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Abstract 

      The rapid development of new emerging classes of steels has outpaced the methodologies and 

modelling strategies to exploit the superior mechanical properties in the design stage of structural 

automotive lightweight components. The conventional in-plane forming limit curve, employed to assess 

part feasibility, fails to account for the delay in plastic instability due to bending and tool contact pressure 

and can lead to overly conservative product designs, especially in materials with low inherent formability. 

This research focuses on the characterization and methodology development to account for process and 

boundary conditions in acute localization in combined loading of sheet metals.  

      The ISO 12004-2 standard was followed for the baseline characterization of the stretching-dominated 

forming limits of the AA5182 and the DP980 AHSS. The non-linear strain path and higher limit strains in 

the Nakazima test, relative to the Marciniak test, are a natural consequence of the boundary conditions of 

the respective test method. A series of correction methods were applied to the Nakazima limit strains to 

linearize the strain path and to compensate for the triaxial stress state. The concept of phenomenological 

mapping under a constant in-plane stress ratio was shown to work reasonably well for the DP980 with its 

power law hardening characteristic but was problematic for the AA5182 with saturation-type hardening. 

Corrected limit strains for the AA5182 were sensitive to both the choice of the limit strain detection method 

and the hardening rate. Prediction of the plane stress forming limit curve (FLC) utilizing the 

phenomenological Modified Maximum Force Criterion (MMFC) correlated well with the Marciniak limit 

strains and the process-corrected Nakazima forming limits for the DP980. Key to avoiding artefacts 

associated with the shift of the FLC0 is a constrained calibration of the constitutive model to reflect the 

plastic uniform elongation obtained in a tensile test.  

      The effect of a triaxial stress state on plastic instability was studied on a physical basis adopting the 

Hillier instability framework for the onset of instability. It was shown how commonly adopted instability 

criteria under plane stress loading are in fact special cases of the Hillier model under specific boundary 

conditions. Analytical solutions derived for triaxial loading revealed the explicit dependence of the 

boundary conditions upon plastic instability and highlighted the need to replace the traditional instability 

curve with a surface. Overall, a compressive normal stress caused an increase in limit strains for all studied 

boundary conditions. Highest formability gains were found for a contact pressure that proportionally 

evolves with the major in-plane stress. The formability increase in the presence of tool contact pressure 

between the phenomenological mapping criteria and the analytical solutions for plane strain tension only 

correlated for the proposed work-based mapping method and a hardening exponent of n = 0.1. An extension 

of the Hillier framework to diffuse localization was proposed in the Generalized Incremental Stability 

Criterion (GISC) that adopts the concept of neutral incremental stability to perform a quasi-stable transition 
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of the stress state to plane strain tension associated with the formation of an acute neck. It was revealed that 

the MMFC is in fact physically motivated and represents one special case of the GISC under approximately 

proportional loading or proportional stressing with a prescribed minor load.  

      The effect of out-of-plane loading with appreciable bending and tool contact pressure on the forming 

limits was characterized in an experimental test campaign comprising angular stretch-bend (ASB) tests and 

the VDA 238-100 tight radius V-Bend test. It was revealed that reliance upon the punch force for fracture 

detection in the V-Bend test may lead to inconclusive results since the punch force descends at large bend 

angles (>145°) as a consequence of the kinematic boundary conditions even in the absence of fracture. The 

proposed V-Bend stress metric mitigates inconclusive results by consideration of the geometric boundary 

conditions, punch force, and thinning of the cross-section. No new parameters were introduced such that 

the developed method is readily applicable to the VDA 238-100 test. A strain-rate based detection method 

was also considered as a local failure metric to detect lift-off of the specimen from the punch for both the 

590R and the 270 Mild steel. Relative to the in-plane forming limit in Marciniak tests, forming limits for 

the 3rd Gen 1180 AHSS increased by a factor of approximately 2.6 in stretch-bending and by a factor of 

approximately five in tight-radius bending. 

      To account for the delay in plastic instability in the presence of through-thickness stress-strain gradients, 

a control algorithm was developed to resolve the evolution of the stress-strain state over the sheet cross-

section. The effect of a superimposed contact pressure on the stress state in plane strain stretch-bending 

was derived on continuum level and shown to effectively shift the strain path from plane strain tension to 

positive minor strains for material layers within the cross-section. The convex layer remains in a state of 

plane strain tension. To capture the mechanics, plasticity-related equations were derived from general 

bending mechanics and coupled with the GISC framework. It was revealed that an incremental multi-layer 

modelling approach is required to properly capture non-monotonic straining of the lower cross-section 

when the sheet wraps around the punch. Application to the 3rd Gen 1180 AHSS demonstrated that the 

developed instability framework is able to capture the overall trend of the experimental limit strains.   

      A key outcome of this research is the understanding of the effect of a triaxial stress state and the 

importance of the boundary conditions on plastic instability. In particular, the analytical work to underline 

that the common assumption of a unique forming limit is fundamentally flawed and instead represents a 

forming limit surface are major accomplishments. Consideration of the combined effect of bending normal 

stresses and superimposed tool contact pressure in combined loading and implications upon acute necking 

limits constitute major novelties in sheet metal forming. The developed instability framework can be 

utilized by tool manufacturers to pursue a more aggressive product design as the part geometry can be 

tailored to the process window of the forming operation and costly tool re-cuts can be reduced. 
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Synopsis of Thesis 

1. Introduction  

1.1 Motivation  

      Lightweighting has become a pressing topic in the automotive industry to meet legislative requirements 

to reduce greenhouse gas (GHG) emissions. Weight reduction in the body-in-white (BIW) has been 

identified as the key parameter with a predicted 29% BIW weight reduction adopting the 3-G approach of 

geometry, grade, and gauge optimization of advanced high strength steels (AHSS) (Zuldema, 2013). 

Selection of higher-strength steels can justify the adoption of a thinner sheet while maintaining or exceeding 

the mechanical strength for anti-intrusion of the passenger in a vehicle crash. Hot forming of press-hardened 

steels (PHS) can produce structural components of high strength and complex shape since forming occurs 

after solutionizing when the material is still soft followed by quenching. Despite its advantages, hot 

stamping processes can be more expensive due to relatively low cycle times and the infrastructure 

requirements compared to conventional cold stamping. Recent advances in cold forming have been focused 

on a new class of emerging steels, the 3rd Gen AHSS that feature high strength levels combined with 

superior ductility, which can form complex geometries in existing stamping lines (Billur and Altan, 2014c).  

 

      Nevertheless, an increase in material strength is usually accompanied with a reduction in the 

formability, which enforces constraints upon the product design (He et al., 2013b). In the design of 

automotive lightweight components, the primary engineering tool to assess part feasibility has been the 

forming limit curve (FLC) based upon in-plane stretching. The International Organization for 

Standardization ISO 12004-2 (2008) outlines two test methodologies for experimental characterization of 

the forming limit strains, the Nakazima (Nakazima and Kikuma, 1967) and the Marciniak (1973) tests, 

schematically illustrated in Figure 1a. Despite the fundamental differences in the deformation mode – plane 

stress in-plane deformation in the Marciniak test and triaxial out-of-plane stretching in the Nakazima test – 

the FLC is commonly treated as a stationary metric to locally assess part feasibility. As depicted in Figure 

1b, adoption of a global forming limit may not be representative of the local process conditions in a 

structural vehicle component with varying degrees of bending and stretching. The formability gain in the 

presence of bending and tool contact has been experimentally verified (Ghosh and Hecker, 1974; Till et al., 

2008; De Kruijf et al., 2009; Kitting et al., 2009; Barlo et al., 2019) but cannot be exploited in the product 

design yet due to the lack of a framework to accurately account for the process conditions in the limit strain 

prediction. Selective efforts to model the delay in plastic instability due to the process conditions are limited 

owing to aggressive simplifications of the complexity attributed to bending mechanics and triaxial loading 

(De Kruijf et al., 2009). Further complexity is added from the material side since bending locally induces 
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reverse loading effects (Crafoord 1970) that may alter the material response and manifest itself in the form 

of early re-yield (Bauschinger (1886) effect) and softening, summarized under kinematic hardening effects 

(Hasegawa and Yakou, 1975; Christodoulou et al., 1986; Chung and Wagoner, 1986). 

 

 
Figure 1: Differences in boundary conditions between characterization tests utilized for the determination of the forming 

limits (ISO 12004-2, 2008) (a) and the local conditions of varying bend severity and stretching encountered in a forming 

process shown for a B-Pillar component (b) (adapted from Arcelor Mittal, 2020).   
 

      The present thesis aims to address these gaps in the literature by developing a physically-motivated and 

mechanistic framework to analytically predict the instantaneous necking limits in sheet metal forming. An 

emphasis is placed upon resolving the through-thickness stress-strain gradients that arise due to combined 

loading of stretching with superimposed bending and tool contact pressure. Acute localization under a 

triaxial stress state is identified from a novel instability framework that considers the local conditions of the 

deformation process. In the scope of this thesis, a distinction is made between process conditions, which 

are concerned about the bend severity and tool contact, and the local boundary conditions attributed to how 

the loads and tractions are applied to deform the material, e.g a constant, proportional, or evolving contact 

pressure. The analytical framework will enable a rigorous evaluation of phenomenological techniques, 

which are currently employed to account for 3D stress states. The outcome of this research will provide an 

engineering tool for the local formability assessment in the design stage of automotive lightweight 

components. 
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1.2 Thesis Outline  

      A manuscript-based style has been adopted in this thesis. This entails a synopsis that contains a concise 

literature review to highlight current gaps upon which the objectives of the conducted research are based. 

Subsequent chapters entail a summary of the performed research, followed by the conclusion and 

recommendation. The conducted research to accomplish the immediate objectives outlined in Section 2.6.1 

are presented in Chapter 3-6 and constitute distinct peer-reviewed articles, either published or under review. 

Details can be found in the appendices.  

 

Appendix A: Noder, J., Butcher, C., (2019a). A comparative investigation into the influence of the 

constitutive model on the prediction of in-plane formability for Nakazima and Marciniak 

tests, International Journal of Mechanical Sciences, 163, 105138, 

https://doi.org/10.1016/j.ijmecsci.2019.105138. 

Appendix B: Noder, J., Butcher, C. A General Instability Framework for Ductile Metals in Complex 

Stress States from Diffuse to Acute Localization, to be submitted, May 2022.  

Appendix C: Noder, J., Dykeman, J., Butcher, C., (2020a). New Methodologies for Fracture Detection 

of Automotive Steels in Tight Radius Bending: Application to the VDA 238-100 V-Bend 

Test, Experimental Mechanics, https://doi.org/10.1007/s11340-020-00597-2. 

Appendix D: Noder, J., Butcher, C. On the Influence of Tool Contact Pressure on Tensile Instabilities 

in Plane Strain Stretching and Bending of Sheet Metals, to be submitted, May 2022.   

 

Additional publications stemming from this research, which are not the focus of the thesis but are referenced 

throughout, are:  

 

Journal publications: 

Noder, J., Butcher, C. On the stress-state dependence of complex hardening behavior upon strain path 

reversal for a 3rd Gen AHSS, in preparation. 
 

Noder, J., Gutierrez, J.E., Zhumagulov, A., Dykeman, J., Ezzat, H., Butcher, C., (2021a). A Comparative 

Evaluation of Third-Generation Advanced High-Strength Steels for Automotive Forming and Crash 

Applications, Materials, 14, 4970, https://doi.org/10.3390/ma14174970. 
 

Noder, J., Gutierrez, J.E., Zhumagulov, A., Khameneh, F., Ezzat, H., Dykeman, J., Butcher, C., (2021b). 

Constitutive, Formability, and Fracture Characterization of 3rd Gen AHSS with an Ultimate Tensile 

Strength of 1180 MPa, SAE International Journal of Advances and Current Practices in Mobility, 3(3): 

1395-1407, doi:10.4271/2021-01-0308. 
 

Fast-Irvine, C., Abedini, A., Noder, J., Butcher, C. (2021). An Experimental Methodology to Characterize 

the Plasticity of Sheet Metals from Uniaxial to Plane Strain Tension, Experimental Mechanics, 

https://doi.org/10.1007/s11340-021-00744-3. 
 

Noder, J., Abedini A., Butcher, C., (2020b). Evaluation of the VDA 238-100 Tight Radius Bend Test for 

Plane Strain Fracture Characterization of Automotive Sheet Metals, Experimental Mechanics, 60, 787-800, 

https://doi.org/10.1007/s11340-020-00597-2. 
 

https://doi.org/10.1016/j.ijmecsci.2019.105138
https://doi.org/10.3390/ma14174970
https://doi.org/10.1007/s11340-020-00597-2
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Gutierrez, E., Noder, J., Butcher, C., (2020). Experimental Characterization and Deterministic Prediction 

of In-Plane Formability of 3rd Generation Advanced High Strength Steels, Metals, 10(7), 902, 

https://doi.org/10.3390/met10070902.  
 

Abedini, A., Noder, J., Kohar, C., Butcher, C., (2020). Accounting for Shear Anisotropy and Material 

Frame Rotation on the Constitutive Characterization of Automotive Alloys using Simple Shear Tests, 

International Journal of Mechanics of Materials, 103419, https://doi.org/10.1016/j.mechmat.2020.103419. 
 

Rahmaan, T., Noder, J., Abedini, A., Zhou, P., Butcher, C., Worswick, M.J., (2019). Anisotropic plasticity 

characterization of 6000- and 7000-series aluminum sheet alloys at various strain rates, International 

Journal of Impact Engineering, 103390, https://doi.org/10.1016/j.ijimpeng.2019.103390. 

 

Conference paper and conference talks: 

Noder, J., Butcher, C., (2022). Novel instability framework to predict local formability in 3rd Gen AHSS 

B-Pillar technology demonstrator, Great Designs in Steel 2022, Michigan. 
 

Noder, J., Gutierrez, J.E., Zhumagulov, A., Khameneh, F., Dykeman, J., Ezzat, H., Butcher, C., (2021c). 

Constitutive, Formability, and Fracture Characterization of 3rd Gen AHSS with an Ultimate Tensile 

Strength of 1180 MPa, conference talk at SAE Conference 2021, virtual. 
 

Noder, J., Samadian, P., Dykeman, J., Abedini, A., Zhumagulov, A., Worswick, M.J., Butcher, C., (2021d). 

New Methods for Fracture Detection of Automotive Steels, ICTP Conference 2021, virtual, Forming the 

Future, The Minerals, Metals & Materials Series, https://doi.org/10.1007/978-3-030-75381-8_55. 
 

Noder, J., Butcher, C., (2021e). Fracture Detection in the VDA 238-100 Tight Radius Bend Test for 

Automotive Steels, Great Designs in Steel 2021, virtual.  
 

Butcher, C., Noder, J., Dykeman, J., Malcolm, S., Parker, N., Bowman, J., (2021). Virtual Design and 

Validation of 3rd Gen 980 and 1180 MPa B-Pillars, Great Designs in Steel 2021, virtual.  
 

Gutierrez, J.E., Noder, J., Parker, N., Bowman, J., Dykeman, J., Malcolm, S., Ezzat, H., Butcher, C., 

(2021). Formability Characterization of 3rd Generation Advanced High-Strength Steels and Application to 

Forming of a B-pillar, SAE Conference 2021, virtual, SAE Technical Paper 2021-01-0267, 

https://doi.org/10.4271/2021-01-0267. 
 

Dykeman, J., Noder, J., (2020). Local Formability and Fracture in Tight Radius Bending for Crash 

Applications, conference talk at the Fracture Symposium February 2019, Michigan.   
 

Butcher, C., Noder, J., Gutierrez, E., Ezzat, H., Dykeman, J., Bowman, J., (2020). Constitutive, Formability 

and Fracture for 3rd Gen AHSS with Application to a B-Pillar, conference talk at the Fracture Symposium 

February 2020, Michigan.  
 

Noder, J., Butcher, C., (2019b). New Methodologies for Fracture Detection in the 238-100 Tight Radius 

Bend Test, conference talk at NADDRG November 2019, Michigan.  
 

Noder, J., Butcher, C., (2019c). Prediction of In-Plane Formability and Process Corrections of AA5182 

and DP980 in Nakazima and Marciniak Tests, conference talk at NADDRG April 2019, Michigan.  

    

   The research presented in this thesis is part of a larger research collaboration between the University of 

Waterloo, the Automotive Program of the American Iron and Steel Institute (AISI) and their member 

companies, and Honda Development & Manufacturing of America (HDMA). The overall aim of the project 

https://doi.org/10.3390/met10070902
https://doi.org/10.1016/j.mechmat.2020.103419
https://doi.org/10.1016/j.ijimpeng.2019.103390
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was to characterize the mechanical properties of different 3rd Gen AHSS and develop methodologies to 

leverage the properties of 3rd Gen steels in the design of structural automotive components. The project 

scope comprised material characterization on coupon-level (e.g. quasi-static and dynamic constitutive 

response, kinematic hardening effects, formability and fracture limits, tribological behavior), the design 

and forming trials of a technology demonstrator representative of a full-size B-Pillar for a mid-size SUV, 

and dynamic impact testing to assess crashworthiness. The research as part of this thesis is focused upon 

the methodology development and contains some of the experimental characterization conducted on coupon 

level. It is noted that all studied 3rd Gen AHSS grades and the DP980 AHSS were provided by member 

companies of AISI under the condition that no microstructural investigations be conducted. This condition 

is because the AISI Automotive Program represents a consortium of steel suppliers working together in a 

non-competitive manner to conduct joint research. As a result, the details on the steel composition and 

microstructure are kept blind. All steels are commercially available. 
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2. Literature Review 

      This chapter provides a brief introduction to Advanced High-Strength Steels (AHSS) (Section 2.1), 

followed by a review on the state-of-the-art in formability characterization and prediction under in-plane 

stretching (Section 2.2) and combined loading of stretching with superimposed bending (Section 2.3). 

Fracture under plane strain tension, which represents the limiting deformation mode for sheet metals, is 

discussed in Section 2.4. A concise summary and current gaps in literature are presented in Section 2.5. 

The chapter closes with an overview of the research scope with details on the research objectives and tasks 

(Section 2.6).  

 

2.1 Advanced High-Strength Steels 

      The design of lightweight automotive components has been spurred by the development of AHSS. The 

conventional high-strength low-alloy steels (HSLA), utilized for energy-absorbing structural components, 

have largely been replaced with higher strength AHSS. The first generation of AHSS, denoted as 1st Gen 

AHSS, consists of a martensitic microstructure with one to two additional phases for enhanced formability 

and strength for application to sill, A- and B-Pillar reinforcements. As demonstrated in Figure 2a,  higher-

strength steel grades such as press hardenable steels (PHS) for anti-intrusion components exhibit only a 

narrow forming window and require heat assistance in the form of hot stamping to form complex geometries 

(Billur and Altan, 2014a). This limitation was addressed in the second generation (2nd Gen AHSS) that 

provides substantial strength and formability gains from adopting an austenitic microstructure. However, 

the high degree of alloying elements required to obtain the microstructures and induce twinning-induced 

plasticity (TWIP) effects led to high costs and welding issues that ultimately hindered their adoption (Billur 

and Altan, 2014b). The development of the 3rd Generation of AHSS (3rd Gen AHSS) represents as a trade-

off between the first and second class of AHSS. The chemistry and thermomechanical processing produces 

microstructures containing martensite, ferrite, and retained austenite. During plastic deformation, the 

metastable retained austenite undergoes a stress-state dependent phase transformation to martensite, 

providing additional hardening and delaying instability (Speer et al., 2003). As depicted in Figure 2b, the 

total elongation of the higher strength 3rd Gen 980 steel is comparable to the 590R AHSS while the 3rd 

Gen 1180 AHSS exhibits comparable or superior ductility to the conventional DP980. The two most 

common classes of 3rd Gen steels are quench- and partitioned (Q&P) steels and trip-assisted bainitic ferrite 

(TBF) steels. An overview of the microstructure and processing routes can be found in Nanda et al. (2019). 

As discussed in Noder et al. (2021a), the stress-state dependent fracture performance between two 3rd Gen 

1180 MPa steels, designated as 3rd Gen 1180 V1 and V2, may vary considerably with different hardening 

characteristics as shown in Figure 2b.  
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Figure 2: Overview of the strength and ductility of different steel grades (Billur and Altan, 2014a) (IF = Interstitial free, 

BH = Bake-hardenable, CMn = Carbon Manganese, HSLA = High-strength low-alloy, TRIP = Transformation-induced 

plasticity, CP = Complex phase, DP = Dual-phase, MART = Martensitic, PHS = Press hardenable steels) (a) and 

performance comparison of selective 3rd Gen steels to conventional steels (Noder et al., 2021a) (b).     

 

2.2 In-plane Formability: Characterization and Prediction  

      The classical tensile test remains one of the most important tests for material characterization of sheet 

metals but is limited to in-plane stretching and provides only limited correlation to the deformation modes 

found in forming and impact tests of structural components. As depicted in Figure 3a, a uniaxial tension 

test comprises two distinct stages of uniform stretching up to the strain level corresponding to the ultimate 

tensile strength (UTS) when a diffuse neck has formed. The width (w) of the instability zone initially 

corresponds to approximately twice the sheet thickness and collapses into a single plane when an acute 

neck has evolved (Maricniak et al., 2002). The transition from a diffuse to an acute neck is reflected in the 

non-linearity of the strain path from uniaxial tension to a state of plane strain tension (zero minor strain 

increment) in Figure 3b. It is accompanied by a gradual transition to a triaxial stress state shortly after 

which fracture occurs. In the scope of this thesis, material instability is referred to as plastic instability that 

may either involve the formation of an acute or a diffuse neck. The ability of a material to deform 

homogeneously until the onset of tensile instability is defined as global formability whereas local 

formability is concerned with the fracture limits. Both formability metrics need to be considered in forming 

operations that often involve significant through-thickness strain gradients such as in bending-dominated 

forming operations when fracture may occur without a preceding neck (Schaeffler, 2017). It is important to 

emphasize that good global formability does not automatically infer good local formability and vice versa 

(Hance, 2016). 
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Figure 3: Schematic of a stress-strain response obtained in a standard tensile test (a) and the transition of the strain path 

from uniaxial tension to a state of plane strain tension when an acute neck has formed (b). 

 

When discussing formability in the sheet metal forming literature, the term proportional loading is 

commonly used to refer to proportionality between the strain increment and stress state. A distinction is 

required in the present thesis to clarify that proportional loading corresponds to applying the forces 

proportionally according to load-control as in a hydraulic test frame. The surface tractions or stresses are 

not proportional as the geometry evolves with deformation. Proportional stressing refers to adjusting the 

applied force increments to compensate for the geometric change in a stress-control configuration. In 

analytical models of plastic deformation, proportional stressing is often obtained under strain-controlled 

boundary conditions, which simplifies the integration of the constitutive models.  

 

2.2.1 Experimental Forming Limit Curve 

      The experimental characterization of the global forming limits dates back to the 1960s when Keeler and 

Backhofen (1963) and Goodwin (1968) performed stretch tests of various specimen widths using circle grid 

analysis (CGA). Necking limits were retrieved from post-test measurements of the deformed grid pattern, 

which had been etched onto the material prior to testing. The measured in-plane strain in the two principal 

directions was summarized in a major versus minor strain diagram ranging from uniaxial tension to equi-

biaxial stretching that represents the traditional FLC depicted in Figure 4a. The part can successfully be 

formed if the strain remains below the FLC. In general, failure with respect to the FLC refers to the 

development of an acute neck and is not a fracture limit (Hendrick, 2017). The left side of the FLC is 

referred to as the “draw side” (owing to the negative minor strain that occurs in drawing operations) and 

loading conditions with a positive minor strain occur on the “stretch side”. The FLC0, represented by the 

global minima of the FLC, is the most critical loading condition since the material experiences a state of 

plane strain tension when the sheet thins by the same amount it is stretched in the primary loading direction. 

The diffuse and acute necking limits in plane strain are identical for a rate-independent material.  
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Figure 4: Schematic of the forming limit curve for in-plane stretching (a) and resulting boundary condition of the sheet 

concave (inner) layer depending on the test method utilized to experimentally characterize the forming limit.  

 

      The two fundamental test methodologies to characterize the forming limits are the Nakazima (Nakazima 

and Kikuma, 1967) and the Marciniak (1973) tests, schematically illustrated in Figure 1a. The punch 

geometry and resulting boundary condition represent a marked difference between the two test techniques. 

As a consequence of the hemispherical punch geometry in the Nakazima test, the strain history is non-linear 

and the material is stretched out-of-plane and induces a biaxial strain before transitioning to the target strain 

path. Punch contact causes a through-thickness stress gradient with a 3D (triaxial) stress state on the inner 

(concave) side, which transitions to a 2D (plane) stress state on the outer (convex) material surface, as 

illustrated in Figure 4b. Second-order effects are strain gradients due to curvature effects and through-

thickness shear stresses caused by friction between the punch and the sheet specimen (Min et al., 2016). 

Marciniak tests avoid these complications by using a cylindrical punch in addition to a carrier blank to 

approximately achieve in-plane deformation under a plane stress state. Marciniak tests are challenging from 

an experimental perspective since the strain path and fracture location can be sensitive to the carrier blank 

material, thickness, and hole size. Despite the apparent differences in the boundary conditions of the two 

test methodologies, the ISO 12004-2 (2008) standard treats both tests interchangeably for sheet thicknesses 

up to 4 mm, even though limit strains were reported to be different. 

 

Ghosh and Hecker (1974) performed punch stretch tests for aluminum-killed steel, 70:30 brass, and cold-

rolled aluminum and consistently reported higher limit strains, obtained from CGA, for out-of-plane 

deformation relative to in-plane stretching. More recent studies by Min et al. (2016) and Butcher et al. 

(2021) adopted 3D digital image correlation (DIC) and confirmed that differences in limit strains between 

the Nakazima and Marciniak tests are not caused by measurement uncertainties surrounding the use of 
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CGA. The use of DIC in Nakazima tests enables the local strain history to be measured revealing the non-

linear strain path (Chen and Fang, 2018). Implications of the path-dependence of the strain-based FLC, 

depicted in Figure 5a, have been reported by many scholars (Hillier, 1966; Ishigaki, 1977; Kleemola and 

Pelkkikangas, 1977; Arrieux et al., 1982; Graf and Hosford, 1993; Graf and Hosford, 1994; Stoughton, 

2000). Effects of pre-strain on the subsequent forming limit are strongly dependent upon the type and 

amount of pre-strain and the stress state of the strain path (Graf and Hosford, 1993).  

 

  

Figure 5: Effect of path-dependence of the strain-based FLC for the 2008 T4 aluminum alloy (a) and transformation to the 

stress-based FLC that is approximately path-independent for isotropic hardening (Stoughton and Zhu, 2004) (b). The 

experimental campaign on the 2008 T4 aluminum alloy was conducted by Graf and Hosford (1993) who pre-strained the 

material under different loading conditions prior to performing forming limit tests.  

