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Abstract. Let H be a complex, separable Hilbert space and B(H) denote the algebra of
all bounded linear operators acting on H. Given a unitarily-invariant norm ‖ · ‖u on B(H)
and two linear operators A and B in B(H), we shall say that A and B are polynomially
isometric relative to ‖ · ‖u if ‖p(A)‖u = ‖p(B)‖u for all polynomials p. In this paper, we
examine to what extent an operator A being polynomially isometric to a normal operator N
implies that A is itself normal. More explicitly, we first show that if ‖ · ‖u is any unitarily-
invariant norm on Mn(C), if A,N ∈ Mn(C) are polynomially isometric and N is normal,
then A is normal. We then extend this result to the infinite-dimensional setting by showing
that if A,N ∈ B(H) are polynomially isometric relative to the operator norm and N is a
normal operator whose spectrum neither disconnects the plane nor has interior, then A is
normal, while if the spectrum of N is not of this form, then there always exists a non-normal
operator B such that B and N are polynomially isometric. Finally, we show that if A and
N are compact operators with N normal, and if A and N are polynomially isometric with
respect to the (c, p)-norm studied by Chan, Li and Tu, then A is again normal.

1. Introduction

Let H be a complex, separable Hilbert space and denote by B(H) the algebra of bounded
linear operators acting on H. When H is finite-dimensional with dimH = n < ∞, we
identify B(H) with the algebra Mn(C) of n × n complex matrices. We denote by σ(A) the
spectrum of A ∈ B(H).

Amongst the most studied and best understood class of operators in B(H) is the set of
normal operators (i.e. those operators N ∈ B(H) for which NN∗ = N∗N). There has been
a great deal of work done to produce alternate conditions on a given T ∈ B(H) which are
either equivalent to T being normal, or at least imply that T is normal [2, 11]. For example,
it is easy to see that if T ∈ B(H) and ‖Tx‖ = ‖T ∗x‖ for all x ∈ H, then T is normal. The
articles [6, 14] provide no fewer than 89 such conditions in the matrix setting.

The present article adds yet another condition to this seemingly endless list. Recall that
a norm ‖ · ‖u on B(H) is said to be unitarily-invariant if

‖X‖u = ‖UX‖u = ‖XV ‖u
for all X ∈ B(H) and for all unitary operators U, V ∈ B(H). For example, the Frobenius
and operator (i.e. spectral) norms are both unitarily-invariant norms on Mn(C).
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Given an operator T ∈ B(H), and given a unitarily-invariant norm ‖ · ‖u on B(H), we are
interested in determining to what extent the values of ‖p(T )‖u, p a polynomial determine
the normality of T . To make this notion precise, we introduce the following definition.

1.1. Definition. Let A,B ∈ B(H), and let ‖ · ‖u be a unitarily-invariant norm on B(H).
We say that A and B are polynomially isometric relative to ‖ · ‖u if

‖p(A)‖u = ‖p(B)‖u for all polynomials p.

We remark that when H is finite-dimensional with dimH = n < ∞, it follows from the
Cayley-Hamilton Theorem that one need only consider polynomials of degree at most n− 1.
We should mention that variants of this notion have at times been referred to by saying that
“A and B have the same norm behaviour”. We feel that the current terminology is more
precise.

1.2. The underlying theme of our investigation is that if A and B are linear operators which
are polynomially isometric with respect to a given norm, then A and B share many common
properties. For example, in the setting of matrices, it is easily seen that if A,B ∈Mn(C) are
polynomially isometric relative to a unitarily-invariant norm ‖ · ‖u, then A and B share a
common minimal polynomial, and in particular, σ(A) = σ(B). In the case of the Frobenius
and operator (i.e. spectral) norms, Greenbaum and Trefethen [13] studied the relationship
between polynomial isometry and resolvent growth for a pair A,B ∈ Mn(C), showing in
particular that if A and B are polynomially isometric relative to any matrix norm, then
A and B share common pseudospectrum. Later, Viswanath and Trefethen [23] showed
that if A ∈ Mn(C) is unitarily equivalent to A1 ⊕ A2 where σ(A1) ∩ σ(A2) = ∅, and if
B ∈Mn(C) is polynomially isometric to A, then B also admits a direct sum decomposition
B = B1⊕B2. As yet another example, in [9, Theorem 2.1], [10, Theorem 2.1], it was shown
that if A ∈ Mn(C) is an upper triangular Toeplitz matrix with nonzero superdiagonal and
B ∈ Mn(C) is polynomially isometric to A with respect to either the Frobenius or operator
norm, then A and B are unitarily equivalent.

The main question we study is the following.

