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Abstract

Recent studies in relativistic quantum information have predicted that it is possible
to entangle two qubits tunably coupled to the same quantum field in its vacuum state,
by allowing the qubits to couple to the field for a very short amount of time, even if the
coupling time forbids the formation of a lightlike connection between the qubits. This is
made possible due to the correlations already present in the vacuum field. To date, no
experiments have been performed to demonstrate this phenomenon.

Recent work by the superconducting quantum devices (SQD) group has produced a novel
device, namely the superconducting flux qubit with a tunable ultrastrong coupler, has the
properties especially suited for an entanglement harvesting experiment. The device, which
allows light-matter interaction strength to be tuned from weak to ultrastrong coupling,
opens the possibility of a realistic implementation of the experiment.

In this thesis, we propose a circuit quantum electrodynamics (QED) experiment using
the newly designed device to detect the harvesting of entanglement from a one-dimensional
quantum field. First, we derive the necessary theoretical model that allows us to analyze
the feasibility of such an experiment. Then, we analyze the feasibility of the experiment
and calculate the optimal parameters that allow the most entanglement to be harvested.
Finally, using the optimal parameters, we propose a design for the experiment and validate
the design through simulations.
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Chapter 1

Introduction

1.1 Introduction

The harvesting of entanglement is a phenomenon where two quantum systems can become
entangled without a lightlike connection forming between them [27,28,31], made possible
by the preexisting correlations between spacelike-separated regions in a quantum field [32].
Aside from its importance in fundamental physics in quantum field theory, entanglement
harvesting is also a key component in measuring the topology of spacetime [21], in quantum
energy teleportation [14]. Moreover, entanglement harvesting has applications in quantum
metrology such as quantum seismology [5]. Despite the tremendous importance of the
phenomenon of entanglement harvesting, no experiment to date has been performed that
can demonstrate this phenomenon.

Circuit QED is the field concerned with the study of light-matter interaction between
artificial atoms such as superconducting qubits, and quantized electromagnetic fields [4].
Superconducting qubits are macroscopic nonlinear superconducting circuits that exhibit
the same quantum behaviours as microscopic systems, such as a natural atom. Compared
to natural atoms, superconducting qubits can be more easily manipulated and the coupling
strength between a superconducting qubit and a quantum field can greatly exceed that of a
natural atom.

A circuit QED experiment in 2017 [8] was able to demonstrate the ability for the coupling
between the superconducting qubit and the quantum field to enter the so-called ultrastrong
coupling (USC) regime, defined as the regime where the qubit’s photon emission rate ΓG is
more than 10% of the qubit’s transition frequency ∆. In the USC regime, the rotating-wave
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approximation breaks down and novel phenomenologies emerge. Much phenomena has
been predicted that can only be observed in this regime, including changes in the spectral
features and intensity of the qubits [10], as well as changes in the physical properties of the
qubits [9]. Due to the ability for artificial atoms to couple ultrastrongly to a quantum field,
circuit QED is one of the most promising fields to study the dynamics of entanglement
harvesting.

Recent work in the superconducting quantum devices (SQD) group, including [8]
and [29], has led to a novel superconducting flux qubit with a tunable coupler that can
couple to a one-dimensional quantum electromagnetic field from weak to ultrastrong coupling
and beyond. This opens up the possibility of devising and performing an entanglement
harvesting experiment based on this qubit. In this thesis, we analyze the feasibility of such
an experiment and devise a device and a protocol that can be used to demonstrate the
phenomenon of entanglement harvesting.

1.2 Outline of the Thesis

This thesis is organized as follows.
In chapter 2, we introduce the theoretical foundation required to analyze and design

an entanglement harvesting experiment based on the novel USC qubit. This includes
a discussion on the theory behind superconducting qubits, the control and readout of
superconducting qubits, the quantization of a transmission line, and the Unruh-DeWitt
model for light-matter interaction.

In chapter 3, we use perturbation theory to derive the expressions for the amount of en-
tanglement observable under realistic experimental conditions, including finite temperature
for the qubit and the transmission line. We find that non-negligible amounts of entanglement
can be harvested from the quantum field with suitable device design parameters and initial
qubit states.

In chapter 4, we present a device design and experimental protocol based on the
calculations in chapter 3. Furthermore, we simulate our experiment and determine that
it is realistic to generate enough entanglement between the qubits for detection using our
proposed device and experimental protocol.
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Chapter 2

Background

In this chapter, we introduce the background required for the design and implementation
of an entanglement harvesting experiment with superconducting flux qubits. This chapter
is organized as follows. In section 2.1, we introduce the theoretical foundation for a
superconducting flux qubit, including the concepts required for the control and readout of
such a qubit. In section 2.2, we introduce the circuit model of the transmission line and
its quantization. Finally, in section 2.3, we introduce the Unruh-DeWitt detector model,
which is used to model the dynamics of the entanglement harvesting experiment.

2.1 Superconducting Qubits

2.1.1 Josephson Junctions

The fundamental building block of superconducting qubits is the Josephson junction. The
Josephson junction is formed by coupling two superconductors with a thin barrier, which is
either an insulator, a non-superconducting piece of metal, or a physical constriction.

Brian David Josephson predicted in 1962 that in this configuration the macroscopic
wave function of the two superconductors overlap at the insulating barrier, providing a
means of tunneling without dissipation [17]. This mechanism is mediated by the tunneling
of Cooper pairs across the barrier.

The energy stored in a Josephson junction depends on the phase difference γ = γ1 − γ2
between the wavefunctions of the superconductors [24], given by

U = −EJ cos γ, (2.1)
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(a) SIS

S N S

(b) SNS

S S

(c) ScS

Figure 2.1: Different types of Josephson junctions. (a) A superconductor-insulator-
superconductor (SIS) junction, (b) A superconductor-metal-superconductor (SNS) junction,
(c) a superconductor-constriction-superconductor (ScS) junction.

where
EJ = ϕ0IC (2.2)

is the Josephson energy, with ϕ0 = Φ0/2π being the reduced magnetic flux quantum, with
the magnetic flux quntaum being defined as

Φ0 =
h

2e, (2.3)

and IC the critical current of the junction. The critical current IC is the maximum
supercurrent that can flow across the junction. This critical current is related to the normal
state resistance Rn, and the voltage gap Vg, of the junction, by the Ambegaokar-Baratoff
relation [1]

IC ≈ Vg
Rn

. (2.4)

Josephson predicted the two equations that relate the current and voltage across the
junction:

I = IC sin γ, (2.5)
and

V = ϕ0
∂γ

∂t
. (2.6)

These equations are known as the Josephson relations.
Note that the Josephson relations indicate that a Josephson junction can be seen as a

non-linear inductor. Calculating the partial derivative of the current with respect to time,
we find

∂I

∂t
= ∂I

∂γ

∂γ

∂t
= IC cos γ · V

ϕ0
, (2.7)

which can be rearranged to get the current-voltage relation of an inductor:

V = L(γ)∂I
∂t
. (2.8)
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Here, L(γ) is defined as
L(γ) = ϕ0

IC cos γ = LJ

cos γ . (2.9)

which is the phase-dependent kinetic inductance of the Josephson junction. LJ = ϕ0/IC is
called the Josephson inductance.

In fabricated Josephson junctions, there is also a shunt capacitance present, which we
can model with a capacitor with capacitance CJ in parallel with the junction itself. We
define the Josephson charging energy, EC , of a single Cooper pair as

EC = (2e)2
2CJ

. (2.10)

2.1.2 Superconducting Flux Qubits

Fundamentally, qubits are two-level quantum systems that can usually be manipulated and
observed from the outside. Qubits are the basic building blocks used to implement quantum
computers, and more recently, to probe the dynamics of various fundamental physics
phenomena. In practice, achieving the necessary conditions to do quantum computing,
such as long coherence times, accurate control and readout, and low susceptibility to
environmental noise, is quite challenging. There are many different promising candidates
for physical qubits, such as atoms, photons, quantum dots, and superconducting circuits
based on Josephson junctions.

There are three main archetypes of superconducting qubits, namely the phase, charge,
and flux qubits. The main distinguishing feature between these qubits is the regime they
operate in, which depends on the ratio between the Josephson and charging energies EJ/EC .
A charge qubit operates in the charging regime where EJ/EC � 1, whereas the flux and
phase qubits operate in the flux/phase regime where EJ/EC � 1.

In this section, we introduce the superconducting flux qubit, which is the archetype of
the tunable ultrastrong coupling qubit used for the entanglement harvesting experiment.

The basic flux qubit, as shown in figure 2.2, is a superconducting loop with three
Josephson junctions, with one of the junction being α (0.5 < α < 1) times the size than
the other two.

Because the Cooper pairs in a superconductor can be described by a macroscopic wave
function f ψ = |ψ|eiγ [3], the phase γ must be single-valued around a superconducting loop.
This introduces a phase quantization constraint

γ1 + γ2 + γ3 + 2πf = 2πn, (2.11)
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γ2

γ3

γ1 • f

Figure 2.2: Circuit diagram of the basic flux qubit. The crosses in the figure represent
Josephson junctions. An external magentic frustration f is applied to operate the flux
qubit.

where γi is the phase drop across junction i ∈ {1, 2, 3}, f = Φext/Φ0 is the magnetic
frustration, and n ∈ Z.

Using equations (2.2) and (2.11), we can write down the potential of the system as
UJ

EJ
= 2 + α− cos γ1 − cos γ2 − α cos(γ1 − γ2 + 2πf), (2.12)

assuming that the self-inductance of the loop Lg is much less than the Josephson inductance,
and that n = 0. We can calculate the minima of the potential to give γ1 = −γ2 = ±γ∗,
with

cos γ∗ = 1
2α. (2.13)

At the minima, the magnitude of the current is

Ip = IC sin γ∗ = ±IC

√
1− 1

4α2 , (2.14)

which is the persistent current flowing in the qubit loop. The direction of this current
depends on the phase, which can be controlled via the external flux Φext.