 

To remedy the shortcomings of strain-based FLCs, Hillier (1966) first proposed the concept of a stress-

based forming limit curve (SFLC) that was later confirmed by Kleemola and Pelkkigangas (1977) and 

Arrieux et al. (1982). The advantage of a stress-based metric is that it is an instantaneous value unlike the 

total strain that accumulates differently based upon the strain path. The stress represents the current force 

with respect to the current area and thus provides a clear measurement of the material state. Stress-based 

representations are often described as path-independent and its unique dependence upon the stress state as 

shown in Figure 5b. The pre-strained forming limit curves in strain-space (Figure 5a) collapse to a single 

line (band) in stress space. While the approximate path-independence of SFLC has been theoretically 

verified (Zhao et al., 1996; Stoughton, 2000), more recent experimental studies of Yoshida and Kuwabara 

(2007) revealed that the plane stress SFLC is only strictly path-independent for isotropic hardening. Despite 

its significant advantage over the strain-based FLC, the SFLC has received only limited acceptance since it 

requires the a priori calibration of a plasticity model and features poor resolution in differentiating stress 

limits at larger strains when the hardening rate becomes lower (Stoughton and Yoon, 2012). To remedy 

a)
b)
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these shortcomings, representation of the forming limit through the work-conjugate equivalent plastic strain 

was proposed by Müscheborn and Sonne (1975). Stoughton and Yoon (2012) proposed the Polar Effective 

Plastic Strain (PEPS) diagram using the equivalent plastic strain and an angle that tracks the direction of 

the plastic flow. An alternative approach to the SFLC was proposed by Volk et al. (2012) as the General 

Forming Limit Concept (GFLC) based on metamodeling and the transformation of a four-node element. 

Since the model calibration requires comprehensive experimental testing, Volk et al. (2012) justified the 

efforts through a potential applicability to various material thicknesses within the same material class but 

requires further validation.  

 

2.2.2 Limit Strain Detection Methods  

      The widespread adoption of DIC has spurred the development of new limit strain detection methods. 

Recalling from Figure 3, necking is a gradual process making identification of the acute neck challenging. 

The various limit strain detection methods can be organized into three groups: (i) spatial methods concerned 

about the neck location and the strain distribution, (ii) time-dependent methods that monitor the evolution 

of the instability, often in terms of the strain rate, and (iii) combined tempo-spatial techniques. The ISO 

12004-2 standard is a spatial method based upon the work of Bragard et al. (1972) who used CGA and 

fitting of quadratic functions to reconstruct the strain distribution from the fractured samples. As 

schematically illustrated in Figure 6a for the use of DIC, an inverse parabola is fitted through the strain 

distribution extracted from a line perpendicular to the crack, one image prior to fracture. The forming limit 

strain is identified from the corresponding maxima of the parabola. DiCecco et al. (2016) highlighted 

complications with the ISO 12004-2 method for asymmetric strain distributions that can lead to a 

malformed parabola and underestimate limit strains as shown in Figure 6a for an AA6013-T6 aluminum 

alloy tested at 250°C. Volk and Hora (2011) proposed a time-dependent technique, termed Linear Best Fit 

(LBF) method that tracks the thinning strain rate evolution inside the neck as depicted in Figure 6b. 

Necking is identified from the intersection of two line fits through the stable and unstable thinning strain 

rate inside the instability band. The fitting window for the line fits is arbitrarily selected to start from a 

specific image until the least square differences are met. The method of Merklein et al. (2010) performed 

regression analysis on major strain rate to identify the limit strain. Huang et al. (2008) and Situ et al. (2006, 

2011) proposed using the evolution of the second time derivative of the major strain but was reported by 

Martinez-Donaire et al. (2014) to overestimate the forming limits. Motivated by the experimental 

observation of a sudden local change in the curvature, which will eventually evolve to an acute neck, spatio-

temporal models have been proposed (Wang et al., 2014; DiCecco et al., 2016; Min et al., 2017a,b).  
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Figure 6: Inverse parabola fit in the ISO 12004-2 method for identification of the forming limit strain (DiCecco et al., 2016) 

(a) and identification of plastic instability using the LBF Method of Volk and Hora (2011) (b).   

 

2.2.3 Analytical FLC Models for In Plane-Plane Stress Loading  

      The experimental characterization of formability is costly and time-consuming particularly if alternative 

process parameters such as temperature, strain-rates, and strain paths are explored. Analytical models 

become necessary to predict formability in other process conditions and are reviewed for continuum-based 

approaches. There exists a wealth of literature on analytical models, however, the majority of them are 

strictly limited to in-plane stretching under a plane stress state that are only consistent with Marciniak limit 

strains. Historically, the plane-stress models have been compared and calibrated using Nakazima test data 

(Hora et al., 2013; Pham et al., 2018; Wang et al., 2020). The use of Nakazima limit strains can provide 

apparent disagreement with the model predictions and introduce calibration biases into models as shown 

by Butcher et al. (2021).  

 

      Considère (1885) identified the onset of diffuse necking in a tensile test based upon the maximum load 

when the rate of the material hardening can no longer balance the thinning rate of the sheet cross-section 

as illustrated in Figure 7a. Dorn and Thomsen (1947) applied this criterion to stress states beyond uniaxial 

tension while Swift (1952) extended the maximum load theory to biaxial loading conditions in proportional 

stressing. Hill (1952) recognized the limited applicability of the diffuse necking models for practical 

forming applications, which are usually compromised by acute necking. Hill (1952) postulated that 

localization in uniaxial stretching would occur in the so-called “zero extension” direction in the plane of 

the sheet where a plane strain condition exists. Bressan and Williams (1983) extended the model of Hill 

(1952) for biaxial stretching when the zero extension direction exists in the through-thickness direction but 

not within the sheet plane.  
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Figure 7: Schematic to illustrate identification of diffuse necking in uniaxial tension following the Considère Criterion (a) 

and illustration of acute necking in the MMFC of Hora et al. (2013) (b). An incremental transition of the strain and stress 

state from uniaxial tension (UT) to plane strain tension (PST) delays localization. 

 

      The pioneering work of Marciniak and Kuczynski (1967), hereinafter referred to as MK model, and 

further developed by Hutchinson and Neale (1977a, b) is most commonly utilized to predict formability. 

Localization occurs in a narrow band triggered by a thickness inhomogeneity, denoted as thickness 

imperfection factor. An acute neck has formed when the strain rate within the localization band relative to 

the homogeneous material has reached a threshold factor of usually ten (He et al., 2013a). The major 

drawback of the MK model is the sensitivity of predicted forming limits upon the thickness imperfection 

factor (Tadros and Mellor, 1978; Shi and Gerdeen, 1991; Ratchev et al., 1994; Zhang et al., 2014; Lang et 

al., 2015), which is utilized as a calibration parameter to make the FLC correlate with the experiments. The 

experimental study of Azrin and Backofen (1970) revealed that there appears to be little physical evidence 

in the form of surface imperfections to justify the magnitude of the reported imperfection factor in the MK 

model. Further complications may arise by the strong dependence upon a strain-rate dependent constitutive 

model to generate realistic limit strains on the draw side (Hutchinson and Neale, 1977b). In addition, the 

yield surface shape between plane strain and equi-biaxial tension was shown to markedly influence the 

shape of the predicted FLC (Lian et al., 1989).  

 

A more applied approach was proposed by Hora et al. (2013) in the Modified Maximum Force Criterion 

(MMFC). The MMFC also identifies localization from the transition of the strain path to plane strain tension 

analogous to the MK framework but does not enforce geometric boundary constraints in the form of a 

localization band. Diffuse necking is determined from the maximum load criterion of Dorn and Thomsen 

(1947) followed by an incremental transformation of the strain path and stress state inside the neck to a 

state of plane strain tension when an acute neck has formed (shown in Figure 7b). The rate of change of 

the strain path towards the maxima of the yield function (plane strain tension) effectively acts as a source 
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of secondary hardening to compensate for unstable material hardening to maintain stability. The faster the 

hardening rate of the material decreases after the peak load, the faster the transition to plane strain tension 

and acute necking. In contrast to the MK model, the MMFC is entirely mechanistic and only requires the 

hardening model and yield function. Despite the more rigorous treatment of localization within the MK 

model, it has been demonstrated that the MMFC provides predictions of similar accuracy for AISI 439, 

DC05 (Manopulo et al., 2015) and AA6016 (Shen et al., 2018) or superior accuracy for AHSS (Butcher et 

al., 2021; Gutierrez et al., 2020). The primary limitation of the MMFC lies in its restriction to plane stress 

and principal loading such that it neglects contact pressure effects and cannot distinguish between tensile 

and shear loading.  

 

2.3 Out-of-Plane Formability: Characterization and Prediction  

      For stretching-dominated forming operations with deformation primarily limited to in-plane stretching, 

the FLC provides a reasonable estimate for the material necking limit (Stoughton and Yoon, 2011; Gutierrez 

et al., 2021). Application of the same FLC to a forming operation with combined loading of stretching with 

superimposed bending leads to overly conservative forming predictions, which enforces unnecessary 

constraints upon the product design. The margin of error is particularly small for AHSS with limited 

formability windows and a large safety margin may lead to the component not appearing feasible (Geoffroy 

et al., 2007; Till et al., 2008; Atzema et al., 2010; Gutierrez et al., 2021). As noted by Stoughton and Yoon 

(2011) and Allwood and Shouler (2009), the material forming limit is an instantaneous metric governed by 

the process conditions. The following discussion focuses on experimental methodologies and analytical 

models to identify the material limit under combined loading conditions of stretching with superimposed 

bending.  

 

2.3.1 Stretch-bend Experiments 

      Angular stretch-bend (ASB) tests, as depicted in Figure 8, are conducted to characterize the limit strains 

at higher bend severities and a varying degree of superimposed stretching. The hemispherical punch in the 

Nakazima test is replaced with a cylindrical single-curvature punch with smaller radii and the die set 

opening is rectangular instead of circular. The material is constrained from draw-in while the clearance 

(size of die opening) and choice of punch radii are varied to achieve different bend severities and contact 

pressure. The latter two process effects are intertwined such that a smaller bend severity (ratio of punch 

radius to sheet thickness denoted as /r t ) infers a smaller contact area and thus leads to an increase in the 

contact pressure. It is noted that the geometric bend severity cannot differentiate between the relative 

amounts of stretching and bending.  
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Figure 8: Stretch-bend set-up (a) and schematic (b) adapted from Neuhauser et al. (2016). Depending upon the bend severity 

and sample geometry, premature failure can occur on the unsupported flange where deformation is approximately in-plane 

stretching.  

 

Motivated by the findings of Ghosh and Hecker (1974), who measured higher limit strains for out-of-plane 

than for in-plane deformation, Charpentier (1975) performed a comprehensive study utilizing five different 

punch geometries ranging from cylindrical with a flat tip to hemispherical and elliptical. For hot rolled 

AKDQ steel, the forming limit strains increased with increasing punch curvature. Demeri (1981) 

experimentally studied the effect of the sheet thickness on the limit strains for AK steel, DP80 steel, and 

HSLA-F50 steel and found that the forming limit increased as a function of the sheet thickness for 

stretching-dominated deformation but decreased for bending-dominated scenarios. Zadpoor et al. (2011) 

came to a similar conclusion in pure bending of 2024-T3 and 7075-T6 aluminum alloys and explained the 

phenomenon through lower bending normal stresses, reduced through-thickness strain gradients, and larger 

frictional forces for thicker sheet gauges. Interestingly, the failure strains for pure plane strain bending were 

found to be higher than the limit strains in uniaxial tension indicating suppression of necking. Cheong 

(2018) performed a comprehensive ASB study on DP980 and AA5182 with punch radii of 0.4 to15 mm. 

Material indentation was reported for punch radii smaller than 2 mm – a common complication encountered 

for sharp punch radii as reported by Kitting et al. (2009). A further complication arises from an intertwined 

effect of an increase in bend severity with a simultaneous shift in the strain path as reported by Kitting et 

al. (2010) and Cheong (2018). 

 

      In ASB tests, the strain distribution is always parabolic due to the shape of the punch. Consequently, 

the ISO 12004-2 method is not applicable as its inverse parabolic behavior was developed based upon in-

plane stretching when deformation is uniform prior to localization (Centeno et al., 2014; Lopez and van 

den Boogard, 2011). Instead, temporal methods have widely been adopted in literature for tests with 

through-thickness stress gradients (Neuhauser et al., 2018; Cheong, 2018; Martínez-Donaire et al., 2014). 

The limit strains under combined loading can be experimentally identified on the convex surface but the 

deformation history of the underlying material, the amount of stretch-bending, and the contact pressure 

evolution that give rise to the neck formation remain unclear. The challenge is how to generalize the results 

to the myriad of possible stretch-bend scenarios in a forming operation.  

b)

a) Unsupported flange
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2.3.2 Instability Modes  

      The wealth of literature on the experimental characterization of formability provides valuable insight 

into the effect of bending but there is a paucity of research on the physics to predict the limit strains in 

practical applications. To understand localization in the presence of a through-thickness stress gradient, it 

is convenient to discretize the sheet thickness into infinitesimal layers. For in-plane stretching (see Figure 

9a), e.g. in Marciniak tests, all layers are stretched uniformly and will reach the necking instability at the 

same point in time. In the case of combined loading with mild bending (see Figure 9b), e.g. in Nakazima 

tests, bending strains are superimposed to the in-plane membrane strains due to stretching and the strain 

evolution on the concave side is delayed. For combined loading with appreciable bending, as depicted in 

Figure 9c, the induced compressive bending strains can no longer be balanced by the tensile membrane 

stains. As a result, a severe strain gradient manifests through the sheet thickness with compression on the 

concave side and tension on the convex side (Morales-Palma et al., 2013; Tharrett and Stoughton, 2003). 

From a theoretical perspective, the formation of a neck appears unlikely if the bending strains are larger 

than the membrane strains since the resultant strain path on the concave layer remains compressive (Tharrett 

and Stoughton, 2003). Fracture without necking is most likely in this scenario such that the limit strains are 

the fracture strains.  

 

 
Figure 9: Through-thickness strain distribution for (a) in-plane stretching, (b) stretching with mild bending superimposed, 

and (c) appreciable bending with mild stretching.   

 

The so-called Mid-Plane Rule (MPR) represents the conventional practice to account for the through-

thickness strain gradient. In pure bending, the strain at the mid-thickness, which approximately corresponds 

to the neutral layer, is neglected. Thus, in theory, the strain history on the mid-plane in stretch-bending 

represents in-plane stretching. Tharrett and Stoughton (2003) argued that the MPR is overly conservative 

and postulated the Concave-Side Rule (CSR) advocating that necking only occurs if all material layers 

exceed the limit strain for in-plane deformation. Since tensile strain accumulation is delayed on the concave 

layer, the formation of an acute neck on the convex layer is essentially governed by the strain path on the 

concave layer. The CSR provides a simple and intuitive way to interpret formability but there remains 

debate within the literature on the universality of the CSR to arbitrary bend severities (Kitting et al., 2009; 

Vallellano et al., 2010; Neuhauser et al., 2016). Instead of relying on a single layer, Vallellano et al. (2010) 

a) b) c)
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and Morales-Palma et al. (2013, 2017) introduced the concept of the critical distance rule (CDR). Damage 

accumulation is considered over a specified material volume or critical distance, approximated from the 

alloy grain size (Morales-Palma et al., 2013) or calibrated to formability data (Morales-Palma et al., 2017). 

The models of Morales-Palma et al. (2013, 2017) identified necking from a combination of the CSR and 

CDR whereas abrupt fracture without a preceding neck was governed by the damage evolution on the 

convex surface, summarized in the convex side rule (CxSR). The predictive capability of their analytical 

model was limited to bend severities smaller than four times the sheet thickness since through-thickness 

normal stresses were not accounted for (Morales-Palma et al., 2013). These limitations were partly 

addressed in a more recent publication of Morales-Palma et al. (2017) by consideration of bending normal 

stresses whereas tool contact stresses were still neglected. Although the CDR is attractive, it currently 

represents a material-specific calibration parameter that must be identified a priori. As with the MK model, 

its formability predictions hinge upon first calibrating the model to formability data.  

 

2.3.3 Mechanics of Stretch-bending   

      The through-thickness stress-strain distribution must be considered in the modelling strategy to predict 

the instantaneous forming limit in general loading conditions. The mechanics of pure plane strain bending 

are well-established in the literature and first reviewed followed by modelling strategies to superimpose 

stretching.  

  

      The mechanics of bending (Hill, 1950) are described in Figure 10 where the sheet cross-section is 

defined by the convex, yr , and concave layer radius, ir , respectively. The radius of the mid-layer, 
mr , is 

located at half the sheet thickness and evolves with deformation. Initially, the radius of the sheet mid-layer, 

,0mr , coincides with the radius of the neutral layer, 
nr , defined as the layer with a vanishing major strain 

increment. The unstretched layer, 
ur , is the layer whose length change is zero as the tensile and compressive 

strains balance. The neutral layer divides the sheet cross-section into distinct regions of the material layers 

that are elongated in tension (Zones I and Zone III) and the layers that thicken in compression (Zone II). 

With continued bending, the cross-section thins and the neutral layer shifts towards the concave side 

creating a load reversal as compressive layers become loaded in tension between the initial mid-layer radius, 

,0mr , and the neutral layer (Zone III). As a consequence, complex kinematic hardening effects can be 

triggered and affect the overall response of the cross-section (Crafoord, 1970; Tan et al., 1995; Zang, 2014). 

Accounting for these effects adds considerable complexity since the loading history of each layer of the 

cross-section has to be traced out separately in a multi-layer framework.  
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Figure 10: Schematic of adopted terminology in bending mechanics and the evolution of the through-thickness distribution 

of the major strain during pure bending in the absence of tool contact pressure.  

 

      The traditional theory of bending mechanics, pioneered by Ludwik (1903) was further developed by 

Wollter (1950), Lubahn and Sachs (1950), Hill (1950), and Proksa (1958, 1959) to account for sheet 

thinning, the shift in the neutral layer, and normal (radial) stresses. The foundational assumptions of pure 

bending and plane stress on the concave layer greatly limits their practical application since the process 

conditions of superimposed bending to stretching and tool contact pressure are not considered. In particular, 

the convenient total strain formulation is deeply problematic since accurate description of the complex 

hardening behavior requires an incremental approach. Kinematic hardening effects are either neglected or 

aggressively simplified (Crafoord, 1970; Dadras and Majlessi, 1982; Tan et al., 1995). Engineering bending 

models have been preferred for industrial application due to their flexibility and simplicity (He et al., 2013c) 

but introduce many simplifications such as setting the neutral layer equal to the sheet mid-plane, assuming 

a constant sheet thickness, and neglecting normal stresses. These approximations are only reasonable for 

pure bending (no tool contact) with bend severities of approximately /mr t  > 10 (Yu and Zhang, 1996). It 

is important to note that pure bending in plane stress does not arise in metal forming operations. Bending 

is caused by tool contact or in loading scenarios akin to three or four-point bending as in the V-Bend test. 

Pure bending in plane stress can only be obtained in laboratory tests with specialized fixtures to apply a 

bending moment to the sample ends during air-bending (Crafoord, 1970; Govindasamy, 2015).  

 

      Superposition of membrane stretching to bending adds another layer of complexity to the mechanics 

since the amount of stretching and bending governs the nature of the stress state (tensile or compressive) 

and the severity of the gradient that manifests over the cross-section. If deformation involves sufficient 

stretching (Figure 11a), the entire cross-section is under a tensile stress state and tensile instabilities may 

develop. Mathematically, the unstretched and neutral layer are located outside of the sheet thickness (layer 
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radii are smaller than the radius of the concave layer). In contrast, if bending is dominating and stretching 

is rather mild (Figure 11b), the lower part of the cross-section remains in a compressive stress state and 

necking is suppressed. In practice, the deformation mode is often a combination of both such that bending 

is dominating until the sheet has mostly wrapped around the punch when the deformation mode transitions 

to primarily stretching with mild bending. Thus, the neutral and unstretched layer may be located within or 

outside of the sheet cross-section.  

 

 
Figure 11: Schematic of the cross-section and adopted terminology in combined loading considering severe stretching with 

mild bending (a) and mild stretching with severe bending (b). 
 

The transition of the deformation mode from bending to stretching essentially introduces non-monotonic 

straining (reversal from compression to tension) for material layers located in the lower half of the cross-

section, requiring an incremental solution method. To avoid these complications, the mechanics of stretch-

bending are commonly simplified to bi-linear loading in the two-stage model. The deformation history is 

decoupled into two distinct stages of (i) pure bending with a constant sheet thickness and a stationary neutral 

layer, followed by (ii) stretching with a constant curvature of the concave layer and sheet thinning 

(Vallellano et al., 2010; Morales et al., 2013; He et al., 2013a,b). The simplicity of the approach is attractive 

but the study of De Kruijf et al. (2009) highlighted that de-coupling of simultaneous stretch-bending into 

two sequential stages fundamentally affects the predicted material response. Finite-element (FE) 

simulations revealed that pre-stretching prior to bending resulted in the absence of necking as the inner 

layer would always be in compression. Pre-bending prior to stretching resulted in premature necking since 

the material hardening capability was mostly exhausted during the bending stage leading to a low work-

hardening rate during stretching and the onset of necking. Thus, for accurate prediction of the material 

under combined loading, it is paramount that stretching and bending effects be considered simultaneously.  
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2.3.4 Contact Pressure Models  

      In the presence of tool contact, the normal (through-thickness) stress distribution in bending is 

superimposed with an additional normal stress component. Contact pressure effects are commonly 

neglected within the literature by restricting the analysis to moderate bend severities (Xia and Zeng, 2008; 

Vallellano et al., 2010; He et al., 2013a,b; Morales-Palma et al., 2013, 2017). In MK-based models it is 

common practice to assume a constant pressure (Nurcheshmeh and Green, 2012; Assempour et al., 2010; 

Zhang et al., 2014), which is seldom encountered in metal forming. Allwood and Shouler (2009) estimated 

the contact pressure utilizing the measured punch force and an approximated contact area whereas He et al. 

(2013c) and Stoughton and Yoon (2011) relied upon FE analysis.  

 

The studies of Min et al. (2016), Ma et al. (2016, 2018), and Wang et al. (2019) adopted force equilibrium 

over the sheet cross-section to approximate the contact pressure utilizing the average major in-plane stress 

in a so-called homogenized model. Evolving normal stresses due to bending were neglected. Depending 

upon the assumption of the through-thickness evolution of the contact pressure, the magnitude of the contact 

pressure can drastically vary. For a linear distribution (Wang et al., 2019; Ma et al., 2018) the contact 

pressure increased by a factor of two compared to the method of Min et al. (2016) and Ma et al. (2016) 

who neglected the through-thickness distribution. Presently, there has been no rigorous validation of the 

above models for the contact pressure magnitude and its through-thickness distribution such that the 

applicability to a forming operation remains uncertain. In a recent publication of Meya et al. (2019) who 

introduced the concept of radial stress superposed bending (bending with forces applied on the convex and 

concave specimen side), the contact pressure was approximated from the elastic theory of Hertz (1881) 

with a quadratic distribution. Normal bending stresses, sheet thinning, and reverse loading effects were 

neglected in the simplified bending mechanics model. Compared to the FE solution, the simplified 

analytical model showed some deviations in the presence of tool contact and for higher punch forces. While 

these studies have provided limited validation of the contact pressure in sheet metal forming, the question 

of how to incorporate the contact pressure in a stretch-bend model that accounts for evolving normal 

stresses, the shift in the neutral layer, and thinning of the cross-section remains an open question.  

 

2.3.5 Instability under a Triaxial Stress State  

      Accounting for tool contact pressure is imperative in the accurate description of the stretch-bending 

process but introduces a triaxial stress state on the concave layer that inhibits the use of the plane stress 

instability models discussed in Section 2.2.3. In the literature, phenomenological approaches based upon 

assumed mapping criteria between plane stress and triaxial stress states are employed (Smith et al., 2003; 

Matin and Smith, 2005; Simha et al., 2007, 2008; Min et al., 2016). Analytical solutions for triaxial stress 
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states have been overlooked, likely due to the focus upon the acute necking limits in contrast to the onset 

of instability – diffuse necking for tensile stress states – where solutions can be obtained (Hillier, 1963). 

 

The fundamental assumption in phenomenological mapping approaches rests upon the plane stress FLC 

being a universal material property that can describe tensile instability in general triaxial stress states. It is 

an attractive concept to formability engineers since the plane stress FLC is typically available while the 

triaxial formability limits are absent. In mapping-based models, the in-plane stresses and strains in triaxial 

loading are related to the plane stress limit strains. The limit strains can be mapped between stress states by 

assuming either a constant in-plane principal stress ratio (
2 1/  = ) as proposed by Smith et al., (2003) 

or constant in-plane principal strain ratio (
2 1/d d  = ) by Matin and Smith (2005). As depicted in Figure 

12a, the stress-based mapping of Smith et al. (2003) predicted formability gains on the order of 500% for 

a hardening exponent of 0.2 and a through-thickness stress ratio (
3 1/  = ) of -0.45 that were later 

invalidated in double-sided high-pressure hydraulic bulge tests by Matin and Smith (2005). The strain-

based mapping of Matin and Smith (2005) in Figure 12b only correlated with experimental formability 

gains when adjusting the material hardening response and contact pressure. The concept of mapping under 

a constant stress ratio was later adopted by Simha et al. (2007, 2008) in the extended stress-based FLC 

(XSFLC) for straight tube hydroforming and stretch flange forming, and by Min et al. (2016) in the process 

corrections of Nakazima tests. Min et al. (2016) provided a three-step procedure to correct for non-linear 

strain path, curvature, and pressure effects in Nakazima dome tests with two different punch sizes (
pr  = 

50.8 mm and 
pr  = 25 mm). Contrary to the findings of Smith et al. (2003), the corrected limit strains of the 

Nakazima test were in good agreement with Marciniak tests for in-plane stretching of an MP980 steel. Chen 

and Fang (2018) adopted the same methodology for Nakazima tests and reported satisfactory results for 

AA6014-T4. The difference between the strongly diverging formability gains in the study of Min et al. 

(2016) and Smith et al. (2003) might be attributed to the magnitude of the contact pressure. Smith et al. 

(2003) invalidated his model when considering experimentally-measured contact pressure values whereas 

Min et al. (2016) relied upon the homogenized modelling approach (Section 2.3.4), which is yet to be 

validated. The uncertainty surrounding the phenomenological mapping will be critically evaluated as part 

of this research from an experimental perspective by assessing the sensitivity of the hardening rate and limit 

strain detection method in Chapter 3 and under physical considerations in Chapter 4.  
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Figure 12: Predicted formability gain adopting in the constant stress mapping methods of Smith et al. (2003) (a) and Matin 

and Smith (2003) (b). 

