be the total
number of received samples of y[n] where the extra S − N samples contain no signal
component, i.e., only AWGN. Assuming that n0 is an integer, (A.1) can be expressed as

y[n] = η[n] +


0, 0 ≤ n < n0

αz[n− n0] , n0 ≤ n < n0 +N

0, n0 +N ≤ n < S

, (A.2)
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where α = h0e
jθ. Since η[n] is circularly-symmetric AWGN, the likelihood function is [91]

p(y;α, n0) =
1

(πσ2)S

n0−1∏
n=0

exp

(
−
∣∣y[n]

∣∣2
σ2

)
·

S−1∏
n=n0+N

exp

(
−
∣∣y[n]

∣∣2
σ2

)

·
n0+N−1∏
n=n0

exp

(
−1

σ2

∣∣y[n]− αz[n− n0]
∣∣2), (A.3)

where σ2 is the AWGN power. The negative of the logarithm of the likelihood function,
after omitting constant factors and changing the summation index of the last term, can be
expressed as

C(α, n0) =

n0−1∑
n=0

∣∣y[n]
∣∣2 +

S−1∑
n=n0+N

∣∣y[n]
∣∣2 +

N−1∑
n=0

∣∣y[n+ n0]− αz[n]
∣∣2

=

n0−1∑
n=0

∣∣y[n]
∣∣2 +

S−1∑
n=n0+N

∣∣y[n]
∣∣2 + (y(n0)− α z)H (y(n0)− α z) , (A.4)

where y(n0) = [y[n0], . . . , y[n0 +N − 1]]T , and z = [z[0], . . . , z[N − 1]]T . The ML estimates
of the two parameters (α, n0) are obtained by maximizing the likelihood function in (A.3),
or equivalently, minimizing C(α, n0). For any n0, the above function is quadratic in α and
is minimized by [91]

α̂ =
(
zHz

)−1
zHy(n0). (A.5)

Substituting this back in (A.4) yields

C(α̂, n0) =

n0−1∑
n=0

∣∣y[n]
∣∣2 +

S−1∑
n=n0+N

∣∣y[n]
∣∣2

+
([

I− z
(
zHz

)−1
zH
]

y(n0)
)T
·
([

I− z
(
zHz

)−1
zH
]

y(n0)
)

=

n0−1∑
n=0

∣∣y[n]
∣∣2 +

S−1∑
n=n0+N

∣∣y[n]
∣∣2 + yH(n0)

(
I− z

(
zHz

)−1
zH
)

y(n0)

=
S−1∑
n=0

∣∣y[n]
∣∣2 − yH(n0)z

(
zHz

)−1
zHy(n0)

=
S−1∑
n=0

∣∣y[n]
∣∣2 − (zHz

)−1∣∣zHy(n0)
∣∣2, (A.6)
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where the fact that yH(n0)y(n0) =
∑N−1

n=0

∣∣y[n+ n0]
∣∣2 =

∑n0+N−1
n=n0

∣∣y[n]
∣∣2 was utilized.

Since the first term is not a function of n0 and
(
zHz

)−1
> 0, the ML estimate of n0 is

simply obtained by maximizing
∣∣zHy(n0)

∣∣. The ML estimates of h0 and θ can then be
obtained from (A.5).

Although n0 was assumed to be an integer in the derivation above, equation (A.6)
remains valid for non-integer values of n0 as well. The integer part of the delay should be
obtained first through cross-correlating zH with y(d) for integer-valued d ∈ [0, S−N ]. The
remaining fractional delay can be estimated by interpolating the cross-correlation function
L(d) =

∣∣zHy(d)
∣∣ around the estimated integer delay and finding the maximum. It can

then be compensated for using fractional delay filters [92].
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Appendix B

Evaluating the Jacobian Matrices in
Section 4.1

The derivatives of the set of functions defined in (4.10) with respect to wR,wI , t, µ1, . . . , µK
are:

∂fi
∂wR

=



(
CT
RCR + CT

I CI +
∑K

k=1 µkBk

)T
vi, i = 1, . . . , KL(

−CT
I CR + CT

RCI

)T
v(i−KL), i = KL+ 1, . . . , 2KL

0(KL)×1, i = 2KL+ 1

2 BkwR, i = 2KL+ 2, . . . , 2KL+K + 1

∂fi
∂wI

=



(
−CT

RCI + CT
I CR

)T
vi, i = 1, . . . , KL(

CT
I CI + CT

RCR +
∑K

k=1 µkBk

)T
v(i−KL), i = KL+ 1, . . . , 2KL

0(KL)×1, i = 2KL+ 1

2 BkwI , i = 2KL+ 2, . . . , 2KL+K + 1

∂fi
∂t

=

{
0, i = 1, . . . , 2KL+ 1

−1, i = 2KL+ 2, . . . , 2KL+K + 1

∂fi
∂µk

=


vTi (BkwR) , i = 1, . . . , KL

vT(i−KL) (BkwI) , i = KL+ 1, . . . , 2KL

−1, i = 2KL+ 1

0, i = 2KL+ 2, . . . , 2KL+K + 1,
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where vi is a (KL)× 1 all-zero vector with a one in the ith position. The Jacobian matrix
can then be formed, as in (4.11), using these derivatives and the fact that vT1 F

...
vTKLF

 = F

when the number of rows of F is KL.

Likewise, the derivatives of the set of functions defined in (4.21) with respect to
wR,wI , β, µ1, . . . , µK are:

∂fi
∂wR

=



(
QR + β2

∑K
k=1 µkBk

)T
vi, i = 1, . . . , KL

QT
I v(i−KL), i = KL+ 1, . . . , 2KL

β hR − 2 QRwR − 2 QT
I wI , i = 2KL+ 1

2 BkwR, i = 2KL+ 2, . . . , 2KL+K + 1

∂fi
∂wI

=


−QT

I vi, i = 1, . . . , KL(
QR + β2

∑K
k=1 µkBk

)T
v(i−KL), i = KL+ 1, . . . , 2KL

−β hI − 2 QRwI − 2 QIwR i = 2KL+ 1

2 BkwI , i = 2KL+ 2, . . . , 2KL+K + 1

∂fi
∂β

=


vTi

(
−hR + 2β

∑K
k=1 µkBkwR

)
, i = 1, . . . , KL

vT(i−KL)

(
hI + 2β

∑K
k=1 µkBkwI

)
, i = KL+ 1, . . . , 2KL

hTRwR − hTI wI , i = 2KL+ 1

0, i = 2KL+ 2, . . . , 2KL+K + 1

∂fi
∂µk

=


β2 vTi (BkwR) , i = 1, . . . , KL

β2 vT(i−KL) (BkwI) , i = KL+ 1, . . . , 2KL

0, i = 2KL+ 1, . . . , 2KL+K + 1.

The corresponding Jacobian matrix is that in (4.22).
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