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Abstract. Let n ∈ N, and consider Cn equipped with the standard inner product. Let
A ⊆ L(Cn) be a unital algebra and P ∈ L(Cn) be an orthogonal projection. The space
L := P⊥A|ranP is said to be an off-diagonal corner of A, and L is said to be essential if
∩{ker L : L ∈ L} = {0} and ∩{ker L∗ : L ∈ L} = {0}, where L∗ denotes the adjoint of L.
Our goal in this paper is to determine effective upper bounds on dim A in terms of dim L,
where L is an essential off-diagonal corner of A. A detailed structure analysis of A based
upon the dimension of L, while seemingly elusive in general, is nevertheless provided in
the cases where dim L ∈ {1, 2}.

1. Introduction and notation

1.1. Let 1 ≤ n be an integer, and consider Cn equipped with the standard inner product.
By L(Cn) we denote the self-adjoint algebra of (necessarily continuous) linear maps from
the Hilbert space Cn into itself. We shall often identify elements of L(Cn) with their n× n
complex matrices relative to the standard orthonormal basis for Cn. Moreover, to improve
the readability of the paper, we shall use the same notation In (resp. 0n) to denote both
the n × n identity matrix (resp. the n × n zero matrix), as well as the identity map
(resp. the zero map) in L(Cn). Given a unital subalgebra A ⊆ L(Cn), and an orthogonal
projection P ∈ L(Cn), we shall refer to P⊥A|ranP as an off-diagonal corner of A. [Here,
and throughout this paper, projections will always be assumed to be orthogonal, that is –
self-adjoint idempotents.] We are interested in the question: how much is the structure of
A determined by the structure of L? In this generality, very little can be said.

For example, suppose that A ⊆ L(Cn) (resp. B ⊆ L(Cm)) is a unital algebra and that
P ∈ L(Cn) (resp. Q ∈ L(Cm)) is a non-trivial projection. LetM1 := ranP ,M2 := ranP⊥,
N1 := ranQ and N2 := ranQ⊥. Suppose furthermore that N1 is invariant for B – i.e.
Bx ∈ N1 for all B ∈ B and x ∈ N1.

Let C := A⊕B, and decompose

Cn ⊕ Cm ' Cn+m ' N1 ⊕M1 ⊕M2 ⊕N2.

Relative to this decomposition, we find that

C =



B1 0 0 B2

0 A1 A2 0
0 L A4 0
0 0 0 B4

 :

[
A1 A2

L A4

]
∈ A,

[
B1 B2

0 B4

]
∈ B

 .
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If R is the projection of Cn+m onto N1 ⊕M1, then the off-diagonal corner R⊥C|ranR ={[
0 L
0 0

]
: L ∈ L

}
clearly has the same dimension as L, and yet yields no information

whatsoever about C, since it fails to interact with that component of C which stems from
the algebra B. We avoid this obvious pitfall by requiring that L be an essential subspace,
which we now define.

Given positive integers p and q, a subspace L of the set L(Cp,Cq) of linear maps from
Cp to Cq is said to be an essential subspace if ∩{ker L : L ∈ L} = {0}, and span {ranL :
L ∈ L} = Cq. (The terminology is motivated from the theory of C∗-algebras, where a
closed ideal J of a C∗-algebra A is said to be essential if 0 6= a ∈ A implies that there exist
j1, j2 ∈ J such that aj1, j2a 6= 0. In our setting, the subspace L is essential if and only if
0 6= A ∈ L(Cq) and 0 6= B ∈ L(Cp) implies that there exist L1, L2 ∈ L such that AL1 6= 0
and L2B 6= 0.)

We remark that it can be shown that if A ⊆ Cn is a unital algebra and L is a non-essential
off-diagonal corner corresponding to a non-trivial projection P with R := ranP , then there
exists a decomposition R = N1⊕M1 and R⊥ =M2⊕N2 such that dim N1 + dim N2 > 0,
and relative to the decomposition Cn = N1 ⊕M1 ⊕M2 ⊕N2, a typical member of A is of
the form 

X11 X12 Y11 Y12
0 X22 Y21 Y22
0 L Z11 Z12

0 0 0 Z22

 .
As noted above – the dimension of L in general gives no information about (upper bounds)
on the dimension of A.

It is clear that if p = q and if L contains an invertible operator, then L is essential. The
space L of linear maps admitting the matrix forms (relative to the standard orthonormal
basis for C3)

L :=


α 0 β

0 α 0
0 β 0

 : α, β ∈ C


is an example of an essential subspace of L(C3) not containing any invertible elements.

Our goal below is to determine upper bounds on the dimension of A, given the dimension
d of one of its essential corners L. In general (see Theorem 2.5), the best bound we can
find for dim A is on the order of d3, but under certain conditions on the rank of P and the
maximum of the ranks of the elements of L, we can do much better (see Theorem 2.9).

In Sections 3 and 4 of the paper, we closely examine the cases where d = 1 and d = 2
respectively. In the first instance, we are in fact able to classify up to “admissible” similarity
(see Section 3.1 for the definition of an “admissible” similarity) all unital subalgebras of
L(C2p) admitting an essential corner of dimension 1 relative to a projection P of rank
p. While the corresponding problem seems at the moment intractable in the case where
dim L = 2, we are nevertheless able to determine all possibly occurring values for the
dimension of A, and we also demonstrate which values are possible when we further stipulate
that A should be a self-adjoint algebra. Our main emphasis will be on the case where the
rank of the projection P is half of the dimension of the space.
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1.2. We remind the reader of some notation that will be used throughout the paper. Given
a subspace S ⊆ L(Cp,Cq) and elements A ∈ L(Cq), B ∈ L(Cp), we set

ASB = {ASB : S ∈ S}.
Given vectors x, y ∈ Cn, we denote by x⊗ y∗ the rank-one operator defined by x⊗ y∗(z) =
〈z, y〉x, z ∈ Cn. If K ⊆ Cn is a subspace, the projection of Cn onto K is denoted by PK,
and the direct sum of two subspaces K and J of Cn is denoted by K u J . For n ∈ N, we
use Dn to denote the (self-adjoint) algebra of all linear maps on Cn admitting a diagonal
matrix relative to the standard orthonormal basis. Finally, if P ∈ L(Cn) is a projection
and Tk ∈ L(Cn), k = 1, 2 admit a decomposition

Tk =

[
Ak Bk
Lk Dk

]
relative to the decomposition Cn = ranP ⊕ ranP⊥, then P⊥(T1T2)|ranP equals the entry
L1A2 + D1L2 of the corresponding matrix product. In the case where D1 = 0, rankP =
rankP⊥, and we have chosen orthonormal bases for ranP and ranP⊥ such that L1 = Ip,

we shall often omit the “Ip” from the notation and simply write A2 = P⊥(T1T2)|ranP . The
meaning will be clear from the context.

1.3. The current article can be seen as part of a more general program to study operators
and algebras through their compressions. For example, in [5], it was shown that an operator
T ∈ B(H) (the set of continuous linear operators acting on an infinite-dimensional Hilbert
space H) satisfies ‖P⊥TP‖ = ‖PTP⊥‖ for all projections P ∈ B(H) if and only if T =
αI + βX for some α, β ∈ C, where X ∈ B(H) is either a hermitian operator or a unitary
operator whose essential spectrum is contained in a half-circle. In [6], those integers j
and k for which there exist normal matrices D ∈ Mn(C) and a projection P such that
rankP⊥DP = j while rankPDP⊥ = k are characterised. Recently, those unital algebras
A ⊆ Mn(C) for which PAP |ranP is an algebra for all projections P were classified in [3]
and [2]. In [1] it was shown that T ∈ Mn(C) has the property that T = αIn + F , where
F ∈Mn(C) has rank at most m if and only if the algebraic degree of PTP |ranP is less than
m+ 2 whenever P ∈Mn(C) is a projection of rank m+ 2.

2. General results

2.1. Standard P -decompositions of an algebra. We first establish a decomposition
for algebras A relative to a projection P that will prove useful below.

Let 2 ≤ n be an integer and A ⊆ L(Cn) be a unital algebra. Suppose that P ∈ L(Cn) is
a projection of rank p and that the corresponding off-diagonal corner L = P⊥A|ranP of A
is non-zero. Let {L1, L2, . . . , Ld} be a basis for L, and choose Mk ∈ A, 1 ≤ k ≤ d such that
P⊥MkP = Lk. Define M := span {M1,M2, . . . ,Md} and set T := {T ∈ A : P⊥TP = 0}. It
is clear that dim M = dim L = d, and that

A = Mu T.

We note that T is not only a subspace of A; it is in fact a unital subalgebra. We further
denote by N the set {N ∈ T : N = PNP⊥}, which we observe to be an ideal of T. Then N
admits a (subspace) complement in T, which we shall denote by V. That is,

A = Mu T = MuVuN.

We refer to the above decomposition as a standard P -decomposition of A. These are in
general far from unique, as the space M depends a priori upon the choice of M1,M2, . . . ,Md,
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which in turn depend upon our choice of a basis {L1, L2, . . . , Ld} for L. However, the spaces
T, N, and V, as well as the dimension of M – namely d = dim L – are independent of the
choice of a basis of L.

Thus, to be precise, a standard P -decomposition refers to the tuple

(A, P, {L1, L2, . . . , Ld}, {M1,M2, . . . ,Md},T,V,N),

where T,V and N depend only upon A and P .