We can write down the full quantum mechanical Hamiltonian of the system as [23]

Ĥqb = 1
2

 P̂ 2
m

M2
m

+
P̂ 2
p

M2
p

+ EJ (2 + α− 2 cos γ̂− cos γ̂+ − 2 cos(2πf + 2γ̂−)) , (2.15)

where we have promoted the phases γ̂i to quantum operators, and we have defined γ̂± =
(γ̂1 ± γ̂2)/2. Because EJ � EC , phase states are well-defined and we can use them as a
basis to calculate the eigenstates, which can be solved numerically.
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To recover the qubit behaviour of the flux qubit, we can approximate its two lowest
levels by a two-level system using a tight-binding model [23]. Working with the persistent
current basis {|	〉 , |�〉}, we can write the Hamiltonian of the effective two-level system as

Ĥqb = − ε

2 σ̂z +
∆
2 σ̂x = 1

2

(
−ε ∆
∆ ε

)
, (2.16)

where σ̂x, σ̂y, σ̂z are the Pauli matrices,

ε = 2Ip(Φext − Φ0/2) (2.17)

is the magnetic energy of the system, and

∆ ≈ 4EJ√
αEJ/EC

e−0.15
√

4α(1+2α)EJ/EC (2.18)

is the qubit gap. For a typical design, the qubit gap is in the order of a few GHz, which is
accessible using existing microwave electronics equipment.

To diagonalize (2.16), we can apply a rotation

U = e−iθσ̂y =
(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
(2.19)

where
tan θ = ∆

ε
(2.20)

so that the qubit Hamiltonian becomes

Ĥqb =
√
ε2 +∆2

2 σ̂z ≡
h̄ωq

2 σ̂z (2.21)

in the rotated basis {|e〉 , |g〉}, where

|e〉 = cos θ2 |�〉+ sin θ2 |	〉 , (2.22)

|g〉 = cos θ2 |�〉 − sin θ2 |	〉 . (2.23)

These states can thus be identified as the ground and excited states of the qubit.
At the symmetry point, which is defined as the point with θ = π/2, |e〉 and |g〉 are in

superpositions of the persistent current states of equal magnitudes, so that the net current
is zero and the qubit generates no magnetic flux.
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On the other hand, when the qubit is biased far away from the symmetry point
(|θ − π/2|� 0), equations (2.22) and (2.23) show that the ground and excited states are
effectively the two persistent current states. Thus we can see that, far away from the
symmetry point, the qubit produces a nonzero magnetic flux with its sign dependent upon
whether the qubit is excited. We can exploit this phenomenon to read out the state of the
qubit by coupling the DC-SQUID to a readout resonator, so that the resonance frequency
of the resonator shifts depending on the qubit state. This shift in resonance frequency
can be detected, for example, by sending a microwave pulse at the unshifted resonance
frequency into the resonator and then detecting the response from the resonator.

2.1.3 Qubit Control

Any arbitrary pure state of the qubit can be written as a superposition of the ground and
excited basis vectors. Because only the relative phase between the coefficients of the basis
vectors have meaning, and the state as unit norm, we can write such as state |ψ〉 as

|ψ〉 = cos θ |g〉+ eiϕ sin θ |e〉 . (2.24)

|ψ〉 can be represented as a point on a unit sphere, known as the Bloch sphere, as seen in
figure 2.3.

|ψ〉

x

y

z

φ

θ

Figure 2.3: The Bloch sphere, with the qubit state |ψ〉 = cos θ |g〉+ eiϕ sin θ |e〉.

Controlling the qubit essentially means to rotate the qubit state vector around the
Bloch sphere. More specifically, we have two types of rotations: first, rotations that change
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the relative phase ϕ, called longitudinal rotations; second, rotations that change the qubit
population θ, called transversal rotations. Longitudinal rotations can be implemented using
the free precession of the qubit when placed in an external magnetic field. On the other
hand, transversal rotations can be implemented with oscillatory external magnetic fields.

In the persistent current basis, we can write the Hamiltonian of an oscillating external
magnetic field as

Ĥd = A

2 cos(ωdt+ φ)σ̂z, (2.25)

where A is the amplitude of the driving magnetic field, ωd is the driving frequency, and φ is
the phase shift of the driving field. In the eigenbasis {|e〉 , |g〉} of the qubit, we have

Ĥd = A

2 cos(ωdt+ φ)
(

ε

h̄ωq
σ̂z −

∆
h̄ωq

σ̂x

)
. (2.26)

In order to get a time-independent Hamiltonian, we can rotate the system Hamiltonian
Ĥ = Ĥqb+ Ĥd with U = exp(iωdtσ̂z/2), and apply the rotating wave approximation (RWA),
to find that

ĤRWA = h̄(ωq − ωd)
2 σ̂z −

A∆
4h̄ω (cosφσ̂x − sinφσ̂y) . (2.27)

Here we can see that the phase shift φ determines the rotation axis of the rotation applied,
and that when ωd = ωq, the qubit frequency, the qubit rotates purely transversely at a rate

ΩR = 2 A∆
4h̄2ωq

, (2.28)

which is called the Rabi frequency [6]. Thus, we can implement arbitrary longitudinal
rotations by varying the phase shift φ and the total applied time of the external driving
field.

2.1.4 Qubit Readout

In section 2.1.2, we noted that to implement the readout of a flux qubit, we can exploit
the fact that, when a flux qubit is biased far away from the symmetry point, it produces a
magnetic flux with a sign dependent on the state of the qubit. The detection of the sign
of the flux is done in practice using a superconducting device called a DC-SQUID, where
SQUID is an acronym for Superconducting QUantum Interference Device [15].

A schematic of the DC-SQUID is given in figure 2.4. Essentially, a DC-SQUID is a
superconducting loop with two Josephson junctions in parallel. To operate the DC-SQUID,
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a constant biasing current Ib is applied across the loop. Without any external field applied
to the loop, the current splits evenly into the two branches. When an external field is
applied, a circulating current Icirc is developed and the total induced currents of the two
junctions become Ib/2± Icirc. Whenever the magnitude of either of the induced currents
becomes larger than Ic, the critical current of the junction, a voltage develops across the
junction, and thus, by measuring the voltage across the DC-SQUID, we can obtain the sign
and the magnitude of the external field, with a periodicity of Φ0/2.

Note that when a voltage is develops across the DC-SQUID, the DC-SQUID becomes
resistive and enters the dissipative regime [19]. This causes the generation of quasiparticles,
which in turn increases the decoherence rate of the qubit. Furthermore, in this regime the
DC-SQUID emits microwave signals with broad spectral bandwidth that could potentially
disturb the qubit.

Ib

Ib

• f

Figure 2.4: Circuit diagram of the DC-SQUID. A biasing current Ib is applied to operate
the DC-SQUID.

There is an alternative mode of operation for the DC-SQUID, namely the inductive
mode, in which the dissipative state is avoided [18,19]. In this mode, we exploit the property
that the DC-SQUID acts like a non-linear inductor with its inductance dependent on the
external magnetic flux. Using this, We can detect the qubit state via the impedance shift
of the DC-SQUID.

2.2 Quantization of the Transmission Line

In this section, we introduce the transmission line and its quantization. The entanglement
harvesting experiment relies on the ability for two qubits to couple simultaneously to a
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one-dimensional scalar field [27,28]. This one-dimensional scalar field can be conveniently
provided by a transmission line, as we will see below.

A transmission line is a waveguide designed to allow arbitrary electromagnetic waves
to travel long distances with minimal decay or distortion. On a superconducting chip,
transmission lines are typically realized as coplanar waveguides, which consists of a center
conductor between two ground planes at some distance apart. The gaps can be adjusted to
achieve the desired impedance for the transmission line.

The transmission line is typically modelled by a long series of infinitesimally short
segments, each of which containing a series inductor and a shunt capacitance, representing
the distributed inductance and capacitance present in the transmission line. Figure 2.5
shows a few of these sections in series. Because we are working with superconducting
transmission lines, we can ignore any resistances in our model.

l0∆x

c0∆x

∆x

l0∆x

c0∆x

∆x

Figure 2.5: Circuit model of a short section of a transmission line.

Applying Kirchhoff’s laws to a single section, we find that

V (x+∆x, t) = V (x, t)− l0
∂I(x, t)
∂t

∆x, (2.29)

I(x+∆x, t) = I(x, t)− c0
∂V (x, t)
∂t

∆x. (2.30)

In the continuum limit ∆x→ 0, we obtain

∂V (x, t)
∂x

= −l0
∂I(x, t)
∂t

, (2.31)

∂I(x, t)
∂x

= −c0
∂V (x, t)
∂t

. (2.32)

These equations are known as the telegrapher’s equations.
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To proceed with quantization, we will first write down the Lagrangian and the Hamilto-
nian of the transmission line.