Question: Let A,N ∈ B(H) be two operators with N normal, and suppose that B(H) is
equipped with a unitarily-invariant norm ‖ · ‖u. If A and N are polynomially isometric with
respect to ‖ · ‖u, must A be normal?

In the matrix setting, some positive answers have already been obtained. For Mn(C)
equipped with the Frobenius norm, a positive answer to this question was given in [11],
while the case of Mn(C) equipped with the usual operator norm was subsequently handled
in [2].

In Section 2 below, we show that for any unitarily-invariant norm ‖ · ‖u on Mn(C), if
A ∈Mn(C) is polynomially isometric to a normal matrix N , then A is normal. Furthermore,
if the norm is able to distinguish between projections of different rank, then A and N must
in fact be unitarily equivalent.

From Section 3 on, we assume thatH is an infinite-dimensional, complex, separable Hilbert
space. The most important unitarily-invariant norm in the infinite-dimensional setting is the
usual operator norm ‖ ·‖ on B(H). In Section 3 we consider the case where A,N ∈ B(H) are
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polynomially isometric relative to this norm, and N is normal. A compact subset K ⊆ C
is said to be Lavrentieff if C \K is connected, and if the interior Ko of K is empty. We
prove that if σ(N) is Lavrentieff, then A is normal, while if σ(N) is not Lavrentieff, then
there always exists a non-normal operator B such that B and N are polynomially isometric
relative to the operator norm.

In Section 4, we extend above result to compact operators A and N (with N normal)
which are polynomially isometric with respect to the (c, p)-norms introduced by Chan, Li
and Tu in [3]. Since the operator norm on B(H) is an example of a (c, p)-norm, we see from
above that the result does not extend to all pairs of operators A and N in B(H) with N
normal. We conclude with a few remarks concerning polynomial isometry when restricted
to polynomials without constant term.

2. Unitarly-invariant norms on Mn(C)

We first deal with the case where H is finite-dimensional. The reader is referred to [7,
19, 17] for more information about the relationship between unitarily-invariant norms and
symmetric gauge functions.

2.1. Definition. Let x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ Rn. We shall write x ≤ y to
mean that xi ≤ yi(i = 1, · · · , n). Let us also denote by x̃1 · · · , x̃n the numbers x1, · · · , xn
arranged in non-ascending order of magnitude, and let ỹ1 · · · , ỹn be defined analogously. If

x̃1 + · · ·+ x̃k ≤ ỹ1 + · · ·+ ỹk (k = 1, ..., n),

we shall write x 4 y.

Next, we need to recall the following fact which will be used later.

2.2. Lemma. Let p, q, k ∈ N, and 0 < r1 < · · · < rk be positive real numbers. Set

x = (

p︷ ︸︸ ︷
0, · · · , 0;

q︷ ︸︸ ︷
1, · · · , 1;

k︷ ︸︸ ︷
1, · · · , 1), y = (

p︷ ︸︸ ︷
0, · · · , 0;

q︷ ︸︸ ︷
1, · · · , 1; 1 + r1, · · · , 1 + rk),

Then for every symmetric gauge function Φ in p+ q + k variables, we have that

Φ(x) < Φ(y).

Proof. Set

ŷ = (

p︷ ︸︸ ︷
0, · · · , 0;

q︷ ︸︸ ︷
1 +

r1

2q
, · · · , 1 +

r1

2q
; 1 +

r1

2
, , 1 + r2, · · · , 1 + rk).

Then
ŷ 4 y,

and

ŷ ≥ z := (

p︷ ︸︸ ︷
0, · · · , 0;

q︷ ︸︸ ︷
1 +

r1

2q
, · · · , 1 +

r1

2q
;

k︷ ︸︸ ︷
1 +

r1

2q
, · · · , 1 +

r1

2q
).

Therefore, by [7, Theorem 4] (also see [19, Theorem 1]), for a fixed symmetric gauge function
Φ in p+ q + k variables,

Φ(y) ≥ Φ(ŷ) ≥ Φ(z) = (1 +
r1

2q
)Φ(x) > Φ(x).
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For convenience, we formulate a variant of [23, Proposition 1.3] as the next lemma, which
will prove very useful.

2.3. Lemma. Let P ∈ Mn(C) be a projection, Q ∈ Mn(C) be an idempotent, and ‖ · ‖u be
a unitarily-invariant norm of Mn(C). If ‖P‖u = ‖Q‖u and ‖In − P‖u = ‖In −Q‖u, then Q
is a projection.

Proof. Suppose that rank(P ) = r, rank(Q) = s. If s = 0, then Q = 0, while if s = n, then
rank(In −Q) = 0, that is, Q = In.