Although the following is obvious from the discussion above, we state it as a proposition
for ease of referencing.

2.2. Proposition. Let 2 ≤ n be an integer and A ⊆ L(Cn) be a unital algebra. Let
P ∈ L(Cn) be a projection, and suppose that L := P⊥A|ranP is a subspace of dimension d.
Let A = Mu T = MuVuN be a standard P -decomposition of A as defined above. Then

dim A = dim M + dim T = d+ dim T

= dim M + dim V + dim N = d+ dim V + dim N.

As a consequence, in trying to estimate the dimension of A in terms of d, we seek to
understand how big the dimensions of V and of N can be, given the dimension of L.

The proof of the following Lemma is essentially contained in the proof of Proposition 5.1
of [4].

2.3. Lemma. Let 1 ≤ p, q be natural numbers and S ⊆ L(Cp,Cq) be a subspace. Let
µ := max{rankS : S ∈ S}. There exist invertible linear maps V ∈ L(Cp) and W ∈ L(Cq)
such that the linear map whose matrix relative to the standard orthonormal bases for Cp
and Cq is [

Iµ 0
0 0

]
.

lies in W S V . Furthermore, relative to the same block-decomposition, each element K ∈
W S V is of the form

K =

[
K1 K2

K3 0

]
,

where K3K
m
1 K2 = 0 for all integers m ≥ 0.

Of course, if µ = p = q, we conclude that Ip ∈ W S V , and there is no block-matrix
decomposition for K as above.

2.4. Remark. Let 2 ≤ n be an integer and A ⊆ L(Cn) be a unital algebra. Let P ∈ L(Cn)
be a projection of rank p, where 1 ≤ p < n, and set L := P⊥A|ranP . By Lemma 2.3, we can
find invertible linear maps W ∈ L(Cn−p) and V ∈ L(Cp) such that the linear map whose
matrix relative to the standard orthonormal bases for Cp and Cq is[

Iµ 0
0 0

]
lies in W LV , where µ := max{rankL : L ∈ L}, and relative to this block-matrix decom-
position, every element of WLV is of the form

K =

[
K1 K2

K3 0

]
.
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Set R := V ⊕W−1 ∈ L(Cn), so that R is invertible. Then, relative to the decomposition
Cn = Cp ⊕ Cn−p, we have

B := R−1AR = {
[
V −1XV V −1YW−1

WLV WZW−1

]
:

[
X Y
L Z

]
∈ A}.

If we set LB := P⊥B|ranP = WLV , then clearly dim LB = dim L. Moreover, if A =
MuVuN is a standard P -decomposition for A, then B = R−1MR u R−1VR u R−1NR
is a standard P -decomposition for B. Thus, estimating the dimensions of M, V and N is
equivalent to estimating the sizes of the corresponding subspaces in the P -decomposition
of B. In light of these remarks, when beginning a proof, we shall typically assume (without
comment) that we have replaced A by B. We emphasise that if p = n − p and L contains
an invertible operator, then the action of replacing A by B means that we are assuming
that Ip ∈ L; in fact, in this case we assume that L1 = Ip.

2.5. Theorem. Let 2 ≤ n be an integer and A ⊆ L(Cn) be a unital algebra. Let P ∈ L(Cn)
be a projection of rank p, where 1 ≤ p < n, and suppose that L := P⊥A|ranP is an essential
subspace of dimension d. Let A = MuVuN be a standard P -decomposition of A as defined
in Section 2.1. Then dim N ≤ d3 and dim V ≤ 2d2. Consequently,

dim A ≤ d(1 + d)2.

Proof. Let X := PV|ranP and Z := P⊥V|ranP⊥ . From the decomposition T = VuN, we
see that

dim T ≤ dim X + dim Z + dim N.

Writing T :=

[
X Y
0 Z

]
∈ V relative to the decomposition Cn = ranP ⊕ ranP⊥, it easily

follows from the fact that both MkT and TMk lie in A that LkX ∈ L and ZLk ∈ L for all
1 ≤ k ≤ d.

For each 1 ≤ k ≤ d, define the maps

ϕk : X → L
X 7→ LkX

and
ψk : Z → L

Z 7→ ZLk
.

Define a linear map ϕ : X → Ld by ϕ(X) = (ϕ1(X), ϕ2(X), . . . , ϕd(X)), and similarly
define the map ψ : Z → Ld by ψ(Z) = (ψ1(Z), ψ2(Z), . . . , ψd(Z)). We claim that ϕ and
ψ are injective. Indeed, if ϕ(X) = 0, then LkX = 0 for all 1 ≤ k ≤ d, whence ranX ⊆
∩1≤k≤d ker Lk = {0}, and thus X = 0. From this we find that dim X ≤ dim Ld = d2.

In a similar manner, if ψ(Z) = 0, then ZLk = 0 for all 1 ≤ k ≤ d, and thus
Z|span {ranLk:1≤k≤d} = 0. But span {ranLk : 1 ≤ k ≤ d} = ranP⊥, as L is an essential

subspace. Thus Z = 0 and so ψ is injective. It follows that dim Z ≤ d2.

Set Y := {Y :

[
0 Y
0 0

]
∈ N}, again, relative to the decomposition Cn = ranP ⊕ ranP⊥.

For each 1 ≤ i, j ≤ d, define the map

γi,j : Y → L
Y 7→ LjY Li

,
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and set γ(Y ) = (γi,j(Y ))di,j=1 ∈ Md(L). Once again, we claim that γ is injective. Suppose

that Y ∈ ker γ, so that LjY Li = 0 for all 1 ≤ i, j ≤ d. Temporarily fix j. Then (LjY )Li = 0

for all 1 ≤ i ≤ d, and arguing as above, the fact that span{ranLi : 1 ≤ i ≤ d} = ranP⊥

implies that LjY = 0. Since this is true for all 1 ≤ j ≤ d, ranY ⊆ ∩1≤j≤d ker Lj = {0}, so
that Y = 0. It follows that dim N = dim Y ≤ dim Md(L) = d3.

The last statement of the Theorem follows immediately from Proposition 2.2.

2

The estimates from Theorem 2.5 are – up to a constant multiple – optimal, as the following
two examples demonstrate.

2.6. Example. Let 2 ≤ p be an integer. Let E := {e1, e2, . . . ep, f1, f2, . . . , fp} be an
orthonormal basis for C2p. Let P ∈ L(C2p) be the projection onto span {e1, e2, . . . , ep}, and
define L = span{fj ⊗ e∗1, f1 ⊗ e∗i : 1 ≤ i, j ≤ p}.

Set X = span{ek ⊗ e∗1, ej ⊗ e∗i : 1 ≤ k ≤ p, 2 ≤ i, j ≤ p} and Z = span {f1 ⊗ f∗k , fj ⊗ f∗i :
1 ≤ k ≤ p, 2 ≤ i, j ≤ p}. An elementary calculation shows that the linear space A spanned
by L, X and Z is in fact an algebra. In particular, if p = 4, then the algebra A generated
by L,X and Z consists of those linear maps whose matrices relative to the corresponding
orthonormal basis E for C8 look like

∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 ∗ ∗ ∗


.

It is clear that d := dim L = 2p− 1, while dim X = dim Z = p+ (p− 1)2. Thus dim X and

dim Z are on the order of
(
d
2

)2
.

We can enlarge the algebra A by adding the space Y = span {ej ⊗ f∗i : 2 ≤ i, j ≤ p} to

get an algebra B = span{A,Y}. In this case, dim Y = (p − 1)2 is on the order of d2

4 , and

thus dim B is on the order of 3
4d

2.

2.7. Example. To obtain an algebra A whose dimension is on the same order of magnitude
as d3, where d denotes the dimension of an essential corner L of A requires a bit more effort.

Here we shall begin with a positive integer 1 ≤ µ, and we shall set p = µ3. Let P ∈ L(C2p)
be a projection of rank p.

Let {e1, e2, . . . , ep} be an orthonormal basis for ranP , and {f1, f2, . . . , fp} be an orthonor-

mal basis for ranP⊥. For each 1 ≤ k ≤ µ2, we define Hk = span{e(k−1)µ+j : 1 ≤ j ≤ µ} and
Kk = span{f(k−1)µ+j : 1 ≤ j ≤ µ}, so that the collection {H1,H2, . . . ,Hµ2 ,K1,K2, . . . ,Kµ2}
consists of mutually orthogonal spaces, each of dimension µ.

We let L be the subspace of operators L : ranP → ranP⊥ satisfying the following
conditions:

• PK1LPH1 is arbitrary.
• For each 2 ≤ j ≤ µ2, there exists a scalar αj,1 ∈ C such that PKjLPH1(ek) =
f(j−1)µ+k, 1 ≤ k ≤ µ. (In other words, the operator PKjLPH1 looks like a “scalar”
operator with respect to the given bases for those subspaces.)
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• For each 2 ≤ i ≤ µ2, there exists a scalar α1,i ∈ C such that PK1LPHi(e(i−1)µ+k) =
fk, 1 ≤ k ≤ µ. (Again, the operator PK1LPHi looks “scalar” with respect to the
given bases for those subspaces.)
• For each 2 ≤ i, j ≤ µ2, PKjLPHi = 0.

When µ = 4, p = 64, L consists of all maps whose matrices relative to the bases
{e1, e2, . . . , e64} and {f1, f2, . . . , f64} are of the form

A α1,2I4 · · · α1,16I4
α2,1I4 0 · · · 0
...