When working with the Lagrangian and Hamiltonian formulations, it is convenient to
use the flux node variable

Φ(x, t) =
∫ t

−∞
dτ V (x, τ). (2.33)

Note that the voltage and current are related to Φ by

V (x, t) = Φ̇(x, t), (2.34)

I(x, t) = − 1
l0

∂Φ(x, t)
∂x

. (2.35)

We can write the Lagrangian density as

L(x, t) = c0
2
(
Φ̇(x, t)

)2
− 1

2l0

(
∂Φ(x, t)
∂x

)2

, (2.36)

and the Lagrangian is simply
L =

∫ ∞

−∞
dxL(x, t). (2.37)

The Euler-Lagrange equation

d
dt
∂L
∂Φ̇

− ∂L
∂Φ = 0 (2.38)

applied to (2.36) becomes

c0Φ̈(x, t)−
1
l0

∂2Φ(x, t)
∂x2

= 0. (2.39)

We recognize this equation as the wave equation of the flux. Alternatively, this equation is
known as the Klein-Gordon equation for a freely propagating 1D scalar field in quantum
field theory. We can now see that transmission lines can provide the necessary interaction
field for the qubits for an entanglement harvesting experiment.

To solve this equation, we first write the ansatz as a plane waves expansion:

Φ(x, t) = 1
N

∑
k

Φk(t)eikx, (2.40)

where N is a normalization constant. Suppose that the transmission line is of length L;
then the wavevector k is discretized in units k = 2πm/L, m ∈ Z.
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For a single mode k, the wave equation becomes

Φ̈k(t) + ω2
kΦk(t) = 0, (2.41)

where we have defined

ωk = |k|v, (2.42)

v = 1√
c0l0

, (2.43)

as the frequency and speed of light in the transmission line respectively. The general
solution to equation (2.41) is Φk(t) = cke

−iωkt + c∗−ke
iωkt; so that

Φ(x, t) = 1
N

∑
k

(
cke

i(kx−ωkt) + c.c.
)
. (2.44)

Now we can calculate the conjugate momentum of the flux, the charge density q(x, t) =
c0Φ̇(x, t), as

q(x, t) = ic0
N

∑
k

ωk(−ckei(kx−ωkt) + c.c.). (2.45)

Through a Legendre transform, we find the Hamiltonian to be

H =
∫ L

0
dx

 1
2c0

q2(x, t) + 1
2l0

(
∂Φ(x, t)
∂x

)2


= 1
2N2

∑
k

(
c0ω

2
k(2|ck|2L) +

1
l0
(2k2|ck|2L)

)

= Lc0
N2 2

∑
k

ω2
k|ck|2

= 2
∑
k

ω2
k|ck|2, (2.46)

where for the last equality we’ve set the normalization constant to be N =
√
Lc0.

Defining amplitudes Ak =
√
2ωkck we can write

H = 1
2 (AkA

∗
k + A∗

kAk) (2.47)
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which has the form of a simple harmonic oscillator. Moreover, we have

Φ(x, t) = 1√
2Lc0

∑
k

1
ωk

(
A∗

ke
i(ωkt−kx) + c.c.

)
, (2.48)

q(x, t) =
√
c0
2L

∑
k

(
iA∗

ke
i(ωkt−kx) + c.c.

)
. (2.49)

We can now apply canonical quantization to the Hamiltonian. The first step of canonical
quantization is to promote the canonically conjugate variables to quantum operators. As
{Φ(x, t), q(x, t)} are the canonically conjugate variables for the transmission line, we promote
them to quantum operators obeying the commutation relation

[Φ̂(x, t), q̂(x, t)] = ih̄δ(x− x′). (2.50)

From equations (2.48) and (2.49), we find that

[Âk, Â
†
k′ ] = h̄ωkδkk′ . (2.51)

From this we can identify Âk =
√
h̄ωkb̂k, where b̂k is the photon annihilation operator in

mode k. Substituting into (2.47), we get

Ĥ =
∑
k

h̄ωk

(
b̂†kb̂k +

1
2

)
(2.52)

which is the sum of quantum harmonic oscillators corresponding to different modes k.
Finally, we can write the quantized flux field as

Φ̂(x, t) = 1√
L

∑
k

√
h̄

2c0ωk

(
b̂†ke

i(ωkt−kx) + h.c.
)
. (2.53)

2.3 The Unruh-DeWitt Model

The Unruh-DeWitt (UdW) detector model is an idealized model that captures the essence of
light-matter interaction, where a monopole detector is coupled to a massless scalar field [20].
This model is commonly used to study the entanglement effects in relativistic quantum
information (RQI), including entanglement harvesting.
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The monopole detector in a UdW model is usually a qubit with ground and excited
states |g〉 and |e〉 respectively, with energy gap h̄Ω. For n+ 1 dimensional spacetime, the
detector is coupled to the scalar field φ̂ via the interaction Hamiltonian

ĤI(t) = λχ(t)µ̂(t)
∫
dnxF (x− x0)φ̂(x, t). (2.54)

where λ is the maximum coupling strength, χ(t) is a switching function that turns on
coupling for a period of time with |χ(t)|≤ 1 for all t, F (x) is the spatial smearing function
that encodes the shape of the detector, x0 is the center position of the qubit, and

µ̂(t) = σ̂+eiΩt + σ̂−e−iΩt (2.55)

is the monopole moment of the detector, with σ̂+ = |e〉〈g| and σ̂− = |g〉〈e|.
A n+ 1 dimensional massless scalar field is governed by the Klein-Gordon equation [26](

1
c2
∂2

∂t2
−∇2

)
φ(x, t) = 0. (2.56)

If we solve it and quantize the solution, we obtain

φ̂(x, t) =
∫ dnk√

(2π)n2ωk

(
â†ke

i(ωkt−k·x) + h.c.
)
. (2.57)

Its conjugate momentum, which is defined as π̂(x, t) = ∂tφ̂(x, t), can be calculated as

π̂(x, t) =
∫ dnk√

2(2π)n
√
ωk
(
iâ†ke

i(ωkt−k·x) + h.c.
)
. (2.58)

As we will see in section 3.1, the interaction field of a flux qubit coupled to a transmission
line is in fact the 1 + 1 dimensional conjugate momentum π̂(x, t) of the scalar field φ̂(x, t),
rather than the scalar field itself.
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Chapter 3

Entanglement Harvesting With
Superconducting Flux Qubits

Recent studies [27, 28, 31] in relativistic quantum information have predicted that it is
possible to entangle two qubits tunably coupled to the same quantum field in its vacuum
state, by allowing the qubits to couple to the field for a very short amount of time, even if
the coupling time forbids the formation of a lightlike connection between the qubits. This
is possible due to the correlations already present in the vacuum field. In this chapter,
we seek to understand the conditions required to demonstrate this phenomenon with our
current experimental hardware.

This chapter is organized as follows. In section 3.1, we derive the form of coupling
between flux qubits and a transmission line, and we relate it to the Unruh-DeWitt model.
In section 3.2, we use a perturbative approach to derive the formulae of the expected
amount of entanglement that we can harvest with flux qubits coupled to a transmission
line. Finally, in section 3.3, we calculate the entanglement using parameters faithful to our
experimental setup.

3.1 Flux Qubit Coupled to a Transmission Line

In this section, we derive the coupling Hamiltonian between a flux qubit and an open
transmission line using the circuit quantization method introduced in [25].

The circuit model is shown in figure 3.1, where the flux qubit is coupled through its
γβ junction to an open transmission line. We can write the Hamiltonian of this lumped

16



l0∆x

c0∆x

∆x

l0∆xΦ0 Φ1Φa Φb

γ1 γ3

γ2

γβ

• f

l0∆x

c0∆x

Figure 3.1: Circuit model of a four-junction persistent current flux qubit glavanically
coupled to an open transmission line. The qubit shares the β junction with the transmission
line.

element circuit as

Ĥ =
N∑
i=0

q̂2i
2∆x c0

+
N−1∑
i=1

(Φ̂i+1 − Φ̂i)2
2∆x l0

+ (Φ̂1 − Φ̂b)2 + (Φ̂a − Φ̂0)2
∆x l0

+ Ĥqb, (3.1)

where c0 and l0 are the capacitance and inductance per unit length of the transmission
line respectively, ∆x is the length of each lumped element oscillator, and Ĥqb is the qubit
Hamiltonian. We can rewrite (3.1) with a change of variable

Φ̂± = Φ̂b ± Φ̂a (3.2)

to obtain

Ĥ = ∆x
N∑
i=0

 1
2c0

(
q̂i
∆x

)2

+ 1
2l0

Φ̂i+1 − Φ̂i

∆x

2+ [(Φ̂1 + Φ̂0)− Φ̂+]2
2∆x l0

+ (Φ̂1 − Φ̂0)Φ̂−

∆x l0
+Ĥqb.

(3.3)
Letting ∆x→ 0, we find that in the continuum limit

Ĥ =
∫ ∞

−∞
dx

 q̂2(x)
2c0

+ ∂xΦ̂2(x)
2l0

+ δ(x) 1
l0
∂xΦ̂(x) · Φ̂−

+ Φ̂2
−

2l0 dx
+ Ĥqb. (3.4)

Note that we have eliminated the third term since (Φ̂1 + Φ̂0)− Φ̂+ → 0 as ∆x→ 0.
Noting that the current in the transmission line is related to the flux by the relation

Î(x) = − 1
l0
∂xΦ̂(x), (3.5)
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we can see that the third term in (3.4) effectively couples the current to the flux drop Φ̂−
across the qubit. As the flux qubit operates on the flux jump of the β junction, this term
represents the interaction Hamiltonian between the qubit and the transmission line.

The second last term in (3.4) is a qubit renormalization term, which occurs commonly
in spin-boson models. Writing the flux jump operator as Φ̂− = ϕ0γ̂β, and replacing the
inductance term l0 dx with Z0/ω, we find that this renormalization term is of the order

Ĥrenorm ∼ h̄2ω

16Z0e2
γ̂2β. (3.6)

Taking the typical values in a superconducting setup, Z0 = 50 Ω and ω = 2π · 5 GHz,
we find that its magnitude is around Hrenorm/h̄ ≈ 161 GHz · γ2β. Compared to the qubit
potential U = EJ(1− cos γβ), where EJ/h̄ is in the order of 800 GHz, we can see that this
renormalization is relatively small and can be ignored.