 

The analytical prediction of the acute necking limits in triaxial loading has predominantly focused upon the 

in-plane MK model with a superimposed contact pressure. In general, additional equilibrium and 

compatibility equations are required to account for a triaxial stress state. The imperfection is described in 

terms of a homogenous stress-strain distribution through the sheet thickness and along the groove width 

that makes it challenging to properly resolve stress-strain gradients as a consequence of bending and tool 

contact (He et al., 2013c). Instead, the average through-thickness pressure is prescribed and the sheet 

thickness is treated as a single layer (Wang et al., 2019; Assempour et al., 2010). The effect of the boundary 

condition of how the contact pressure is applied is not trivial and has been overlooked in the literature. The 

majority of the 3D MK models employ a constant magnitude of the contact pressure (Assempour et al., 

2010, Hashemi and Abrinia, 2014; Erfanian and Hashemi, 2018; Nurcheshmeh and Green, 2012; Zhang et 

al., 2014; Lang et al., 2015) where reported formability gains are relatively minor. For an AA6111-T43 and 

a ratio of the normal stress with respect to the material yield stress (
3 / y  ) of -0.45, Zhang et al. (2014) 

predicted an approximately constant formability gain of the FLC across all stress states. The FLC0 was 

shifted by about 17% from approximately 0.23 for plane stress to 0.27 in the presence of contact pressure. 

Much larger formability gains were predicted when the contact stress evolves proportionally with the major 

in-plane stress, reflected in a constant through-thickness stress ratio (Allwood and Shouler, 2009; Mirfalah-

Nasiri et al., 2016). For a 1050 aluminum and a constant component through-thickness stress ratio (
33 11/ 

) of -0.5, Allwood and Shouler (2009) predicted an increase in the FLC0 by about 58% from a major strain 

of 0.19 to 0.3 with the highest formability gains for biaxial strain paths. Mirfalah-Nasiri et al. (2016) 

reported a 35% increase in the plane strain limit strain for AA3104-H19 adopting a constant through-

thickness stress ratio of -0.45. Ma et al. (2016) considered an evolving through-thickness stress ratio where 

the contact pressure was computed from the homogenized approach of the preceding section while 

neglecting the through-thickness distribution. The effect of an increase in the sheet thickness with a constant 
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punch radius of 25 mm revealed negligible formability gains for the draw side of the FLC with strongly 

magnified effects for biaxial strain paths. 

   

The generalized instability framework of Hillier (1963) has been mostly overlooked in the literature despite 

its fundamental insight into material instability and the formulated dependence upon the boundary 

conditions of how the tractions are applied. Plastic instability is derived from the condition of a vanishing 

second order plastic work rate. Instability is expressed in terms of a critical subtangent, derived from applied 

loads, tractions, and the change in the contact area that intersects the material hardening curve. The 

advantage of the Hillier (1963) model lies in its generalized framework that admits arbitrary loading and 

boundary conditions such as combined tension and shear, triaxial stress states, and proportional loading 

versus proportional stressing. The stabilizing role of shear on localization was shown by Hillier (1963, 

1964) and recently used by Butcher and Abedini (2019a) to explain the failure behavior of tension-torsion 

tests compared to tensile-based tests with the same stress triaxiality. Hillier (1964) also demonstrated how 

the seemingly conflicting instability solutions of Hill (1950), Mellor (1962), and Pugh (1964) for applied 

pressure in a tensile test represent special cases of the general framework and are a consequence of the 

adopted boundary conditions. The primary limitation of the general Hillier framework is its restriction to 

the onset of instability that is too conservative in a forming process for which acute localization is of primary 

concern.  

 

2.4 Plane Strain Fracture Characterization  

      As discussed in Section 2.3.2, the presence of a severe through-thickness stress-strain gradient may lead 

to suppression of tensile instabilities with abrupt fracture. Since plane strain loading represents the global 

minimum of the FLC and the terminal strain path when an acute neck has formed (Hora et al., 2013), 

fracture without necking under plane strain tension warrants consideration.   

 

Plane strain notch tests have found widespread acceptance for fracture characterization of plane strain 

tension (Wagoner, 1980; Vegter and van den Boogaard, 2006; Tian et al., 2017) but come at the cost of a 

stress-strain gradient along the gauge width and through the thickness as illustrated in Figure 13a. The 

formation of an acute neck causes fracture initiation at the specimen center (through-thickness in the mid-

plane) where strains cannot be measured using DIC. Therefore, inverse FE analysis is required to extract 

the local non-proportional stress-strain history of the center element where fracture is initiated (Mohr and 

Henn, 2007). Nevertheless, the adoption of FE bears its own risks surrounding model uncertainties caused 

by the selected plasticity model, element formulation, and mesh discretization (Dunand and Mohr, 2010).  
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Figure 13: Non-uniform strain distribution along the gauge length and through the thickness of the plane strain notch 

specimen (a) contrasted with the major strain distribution in the V-Bend test (b). Note that the FE simulation in (a) was 

provided by Fast-Irvine (2021).  

 

      These complications can be avoided in the VDA 238-100 (2013, 2017) tight radius bend test, hereinafter 

referred to as V-Bend test, that represents a severe stretch-bend condition with plane strain bending as the 

primary deformation mode. A square specimen with a minimum width of approximately 20 times the sheet 

thickness is bent between two rollers with a gap of approximately twice the sheet thickness and a sharp 

knife of 0.2 mm or 0.4 mm tip radius depending on the material type. The primary advantage of the V-Bend 

over notch test lies in the suppression of necking owing to the severe through-thickness stress-strain 

gradient. As depicted in Figure 13b, fracture will occur on the convex surface where the tensile strains are 

highest and can be directly measured with the aid of DIC (Cheong et al., 2018). For materials of 

homogeneous microstructure, fracture in the V-Bend test represents the true plane strain fracture strain 

unlike for steels with severe centerline segregation of martensite. In this case, martensite approximately 

coincides with the neutral layer during bending and is therefore not activated in contrast to in-plane loading 

where martensite centerline segregation was found to be detrimental for fracture (Bertolo et al., 2022).  

 

Following the VDA 238-100 specification, fracture is solely identified upon a load threshold of the punch 

force and the punch displacement is utilized to compute the bend angle, which is the reported metric for 

alloy comparison. The design of an inverted V-Bend frame equipped with a DIC system proposed 

independently by Roth et al. (2016) and Cheong et al. (2017) allows direct measurement of the plane strain 

failure strain and eliminates the dependence of the sheet thickness upon the reported bend angle. 

Complications may arise if the material plane strain fracture strain cannot be reached with the 0.2 mm 

radius punch and the material performs a full bend in the absence of fracture, termed “false positive”, as 

reported for the DP600 by Cheong (2018) and Larour et al. (2013). Different approaches have been 
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established to overcome the uncertainties surrounding the fracture detection in the VDA 238-100 tight 

radius bend test. The most recent version of the VDA 238-100 (2017) specification suggests to first pre-

strain the material to 10% true strain using strips of 70 mm in width and 160 mm free clamping prior to 

extraction of V-Bend specimens. It was shown by Noder et al. (2020b) that this methodology results in a 

non-linear strain path; the effect upon the bend angle and failure strain was strongly dependent on the type 

of material, e.g. steel, aluminum, or magnesium alloy. Instead, Grolleau et al. (2019) proposed a novel 

stretch-bend set-up with a dihedral punch to promote fracture by superimposing tensile stretching. The test 

methodology of Grolleau et al. (2019), strictly speaking, represents combined loading and may impair the 

linearity of the strain path. In light of the excellent plane strain conditions in the V-Bend test, alternative 

approaches have focused on enhanced fracture detection methods. Boul et al. (2007) and Labudde and 

Bleck (2011) explored the use of acoustic sensors for fracture detection but highlighted potential 

complications arising from background noise. Troive (2017) proposed adoption of the bending moment of 

the cross-section to detect material failure. The strain, stress, and bending moment over the cross-section 

were computed from analytical approximations. Failure was determined from a change in the plastic 

bending moment relative to the elastic moment for a high-strength hot rolled steel with low ductility. 

Although promising, due to limited validation, the applicability of the methodology of Troive (2017) to 

high-hardening materials with superior ductility remains uncertain. 

 

2.5 Summary and Current Deficits in the Literature  

      With advancements in material development, the need for instability models that account for the 

instantaneous nature of the forming limit under combined loading and tool contact pressure has become 

prominent. The conventional strain- or stress-based FLC developed for plane stress in-plane stretching 

performs too conservatively in the presence of strain gradients and appreciable contact pressure. This is 

particularly problematic for high strength steels and aluminum alloys with limited forming windows. The 

continued use of the in-plane FLC to evaluate forming operations can be attributed to the complexity of 

accounting for bending mechanics with superimposed tensile stretching. Knowledge of the through-

thickness stress gradient, the complex hardening behavior within layers that undergo reverse loading, and 

identification of the critical number of material layers to reach instability are challenging to distill into a 

practical framework. Formability models that account for combined stretching and bending within the 

literature have been limited to moderate bend severities of /mr t  > 10 as a consequence of aggressive model 

simplifications and omission of evolving normal stresses caused by bending and tool contact. As a result, 

research on analytical models for approximation of the contact pressure and identification of instability 

under triaxial stress states are scarce. Selective approaches have focused on phenomenological mapping 

techniques between 2D and 3D stress states but can potentially lead to non-physical formability gains. 
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Alternative approaches were limited to the in-plane MK framework that typically requires an a priori FLC 

for identification of the imperfection factor. The through-thickness stress-strain gradients cannot be readily 

resolved due to the physical basis of the MK model upon localization of an imperfection in a wide strip of 

homogeneous stress-strain distribution. The Hillier framework provides a physically-consistent 

methodology for the general loading conditions but has received little attention due to its focus upon diffuse 

necking. Models must be able to account for the suppression of necking based upon the severity of the 

through-thickness gradient when fracture on the convex surface governs the forming process. Accurate 

knowledge of the plane strain fracture limit is critical. The inverted VDA238-100 tight radius V-Bend test 

is promising for fracture characterization but relies upon an arbitrary load threshold as a fracture criterion 

that can lead to significant under-reporting of the failure strains. The VDA load threshold fails to recognize 

that the load will drop even without fracture.   

 

2.6 Research Scope  

2.6.1 Objectives   

      The overall goal of this research is to enhance the current understanding and modelling of formability 

and fracture of automotive sheet metals with an emphasis upon 3rd Gen AHSS. This research will contribute 

to the adoption of AHSS in the design of automotive lightweight components for superior fuel efficiency 

and passenger safety. The outcome of this work will provide an instability framework for adoption in the 

product design stage to predict and assess instantaneous forming limits accounting for both the process and 

local boundary conditions in combined loading under complex stress states. AHSS are the primary material 

class considered although other materials such as aluminum alloys and mild steel will be considered for 

selective cases to demonstrate applicability of the developed methodologies. The thesis has been structured 

around four objectives:  

(1) Characterization of the material forming limit for stretching-dominated loading conditions and 

development of a methodology for the prediction of the plane stress FLC.  

 

(2) Development of a general instability framework to predict the effect of a triaxial stress state on 

plastic instability during in-plane loading.  

 

(3) Development of a fracture detection methodology in the VDA 238-100 tight radius bend test to 

characterize the fracture limit under plane strain tension, in the absence of necking.  

 

(4) Characterization of the necking limits in bending-dominated loading conditions and extension of 

the developed instability framework of objective (2) to account for evolving through-thickness 

stress-strain gradients due to bending and tool contact pressure.  
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2.6.2 Tasks 

      The preceding objectives are supported by the tasks discussed in the following section. The contribution 

of each task in the developed instability framework is visualized in Figure 14.  

 

 
Figure 14: Overview of tasks to attain the defined objectives.  

 

Task 1: Instability during In-plane Loading  

      For the characterization of the in-plane forming limits, the standard procedure outlined in the ISO 

12004-2 standard is followed in Nakazima and Marciniak tests. The sensitivity of the limit strain detection 

method is studied using the method outlined in the ISO 12004-2 standard in addition to a refined version 

of the LBF Method of Volk and Hora (2011) to eliminate subjectivity in the identification of the fitting 

window for the stable strain rate. Applicability of the stress-based phenomenological mapping criterion 

(Smith et al., 2003), which showed promising results for the MP980 steel in Min et al. (2016), is critically 

assessed for potential artefacts arising from the limit strain detection method, hardening rate, and calibration 

technique of the constitutive model. For analytical FLC prediction, the plane stress MMFC of Hora et al. 

(2013) is selected since it is entirely mechanistic and was shown to generate results of accuracy level 

comparable or superior to the MK model for AHSS (Gutierrez et al., 2020; Butcher et al., 2021). The 

outcome of Task 1 represents the lower bound of the instability framework in Figure 14 to mechanistically 

predict in-plane formability.  

 

Task 2: Instability under Triaxial Stress States   

      The physically motivated instability framework of Hillier (1963) is selected to establish a fundamental 

understanding of the effect of a compressive normal stress and the local boundary conditions upon plastic 

instability. Closed-form solutions are derived for different boundary conditions of the contact pressure, e.g. 
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constant, proportional, or evolving, and contrasted with the phenomenological mapping criterion adopted 

in Task 1 to critically assess their validity. An extension of the Hillier framework to acute localization is 

derived from physical considerations of the localization process in a tensile test and contrasted with the 

boundary conditions of the phenomenological plane stress MMFC (Hora et al., 2013). The outcome of Task 

2 provides an instability framework to predict acute localization under a triaxial stress state while 

accounting for the local boundary conditions of the deformation process.   

 

Task 3: Fracture in the Absence of Necking   

      The limiting case of suppression of necking, e.g. in a forming operation with appreciable bending, the 

VDA 238-100 tight radius bend test is selected. Proportional straining and fracture initiation under plane 

stress makes the V-Bend test suitable for fracture characterization under plane strain tension but fracture 

detection based upon the punch force evolution is replaced with a more accurate failure criterion. The 

validity of the load drop methodology in the V-Bend tests is critically evaluated for AHSS of different 

ductility levels. The fundamentals of bending mechanics are employed to develop a stress-based fracture 

detection method that accounts for thinning and sample dimensions of the material cross-section, which 

have been neglected in the literature. The local instability of the material is studied utilizing surface strains 

measured from stereoscopic DIC that are then compared to the stress-based detection method. The outcome 

of Task 3 represents the upper limit of the instability framework in Figure 14 to provide a robust fracture 

detection methodology for identification of the plane stress fracture limit in plane strain tension.  

 

Task 4: Instability in Combined Triaxial Loading 

      The instability framework developed in Task 2 requires an extension for application to combined 

loading to obtain the stress history at each material layer to evaluate instability. The CSR is used as the 

governing metric of instability that requires all layers to reach their instability limit before a through-

thickness neck can develop. The effect of a superimposed contact pressure upon the stress state in plane 

strain stretch-bending is derived on continuum level. The fundamentals of general bending mechanics are 

employed to derive plasticity-related equations in stretch-bending. An emphasis is placed upon developing 

a modelling strategy that accommodates compressive stressing of the lower part of the cross-section to 

mimic wrapping of the sheet around the punch at the beginning of the forming process. The analytical-

numerical stretch-bend model is then coupled with the triaxial instability framework of Task 2 and the 

fracture limit identified in Task 3 to predict the instantaneous forming limit under combined triaxial loading. 

To demonstrate applicability to automotive lightweighting, angular stretch-bend tests are conducted and 

utilized along with the stretching-dominated conditions of Task 1 to assess the predictive capability of the 

developed framework.  
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3. Characterization and Prediction of In-plane Forming Limits (Task 1)   

      This chapter focuses on the state-of-the art formability characterization to determine the stretching-

dominated forming limits. Owing to the large punch radius in the Nakazima test (
pr  = 50.8 mm), bending 

effects are mild and the deformation is approximated to in-plane loading (Chen and Fang, 2018). Nakazima 

limit strains are corrected for process effects (non-linear strain path and triaxial stress state), consistent with 

the physical framework of in plane-plane stress loading of the MMFC of Hora et al. (2013). The 

phenomenological stress-mapping criterion of Smith et al. (2003) is employed to correct for contact 

pressure effects by reverse mapping from 3D to 2D stress space. The reason for the reported controversy 

(Matin and Smith, 2005; Allwood and Shouler, 2009; Min et al., 2016; Chen and Fang, 2018) surrounding 

the applicability of the phenomenological mapping criterion has been unclear and is assessed in this study. 

From an experimental perspective, Nakazima tests are preferred and reverse mapping to correct for the 3D 

stress state would provide a means to utilize the corrected limit strains for validation of common instability 

models. In addition, if a robust application window for the mapping criterion can be established, the 

phenomenological instability condition may be extendable to account for combined loading effects. To this 

end, parametric studies of the hardening rate, limit strain detection method, and calibration of the 

constitutive model on the FLC are conducted. In addition to the ISO 12004-2 standard, a refined version of 

the LBF necking detection method of Volk and Hora (2011) is implemented for user-independent 

identification of necking limits with applicability to stretch-bend and V-Bend tests in Chapter 5. The 

calibration of the constitutive model plays a central role in both the pressure corrections and the FLC 

prediction in the MMFC of Hora et al. (2013). Different strategies considering a constrained calibration 

and adoption of a plastic-work based shear conversion technique (Rahmann et al., 2017) to obtain the 

hardening rate to large strains (in excess of diffuse necking in tensile tests) are explored. Special attention 

is devoted to assessing the artefacts of a shift in the predicted FLC0 with selection of the constitutive model 

(Hora et al., 2013; Pham et al., 2018).  

 

The published manuscript can be found in Appendix A in: 

Noder, J.. Butcher, C., (2019a). A comparative investigation into the influence of the constitutive model 

on the prediction of in-plane formability for Nakazima and Marciniak tests, International Journal of 

Mechanical Sciences, 163, 105138, https://doi.org/10.1016/j.ijmecsci.2019.105138. 

 

3.1 Material Selection and Calibration of the Constitutive Model  

      For this study, DP980 steel with its power-law hardening behavior was selected in addition to an 

AA5182-O aluminum alloy with its saturation-type hardening behavior. The different hardening behaviors 

will be shown to have a significant influence on the contact pressure corrections and limit strain predictions. 

The mechanical properties and sheet thicknesses are recorded in Table 1.  
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Table 1: Tensile mechanical properties of the studied alloys. The total elongation is based on a virtual extensometer 

length of 50 mm and that the Lankford parameter (R-value) was fitted over a plastic strain range of 0.01-0.05 and 0.05-

0.15 for the DP980 and the AA5182, respectively.   

 

Yield Stress  

(0.2% offset) 

(MPa) 

Ultimate Tensile 

Stress (MPa) 

Uniform 

Elongation UE 

(%) 

Total 

Elongation 

TE (%) 

R-value 

 

DP980, 1.2 mm, TD  735 (±2) 1065 (±3) 7.8 (±0.2) 13.7 (±0.5) 0.95 (±0.01) 

AA5182, 1.55 mm, RD 146 (±2) 302 (±4) 20.6 (±0.2) 25.7 (±0.5) 0.60 (±0.04) 
 

 

Central to the phenomenological process corrections and analytical FLC prediction is the material 

constitutive response to strain levels associated with the equi-biaxial limit strains. As hydraulic bulge test 

data were not available, four different calibration methodologies were considered to obtain the hardening 

response to strain levels beyond the uniform elongation using tensile and shear tests. The shear and tensile 

test geometries are shown in Figure 15a,b. A refined methodology of the shear conversion technique of 

Rahmaan et al. (2017) was adopted to convert the shear stress-strain response into an equivalent measure 

based upon the integrated plastic work 
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where pd  is the plastic dimensionless shear deformation parameter and 
1d the major plastic strain 

increment. The ratio of the shear-to-tensile stress,  , is identified at the plastic work corresponding to 

diffuse necking in the tensile test. Adoption of the incremental plastic work balance then allows 

computation of the equivalent plastic strain, p

eq .  

 

 
Figure 15: Geometries of test coupons utilized to study the constitutive behavior in tensile tests (a), simple shear tests using 

the geometry of Peirs et al. (2012) (b), and the formability tests (c). Note that the shaded area reflects the clamping area. 

Units are in mm.  

a) b) c)

Width
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Central to the hardening model calibration procedure is the Considère constraint that represents the plastic 

true strain, 
1

UE p − , when diffuse necking occurs in the tensile test and can be computed from the engineering 

strain at uniform elongation, UE , the corresponding stress level, 
UTS , and the Young’s modulus, E  

 

( )1

(1 (%) /100)
ln 1 (%) /100UE p UTS UE

UE
E


 − +

= + −  (2)  

 

Four scenarios were considered for calibration of the phenomenological constitutive model: 

(i)   Tensile data without enforcing the Considère constraint 

(ii)  Tensile data enforcing the Considère constraint 

(iii)  Converted tensile-shear approach while enforcing the Considère constraint 

(iv)  Calibration of an alternative hardening model under the conditions in case (iii)  

 

The four hardening models considered are defined as  

 

Hollomon (1945) 

 
( )

b
p

eqa =  

 

(3) 

  

Hockett-Sherby (1975) 

 
( )( )exp

d
p

eqa a b c  = − − −
  

 

 

(4) 

 

Modified Hockett-Sherby (MHS) 

 
( )( )exp

d
p p

eq eqa a b c f   = − − − +
  

 

 

(5) 

 

Modified Generalized Voce (MGV) 

  
( ) ( )1 expp p

eq eqa b c d   = + + − − −
   

 

(6) 

 

where the calibration coefficients a - f  are specific to the model and are summarized in Table 2.  

 
Table 2: Summary of calibration coefficients of the constitutive models for the selected calibration scenarios.   

   Calibration coefficients  

Material 
Hardening 

model 
Scenario a b c d f UE-p 

DP980 
MHS 

(i) 1149.09 MPa 505.66 MPa 19.06 0.59 0.000 MPa 0.046 

(ii) 987.73 MPa 576.61 MPa 105.76 0.88 600.58 MPa 0.069 

(iii) 1092.54 MPa 615.99 MPa 11.54 0.50 333.25 MPa 0.069 

Hollomon (iv) 1387.51 MPa 0.069 x x x 0.069 

AA5182 
MGV 

(i) 143.28 MPa 128.62 MPa 235.10 MPa 17.77 x 0.201 

(ii) 141.14 MPa 252.22 MPa 0.00 MPa 11.39 x 0.182 

(iii) 134.73 MPa 182.76 MPa 144.09 MPa 16.25 x 0.182 

HS (iv) 138.69 MPa 412.51 MPa 8.24 0.96 x 0.182 

 

As depicted in Figure 16 for the DP980 and Figure 17 for the AA5182, the conventional unconstrained 

calibration – case (i) – inadvertently shifts the equivalent plastic strain when diffuse necking in a tensile 

test occurs from 0.069 to 0.046 for the DP980 and from 0.182 to 0.201 for the AA5182. Enforcing the 
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plastic uniform elongation (UE-p) provides some improvement but fails to capture the post-uniform 

hardening rate. For the DP980, calibration of the constitutive model is straightforward and mostly 

independent of the choice of the hardening model when the experimental hardening rate up to strain levels 

beyond diffuse necking in addition to the UE-p are considered. In contrast, the calibrated hardening rate 

still varies with the choice of constitutive model for the AA5182 even with the constrained calibration. The 

latter is shown to have implications on the process correction and the analytical FLC prediction.  

 

  
Figure 16: Calibrated constitutive model considering different calibration techniques (a) and predicted hardening rate (b) 

for the DP980. Note that calibration of the MHS model reduced to the original HS model when only using tensile data.  

 

  
Figure 17: Calibrated constitutive model considering different calibration techniques (a) and predicted hardening rate (b) 

for the AA5182.  

 

3.2 Characterization of Acute Necking Limits in Nakazima and Marciniak Tests  

      Two limit strain detection methods were considered to identify the formation of an acute neck in the 

Nakazima and Marciniak tests. The methodology documented in the ISO 12004-2 standard served as 

baseline to which a refined version of the time-dependent LBF model (Volk and Hora, 2011) was compared. 

The arbitrary selection of the fitting window of the stable thinning rate was replaced with a more physical 

method. The sheet in the Nakazima test is initially bent as it conforms to the punch curvature that results in 
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a sudden increase in the thinning strain rate at the beginning of the test, as depicted in Figure 18, and needs 

to be excluded from the fitting window. 

 

 
Figure 18: Schematic of the Modified Linear Best Fit (Mod. LBF) Method to identify localization in formability tests, 

representatively shown for loading under uniaxial tension of the DP980 AHSS.  

 

The beginning of the fitting window is determined from large bending theory (see Appendix E1) to obtain 

an analytical approximation of the thickness strain for plane strain bending (   = 0) 

 

2 2
3, 0 3 3, 0

1 1

ln 1 ,       (1 ) ,       ,       
eq

i

p ref i

d Nt t
N

r t d N
 


    

 
= =

    
= − + = + = = =   

       

 (7a-d) 

 

where   refers to the principal in-plane strain ratio and 
iN  to the normal vectors of the yield surface, which 

defines the directions of plastic flow. Since Eq. (7a) is limited to plane strain loading, an extension to 

arbitrary loading was proposed in Eq. (7b) by adoption of a phenomenological scale factor where 
pr  refers 

to the punch radius, t  to the nominal sheet thickness and 
reft  to an arbitrary reference sheet thickness of 1 

mm. The principal in-plane strain ratio is approximated from ten data points in the middle of the test. The 

cut-off strain rate for identification of the stable thinning rate is determined from the Dorn criterion (Dorn 

and Thomsen, 1947) for diffuse necking when the hardening rate reaches a critical value  

 

( )
1 2

1

,      ,      
( ) 1p

eq eq

d
k

d k

  


    
 = =

+
 (8a-c) 

 

where k  represents the ratio of the major stress to the equivalent stress and   the principal in-plane stress 

ratio. It is noted that simple approximations of the plasticity model, e.g. adoption of the isotropic von Mises 

plasticity model can be selected to help with the identification of the fitting windows for homogeneous 

deformation.  
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      Nakazima and Marciniak tests were performed according to the ISO 12004-2 standard. Schematics of 

the tool dimensions are provided in Figure 20a,b. Eight different strain paths were studied in the Nakazima 

tests and five and six different loading conditions were explored in the Marciniak tests for the DP980 and 

the AA5182, respectively. The dogbone specimen in Figure 15c was adopted and the width was varied 

from 25.4 mm to 203.2 mm to obtain different strain paths. A carrier blank – washer with center hole – was 

adopted in the Marciniak tests to inhibit fracture along the punch radius and promote uniform stretching of 

the sheet metal. The formability study was conducted under quasi-static conditions by selecting a punch 

velocity of 0.25 mm/s. To promote fracture at the dome apex, a combination of multiple Teflon sheets and 

Vaseline was employed. Full-field stereoscopic strain measurements were obtained using DIC with a virtual 

strain gage length (VSGL) of approximately 0.5 mm (image resolution of 0.0892 pixel/mm x strain filter 

of 5 x step size of 1 pixel).  

 

 
Figure 19: Geometric dimensions of die sets utilized in the formability tests. All units are in mm.  