...
...

...
α16,1I4 0 · · · 0

 .
Here, A ∈M4(C) is arbitrary, while each αi,j ∈ C.

Next, let Y be the subspace of operators Y : ranP⊥ → ranP satisfying the following
conditions:

• For each 2 ≤ i, j ≤ µ2, PHjY PKi is arbitrary.
• If i = 1 or j = 1, then PHjY PKi = 0.

Once again, when µ = 4, p = 64, Y consists of all linear maps whose matrices relative to
the bases {f1, f2, . . . , f64} and {e1, e2, . . . , e64} are of the form

0 0 · · · 0
0 Y2,2 · · · Y2,16
...

...
...

...
0 Y16,2 · · · Y16,16

 .
Here, Yi,j ∈M4(C) is arbitrary, 2 ≤ i, j ≤ 16.

We then set X := YL = {Y L : Y ∈ Y, L ∈ L}, and Z := LY = {LY : L ∈ L, Y ∈ Y}.
A routine calculation shows that X consists of all operators X : ranP → ranP which
satisfy X = P⊥H1

XPH1 , while Z consists of all operators Z : ranP⊥ → ranP⊥ satisfying

Z = PK1ZP
⊥
K1

.
In our example where µ = 4, p = 64, we find that X is the set of all operators whose

matrices relative to the basis {e1, e2, . . . , e64} are of the form
0 0 · · · 0

X2,1 0 · · · 0
...

...
...

...
X16,1 0 · · · 0

 ,
and that Z is the set of all operators whose matrices relative to the basis {f1, f2, . . . , f64}
are of the form 

0 Z1,2 · · · Z1,16

0 0 · · · 0
...

...
...

...
0 0 · · · 0

 ,
where Xi,j , Zi,j are arbitrary (for the respective (i, j)’s for which they appear above).
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Clearly X and Z are algebras (the product of any two elements of X (resp. of Z) is zero).
In fact, it is routine – if tedious – to verify that

A :=

{[
X Y
L Z

]
: X ∈ X, Y ∈ Y, L ∈ L, Z ∈ Z

}
forms an algebra.

Observe that d := dim L = µ2 + 2(µ2 − 1) = 3µ2 − 2; dim X = dim Z = (µ2 − 1)(µ2) =
µ4 − µ2, while dim Y = (µ2 − 1)2(µ2) = µ6 − 2µ4 + µ2.

Thus dim A = (3µ2 − 2) + 2(µ4 − µ2) + (µ6 − 2µ4 + µ2) = µ6 + 2µ2 − 2, which (when µ

and thus d is large) is on the order of d3

27 .

2.8. As we have just seen, in general we must expect the dimension of A to be on the order
of (dim L)3. However, there are cases where we can do much better. Note that in the
statement of the following theorem, the condition that µ := max{rankL : L ∈ L} = p may
be replaced by the condition that L contain an invertible operator.

2.9. Theorem. Let p ≥ 1 be an integer and A ⊆ L(C2p) be a unital algebra. Let P ∈
L(C2p) be a projection of rank p, and set L := P⊥A|ranP . Suppose that L is an essential
subspace, dim L = d, and that µ := max{rankL : L ∈ L} = p. Then

dimA ≤ 4d.

Proof. Let

A := MuVuN

denote a standard P -decomposition of A with basis {Lk : 1 ≤ k ≤ d} for L and {Mk : 1 ≤
k ≤ d} for M. We shall show that dim V ≤ 2d and that dim N ≤ d, from which the result
follows. Note that by using Lemma 2.3, we may assume that L1 ∈ L is an operator whose
matrix relative to the the orthonormal bases {e1, e2, . . . , ep} and {f1, f2, . . . , fp} is Ip.

Decompose C2p = ranP ⊕ (ranP )⊥. For any T =

[
X Y
0 Z

]
∈ V, it follows that X =

P⊥(M1T )|ranP ∈ L, and similarly, P⊥(TM1)|ranP = Z ∈ L. Thus we can find integers
1 ≤ d1, d2 ≤ d and R1, R2, . . . , Rd1 , S1, S2, . . . , Sd2 ∈ T such that

T = VuN,

where V = span {R1, R2, . . . , Rd1 , S1, S2, . . . , Sd2} and N = {N ∈ T : N = PNP⊥}.

For N =

[
0 Y
0 0

]
∈ N, we also have that P (NM1)|ranP = Y ∈ PV|ranP , and so from

above, Y ∈ L. From this we deduce that dim N ≤ d.
In summary, dimA ≤ d+ (d1 + d2) + d ≤ 4d.

2

We remark that the above proof includes the fact that dim V ≤ 2d = 2 dim L, a fact
which will be used later in the paper.
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2.10. Example. The upper estimate of Theorem 2.9 is the best we can hope for, even in
the case where A is a self-adjoint algebra. Indeed, let 1 ≤ p be an integer, and let C ∈ L(Cp)
be the unitary operator whose matrix relative to the standard orthonormal basis for Cp is

[C] :=


0 1 0 0 · · · 0
0 0 1 0 · · · 0

0
. . .

. . .
. . .

. . . 0
...

... 0 1
1 0 0 · · · · · · 0

 ∈Mp(C).

Thus C is the p-cycle (i.e. the unitary map which permutes the standard orthonormal basis
of Cp cyclically). Clearly Cp = Ip and if Lj := Cj−1, 1 ≤ j ≤ p, then {L1, L2, . . . , Lp} is a
linearly independent set which forms a group.

Let L := span {Lj : 1 ≤ j ≤ p}, and A := M2(C) ⊗ L ⊆ L(C2p). Set P := Ip ⊕ 0p ∈
L(C2p), and observe that L = P⊥A|ranP is an essential subspace of dimension p. Moreover,
dim A = 4 dim L.

2.11. In Theorem 2.5, we established bounds on the dimension of a unital algebra A ad-
mitting an essential off-diagonal corner L of dimension d, and showed that it is possible
for the dimension of such an algebra A to be on the order of d3 (see Example 2.7). In
that Example, one notes that the rank of P is half the dimension of the ambient space,
meaning that the corner L is “square”. When the rank of P differs from that of P⊥ and
the corresponding µ = p, a stronger bound is available to us.

2.12. Proposition. Let p and n be integers with 1 ≤ p < n, and A ⊆ L(Cn) be a unital
algebra. Suppose that P ∈ L(Cn) is a projection of rank p and that p < q := n − p. If
L := P⊥A|ranP is an essential corner of dimension d and L contains an element of full
rank p, then

dimA ≤ 2d2 + d− 1.

Proof. Let {L1, L2, . . . , Ld} be a basis for L. By Lemma 2.3, we may assume (by applying
a similarity if necessary) that the matrix for L1 relative to the bases {e1, e2, . . . , ep} for

ranP and {f1, f2, . . . , fq} for ranP⊥ looks like[
Ip
0

]
∈Mq×p(C).

Let us decompose Cq = Cp ⊕ Cq−p and consider L1 =

[
Ip
0

]
∈ L ⊆ L(Cp,Cp ⊕ Cq). Choose

M1,M2, . . . ,Md ∈ A such that P⊥Mk|ranP = Lk, 1 ≤ k ≤ d, and let

A = Mu T = MuVuN

be the corresponding standard P -decomposition of A. Decompose Cn = ranP ⊕ ranP⊥. If

T =

[
X Y
0 Z

]
∈ V relative to this decomposition, then

P⊥(M1T )|ranP =

[
X
0

]
∈ L.
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But span{
[
X
0

]
: T =

[
X Y
0 Z

]
∈ V} is obviously not an essential subspace of L, and thus it

follows that if X := PV|ranP = PT|ranP , then dim X ≤ d− 1.
The estimate from the proof of Theorem 2.5 shows that if Z = P⊥V|ranP⊥ , then dim Z ≤

d2. Together, these imply that dim V ≤ dim X + dim Z ≤ (d− 1) + d2.

Next, suppose that N =

[
0 N2

0 0

]
∈ N, and that W =

[
X Y
L Z

]
∈ A. Then NW =[

N2L N2Z
0 0

]
∈ T ⊆ A, whence N2L = P (NW )|ranP ∈ X.

Consider, for N ∈ N as above, the linear map Ψ(N) : L→ X defined by Ψ(N)(L) = N2L.
If Ψ(N) = 0, then N2L = 0 for all L ∈ L. Since L is an essential corner of A, span {ranL :
L ∈ L} = ranP⊥, whence N2 = 0. That is, the (clearly) linear map Ψ : N → L(L,X) :=
{Φ : L→ X : Φ is linear} is injective. Thus dim N ≤ dim L(X,N) ≤ d(d− 1).

Finally, dim A ≤ dim L+ dim V+ dim N ≤ d+ (d− 1) + d2 + d(d− 1) = 2d2 + d− 1, as
claimed.

2

2.13. Example. Let 1 ≤ n. Set A = L(Cn) and let P = I1 ⊕ 0n−1. Then L := P⊥A|ranP
is clearly an essential corner of dimension d = n− 1. Meanwhile, dim A = n2 = (d+ 1)2.

We have seen above (see Theorem 2.5) that in general, given a unital algebra A with an
essential corner of dimension d, it is possible that the dimension of A be on the order of d3.
In the next example, and in the following Theorem, we shall see that depending upon the
structure of L, it is possible that the dimension of A be no more than d+ 2.