We therefore assume that 1 ≤ s ≤ n − 1. Relative to the decomposition Cn = ranQ ⊕
(ranQ)⊥, we may write

Q =

[
Is Y
0 0n−s

]
,

Note that either s ≥ r or n− s > n− r.
(1) When s ≥ r, we note that since the singular values of Q are same (counting mul-

tiplicity) as the singular values of Q∗, it follows that ‖Q∗‖u = ‖Q‖u. If Y 6= 0,
then – by Lemma 2.2 and the one-to-one correspondence between unitarily-invariant
norms and symmetric gauge functions due to Von Neumann (see [17, Theorem 1.1])
– ‖Q‖u > ‖P‖u.

(2) When n− s > n− r, we consider

In −Q =

[
0 −Y
0 In−s

]
.

In an argument similar to the one above, ‖In − Q‖u > ‖In − P‖u by Lemma 2.2
unless Y = 0.

Therefore, Y = 0, and so Q is a projection. �

Suppose that P and Q ∈ Mn(C) are two projections of equal rank. Clearly P and Q
are unitarily similar, and thus if ‖ · ‖u is any unitarily-invariant norm on Mn(C), then
‖P‖u = ‖Q‖u. In general, however, it often happens that ‖P‖u = ‖Q‖u even if the ranks of
P and Q differ; one need only consider the operator norm on Mn(C). Let us agree to say
that a unitarily-invariant norm ‖ · ‖u separates projections by rank if, whenever P and
Q are projections and rankP 6= rankQ, then ‖P‖u 6= ‖Q‖u. This happens for a large family
of unitarily-invariant norms, including, for example, the p-norms

‖T‖p :=

(
n∑
k=1

sk(T )p

) 1
p

, T ∈Mn(C),

where s1(T ) ≥ s2(T ) ≥ · · · sn(T ) ≥ 0 are the singular numbers of T . (See Section 4 for the
definition of the singular numbers of T ∈ B(H).)

The following theorem generalises the equivalence of conditions (i) and (vii) in the main
Theorem of [11] as well as [2, Corollary 1], and it adds yet one more equivalence to the 89
other characterisations of normal matrices that appear in [14] and [6]. As pointed out to us
by the referee, the construction of the spectral projections for a normal operator is essentially
the same as that used by Luecke in the paper [18].

4



2.4. Theorem. Let n ∈ N and ‖ · ‖u be a unitarily-invariant norm on Mn(C). Let N be
an n × n normal complex matrix and A ∈ Mn(C). Suppose that A and N are polynomially
isometric relative to ‖ · ‖u. Then A is normal.

If, furthermore, we suppose that ‖ · ‖u separates projections by rank, then A and N are
unitarily similar.

Proof. Let µN be the minimal polynomial of N . Then σ(N) = {λ : µN(λ) = 0}. Since
µN(N) = 0, it follows that µN(A) = 0, and thus

µN(σ(A)) = σ(µN(A)) = {0}.

In particular, σ(A) ⊂ σ(N). By symmetry,

σ(N) = σ(A) := {λ1, · · · , λm}.

If m = 1, then N = λI, and since

‖A− λI‖ = ‖N − λI‖ = 0,

we have A = λI.
Next, suppose that m ≥ 2. Define

pi(z) =
∏

1≤j≤m,j 6=i

z − λj
λi − λj

, 1 ≤ i ≤ m.

Set

Pi := pi(N), Qi := pi(A),

it follows that

‖Pi‖u = ‖Qi‖u, and ‖In − Pi‖u = ‖In −Qi‖u.
From the basic properties of the continuous functional calculus for normal matrices, we

find

• Pi is a projection; that is P 2
i − Pi = 0 and Pi = P ∗i , 1 ≤ i ≤ m; indeed, Pi is the

spectral projection for N corresponding to the eigenvalue λi;
• PiPj = 0, 1 ≤ i 6= j ≤ m;
•
∑m

i=1 Pi − I = 0;

Therefore,

• ‖Qi − Q2
i ‖u = ‖Pi − P 2

i ‖u = 0, so that Qi is an idempotent, 1 ≤ i ≤ m; in fact, the
condition above that ‖Pi‖u = ‖Qi‖u and ‖In − Pi‖i = ‖In − Qi‖u, combined with
Lemma 2.3, yields that each Qi is a projection.
• ‖QiQj‖u = ‖PiPj‖u = 0, and thus QiQj = 0 1 ≤ i 6= j ≤ m;
• ‖
∑m

i=1Qi − I‖u = ‖
∑m

i=1 Pi − I‖u = 0, and therefore
∑m

i=1Qi = I.

Set

p(z) := z −
m∑
i=1

λi

( ∏
1≤j≤m,j 6=i

z − λj
λi − λj

)
.

Then

‖A−
m∑
i=1

λiQi‖u = ‖p(A)‖u = ‖p(N)‖u = ‖N −
m∑
i=1

λiPi‖u = 0,
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and thus

A =
m∑
i=1

λiQi is normal.