 

The strain paths in Figure 20 and Figure 21 were extracted from a 0.5 mm radius inspector tool and for 

analysis of the limit strains, five line slices perpendicular to the crack location were extracted following the 

ISO 12004-2 standard. Note that unless otherwise mentioned, a single layer of shims with a height of 1.4 

mm were utilized for biaxial strain paths to reduce lockbead penetration and prevent material fracture along 

the lockbead. For the DP980, both limit strain detection methods are in good agreement on the draw side 

of the FLC and around plane strain tension whereas larger limit strains were identified by the ISO 12004-2 

method on the stretch side, particularly for biaxial stretching. Greater deviations are apparent for the 

AA5182 where the presence of PLC effect (Portevin and Le Chatelier, 1923) impaired the inverse parabola 

fit in the ISO 12004-2 method. Overall, the strain path in the Nakazima test is non-linear compared to the 

Marciniak tests, which is a direct consequence of the boundary conditions in the specific test method. The 

initial equi-biaixal pre-strain as a consequence of the punch geometry in the Nakazima test and the resulting 
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shift in the FLC0 is manifested in the experimental data of both the AA5182 and the DP980 and was 

corrected for in the next section, Section 3.3.  

 

  
Figure 20: Strain path with overlaid limit strain for the DP980 obtained in the Nakazima (a) and Marciniak tests (b) 

considering different limit strain detection methods. Note that the number above the strain path corresponds to the width 

of the dogbone specimen.  

 

  
Figure 21: Strain path with overlaid limit strain for the AA5182 obtained in the Nakazima (a) and Marciniak tests (b) 

considering different limit strain detection methods. Note that the number above the strain path corresponds to the width 

of the dogbone specimen.  

 

3.3 Effect of Constitutive Model on Process Corrections  

      Analytical formability models based upon plane stress are only in agreement with the boundary 

conditions in Marciniak tests. Thus, the process corrections outlined in Min et al. (2016) were employed to 

correct the limit strains in the Nakazima tests for non-linear strain path and contact pressure effects. The 

material was idealized as rigid-plastic such that elastic strains were neglected and the DIC strain history at 

the necking location was utilized. Owing to the large Nakazima punch radius and the studied sheet 

thicknesses of 1.2 and 1.55 mm, bending effects were neglected. Similarly, crowning in the Marciniak tests 

was not considered. The concave sheet surface, which is in contact with the hemispherical Nakazima punch, 

was considered as the critical layer since it exhibits the highest necking limit due to a compressive contact 
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stress that delays plastic instability. A triaxial stress state prevails on the concave layer while plane stress 

is maintained on the convex specimen side where DIC strains were measured. Min et al. (2016) proposed 

a novel methodology that can adopt a plane stress yield function for the inner layer of the material, which 

is in a 3D stress state, by defining an effective plane stress state. This method was employed in the published 

manuscript but for coherence with the overall structure of this thesis, the equations are expressed in the 

general form. 

The equivalent plastic strain was integrated using the incremental plastic work balance and volume 

constancy  

 

  3
1

1

:
( , ) 1 (1 ) ,       p p i i

eq eqd k d
  

        
 

= = = + − + =   (9a,b) 

 

where the strain ratio   is readily obtained from the measured DIC strains and   and k  are defined in Eq. 

(8b,c), respectively. The through-thickness stress ratio is defined through  , for which Min et al. (2016) 

provided an analytical solution   

 

 0 1

p,1 p,2 p,2 p,1

1 1 ,        exp (1 )
2 2

t t t t
t t

r r r r
   

   
= − + − + = − +      

   

 (10a,b) 

 

where the variables p,1r  and p,2r  correspond to the punch radii of the major and minor curvature and were 

set to 50.8 mm for the Nakazima punch. It is noted that the expression in Eq. (10a) has not been validated 

in FE analysis and was derived from a simplified analysis of force equilibrium using the average in-plane 

stress over the cross-section and neglecting the through-thickness distribution of the contact pressure. Sheet 

thinning is computed in Eq. (10b) adopting volume conservation of a rectangular element. The linearized 

principal in-plane strains, i , are then readily obtained using the integrated equivalent plastic strain in Eq. 

(9a) and the experimental in-plane strain ratio at necking such that  

 

 1 2 1,       
( , ) 1 (1 )

p
eq

k


  

    
= =

+ − +
 (11a,b) 

 

      As depicted in Figure 22a for the DP980 and in Figure 23a for the AA5182, the non-linear strain path 

corrections are minor for the Marciniak limit strains since the biaxial wrapping of the sheet around the 

hemispherical punch in the Nakazima test is avoided. In contrast, the linearized limit strains of the 

Nakazima tests depicted in Figure 22b for the DP980 and in Figure 23b for the AA5182 are shifted up and 

to the left by about 0.01 to 0.02 major strain. Larger corrections are noted for the limit strains identified 
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with the ISO 12004-2 method on the stretch side of the FLC for which selective limit strains are shifted 

towards plane strain suggesting that the limit strains for these cases are likely too high. The instantaneous 

strain path at the necking limit rapidly converges towards plane strain tension and the non-linear strain path 

correction markedly reduces the minor strain as a result.  

 

  
Figure 22: Correction of the Marciniak (a) and Nakazima (b) limit strains of the DP980 AHSS for non-linear strain path 

(NLSP) effects considering the ISO 12004-2 and the Mod. LBF limit strain detection method.   

 

  
Figure 23: Correction of the Marciniak (a) and Nakazima (b) limit strains of the AA5182 for non-linear strain path (NLSP) 

effects considering the ISO 12004-2 and the Mod. LBF limit strain detection method.   

 

      Next, the limit strains in the Nakazima tests were corrected for a compressive through-thickness stress 

to enable comparison to Marciniak limit strains. The pressure corrections adopted by Min et al. (2016) are 

equivalent to the phenomenological mapping criterion of Smith et al. (2003) with the inherent assumption 

that plastic instability is independent of the stress state. The limit strains obtained under a triaxial stress 

state were mapped into plane stress space by keeping the principal in-plane stress ratio and the principal 

major stress constant. Thus, the equivalent stress under plane stress loading, 
2 ( )D

eq  , is readily computed 

and the equivalent strain, ,2p D

eq , is obtained by inversion of the hardening model  
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where the strain components are obtained from the flow rule and the incremental plastic work balance. The 

equivalent stress in Eq. (12a) is computed from the von Mises yield function for the DP980 and the Hosford 

yield function for face centered cubic (FCC) materials for the AA5182. The choice of yield function was 

shown to play a secondary role in the study of Min et al. (2016). The effect of the contact pressure correction 

on the Nakazima limit strains is visualized in Figure 24.  

 

  
Figure 24: Correction of the non-linear strain path (NLSP) corrected Nakazima limit strains for pressure (P) effects for the 

DP980 (a) and the AA5182 (b). The MHS and the MGV model both calibrated to experimental strain levels beyond 0.5 

equivalent strain were adopted for the DP980 and the AA5182, respectively.  

 

Overall, removing the pressure effect reduces the forming limits and shifts them towards the draw side. 

This result is expected given that tool contact pressure delays the onset of instability. The pressure 

correction had the largest influence in biaxial loading; the major strains were reduced by 0.03-0.06 on the 

draw side versus a reduction of 0.05-0.09 on the stretch side of the FLC. The reasoning for increased 

pressure corrections for biaxial loading lies in the higher equivalent strains, which is attributed to the 

reduced hardening capacity of the material. The AA5182 with its saturation-type hardening behavior has a 

low hardening rate at strain levels associated with the observed biaxial limit strains such that the stress-

based mapping procedure predicts a larger influence of the contact pressure.   

 

      To better highlight the explicit dependence of the stress-based mapping criterion on the material 

hardening rate, Eq. (12a) was inverted for a power law hardening model (see Appendix E2) to arrive at the 

ratio of the major principal strains between proportional plane stress and triaxial stressing   
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where superscripts 2D and 3D refer to the quantities in the respective stress state. Particularly for a rigid 

perfectly plastic material (hardening exponent n = 0), an infinitesimally non-zero contact stress predicts an 

infinite increase in formability. As a result, the projected limit strain corrections, or formability gains 

between 2D and 3D stress states, can be extremely sensitive to the hardening rate with stark changes in the 

limit strains at large contact pressures or for low hardening as visualized in Figure 25. The DP980 is less 

sensitive to the selected hardening model when calibrated to strain levels representative of biaxial limit 

strains in addition to enforcing the UE-p constraint. Similar trends apply to the AA5182 alloy but deviations 

are more pronounced for biaxial loading even though the constitutive models were calibrated to 0.5 

equivalent plastic strain and reflect the plastic uniform elongation. The importance of the hardening model 

and its correct calibration is exacerbated for the DP980 AHSS. Adoption of the MHS model, which 

simplified to the HS model when only using tensile data, erroneously predicts saturation of the hardening 

capacity after the uniform elongation as shown in Figure 16b. This leads to a stark overcorrection of the 

contact pressure on the experimental limit strains.  

 

  
Figure 25: Influence of the choice of constitutive model and calibration technique on the phenomenological mapping 

criterion to correct the Nakazima limit strains of the DP980 (a) and AA5182 (b) for contact pressure (P) effects.  

 

3.4 Prediction of the Plane-Stress FLC 

      The MMFC of Hora et al. (2013) determines stable deformation from the following condition  
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where d  represents the increment in the principal in-plane strain ratio during acute localization until a 

state of plane strain tension is reached. The functional form of d  in the model of Hora et al. (2013) is 

phenomenologically derived from the experimental observation of an approximately constant load in a 

tensile test even for deformation beyond diffuse necking. This assumption is revisited in Chapter 4 from a 

physical consideration and shown to be one of two possible scenarios for a quasi-stable localization process.  

 

In analogy to the process corrections, the sensitivity of the calibration technique of the constitutive model 

was also studied for the limit strain predictions using the MMFC. The yield function – von Mises and 

Hosford FCC for the DP980 and AA5182, respectively – was maintained constant. As depicted in Figure 

26, the conventional calibration technique without enforcing the plastic uniform elongation resulted in an 

inadvertent shift of the plane strain limit strain by approximately 0.03 and 0.02 for the DP980 and the 

AA5182, respectively. Since limit strains in the MMFC are based upon the maximum load in plane strain 

loading, diffuse and acute necking limits are identical for a strain-rate independent material. As a result, 

enforcing the UE-p constraint in the calibration of the constitutive model mitigates artefacts in the predicted 

FLC0 as demonstrated for the calibration scenarios (ii)-(iv). The DP980 is less sensitive to the choice of the 

constitutive model as long as it is calibrated to strain levels beyond diffuse necking, e.g. by consideration 

of shear or bulge data, and the plastic uniform elongation is enforced. In contrast to the DP980, limit strain 

predictions on the stretch side of the FLC for the AA5182 strongly vary with the selected hardening model 

even when calibrated to experimental strain data beyond 0.5 equivalent plastic strain.  

 

  
Figure 26: Effect of the choice of constitutive model and calibration technique on the predicted in plane-plane stress limit 

strains using the MMFC of Hora et al. (2013) for the DP980 AHSS (a) and the AA5182 alloy (b).  

 

      In agreement with the physical framework of the MMFC, the process-corrected Nakazima and 

Marciniak limit strains are adopted to assess correlations in Figure 27. It is emphasized that wrong 

conclusions may be drawn by comparing the predictions of analytical models or by calibration of the 

formability models to implicitly account for the process effects in the Nakazima FLC. Model predictions 
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for the DP980 are in excellent agreement with the corrected limit strains for in-plane deformation. In 

contrast, limit strain predictions for the studied AA5182 overestimate the experimental limit strains for in-

plane stretching and the Marciniak FLC is still lower than the corrected Nakazima limit strains. Relative to 

the DP980, the AA5182 was shown to be more sensitive to the selection of the constitutive model in 

addition to complications surrounding the presence of PLC effects, which promoted asymmetric strain 

distribution and complicated identification of the limit strain. In addition, the negative strain rate sensitivity 

of the AA5182, as reported by Rahmaan et al. (2015), may lead to an acceleration of the localization process 

that was not considered in the MMFC implementation. Thus, limit strain predictions for the AA5182 should 

be considered as an upper limit since it is based upon localization when the strain path has reached plane 

strain tension. The MMFC predictions are in better agreement with the limit strains obtained from the ISO 

12004-2 method, particularly around plane strain tension (major principal strain of 0.16 versus predicted 

0.17).  

 

  
Figure 27: Comparison of the analytical FLC prediction using the MMFC of Hora et al. (2013) with the process-corrected 

limit strains for the DP980 (a) and the AA5182 (a).  

 

3.5 Application of the MMFC to a Broader Class of Automotive Steels 

      The applicability of the MMFC (Hora et al., 2013) to other classes of AHSS was critically assessed by 

consideration of the steel grades summarized in Table 3. It is noted that the experimental data for the 

MP980 was retrieved from the study of Min et al. (2016) that considered two different punch sizes (
pr  of 

Nakazima I: 25.4 mm and Nakazima II: 50.8 mm). The 3rd Gen 980 and 3rd Gen 1180 V1 were 

characterized in Gutierrez et al. (2020) and the 3rd Gen 1180 V2 in Noder et al. (2021b) employing the 

same experimental procedures and techniques as discussed in this chapter.  
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Table 3: Tensile mechanical properties of AHSS grades obtained from the literature. Note that the MP980 was retrieved 

from the study of Min et al. (2016) and the 3rd Gen 980 and 1180 V1 in Gutierrez et al. (2020). Note that RD and TD 

refer to the sheet rolling and transverse direction, respectively.  

 

Yield Stress  

(0.2% offset) 

(MPa) 

Ultimate Tensile 

Stress (MPa) 

Uniform 

Elongation UE 

(%) 

Total 

Elongation 

TE (%) 

R-value 

 

MP980, 1.2 mm, RD NA NA NA NA 0.84 

3rd Gen 980, 1.4 mm, TD 681 (±2) 1034 (±10) 18 (±0.5) 24.9 (±0.6) 0.90 (±0.00) 

3rd Gen 1180 V1, 1.4 mm, TD 950 (±12) 1251 (±8) 8.4 (±0.2) 14.1 (±0.6) 0.90 (±0.01) 

3rd Gen 1180 V2, 1.4 mm, TD 1043 (±4) 1225 (±8) 10.7 (±0.4) 16.4 (±0.3) 0.89 (±0.00) 
 

 

For consistency with the experimental limit strains, which were corrected for non-linear strain path effects, 

the predicted forming limits were corrected using a linearized MMFC (Gutierrez et al., 2020). The 

equivalent plastic strain is integrated using the incremental plastic work balance in Eq. (9a) for plane stress 

loading (   = 0) and the in-plane strain and stress ratio at diffuse necking, diff  and diff , are employed to 

linearize the principal in-plane strains  

 

( )( )1 2 1,       
1

p
eqMMFC MMFC diff MMFC

diff diff diffk


   

  
= =

+
 (15a,b) 

 

Figure 28 demonstrates the capability of the MMFC framework to accurately predict the in-plane forming 

limits for conventional AHSS and the new class of 3rd Gen AHSS. It is noted that the predicted FLC0 is in 

good agreement with the experiments for all tested steel grades and is a direct consequence of the plastic 

uniform elongation enforced in the calibration of the constitutive model. The Marciniak limit strains for the 

MP980 appear somewhat higher around plane strain tension that may be a result of the curvature-based 

detection method. Strain-rate sensitivity can delay the formation of a neck to higher strains before an 

appreciable change in the curvature can be detected whereas the theoretical FLC0 is for the onset of diffuse 

necking under quasi-static conditions. Overall, the difference in the MMFC variants is largest on the stretch 

side of the FLC where non-linear strain path effects are most prominent. The MMFC of Hora et al. (2013) 

can be seen as an upper limit whereas the linearized variant better captures the overall trend of the in-plane 

formability. Overall, the global formability of the studied 3rd Gen 1180 AHSS steel grades is similar and 

only marginally better than a DP1180 steel (Noder et al., 2021b) whereas the local formability in Chapter 

5 will be shown to vary significantly. In contrast, the superior performance of the studied 3rd Gen 980 

AHSS relative to the DP980 and the MP980 steels exemplifies the potential of 3rd Gen steels for automotive 

lightweight applications. 
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Figure 28: Comparison of analytical forming limit predictions using the MMFC of Hora et al. (2013) and the linearized 

MMFC of Gutierrez et al. (2020) to experimental limit strains in process-corrected Nakazima and Marciniak tests for the 

DP980 (a), MP980 (b), 3rd Gen 980 (c), 3rd Gen 1180 V1 (d), and the 3rd Gen 1180 V2 (e). 

 

3.6 Discussion of In-Plane Formability       

      This study provided a robust and mechanistic framework to predict the in plane-plane stress forming 

limit curve for AHSS. The shortcomings of a drifting FLC0 in the MMFC of Hora et al. (2013) was 

mitigated by adoption of a constrained calibration of the constitutive model to enforce the plastic uniform 

elongation identified in the tensile test. Thus, the introduction of additional material constants upon 

calibration of the MMFC, as proposed by Paraianu et al. (2010), was not required in the present study. In a 

rate-sensitive material, the Considère criterion would be enforced using the strain rates consistent with the 

formability tests. Accurate calibration of the constitutive model at strain levels associated with biaxial limit 

strains is crucial for the accurate prediction of the limit strains. In stark contrast to the DP980, the AA5182 

with its saturation-type hardening behavior was very sensitive to the choice of the hardening model even 

when utilizing a constrained calibration and hardening data available to strain levels beyond diffuse necking 

in a tensile test.  

From an academic perspective, Marciniak limit strains are preferred since they are consistent with the 

physical framework of plane stress loading, inherent to the vast majority of instability models in the 

literature. The strain path in Marciniak tests is approximately linear such that the value added by the non-

linear strain path analysis and error associated with the choice of a yield function and constitutive model to 

integrate the equivalent plastic strain does not appear to be warranted. The Marciniak limit strains can be 

used directly. By contrast, non-linear strain path and pressure effects in the Nakazima tests cannot be 
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neglected. Erroneous conclusions may be drawn when the formability predictions are compared against an 

uncorrected Nakazima FLC. Unfortunately, correcting the Nakazima limit strains for process effects by 

linearization of the strain path and constant stress mapping were found to be very sensitive to the limit strain 

detection method and the material hardening rate. Selective limit strains identified from the ISO 12004-2 

method experienced a stark shift towards plane strain tension suggesting that the limit strains were likely 

too high. A refined version of the LBF Method of Volk and Hora (2011) was employed as an alternative 

detection method. The fitting window for the stable strain rate was determined from physical considerations 

and is readily amenable to angular stretch-bend and V-Bend tests in Chapter 5. Limit strains of the two 

detection methods were in close agreement for the DP980 whereas larger deviations were found for the 

AA5182 due to challenges with multiple necking zones, asymmetric strain distribution, and PLC effect. 

The stress-based mapping to account for the contact pressure was found to be problematic for materials that 

exhibit a saturation-type hardening behavior similar to a perfectly plastic material for which an infinite 

formability gain is predicted for infinitesimally small non-zero contact pressures.  
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4. Prediction of In-Plane Forming Limits under 3D Stress States (Task 2) 

      The MMFC of Hora et al. (2013) and the linearized variant of Gutierrez et al. (2020) demonstrated 

excellent predictive capability for AHSS but the limitation to plane stress loading is problematic since tool 

contact pressure is neglected. In addition, the diffuse localization process to form an acute neck was 

proposed from experimental observations rather than physical considerations. Similarly, the 

phenomenological stress-mapping was found to be potentially problematic given its predictions for low-

hardening materials. It remains uncertain whether the stress-mapping has any physical underpinning due to 

the lack of an analytical framework to compare against. To these ends, the effect of a compressive tool 

contact stress on plastic instability was studied on a physical basis adopting the Hillier (1963) general 

instability framework. First, the derivation of the Hillier (1963) framework is reviewed as part of this study 

to assess the underlying assumption of commonly adopted 2D instability models of Considère (1885), Swift 

(1952), Dorn (Dorn and Thomsen, 1947), and Zener-Holllomon (1944). To provide insight into the 

seemingly contradictive formability gains reported for the 3D MK framework between a constant contact 

pressure (Assempour et al., 2010, Zhang et al., 2014; Lang et al., 2015) and a proportionally evolving 

normal pressure (Allwood and Shouler, 2009; Mirfalah-Nasiri et al., 2016), closed-form solutions for the 

respective boundary conditions are derived from the Hillier framework. These closed-form solutions also 

serve to critically assess the validity of the predicted formability gains in the plane strain limit strain 

utilizing the phenomenological mapping criteria. The methods of Smith et al. (2003) and Matin and Smith 

(2005) only remove the effect of the stress incurred due to contact pressure whereas removing the plastic 

work appears more physically-motivated and is explored as part of this study.    

 

The restriction of the Hillier (1963) framework to the onset of instability has hindered its adoption as the 

limit strains at the end of the diffuse necking, when an acute neck has formed, are relevant for industrial 

forming operation. The mechanics of the diffuse localization process in terms of a quasi-stable transition 

of the stress state under a vanishing second order plastic work rate can be derived from Hillier stability and 

assessed by careful analysis of the diffuse necking process in tensile tests of AHSS. In fact, it is shown that 

the MMFC (Hora et al., 2013) is physically motivated and only one special case of the general framework 

proposed in this research. Application to formability tests and forming operations requires identification of 

the local boundary conditions of the deformation history. To this end, formability predictions under 

different boundary conditions are contrasted with the Marciniak and (uncorrected) Nakazima limit strains 

for the DP980 of Chapter 3.   

 

The prepared manuscript can be found in Appendix B in: 

Noder, J., Butcher, C. A General Instability Framework for Ductile Metals in Complex Stress States from 

Diffuse to Acute Localization, to be submitted, May 2022. 
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4.1 Fundamentals 

      Hillier (1963) derived the onset of plastic instability for a rigid-plastic material that adheres to associated 

plasticity from a bifurcation in the stress path that he later derived from an energy consideration (1974). 

Instability occurs when the second order plastic work rate is exactly zero  

 

( ) ( ) 0   where 0p
i i i i i

V A

dW d d dV dFdu dA du  = =    
(16) 

 

where 
idu  corresponds to the vector of applied displacement increments and 

idF  to the load increments. It 

is noted that Eq. (16) is equivalent to the condition of neutral incremental stability in Drucker’s postulate 

(1951) and Hill’s incremental stability for a rigid-plastic material (1950). Hillier adopted plastic work 

equivalence to express p

ij ij eq eqd d d d   =  and re-casted the instability condition of Eq. (16) in terms of 

instantaneous tangents to the generalized equivalent stress and a critical subtangent, z  
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which is governed by the plasticity model and the applied boundary conditions. For triaxial loading, Eq. 

(17a) is compactly written as   
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N N
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 
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    = =

 
= = +   

  (18) 

  

where tensor summation rules are suspended for Greek suffixes. The variable   corresponds to the material 

flow stress, 
eq  to the equivalent stress, A  to the area upon which the loads, F , are applied and N  to 

the normal vector. The term on the left-hand side of Eq. (18) represents the equivalent material response in 

terms of the equivalent stress and hardening rate caused by the applied tractions and change in the area on 

the right-hand side. Deformation becomes unstable when the critical subtangent, visualized in Figure 29, 

intersects the material hardening curve. The larger the value of the critical subtangent, the higher is the 

strain for diffuse necking.        
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Figure 29: Schematic illustration of instability at the intersection of the critical subtangent with the material hardening 

curve.  

 

The onset of instability is governed by the material response to the load rates. Hillier (1963) postulated that 

instability occurs when all applied load rates reach a maximum simultaneously or when one or more loads 

attain a maximum while the other(s) are constant or non-existent. The assumption of vanishing load rates 

for instability to occur is not required but convenient for analytical modelling since knowledge of the load 

rates is seldom known a priori unless in simple loading cases such as uniaxial stretching. In the scope of 

this study, the assumption of vanishing load rates is employed and further discussed in Section 4.4.  

 

4.2 Effect of Boundary Condition on Diffuse Necking 

      To establish an understanding for how plastic instability is affected by the local boundary conditions of 

the deformation process, analytical solutions were derived from the general Hillier (1963) framework 

considering different loading scenarios. The von Mises (vM) yield function was selected to enable compact 

closed-form solutions. The flow stress and hardening rate are described through the Swift hardening model 
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with K  = 500 MPa, 
0  = 0.002, and n  = 0.1 

 

4.2.1 Instability under Plane Stress Loading  

      First, commonly adopted plane stress instability criteria were derived. Prior to Swift (1952), Dorn and 

Thomsen (1947) applied the Considère (1885) solution for uniaxial tension to arbitrary stress states. 

Instability occurs when the principal hardening rate is equal to the major principal stress  
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which is re-casted into the critical subtangent of Hillier in Eq. (20b). Assuming plane stress proportional 

loading, the critical subtangent in Eq. (18) reduces to  
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( ) ( ),       constantk N N N N
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where   evolves with deformation to maintain proportionality of the loads. Details on the derivation are 

provided in Appendix E3. Although Eq. (21a) appears identical to the Dorn solution in Eq. (20b), it differs 

by the in-plane stress ratio that is taken as constant in Dorn but evolves in proportional loading. The Dorn 

model can be viewed as corresponding to approximately proportional loading conditions if the strain levels 

are sufficiently small to neglect geometric changes. To derive the Dorn solution under proportional 

stressing when the major load reaches a maximum, the critical subtangent is 
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 (22) 

where a non-zero load rate of the following form must exist to obtain neutral stability  
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which has a strong coupling with the stress ratio. Although the load rate in Eq. (23) is mathematically 

admissible, it appears unrealistic for such a specific load path to occur in formability characterization tests 

such as Nakazima or Marciniak tests. The Dorn solution based upon the extension of the Considère model 

appears to have a tenuous physical foundation for proportional stressing but can be viewed as a first-order 

estimate for proportional loading.    

 

      The instability model of Swift (1952) follows from Eq. (22) by assuming a vanishing minor load rate, 

/ p

eqF    = 0, that further simplifies to the Considère (1885) criterion for a vanishing in-plane stress ratio 

(  = 0). Additional conditions were explored by superimposing in-plane shear stresses that can be seen as 

an extension of the Swift (1952) model to shear loading in Eq. (27a,b). The Zener-Hollomon (1944) 

criterion follows for the limiting case of pure shear loading (
11 22 = − ) or simples shear (

12 11  ) in 

Eq. (28a,b) where the critical subtangent vanishes and instability in shear can only occur when the material 
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hardening rate becomes negative. Equations for the critical subtangent and closed-form solutions for von 

Mises plasticity are summarized in Table 4 and visualized in Figure 30. Even under plane stress conditions, 

instability in proportional stressing creates not a single curve but a surface based upon the composition of 

the stress state. A superimposed shear delays localization as discussed in Butcher and Abedini (2019a) in 

the context of tension-torsion tests. The typical S-shaped curve of the Swift model (1952) only correlates 

with the instability model of Dorn and Thomsen (1947) for strain paths of uniaxial tension (UT), plane 

strain tension (PST), and biaxial tension (BT).  

 
Table 4: Summary of critical subtangent derived for the respective instability criterion for plane stress loading.  

Instability criteria Critical subtangent and corresponding von Mises (vM) form Eq. 
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Figure 30: Comparison of predicted diffuse necking limits considering different instability criteria under plane stress 

loading in component strain space (a) and equivalent strain space (b). 