2.14. Example. Let 3 ≤ p ∈ N. Then there exists an essential subspace L ⊆ L(Cp) of
dimension p− 1 with the property that if A ⊆ L(C2p) is a unital algebra, and P ∈ L(C2p)
is a projection of rank p with L = P⊥A|ranP , then dimA ≤ p+ 1.

Let {e1, e2, . . . , ep} be the standard orthonormal basis for Cp. Define

Lk = ek+1 ⊗ e∗k + ek+2 ⊗ e∗k+1, 1 ≤ k ≤ p− 2

Lp−1 = ep ⊗ e∗p−1 + e1 ⊗ e∗p.

Set L := span {Lk : 1 ≤ k ≤ p− 1}. Note that for 1 ≤ k ≤ p− 2,

ranLk = span {ek+1, ek+2}, ranL∗k = span {ek, ek+1},
and for k = p− 1,

ranLk = span {e1, ep}, ranL∗p−1 = span {ep−1, ep}.
Hence, span{ranLk : 1 ≤ k ≤ p − 1} = span {ranL∗k : 1 ≤ k ≤ p − 1} = Cp and so L is
essential.

Suppose next that A ⊆ L(C2p) is a unital algebra, that P ∈ L(C2p) is a projection of rank
p, and that P⊥A|ranP = L. Choose Mk ∈ A, 1 ≤ k ≤ p − 1 such that P⊥Mk|ranP = Lk,
and let A = Mu T = MuVuN be a standard P -decomposition of A.

Recall that if T =

[
X Y
0 Z

]
∈ T, then P⊥(MkT )|ranP = LkX ∈ L, 1 ≤ k ≤ p − 1. We

shall use this to estimate the size of T.

(i) Let X ∈ L(Cp), suppose that LX := {LX : L ∈ L} ⊆ L.
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• Fix j ∈ {2, · · · , p− 2}. Since LjX =
∑p−1

k=1 αkLk,

LjX = α1(e2 ⊗ e∗1) +

p−1∑
k=2

(αk−1 + αk)(ek+1 ⊗ e∗k) + αp−1(e1 ⊗ e∗p).

Since ranLj ⊆ span {ej+1, ej+2}, it follows that
(i) α1 = 0;
(ii) αk−1 + αk = 0, 2 ≤ k ≤ p− 1, k 6= j, j + 1;
(iii) αp−1 = 0.

Thus, αk = 0, k 6= j.
• For j = 1, suppose that L1X =

∑p−1
k=1 αkLk. Then

L1X = α1(e2 ⊗ e∗1) +

p−1∑
k=2

(αk−1 + αk)(ek+1 ⊗ e∗k) + αp−1(e1 ⊗ e∗p).

Since ranL1 ⊆ span {e2, e3}, it follows that
(iv) αk−1 + αk = 0, 3 ≤ k ≤ p− 1;
(v) αp−1 = 0.

Thus, αk = 0 for all 2 ≤ k ≤ p− 1.
• For j = p− 1, suppose that Lp−1X =

∑p−1
k=1 αkLk. Then

Lp−1X = α1(e2 ⊗ e∗1) +

p−1∑
k=2

(αk−1 + αk)(ek+1 ⊗ e∗k) + αp−1(e1 ⊗ e∗p).

Since ranLp−1 ⊆ span {ep, e1}, it follows that
(vi) αk−1 + αk = 0, 2 ≤ k ≤ p− 1; and

(vii) α1 = 0.

Thus, αk = 0, 1 ≤ k ≤ p− 2.

In summary, if LX ⊂ L, then LjX ∈ CLj , say LjX = βjLj , 1 ≤ j ≤ p−1. Then,

for 1 ≤ j ≤ p− 2, X∗L∗j = βjL
∗
j , and so

X∗L∗jej+1 = βjL
∗
jej+1 and X∗ej = βjej .

Moreover,

X∗L∗jej+2 = βjL
∗
jej+2 and X∗ej+1 = βjej+1.

For j = p− 1, X∗L∗p−1 = βp−1L
∗
p−1, from which we find that

X∗L∗p−1ep = βp−1L
∗
p−1ep, X∗ep−1 = βp−1ep−1,

and

X∗L∗p−1e1 = βjL
∗
p−1e1, X∗ep = βp−1ep.

Therefore, β1 = · · · = βp−1, whence X ∈ CIp.
(ii) Let Z ∈ L(Cp) and suppose that ZL := {ZL : L ∈ L} ⊆ L. Then L∗Z∗ ⊆ L∗.

An argument similar to that above shows that Z∗ ∈ CIp; that is, Y ∈ C Ip.
(iii) LetW ∈ L(Cp), and suppose thatWL ⊆ CIp. Given that rankLj = 2, 1 ≤ j ≤ p−1,

we see that WLj = 0. Since L is essential, we conclude that W = 0.

Assembling all of these pieces, we see that if A ⊆M2p(C) is a unital algebra, P ∈M2p(C)

is a projection of rank p, and L = P⊥A|ranP , then dim A ≤ p+ 1 = dim L + 2.
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2.15. Theorem. Suppose that 2 ≤ p is an integer and that L ⊆ L(Cp) is an essential
subspace of dimension d ≥ 2. Suppose furthermore that there exists an invertible operator
S ∈ L such that S−1L := {S−1L : L ∈ L} does not contain a non-scalar algebra. If
A ⊆ L(C2p) is a unital algebra, P ∈ L(C2p) is a projection of rank p, and L = P⊥A|ranP ,
then dim A ≤ dim L + 2.
Proof. By replacing A with R−1AR, where R = Ip ⊕ S ∈ L(C2p), we can assume without
loss of generality that Ip ∈ L and that L contains no non-scalar algebra. As always, we let
{L1, L2, . . . , Ld} be a basis for L with L1 = Ip, and choose Mk ∈ A, 1 ≤ k ≤ d such that

P⊥Mk|ranP = Lk. Set M := span {M1,M2, . . . ,Md}. Let A = MuT be the corresponding
standard P -decomposition of A, where dim M = dim L = d and T = {T ∈ A : P⊥TP = 0}.

Given T =

[
X Y
0 Z

]
relative to C2p = ranP ⊕ ranP⊥, we find that X = P⊥(M1T )|ranP

and Z = P⊥(TM1)|ranP ∈ L. Since

X :=

{
X :

[
X Y
0 Z

]
∈ T

}
and Z :=

{
Z :

[
X Y
0 Z

]}
are clearly algebras, the hypothesis on L implies that X ⊆ CIp and Z ⊆ CIp.

To finish the proof, it suffices to show that N =

[
0 Y
0 0

]
∈ T implies that N = 0. Note,

however, that

Y = P⊥(M1T )|ranP⊥ ∈ Z,

whence Y ∈ CIp from above. Since dim L = d ≥ 2, we can find a non-scalar operator

L ∈ L. Choose M ∈ A with P⊥M |ranP = L, say

M =

[
A B
L D

]
.

Then

MN =

[
A B
L D

] [
0 Y
0 0

]
=

[
0 AY
0 LY

]
∈ T,

so that LY ∈ CIp from above. Thus Y = 0.

2

2.16. Example. As an example of a space L which satisfies the conditions of Theorem 2.15,
consider p = 3 and let L ⊆ L(C3) be the algebra who elements admit the following matrix
structure relative to the standard orthonormal basis for C3:

α− β γ 0
δ α γ
0 δ α+ β

 : α, β, γ, δ ∈ C

 .

Clearly L is an essential subspace of L(C3), since I3 ∈ L, and dim L = 4. Set S = I3
in Theorem 2.15. A routine calculation shows that L contains no algebra other than CI3.
Thus, by the above Theorem, if L is an essential corner of some unital algebra A ⊆ L(C6),
then dim A ≤ 6.

Note that by choosing A ⊆ L(C6) to be the algebra whose matrix structure relative to
the decomposition C6 = C3 ⊕ C3 looks like{[

ξI3 0
L ηI3

]
: ξ, η ∈ C, L ∈ L

}
,
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we see that A is a unital algebra with dim A = 6 and that L is the essential corner of A
corresponding to the projection P = I3 ⊕ 03.

2.17. As we shall see in Section 4.3, part of the difficulty in classifying algebras admitting
an essential corner of dimension d ≥ 2 up to similarity lies in our limited understanding of
the structure of essential subspaces of L(Cp,Cq). If one could find a classification scheme for
these (say - up to equivalence, where L1 is equivalent to L2 if there exist invertible operators
R,S such that L2 = RL1 S), this might go a long way to further our understanding of the
corresponding algebras.

2.18. We finish by remarking that Theorem 2.5 holds in the infinite-dimensional setting.
Theorem 2.9 also holds in the infinite-dimensional setting, provided that we replace the
assumption that µ = p in the statement of that Theorem by the assumption that L should
contain an invertible element. In the finite-dimensional setting, these two assumptions are
of course equivalent.

3. Algebras with essential corners of dimension 1.

3.1. As we shall now see, the dimension of an off-diagonal corner of a unital subalgebra
A of L(Cn) can yield information not only about the dimension of A, but also about the
structure of that algebra. This section is devoted to describing – up to admissible similarity,
which we now define – all possible algebras A ⊆ L(C2p) for which there exists a projection
P of rank p such that dim P⊥A|ranP = 1.