The last statement follows trivially from the fact that ‖Pi‖u = ‖Qi‖u implies that rankPi =
rank Qi for all 1 ≤ i ≤ m.

�

2.5. Remark. If we replace the hypothesis that ‖ · ‖u separates projections by rank by
the hypothesis that A and N share a common characteristic polynomial, then the fact that
A must be unitarily similar to N still follows, as is easy to check. In the absence of both
hypotheses, multiplicity of eigenvalues becomes an issue. For example, consider the unitarily-
invariant norm

‖T‖u := s1(T ) + s2(T ), T ∈Mn(C),

where as always, s1(T ) ≥ s2(T ) ≥ · · · sn(T ) ≥ 0 are the singular numbers of T . Let
P = diag (1, 1, 1, 0, 0), Q = diag (1, 1, 0, 0, 0) be diagonal projections of ranks 3 and 2 re-
spectively. For any polynomial p we have that p(P ) = diag (p(1), p(1), p(1), p(0), p(0)), while
p(Q) = diag (p(1), p(1), p(0), p(0), p(0)), and so ‖p(P )‖u = ‖p(Q)‖u. Clearly P is not unitar-
ily equivalent to Q.

3. The infinite-dimensional setting: the operator norm

3.1. In [16], Lavrentieff established the following result:

3.2. Theorem. Let K ⊆ C be a compact set, and denote by P(K) the set of all polynomials
with complex coefficients. The following conditions are equivalent:

(a) The family P(K) is uniformly dense in C(K) := {f : K → C : f is continuous}.
(b) The set C \K is connected and the interior Ko of K is empty.

In view of this result, we refer to a compact set K satisfying condition (b) as a Lavrentieff
set. The relevance of this result for us is that as a consequence of the Spectral Theorem
for normal operators (see, e.g. [8, Theorem 2.7 (iii) ⇐⇒ (iv)] ), if N ∈ B(H) is a normal
operator, then N∗ belongs to the norm-closed unital algebra Alg(N) generated by N if and
only if σ(N) is a Lavrentieff set. In other words, Alg(N) = C∗(N) if and only if σ(N) is a
Lavrentieff set.

3.3. Theorem. Let A,N ∈ B(H) and suppose that N is normal with Lavrentieff spectrum.
If A and N are polynomially isometric, then A is normal.

Proof. Let Alg(N) (resp. Alg(A)) denote the norm-closed, unital commutative algebra gen-
erated by N (resp. by A). Since σ(N) is a Lavrentieff set, Alg(N) = C∗(N), as noted above.
Define

Φ0 : p(N) 7→ p(A), p a polynomial.

Then Φ0 is a unital isometric isomorphism, and can thus be uniquely extended to an iso-
metric isomorphism Φ : C∗(N) → B(H) whose range is Alg(A). It is a standard exercise,
however, to show that a contractive homomorphism between C∗-algebras is necessarily a
∗-homomorphism. (For example, this appears as Exercise 9.7 in [25]; see also [1, Proposi-
tion A.5.8] for an explicit proof.) Thus Alg(A) must also be a C∗-algebra, being isometrically
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isomorphic to C∗(N). In particular, since Alg(A) is abelian and A∗ ∈ Alg(A), A must be
normal.

�

3.4. Remarks.

(a) The result of Brooks and Condori [2, Corollary 3] is a finite-dimensional version of
Theorem 3.3, as a finite subset of C is obviously a Lavrentieff set.

(b) It is worth observing that Theorem 3.3 holds in a more general context. Given two
unital C∗-algebras A and B and elements a ∈ A, n ∈ B, one may extend Defini-
tion 1.1 and define a and n to be polynomially isometric if the map Φ0 : p(a) → p(n),
p a polynomial, is an isometry. The proof of Theorem 3.3 then carries over almost
verbatim to a proof of the fact that if n is normal with Lavrentieff spectrum, and if
a and n are polynomially isometric, then a is normal.

3.5. Definition. Let K be a compact subset of C, define the polynomially convex hull of K

to be the set K̂ given by

K̂ := {z ∈ C : |p(z)| ≤ ‖p‖K for every polynomial p},

where

‖p‖K := max{|p(z)| : z ∈ K}.

In fact, C \ K̂ is exactly the unbounded component of C \K (see [4, Proposition 5.3]).

Recall that given an element a of a Banach algebra A, the spectral radius of a is
spr(a) := max{|λ| : λ ∈ σ(a)}.

3.6. Theorem. Let N ∈ B(H) be normal. The following are equivalent:

(a) σ(N) is a Lavrentieff set.
(b) If A ∈ B(H) is polynomially isometric to N , then A is normal.