Lastly, let us derive the quantized current Î(x, t), which is coupled to the qubit:

Î(x, t) = − 1
l0
∂xΦ̂(x, t)

= − 1
l0
√
L

∑
k

√
h̄

2c0|k|
(
ikb̂ke

i(kx−|k|t) + h.c.
)

= − 1√
L

√
L

2π
∑
k

∆k
√
h̄v

2l0
k√
|k|

(
i√
∆k

b̂ke
i(kx−|k|t) + h.c.

)
, (3.7)

with ∆k = 2π/L.
In order to recover the current equation of an infinite transmission line, we let L→ ∞,

so that ∆k → 0; we get

Î(x, t) = −
√
h̄v

l0

∫ ∞

−∞
dk 1

2
√
π

k√
|k|

(
iâke

i(kx−|k|t) + h.c.
)
, (3.8)

where we have defined âk = lim∆k→0 b̂k/
√
∆k.

Comparing (3.8) with the conjugate momentum of the 1D scalar field, we can see that
they are identical other than the constant factor outside the integral, and that we have
k/
√
|k| in the current rather than

√
|k| in π̂. Though, as it turns out, for the expressions we

are interested in calculating in the next section, the k/
√
|k| factor always appears squared;
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and  k√
|k|


2

= k2

|k|
= |k|= (

√
|k|)2.

Hence for our purposes, the coupling model between the qubit and the transmission line
is equivalent to the Unruh-DeWitt model with the massless field being the conjugate
momentum π̂ of the 1D Klein-Gordon scalar field. The extra constant before the integral
can be absorbed into the coupling factor λ.

3.2 Perturbative Calculations

In this section, we adapt the derivations given in [27] and [31] to calculate the amount of
entanglement generated using two superconducting flux qubits coupled to a transmission
line at finite temperature. To simply the calculations, we will set v = 1 and h̄ = 1.

From the previous section, we found that the qubits couple to conjugate momentum
π̂(x, t) of the (1+1)D scalar field. We now continue to calculate the amount of entanglement
harvested by two qubits coupled to such a field using perturbation theory. First, we add a
UV cutoff function Cξ(k) to the field:

π̂(x, t) = 1
2
√
π

∫ ∞

−∞
dk Cξ(k)

√
|k|
(
iâ†ke

i(|k|t−kx) + h.c.
)
. (3.9)

The interaction Hamiltonian is the UdW model applied to the two qubits:

ĤI(t) =
∑

ν∈{A,B}
λµν(t)χν(t)

∫ ∞

−∞
dxFν(x− xν)π̂(x, t)

=
∑

ν∈{A,B}
λµν(t)χν(t)

∫ ∞

−∞
dk Cξ(k)

√
|k|
2
(
iâ†ke

i(|k|t−kxν)F̃ν(−k) + h.c.
)
, (3.10)

where the monopole moment for qubit ν is

µν(t) = |eν〉〈gν | eiΩνt + |gν〉〈eν | e−iΩνt, (3.11)

χν(t) is a time-dependent switching function, and Fν(x) is the spatial smearing function of
qubit ν. Here, we defined the Fourier transform f̃(k) of an arbitrary function f(x) as

f̃(k) = 1√
2π

∫ ∞

−∞
dx f(x)eikx. (3.12)
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We can write the time evolution operator Û via a Dyson expansion:

Û = 1+ Û
(1) + Û

(2) + · · · , (3.13)

where
Û

(1) = −i
∫ ∞

−∞
dt ĤI(t), Û

(2) = −
∫ ∞

−∞
dt
∫ t

−∞
dt′ ĤI(t)ĤI(t′). (3.14)

Given the initial state ρ̂0 = ρ̂π ⊗ ρ̂
(0)
AB, the final state is given by ρ̂ = Û ρ̂0Û

†. We are
interested in the final state of the two qubits with the field traced out:

ρ̂AB = Trπ̂[ρ̂] = Trπ̂[Û ρ̂0Û †]. (3.15)

To this end, define
ρ̂
(i,j)
AB = Trπ̂

[
Û (i)ρ̂0Û

(j)†
]

(3.16)
so that

ρ̂AB = ρ̂
(0)
AB + ρ̂

(1,0)
AB + ρ̂

(0,1)
AB︸ ︷︷ ︸

ρ̂
(1)
AB

+ ρ̂
(2,0)
AB + ρ̂

(0,2)
AB + ρ̂

(1,1)
AB︸ ︷︷ ︸

ρ̂
(2)
AB

+O(λ4). (3.17)

Because we are tracing out the field π̂, only the terms of Û ρ̂0Û † that are diagonal in
the field will be included in ρ̂AB. Consequently, if ρ̂π is diagonal, which is the case for the
scenarios we will be considering, then ρ̂(i,j)AB = 0 when i, j have different parities. Hence, we
only need to calculate ρ̂(2)AB in (3.17) in order to obtain the final density matrix up to λ2.

Using equations (3.10) and (3.14), we find that [27]

ρ̂
(2)
AB =

∑
ν,η∈{A,B}

λ2
[ ∫ ∞

−∞
dt
∫ ∞

−∞
dt′ χν(t′)χη(t)µ̂ν(t′)ρ̂(0)ABµ̂η(t)W (xη, t, xν , t′)

−
∫ ∞

−∞
dt
∫ t

−∞
dt′ χν(t)χη(t′)µ̂ν(t)µ̂η(t′)ρ̂(0)ABW (xν , t, xη, t′)

−
∫ ∞

−∞
dt
∫ t

−∞
dt′ χν(t)χη(t′)ρ̂(0)ABµ̂η(t′)µ̂ν(t)W (xη, t′, xν , t)

]
, (3.18)

where

W (xν , t, xη, t′) =
∫ ∞

−∞
dx

∫ ∞

−∞
dx′Fν(x− xν)Fη(x′ − xη) Trπ̂ [π̂(x, t)π̂(x′, t′)ρ̂π] (3.19)

is the two-point correlator.
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Let’s consider the case where the field is in a thermal state with temperature Tth:

ρ̂π = e−βĤπ

Z
, (3.20)

where Ĥπ =
∫
dk |k|â†kâk, β = 1/kBTth, and Z = Tr

[
e−βĤπ

]
.

Now, making use of the identities e−βĤπ âke
βĤπ = eβ|k|âk and [âk, â†k′ ] = δ(k − k′), we

can calculate [31]

Trπ̂[ρ̂πâkâ†k′ ] = eβ|k|
(
Trπ̂[ρ̂πâkâ†k′ ] + δ(k − k′)

)
;

from which we obtain
Trπ̂[ρ̂πâkâ†k′ ] =

eβ|k|

eβ|k| − 1δ(k − k′). (3.21)

Similarly, we find that

Trπ̂[ρ̂πâ†kâk′ ] =
1

eβ|k| − 1δ(k − k′), (3.22)

Trπ̂[ρ̂πâkâk′ ] = 0, (3.23)
Trπ̂[ρ̂πâ†kâ

†
k′ ] = 0. (3.24)

Next, using the identities above, we can compute the two-point function w(x, t, x′, t′) =
Tr[ρ̂ππ̂(x, t)π̂(x′, t′)] to obtain

w(x, t, x′, t′) = wvac(x, t, x′, t′) + wth
β (x, t, x′, t′), (3.25)

where

wvac(x, t, x′, t′) =
∫ ∞

−∞

dk
4π |k|C2

ξ (k)e−i|k|(t−t′)eik(x−x′), (3.26)

wth
β (x, t, x′, t′) =

∫ ∞

−∞

dk
4π(eβ|k| − 1) |k|C

2
ξ (k)

(
ei|k|(t−t′)e−ik(x−x′) + c.c.

)
(3.27)

are the vacuum and thermal contributions to the two-point function respectively.
We can now calculate ρ̂AB = ρ̂

(0)
AB + ρ̂

(2)
AB +O(λ4). First, let us consider when the two

qubits are prepared in their ground states: ρ̂(0)AB = |gg〉〈gg|. Combining (3.18), (3.19), and
(3.25), we end up with

ρ̂ggAB =


1− L(+,+)

AA − L(+,+)
BB 0 0

(
M(+,+)

)∗
0 L(+,+)

AA L(+,+)
AB 0

0
(
L(+,+)

AB

)∗
L(+,+)

BB 0
M(+,+) 0 0 0

+O(λ4), (3.28)
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where the matrix is written in the basis {|gA〉|gB〉 , |eA〉|gB〉 , |gA〉|eB〉 , |eA〉|eB〉}, and

(3.29)L(sA,sB)
νη = L(sA,sB)

νη, vac + 2πλ2
∫ ∞

−∞
dk
{
|k|
2
C2

ξ (k)F̃ ∗
ν (k)F̃η(k)e−ik(xν−xη)

eβ|k| − 1

·
[
χ̃∗
ν(|k|−sνΩν)χ̃η(|k|−sηΩη) + χ̃ν(|k|+sνΩν)χ̃∗

η(|k|+sηΩη)
] }
,

(3.30)M(sA,sB) = M(sA,sB)
vac − 2πλ2

∫ ∞

−∞
dk
{
|k|
2
C2

ξ (k)F̃A(k)F̃ ∗
B(k)eik(xA−xB)

eβ|k| − 1

· [χ̃∗
A(|k|−sAΩA)χ̃B(|k|+sBΩB) + χ̃A(|k|+sAΩA)χ̃∗

B(|k|−sBΩB)]
}
,

with sA, sB ∈ {−1, 1}; and

L(sA,sB)
νη, vac = 2πλ2

∫ ∞

−∞
dk |k|

2 C
2
ξ (k)F̃ ∗

ν (k)F̃η(k)e−ik(xν−xη)χ̃ν(|k|+sνΩν)χ̃∗
η(|k|+sηΩη), (3.31)