 

4.2.2 Instability under Principal Triaxial Loading  

     Tool contact during forming produces compressive through-thickness normal and shear stresses. Since 

shear stresses were reported to be an order of magnitude lower than the normal pressure due to lubrication 

(Bettaieb and Abed-Meraim, 2017), the effect of shear stresses upon plastic stability in the presence of 

contact pressure was not considered in this study. To assess the effect of the boundary conditions upon a 

compressive normal stress, the following three loading scenarios were considered and are visualized in 

Figure 31. The critical subtangent is presented in general form and simplified to von Mises plasticity.  

 

Case #1: Proportional triaxial stressing (P. Stress) 

      The material is proportionally stressed in- and out-of-plane and can be seen as an extension of the Swift 

(1952) instability model from 2D to 3D loading. The applied loads are controlled independently to maintain 

the target in-plane,  , and through-thickness stress ratio,  .This loading scenario can be envisioned as an 

upgraded version of the servo-controlled biaxial tensile frame in the study of Kuwabara et al. (1998). In 

addition to the in-plane actuators, which are PID (proportional-integral-derivative) stress-controlled, a third 

actuator employs out-of-plane loading. The critical subtangent is 
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where k ,  , and   are defined in Eq. (8b), (8c) and (9b), respectively and   corresponds to the principal 

through-thickness strain ratio.  

 

Case #2: Non-proportional triaxial stressing with a constant normal load (NP., F3 const.)  

      In analogy to Case #1, the in-plane loads are controlled independently to maintain proportional in-plane 

stressing whereas a constant normal load (
3 0dF = ), in the form of a dead weight, is applied in the sheet 

normal direction. This is akin to a forming operation involving biaxial in-plane stretching under a constant 

binder load. During deformation, the contact area increases and since the normal load is assumed to be 

constant, the contact pressure decreases and introduces a non-linear strain path. The critical subtangent is 
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where the evolving through-thickness stress ratio,  , is expressed in terms of the initial compressive pre-

stress, 
3,0 , defined with respect to the material yield stress, 

y , an initial through-thickness stress ratio, 

0 ,  and the instantaneous contact area obtained from volume conservation.  

 

Case #3: Non-Proportional triaxial stressing with a constant normal pressure (NP., P3 const.) 

      The boundary conditions for the in-plane loads are identical to the preceding cases but the normal load 

is adjusted to maintain a constant magnitude of the normal pressure, as common in the MK analysis 

(Assempour et al., 2010, Hashemi and Abrinia, 2014; Erfanian and Hashemi, 2018; Nurcheshmeh and 

Green, 2012; Zhang et al., 2014; Lang et al., 2015). These boundary conditions are equivalent to a forming 

operation of equi-biaxial stretching in the sheet plane with an adjustable binder load. For a strain-hardening 

material the contact stress ratio decreases as the major stress increases. The critical subtangent is  
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where the evolving through-thickness stress ratio,  , is computed from the initial contact pressure and the 

current major stress. 

 

 
Figure 31: Schematic of prescribed boundary conditions for the studied loading scenarios of proportional stressing (a) and 

non-proportional stressing with a constant binder load (b) or a constant contact pressure (c). Note that the schematic of the 

cruciform specimen is retrieved from Montalvão and Wren (2017). 

 

The effect of an initial through-thickness stress ratio of 
0  = -0.2 and the applied boundary conditions upon 

plastic instability are evaluated for the discussed loading scenarios in Figure 32.  

 

  
Figure 32: Effect of compressive normal stress and applied boundary conditions upon diffuse necking in triaxial loading 

relative to a plane stress state shown for component strains (a) and equivalent plastic strain (b). Note that P. refers to 

proportional and NP. to non-proportional stressing. The normal load and normal pressure are abbreviated with F3 and P3, 

respectively. 

 

Relative to plane stress loading, the presence of a normal pressure leads to a delay in diffuse necking for 

all considered scenarios whereas the magnitude of the formability gain is governed by the boundary 

condition of how the out-of-plane pressure is applied. The largest formability gains are predicted when the 

contact pressure evolves proportionally with the major in-plane stress (proportional stressing) in which the 

increase in the limit strains is magnified for biaxial strain paths. Instead, if the compressive normal load is 

maintained constant, the instability curve is still increased relative to plane stress loading but the formability 

gains are lower than for proportional stressing. The decrease in the through-thickness stress ratio from an 

initial value of -0.2 to an average final value of -0.11 to maintain a constant normal load accelerates the 
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process to reach instability. For a constant contact pressure, the principal through-thickness stress ratio also 

decreases (from -0.2 to an average value of -0.13) but the contact pressure provides less stabilization since 

it is only embedded as a secondary effect via the constitutive model (compare Eq. (29a), (30a) versus Eq. 

(31a)). The shift in the instability strains manifest as an approximately constant offset across stress states 

and confirms the findings reported for the MK framework that commonly adopt a constant contact pressure 

(Abrinia, 2014; Erfanian and Hashemi, 2018; Nurcheshmeh and Green, 2012; Zhang et al., 2014; Lang et 

al., 2015). An advantage of the present work is that unlike the numerical MK framework, closed form 

analytical solutions for the influence of the boundary condition can be obtained using the Hillier framework.  

 

The conventional representation of the instability limits in the form of a curve should be replaced with 

instability surfaces. The choice of surface depends upon the instantaneous boundary conditions and 

composition of the stress state as shown in Figure 33. Even in plane stress, the influence of the 

superimposed shear stress delays the onset of instability that is excluded in the current literature, which is 

focused on the major and minor stress in the absence of shear. The Hillier framework can readily be used 

to consider out-of-plane shear and other combined loading scenarios.  

 

  

  
Figure 33: Surfaces that demonstrate the instantaneous nature of plastic instability considering the effect of shear and a 

through-thickness normal pressure for proportional triaxial stressing (P. Stress) and non-proportional stressing assuming 

a constant normal load (NP, F3 const.) or normal pressure (NP., P3 const.).  
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4.3 Evaluation of Mapping Criteria for Influence of Contact Pressure on Instability  

      The analytical solutions derived in the preceding section were utilized to evaluate the validity of 

phenomenological mapping criteria. To enable a discussion of formability in terms of the acute limit strains, 

only plane strain loading was considered since the diffuse and acute necking strains are identical for a strain-

rate independent material. Loading of a wide plate in the principal 1-3 plane is assumed such that one load 

is applied in the primary loading direction to stretch the material in-plane and a second load acts normal to 

the sheet thickness to mimic tool contact. In the absence of the normal load – in the 2D stress space – the 

wide sheet is under plane strain tension due to in-plane stretching in the principal 1-direction. Both load 

rates are assumed to vanish at the instant of instability. The formability gain in the FLC0 in the 

phenomenological mapping criteria is obtained by mapping from 2D to 3D stress space. It is emphasized 

that plane strain tension under a triaxial stress state is preserved as a natural consequence of mapping under 

a constant in-plane strain ratio, since similar to the stress-controlled implementation of the analytical 

solutions, the in-plane stress-ratio evolves with  . In contrast, mapping under a constant in-plane stress 

ratio inevitably induces a shift of the strain path to positive minor strains since the constant in-plane stress 

ratio does not reflect the constant strain path of plane strain tension as visualized in Figure 34. While it is 

true that an imposed contact pressure will induce a measure of biaxial straining for a pressure independent 

material, the applied stress state in the problem has been designed to produce plane strain. Thus, the 

predicted biaxial shift of the limit strains is erroneous as it violates the strain path imposed by discarding 

the through-thickness stress. 

 

 
Figure 34: Shift of the plane strain limit strain (FLC0) to positive minor strains for increasing through-thickness stress 

ratios considering mapping under a constant principal in-plane stress ratio and the restored linear strain path when using 

the analytical Hillier solution for proportional stressing. 
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Variables related to the stress state in this section are highlighted with a 2D or 3D superscript to clarify 

whether they depend upon the plane stress or triaxial stress state, respectively. Analytical solutions for the 

critical subtangent and the formability increase in plane strain loading are summarized in Table 5. 

Equivalent solutions to Eq. (34b) for the formability gain in non-proportional stressing with a constant 

contact pressure have been derived by Gotoh et al. (1995) using an extension of the Swift (1952) analysis 

by means of virtual work. Bettaieb and Abed-Meraim (2017) arrived at the same solution by conducting a 

bifurcation analysis of the acoustic tensor. Interestingly, for the analytical solutions, the formability gains 

relative to plane stress loading are only dependent upon the applied principal through-thickness stress ratio 

and not the material constitutive behavior. Thus, the plane strain formability increase for an alloy with a 

low or high hardening rate will be identical, which is in strong contrast to the stress-based 

phenomenological mapping criteria summarized in Table 6.  

 
Table 5: Summary of critical subtangent and projected formability gain in FLC0 with respect to plane stress loading for 

von Mises plasticity and the Swift hardening model.  
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Table 6: Summary of formability gain  in FLC0 with respect to plane stress loading in the phenomenological mapping 

criteria for von Mises plasticity and the Swift hardening model. 
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Mapping of the plane stress limit strains into triaxial stress space under the assumption of a constant 

principal in-plane stress ratio and a constant major principal stress by Smith et al. (2003) was adopted in 

Section 3.3 and is summarized in Eq. (35). The alternative approach of maintaining a constant in-plane 

strain ratio and a constant major stress (Matin and Smith, 2005) was studied in Eq. (36) but suffers from 

the same limitation due to the explicit dependence of the formability gain upon the hardening rate. Instead 

of constant stress mapping, an alternative mapping method based upon removing the plastic work incurred 

due to tool contact was derived as part of this research. The plastic work per unit volume is computed from 

the linearized equivalent plastic strain, p

eq , 
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 (39a,b) 

 

where 
1  corresponds to the linearized major strain assuming proportional coaxial straining (directions of 

the principal strains during deformation remain aligned with the principal stress direction). Eq. (39a) can 

be re-arranged to express the ratio of the linearized major strain with respect to the linearized equivalent 

plastic strain in triaxial loading in Eq. (39b). Adopting Eq. (39a), the plastic work in plane stress, ,2p Dw , is 

expressed by removing the accumulated work due to tool contact, pw  
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Adopting Eq. (40), (39b) and integration of the equivalent plastic strain utilizing the Swift hardening model 

in Eq. (19a) yields 
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Since the in-plane strain and stress ratios are only known for plane stress loading, an assumption is to be 

made upon the functional form in triaxial space. The formability gains for assuming a constant in-plane 

stress ratio or in-plane strain ratio are provided in Table 7 in Eq. (37) and Eq. (38), respectively.  

 

      The predicted gains in the FLC0 of the mapping methods were compared against the analytical solutions 

in Figure 35. Interestingly, correlation is only found between the work-based mapping methods and the 

analytical solution for a constant contact pressure for a hardening exponent of n = 0.1. Stress mapping under 

a constant in-plane strain or stress ratio predicted stark formability gains that were very sensitive to the 

contact stress ratio and may become non-physical at high contact stresses as noted in the study of Matin 
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and Smith (2005) in double-sided bulge tests. There is no analytical evidence that such marked formability 

gains are physical; the analytical solution for a proportionally evolving contact stress in fact reveals strong 

formability gains but which are an order of magnitude smaller. For moderate contact stress ratios of up to 

0  = -0.25, work mapping under a constant in-plane stress produces reasonable formability gains for 

loading conditions with a constant contact pressure. However, this agreement is coincidental and does not 

hold for other hardening exponents. It is emphasized that the mapping methods remain phenomenological 

in nature and the underlying assumption of a unique in-plane forming limit has been invalidated in the 

Hillier framework.   

 

 
Figure 35: Comparison of predicted formability gain between the phenomenological mapping criteria and the analytical 

solution for plane strain tension. Note that for the analytical solutions of loading under a constant contact pressure or load, 

an incremental procedure was adopted to compute the evolving through-thickness stress ratio. 

 

4.4 Generalized Incremental Stability Criterion (GISC) 

      The Hillier (1963) solution is only valid until the onset of instability. Additional information is required 

to specify the type of localization and its evolution. An extension to model the diffuse necking process was 

obtained by extending the analysis of Hillier to maintain neutral incremental stability. 

 

The concept of neutral incremental stability was evaluated by analyzing the diffuse necking process in 

uniaxial tension. The onset of diffuse necking corresponds to the peak force and a vanishing load rate, dF  

= 0, satisfying the Considère criterion and Eq. (16) for the onset of Hillier instability. The force or 

engineering stress then remains approximately constant, dF ~ 0, during diffuse necking until an acute neck 

forms. Critically, no discontinuity of the stress is observed at the onset of diffuse necking, supporting 

Hillier’s idealization of a quasi-stable bifurcation of the stress state. The onset of instability and transition 

from homogeneous to localized deformation occurs when the material hardening rate is exhausted and can 
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no longer balance the increase in stress due to the reduction in area of the cross-section. Deformation will 

otherwise become unstable as the second order plastic work rate is negative p

i idW d d =  < 0. To regain 

incremental stability, the second order plastic work rate must be positive or zero. The strain path and stress 

state undergo a continuous transition towards plane strain, the extrema of the yield function, as an effective 

source of secondary hardening (refer to Figure 7b). This causes the formation of a localization band in 

which the strain rate also increases and provides additional hardening for stability in a positive rate-sensitive 

material. The strain rate increases inside the band while unloading occurs outside such that du  = 0 at the 

boundary and pdW  = 0, independent of the load rate. Either condition is sufficient to achieve pdW  = 0. 

The argument of localization occurring under neutral incremental stability is supported by the evolution of 

the load and the major strain along the gauge region in quasi-static tensile tests of 590R and 3rd Gen 1180 

steel from Noder et al. (2021a) in Figure 36.  

 

  
Figure 36: Evolution of the load and the major principal strain along the localization band of a quasi-static tensile test for 

the 590R AHSS (a) and the 3rd Gen 1180 AHSS (b). Note that acute necking limits were obtained from the Mod. LBF-

Method of Noder and Butcher (2019a).  

 

The major strain was extracted in equally-spaced increments of approximately 1 mm. For the 590R, the 

peak load is reached at an engineering strain of about 0.14 and remains approximately constant until 
1e  = 

0.21 when an acute neck has formed, shortly after which the strain increment at the boundary of the neck 

remains constant. The same behavior is observed in the 3rd Gen 1180 steel. The assumption of acute 

localization occurring under neutral incremental stability, whether due to vanishing load rates or a vanishing 

strain rate at the boundary of the band, or a combination of both factors at different times in the process, 

appears to be a realistic continuum description of the process. Similar observations of localization in tensile-

dominated modes were made by Hora et al. (2013) to justify the assumption of a constant maximum force 

in the MMFC model but not in the broader context of incremental stability. 

 

The instability criterion for localization was derived from the following two assumptions: 
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(i) The second order plastic work rate is zero to represent neutral incremental stability for an 

instantaneously stable transition between the stable and unstable stress state.  

(ii) Localization is defined in terms of a transition of the strain and stress path to plane strain tension 

while the rate of change is governed by the major principal stress increment to maintain neutral 

incremental stability.  

 

The required increment in the principal stress to satisfy neutral incremental stability is derived from the 

second order plastic work rate and conveniently expressed in terms of the critical subtangent of the Hillier 

framework for 0eqd   
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Before diffuse necking, the critical stress increment is negative analogous to a positive second order plastic 

work rate, which then becomes exactly zero when instability occurs. To maintain neutral incremental 

stability, the minimum increment in the second order plastic work rate is provided by a change in the strain 
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to form the Generalized Incremental Stability Criterion (GISC) 
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Since the equivalent plastic strain increment in Eq. (43b) evolves with the change in the strain path, an 

incremental implementation was employed. Details on the code implementation are provided in Appendix 

E4.  

 

It is instructive to now assess the underlying assumption of the MMFC of Hora et al. (2013). Diffuse 

necking is determined from the Dorn (Dorn and Thomsen, 1947) model, which corresponds to 1

1z N− = . 

Substitution into the GISC reduces the term on the right-hand side of Eq. (44) to the major stress that is 

equivalent to the MMFC (Hora et al., 2013) in Eq. (14a). Thus, the MMFC in fact is physically motivated 

and the localization process satisfies neutral incremental stability. The MMFC emerges as a special case of 

the GISC under plane stress proportional stressing with a specific minor load rate (see Eq. (23)). Instead, if 
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the minor load rate is assumed to vanish, plane stress proportional stressing is restored in the GISC that is 

equivalent to replacing the Dorn model in the MMFC with the Swift (1952) instability condition. 

Implications of the specific minor load in the Dorn model upon acute localization are visualized in Figure 

37a. Necking limits are similar on the draw side but differ somewhat for biaxial strain paths. Referring to 

Eq. (24a) and (26a), the critical subtangent of the Dorn model is identical to the Swift model for UT, PST, 

and BT (see Figure 30a). However, for proportional stressing, the magnitude of the critical subtangent is 

decreased for strain paths in between UT to PST and increased between PST and BT that leads to an 

accelerated necking process for the draw side and a delay in plastic instability on the stretch side of the FLC 

(see Figure 37b).  

 

  
Figure 37: Effect of diffuse necking criterion (Dorn versus Swift) on acute necking limits in plane stress loading (a) and the 

localization process (b).  

 

4.5 Effect of Boundary Condition on Acute Localization  

      Predictions for acute necking in the presence of a compressive normal stress depicted in Figure 38a 

confirm increased necking limits, relative to plane stress, for all studied loading scenarios. Analogous to 

the ranking observed for diffuse necking in Section 4.2.2, the largest formability gains were found for 

proportional stressing followed by a constant normal load or contact pressure. For acute necking limits, the 

sensitivity of the boundary condition upon plastic instability is magnified since the critical subtangent is 

directly embedded in the major stress increment (see Eq. (42)) that governs the strain path change during 

quasi-stable localization. A smaller magnitude in z  leads to a larger major stress increment required to 

maintain neutral incremental stability. As a result, the localization process is accelerated due to a larger 

change in the strain path, ,d towards plane strain tension (see Figure 38b). Therefore, the markedly higher 

FLC for proportional stressing is the result of the combined effect of a delay in diffuse necking and a slower 

localization process. 
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Figure 38: Effect of boundary condition and presence of a compressive contact stress upon the acute necking limits (a) and 

the localization process (b) 

 

      To quantify the difference in the predicted formability gains among the studied boundary conditions, 

necking limits were compared at minor strains of approximately -0.05, 0, and 0.3, representative of a strain 

path of UT, PST, and BT. As shown in Figure 39, there is a large variation in the predicted formability 

gains between the studied boundary conditions, particularly around the FLC0 (14-51%) and on the stretch 

side of the FLC (8-48%). The loading scenario with a constant contact pressure results in a marginal but 

approximately constant offset across all tensile stress states and correlates with the observation of the 3D 

MK study of Zhang et al. (2014). Instead, the magnified formability gains for biaxial strain paths when 

considering a proportionally increasing contact pressure are in agreement with the reported trends of 

Allwood and Shouler (2009) for proportional stressing.   

 

 
Figure 39: Comparison of predicted formability gains for selective strain paths.  

 

      The preceding discussion established a fundamental understanding of the importance of local boundary 

conditions on plastic instability that is represented in a forming limit surface (FLS), specific to the loading 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

M
aj

o
r 

st
ra

in

Minor strain

Von Mises plasticity
Swift hardening model 
χ0 = -0.2

a)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
b

so
lu

te
 d

ρ

Equivalent plastic strain

P. Stress
NP. F3 const.
NP. P3 const.
2D P. stress
Diffuse neck

b)

Von Mises plasticity
Swift hardening model 
χ0 = -0.2

P
.S

tr
es

s

N
P

. F
3

co
n

st
.

N
P

. P
3

co
n

st
.

2
D

: P
.S

tr
es

s 

Equi-biaxial
tension (BT)

22

51
48

13

28

14

8

14

8

0

10

20

30

40

50

60

70

UT PST BT

P
re

d
ic

te
d

 fo
rm

ab
ili

ty
 g

ai
n

 in
 m

aj
o

r 
st

ra
in

 (
%

)

Strain path

P. Stress

NP. F3 const.

NP. P3 const.

Von Mises plasticity
Swift hardening model 
χ0 = -0.2



62 

 

condition as depicted in Figure 40. Overall, the biaxial limit strains are predicted to be most sensitive to 

the magnitude of the through-thickness stress ratio.  

 

 ` 

 
Figure 40: Surface plots of acute necking limits to demonstrate the dependence upon the contact pressure and the boundary 

condition of how the normal pressure was applied. 

     

4.6 Identification of Boundary Conditions in Formability Tests   

      The boundary conditions in formability characterization tests (e.g. Marciniak or Nakazima tests) are 

complex since material flow is partially or fully constrained in the sheet plane and stretched out-of plane 

by means of a punch. To assess which of the studied boundary conditions is most applicable to common 

formability tests, forming limit predictions were compared to experimental data of the DP980 in Section 

3.2. The flow behavior was described through the MHS hardening model with calibration parameters 

identified in Table 1.  

 

Boundary conditions under a triaxial stress state were studied by considering Nakazima limit strains while 

neglecting bending effects due to the relatively large punch radius. It is noted that for comparison to the 

linearized Nakazima limit strains, predicted necking limits in the GISC were also linearized following the 

method discussed in Section 3.5. The through-thickness stress ratio of 
0 = -0.2 in Figure 41 was selected 

to yield good agreement between the experimentally measured and predicted FLC0 for which analytical 
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solutions are available in the Hillier framework (1963). Among the studied boundary conditions, the 

assumption of a proportionally evolving contact pressure best captures the overall trend in the limit strains 

for the DP980. Future work should focus on assessment of analytical contact pressure models and their 

evolution with deformation.  

 

 
Figure 41: Comparison of analytical FLC prediction and comparison to the linearized Nakazima necking limits in plane 

stress loading (a) and triaxial loading (b) of the DP980 AHSS. 

 

4.7 Discussion on the In-Plane Formability under Triaxial Stress States          

      This study provided fundamental insight into the effect of a compressive tool contact stress on the in-

plane forming limits. Closed-form solutions, derived from the general framework of Hillier (1963) for the 

onset of instability, highlighted the instantaneous nature of material instability that is governed by both the 

boundary condition and the composition of the stress state. Overall, a compressive normal stress and shear 

stress are beneficial such that the magnitude of the critical subtangent is increased and thus accommodates 

a higher equivalent plastic strain at instability. Larger necking limits were computed for loading scenarios 

that have an explicit dependence of the through-thickness stress ratio embedded in the functional form of 

the critical subtangent, for example proportional triaxial stressing or non-proportional stressing with a 

constant normal load. Non-proportional stressing under a constant normal pressure still provided an 

increase in necking limits but the stabilization effect was reduced since the contact pressure only affected 

instability via the constitutive model. Correlations between the phenomenological mapping criteria and the 

analytical solutions for plane strain loading were limited to the developed work-based mapping under a 

constant in-plane stress ratio and non-proportional stressing under a constant contact pressure for 
0  of up 

to -0.25 and a hardening exponent of n  = 0.1. It is emphasized that this agreement is coincidental and does 

not hold for other hardening exponents. Drastic formability gains were projected by the stress-based 

mapping methods for which no analytical evidence was found; a proportionally evolving contact pressure 

in fact led to strong formability gains that, however, were an order of magnitude smaller. Nevertheless, the 
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same stress-mapping method (under a constant in-plane stress ratio) worked well in the preceding chapter 

when Nakazima limit strains were corrected for contact pressure effects. It is surmised that the strong 

sensitivity of the contact pressure magnitude upon stress mapping was balanced by the contact pressure 

model that was shown to be very sensitive to the assumed through-thickness distribution. The uncertainty 

surrounding the magnitude of the contact pressure, distribution over the sheet cross-section, and evolution 

with deformation should be addressed in a separate study.  

 

An extension of the Hillier instability framework was proposed in the Generalized Incremental Stability 

Criterion (GISC) to account for the localization process until an acute neck has fully developed. The 

condition of a vanishing second order plastic work rate ( pdW  = 0), which is equivalent to Drucker’s 

postulate (1951) and Hill’s incremental stability for a rigid-plastic material (1950), was employed to 

compute diffuse localization. The assumption of neutral incremental stability during localization was shown 

to either be the result of a vanishing load rate or a vanishing strain rate at the boundary of the instability 

band and was supported in tensile tests of a 590R and a 3rd Gen 1180 AHSS. The major stress increment 

for incremental neutral stability was derived from the condition of a vanishing second order plastic work 

rate and was provided in the form of a change in the strain path towards plane strain tension. It was revealed 

that the MMFC of Hora et al. (2013) is in fact physically motivated and just one special case of the 

developed GISC under the assumption of approximate proportional loading or proportional stressing with 

a prescribed minor load. Comparison of the GISC predictions to Nakazima limit strains of the DP980 in 

Section 3.2 identified the assumption of a proportionally evolving contact pressure as a good approximation 

of the overall trend in the formability. The extension of the GISC in the presence of combined loading of 

stretch-bending is addressed in Chapter 6.   
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5. Characterization of Out-of-Plane Forming Limits (Task 3 and Task 4) 

      Automotive structural components often feature complex geometries with a locally varying degree of 

stretching, bending, and tool contact. Thus, the characterization and modelling efforts in Chapters 3 and 4 

are representative of the process conditions of only a small region of the part stretched in-plane. To establish 

an understanding of the necking limits in the presence of superimposed bending, angular stretch-bend 

(ASB) and V-Bend tests are conducted to characterize the out-of-plane formability that will provide 

guidance for the modelling efforts in Chapter 6. The main difference in the two test methods lies in the 

stretch-bend severity. The ASB test usually involves sufficient stretching such that necking-induced failure 

occurs, whereas the severe stress-strain gradients in the bending-dominated V-Bend test mostly suppress 

necking such that fracture occurs abruptly. Thus, the limit strains determined in the V-Bend test constitute 

the upper bound for materials of homogeneous microstructure whereas necking limits in the ASB tests 

represent intermediate forming conditions between the Nakazima and the V-Bend tests. Central to the 

characterization of the out-of-plane formability is the accurate detection when material instability occurs. 

The refined version of the LBF detection method developed in Chapter 3 is readily amenable to ASB tests 

but fracture detection in the V-Bend test is more controversial and is the primary focus of this chapter. A 

comprehensive experimental test campaign encompassing seven automotive steel grades of different 

strength and ductility level is conducted. The validity of the VDA 238-100 load threshold methodology is 

critically assessed to identify the cause of a descending punch force even in the absence of fracture. 

Adopting bending mechanics, a new fracture detection method is developed that accounts for sheet thinning 

and the cross-sectional dimension of the specimen to distinguish between material fracture and false 

positives. Additional concerns related to lift-off of the specimens from the punch are addressed in a strain-

rate driven approach. Special attention is devoted to identification of a fracture threshold using DIC images 

of unpainted test samples at various thresholds.  

 

The published and prepared manuscripts can be found in Appendix C and D, respectively, in: 

Noder, J., Dykeman, J., Butcher, C., (2020a). New Methodologies for Fracture Detection of Automotive 

Steels in Tight Radius Bending: Application to the VDA 238-100 V-Bend Test, Experimental Mechanics, 

https://doi.org/10.1007/s11340-020-00597-2. 