Proof. (a) implies (b): This is Theorem 3.3.

(b) implies (a): Suppose that σ(N) is not a Lavrentieff set. Let L = σ̂(N). Then Lo 6= ∅.
By translating both A and N by the same scalar operator, we may assume without
loss of generality that 0 ∈ Lo.

Choose ε > 0, such that K := B(0, ε) ⊂ L. Denote by S the unilateral shift
operator on l2. Set K = H⊕ `2. Define

T := N ⊕ εS ∈ B(K).

As S is subnormal, given any polynomial p, we have that p(εS) is subnormal, hence
by [15, Proposition 6.10],

‖p(εS)‖ = spr(p(εS)).
7



By the Maximal Modulus Principle and the Spectral Mapping Theorem,

‖p(εS)‖ = spr(p(εS))

= max{|p(λ)| : λ ∈ σ(εS)}

≤ max{|p(µ)| : µ ∈ σ̂(N)}
= spr(p(N))

= ‖p(N)‖.
It follows that N and T are polynomially isometric. Clearly, however, T is not normal.
Since H is isomorphic to H⊕`2, we see that T is unitarily equivalent to an A ∈ B(H)
which must also be non-normal and polynomially isometric to N .

�

4. On the (c, p) norms of Chan, Li and Tu.

4.1. We now wish to extend the results of Section 3 to a family of unitarily-invariant norms
on B(H) first introduced by Chan, Li and Tu in [3]. Before doing so, we first remind the
reader of the definition of singular values for not-necessarily compact operators. This will be
necessary because, although our results address compact operators, the notion of polynomial
isometry requires us to consider polynomials with non-zero constant terms, and therefore the
proofs require us to deal with norms of non-compact operators.

We denote by K(H) the ideal of compact operators in B(H). For K in K(H), the sin-
gular numbers (sn(K))∞n=1 of K are defined to be the eigenvalues (repeated according to

multiplicity) of |K| = (K∗K)
1
2 . This notion was extended to non-compact operators in [12]

as follows. Let T ∈ B(H) be an arbitrary operator. Then |T | := (T ∗T )
1
2 is a positive

operator. Let α := max{λ : λ ∈ σe(|T |)}, where σe(X) is the essential spectrum of
X ∈ B(H), that is, the spectrum of the image π(X) of X ∈ B(H) under the canonical map
π : B(H) → B(H)/K(H), the Calkin algebra. It is a consequence of the work of Wolf [24]
that if Q := E|T |((α, ‖T‖]) denotes the spectral projection of |T | corresponding to the set
(α, ‖T‖] ⊆ R, then the spectrum of the compression (Q|T |Q)QH of |T | to the range of Q is
the closure of a sequence (perhaps finite) of isolated eigenvalues of finite multiplicity of |T |
tending to α. Thus,

• if rankQ = 0, we set sn(T ) = α for all n ≥ 1.
• If 0 < rankQ = m < ∞, we denote by {sn(T )}mn=1 the eigenvalues of (Q|T |Q)QH,

repeated according to multiplicity, and for n ≥ m+ 1, we set sn(T ) = α.
• If rankQ = ∞, we denote by {sn(T )}∞n=1 the eigenvalues of (Q|T |Q)QH, written in

non-increasing order repeated according to their multiplicity.

We refer the interested reader to [12] and to [20] for more details regarding the singular
numbers of operators.

4.2. We are now in a position to describe the norms of Chan, Li and Tu. Let 1 ≤ p < ∞,
and let n ≥ 1 be an integer. Suppose that we are given real numbers c1 ≥ c2 ≥ · · · ≥ cn > 0.
For T ∈ B(H), we define the (c, p)-norm of T to be

‖T‖c,p = (
n∑
j=1

cjsj(T )p)
1
p .
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In [3], they proved (amongst other things) that these are indeed unitarily-invariant norms
on B(H), and that for all T ∈ B(H),

c
1/p
1 ‖T‖ ≤ ‖T‖c,p ≤

(
n∑
j=1

cj

)1/p

‖T‖.

This family of norms includes

• the operator norm ‖T‖ = s1(T );
• the Ky-Fan n-norm ‖T‖[n] :=

∑n
j=1 sj(T );

• the weighted Ky-Fan n-norm ‖T‖[c,n] :=
∑n

j=1 cjsj(T ), where c1 = 1 and cj ≥ cj+1

for all 1 ≤ j ≤ n− 1, as well as

• the [p, n]-singular norm ‖T‖[p,n] :=
(∑n

j=1 s
p
j(T )

)1/p

.

We also mention the useful fact that if k ≥ n, then the (c, p)-norm defines a unitarily-
invariant norm on Mk(C).

Our main result in this section is the following.