M(sA,sB)
vac = −λ2

∫ ∞

−∞
dk

∫ ∞

−∞
dt
∫ t

−∞
dt′ e−i|k|(t−t′)C2

ξ (k)

·
[
F̃A(k)F̃ ∗

B(k)eik(xA−xB)χA(t)χB(t′)ei(sAΩAt+sBΩBt′) + (A↔ B)
]
. (3.32)

Similarly, for ρ̂(0)AB ∈ {|eg〉〈eg| , |ge〉〈ge| , |ee〉〈ee|}, we get

ρ̂egAB =


L(−,+)

AA 0 0 L(−,+)
AB

0 1− L(−,+)
AA − L(−,+)

BB

(
M(−,+)

)∗
0

0 M(−,+) 0 0(
L(−,+)

AB

)∗
0 0 L(−,+)

BB

+O(λ4), (3.33)

ρ̂geAB =


L(+,−)

BB 0 0
(
L(+,−)

AB

)∗
0 0 M(+,−) 0
0

(
M(+,−)

)∗
1− L(+,−)

AA − L(+,−)
BB 0

L(+,−)
AB 0 0 L(+,−)

AA

+O(λ4), (3.34)
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ρ̂eeAB =


0 0 0 M(−,−)

0 L(−,−)
BB

(
L(−,−)

AB

)∗
0

0 L(−,−)
AB L(−,−)

AA 0(
M(−,−)

)∗
0 0 1− L(−,−)

AA − L(−,−)
BB

+O(λ4). (3.35)

In general, for the case where the qubits are in thermal equilibrium, we can take the
initial state as

ρ̂
(0)
AB = (pA |gA〉〈gA|+ (1− pA) |eA〉〈eA|)⊗ (pB |gB〉〈gB|+ (1− pB) |eB〉〈eB|)

= pApB |gg〉〈gg|+ (1− pA)pB |eg〉〈eg|+ pA(1− pB) |ge〉〈ge|+ (1− pA)(1− pB) |ee〉〈ee| ,
(3.36)

where pA, pB ∈ [0, 1] are the ground state populations of qubits A and B, respectively. The
final evolved state would then become

ρ̂AB = pApBρ̂
gg
AB + (1− pA)pBρ̂egAB + pA(1− pB)ρ̂geAB + (1− pA)(1− pB)ρ̂eeAB. (3.37)

Finally, to quantify the amount of entanglement harvested, we can calculate the concur-
rence [12] of this state. The concurrence of density matrices with the form

ρ̂ =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
ρ∗14 0 0 ρ44

 (3.38)

is given by [33]
C(ρ̂) = 2max{|ρ23|−

√
ρ11ρ44, |ρ14|−

√
ρ22ρ33, 0}. (3.39)

The concurrence is an entanglement monotone—a non-negative function that quantifies the
amount of entanglement in a state [13]. The concurrence of a separable state ρ̂ is always
0. Note that, although the form given in (3.39) requires terms of order λ4 in general, the
contribution is not likely to be significant for the cases that we consider.

To proceed further, we will have to specialize the various functions used in the integrals.
First, we use a Gaussian smearing function as the spatial smearing function for both qubits:

Fν(x) = F (x) = 1√
πσ

e−x2/σ2
. (3.40)

Moreover, we use Gaussian switching for both qubits, with a characteristic timescale of T :

χν(t) = e−(t−tν)2/T 2
. (3.41)
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The Gaussian switching function is found in [27] to generate more entanglement compared
to the sudden switching function

χsudden
ν (t) =

1 if |t− tν |< T
2 ,

0 otherwise,
(3.42)

due to the limited spectral content of the Gaussian function in the frequency space.
Let us now define some dimensionless quantities in relation to the switching timescale

T :

αν = ΩνT, (3.43)

εν = xν
T
, (3.44)

ε = εB − εA = d

T
, (3.45)

τν = tν
T
, (3.46)

γ = τB − τA, (3.47)

δ = σ

T
, (3.48)

κ = kT, (3.49)

ζ = β

T
. (3.50)

We now calculate the integrals L and M. First we define

L(s)
ν (κ) = λ

√
1
T

√
|κ|
2T C

(
κ

T

)
F̃
(
κ

T

)
·
√
2πχ̃ν

(
|κ|+sαν

T

)
(3.51)

so that

L(sA,sB)
νη = L(sA,sB)

νη, vac +
∫ ∞

−∞
dκ e

−iκ(εν−εη)

eζ|κ| − 1
[
(L(−sν)

ν (κ))∗L(−sη)
η (κ) + L(sν)

ν (κ)(L(sη)
η (κ))∗

]
,

(3.52)

L(sA,sB)
νη, vac =

∫ ∞

−∞
dκ e−iκ(εν−εη)L(sν)

ν (κ)(L(sη)
η (κ))∗, (3.53)

M(sA,sB) = M(sA,sB)
vac −

∫ ∞

−∞
dκ e−iκε

eζ|κ| − 1
[
(L(−sA)

A (κ))∗L(sB)
B (κ) + L

(sA)
A (κ)(L(−sB)

B (κ))∗
]
.

(3.54)

24



Now, the Fourier transform of the qubit smearing function is

F̃
(
κ

T

)
= 1√

2π
e−

1
4κ

2δ2 , (3.55)

while the Fourier transform of the switching function is

√
2πχ̃ν

(
|κ|+sαν

T

)
=
∫ ∞

−∞
dτ Te−(τ−τν)2ei(|κ|+sαν)τ =

√
πTe−

1
4 (|κ|+sαν)2ei(|κ|+sαν)τν . (3.56)

Thus equation (3.51) becomes

L(s)
ν (κ) = λ

√
|κ|
2 C

(
κ

T

)
e−

1
4κ

2δ2e−
1
4 (|κ|+sαν)2ei(|κ|+sαν)τν . (3.57)

Finally, we define

M (sA,sB)(κ) = −λ2 1
T

|κ|
2T C

2
ξ

(
κ

T

)
F̃ 2

(
κ

T

)
e−iκεG(sA,sB)(κ), (3.58)

G(sA,sB)(κ) = T 2
∫ ∞

−∞
dτ
∫ τ

−∞
dτ ′ e−i|κ|(τ−τ ′)

[
e−(τ−τA)2e−(τ ′−τB)2ei(sAαAτ+sBαBτ ′) + (A↔ B)

]
(3.59)

such that
M(sA,sB)

vac =
∫ ∞

−∞
dκM (sA,sB)(κ). (3.60)

Using the identity [27]
∫ ∞

−∞
dτ e−a2−ibτ−τ2 erf(τ − ia) = −i

√
πe−a2− b2

4 erfi
(
a+ b

2√
2

)
(3.61)

we can integrate (3.59) to obtain

G(sA,sB)(κ) = T 2π

2 e
1
4

(
−α2

A
−α2

B
−2αAκ−2κ2−4iγk+4iτA(αA+αB)+4iαBγ−2(αA+αB+2iγ)|κ|

)
·
{
e

1
2 (αA+αB+2iγ)|κ|

(
e

1
2αBκ + e

(
αA−αB

2 +2iγ
)
κ
)

+ ie
1
2 (αA+2iγ)κ

[
e(αA+2iγ)|κ| erfi

(
αA − αB + 2iγ − 2|κ|

2
√
2

)

− eαB |κ| erfi
(
αA − αB + 2iγ + 2|κ|

2
√
2

) ]}
. (3.62)
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To finish the calculations, we let τA = 0, τB = γ, and we set Cξ(k) = [|k|≤ k0], a sharp
UV cutoff at k0. We set

k0 = 2π · (50 GHz) (3.63)

as determined experimentally in [8], and the dimensionless quantity κ0 = k0T ≈ 63.
Through numerics, we find that the integrands of the Lvac terms and parts of the Mvac
contribute minimally for |k|> k0, so that we may integrate them with no cutoff to find
analytical expressions

L(sA,sB)
νν, vac = λ2

e−α2
ν/2

4(1 + δ2)3/2

2√1 + δ2 −
√
2πsναν exp

(
α2
ν

2(1 + δ2)

)
erfc

 sναν√
2(1 + δ2)


 ,
(3.64)

L(sA,sB)
AB, vac = λ2

e−(α2
A
+α2

B
+4isBαBγ)/4

8
√
2(1 + δ2)3/2

·
[
2D −

√
πA exp

(
A2

D2

)
erfc

(
A

D

)
−
√
πB exp

(
B2

D2

)
erfc

(
B

D

)]
, (3.65)

M(sA,sB)
vac = −λ2 e

−(α2
A
+α2

B
+4isBαBγ)/4

8
√
2(1 + δ2)3/2

·
[
2D +

√
πA exp

(
A2

D2

)
erfc

(
A

D

)
+
√
πB exp

(
B2

D2

)
erfc

(
B

D

)]

− λ2
i

4
√
π

∫ κ0

−κ0
dκκ e

(
−Σ2+4iΣγ−4γ2−8iεκ−4δ2κ2

)
/8

·
[
D+

(
Σ + 2iγ − 2κ

2
√
2

)
−D+

(
Σ + 2iγ + 2κ

2
√
2

)]
, (3.66)

where

A = Σ+ 2i(γ − ε), B = Σ+ 2i(γ + ε), D = 2
√
2
√
1 + δ2, Σ = sAαA + sBαB, (3.67)

and
D+(x) = e−x2

∫ x

0
dt et2 (3.68)

is the Dawson function.
Note that, in order to arrive at equation (3.66), where the absolute value |κ| is dropped
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in the integrand, we simply used the fact that for any κ < 0 and z ∈ C,

|κ|
[
D+

(
z − |κ|√

2

)
−D+

(
z + |κ|√

2

)]
= −κ

[
D+

(
z + κ√

2

)
−D+

(
z − κ√

2

)]

= κ

[
D+

(
z − κ√

2

)
−D+

(
z + κ√

2

)]
.