 

Noder, J., Butcher, C. On the Influence of Tool Contact Pressure on Tensile Instabilities in Plane Strain 

Stretching and Bending of Sheet Metals, to be submitted, May 2022.   

 

5.1 Limit Strains in the Absence of Necking  

      First, the experimental study on V-Bend testing is discussed and the chapter will close with ASB tests.  
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5.1.1 Material Selection in the VDA 238-100 Tight Radius Bend Test  

      The selected steel grades for this study were grouped into three categories depending on their ductility 

level. The mechanical properties and engineering stress-strain response are listed in Table 7 and depicted 

in Figure 42. The high ductility group of steel grades that have a strong risk of folding over without fracture 

was comprised of the 270 Mild steel and the 590R AHSS. The second group of steels of moderate ductility, 

which were expected to fracture at intermediate bend angles, considered the DP980 of Chapter 3 and two 

3rd Gen AHSS with a nominal strength level of 980 MPa and 1180 MPa, denoted as 3rd Gen 980 and 3rd 

Gen 1180 V2, respectively. The last group of relatively low ductility comprised a press-hardened Al-Si 

coated 22MnB5 steel with an ultimate tensile strength of 1500 MPa, denoted as PHS1500, and another 3rd 

Gen AHSS with a nominal ultimate tensile strength of 1180 MPa (3rd Gen 1180 V1).  

 
Table 7: Tensile mechanical properties of the studied steel grades. The PHS1500 data was obtained by digitizing the 

work of ten Kortenaar (2016), thus no standard deviation is provided. Note that the total elongation is based on a virtual 

extensometer length of 50 mm except for the PHS1500 that utilized a 12.5 mm extensometer. 

 

Yield Stress  

(0.2% offset) 

(MPa) 

Ultimate Tensile 

Stress (MPa) 

Uniform 

Elongation UE 

(%) 

Total Elongation 

TE (%) 

270 Mild steel, 1.6 mm, TD  256 (±1) 311 (±2) 31.1 (±2.8) 43.2 (±1.0) 

590R AHSS, 1.4 mm, TD 490 (±2) 671 (±1) 13.7(±0.1) 23.8 (±0.4) 

3rd Gen 980, 1.4 mm, TD 681 (±8) 1033 (±10) 18.0 (±0.5) 24.9 (±0.6) 

3rd Gen 1180 V2, 1.4 mm, TD 1047 (±10) 1219 (±5) 10.3 (±0.3) 16.2 (±0.1) 

DP980, 1.2 mm, TD 735 (±2) 1065 (±3) 7.8 (±0.2) 14.1 (±0.6) 

3rd Gen 1180 V1, 1.4 mm, TD 950 (±12) 1251 (±8) 8.4 (±0.2) 13.7 (±0.5) 

PHS1500, 1.2 mm, TD 1144 1571 5.5  11.0 
 

 

  
Figure 42: Engineering stress-strain response (a) and hardening rate (b) of studied steel grades. The PHS1500 was digitized 

from ten Kortenaar (2016) who utilized a sub-size ASTM tensile specimen. 

 

5.1.2 Load Threshold Methodology 

      The VDA 238-100 tight radius bend tests were conducted on the inverted test frame developed by 

Cheong et al. (2017) that features a stationary punch and chamfered rollers to allow full-field stereoscopic 

DIC of the entire bend width of the sheet convex side where fracture is initiated. The VDA 238-100 

recommendation was followed for selection of the punch radius and the roller gap settings, except for the 
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high-ductility steel grades for which the 0.4 mm nominal punch radius was replaced with the sharper 0.2 

mm radius punch in light of the expected larger bend angles. 

 

      Adoption of the VDA 238-100 specification to identify fracture from a reduction in the punch force is 

illustrated for the 3rd Gen 980 and 270 Mild steel in Figure 43. Visual inspection at the VDA load threshold 

showed the presence of hairline cracks for the 3rd Gen 980 while no signs of material fracture were observed 

for the 270 Mild steel. Sectioning of the specimens and inspection under an optical microscope confirmed 

fracture on the convex surface for the 3rd Gen 980 but not for the 270 Mild steel despite a 75% reduction 

in the punch force. Relying upon the VDA 238-100 specification for fracture identification erroneously 

reported fracture for the 270 Mild steel.  

 

 
Figure 43: Load evolution and fracture detection from a 60 N reduction of the peak punch force. The close-up view of the 

specimen surface and sectioned cross-section indicate fracture for the 3rd Gen 980 but not for the 270 Mild steel.  
 

The cause of a reduction in the punch force in the absence of material rupture was revealed to be due to the 

kinematic boundary condition of the test set-up as schematically illustrated in Figure 44. For low bend 

angles (
1 ) a three-point bend condition prevails and the measured punch force, 

yF , is a good 

approximation for the resultant force, 
resF . As bending continues (

2 ), the contact points between the 

specimen and the punch are gradually shifted towards the edges of the punch trip radius, representing a 

four-point bending scenario. The tangential contact between the roller and the specimen causes a horizontal 

force component, 
xF , which rapidly increases for large bend angles (

3 ). The approximately horizontal 

resultant force may lead to punch lift-off when the specimen loses contact with the punch and the specimen 

concave radius no longer conforms to the punch tip radius. Punch lift-off is not of concern when relying on 

the DIC strain measurements to retrieve the fracture strain since plane strain tension prevails on the convex 
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layer, while the analytical bend angle approximation is no longer valid since the bend severity changes. The 

reduction in the punch force as a natural consequence of the mechanics in the tight radius bend test is not 

accounted for in the VDA 238-100 specification and may lead to significant underreporting of the material 

performance.  

 

 
Figure 44: Evolution of the resultant force as a function of the bend angle and the corresponding evolution of the punch 

force in the y-direction. The three different bending scenarios illustrate the phenomenon of a decrease in the punch force 

without material fracture due to the shift from a three-point to a four-point bending scenario. 

 

5.1.3 Bending Moment Evolution  

      Consideration of the bending moment naturally accounts for the evolution of the resultant force and the 

transition to a four-point bending scenario. Following the work of Troive (2017) and assuming the specimen 

flanges remain straight in the absence of punch lift-off, the cross-sectional bending moment, M , was 

derived from geometric boundary conditions  

 

( ),

, 0 0,      sin ,      ( 0.25)
2

2cos cos
2 2

y m x VDA
m x r p r

VDA VDA

F L
M L L r r L t r



 

 
=  − + = + + 

     
   
   

 
(45a-c) 

 

where 
rr  correspond to the roller radius, 

VDA  to the VDA bend angle, and 
0L  to half of the width of the 

roller gap including the roller radius. To avoid the complexity associated with a layer-based integration of 

the stress-strain relations for a strain hardening material, the closed-form solution of Hill (1950) for a rigid 

perfectly plastic material was adopted to relate the yield stress to the bending moment of the cross-section  

 
2

4

y

RPP

t w
M


= = constant (46) 
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where w  corresponds to the width of the specimen that remains constant during plane strain bending. 

Adopting Eq. (45a-c) and (46), dimensionless forms of the force components were obtained for a RPP 

material as illustrated in Figure 45a. The y-force, representative of the punch load, increases up to bend 

angles of 100° followed by a reduction as a natural consequence of the boundary conditions of the V-Bend 

test. Figure 45b highlights the dependence of the punch radius upon the critical bend angle when the punch 

force begins to descend. The critical metric is reached earlier for sharper punch radii.   

 

  
Figure 45: Effect of a descending punch force (y-force) as a consequence of the kinematic boundary conditions in the V-

Bend test (a) and the dependence upon the punch radii (b).  

 

The bending moment evolution for a strain-hardenable alloy is depicted for the 3rd Gen 980 in Figure 46a 

and correlates well with the punch force evolution. For the 270 Mild steel in Figure 46b, failure is still 

erroneously detected when relying on the bending moment evolution but it represents a considerable 

improvement over the punch force since material failure was only reported for bend angles greater than 

160° instead of 127°.  

 

  
Figure 46: Comparison of the evolution of the bending moment with the punch load for the 3rd Gen 980 (a) and the 270 

Mild steel (b)  
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Nevertheless, complications arise for materials with a low hardening rate as shown in Figure 47a. The 

derivative of the bending moment with respect to the bend angle, computed in 0.5° increments, has 

noticeable fluctuations about zero (Figure 47b) that makes identification of a robust failure threshold 

challenging. Adoption of the bending moment technique may be feasible with a robust implementation and 

potential signal processing.  

  
Figure 47: Complications with identification of a robust failure threshold for materials with a low hardening rate (a) for 

which the change in the bending moment can remain approximately constant (b).  

 

5.1.4 Development of the Stress Metric  

      To avoid issues surrounding a nearly constant bending moment for materials with a saturation-type 

hardening behavior and the ambiguity of using force-based thresholds that do not account for the specimen 

dimension, a stress-driven fracture detection method was developed. The closed-form solution of the 

bending moment for a RPP material in Eq. (46) was adopted to define the stress metric,   

 

( )
1.4636

0 3 32

4
( , ),      (1 ),      0.211 0.211exp 0.0012y VDA VDAM F t t e e

t w
   = = − = − −

 
 (47a-c) 

 

where the specimen width is obtained from measurements prior to testing. It is emphasized that Eq. (47a) 

can only be interpreted as a stress metric for fracture detection and cannot be adopted for constitutive 

characterization of a hardening material that would require a layer-based analysis. To increase the resolution 

of the stress metric over the bending moment, the instantaneous thickness is utilized that can either be 

measured from the out-of-plane displacement with the aid of DIC and a stationary punch or from the 

empirical relation in Eq. (47b,c). Post-mortem thickness measurements of tested V-Bend samples, as done 

in the study of Larour et al. (2013), for one representative material of each studied ductility group confirmed 

good correlation between thinning obtained from DIC and physical measurements in Figure 48a. 

Consideration of thinning of the cross-section during bending in Figure 48b induces an increase in the 

stress metric evolution for the PHS1500 that enables clear identification of the failure threshold. While the 
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magnitude of the stress metric for the PHS1500 is somewhat different when using the instantaneous instead 

of the empirical thinning, the trend is similar such that the bend angle at the onset of fracture is in excellent 

agreement. Among the studied steel grades, largest deviations of 0.01 major strain and 1° bend angle were 

observed for the PHS1500 and the DP980.  

  
Figure 48: Comparison of thinning of the cross-section during the V-Bend tests obtained from DIC measurements and post-

mortem thickness measurements (a) and their effect on the evolution of the stress metric (b).  

 

5.1.5 Strain-based Detection Method  

      While the stress metric eliminates issues surrounding failure identification of materials with a low 

hardening rate, in analogy to the bending moment, failure is erroneously reported at bend angles greater 

than 160° as depicted in Figure 49a. Consideration of the strain rate on the convex surface of the bend is 

independent of the punch force evolution and thus not affected by false positives. Since through-thickness 

necking is suppressed in the V-Bend test, an acceleration of the strain as shown for the 3rd Gen 980 in 

Figure 49b correlates with strain localization on the tensile surface of the bend prior to cracking. By 

contrast, a decrease of the strain rate indicates absence of material rupture when the specimen folds over as 

shown for the 270 Mild steel.  

 

  
Figure 49: Major strain rate evolution of the convex side of the specimen surface for the 270 Mild steel that folds over in 

the absence of fracture (a) and the 3rd Gen 980 with clear fracture (b).  
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      To detect an abrupt change in the major strain rate, the Linear Best Fit (LBF) methodology of Volk and 

Hora (2011) was refined for small radius bending. The criteria for the fitting window of the stable line fit, 

discussed in Section 3.2, was modified such that the beginning of the fitting window is approximated from 

the maximum tensile strain on the convex surface when yielding of the neutral layer is initiated (Yu and 

Zhang, 1996). The relative curvature at the onset of yielding, 
y , and the maximum elastic strain, y

el , are 

approximated from Hooke’s law and the von Mises yield function to arrive at  
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 (48a-c) 

  

where v  corresponds to Possion’s ratio. Details on the derivation of Eq. (48a-c) are provided in Appendix 

E1. Compared to the large bending approximation in Section 3.2, Eq. (48a-c) now account for the shift in 

the neutral layer relevant for tight-radius bending. Since diffuse necking is suppressed in the tight radius 

bend test, the end of the stable line fit is determined from the strain rate corresponding to a 2% offset of the 

peak punch force instead of the approximation for diffuse necking.  

 

5.1.6 Comparison of Fracture Detection Methods in the V-Bend Test 

     The preceding discussion demonstrated that adoption of the stress metric and the strain-rate detection 

method remedied the shortcomings in the VDA 238-100 failure detection method associated with 

occasional inconclusive results. The second concern in the V-Bend test is attributed to punch lift-off and 

can be addressed by tracking the out-of-plane displacement from DIC. Figure 50a demonstrates that 

thinning of the 270 Mild steel occurs up to bend angles of approximately 144° (±2) when the reverse out-

of-plane displacement indicates punch lift-off. Interestingly, the punch force decreases much earlier at bend 

angles of about 127° (±2) and thus indicates that the false positive in the punch force occurred prior to 

punch lift-off. For the 3rd Gen 980 (Figure 50b), the reduction in the punch force correlates with the out-

of-plane displacement to indicate fracture. Therefore, the stress metric needs to be limited to the maximum 

bend angle when punch lift-off occurs – the same applies to the thinning equation in Eq. (47b,c). 
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Figure 50: Comparison of different fracture detection methods in the V-Bend tests demonstrated for the 270 Mild steel (a) 

and the 3rd Gen 980 (b). Note that the positive sign convention is adopted for thinning of the cross-section. 

 

      For comparison of the failure strain among the various detection methods, the failure threshold needs 

to be determined. To this end, bend tests for the 3rd Gen 980 were performed with unpainted specimens 

such that the recorded DIC images in Figure 51 provided a direct view of the surface evolution. In general, 

selection of a suitable failure threshold should be considered as material- and application-dependent. In the 

present study, the 3rd Gen 980 only exhibited hairline cracks at a 1% reduction in the stress metric and 

bending moment and might be more suitable for forming operations. Appreciable cracking, representative 

of crash applications, was not observed until much larger reductions in the punch force by approximately 

48%.  

 

    
a) Mod. LBF-Method b) VDA 60 N load drop c) VDA 1% load drop d) Bending moment 1% drop 

    
e) Stress metric 1% drop (DIC 

and empirical thinning) 

f) VDA 5% load drop g) Bending moment 5% drop, 

Stress metric 5% drop      

(DIC and empirical thinning) 

h) VDA 48% reduction in the 

punch force 

Figure 51: Surface inspection of the 3rd Gen 980 V-Bend specimen at different thresholds for various failure detection 

methods. Note that DIC was performed in the absence of white background paint to provide a direct view on the material 

surface. 

 

Failure strains for a 1% threshold are depicted for the discussed failure detection methods in Figure 52. For 

materials with high ductility or during bending at low bend severity, adoption of the punch force as unique 
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0.17 and 0.21 major strain for the 270 Mild steel and the 590R, respectively. Adoption of the bending 

moment works best for materials with appreciable hardening such as the 3rd Gen 980 and the 3rd Gen 1180 

V2. In contrast, for the PHS1500 with a low hardening rate, the approximately constant bending moment 

makes failure detection sensitive to noise in the measurement. The stress metric is suitable for arbitrary 

hardening rates and also accounts for the specimen dimensions and thinning during bending through either 

DIC or an empirical thinning equation. Consideration of the major strain rate evolution in the Mod. LBF-

Method occasionally performs too conservatively but can identify folding over of the specimen in the 

absence of fracture. To differentiate the performance of alloys of the same nominal strength, the plastic 

work of the cross-section until fracture can be employed to provide further insight since the hardening rate 

is embedded.  

 

 

 
Figure 52: Comparison of the major strain at fracture (a) and the difference in the major strain (b) reported by the VDA 

238-100 specification, bending moment technique, and the Mod. LBF-Method relative to the stress metric adopting a 1% 

threshold and instantaneous thinning from DIC. 

 

5.2 Limit Strains in Combined Loading 

      The plane strain fracture strain of the 3rd Gen 980 AHSS is similar to the DP980 (0.51 versus 0.46 in 

the stress metric), but the performance of the 3rd Gen 1180 V2 with a major failure strain of 0.50 is 

particularly remarkable, which makes it an ideal candidate for the developed methodology in this thesis. 
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The in-plane forming limit of the 3rd Gen 1180 V2 discussed in Chapter 3 is moderate (plane strain limit 

strain of approximately 0.1) whereas the fracture limit in the presence of appreciable bending is drastically 

increased by a factor of about five. The strong sensitivity of the limit strains on the process conditions of 

bend severity and tool contact pressure can be exploited in the design of automotive lightweight components 

when considering the instantaneous necking limits. Therefore, the 3rd Gen 1180 V2 is focused upon and 

stretch-bend tests were conducted to complement the current set of experimental limit strains with necking 

limits under moderate bend severities.  

 

5.2.1 Angular Stretch-bend Tests  

      A custom-made die set (see Figure 19c) with a 30 mm gap width and a single-curvature punch of 2 mm 

radius was installed in the same MTS formability press described in Chapter 3. Die and binder surfaces 

were knurled to mitigate material draw-in during stretch-bending. Both the specimen geometry and the 

punch speed of 0.25 mm/s utilized in the Marciniak and Nakazima tests were adopted in this study as well. 

A width of 76.3 mm was selected for the dogbone specimen in Figure 15c to yield a strain path of 

approximately plane strain tension. Ample Vaseline was utilized between the punch and the sheet to 

promote uniform deformation and localization at the specimen apex. The strain evolution on the convex 

surface was recorded utilizing full-field stereoscopic strain measurements from DIC with a VSGL of 

approximately unity. The resulting strain distribution at acute necking is depicted in Figure 53 and 

highlights the different localization behavior in the conducted formability tests. The formation of an acute 

neck in the stretching-dominated tests (Marciniak and Nakazima) proceeds globally and is in stark contrast 

to the narrow localization band observed in the bending-dominated tests (ASB and V-Bend). Limit strains 

were determined from the refined LBF Method developed in Section 3.2 but the bending approximation for 

the stable strain rate was replaced with the relation for tight radius bending employed in the V-Bend tests 

in Eq. (48a-c).  

 

 
Figure 53: Strain distribution at the necking limit for the studied formability tests. Since necking was suppressed in the V-

Bend test, the fracture limit was determined from a 1% reduction in the stress metric.   

 

Major strain Major strain
Major strain Major strainMarciniak Nakazima Angular Stretch Bend V-Bend



76 

 

As shown in Figure 54a, the strain paths are fairly linear with the exception of the Nakazima test due to 

the hemispherical punch geometry that required linearization of the limit strains in Figure 54b. It is noted 

that the Marciniak limit strains for the 3rd Gen 1180 V2 and the fracture strains for remaining stress states, 

obtained from Noder et al. (2021a), were included in Figure 54b for completeness. The linearized 

Nakazima limit strains, slightly shifted to negative minor strains, only provide a marginal formability gain 

relative to in-plane limits of the Marciniak test. The small increase in limit strains is to be expected since 

the induced stress-strain gradients due to bending effects were shown to be small (Min et al., 2016; Chen 

and Fang, 2018). Thus, the delay in plastic instability is mostly attributed to contact pressure effects. In 

contrast, plastic instability was markedly delayed in the stretch-bend tests that led to a stark formability 

gain from approximately 0.1 to 0.26 major strain. The necking limits in the ASB tests are well below the 

limits in the bend test of about 0.5 major strain but nevertheless represent a noticeable increase in the 

forming window by about 160% that can greatly relax constraints in the product design stage when properly 

accounted for.  

  

  
Figure 54: One representative strain path extracted from a circular inspector tool of 0.5 mm radius for the Marciniak, 

Nakazima, and ASB tests and 0.25 mm radius in the V-Bend tests (a). Effect of bend severity on the limit strains (b). Note 

that the Nakazima limit stains in (b) were linearized. 

 

5.2.2 Analysis of Stretch-bend Severity  

      To provide more insight into the material behavior in combined loading, the deformation history was 

decoupled into contributions from bending and stretching. The instantaneous sheet curvature was 

approximated from a circle fit through the instantaneous node coordinates that were extracted from a line 

slice (length corresponds to the punch radius), positioned perpendicular to the principal loading direction 

in DIC (see Figure 55a). As shown in Figure 55b, the sheet in the Nakazima test gradually wraps around 

the punch and the average radius of the convex sheet (52.7 mm ± 0.8 mm) approximately corresponds to 

the punch radius plus initial sheet thickness when instability occurs. Contrary, in the ASB tests, the sheet 

initially wraps around the punch, reflected in a rapid decrease in the convex radius, and saturates at a radius 
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of approximately 10 mm halfway through the test. Interestingly, even at necking, the sheet does not conform 

to the punch radius and the sheet convex layer of 7.8 mm ± 0.5 mm is larger than the nominal value of 3.4 

mm (initial sheet thickness plus nominal punch radius of 2 mm). Therefore, the common assumption of the 

two-stage deformation models that the sheet fully wraps around the punch is not justified for the tests in the 

present study and would lead to an overprediction of the bending effects. In contrast, in the V-Bend test, 

the material rapidly conforms to the punch radius in the first half of the test. 

   

 

 

 
Figure 55: Schematic of inspector tools utilized for data analysis in the Nakazima and ASB tests (a) and evolution of the 

sheet radius on the convex surface (b). Note that units are in mm.  

 

Since the convex sheet radius and strain history on the convex layer can be determined from DIC, simple 

bending mechanics (Hill, 1950) and volume conservation of a curved element (Aydemir, 2022) were 

employed to approximate the bending and membrane strain in stretch-bending. It is noted that both the shift 

in the neutral layer and sheet thinning were neglected in the bending analysis. The approximated strain 

components are depicted in Figure 56a and visualized in terms of the stretch-bend severity – ratio of the 

increment in the major bending strain to the membrane strain – in Figure 56b. The stretch-bend ratio is an 

indicator for the deformation mode, e.g. 1   implies that the deformation is governed by bending whereas 

1   indicates that stretching is dominant. For ASB tests, the stretch-bend ratio is process-dependent and 

governed by the geometry of the tool set. The combined effect of punch radius and die gap affects how 

much the material is bent versus stretched. Since bending effects are mostly negligible in the Nakazima 

tests, the average stretch-bend ratio is rather low ( ~ 0.13) and approximately constant throughout the 

test. In contrast, the deformation mode in the ASB tests is initially bending-dominated until a major strain 

of about 0.13 when the deformation transitions into a stretching mode that has direct implications upon the 

model strategy in Chapter 6.   
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Figure 56: Decoupled major strain components from the measured major strain in stretch-bending on the convex surface 

(a) and evolution of the stretch-bend ratio (b) in the Nakazima and ASB tests.  

 

5.3 Discussion on the Out-of-Plane Formability         

      This study provided a comprehensive experimental test campaign to characterize limit strains under 

process conditions of a varying degree of bending and contact pressure. The limiting case of abrupt fracture 

without a preceding neck in the presence of severe stress-strain gradients was studied in the V-Bend test. 

The controversy surrounding inconclusive results was revealed to be a natural consequence of the kinematic 

boundary conditions of the bend test and may lead to significant underreporting of the material 

performance. These complications are avoided in the novel stress metric that accounts for the specimen 

dimension and sheet thinning of the cross-section by means of the empirical thinning equation or direct 

DIC measurement. The developed methodology is readily applicable to a conventional V-Bend apparatus 

without a DIC system. Consideration of the major strain rate evolution on the convex sheet surface provides 

insight into the local fracture response and can identify folding over of the sheet specimen reflected in a 

decrease in the major strain rate.  

 

Overall, the plane strain fracture performance of the two 3rd Gen 1180 variants was quite different (major 

failure strain of 0.28 for V1 versus 0.50 for V2) even though the in-plane forming limits were similar (major 

strain of approximately 0.1). Therefore, the 3rd Gen 1180 V2 is particularly suitable for the developed 

framework in this thesis due to the strong sensitivity of the process conditions on necking limits. The large 

window of the limit strains between in-plane loading and necking suppression can be exploited in the 

product design if properly accounted for.  

 

      Angular stretch-bend tests were conducted for the 3rd Gen 1180 V2 to obtain limit strains for a lower 

bend severity that induces sufficient stretching to trigger necking-based failure. Necking limits, identified 

from an extension of the Mod. LBF Method in Section 3.2 to accommodate tight radius bending, were 
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markedly lower than the V-Bend limits but still provided a significant increase relative to the Marciniak 

tests (major strain of approximately 0.26 versus 0.1). Further analysis of the deformation mode revealed 

that straining is primarily stretching-dominated in the Nakazima test for which the assumption of a constant 

stretch-bend ratio seems reasonable whereas deformation in the ASB tests is first bending-dominated and 

then transitions to a stretching mode. In addition, the sheet was found to not fully wrap around the punch 

in the present ASB tests, as commonly adopted in the two-stage models, and would lead to an overprediction 

of the stress-strain gradients over the cross-section. These experimental observations provided valuable 

insight into the process conditions in the formability test and serve the model development in Chapter 6.  
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6. Prediction of Forming Limits in Combined Bending and Stretching (Task 4 

continued) 

      The experimental test campaigns documented in Chapters 3 and 5 confirmed an increase in the acute 

necking limits in the presence of bending and tool contact stresses – a formability gain that can be exploited 

when instantaneous forming limits are properly considered. The seemingly infinite combinations of process 

conditions render an experimental approach infeasible from a time and monetary perspective. A predictive 

tool is required but the complexity associated with the mechanics of plastic instability, non-monotonic 

straining, and complex stress states that are manifested in the form of gradients over the cross-section 

represent major obstacles. The GISC developed in Chapter 4 predicts acute necking limits under triaxial 

stress states and also accounts for the local boundary condition of how the load and tractions are applied to 

deform the material. It is the focus of this chapter to demonstrate how the GISC can be utilized to predict 

plastic instability in plane strain stretch-bending with superimposed tool contact pressures. Special attention 

is devoted to how the deformation history is prescribed. Although the two-stage modelling approach 

appeared to work well in the studies of Vallellano et al. (2010), Morales-Palma et al. (2013, 2017), and He 

et al. (2013c) it  is problematic from a material standpoint since de-coupling of stretch-bending affects the 

neck formation (De Kruijf et al., 2009). The study of Morales-Palma et al., (2017) accounted for bending 

normal stresses but neglected the bending process; the lower cross-section could not undergo compressive 

loading that greatly alters the deformation mode and differs from the deformation history of the stretch-

bend tests discussed in the preceding chapter. Simultaneously accounting for contributions from stretching 

and bending while incorporating bending normal stresses is particularly challenging since it requires 

knowledge of the instantaneous location of the neutral layer and adds complexity to the through-thickness 

stress integration. The effect of how superimposed tool contact pressure to the bending normal stresses 

affects the mechanics of stretch-bending adds another layer of complexity and constitutes the major novelty 

of this chapter.  