4.3. Theorem. Let 1 ≤ p < ∞, n ∈ N, c1 ≥ c2 ≥ · · · ≥ cn > 0. Suppose that A and N
are compact operators, and that N is normal. If A and N are polynomially isometric with
respect to ‖ · ‖c,p, then A is normal.

Proof. Let {em}∞m=1 be an orthonormal basis for H. Set K := σ(N) ∪ σ(A). Since N,A are
compact operators, K is countable, and if it is infinite, it consists of a sequence converging
to 0 (along with 0 itself).

Case One. K is infinite.
Let us write K = {λi : i ∈ N} ∪ {0}, where |λ1| ≥ |λ2| ≥ · · · > 0, and λi 6= λj whenever

i 6= j, and let us choose 1 ≤ m1 < m2 < · · · < mk < · · · such that |λmk
| > |λmk+1|.

For each k ∈ N, choose 0 < εk such that

(i) for i, j ∈ {1, 2, · · · ,mk} with i 6= j, B(λi, 2εk) ∩B(λj, 2εk) = ∅; and
(ii) {λj : j > mk} ⊂ B(0, |λmk

| − 3εk).

Define

Ek = (
⋃

1≤i≤mk

B(λi, εk))
⋃

B(0, |λmk
| − 2εk).

Then Ek is a compact set of C and C \ Ek is connected.
Define

∆k =
⋃

1≤i≤mk

B(λi, εk),

and denote by χ∆k
be the characteristic function of ∆k. Observe that χ∆k

is holomorphic,
hence continuous on E◦k . Moreover, σ(N), σ(A) ⊆ K ⊆ E◦k . As such, we may apply the Riesz
functional calculus to both A and N whenever we have a function holomorphic on E◦k . Let

Pk = χ∆k
(N), (resp. Qk = χ∆k

(A))

be the Riesz idempotent for N (resp. for A) corresponding to ∆k. Since N is normal, Pk is
in fact an orthogonal projection. As N and A are compact,

rankPk <∞ and rankQk <∞.
9



For k ∈ N, consider the following function

fk(z) =

{
1
z
, z ∈

⋃
1≤i≤mk

B(λi, 2εk);
0, z ∈ B(0, |λmk

| − 3εk).

Then fk is also holomorphic on a neighbourhood of K.

By Mergelyan’s theorem (see [22, Theorem 20.5]), we can choose polynomials t
(k)
j , j ≥ 1,

such that
lim
j→∞
‖t(k)
j − fk‖Ek

= 0.

Thus, by the Riesz Functional Calculus [4, p201. 4.7(e)],

lim
j→∞
‖t(k)
j (N)− fk(N)‖ = 0, and lim

j→∞
‖t(k)
j (A)− fk(A)‖ = 0,

where ‖ · ‖ denotes the operator norm in B(H). By [3, Proposition 2.4.(a)],

lim
j→∞
‖t(k)
j (N)N − fk(N)N‖c,p = 0, and lim

j→∞
‖t(k)
j (A)A− fk(A)A‖c,p = 0,

Therefore,

‖Qk‖c,p = ‖fk(A)A‖c,p = lim
j→∞
‖t(k)
j (A)A‖c,p = lim

j→∞
‖t(k)
j (N)N‖c,p = ‖fk(N)N‖c,p = ‖Pk‖c,p.

Similarly,
‖I −Qk‖c,p = ‖I − Pk‖c,p.

Denote Hk = Ran Pk ∨ (ker Qk)
⊥∨Ran Qk ∨ span{e1, e2, . . . , eαk

}, where αk := rankPk +
dim(ker Qk)

⊥ + rankQk + 3n. Set Rk be the (finite rank) orthogonal projection of H onto
Hk. Clearly Hk is reducing for both Pk and Qk, and thus Pk = RkPkRk, Qk = RkQkRk.
Moreover, it is readily verified that

‖Rk − Pk‖c,p = ‖I − Pk‖c,p = ‖I −Qk‖c,p = ‖Rk −Qk‖c,p.
Using the fact that the (c, p)-norm on B(Hk) is unitarily-invariant, it now follows Lemma 2.3

that Qk is a projection. Define

Nk := PkN = PkNPk, Ak := QkA = QkAQk.

We now show that Ak and Nk are in fact polynomially isometric. Let q be an arbitrary
polynomial, and write q = q(0) + q1, where q1(0) = 0. Observe that using [3, Proposition
2.4.(a)] and the fact that A and N are polynomially isometric, we obtain

‖q(Nk)‖c,p = ‖(q(0))I + Pkq1(N)‖c,p
= lim

j→∞
‖q(0)I + t

(k)
j (N)Nq1(N)‖c,p

= lim
j→∞
‖q(0)I + t

(k)
j (A)Aq1(A)‖c,p

= ‖q(0)I +Qkq1(A)‖c,p
= ‖q(Ak)‖c,p.