We can integrate the thermal integrals in Lνη, M, and the remaining integral in (3.66),
numerically, on the finite interval

∫ κ0
−κ0

dκ.
The integral in (3.66) has a highly oscillatory integrand, which slows down the con-

vergence of numerical integration. The integration performance can be improved by
noting that the integrand is complex analytic, allowing us to integrate along the contour
[−κ0,−κ0 − 5i], [−κ0 − 5i, κ0 − 5i], [κ0 − 5i, κ0]. By integrating along this contour, the
oscillations are damped, and consequently the speed of convergence is improved.

3.3 Results

3.3.1 Parameters

To calculate the amount of entanglement possible with our current experimental setup, we
set the following parameter values (note that some of them were set in the previous section
in order to simplify calculations):
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Table 3.1: Parameters chosen for the calculations of the entanglement harvesting experiment.

Parameter Value
v 1.2× 108 m/s
T 200 ps
λ 1/4
ΩA,ΩB 2π· (1.6–6.5 GHz)
αA, αB ΩT ≈ 2–8.1
τA 0
τB, γ 0
σ (24µm)/v
δ σ/T = 1/1000
κ0 2π · (50 GHz) · T ≈ 63
Tth 20 mK
ζ 1/(kBTthT ) ≈ 1.9

In table 3.1, v is the speed of light in a typical superconducting coplanar waveguide as
measured in [11]; T is chosen such that a fast arbitrary waveform generator (such as the
Tektronix 70000A) can generate the required Gaussian pulse with minimal distortion; λ is
chosen small enough such that the perturbative results are valid; ΩA and ΩB are chosen to
in the operating range of the designed tunable qubits; σ is chosen as the approximate size
of the qubit; and Tth is chosen as a feasible temperature for our dilution refrigerator. In the
calculations that follow, we set the qubit gaps ΩA and ΩB to be the same: ΩA = ΩB ≡ Ω,
and αA = αB ≡ α.

3.3.2 Initial States

Figure 3.2 shows the concurrence as a function of d and Ω for the four initial states
ρ̂
(0)
AB ∈ {|gg〉〈gg| , |ee〉〈ee| , |eg〉〈eg| , |ge〉〈ge|}. Here we have constrained d ≥ 5T in order to

prevent a lightlike connection from forming between the two qubits: when d ≥ 5T , we have
χν(±d/2, tν = 0) = e−(±d/2)2/T 2

< 0.002, which is smaller than one half of the resolution of
the fast arbitrary waveform generators, implying that the switching is effectively turned off
at |t|= d/2.

We can see that the only starting state that can generate non-negligible amounts
of concurrence is ρ̂(0)AB = |eg〉〈eg|. Moreover, we can see that the concurrence is highly
oscillatory in d, which could be a consequence of the finite UV cutoff. Lastly, we observe
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Figure 3.2: Concurrences as functions of d and Ω for different initial states, with λ = 1/4.
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Figure 3.3: Concurrence with mixed initial state ρ̂(0)AB = (pA |gA〉〈gA|+ (1− pA) |eA〉〈eA|)⊗
(pB |gB〉〈gB|+ (1− pB) |eB〉〈eB|), with λ = 1/10, α = 8.08, ε = 5.111.
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that a higher energy gap Ω is required as we increase d in order to get a nonzero concurrence.
Since d is fixed in a real experiment, we can in theory observe the oscillatory behaviour by
varying T , the timescale of the Gaussian switching function.

Figure 3.3 shows the amount of entanglement we can harvest at the optimal point
starting with a mixed state, and with α = 8.08 and ε = 5.111. Here we set λ = 0.1, since
otherwise some density matrix elements become negative depending on the value of pA
and pB. We can see that only when one of pA, pB is very nearly 1 while the other is much
greater than 0 will we observe a nonzero concurrence. Thus, it is important to ensure
that the qubits are prepared in mostly pure states. For a two-level qubit with gap Ω at
temperature Tth, the thermal equilibrium state of the qubit is the Gibbs state

ρ̂
(0)
Tth

= e−Ĥ/(kBTth)

Tr[e−H/(kBTth)] =
1

1 + e−Ω/(kBTth)

(
|g〉〈g|+ e−Ω/(kBTth) |e〉〈e|

)
. (3.69)

Plugging in the parameters for our qubit, Ω = 2π · 6.5 GHz, Tth = 20 mK, we find that its
relaxed state is approximately

ρ̂
(0)
Tth

= (1− 5× 10−7) |g〉〈g|+ (5× 10−7) |e〉〈e| . (3.70)

This state is effectively in the ground state with negligible impurity.
Finally, note that at the optimal point, the distance between the two qubits is εT c ≈ 12

cm on the transmission line. This can be easily done with a meandering coplanar waveguide
on the device.

3.3.3 Transmission Line Temperature

Figure 3.4 shows the concurrence as a function of the transmission line temperature Tth,
with initial state ρ̂(0)AB = |eg〉〈eg|, at the point of maximal concurrence from the previous
section. As expected, as we increase the qubit temperature, the amount of entanglement
we can harvest decreases. For the parameters we are considering, a hard cutoff happens at
around Tth = 30 mK. Thus, it is very important to ensure that the sample device stays
below this limit during an experiment.

31



0 10 20 30 40

0.000

0.002

0.004

0.006

0.008

0.010

Tth (mK)

C
o
n
c
u
rr
e
n
c
e

Figure 3.4: Concurrence as a function of the transmission line temperature Tth, with
ρ̂
(0)
AB = |eg〉〈eg|, α = 8.08, ε = 5.111.

3.3.4 Density Matrix

The density matrix ρ̂AB at the optimal point, where λ = 1/4, σ = 1/1000, ε = 5.111,
Tth = 20 mK, and α = 8.08, is approximately

ρ̂AB =


0.63 0 0 −2.5× 10−20

0 0.37 4.2× 10−7 − 0.0050i 0
0 4.2× 10−7 + 0.0050i 0 0

−2.5× 10−20 0 0 6.0× 10−7

 .
(3.71)

The main contribution to the concurrence of this density matrix is its |ρ23| term. We can
see that the magnitude of this term is very small, around 5× 10−3. To successfully detect
entanglement in this case, we need to use a robust qubit readout and state tomography
procedure during an experimental run.

Finally, we would like to note that, from the results of nonperturbative calculations
for harvesting entanglement with simpler switching functions in [30], we can reasonably
expect the concurrence to be proportional to λ2 to the order of λ ∼ 1. Relating λ to the
spin-boson coupling strength αSB, by using the relation [22]

λ =
√
2παSB, (3.72)
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we can see that this corresponds to an αSB of around 0.16, which is well within the
ultrastrong coupling regime obtainable by the designed device in section 4.1. Extrapolating
from the concurrence we got for λ = 0.25, which is approximately 0.0087, we can expect the
concurrence to increase to 0.0087 · (1/0.25)2 ≈ 0.14. This would be much easier to detect in
an experimental setting.

3.4 Conclusions

In this chapter, we derived the coupling model of a flux qubit coupled to a transmission line,
then we applied perturbation theory to calculate the amount of entanglement that we can
harvest with a realistic setup, for different starting conditions. We found that to produce
a non-negligible amount of entanglement when the coupling of the qubits are spacelike
separated, we need to initialize the qubits to |eg〉〈eg| or |ge〉〈ge|; and that the temperature
of the device should be kept at around 20 mK or less. Finally, we discussed the difficulties
in performing quantum state tomography on the calculated final states. While challenging,
with current experimental equipment, it is hopeful that the phenomenon of entanglement
harvesting can be observed.
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Chapter 4

Implementation of the Entanglement
Harvesting Experiment

Using the parameters found in chapter 3, we can devise an experiment design that enables
the demonstration of the phenomenon of entanglement harvesting. In this chapter, we
propose such a design and perform simulations to validate the feasibility of our design.

This chapter is organized as follows. In section 4.1, we present and discuss the design
of the device that will allow us to perform the experiment. In section 4.2, we propose the
main experimental protocol for entanglement harvesting with our device. Finally, in section
4.3, we propose a state tomography procedure that allows us to detect the entanglement
harvested from the main experimental protocol.

4.1 Device Design

In this section, we present the design of the device that we will use for the entanglement
harvesting experiment.

4.1.1 Qubit With a Tunable Coupler From Weak to Ultrastrong
Coupling

To implement the entanglement harvesting experiment, we need a qubit that has tunable
coupling to a transmission line with a range that can cover full decoupling to the ultrastrong
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coupling regime. Such a qubit was recently designed to fulfill this role [29]. We call this
design the USC qubit in short.

γ1 γ3γ2

γ4

γ6

γ5

• fε

• fβ

Figure 4.1: Circuit model of the USC qubit. Here, the qubit shares junction 5 with
transmission line. The botoom loop is the main qubit loop, or the ε loop, while the top
loop is the coupler loop, or the β loop.

Figure 4.1 shows the schematic of the USC qubit. It consists of a four loop persistent
current flux qubit and a coupler galvanically coupled together to a transmission line. The
coupler design is based on a SQUID, that is inductively coupled to the main qubit and
to the transmission line. We will call the main qubit as the ε loop, while we will call the
coupler qubit the β loop.