Following a suggestion made by the referee, we introduce the notion of an admissible
similarity corresponding to P , namely: an invertible element S ∈ L(Cn) will be referred to as
admissible if ranP is invariant for S. Relative to the decomposition Cn = ranP ⊕ ranP⊥,
we may write

S =

[
S1 S2
0 S4

]
.

Since Cn is finite-dimensional, it is not hard to see that S−1 is admissible when S is. It will
prove important later to note that the invertible operator R from Remark 2.4 is admissible.

3.2. Let p ≥ 1 be an integer and A ⊆ L(C2p) be a unital algebra. Suppose that P ∈ L(C2p)
is a projection of rank p and that L := P⊥A|ranP is an essential subspace of dimension 1.

Since we are interested in determining the structure of A up to admissible similarity, by
using the argument of Remark 2.4 (which, as we have just noted is admissible relative to
the projection P ) and adopting the notation of our standard P -decomposition of A, we
may assume a priori that L = span{L1}, where L1 is an operator whose matrix relative
to the standard orthonormal bases {e1, e2, . . . , ep} for ranP and {f1, f2, . . . , fp} for ranP⊥

is Ip. It follows that relative to the decomposition C2p = ranP ⊕ ranP⊥, and the above

choices of orthonormal bases for ranP and ranP⊥ respectively, M1 ∈ A is of the form

M1 =

[
A1 B1

Ip D1

]
. We now fix this decomposition of C2p and these bases for ranP and

ranP⊥ the remainder of the argument.

Suppose that T1 =

[
X1 Y1
λIp Z1

]
∈ A with λ 6= 0. Then P⊥T 2

1 |ranP = λ(X1 +Z1), and thus

X1 + Z1 ∈ L = CIp. Similarly, if T2 :=

[
X2 Y2
0 Z2

]
∈ A, then T1 + T2 ∈ A, whence

λ((X1 +X2) + (Z1 + Z2)) ∈ CIp.
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Therefore X2 + Z2 ∈ CIp as well. In other words,

for any T =

[
X Y
λIp Z

]
∈ A, we have that X + Z ∈ CIp. (∗)

In particular, with M1 as above, A1 + D1 ∈ CIp, and so there exists θ ∈ C such that
θIp = A1 +D1. Let

M := M1 −
θ

2
I2p =

[
A B1

Ip −A

]
∈ A,

where A = A1 − θ
2Ip.

Observe that M2 =

[
A2 +B1 AB1 −B1A

0 B1 +A2

]
, and thus from the argument above we

deduce that there exists γ ∈ C such that

2γIp = (A2 +B1) + (B1 +A2),

or equivalently that B1 = γIp − A2. Note that from this we see that M =

[
A γIp −A2

Ip −A

]
and M2 = γI2p.

Now, for an arbitrary T =

[
X Y
λIp Z

]
∈ A, we have that T = λM + T0, where T0 :=

T − λM satisfies P⊥T0|ranP = 0. From our standard P -decomposition of A, we have that

A = CM u T. If T =

[
X Y
0 Z

]
∈ T, then TM ∈ A, and

TM =

[
XA+ Y XB1 − Y A

Z −ZA

]
.

It follows that Z ∈ CIp, and from condition (∗) applied to T we deduce that X +Z ∈ CIp.
As such, we also have that X ∈ CIp. Choose α, β ∈ C such that

T =

[
αIp Y
0 βIp

]
.

Then (M + T )2 ∈ A, and therefore satisfies condition (∗). A routine calculation shows that
this reduces to the statement that

(αIp +A)2 + 2(Y + (γIp −A2)) + (βIp −A)2 ∈ CIp,

which in turn implies that there exists κ ∈ C for which

Y = (β − α)A+ κIp.

That is, every element T ∈ T is of the form

T =

[
αIp (β − α)A+ κIp
0 βIp

]
for some α, β, κ ∈ C. In particular, therefore, T − αI2p =

[
0 (β − α)A+ κIp
0 (β − α)Ip

]
∈ T and

A ⊆ C := span{M, I2p, Tµ,ν : µ, ν ∈ C},

where each Tµ,ν :=

[
0 µA+ νIp
0 µIp

]
. It is not hard to check that dim C = 4, and it is a

routine if somewhat tedious calculation to show that C is an algebra.
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3.3. Having established a 4-dimensional algebra C which contains A (up to admissible
similarity), we now examine the possibilities for A as a subalgebra of C, based upon its
dimension. We recall that A is unital and that dim L = 1. It follows that 2 ≤ dim A ≤ 4.

• dim A = 2. Since I2p,M ∈ A and these are clearly linearly independent, and since
M2 ∈ CI2p, we see that A = span{I2p,M} is indeed a 2-dimensional algebra with
an essential off-diagonal corner of dimension one.
• dim A = 3. Then A = span{I2p,M, Tµ0,ν0} for some µ0, ν0 ∈ C, and |µ0|+|ν0| 6= 0.

Here we have two possibilities (maintaining the notation from the Section 3.2):
• If µ0 = 0, then ν0 6= 0 and

ν−10 T0,ν0M =

[
0 Ip
0 0

] [
A γIp −A2

Ip −A

]
=

[
Ip −A
0 0

]
∈ A,

a contradiction (since this is clearly not in the span of M, I2p and T0,ν0).
• If µ0 6= 0, then we may assume without loss of generality that µ0 = 1. Then

MT1,ν0 =

[
A γIp −A2

Ip −A

] [
0 A+ ν0Ip
0 Ip

]
=

[
0 ν0A+ γIp
0 ν0Ip

]
∈ A.

Writing

MT1,ν0 = ξ1M + ξ2I2p + ξ3T1,ν0

shows that ξ1 = 0 = ξ2 and ξ3 = ν0, from which we find that we need ν20 = γ.
On the other hand,

T1,ν0M =

[
A+ ν0 −A2 − ν0A
Ip −A

]
=

[
A ν20Ip −A2

Ip −A

]
+ ν0

[
Ip 0
0 Ip

]
+ (−ν0)

[
0 A+ ν0
0 Ip

]
∈ A.

Given that M2 = γI2p = ν20I2p and T 2
1,ν0

= T1,ν0 , it is clear that for either square

root of γ, A = span{M, I2p, T1,γ1/2} is indeed a three-dimensional algebra with
an essential off-diagonal corner of dimension one.

The final conclusion is that

A = span

{[
Ip 0
0 Ip

]
,

[
0 A+ γ1/2Ip
0 Ip

]
,

[
A γIp −A2

Ip −A

]}
.

• dim A = 4. In this case, we clearly have that

A = C = span

{
C1 :=

[
Ip 0
0 Ip

]
, C2 :=

[
0 A
0 Ip

]
, C3 :=

[
0 Ip
0 0

]
, C4 :=

[
A −A2

Ip −A

]}
.

3.4. Let C be the algebra from paragraph 3.3, and let R ∈ L(C2p) be the operator which
may be written relative to the above decomposition of C2p = ranP ⊕ ranP⊥ and the

corresponding orthonormal bases as R =

[
Ip A
0 Ip

]
, so that R−1 =

[
Ip −A
0 Ip

]
. Observe that

R is admissible (relative to P ) as defined above. Then

R−1C1R = I2p R−1C2R =

[
0 0
0 Ip

]
R−1C3R =

[
0 Ip
0 0

]
R−1C4R =

[
0 0
Ip 0

]
.
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Hence R−1MR =

[
0 γIp
Ip 0

]
, and R−1CR 'M2(C)⊗Ip. From this and the characterisations

of Section 3.3, we readily obtain the following structure theorem.

Our original statement of Theorem 3.5 below yielded just the “only if” conclusions stated
below. We would like to thank the referee for suggesting the use of “admissible” similarities,
which allow us to sharpen the results to “if and only if” statements. It can be argued that
admissible similarity is perhaps a more natural notion to consider, given that the off-diagonal
corners of an algebra A refer to P⊥AP |ranP , and that these off-diagonal corners rely on an
orthogonal decomposition of the underlying space into ranP ⊕ ranP⊥.

3.5. Theorem. Let p ≥ 1 be an integer and A ⊆ L(C2p) be a unital algebra. Suppose that
P ∈ L(C2p) is a projection of rank p and that L := dim P⊥A|ranP is an essential subspace
of dimension 1. Then 2 ≤ dim A ≤ 4, and

(i) dim A = 2 if and only if either

(i) A is similar via an admissible similarity to span

{[
0 Ip
Ip 0

]
, I2p

}
⊆ L(C2p), or

(ii) A is similar via an admissible similarity to span

{[
0 0
Ip 0

]
, I2p

}
⊆ L(C2p).

(ii) dim A = 3 if and only if A is similar via an admissible similarity to T ∗2 (C) ⊗ Ip,
where T2(C) denotes the upper triangular 2× 2 complex matrices.

(iii) dim A = 4 if and only if A is similar via an admissible similarity to M2(C)⊗ Ip.
Proof.

(i) Suppose that dim A = 2. Note that if we write the original M as

M =

[
A γIp −A2

Ip −A

]
,

then A = span{I2p,M}. After taking the admissible similarity transformation in

Section 3.4, we may assume that A = span{I2p,
[

0 γIp
Ip 0

]
}.

If γ 6= 0, A is similar via the admissible similarity S :=

[
γ1/2Ip 0

0 Ip

]
to the space

indicated in (i).
If γ = 0, then A is equal to the space indicated in (ii).