Notice also that

‖q(Nk)‖c,p = ‖q(0)Rk + q1(Nk)‖c,p, ‖q(Ak)‖c,p = ‖q(0)Rk + q1(Ak)‖c,p.
10



We may view each Nk as an operator on Hk, and similarly view Ak as an operator on Hk.
Once again, the fact that the (c, p)-norm on B(Hk) is unitarily-invariant, combined with
Theorem 2.4 implies that Ak is normal, and

σ(Nk) = σ(Ak) = {λ1, · · · , λmk
} ∪ {0}.

Note that {Qk}∞k=1 is an increasing sequence of projections (of finite rank), and thus if we
define

Q = sup{Qk : k ∈ N} = SOT− lim
k→∞

Qk,

then Q is also a projection. Since QkA = AQk, for all k ∈ N, and since Ak = QkQQk is
normal for all k, we see that AQ = QA and that QAQ is normal.

Similarly, {Pk}∞k=1 is an increasing sequence of projections (of finite rank), and so

P = sup{Pk : k ∈ N} = SOT− lim
k→∞

Pk,

also defines a projection. As in the previous case, the fact that PkN = NPk for all k ∈ N
implies that PN = NP .

Write

N =

[
PNP 0

0 0

]
RanP

RanP⊥
, A =

[
QAQ 0

0 Z

]
RanQ

RanQ⊥
.

If Z 6= 0, we can choose k∗ ∈ N sufficiently large so that

(
n∑
j=1

cj)|λmk∗+1|p < (
1

3
‖Z‖)p.

it follows that

‖Z‖c,p = ‖Q⊥(A− Ak∗)Q⊥‖c,p
≤ ‖A−Qk∗A‖c,p
= lim

j→∞
‖A− t(k

∗)
j (A)AA‖c,p

= lim
j→∞
‖N − t(k

∗)
j (N)NN‖c,p

= ‖N − Pk∗N‖c,p
= ‖N −Nk∗‖(c,p)

≤ ((
n∑
j=1

cj)|λmk∗+1|p)
1
p

<
1

3
‖Z‖c,p.

This obvious contradiction implies, therefore, that Z = 0. Since QAQ is normal and
Z = 0, A is normal.

Case Two. K is finite.
The argument here is similar to that of Case One. The main difference is that instead of

considering an infinite sequence of projections Pk and Qk, it suffices to consider a single pair
of projections P and Q, defined as follows.

After writing K = {λ1, λ2, . . . , λk0} ∪ {0}, with |λ1| ≥ |λ2| ≥ · · · ≥ |λk0| > 0 and λi 6= λj
if i 6= j, we only choose one value of ε > 0 such that

11



(i) for i, j ∈ {1, 2, . . . , k0} with i 6= j, B(λi, 2ε) ∩B(λj, 2ε) = ∅; and
(ii) B(0, 2ε) ∩B(λi, 2ε) = ∅, 1 ≤ i ≤ k0.

We then consider ∆ := ∪1≤i≤k0B(λi, ε). Arguing as in Case One, we see that if P and Q are
the Riesz projections for N and A corresponding to the set ∆, then P is a projection (as
N is normal) and we argue as in Case One that Q is also selfadjoint. The remainder of the
proof follows as above. �

4.4. Remark. It is clear from our work in Section 3 that this result does not extend directly
to general operators on B(H), since the result fails for the operator norm, which we have
seen to be an example of a (c, p)-norm.

5. Polynomials without constant term

5.1. It is tempting to try to extend the results above to the classes of compact operators
lying in the various Schatten p-ideals. Recall that with the singular numbers of a compact
operator defined as in Section 4, for 1 ≤ p <∞, the Schatten p-class Cp(H) is defined as

Cp(H) := {K ∈ B(H) : K is compact and
∞∑
n=1

(sn(K))p <∞},

and it is equipped with the unitarily-invariant norm

‖K‖p :=

(
∞∑
n=1

(sn(K))p

)1/p

.

Each Cp(H) is well-known to be an ideal of B(H). Because of this, the identity operator
I 6∈ Cp(H) for any 1 ≤ p <∞, and so at best, when considering polynomial isometry of two
elements A and B of Cp(H), we must restrict our attention to those polynomials q which
satisfy q(0) = 0.

We now produce an example of two operators A and N in C2(H) (the ideal of Hilbert-
Schmidt operators on H) such that N is normal, A and N are polynomially isometric (for
polynomials which vanish at 0), and yet A is not normal.