Because of the inclusion of a SQUID-based coupler, this design allows the dynamic
switching of the main qubit’s coupling to the transmission line from full decoupling to the
non-perturbative USC regime and beyond. The coupling of the qubit to the transmission
line is tuned by varying the external magnetic frustration fβ of the β qubit.

We can simulate the properties of this qubit design numerically. Following standard
procedures, we can write down the Hamiltonian of the qubit as [29]

Ĥ = 1
2ϕ2

0
p̂TC−1p̂+ Û. (4.1)

Here we defined

p̂ =


p̂1
p̂2
p̂4
p̂5

 , (4.2)

with p̂i = ϕ2
0
∑

j Cij γ̂j being the momentum conjugate to the variable γi,

C =


C1 + C3 C3 C3 0
C3 C2 + C3 C3 0
C3 C3 C3 + C4 + C6 C6
0 0 C6 C5 + C6

 (4.3)
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is the capacitance matrix of the system, with Ci being the capacitance of junction i; and

Û = −ϕ0
[
IC1 cos γ̂1 + IC2 cos γ̂2 + IC3 cos(γ̂1 + γ̂2 + γ̂4 + 2πfε)

+ IC4 cos γ̂4 + IC5 cos γ̂5 + IC6 cos(γ̂4 + γ̂5 − 2πfβ)
]

(4.4)

is the potential energy of the system.
For convenience, we work with the charge basis {|n1〉 · · · |n6〉 : ni ∈ Z}. In this basis,

we have

p̂i = h̄n̂i, (4.5)

cos γ̂i =
eiγ̂i + e−iγ̂i

2 |ni〉 =
|ni + 1〉+ |ni − 1〉

2 . (4.6)

We can write the Hamiltonian as a matrix in the charge basis by writing each n̂i in its
diagonal form, truncated to [−ni,max, ni,max]:

n̂i =


−ni,max

−ni,max + 1
. . .

ni,max

 . (4.7)

With the Hamiltonian in its matrix form, we can use standard numerical diagonalization
techniques in order to determine its eigenstates and eigenvalues, and thus determine the
qubit transition frequency E01, the anharmonicity E12/E01, and its two lowest states |0〉
and |1〉.

To estimate the relaxation rate Γ1 and the pure dephasing rate Γϕ, we use the approxi-
mations [29]

Γ1 =
∆2RQ

2πE01Z0
|〈1|γ̂β|0〉|2, (4.8)

and
Γϕ = E2

01 −∆2

2E2
01

|〈0|γ̂β|0〉 − 〈1|γ̂β|1〉|2
RQkBT

Z0h
. (4.9)

Here, RQ = h/(2e)2 ≈ 6.5 kΩ is the quantum resistance, Z0 = 50 Ω is the impedance of
the transmission line, ∆ is the qubit energy gap at the symmetry point, and

〈n|γ̂β|m〉 = 1
2π

∫ π

−π
dγβ γβe−i(m−n)γβ =

0 if m = n,

i(−1)m−n+1/(m− n) otherwise,
(4.10)
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Figure 4.2: The simulated properties of the USC qubit at its symmetry point, as functions
of fβ. (a) The qubit gap E01. (b) The anharmonicity E12/E01. (c) The spin-boson coupling
strength αSB. (d) The relaxation rate Γ1.
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are the matrix elements of γ̂β.
For the simulations, we have set n1,max = n2,max = 5, n4,max = n5,max = 7, and we use

the qubit design parameters given in table 4.1.

Table 4.1: Optimized USC qubit parameters.

Parameter Description Value
A1/3 Size of junction 1/3 0.079 µm2

r2 Area ratio of junction 2 to junction 1 0.58
r4/5 Area ratio of junction 4/5 to junction 1 1.78
r6 Area ratio of junction 6 to junction 1 0.92
Jc Junction critical current density 3 µA/µm2

These parameters are found by optimizing the USC qubit for desirable properties such
as a reasonable qubit gap, a relatively long relaxation time, and the ability to couple
ultrastrongly to the transmission line [29]. More specifically, we require the qubit gap to be
in the range of 1–12 GHz to stay within the bandwidth of our microwave setup. Moreover,
we require the relaxation time T1 to be much larger than the time for state preparation,
which is in the order of 10 ns. Lastly, we require the spin-boson coupling strength αSB to
be tunable from 0 to 1+.

The simulation results are plotted in 4.2, where we plotted the qubit gap E01, the
anharmonicity E12/E01, the spin-boson coupling factor αSB, and the relaxation rate Γ1, as
functions of the β flux fβ. Because we always operate the flux qubit at its symmetry point
except for when we do readout, the values are generated at the symmetry points. To stay
at symmetry point, when we adjust fβ, we need to tune fε as well. For every fβ, we can
find the fε value at the symmetry point by minimizing the qubit gap with respect to fε.
The symmetry point fluxes are plotted in figure 4.3.

From the plots, we can see that the USC qubit can easily be tuned to have an αSB from
0 to more than 1.5, thus allowing tunable coupling into the non-perturbative ultrastrong
coupling regime. The decoupling point occurs near fβ = 0.4, with a Γ1 of around 4 MHz,
or a T1 of 400 ns. The relaxation time is much greater than the time required to perform
operations on the qubit, such as state preparation and readout prerotation, which takes
around 10 ns. For the energy gap E01, we can see that it is around 6 GHz at the decoupling
point, and dips to below 3 GHz when it enters the USC regime. This is fully within the
range of our current microwave setup.

Finally, we need to find a suitable readout point. At the readout point, the qubit should
be decoupled from the transmission line, and biased far away from the symmetry point. This
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way, the qubit will be in the flux state, and we can readout its state via inductive coupling
to a DC-SQUID readout circuit. To bias the qubit away from its symmetry point, we can
simply increase the flux fε, while keeping fβ constant. The flux configuration fβ = 0.4,
fε = 0.445 is a good candidate—at this point, the relaxation time is around T1 ≈ 2.5µs,
providing ample time for readout.
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f ϵ

Figure 4.3: Flux values at the symmetry point of the USC qubit.

4.1.2 RQI Device

The sample device for the entanglement experiment, which we call the RQI (relativistic
quantum information) device, is essentially a device that has two USC qubits coupled to
the same transmission line separated far apart. From section 3.3.2, we estimated that the
optimal separation between the two qubits is around 12 cm. Because the sample holder
can only hold sample devices that has a maximum of dimension of around 1 cm× 1 cm, we
need to meander the on-chip transmission line to increase the separation between the two
qubits to 12 cm.

The chip layout of the RQI device is given in figure 4.4. Here we can see that there are
two USC qubits at the left and the right side of device, which are galvanically coupled to a
long meandering transmission line with the length between the qubits being around 12 cm.
Each qubit has two flux control lines, coupled to the β and ε loops respectively.
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Figure 4.4: Chip layout of the RQI device. Two USC qubits are coupled to a long meandering
transmission line. The readout circuit consists of DC-SQUIDs coupled to readout resonators.
The dimensions of the device are 7× 7 mm.
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As discussed in section 3.3.2, we chose 12 cm as the distance between the qubits, so
that using a Gaussian switching function with a characteristic time T ≈ 200 ps, a lightlike
connection between the qubits will not form. We varied the lengths of the straight sections
the transmission line to mitigate unwanted coupling between sections. Finally, we simulated
the meandering transmission line design in Sonnet, and we confirmed that this transmission
line has good loss and reflection characteristics from DC to 50 GHz.

The readout circuit for a single qubit consists of a DC-SQUID near the qubit, capacitively
coupled to a superconducting microwave resonator with a resonance frequency of around 4
GHz, which is then coupled inductively to a readout feedline. The feedline is a coplanar
waveguide that is has its ends connected to the readout microwave electronics outside the
device. The readout resonators of the two qubits are then coupled to the same feedline.
This allows multiplexed readout, which greatly simplifies the readout electronics.

The RQI device is fabricated using a planar process involving four layers, on top of a
silicon substrate, with aluminum being the superconductor. Optical and electron beam
lithography are used to pattern the features of this device. Moreover, we add superconducting
air bridges that bridges the ground planes divided by the coplanar waveguides, to improve
the uniformity of the ground plane and to reduce the decoherence rate of the qubit. To
make the Josephson junctions, we use a standard fabrication technique where aluminum is
first evaporated at a slanted angle, then the deposited aluminum is oxidized, and finally
aluminum is evaporated at another angle [7].

4.2 Experimental Protocol

In this section, we describe the protocol for the entanglement harvesting experiment in
detail. The experiment at the high level is described in chapter 3. To summarize, the
idea is that we need to prepare the two USC qubits on the RQI device into states |e〉 and
|g〉 respectively, while they are decoupled from the transmission line. Then, we couple
the qubits strongly to the transmission line for a short amount of time (< 1 ns), using a
Gaussian switching function. Finally, after the qubits are decoupled from the transmission
line, we perform quantum state tomography on the qubits. With enough repetitions, we can
reconstruct the density matrix of the two qubit system and thus calculate its concurrence.

More specifically, we perform the experiment in the following steps:

1. Set the two qubits at their decoupling points. This can be done by biasing the fluxes
fβ and fε to the appropriate values found in simulation and calibration.

41



2. Prepare the two qubits into the excited |e〉 and ground |g〉 states respectively. This
can be done by first allowing the qubits to relax to their thermal equilibrium states,
then exciting the first qubit.
From equation (3.70), by simply allowing the qubits to relax to their thermal equilib-
rium state, we can prepare the qubits to |g〉 with high fidelity. Furthermore, from
the simulations of the USC qubit, at the decoupling point, the relaxation rate Γ1 is
around 4 MHz. Hence, if we wait for around 10 µs after each run, the qubits will
have relaxed to their ground states with high fidelity regardless of their initial state.
In order to excite the first qubit into its excited state, we can apply a π Rabi pulse
around the x-axis to the first qubit. Because the USC qubit has a Rabi frequency in
the order of 1 GHz [29], the pulse only needs to be a few nanoseconds in duration.