(ii) Suppose that dim A = 3. Once again, if we write the original M as

M =

[
A γIp −A2

Ip −A

]
,

then A = span{I2p,M, T1,γ1/2}. After taking the admissible similarity transforma-

tion in Section 3.4, we may assume that A = span{I2p,
[

0 γIp
Ip 0

]
,

[
0 γ1/2Ip
0 Ip

]
}.

Define S :=

[
Ip γ1/2Ip
0 Ip

]
∈ L(C2p), and note that S is an admissible similarity. A

routine computation now shows that

S−1AS = T ∗2 (C)⊗ Ip =

{[
aIp 0
bIp cIp

]
: a, b, c ∈ C

}
.

(iii) This follows immediately from Sections 3.3 and 3.4.

2
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3.6. Remark. It is worth noting that the algebra span {
[

0 Ip
Ip 0

]
, I2p} appearing in part

(i) above is similar (but not admissibly similar) to D2 ⊗ Ip ⊆ L(C2p).

4. Algebras where d = 2.

4.1. This section is devoted to an analysis of those algebras A ⊆ L(C2p) for which the space
L := P⊥A|ranP is essential and dim L = 2, where P is a projection of rank p in L(C2p).

4.2. Theorem. Let 2 ≤ p be an integer and A ⊆ L(C2p) be a unital algebra. Let P ∈
L(C2p) be a projection of rank p, and set L := P⊥A|ranP . Suppose that L is essential,
dim L = 2 and that µ := max{rankL : L ∈ L}.

(a) If µ = p, then dimA ≤ 8.
(b) If µ < p, then dim A ≤ 4.

Proof. (a) This is a direct application of Theorem 2.9.
(b) As per Remark 2.4, we fix a standard P -decomposition of A with L = span {L1, L2},

where – decomposing C2p = ranP ⊕ranP⊥, L1 and L2 admit a block-operator form

L1 =

[
Iµ 0
0 0

]
and L2 =

[
K1 K2

K3 0

]
for an appropriate choice of K1,K2 and K3.

Recall that K3K
j
1K2 = 0 for all integers j ≥ 0.

Since L is essential, it follows that both K2 and K3 must have full rank; that is,
rankK3 = rankK2 = p − µ > 0. By definition of µ, we have that µ ≥ rankK2 =
p− µ, or equivalently, that p ≤ 2µ. In fact, if it were the case that p were equal to
2µ, then the fact that K3 has full rank would imply that K3 is invertible. But the
equation K3K2 = 0 implies that kerK3 6= {0}, and thus p < 2µ.

Recall that the standard P -decomposition includes a choice of Mk ∈ A, such that
P⊥Mk|ranP = Lk, k = 1, 2, and that T = {T ∈ A : P⊥TP = 0}. Suppose that

T =

[
X Y
0 Z

]
∈ T. Decomposing ranP as ranP = (ker L1)

⊥ ⊕ ker L1 allows us to

write X as

X =

[
X1 X2

X3 X4

]
.

Thus

P⊥(M1T )|ranP = L1X =

[
X1 X2

0 0

]
∈ L = span{L1, L2}.

But K3 6= 0 implies that L1X ∈ CL1, so that X1 ∈ CIµ – say X1 = λIµ – and
X2 = 0.

Next, consider[
K2X3 K2X4 − λK2

0 0

]
= P⊥(M2T )|ranP − λL2 ∈ L.

As before, it follows that K2X3 ∈ CIµ and K2(X4 − λIp−µ) = 0. A fortiori,
rankK2 = p − µ < µ and K2X3 ∈ CIµ together imply that K2X3 = 0. But
ker K2 = {0} since K2 has full rank, and thus X3 = X4 − λIp−µ = 0. We have
shown that X ∈ CIp.

A similar argument shows that Z ∈ CIp as well. It follows that T ⊆ D2 ⊗ Ip +

PTP⊥.
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Thus T ∈ T implies that there exist αT , βT ∈ C such that T =

[
αT Ip YT

0 βT Ip

]
.

If αT = βT for all T ∈ T, then T − αT I2p =

[
0 YT
0 0

]
∈ T. If there exists T ∈ T

such that αT 6= βT , then (by the Riesz functional calculus, for example) there exist

operators E :=

[
Ip E2

0 0

]
and F :=

[
0 F2

0 Ip

]
∈ T. Then T − (αE + βF ) is of the

form

[
0 YT − (αE2 + βF2)
0 0

]
. Either way, we conclude that dim T ≤ 2 + dim N,

where N = {T ∈ T : T = PTP⊥}.

Suppose that N =

[
0 Y
0 0

]
∈ N ⊆ T. We decompose ranP⊥ = ranL1⊕(ranL1)

⊥,

and write

Y =

[
Y1 Y2
Y3 Y4

]
relative to this decomposition of ranP⊥ and that of ranP given earlier. Clearly

NM1, NM2 lie in T, and therefore Y L1 =

[
Y1 0
Y3 0

]
and Y L2 =

[
Y1K1 + Y2K3 Y1K2

Y3K1 + Y4K3 Y3K2

]
both lie in CIp.

From this we deduce that Y1 = Y3 = 0 and thus Y2K3 = Y4K3 = 0. But K3 is
surjective (by the essentialness of L), and hence Y2 = Y4 = 0, i.e. Y = 0.

As such, dim N = 0 and therefore dim T ≤ 2. Since A = span{M1,M2,T}, we
have that dim A ≤ 4, completing the proof.

�

4.3. Unlike the case where dim P⊥A|ranP = 1, it does not seem feasible to classify all
unital algebras A admitting an essential corner L as above of dimension 2 up to similarity,
admissible or otherwise. Indeed, suppose that L1, L2 ∈ L(Cp) are two arbitrary linear
maps that generate an essential subspace L of L(Cp). Write C2p = Cp ⊕ Cp and define

Mk :=

[
0 0
Lk 0

]
, k = 1, 2 relative to this decomposition. If we set A := span {M1,M2, I2p} ⊆

L(C2p), then A is a unital algebra of dimension three with essential corner L of dimension
two.

For example, if 1 < r < µ < p are integers, we may decompose Cp = Cr ⊕ Cµ−r ⊕ Cp−µ.
Relative to this decomposition, define

L1 =

Ir 0 0
0 Iµ−r 0
0 0 0

 and L2 =

K11 K12 K21

0 K14 0
0 K32 0

 .
If K21 is injective and K32 is surjective, then L = span{L1, L2} is an essential subspace of
L(Cp).

It is not at all clear how to classify the corresponding subclass of algebras A defined above
up to similarity (admissible or not), let alone how to classify all unital, three-dimensional
subalgebras of L(C2p) admitting an essential corner of dimension two.

In light of these facts, our approach will be first to improve the estimates of Theo-
rem 2.5 in this particular setting, after which we shall concentrate on determining (up to
∗-isomorphism) which unital, self-adjoint algebras admit such an essential corner of dimen-
sion two. We begin by showing that all dimensions specified by Theorem 4.2 can occur.
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Note that if A, L are as in that theorem (and adhering to the notation used therein), if

Mk =

[
Ak Bk
Lk Dk

]
, k = 1, 2, then the fact that A is unital implies that dim A ≥ 3.

4.4. Example. Set p = 2, and let E := {e1, e2}, F := {f1, f2} denote two copies of the

standard orthonormal basis for C2. Let J =

[
0 1
0 0

]
∈ M2(C). Define P = I2 ⊕ 02 ∈ L(C4)

and relative to the decomposition C4 = ranP ⊕ ranP⊥, let A ⊆ L(C4) denote the algebra
of all linear maps whose matrices relative to the orthonormal basis {e1, e2, f1, f2} for C4

belong to {[
α1I2 + α2J α3I2 + α4J
α5I2 + α6J α7I2 + α8J

]
: αk ∈ C, k = 1, 2, · · · , 8

}
.

Set L = P⊥A|ranP , so that the elements of L are those maps whose matrix forms look like
{α5I2 + α6J : α5, α6 ∈ C}. Then L is a two-dimensional space, and the corresponding
maximal rank µ = 2. Obviously dim A = 8.

Define

A7 := {T ∈ A : α3 = 0}
A6 := {T ∈ A : α3 = α4 = 0}
A5 := {T ∈ A : α2 = α3 = α4 = 0}
A4 := {T ∈ A : α2 = α3 = α4 = α8 = 0}
A3 := {T ∈ A : α2 = α3 = α4 = α8 = 0, α1 = α7}

It is routine to verify that each Ak is an algebra of dimension k, k = 3, 4, . . . , 7, and that
the corresponding Lk := P⊥Ak|ranP is a two-dimensional essential subspace with maximal
rank µk = 2 = p.

4.5. Example. Let p = 3. Define L1, L2 ∈ L(C3) to be those linear maps whose matrices

relative to the standard orthonormal basis for C3 are given by

1 0 0
0 1 0
0 0 0

 and

0 0 1
0 0 0
0 1 0


respectively. Define Mk =

[
0 0
Lk 0

]
∈ L(C3 ⊕ C3). Set A = span{I6,M1,M2}, so that

dim A = 3, and let P = I3 ⊕ 03. With L = P⊥A|ranP = span{L1, L2}, we see that L is a
two-dimensional essential subspace, with corresponding maximal rank µ = 2 < p.

Setting B := span{A, P} yields a four-dimensional algebra with the same off-diagonal
corner P⊥B|ranP = L.