5.2. Example. Let {ek}∞k=1 be an orthonormal basis for H, and for x, y ∈ H, denote by
x ⊗ y∗ the rank-one operator x ⊗ y∗(z) = 〈z, y〉x, z ∈ H. Define N = e1 ⊗ e∗1 + e2 ⊗ e∗2,
A = e1 ⊗ e∗1 + e1 ⊗ e∗2. Then N is a projection and A is an idempotent but it is not a
projection. In particular, A is not normal. Nevertheless, we find that

‖N‖2 = tr(N∗N)
1
2 =
√

2, ‖A‖2 = tr(A∗A)
1
2 =
√

2.

Hence for every polynomial f(z) = anz
n + · · ·+ a1z,

‖f(N)‖2 = ‖(
n∑
i=1

ai)N‖2 =
√

2|
n∑
i=1

ai|, ‖f(A)‖2 = ‖(
n∑
i=1

ai)A‖2 =
√

2|
n∑
i=1

ai|.

That is, A and N are polynomially isometric relative to ‖·‖2, considering only polynomials
which vanish at 0.

12



5.3. Remark. It is clear that we did not need to consider the infinite-dimensional Hilbert
space setting for the above example. Indeed, if ‖T‖2 = ((s1(T ))2 + (s2(T ))2)

1/2
denotes the

Frobenius norm on M2(C), and if {e1, e2} is an orthonormal basis for C2, then the operators
N and A defined as in the above example again show that Theorem 2.4 fails if we consider
only polynomials without constant term. The problem lies in the fact that in the absence
of the identity operator, the Frobenius norm on M2(C) (and more generally the ‖ · ‖p norms
on Mn(C) and on Cp(H)) are not able to distinguish between projections and idempotents.
This shows that both of the norm conditions of Lemma 2.3 are necessary.

Despite this, there is still something we can say, at least when both A are N are invertible
and acting on finite-dimensional spaces.

5.4. Corollary. Let A ∈Mm(C), N ∈Mn(C) be invertible matrices, and N be normal. Let

κ := max(m,n), 1 ≤ p < ∞, and let ‖ · ‖[m]
p (resp. ‖ · ‖[n]

p ) denote the p-norm on Mm(C)

(resp. the p-norm on Mn(C)). Suppose that ‖r(A)‖[m]
p = ‖r(N)‖[n]

p for all polynomials r of
degree at most κ for which r(0) = 0. Then

(1) n = m;
(2) A is also normal; and
(3) A and N are unitarily similar.

Proof. Let µN , µA denote the minimal polynomials of N and of A respectively. Then
NµN(N) = 0, and so

0 = ‖NµN(N)‖[n]
p = ‖AµN(A)‖[m]

p ,

whence AµN(A) = 0. Since A is invertible, it follows that µN(A) = 0, and so µA divides µN .
This part of the argument clearly does not rely upon the fact that N is normal, and so by
symmetry, we find that µN divides µA as well. Without loss of generality, we may therefore
assume that µA = µN . We denote this common polynomial by µ.

The fact that both A and N are invertible implies that µ(0) 6= 0. As such, and keeping in
mind that µ(A) = µ(N) = 0, we set

ν(z) = µ(z)− µ(0), z ∈ C.

Clearly ν is a polynomial of degree at most κ and ν(0) = 0. By hypothesis,

‖µ(0)Im‖[m]
p = ‖ν(A)‖[m]

p = ‖ν(N)‖[n]
p = ‖µ(0)In‖[n]

p .

From this it follows that n = m, and we simply write ‖ · ‖p to denote ‖ · ‖[n]
p = ‖ · ‖[m]

p .
Let r(z) = r0 + r1z + r2z

2 + · · ·+ rnz
n be a polynomial of degree at most n. Set

q(z) = r0µ(0)−1ν(z) + (r1z + r2z
2 + · · ·+ rnz

n),
13



so that q is a polynomial of degree at most n and q(0) = 0. By our hypothesis,

‖r(A)‖p = ‖r0In + (r1A+ r2A
2 + · · · rnAn)‖p

= ‖r0(−µ(0))−1ν(A) + (r1A+ r2A
2 + · · · rnAn)‖p

= ‖q(A)‖p
= ‖q(N)‖p
= ‖r0(−µ(0))−1ν(N) + (r1N + r2N

2 + · · · rnNn)‖p
= ‖r0In + (r1N + r2N

2 + · · · rnNn)‖p
= ‖r(N)‖p.

Since µA = µN is a polynomial of degree at most n, it follows that if t is any polynomial,
then t(A) = s(A) and t(N) = s(N) for some polynomial s of degree at most n. Combining
this with the above calculation yields

‖t(A)‖p = ‖t(N)‖p for all polynomials t.

Since the p-norm separates projections by rank, it follows from Theorem 2.4 that A and N
are unitarily similar. �
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