3. Couple the qubits to the transmission line with the coupling strength governed by
the time-dependent switching function.
We need to vary the coupling strength αSB of the two qubits simultaneously according
to the equation

αSB(t) =
λ2

2πχ
2(t). (4.11)

Using the Gaussian switching function (3.41), we obtain

αSB(t) =
λ2

2πe
−2t2/T 2

. (4.12)

Since the Gaussian switching function χ(t) is suppressed to a negligible amount for
|t|> 2.5T , we can start this stage at around t ≈ −2.5T and finish at around t ≈ 2.5T .
From section 4.1.1, we can map an αSB to a flux pair (fβ, fε) that is at the qubit’s
symmetry point. We can thus vary the fluxes fβ and fε according to this data in
order to get the desired αSB.

After we have coupled and decoupled the qubits, we can proceed with quantum state
tomography on the qubits. This procedure is described in detail in section 4.3.

4.3 Quantum State Tomography

Quantum state tomography (QST) is a procedure to reconstruct the density matrix of a
quantum state through repeated measurements done on identical quantum states. For this
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experiment, we will use a popular technique called maximum likelihood estimation, or MLE
in short. In essence, MLE reconstructs the density matrix of a system by first collecting
population data of the system in different bases, then find the density matrix that is most
likely to generate the measured population data [16]. In this section, we outline the protocol
for QST that is specific for our setup, using the MLE method.

The data collection procedure for QST is as follows:

1. Apply a prerotation operation on the qubits.
The experimental setup is limited to performing readout in the standard Z basis.
Thus, in order to collect statistics of the populations in other bases, we need to rotate
the qubits from the desired bases to the Z basis.
For our two qubit setup, we can apply one of the nine prerotations in

P = {I, Rx(π/2), Ry(π/2)} ⊗ {I, Rx(π/2), Ry(π/2)}. (4.13)

The x pulses can be calibrated by scaling the pulse times by the experimentally
measured Rabi time at a certain amplitude. For y pulses, we can use the same
parameters as their x counterparts, but with the phase shifted by π/2.

2. Perform readout on the qubits in the standard Z basis.
This can be done by first biasing the qubits far away from their symmetry points in an
adiabatic manner, so that the qubits will settle into their flux bases while maintaining
their states. Afterwards, we send a microwave pulse through each of the feedline
coupled to the readout circuits of the qubits. Depending on whether the qubit is in
its ground or excited state, the resonant frequency of the resonator will be shifted.
This shift can be detected by a drop in the signal level of the resonator’s response to
the microwave pulse, which can be measured using a data acquisition card after a
suitable amount of low-noise amplification is applied.
We can perform readout on the two qubits at once. Since the readout resonators
are designed to have a resonant gap of around 100 MHz, we can send a multiplexed
signal through the feedline that has a tone at the resonators’ resonant frequencies, ω1
and ω2, and perform heterodyne readout on the collected voltage data.
In detail, the readout is done as follows. First, we send a multiplexed readout signal
through the readout line. Let ωLO = (ωA + ωB)/2 and ΩIF = ωB − ωLO = ωLO − ωA.
We use an IQ mixer with its LO frequency set to ωLO and generate the multiplexed
intermediate signal at frequencies ±ωIF . The IQ mixer will upconvert the intermediate
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signal to ωLO ± ωIF , which we can then send to the feedline. The response signal
coming out of the readout line is then downconverted using another IQ mixer in phase
with the upconverting mixer. This signal is then acquired by the data acquisition
card, at a sampling rate of 200 MHz or more, into a discrete complex voltage array
V [ti]. The real and imaginary components of the array contains the I and Q signals
coming out of the IQ mixer.
We can then detect the state of the qubits by checking the signal level at ±ωIF . If
there is a signal at +ωIF (−ωIF ), then qubit A(B) is in the ground state. Otherwise,
the qubit is in the excited state. To obtain the signal level at ±ωIF , we apply a
single-bin DFT:

V±ωIF
= Re

{
2
n

n∑
i=1

V [ti]e−i2π(±ωIF )ti

}
. (4.14)

For clarity, we write VA = V−ωIF
, and VB = VωIF

, where the subscript index represents
the qubit index. We can scale the signals by the ground and excited signals for each
qubit into scaled signals denoted by ZA and ZB. We scale the voltage signals such
that for a perfect signal, Zn = 1 if qubit n is in its ground state, and −1 otherwise.
After each run, we save ZA, ZB, and in addition ZAZB. The last term is required to
reconstruct the off-diagonal terms in the density matrix, necessary for the detection
of entanglement.

To reduce noise and obtain statistics on the qubit population, we can repeat steps 1
and 2 many times to obtain three average voltage levels for each qubit and prerotation. we
denote the averages by 〈ZAIB〉Û , 〈IAZB〉Û , and 〈ZAZB〉Û , where Û ∈ P is the prerotation
operator applied.

We can now apply the MLE method to reconstruct the density matrix ρ̂. Define the
measurement operator for each qubit in the Z basis as

ẐA/B =
∣∣∣gA/B

〉〈
gA/B

∣∣∣− ∣∣∣eA/B

〉〈
eA/B

∣∣∣ , (4.15)

Given a density matrix ρ̂ and a measurement operator M̂ , the expected ensemble average
of performing this measurement is Tr[M̂ρ̂]. The MLE method essentially finds a density
matrix that minimizes the difference between Tr[M̂ρ̂] and the measured value [16].

More specifically, we solve the following semidefinite program

min
ρ̂

∑
Û∈P,

M∈{ZAIB ,IAZB ,ZAZB}

(
Tr
[
M̂Û ρ̂Û †

]
− 〈M〉Û

)2
subject to ρ̂ ≥ 0,Tr ρ̂ = 1, (4.16)
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where ρ̂ is a 4 × 4 Hermitian matrix. This program can be easily solved with a convex
optimization software such as MOSEK [2].
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(b) ρ̂ = |eg〉〈eg|

Figure 4.5: Concurrences of reconstructed density matrices from simulated noisy QST. The
target density matrix is (a) the density matrix at the optimal point given in (3.71), and (b)
|eg〉〈eg|.

We simulated the QST procedure given above with different density matrices, to
determine the robustness of the procedure in the presence of noise. For a given target
ρ̂, the simulation generates the measurement data by generating first the scaled signals
±1 randomly with the probability of the signal being 1 being Tr[|e〉〈e| Û ρ̂Û †]. After the
signals are generated, we add random Gaussian noise to each sample. The Gaussian has a
standard deviation of σ = 1, chosen such that a one-shot single qubit measurement with a
simple discriminator has fidelity of around 80%, which is roughly in line with our setup. We
generate 107 noisy signals for each prerotation operator. After the signals are generated, we
apply the MLE procedure to recover the density matrix, and we calculate its concurrence.
Finally, we repeat this simulation 500 times for each target ρ̂ in order to generate the
statistics of the reconstructed concurrences.

The simulation results are plotted in 4.5. Here we plotted the histogram of reconstructed
concurrences from running the QST procedure 500 times on ρ̂ = (3.71), the density matrix
at the optimal point found in chapter 3, and on ρ̂ = |eg〉〈eg|, a separable state. In figure
4.5a, nearly half of its reconstructed concurrences are zero, while the other half are spread
evenly across a concurrence range from 0.001 to 0.01. Compared to figure 4.5b, we can
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see that there is a much larger spread of concurrence values. By repeating QST many
times and detecting when a high amount of concurrence is generated, we can effectively
distinguish (3.71) from |eg〉〈eg| and other separable states.

If we set the repetition trep to 15 µs, we can complete a QST run in 107 · 9 · 15µs = 22.5
minutes. This amount of time to collect a single datum is reasonable for an experiment.

4.4 Summary

In this chapter, we presented the design of the RQI device to be used for the experiment, and
we outlined an experimental protocol that can be implemented realistically to demonstrate
the harvesting of entanglement. Thorough numerical simulation, we validated that our
protocol can indeed detect the harvested entanglement with reasonable conditions.
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Chapter 5

Conclusions

This thesis presented an analysis of the conditions of feasibility of performing the entangle-
ment harvesting experiment with a superconducting flux qubit, and outlined the protocol
for performing the experiment.

In chapter 2, we introduced the theoretical building blocks of the proposed entanglement
harvesting experiment. More specifically, we introduced the superconducting flux qubit,
the control and readout methods of the qubit, the quantization of the transmission line,
and the Unruh-DeWitt detector. Together, they allowed us to analyze and propose an
implementation of the entanglement harvesting experiment using superconducting flux
qubits in chapters 3 and 4.

In chapter 3, we derived the expressions of the amount of entanglement that can be
harvested using a flux qubit tunably coupled to an open transmission line. We then
calculated the amount of entanglement possible with a range of realistic experimental
parameters. We found that, under the right conditions, we can generate a non-negligible
amount of entanglement that can be detected experimentally.

In chapter 4, we outlined the design and the protocol of the RQI device that will be used
for the entanglement harvesting experiment. We validated our protocol through simulations,
and found that it can be used to detect the generated entanglement from entanglement
harvesting in a real experiment with noise in measured data.

In summary, we have outlined, in this thesis, the necessary conditions for the harvesting
of entanglement to be observable, and an experiment design to demonstrate this phenomenon,
that can be implemented with current technology. Future work involves constructing the
microwave hardware necessary to implement the proposed protocol, and performing the
experiment with the proposed protocol on a physical RQI device.
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