4.6. We now turn our attention to classifying (up to ∗-isomorphism) those C∗-algebras
A ⊆ L(C2p) which admit an essential corner L with dim L = 2, corresponding to a projection
P of rank p. By Theorem 4.2, the dimension of such an algebra must lie between 3 and
8. This greatly restricts the class of C∗-algebras we need to consider. In fact, up to ∗-
isomorphism, we need only consider the following:

• the commutative C∗-algebras A := Dk, k = 3, 4, . . . , 8;
• the algebras A := M2(C)⊕Dk, k = 0, 1, . . . , 4; and
• the algebra A := M2(C)⊕M2(C).
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Of course, every C∗-subalgebra of a L(Cn) is unitarily equivalent to a direct sum of algebras
of the form L(Ck)⊗CIj for an appropriate choice of k’s and j’s, and so for each of the above
examples, it suffices to describe A (up to unitary equivalence) by defining the multiplicities
of the components of the matrix algebras. In the hope that some of the techniques we
establish below might eventually extend to study off-diagonal corners a wider class of C∗-
algebras than L(Cn), we shall adopt a more operator-theoretic but equivalent approach,
namely: in each case, we shall either describe a ∗- representation ρ : A → L(C2p) which
admits an essential corner L as above, or we shall prove that no such representation exists.

4.7. Example. There exist ∗-representations ρk : Dk → L(C4), k = 3, 4 and a projection
P of rank 2 such that L := P⊥ρk(Dk)|ranP is an essential corner of dimension 2.

• Let {e1, e2} denote the standard orthonormal basis for C2 and define W = e1 ⊗

e∗2 + e2 ⊗ e∗1. Note that W 2 = I2. Define T =

[
W I2
I2 W

]
∈ L(C2 ⊕ C2), and

A = span{I4, T, T 2}. Then A is a unital commutative C∗-algebra with dimA = 3,
hence A is ∗-isomorphic to D3 (say via ρ3), and if we set P = I2 ⊕ 02, then L :=
P⊥ρ3(D3)|ranP is an essential corner of dimension 2.
• Define A ⊆ L(C4) to be the algebra whose elements admit the following matrix

representation relative to the standard orthonormal basis:

{


α β

γ δ
β α

δ γ

 : α, β, γ, δ ∈ C}.

Then A is a unital C∗-algebra which is isomorphic to D4 (say via ρ4). Again, if we
set P = I2 ⊕ 02, then L := P⊥ρ4(D4)|ranP is an essential corner of dimension 2.

4.8. Proposition. Let 5 ≤ k ≤ 8. Suppose that 2 ≤ p ∈ N, and that ρ : Dk → L(C2p)
is an injective, unital ∗-representation. If P ∈ L(C2p) is a projection of rank p and L :=
P⊥ρ(Dk)|ranP , then either L is not essential, or dim L 6= 2.
Proof. We argue by contradiction. Suppose that such a representation ρ and projection P
exist and fix A = ρ(Dk). As in Section 2.1, we consider a standard P -decomposition of A
where L has basis {L1, L2} which is “lifted” to a basis {M1,M2} for M ⊆ A.

As 5 ≤ dim A ≤ 8, it follows from Theorem 4.2 that µ := max{rankL : L ∈ L} = p. Since
dim L = 2, and since A = MuT, we find that dim T ≥ 3. From the proof of Theorem 2.9,
we see that dimPT|ranP ≤ 2. This implies that there exists a non-zero operator T ∈ A
whose operator matrix relative to the decomposition C2p = ranP ⊕ ranP⊥ is given by[
0 T2
0 T4

]
.

The fact that every element of Dk, and hence of A, is normal implies that T2 = 0.
Moreover, A is a C∗-algebra, and thus relative to the same decomposition of C2p, |T | ∈ A

admits the matrix representation

[
0 0
0 |T4|

]
, and |T4| 6= 0. But A is abelian, and so |T |Mj =

Mj |T |. Then |T4||ranLj = 0, j = 1, 2, contradicting the fact that L is essential.

2

In examining the remaining cases, we find that the argument in the case where A is
isomorphic to M2(C) ⊕ C is significantly longer and more delicate than the others, and so
we isolate this case below.
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4.9. Proposition. Suppose that 2 ≤ p ∈ N. Suppose furthermore that A ⊆ L(C2p) is a self-
adjoint, unital algebra which is ∗-isomorphic to M2(C)⊕D1 'M2(C)⊕C. Let P ∈ L(C2p)
be a projection of rank p, and let L = P⊥A|ranP . It follows that either L is not essential,
or dimL 6= 2.
Proof. We shall argue by contradiction. Suppose that L is essential and that dim L = 2.

Below, we shall decompose C2p = ranP ⊕ ranP⊥, and we shall decompose all elements

of L(C2p) relative to this decomposition of C2p. Clearly P =

[
Ip 0
0 0

]
relative to this

decomposition.
Now A is ∗-isomorphic to A0 := M2(C)⊕C, and thus there exists 1 < γ < p such that A

is unitarily equivalent to

M2(C)(γ) ⊕ CI2p−2γ .
More specifically, let us consider A to be an injective, unital ∗-representation ρ of A0 on

C2p. Consider next q := I2 ⊕ 0 ∈ A0, and denote by Q the projection ρ(q).
Recall that the algebra T in any standard P -decomposition of A is entirely determined

by P , and as such its dimension is independent of the particular basis {L1, L2} for L we
may choose (and thus for whichever complement M to T in A we may choose). In our case,
dim A = 5 and dim L = 2, and so by the definition of T, dim T = 3.
Step One.

Suppose that Q ∈ T, say Q =

[
Q1 Q2

0 Q4

]
relative to C2p = ranP ⊕ ranP⊥. Since Q is

a projection, we see that Q2 = 0 and that Q1, Q4 are projections as well. Without loss of
generality, we may write Q1 = Ir ⊕ 0p−r and Q4 = Is ⊕ 0p−s. Since Q 6= I2p, either r < p
or s < p. Thus we have

Q =


Ir 0 0 0
0 0p−r 0 0
0 0 Is 0
0 0 0 0p−s

 .
(Of course, if r = p, the second row and column are absent. The main point here is that at
least one of the second row (and column) and the fourth row (and column) is present.)

Since ρ is a unital ∗-representation, I2p−Q = ρ((I2⊕1)−q) = ρ(02⊕1). Let a = a0⊕α ∈
A0, where a0 ∈M2(C) and α ∈ C.

Now a = qaq + α((I2 ⊕ 1)− q), and thus ρ(a) = Qρ(a)Q+ α(I −Q). That is,

ρ(a) =


∗ 0 ∗ 0
0 αIp−r 0 0

∗ 0 ∗ 0
0 0 0 αIp−s

 .
Recall from Theorem 4.2 that dim A = 5 implies that µ = p, where µ = max{rankL :

L ∈ L}. Then, since L is essential, r = p = s.
Thus Q 6∈ T.

Step Two.
Let T0 := {t ∈ A0 : ρ(t) ∈ T} be the pre-image of T in A0, and note that T0 is a three-

dimensional, unital algebra. Choose x, y ∈ A0 such that T0 = span {1, x, y}, where 1 :=

I2⊕1 is the identity of A0. Without loss of generality, we may assume that x :=

[
x1 x2
x3 x4

]
⊕0

and that y =

[
y1 y2
y3 y4

]
⊕ 0 for an appropriate choice of xk, yk ∈ C, 1 ≤ k ≤ 4. Let
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xe :=

[
x1 x2
x3 x4

]
, ye :=

[
y1 y2
y3 y4

]
. Then Te := span {xe, ye} is a two-dimensional subalgebra

of M2(C). (That it is closed under multiplication is an easy consequence of the fact that the
powers and products of x and y are in T0 and as such can be written as a linear combination
of 1, x and y, but the components arising from the second summand are always zero, and
therefore the coefficient of 1 is always zero.)

We first claim that T is non-abelian. Indeed, otherwise Te ⊆ M2(C) is abelian. It is
a relatively straightforward consequence of Burnside’s Theorem that any two-dimensional,
abelian subalgebra of M2(C) is either similar to D2 or to the algebra generated by the
identity I2 and the 2×2 nilpotent Jordan cell J . Both of these algebras are unital, however,
which contradicts the fact established in Step One that Q 6∈ T.

Thus Te is a non-unital, two-dimensional subalgebra of M2(C), and hence it is unitarily
equivalent to one of

• R :=

{[
z1 z2
0 0

]
: z1, z2 ∈ C

}
,

• C :=

{[
z1 0
z3 0

]
: z1, z3 ∈ C

}
.

We shall argue the case where Te = R (i.e. in particular we embed the unitary equivalence
mentioned above into the definition of the map ρ). The case where Te is unitarily equivalent
to C is handled similarly.

Let ei,j , 1 ≤ i, j ≤ 2 denote the canonical (i, j)-matrix unit of M2(C). Set U := ρ(e11⊕0)
and V := ρ(e12 ⊕ 0), and note that T := span {I2p, U, V }.