 

First, the resulting stress state of the cross-section is established on continuum level and serves to develop 

a control algorithm to resolve the through-thickness stress-strain gradients during plane strain stretch-

bending in a simplified total strain formulation and a general incremental framework. This subroutine is 

then coupled with the GISC of Chapter 4 to identify acute necking. A parametric study is conducted to 

provide insight into the mechanisms that lead to a delay in plastic instability in combined loading under 

complex stress states. Finally, the instability framework is applied to the experimental test campaign of the 

3rd Gen 1180 V2 of Chapter 5.  

 

The prepared manuscript can be found in Appendix D: 
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Noder, J., Butcher, C. On the Influence of Tool Contact Pressure on Tensile Instabilities in Plane Strain 

Stretching and Bending of Sheet Metals, to be submitted, May 2022.   

 

6.1 Mechanics of Stretch-bending 

       The material exhibits orthotropy with the coordinate axes in the plane defined through the direction 1, 

2, and 3 as depicted in Figure 57. Loading is constrained to principal triaxial space in the absence of shear 

deformation. Quantities denoted with subscript 1 and 2 are attributed to the primary and secondary loading 

direction and are referred to as major and minor quantity, respectively. Quantities should be treated as 

unordered principal values since the order of the principal quantities may change due to compressive 

loading and also depend on the magnitude of the through-thickness stress in the out-of-plane direction 3.  

 

 
Figure 57: Schematic of terminology used to define the stress-strain state. 

 

      The effect of the compressive tool contact stress (
c ) on the overall stress state during stretch-bending 

was derived on continuum level and is composed of plane strain bending with superimposed plane strain 

tensile stretching (
sb ) (i) and tool contact pressures that induce uniaxial compression (ii), defined as  
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 (49a-c) 

 

where the through-thickness stress ratio can be decomposed into contributions from normal bending 

stresses, 
b , and tool contact pressures, 

c , defined as 

 

1 1

1
,       ,       ,       

2

b c b
b c b c

  
     

 

+
= + = = =  (50a-d) 

 

The in-plane stress ratio for plane strain loading in Eq. (50d) is determined from the condition of a vanishing 

second principal deviatoric stress (
2 0s = ), which also corresponds to a vanishing third deviatoric stress 

invariant (
3 0J = ), discussed in Butcher and Abedini (2019b). Computation of the deviatoric stress 

components of the resultant stress state yields 
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( ) ( )1 1 2 1 3 1

1 1 1
3 2 ,       ,      3 3

6 3 6
c c cs s s       = − − = − = − + +  (51a-c) 

 

which indicates a shift of the stress state towards biaxial tension. To better visualize this effect on the strain 

path, the evolution of the principal in-plane strain ratio for a von Mises plasticity model is depicted in 

Figure 58. The convex surface is a free surface and remains in a state of plane strain-plane stress whereas 

material layers within the cross-section are subjected to a shift in the strain path to positive minor strains. 

The magnitude of the strain path shift is governed by the magnitude of both the contact stress ratio and the 

through-thickness stress ratio that has the bending effects embedded. Therefore, a compressive tool contact 

stress effectively induces a non-linear strain path such that each material layer will experience a different 

deformation history that has direct implications on the modelling strategy.  

 

 

 
Figure 58: Effect of a compressive tool contact stress on the strain path that is shifted to positive minor strains.  

 

6.2 Model Development  

      The induced shift in the strain path as a consequence of the compressive contact stress adds considerable 

complexity to the model development since proportional straining only prevails on the convex layer. To 

model the mechanics during stretch-bending with a superimposed tool contact pressure, four different 

modelling strategies were considered. In analogy to the strain path on the convex layer, the simplified 

modelling technique enforces plane strain tension (PST) of the cross-section, referred to as the PST Model. 

The more advanced approach accounts for the shift in the strain path towards biaxial tension (BT) and is 

referred to as the BT Model. Both models are implemented in a simplified total strain formulation (TL) for 

which closed-form solutions are derived and in a generalized multi-layer incremental framework (IL) that 

requires numerical methods. The different scenarios are summarized as TL-PST, IL-PST, TL-BT, and IL-

BT. 
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It is noted that the total strain formulations, commonly used in bending mechanics, are not as rigorous since 

stressing is assumed proportional, but warrant consideration as a simpler alternative to the incremental 

multi-layer model. The following assumptions were employed in the development of the modelling 

strategies: 

 

(i) The material is homogeneous without voids, damage, or softening. The flow stress is equal to 

the equivalent stress ( )p

eq eq  = . 

(ii) The material is treated as rigid-plastic such that elasticity is neglected. 

(iii) The focus is on stretching-dominated loading such that reverse loading effects are neglected.  

(iv) Radial sections remain plane during bending (Bernoulli theorem). 

(v) A compressive normal stress is uniformly applied on the concave layer and assumed to evolve 

proportionally with the major in-plane stress to mimic tool contact pressure.  

(vi) Sheet thinning and contact pressure effects are neglected during bending but accounted for 

during membrane stretching. Therefore, deformation is constrained to mild-to-moderate 

stretch-bending where bending effects play a secondary role and instability governs the process 

rather than fracture on the convex surface.  

(vii) Membrane deformation in the form of tensile stretching is prescribed through a constant in-

plane major strain increment, 
1

memd .  

(viii) The deformation history of stretch-bending is modelled in a semi-coupled approach. Bending 

and stretching are considered simultaneously through the stretch-bend ratio,  , that can be 

constant or evolve with deformation.  

 

Instead of a two-stage deformation process, the contribution of stretching and bending is considered 

simultaneously, expressed through the stretch-bend ratio,   

 

1

1,( 1) 1,( ) 1 1,( 1) 1,( ) 1

1

( )
,     ( ) ( ) ( ),     ( ) ( ) ( )

( )

b

y mem mem mem b b mem

n y n y y n y n y ymem

y

d r
r r d r r r d r

d r


       


+ += = + = +  (52a-c) 

 

where the subscripts (n+1) and (n) refer to the variable in the current and previous step and are omitted in 

the subsequent discussion. The major strain increment in membrane stretching, 
1

memd , serves as a control 

variable and is prescribed to the convex surface in fixed increments of 5x10-4. Using Eq. (52b-c), the total 

major strain and its increment on the convex layer are assembled to  

 

1 1 1 1 1 1( ) ( ) ( ),       ( ) ( ) ( )mem b mem b

y y y y y yr r r d r d r d r     = + = +  (53a,b) 
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Computation of the strain for arbitrary material layers within the cross-section is specific to the assumption 

of a total or incremental strain formulation and is discussed separately in Section 6.2.1 and 6.2.2, 

respectively.  

 

      To account for the strain path shift as a consequence of the tool contact pressure, the stretch-bend 

equilibrium equation was derived from the fundamentals of bending mechanics for general loading. The 

deformation is prescribed through a constant major strain increment on the convex layer and was selected 

over adoption of tension per unit width (Hill, 1950; Hudgins et al., 2010, Alexandrov et al., 2011) for 

experimental correlation. From a practical consideration, tension per unit width appears less intuitive and 

may not be readily available unless using finite-element simulations. In contrast, the strain increment can 

be retrieved from DIC and the severity of stretch-bending is expressed in a practical manner. The strain 

boundary conditions applied to a differential volume element are depicted in Figure 59a and give rise to 

the stress state in Figure 59b. Note that the stress components denoted with an asterisk represent the 

resultant of the applied strain increment to mimic stretch-bending and, for convenience, are omitted in the 

subsequent analysis. Force equilibrium in the through-thickness direction, assuming ( )sin / 2 / 2,d d   

and neglecting second order terms yields   

 

( )1b c b c b c

dw dw
r d d dr

w w
      

 
+ − − = − − 

 
 (54) 

 

where the term /dw w  is attributed to the change in the sheet width as a consequence of the compressive 

tool contact stress that induces a shift of the strain path towards biaxial tension. Eq. (54) reverts back to the 

well-known bending equilibrium equation proposed by Hill (1950) for plane-strain bending ( / 0dw w = ) in 

the absence of tool contact pressure ( 0c = ).  

 

 
Figure 59: Differential volume element of the prescribed strain boundary condition (a) that gives rise to the stress state (b). 

The side view of the differential volume element (c) schematically illustrates the change in the sheet width as a consequence 

of the compressive tool contact stress that is exploited in the concept of similar triangles (d) for the development of the 

modelling strategy in the total strain formulation. 
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Solving for the unknown bending stress in Eq. (54) depends on assumptions upon the linearity of the 

deformation history and is discussed in the following.  

 

6.2.1 Total Strain Formulation (TL) 

      The major strain for arbitrary locations within the sheet thickness was derived from volume 

conservation  
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  (55a-c) 

 

where   corresponds to the average change in the in-plane strain ratio of the cross-section and vanishes 

for proportional plane strain tension, e.g. in the absence of contact pressure. Neglecting sheet thinning 

during bending, the bending strain increment is 

 

0
1 0 ln ,       ,       

2

b b b b

m y y yb

m

tr
r r r r t t

r


 
= = − = + − 

 
 (56a-c) 

 

where supercript b is utilized to highlight variables attributed to bending. Utilizing the strain prescribed on 

the convex layer and Eq. (55a), the convex layer radius due to bending is obtained and utilized with Eq. 

(56c) to numerically solve for the unknown sheet thickness, t  
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 (57a,b) 

 

The equivalent plastic strain is obtained from the incremental plastic work balance and volume constancy  

 

( ) ( ) ( ) ( ) 1,     , ,    , 1 , 1 ,p p p

eq eq eqd d C d C k              = = = + − +    (58a-c) 

 

where the strain increments are replaced with total strains in the special case of monotonic proportional 

stressing. The functional forms of ( ),C    and ( ),k    have an explicit dependence upon the stress state 

and are governed by the modelling assumptions. For plane-strain loading and von Mises plasticity, the 

stress state dependence for C  vanishes and reduces to the scalar value of 2 3  but is not applicable to 

general loading.  
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To solve the ordinary differential equation (ODE) in Eq. (54), the concept of similar triangles, visualized 

in Figure 59d was employed to maintain the geometry and to establish a relationship between the 

infinitesimal width change, dw , and the total width change of the sheet cross-section, w , such that  
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1 1
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+  
 (59a-c) 

 

where 
1

mem  represents the average membrane strain of the cross-section. Substitution of Eq. (59b) into Eq. 

(54) and adoption of the dimensionless stress ratios defined in Eq. (8c), (9b), and (50b,c) leads to  
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−
=  (60a,b) 

 

where 
b  is the only unknown variable. It is noted that a linear through-thickness evolution of the contact 

pressure, defined in Eq. (60b) is employed where 
0c  corresponds to the prescribed contact pressure on the 

concave layer. The contact stress ratio is maintained constant to mimic a proportionally evolving contact 

pressure with the major stress.  

 

      For simple yield functions and constitutive models, Eq. (60a) can be integrated analytically for material 

zones that undergo the same (monotonic) deformation history. In the present study, a two-zone model was 

proposed that divides the cross-section into a tensile and compressive zone for material layers located above 

and below the neutral layer, respectively. For simplicity, reverse loading was neglected in the total strain 

formulation and the neutral layer was assumed to coincide with the unstretched layer, derived from volume 

conservation of the cross-section 

 

1

0 0

exp( )mem

u m m

t w
r r r

t w
= = −  (61) 

 

Closed-form solutions of Eq. (60a) were derived for von Mises plasticity and the Swift hardening model of 

Eq. (19) by making assumptions upon the stress-strain state of the cross-section. It is noted that since the 

boundary conditions in the stretch-bend model are only known on the convex layer, integration is performed 

unidirectional, starting from the convex layer where plane strain-plane stress prevails. Details on the stress 

integration are provided in Appendix E5.  
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Closed-form solutions for the bending stress ratio were derived for the TL-PST model that enforces plane 

strain tension of the cross-section. The in-plane strain and stress ratios are 

 

1
0,       

2
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+ +
= =  (62a,b) 

 

and the bending stress ratios in the respective zones are  
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(63a-c) 

 

Zone II (compression):  nr r  
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(63d,e) 

 

Close inspection of Eq. (63a,d) and the in-plane stress ratio in Eq. (62b) reveals that the effect of 
c  is 

essentially cancelled out. As a result, the contact pressure appears to have no effect on the necking limits 

in the PST model and will be further discussed in Section 6.3.2.  

 

An iterative procedure is required for the TL-BT model to account for the shift of the strain path towards 

positive minor strains in the presence of tool contact pressure. The stress ratios are obtained numerically, 

adopting the non-linear root finding function fzero in Matlab®. A new estimate in   of Eq. (55c) and the 

sheet thickness in Eq. (57a) is then computed until a prescribed tolerance of the change in the average strain 

path of 1×10-3 is met. The in-plane strain and stress ratios are  
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and the condition for the bending stress ratio is 
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Zone II (compression):  ,  1n nr r x = −   
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where 
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It is noted that the stress ratios denoted with a subscript 
nr  in Eq. (65b) are computed from Eq. (65a) for 

nr r=  and are related to the continuity condition of the normal stress in Zones I and II. At the neutral layer 

( ) ( )3 3

I II

n nr r =  that is analogous to ( ) ( )I II

n nr r = −  but requires inversion of the sign since the stress 

ratio is defined with respect to the in-plane stress, which is positive and negative in Zones I and II, 

respectively. Relative to the TL-PST model for which 
b  could be solved analytically, computing 

b  in 

the TL-BT model in Eq. (65a,b) is more complex and requires numerical methods due to the explicit 

dependence of ( ),C    and ( ),k    upon the stress state 
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where 
nx  is introduced to account for the compressive stress in the primary loading direction if the material 

layer is located below the neutral layer.  

 

6.2.2 Incremental Strain Formulation (IL) 

     The equivalent plastic strain was integrated in a multi-layer model to trace out the deformation history 

of each material layer. The sheet thickness was divided into layers defined through the dimensionless 
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parameter   ranging from 0 (convex layer) to -1 (concave layer), where the current radius is expressed 

through the convex layer radius and the sheet thickness. The major strain increment is derived by taking 

partial derivatives of the total strain formulation in Eq. (55a) to arrive at  
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 (67a,b) 

 

where d  corresponds to the incremental change in the average strain path between steps (see Eq. (55c)). 

The incremental change in the sheet thickness, dt , is computed from Eq. (67b) by utilizing the strain 

increment prescribed on the convex layer in Eq. (53b) and establishing relations for the yet unknown 

quantities  
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where the change in the convex layer radius, ydr , is computed from the bending strain increment 
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(68b-d) 
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and the current sheet thickness, 
( 1)nt +

, is expressed in terms of the sheet thickness of the previous step, 
( ) ,nt

and current sheet thinning. Thus, the only unknown quantity in Eq. (68a) is dt  that is solved for numerically 

utilizing the fzero function in Matlab®. Adopting Eq. (67b), the instantaneous location of the neutral layer 

is readily determined from the condition of a vanishing major strain increment (
1 0d = ) 
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(69) 

 

which is utilized to determine the sign of 
nx  for integration of the equivalent plastic strain. To better 

demonstrate how the location of the neutral layer is embedded in the plasticity equations, the ratio of the 



90 

 

major stress to the equivalent stress in Eq. (8b), required to compute C  in Eq. (58c), is generalized for 

arbitrary yield functions  
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In light of the functional form of the major strain increment in Eq. (67b), derivation of closed-form solutions 

is no longer practical. The stretch-bend equilibrium equation in Eq. (54) is re-arranged and expressed in 

terms of the dimensionless stress ratios while noting that for small strain increments 

( )2 1/ , memd dw w d    = = , such that  
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where the change of the major membrane strain over the sheet radius is computed from the discrete 

increments of the radial change of Eq. (67a) and by noting that 
1 1 1( ) ( ) ( )mem bd r d r d r  = − . The algorithm 

utilized to solve the ordinary differential equation (ODE) in Eq. (71) is schematically illustrated in Figure 

60 and comprises a combination of Runge-Kutta and the non-linear root finding function fzero in the 

software Matlab®. In analogy to finite-element analysis, the layers of the cross-section are further 

discretized with integration points where Eq. (71) is evaluated. A total of 200 layers and 4 integration points 

over the layer were adopted. Integration is initiated from the convex layer where boundary conditions are 

known and the result of the last integration point of the respective layer serves as the boundary condition 

for solving the ODE of the subsequent layer. Details on the code implementation are provided in Appendix 

E4.  

 

 
Figure 60: Schematic of algorithm utilized to solve the ODE in the incremental multi-layer modeling approach. The sheet 

cross-section is divided into layers (num_lay) and integration points (num_i).  
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Stress integration is repeated with an updated estimate for the sheet thickness until convergence of   is 

obtained. Necking is evaluated from the CSR of Tharrett and Stoughton (2003) but based upon the triaxial 

instability limits that are governed by the boundary conditions (see Eq. (29a) for proportional stressing), 

referred to as the instantaneous concave side rule (iCSR). In the absence of necking, the equivalent plastic 

strain on the convex layer is assessed for potential fracture without a preceding neck by comparison to the 

user-defined equivalent fracture strain. The above procedure is repeated for the next strain increment until 

instability occurs.   

 

6.3 Limit Strain Prediction  

      The choice of the modelling strategy upon predicted limit strains was studied for von Mises plasticity 

and the Swift hardening model of Eq. (19) utilizing the same parameters as in Chapter 3 (K = 500 MPa, n  

= 0.1, and 
0  = 0.002). It is noted that reverse loading effects that may activate complex hardening behavior 

are beyond the scope of the present study. Nevertheless, all plasticity-related quantities required for 

computation of the back-stress tensor and softening terms are available in the proposed modelling strategy 

and are readily amenable to a kinematic hardening model for future studies.  

 

6.3.1 Neglecting Tool Contact Pressure  

      Model predictions were first compared to the special case of plane stress loading ( =1×10-10, 
c  = 0) 

in plane strain tension, representative of Marciniak tests, where closed-form solutions are available. The 

major strain evolution in Figure 61a confirms the vanishing strain gradient over the cross-section and the 

stress and strain ratios depicted in Figure 61b highlight proportional plane stress-plane strain tension over 

the entire cross-section. Therefore, as expected, the acute necking limits for all models are identical. 

 

  
Figure 61: Comparison of model predictions for plane stress loading in plane strain tension considering the major strain 

evolution (a) and the stress and strain ratios on the concave and convex layer (b). 
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First, contact pressures were neglected and similar to the work of Morales-Palma et al. (2017), evolving 

normal stresses were only due to bending. The convex layer remains in a state of plane strain-plane stress 

(Figure 62a) whereas a triaxial stress state evolves for material layers within the sheet thickness, as depicted 

for the concave layer in Figure 62b. The increase in the through-thickness stress ratio with ongoing 

deformation is a consequence of the developing normal stresses in bending and is balanced by the in-plane 

stress ratio to maintain proportional plane-strain stressing, reflected in a vanishing in-plane strain ratio. Due 

to monotonic stretching of the cross-section (  = 0.2, constant), all model predictions are in good 

agreement.  

 

  
Figure 62: Comparison of model prediction of the stress-strain state on the convex (a) and concave layer (b) for combined 

loading in the absence of contact pressure.  

 

The assumption of monotonic stressing is crucial to the adoption of the total strain formulation, but differs 

from the deformation history encountered in forming operations with appreciable bending when the sheet 

initially wraps around the punch. The two scenarios for the evolution of the stretch-bend ratio, visualized 

in Figure 63a, were studied. Consideration of an evolving stretch-bend ratio provides a realistic description 

of the deformation process in a forming operation, but requires a multi-zone model to accommodate 

sequential loading of the cross-section. The constant stretch-bend ratio of 0.4 was approximated from the 

average value of ( )1

mem  . Figure 63c-d depict the major and equivalent plastic strain evolution of the 

concave layer for both loading scenarios and highlight complications surrounding the adoption of the total 

strain formulation since the equivalent plastic strain is not cumulative. As a result, the consumed hardening 

rate in the compressive stage is not reflected in the instability calculation as shown in Figure 63b. A delay 

in plastic instability is erroneously predicted from a major strain of 26% in the incremental formulation to 

30% in the total strain framework. Necking limits between the constant and evolving stretch-bend ratio are 
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similar (
1  = 27% versus 26% major strain), but are expected to show a larger deviation for materials with 

a higher hardening rate. Therefore, an incremental approach is required for non-monotonic stressing. 

 

  

  
Figure 63: Effect of assumption upon the evolution of the stretch-bend ratio (a) on the hardening rate (b) and both the 

major strain (c) and equivalent plastic strain (d).  

 

The influence of the stretch-bend severity was studied for the IL-BT model in Figure 64. Overall, the 

superposition of bending delays strain accumulation for material layers within the cross-section. A larger 

value of   induces more bending and thus results in a larger strain gradient through the sheet thickness 

(Figure 64a). Since the formation of an acute neck is assumed to be controlled by the strain evolution on 

the concave layer, the higher stretch-bend ratio directly translates to an increase in the necking limit. 

Consideration of the instantaneous forming limit in the iCSR acts as a secondary factor that delays plastic 

instability. Through-thickness bending stresses evolve with the stretch-bend severity (Figure 64b) and lead 

to a larger magnitude of the critical subtangent that yields larger in-plane forming limits.  
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Figure 64: Effect of stretch-bend ratio on the major strain accumulation on the concave and convex layer (a) and 

implications on the resulting through-thickness stress ratio (b).  

 

For  = 0.3, the in-plane necking limit increased from 0.098 to 0.120 that has direct implications on the 

strain on the convex layer but is not considered in the traditional CSR, which neglects the local boundary 

conditions. The necking limits on the convex layer, identified from the iCSR, are visualized for the IL-BT 

model in Figure 65. Note that in analogy to the study of Neuhauser et al. (2016), a constant formability 

gain was assumed for remaining stress states such that a constant offset – determined from plane strain 

loading – is employed upon the in-plane forming limit curve. Even when neglecting contact pressure effects, 

superposition of bending to in-plane stretching has a strong effect on plastic instability with a predicted 

formability gain of 26%, 58%, and 106% for stretch-bend ratios of   = 0.1, 0.2, and 0.3, respectively. 

 

  
Figure 65: Effect of stretch-bend ratio on the in-plane forming limit (a) that is utilized to identify the formation of an acute 

neck on the convex layer employing the iCSR (b).  
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Figure 66 when a compressive tool contact stress is superimposed. It is noted that the through-thickness 

stress ratio,  , now represents the resultant ratio with two contributions arising from bending and 

compressive contact stresses. For a constant stretch-bend ratio of   = 0.2 and a contact stress ratio of 
c  

= -0.1, the convex layer remains in plane strain tension, but the stress-strain state on the concave layer 

varies among the modelling strategies. The PST model remains in plane strain tension, but the BT model 

captures the shift away from plane strain tension to biaxial stretching reflected in   > 0 and   > 0.5.  

 

  
Figure 66: Comparison of model prediction of the stress-strain state on the concave (a) and convex layer (b) for combined 

loading in the presence of contact pressure. 

 

Thus, even for monotonic straining, the presence of a compressive normal stress induces a non-proportional 

deformation history and, from an academic perspective, requires an incremental analysis. Nevertheless, the 

evolution of the in-plane strain ratio on the concave layer indicates that   remains approximately constant 

(initial value of 0.069 and final value of 0.066), which explains why the total strain formulation (TL-BT) 

is in agreement with the incremental model (IL-BT) for the selected conditions. This observation is inherent 

to low values for   that was shown in Figure 58 to result in negligible or small changes in  . The effect 

of the magnitude of the contact pressure upon necking limits was studied for the incremental strain 

formulation and a constant stretch-bend ratio of 0.2. It was found that the contact pressure only affects the 

strain distribution in the IL-BT model, but has no effect in the IL-PST as depicted in Figure 67a-b. The 

major in-plane strain limit in the IL-BT model is increased for larger contact stresses, but the strain is not 

accumulated slower as observed for higher stretch-bend severities (refer to Figure 64a). The increase in 

the in-plane forming limits are tied to the resulting through-thickness stress ratio and the shift in the strain 

path. In the IL-PST model (Figure 68a), the resultant through-thickness stress ratio on the concave layer is 

constant regardless of the applied contact pressure, whereas the IL-BT model (Figure 68b) predicts an 

increase in   for larger contact pressures that delays instability. 
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Figure 67: Comparison of predicted major strain evolution for the IL-PST model (a) and the IL-BT model (b).   
 

  
Figure 68: Comparison of resultant through-thickness stress ratio for the IL-PST model (a) and the IL-BT model (b).   

 

Nevertheless, the change in the through-thickness stress ratio from   = -0.049 to   = -0.051, -0.053, and 

-0.055 for a contact stress ratio of 
c  = -0.1, -0.2, and -0.3, respectively would only lead to a marginal 

increase in the plane strain limit strains. In fact, it is the shift in the strain path from plane strain tension to 

positive minor strains that is the driving factor to delay plastic instability for compressive contact stresses 

in the BT model. Since the magnitude of the strain path shift is governed by the magnitude of the contact 

stress ratio, a larger contact pressure induces a greater shift of the strain path (see Figure 69b), which is 

associated with a stronger delay in plastic instability. The PST model fails to capture this effect (see Figure 

69a), such that the predicted acute necking limits are not affected by the contact pressure.  
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Figure 69: Comparison of predicted in-plane strain ratio in the IL-PST model (a) and the IL-BT model (b).  

 

The increase in the in-plane forming limit as a consequence of the shift in the strain path is governed by the 

shape of the forming limit curve for stress states beyond plane strain tension. The S-shape in the 3D Swift 

model (proportional stressing) as depicted in Figure 70a is particularly favorable since the diffuse necking 

limits are larger for biaxial strain paths but depend upon boundary conditions of the deformation process. 

Adoption of the Dorn model (Dorn and Thomsen, 1947) for proportional stressing with a prescribed minor 

load results in an approximately straight line across stress states from uniaxial tension to biaxial stretching. 

In this case, the in-plane forming limits do not benefit from the induced shift in the strain path. Nevertheless, 

there is a secondary effect associated with the strain path related to the localization process. Only for plane 

strain loading, diffuse and acute necking limits are identical for a strain-rate independent material whereas 

for remaining strain paths, forming limits associated with an acute neck are usually higher. Therefore, the 

necking limits in the IL-BT model were distinguished between forming limits associated with an acute neck 

when the concave layer is subjected to plane-strain tension and with a diffuse neck for remaining strain 

paths. Acute necking limits on the concave layer, computed from the GISC for proportional stressing, are 

overlaid with the strain evolution on the concave layer in Figure 70a. For identification of the acute necking 

limits on the convex layer in Figure 70b, it was assumed that the strain gradient over the sheet thickness at 

the onset of diffuse necking remains constant during localization. For small contact pressure values, diffuse 

and acute necking limits are similar and the complexity added through modelling of the localization process 

may not be warranted. In this case, diffuse necking limits may serve as a first order approximation of the 

acute limit strains. 
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Figure 70: Effect of the induced shift in the strain path as a consequence of compressive tool contact stresses upon acute 

necking limits on the concave layer (a) and convex layer (b).  

 

6.4 Application to the 3rd Gen 1180   

      To demonstrate applicability of the developed instability framework to AHSS for automotive 

lightweighting, necking limits of the IL-BT model were contrasted with the characterized forming limits of 

the 3rd Gen 1180 V2 in Chapter 5. It is noted that a direct comparison between predictions and experiments 

is not intended at this point, which would require a contact pressure model and a kinematic hardening model 

to account for reverse loading effects.   

 

Model predictions are depicted in Figure 71. Constant stretch-bend ratios of   = 0.09 and   = 0.4 were 

adopted for the Nakazima and the ASB test, respectively, which corresponds to the approximate stretch-

bend ratios when necking was detected in the experiments (see Figure 56b).The contact pressure of 
0c  = 

-0.15, linearly distributed through the sheet thickness, was selected to yield good agreement with the plane 

strain necking limit and was maintained constant for the predictions in both the Nakazima and the ASB 

tests. It is noted that the process conditions in the Nakazima test were simplified to single-curvature 
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bending. Consistent with the linearized necking limits in the Nakazima tests, the predicted FLC for in-plane 

loading was linearized following the methodology discussed in Section 3.5. Overall, the IL-BT model could 

successfully capture the overall trend in how plastic instability is delayed for higher bend severities and 

contact pressures.  

 

 
Figure 71: Predicted forming limits for different stretch-bend severities and comparison to conducted formability tests for 

the 3rd Gen 1180 V2 AHSS.  
  

6.5 Discussion on the Formability in Combined Loading          

      The present study provided a control algorithm to resolve stress-strain gradients in plane strain stretch-

bending that was coupled with the GISC of Chapter 4 to mechanistically predict acute necking limits while 

accounting for both bending normal stresses and compressive tool contact stresses. The effect of a 

superimposed contact pressure to the stress state in plane strain stretch-bending was derived on continuum 

level and shown to effectively induce a shift of the strain path to positive minor strains. Plasticity-related 

equations were derived from general bending mechanics considering a simplified total strain formulation 

and a general incremental multi-layer approach. Among the developed modelling strategies, only the 

incremental multi-layer model, which accounts for the strain path shift (IL-BT), could capture the 

dependence of the contact pressure upon necking limits and account for compressive loading of the concave 

layer. It was found that plastic instability in plane strain stretch-bending in the presence of a compressive 

tool contact stress is caused by four factors:  

(i) The through-thickness strain gradient causes a delay in the accumulated strain on the concave 

layer such that the in-plane necking limit is reached later. 

(ii) Compressive normal stresses as a consequence of bending mechanics lead to a larger critical 
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(iii) The shift in the strain path to positive minor strains that may be associated with higher in-plane 

necking limits. 

(iv) The localization process from a diffuse to an acute neck that is associated with higher limit 

strains.   

It is noted that the contribution of each factor is dependent on the process condition (e.g. the magnitude of 

the contact pressure and the stretch-bend severity) and the local boundary condition of the deformation 

process, e.g. how the load and tractions are applied, which affects the instability condition. 

 

The simplified modelling approach of enforcing plane strain tension upon the entire cross-section (TL-PST 

and IL-PST) could capture the increase in necking limits in combined loading, but failed to predict a 

secondary delay in plastic instability due to tool contact pressure. The total strain formulation, while 

attractive due to its simple implementation, is problematic when contributions of stretching and bending 

are considered simultaneously since the equivalent plastic strain is not cumulative, which limits the 

deformation to monotonic tension.  

 

      Application of the developed instability framework to the experimental test campaign of the 3rd Gen 

1180 V2 in Chapter 5 demonstrated the capability of the IL-BT model to capture the overall trend in the 

formability for a constant stretch-bend ratio and a contact stress ratio of -0.15. The instability framework 

in its current form can be utilized to generate acute necking limits for different bend severities for input into 

commercial FE software, e.g. AutoForm. The contact pressure, its evolution, and through-thickness 

distribution present large factors of uncertainty, but can be approximated from simulations for the respective 

forming operation and input into the theoretical model. 
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7. Conclusions 

      The presented research has provided insights into the effect of tool contact pressure and the importance 

of both process and local boundary conditions on plastic instability in sheet metal forming. Forming limits 

were experimentally characterized over a range of different conditions from in plane-plane stress loading 

in the Marciniak tests to out-of-plane loading in the Nakazima and angular stretch-bend tests. The limiting 

case of abrupt fracture without a preceding neck was studied in the tight-radius bend test where failure was 

determined from a novel fracture detection method. Considering the strong dependence of the process 

conditions (stretch-bend severity and contact pressure) on the necking limits of the studied 3rd Gen 1180 

V2, modelling strategies were developed to account for the instantaneous nature of the forming limits. The 

physically-derived Generalized Incremental Stability Criterion (GISC) was developed from the work of 

Hillier (1963) to compute the diffuse localization process from the concept of neutral incremental stability 

for a continuous transition of the stress state. The boundary conditions of the deformation process are 

embedded in the critical subtangent of the GISC. A control algorithm was developed to resolve evolving 

through-thickness stress-strain gradients during plane strain stretch-bending from the fundamentals of 

bending mechanics and was coupled with the GISC. The main outcome of this research is the development 

of an instability framework to predict acute necking limits in combined plane-strain loading while 

accounting for the local boundary conditions of the deformation process under complex stress states. This 

framework will play an important role in the product design stage of automotive lightweight components 

to leverage formability gains by assessment of both process and local boundary conditions.       

The following conclusions can be drawn from this research: 

❖ The calibration technique of the constitutive model may have a significant effect on the accuracy 

of forming limit predictions and phenomenological mapping criteria. The plastic uniform 

elongation, identified in a tensile test, is to be enforced in the calibration of the hardening model to 

avoid artefacts of a shift of the FLC0. The material hardening behavior should be experimentally 

characterized to strain levels associated with biaxial limit strains, e.g. in shear or bulge tests.  

 

❖ Marciniak limit strains should be utilized to assess correlations with analytical plane stress models, 

consistent with the physics of the framework of in plane-plane stress loading. Instead, adoption of 

Nakazima limit strains may lead to incorrect conclusions unless limit strains are corrected for 

apparent process effects associated with out-of-plane triaxial loading. Identification of the limit 

strains plays a vital role in the non-linear strain path corrections.  

  

❖ The phenomenological stress-based mapping criteria to account for the contact stress feature a 

direct dependence of the mapped limit strains upon the material hardening rate. Stark formability 
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gains are predicted for low-hardening alloys with a saturation-type hardening behavior even for 

infinitesimally non-zero normal pressures. Analytical solutions derived from the Hillier instability 

framework support appreciable formability gains for proportional triaxial stressing but the increase 

in limit strains is an order of magnitude smaller than predicted by the stress-based mapping 

methods. The proposed work-based mapping under a constant in-plane stress ratio provides some 

correlation with the analytical solution for non-proportional stressing under a constant contact 

pressure but is limited to a hardening exponent of n = 0.1.  

 

❖ The presence of a compressive normal stress generally leads to a delay in plastic instability. The 

magnitude of the formability gain is governed by the magnitude of the contact pressure and the 

underlying boundary conditions, e.g. how the normal pressure is applied. The assumption that the 

contact pressure proportionally increases with the major stress – equivalent to a 3D Swift model – 

provides the largest formability gain among the studied conditions. Non-proportional stressing 

under a constant contact pressure constitutes the lower bound of the formability increase since the 

contact pressure only provides stability via the constitutive model.  

 

❖ The limitation of the Hillier framework to diffuse necking is overcome in the Generalized 

Incremental Stability Criterion (GISC). The concept of neutral incremental stability is adopted to 

compute the quasi-stable localization process associated with a transition of the stress-strain state 

to plane strain tension. It is demonstrated that the 2D MMFC of Hora et al. (2013) is just one special 

case of the general framework under the assumption of proportional stressing with a prescribed 

minor load or approximate proportional loading.  

 

❖ Characterization of the plane strain fracture strain is crucial in the presence of appreciable bending 

that may lead to the suppression of tensile instabilities and abrupt fracture without a preceding neck. 

For ductile alloys or thin materials, reliance upon the punch force for fracture identification in the 

VDA 238-100 tight radius bend test may lead to inconclusive results. A reduction in the punch 

force is a natural consequence of the kinematic boundary condition of the test frame even in the 

absence of material fracture. The current VDA 238-100 specification does not account for these 

limiting cases.  

 

❖ The developed stress-based failure metric remedies the shortcomings of inconclusive results 

without introducing new parameters. Thinning of the cross-section is accounted for – either through 

DIC or a phenomenological equation – to avoid complications surrounding a constant bending 

moment for low-hardening materials. Consideration of the major strain rate evolution sheds light 

into potential folding over of the specimen associated with a reduction in the strain rate relative to 

an acceleration of the major strain in the case of material fracture. 
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❖ The effect of a superimposed contact pressure to plane strain stretch-bending essentially causes a 

shift of the strain path away from plane strain tension to positive minor strains. The magnitude of 

the strain path shift is governed by the magnitude of the contact pressure and the resultant through-

thickness stress, which has the bending effects embedded.  

 

❖ Accounting for the strain path shift in the ASB modelling technique (BT model) is crucial to capture 

the secondary delay in plastic instability when contact pressure is superimposed to the stress state 

in plane strain stretch-bending. The simplified modelling strategy that enforces plane strain tension 

over the cross-section (PST model) only captures the primary formability gain due to the 

superposition of bending effects. Necking limits in the PST model are not affected by the contact 

pressure.  

 

❖ Adoption of the total strain formulation (TL) to describe stretch-bending is problematic in non-

monotonic straining, e.g. when the sheet (partially) wraps around the punch, since the equivalent 

plastic strain is not cumulative. In this case, the incremental (IL) multi-layer model, which accounts 

for non-proportional non-monotonic stressing, is required.  

 

❖ The following factors were identified to contribute to a formability gain in combined plane strain 

stretch-bending with superimposed tool contact pressure:  

(i) Delayed strain accumulation on the concave layer due to bending effects 

(ii) Increase in the in-plane forming limit due to compressive normal stresses  

(iii) Strain path shift to positive minor strains that is associated with higher limit strains 

for proportional stressing 

(iv) Localization process to form an acute neck that is attributed to higher limit strains  

 

❖ Forming limits should be treated as an instantaneous metric that are a consequence of the process 

and boundary conditions, which constitute a forming limit surface (FLS) instead of a forming limit 

curve (FLC).  

 

❖ The 3rd Gen 1180 V2 AHSS exemplifies the potential of the 3rd Gen steels for automotive 

lightweighting. The traditional forming window of about 0.1 major strain when relying on the in-

plane forming limit is extended by a factor of approximately 2.6 when exploiting the delay in plastic 

instability due to bending effects and tool contact pressure. The IL-BT model is able to predict the 

general trend of the increased forming limits for the 3rd Gen 1180 V2.  
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8. Future Work  

      The following suggestions should be considered to expand on the research that was initiated as part of 

this thesis: 

❖ To avoid uncertainty surrounding the limit strain detection, a curvature-based method should be 

considered and compared to the reported limit strains. Of particular interest are the limit strains of 

the AA5182 aluminum alloy that were challenging to identify in the ISO 12004-2 method in light 

of PLC (Portevin-Le Chatelier) effects and asymmetric strain distribution.  

 

❖ The empirical thinning equation in the stress metric developed for fracture identification in the 

VDA 238-100 tight radius bend test should be extended to account for bend severity. To validate 

the evolution of the evolving tangential load in the V-Bend test, in addition to the currently installed 

load cell in the punch, a second load cell should be installed in the rollers to record the evolution 

of the tangential force.  

 

❖ The current limitation of the Generalized Incremental Stability Criterion (GISC) to principal 

loading should be extended to arbitrary stress states to shed light into the effect of shear stresses, 

e.g. caused by frictional effects, on acute localization under complex stress states. Similarly, the 

stretch-bend model should be generalized to arbitrary stress states. To mitigate the limitation of the 

GISC to rate-insensitive materials, the current methodology of the GISC should be extended to 

account for the delay in plastic instability due to rate sensitivity.  

 

❖ A finite-element study of different stretch-bend conditions should be conducted with a twofold 

purpose to (i) critically assess the validity of adopted contact pressure models in literature and (ii) 

assess model correlations of the predicted strain path shift and stress-strain gradients.  

 

❖ To properly account for reverse loading effects in non-monotonic deformation, the isotropic 

hardening model should be replaced with a mixed kinematic hardening model. Particularly for the 

3rd Gen 1180 V2 AHSS, a potential stress-state dependence of the complex hardening should be 

experimentally studied and incorporated in a modelling framework.   

 

❖ The assumption in the control algorithm that contact pressure effects and sheet thinning are only 

due to membrane stretching should be extended, e.g. by analyzing bending effects and sheet 

thinning in a separate subroutine that is then coupled with membrane stretching.  
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Appendix E: Derivations of Mathematical Relations  

E1: Bending Approximation in the Mod. LBF-Method 

      For bending scenarios that involve large punch radii, such as in the Nakazima tests (
pr  = 50.8 mm), the 

engineering theory of plastic bending can be adopted. Both sheet thinning and the shift in the neutral layer 

are neglected (Yu and Zhang, 1996) such that the radius of the unstretched layer is approximated from the 

location of the mid-layer, 
mr . The major strain on the convex layer is 

 

1 ln ln ln 1
y p

m p p

r r t t

r r r


   + 
= = = +        

     

 (E1) 

 

where 
yr  is the radius of the convex sheet layer. Note that due to the large punch radius relative to the sheet 

thickness, t , the mid-layer is approximated from the punch radius, 
pr .  

 

For forming operations that involve appreciable bending, such as in the angular stretch-bend tests or the V-

Bend test, the bending approximation in Eq. (E1) is replaced with the maximum tensile strain at the onset 

of yielding of the neutral layer 

 

1 ( ) ln lnn n
n

u m

r r
r

r r


   
=    

   
 (E2) 

 

where 
nr  and 

ur  are the radii of the neutral and unelongated layer, respectively. For simplicity, the material 

is treated as rigid perfectly plastic (RPP) such that the unelongated layer coincides with the mid-layer (Hill, 

1950). Following the work of Yu and Zhang (1996), the relative curvature,  , can be expressed in terms of 

the sheet thickness, t, and the mid-layer radius to derive expressions for the radius of the concave and 

convex sheet layer 

 

1 1 1 1
,      ,       

2 2 2 2
i m y m
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t t t
r r t r r t

r
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 

   
= = − = − = + = +   

   
 (E3a-c) 

 

Hill (1950) showed that for a RPP material, the location of the neutral layer is determined through 

,n i yr r r=  which can be rewritten using Eq. (E3b,c) and substituted into Eq. (E2) to arrive at  

 

2 2
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1 ,       ( ) ln 1
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t
r r r r

 
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

 
= = −  − 
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 (E4a,b) 
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Rearranging Eq. (E4b) and adoption of Hooke’s law and von Mises plasticity to approximate the maximum 

elastic strain, y

el , leads to the critical relative curvature when yielding of the neutral layer occurs 

 

( )
2

1
2

1
2 1 exp 2 ,    0.002,    ( ) ln ln 1

21

y y yy y

y el el y

m

rv
r

E rv v

 
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   −
= − − =   = +   

− +   
 (E5a-c) 

 

where v  represents the Poisson’s ratio, E  the Young’s modulus, and 
y  the yield stress. The critical 

relative curvature at the onset of yielding of the neutral layer, 
y , is then adopted to compute the major 

strain on the convex layer in Eq. (E4b). 

 

E2: Phenomenological Stress Mapping for Power Law Hardening Model  

      Following the work of Smith et al. (2003), limit strains are mapped between plane stress and triaxial 

stress states under (i) a constant principal in-plane stress ratio and (ii) a constant major principal stress. It 

is noted that in the process correction methods of Min et al. (2016), reverse mapping was adopted to map 

limit strains from the current (triaxial stress space) into plane stress space. Assuming that no softening or 

damage occurs, the equivalent stress is equal to the flow stress ( )p

eq eq  =  and is expressed in terms of 

 

( ) ( )
3

,2 2 3 3 21 1 1

2 2 3 2
,      ,      

D
p D D D D D

eq eq eqD D D D
eq eq

k
k k

k k

  
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 
= = = = =  (E6a-c) 

 

where superscripts 3D and 2D indicate a triaxial and plane stress state, respectively. For power law 

hardening ( )
n

p
eqK = , Eq. (E6a) simplifies to  

 

( ) ( )

1
3 3

,2 ,3 ,2 ,3

2 2

D D nn n
p D p D p D p D

eq eq eq eqD D

k k

k k
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 
 (E7) 

 

which involves inversion of the hardening model. Adoption of the incremental plastic work balance yields 

 

  2 2
1

1 1

:
( , ) 1 (1 ) ,       p p i i

eq eq

d N
d k

d N

  
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 
= = = + − + = =  (E8a,b) 

 

where 
1  represents the major strain under proportional coaxial straining, k  the ratio of the major stress 

with respect to the equivalent stress,   the principal in-plane stress ratio,   the principal through-thickness 
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stress ratio and   the principal in-plane strain ratio that is computed from the normal vectors, 
iN . Eq. 

(E8a) is then utilized to express the equivalent plastic strain in Eq. (E7) through  
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3
2 2 2 3 3 3 3

1 1 2
1 1 (1 )

D n
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+ = + − +        

 
 (E9) 

 

Rearranging of Eq. (E9) leads to the ratio of the major strains in plane stress and 3D stress space 
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 (E10) 

 

E3: Derivation of the Dorn Instability Model  

      The critical subtangent of the Dorn model (Dorn and Thomsen, 1947) is derived from the general Hillier 

framework. First, the original form for instability is re-casted in terms of the Hillier critical subtangent. 

Assuming that there is no softening or damage, ( )p

eq eq  = . Instability in the Dorn model is reached when 

the major hardening rate is equal to the major stress, such that  
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Adoption of the associative flow rule 
eqi

ip

eq i

N
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 
 and using Eq. (E11b) leads to  
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 (E12) 

 

Rearranging of Eq. (E12) yields  
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1 1
( ) ,       constant

p Dorn

eq eq
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 
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Assuming proportional loading, a relation between the major and minor load rate is established. The partial 

derivative of the applied traction with respect to the equivalent plastic strain for proportional loading is  
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Rearranging of Eq. (E14), the major and minor load rates are  
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 (E15a-c) 

 

where   is not constant and will evolve with deformation to maintain proportionality of the applied loads. 

Noting that the partial derivative 
1 / p

eq   in Eq. (E15a) is known from Eq. (E14) and replacing the 

traction, 
1 , with the material stress, 

1 , the critical subtangent of the Hillier framework yields   
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 (E16) 

 

Assuming that at the instant of instability, the major load rate vanishes, Eq. (E16) simplifies to  
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Adopting the incremental plastic work balance for plane stress loading, it is shown that  
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such that the critical subtangent reduces to 1

1( )z N − =  that appears similar to the Dorn solution in Eq. 

(E13a) but differs by the in-plane stress ratio, which is taken as constant by Dorn and Thomsen (1947) but 

evolves in proportional loading.  

 

      Instead, the boundary conditions required to obtain the Dorn solution with a constant stress ratio are 

identified under proportional stressing when the major load reaches a maximum. The critical subtangent 

yields   
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 (E19) 

 

Setting Eq. (E19) equal to the critical subtangent of Dorn in Eq. (E13a), it is apparent that there must be a 

non-zero load rate in the minor loading direction of the following form 
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E4: Details on Code Implementation  

      A schematic of the code structure for implementation of the Generalized Incremental Stability Criterion 

(GISC) is depicted in Figure E1.  

 

 
Figure E1: Schematic of code structure for implementation of the GISC.  
 

      A schematic of the code structure for implementation of the control algorithm to resolve evolving stress-

strain gradients in plane strain stretch-bending is shown in Figure E2. The Fourth-Order Runge-Kutta 

method was employed to perform the through-thickness stress integration of  
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where  
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The right-hand side of Eq. (E21a) is defined through f  

 

( ) ( ) ( )1
3 3 3

1
( , ) , , ( , ) , ( , )

mem
p

n eq

d
f r k x

r dr


              = − +

   (E22) 

Initialize variables: 

1

3

4

1

,  , ,  = 0

1x10

0.1

1x10

eqcount flag

tol

d

 





−

−

=

= −

=
for 0 : :1 = 

1count count= +

1 1 1d  = +

Plasticity-related variables
2 2

1 1

 
=

 

d N

d N





=

Critical subtangent

Check for diffuse necking

eq

i

i

N





=


1

1 1

1
If 

     1

else

end

eq

k

z N

flag






 
  

  

=

while 1flag 

end while

while tol 

1 1 1d  = +

Update plasticity model and z

Compute change in strain path 
1

1
1

eq

eq t td k h d d
z

 
    



−

+

   
= − → = +   

  

Solve for new principal stress ratio ( )

( )
2 12

1

1 1 1

,

,

t

t

t

Nd

d N

 


  

+

+

+

= =

1

eq

k



=

end while

1
,  ,  ,  iN k

z


end for

H
o

m
o

g
en

eo
u

s 
d

ef
o

rm
a

ti
o

n
D

if
fu

se
 lo

ca
liz

a
ti

o
n

 

 3 3

1 1

1 1 1 j

p
jeq j eq

dF
N N

z A d


  

 




  = =

 
= +   





124 

 

 

Integration is initiated from the convex layer, 
0yr r= , where plane stress-plane strain prevails, 

3 0 3,0( ) 0r = = . Thus, the first Runge-Kutta step, ( )I , is known and the bending stress ratio is 
( ) 0I

b =  

such that  
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where j  represents the step size – radial distance – between two integration points. The result of Eq. (E23b) 

is then utilized to solve for the second Runge-Kutta step, ( )II . First, the unknown bending stress ratio, 

( )II

b , is solved for by noting that 
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Adopting numerical methods, e.g. the non-linear root finding function fzero in Matlab®, ( )II

b  is obtained 

from  
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and the second Runge Kutta step can be computed utilizing Eq. (E23a) 
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Similarly for the third Runge-Kutta step 
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and the fourth Runge-Kutta step 
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( )( ) ( )

0 3,0,IV IIIjf r j  = + +  (E26b) 

 

Compiling the results, the evolution of the resultant through-thickness stress at the first integration point is    
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For computation of the subsequent integration point, (1)

3  is prescribed as the new boundary condition and 

the above steps are repeated.  

 

 

Figure E2: Schematic of code structure for implementation of the incremental multi-layer model to predict plastic 

instability in combined loading.  
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E5: Through-thickness Stress Integration in the Two-Zone Stretch-bend Models    

      This section provides details on how the stretch-bend equilibrium equation (Eq. (54)) was integrated in 

the total strain formulation adopting von Mises (vM) plasticity and the Swift hardening model. The flow 

stress and hardening rate, h, are described through  
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 (E28a,b) 

 

where K, 
0 , and n are calibration parameters corresponding to the strength coefficient, pre-strain, and 

hardening exponent, respectively. It is noted that quantities specific to the von Mises yield function are 

denoted with a superscript vM.  

 

Total Formulation – Plane Strain Tension Model (TL-PST)   

      The in-plane strain and stress ratios are define as  
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where the variable 
nx  is introduced to account for the compressive stress in the major loading direction if 

the material layer is located below the neutral layer. The major and equivalent plastic strain are computed 

from 
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The stretch-bend equilibrium equation in Eq. (54) for 0 =  reduces to  

 

( )3 1

1
b c b cd d d dr

r
     = + = − −  (E33) 

 

In the two-zone stretch-bend model, the cross-section is divided into tensile and compressive loading for 

material layers located above and below the neutral layer, respectively. For simplicity, reverse loading 

effects are neglected such that the neutral layer, 
nr , coincides with the unstretched layer, 

ur , which was 

derived from volume conservation of the cross-section  
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where 
1

mem  and   correspond to the average major membrane strain and the average in-plane strain ratio 

of the cross-section, respectively. Employing the integration limits for the tensile zone and expressing the 

right-hand side of Eq. (E33) through dimensionless stress ratios of  
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yields 
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where 1nx = . Substitution of the Swift hardening model in Eq. (E28) and integration leads to  
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Enforcing plane strain-plane stress on the convex layer (
3( ) 0,  ( ) ( ) ( ) 0y y b y c yr r r r   = = = = ) and 

noting that for plane stress loading ( ) ( ) 2 3k C = =  yields  
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Expanding the left-hand side of Eq. (E38a) to 
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The closed-form solution for 
b  in Eq. (E39) is only feasible since the stress-dependence of C  vanishes 

for the PST model such that the term ( )
( )

( )

, ,
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, ,
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b c
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− −  effectively reduces to unity for 0  . 

Similarly, Eq. (E33) is integrated for the compressive zone ( 1nx = − )  
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where both k  and C  take on negative values. Recalling that 
n ur r=  in the two-zone model, Eq. (E40) 

yields  
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Expanding the left-hand side of Eq. (E41a) and rearranging yields  
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where 
3( )nr  is computed from the condition that the normal stress over the cross-section is to be 

continuous. Substitution of 
nr r=  into Eq. (E38a) and noting that 

n ur r=  in Eq. (E38c) yields  
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Substitute Eq. (E43a) back into Eq. (E42) leads to   
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Total Formulation – Biaxial Tension Model (TL-BT)   

      The in-plane strain and stress ratios are  
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and the quantities required for the strain computation are  
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where the explicit dependence of ( , )C    upon the stress state is embedded. The major and equivalent 

strain are computed in an iterative procedure since the average in-plane strain ratio over the cross-section, 

 , is initially unknown   
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The stretch-bend equilibrium equation of Eq. (54) is 
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Substitution of the Swift hardening model in Eq. (E28), expressing the right-hand side of Eq. (E48) through 

dimensionless stress ratios in Eq. (E35a-f), and integration leads to 
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Enforcing the boundary condition of plane strain-plane stress on the convex layer 

3( ( ) 0,  ( ) ( ) ( ) 0)y y b y c yr r r r   = = = =  and noting that for plane stress loading ( ) ( ) 2 3k C = =  

yields  
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where 1nx = . Expanding the left-hand side of Eq. (E50a) and rearranging finally yields  
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Recalling that 
b c  = + , the only unknown variable in Eq. (E51) is 

b  but due to the explicit dependence 

of both ( , )k    and ( , )C    on 
b , Eq. (E51) needs to be solved for numerically, e.g. using Newton-

Raphson or the non-linear root finding function fzero in Matlab®. 

 

Similarly, Eq. (E48) is integrated for the compressive zone. Substitution of the Swift hardening model and 

integration yields  
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where 1nx = −  and thus leads to negative values for both ( ),k    and ( ),C   . Recalling that 
n ur r=  in 

the two-zone model, Eq. (E52) simplifies to   
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where  
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The stress ratios with a subscript 
nr  need to be computed from Eq. (51) noting that due to the continuity 

condition of the normal stress, 
3  in both zones is identical at the neutral layer such that 
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needs to be inverted since the stress ratio is defined with respect to the in-plane stress that is positive and 

negative in Zone I and II, respectively. Substitution into Eq. (E53a) finally yields  
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which is numerically solved for 
b . 

 

 