Define M1 := ρ(e21 ⊕ 0) and M2 := ρ(e22 ⊕ 0). Since {e21 ⊕ 0, e22 ⊕ 0} is linearly
independent from {I1 ⊕ 1, e11 ⊕ 0, e12 ⊕ 0}, we find that {M1,M2} is linearly independent
from {I2p, U, V }, and as such, if we set M := span {M1,M2}, then M is a complement to T

in A. It follows that L = P⊥M|ranP .
The equations e11e21 = 0 and e11e22 = 0 imply that UM1 = 0 = UM2. Writing

• U =

[
U1 0
0 U4

]
(note that e11 is a projection and thus so is U , whence U = U∗) and

• Mk =

[
Ak Bk
Lk Dk

]
, k = 1, 2,

we find that U4L1 = 0 = U4L2.
The hypothesis that L is essential implies that ranP⊥ = span {ranL1, ranL2}. From

this we see that U4 = 0, and thus

U =

[
U1 0
0 0

]
.

In fact, let us refine this decomposition further. Since U is a projection, so is U1, and so
we may decompose ranP = ranU1 ⊕ (ranP 	 ranU1). With respect to the decomposition
C2p = ranU1 ⊕ (ranP 	 ranU1)⊕ ranP⊥, we may then write

U =

I 0 0
0 0 0
0 0 0

 V =

V11 V12 V21
V13 V14 V22
0 0 V4



M1 =

A11 A12 B11

A13 A14 B12

L11 L12 D1

 M2 =

A21 A22 B21

A23 A24 B22

L21 L22 D2

 .
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Next, the equations e11e12 = e12 and e12e11 = 0 imply that UV = V and V U = 0. Thus

V =

0 V12 V21
0 0 0
0 0 0

 .
From the equations e21e11 = e21 and e11e21 = 0 we find that M1U = M1 and UM1 = 0,

while the equation e11e22 = 0 = e22e11 implies that UM2 = 0 = M2U . Thus

M1 =

 0 0 0
A13 0 0
L11 0 0

 , and M2 =

0 0 0
0 A24 B22

0 L22 D2

 .
Finally, since e21e12 = e22, we have that M1V = M2. Hence

M2 = M1V =

 0 0 0
A13 0 0
L11 0 0

 0 V12 V21
0 0 0
0 0 0

 =

0 0 0
0 A13V12 A13V21
0 L11V12 L11V21

 .
It follows that L22 = L11V12. Note that

L = span{[L11 0], [0 L22]} = span{[L11 0], [0 L11V12]}.

Since L is essential, we deduce that ranL11 = ranP⊥. Keeping in mind that rankP =
rankP⊥ = p, L11 ∈ L(Cp). This means that, under the decomposition C2p = ranU1 ⊕
(ranP 	 ranU1)⊕ ranP⊥, the second summand is absent. Therefore, U = P .

Recall that UM1 = 0, M1U = M1, and UM2 = M2U = 0. With respect to the decompo-
sition C2p = ranP ⊕ ranP⊥, we get

M1 =

[
0 0
L1 0

]
, and M2 =

[
0 0
0 D2

]
.

Thus L = P⊥M|ranP = span {L1, 0} has dimension 1, a contradiction.
This completes the proof.

2

4.10. Example. There exist injective, unital ∗-representations ρk : M2(C)⊕Dk → L(C4),
k = 0, 2 and a projection P of rank 2 such that L := P⊥ρk(M2(C)⊕Dk)|ranP is an essential
corner of dimension 2.

• Consider the case where k = 0. Define ρ0 : M2(C)→ L(C4) via

ρ0(

[
α β
γ δ

]
) =


α 0 β 0
0 δ 0 γ
γ 0 δ 0
0 β 0 α

 .
With P = I2 ⊕ 02 ∈ L(C4) and A = ρ0(M2(C)), L := P⊥A|ranP is an essential
corner of dimension 2.
• Consider the case where k = 2. Define ρ2 : M2(C)⊕D2 → L(C4) ' L(C⊕C⊕C⊕C)

via

ρ2(

[
α β
γ δ

]
⊕ (ω ⊕ θ)) =


α 0 β 0

0 ω+θ
2 0 ω−θ

2
γ 0 δ 0

0 ω−θ
2 0 ω+θ

2

 .
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With P = I2⊕02 ∈ L(C4) and A := ρ2(M2(C)⊕D2), L := P⊥A|ranP is an essential
corner of dimension 2.

4.11. Proposition. Suppose that 2 ≤ p ∈ N and that k ∈ {1, 3, 4}. Suppose furthermore
that ρ : M2(C)⊕Dk → L(C2p) is an injective, unital ∗-representation. Let A := ρ(M2(C)⊕
Dk), and let P ∈ L(C2p) be a projection of rank p. If L := P⊥A|ranP , then either L is not
essential, or dimL 6= 2.
Proof. In each case, we shall argue by contradiction. Suppose that dimL = 2 and that L
is essential.

• The case where k = 1; i.e. where A is a representation of M2(C)⊕D1 'M2(C)⊕C
is handled by Proposition 4.9.
• Consider the case where k ∈ {3, 4} and ρ : M2(C) ⊕ Dk → L(C2p) is an injective,

unital ∗-representation with A = ρ(M2(C)⊕Dk).
Let P ∈ L(C2p) be a projection of rank p, and let A = MuVuN be a standard

P -decomposition of A. As per the comment following Theorem 2.9, we see that
dim V ≤ 2 dim L = 4. Hence dim N ≥ 1. As always, we decompose C2p =
ranP ⊕ ranP⊥.

From above, we see that there exists 0 6= N =

[
0 Y
0 0

]
∈ A. Since N is a nilpotent

of order two, it follows that there exists a nilpotent y of order two in M2(C) ⊕Dk

such that N = ρ(y). But then (without loss of generality),

y =

[
0 1
0 0

]
⊕ 0k.

Note that y∗y and yy∗ are projections which add to q :=

[
1 0
0 1

]
⊕ 0k. Thus NN∗

and N∗N are projections which add to Q = ρ(q). That is,

Q =

[
Y Y ∗ 0

0 Y ∗Y

]
is a central projection in A. Noting that rankY Y ∗ = rankY ∗Y , we see that without
loss of generality, we can find 1 ≤ r < p such that

Q = Ir ⊕ 0p−r ⊕ Ir ⊕ 0p−r.

The fact that Q is a central projection implies that (relative to the corresponding
decomposition of C2p) for all A ∈ A,

A =


A11 0 A13 0
0 A22 0 A24

A31 0 A33 0
0 A42 0 A44

 .
Furthermore, if w ∈M2(C)⊕ 0k, then qw = w = wq and writing W = ρ(w),

QW = W = WQ,

while if X ∈ 02 ⊕Dk, then qx = 0 = xq, so that with X = ρ(x),

QX = 0 = XQ.
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In matrix form, this yields

W = ρ(w) =


W11 0 W13 0

0 0 0 0
W31 0 W33 0

0 0 0 0

 ,
and

X = ρ(x) =


0 0 0 0
0 X22 0 X24

0 0 0 0
0 X42 0 X44

 .
The fact that L is essential implies that there existW,X such thatW31 6= 0 6= X42.

Note that dim L = 2. But then the map

ϕ(x) =

[
X22 X24

X42 X44

]
yields a representation of Dk such that the corresponding LDk

= P⊥ϕ(Dk)|ranP is
essential and has dimension 1. This contradicts Theorem 3.5.

2

The final case is handled by the following example.

4.12. Example. There exists an injective, unital ∗-representation ρ : M2(C) ⊕M2(C) →
L(C4) and a projection P of rank 2 such that L := P⊥ρ(M2(C)⊕M2(C))|ranP is an essential
corner of dimension 2.

Proof. Define ρ : M2(C)⊕M2(C)→ L(C4) = L(C⊕ C⊕ C⊕ C) via

ρ(

[
α1 β1
γ1 δ1

]
⊕
[
α2 β2
γ2 δ2

]
) =


α1 0 β1 0
0 α2 0 β2
γ1 0 δ1 0
0 γ2 0 δ2

 .
If A := ρ(M2(C)⊕M2(C)) and P = I2 ⊕ 02, then L := P⊥A|ran P is an essential corner of
dimension 2.

2

Acknowledgments. The authors would like to thank the referee for a careful and ex-
tremely thorough reading of the original manuscript, as well as for suggesting the notion of
an “admissible” similarity, as it appears in Section 3 of the paper.

References

[1] J. Bernik, L. Livshits, G.W. MacDonald, L.W. Marcoux, M. Mastnak, and H. Radjavi, Rank modulo
the scalars and algebraic degree in spatial matricial numerical ranges, (2020) preprint.

[2] Z. Cramer, Matrix algebras with a certain compression property II, (2020) preprint.
[3] Z. Cramer, L.W. Marcoux, and H. Radjavi, Matrix algebras with a certain compression property I,

(2020) preprint.
[4] K.R. Davidson, L.W. Marcoux, and H. Radjavi, Transitive spaces of operators, Integr. equ. oper. theory

61 (2008), 187–210.
[5] L. Livshits, G. W. MacDonald, L.W. Marcoux, and H. Radjavi, Hilbert space operators with non-diagonal

corners, J. Funct. Analysis 275 (2018), 892–925.



26 L.W. MARCOUX, H. RADJAVI, AND Y.H. ZHANG

[6] L.W. Marcoux, H. Radjavi, and Y. Zhang, Normal operators with highly incompatible off-diagonal
corners, Studia Math, to appear.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, CANADA
N2L 3G1

Email address: LWMarcoux@uwaterloo.ca

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, CANADA
N2L 3G1

Email address: HRadjavi@uwaterloo.ca

School of Mathematics, Jilin University, Changchun 130012, P.R.CHINA
Email address: zhangyuanhang@jlu.edu.cn


