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Abstract

Human movement studies have contributed to our understanding of how the central
nervous system’s (CNS) interactions with our body result in rich and complex motor be-
haviours, such as human gait. Such understanding is particularly important for human-
centred engineering such as lower-limb exoskeletons. Assuming the emerged natural gait
patterns are the result of some optimization done by CNS, researchers modelled the walk-
ing simulation problem as an optimization problem that recast the walking task into a
cost function. However, accurately capturing the CNS goal within the cost function is
challenging. Cost functions in existing studies were often assumed a priori which either
did not lead to natural gait behaviour, or were manually tuned based on the researcher’s
knowledge which is time-consuming. Some studies attempted to tune the cost function
algorithmically using inverse optimal control (IOC), but suffered from expensive compu-
tation. These limitations hinder the use of IOC for personalized cost function tuning and,
by extension, exoskeleton controller design.

To address this issue, computationally efficient tuning methods of the cost function
were designed and validated in two optimization frameworks: deep reinforcement learning
(DRL) and predictive simulation. For DRL, a novel learning method, which generates
a control policy with close-to-natural walking behaviour, was developed. The proposed
neuromechanically-inspired cost function contributed to the effective learning of the re-
alistic gait by the DRL agent. The nature-inspired curriculum learning scheme led to
efficient convergence to natural and bilateral symmetric gait by adaptively tuning the cost
function weights while maintaining the agent’s walking capability. To further improve the
cost function tuning efficiency, an efficient IOC algorithm named Adaptive Reference IOC
(AR-IOC) was proposed that used direct collocation for solving optimal gait trajectories
and gradient-based weight optimization. We showcased the efficiency of the proposed al-
gorithm in tuning cost functions and matching gait trajectories using both synthetic data
and experimental data which outperformed the Genetic Algorithm by more than 80% in
computational time. With the AR-IOC, the correlation between the walking tasks and the
cost function weights was studied which revealed a change in cost function compositions
with respect to walking speed.

With the efficient AR-IOC algorithm, we explored the potential of using predictive
simulation to generate physics-informed reference trajectories for lower-limb exoskeleton
tracking controllers. First, an accurate human-exoskeleton system was developed. By com-
bining the optimal human cost function obtained using AR-IOC and the exoskeleton cost
function, we obtained the optimal gait trajectories for the human-exoskeleton system which
were different from the unassisted natural walking trajectories. These optimal trajectories
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were then tested in real exoskeleton systems using a time-dependent proportional-derivative
(PD) controller and their performances in reducing muscle activities were compared to the
unassisted natural walking trajectories. The likely limitations of the controller design were
also discussed.

With the proposed simulation frameworks and the efficient cost function tuning meth-
ods, this thesis serves as a catalyst for enabling personalized rehabilitation design based
on detailed musculoskeletal simulation. The presented framework, which covers from data
collection and post-processing, to simulation and experiments, serves as a guidance and
reference to future developments in this field, such as extending the musculoskeletal simu-
lation to impaired subjects with different locomotion tasks, and different control systems
for lower-limb rehabilitation.
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Chapter 1

Introduction

Human movement studies have contributed to our understanding of how the central nervous
system (CNS) in interacting with our body results in rich and complex motor behaviours,
such as human gait [100]. Understanding the human control strategies during walking is
particularly important for human-centreed engineering such as the design of lower-limb ex-
oskeletons and their controllers[103]. However, performing studies with human participants
is often expensive (i.e., instruments for data collection and human labour) and difficult (i.e.,
complex experimental setup, strict safety measurements, and limited human participants).
As many early-phase developments do not necessarily require human involvement, human
movement simulation [22] using tools such as MapleSim [80, 81], AnyBody [12], and Open-
Sim [15] have gained popularity in analyzing walking. With a rich collection of detailed
musculoskeletal models, researchers are able to investigate both the kinematic and dy-
namic characteristics of the human body by recreating the walking motion in simulation
[86]. Although conventional approaches such as direct kinematics (DK), inverse kinematics
(IK), and inverse dynamics (ID) showed success in gait analysis [32], they fully rely on the
experimental data and cannot be used as a predictive simulation platform (i.e., a simula-
tion platform capable of extrapolating gait patterns adaptively based on the dynamics of
the system beyond the observed experimental reference) for researchers to test out their
robotic devices virtually.

Assuming the emerged natural gait patterns is the result of some optimization done
by CNS, researchers modelled the walking simulation problem as an optimization prob-
lem [88]. The optimization problem abstracts the walking task into a cost function which
allows the researchers to simulate the walking motion without the need for experimental
data [16]. However, accurately capturing the human rationale within the cost function has
always been a challenge. Cost functions in existing studies are assumed a priori [14] which
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often do not lead to natural gait behaviour, or manually tuned based on the researcher’s
knowledge [24] which is time-consuming. Some studies attempted to tune the cost func-
tion algorithmically [67] based on experimentally collected human gait data, but suffered
from expensive computation. These limitations hinder the extension of personalized cost
function tuning to the design of exoskeleton controllers. Thus, there is a need to develop
efficient cost function tuning methods for walking.

1.1 Objectives and Outline

The main goal of this research is to obtain optimal cost functions for natural walking. The
means for obtaining the optimal cost functions should be efficient, and the obtained cost
functions should enable the predictive simulation platform. As a result, the fulfillment of
the main goal is broken down into four major objectives:

1. Construct predictive simulation environment for natural walking using musculoskele-
tal models.

2. Formulate efficient optimization problems to obtain optimal gait trajectories given
cost functions.

3. Develop computationally-efficient inverse optimization techniques to optimize the
cost functions for natural walking.

4. Validate the obtained optimal cost functions in assisting lower-limb exoskeleton con-
troller design.

We choose two frameworks as the foundations of the predictive simulation environment:
optimal control (OC) and deep reinforcement learning (DRL). In Chapter 2, theoretical
background of OC and DRL as well as their limitations in locomotion studies are pro-
vided. Existing methods for cost function tuning and their constraints for extending to
locomotion studies are also discussed. At the end of the Chapter 2, a brief review of the
existing controllers for lower-limb exoskeletons and their issues are provided, which marks
the potential for improvement using optimization-based approaches. In Chapter 3, we
developed a nature-inspired curriculum learning (CL) scheme for adaptive cost function
weight update along with a neuromechanically-inspired cost function based on section 2.2.1
to efficiently train a DRL agent that outperforms the existing DRL walking agent in both
learning efficiency and gait naturalness. To further improve the efficiency of cost function
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tuning, Chapter 4 covers our novel IOC approach called Adaptive Reference Inverse Opti-
mal Control (AR-IOC) to efficiently recover optimal human cost functions during walking.
In Chapter 5, we study the benefit of using the optimal cost function obtained using
AR-IOC from Chapter 4 to assist exoskeleton tracking controller design. In Chapter 6,
concluding remarks are provided.

1.2 Contributions

The main contribution of this research is summarized as below:

1. (Chapter 3) Propose a neuromechanically-inspired cost function for realistic gait
pattern generation in the DRL setting.

2. (Chapter 3) Propose a nature-inspired CL scheme for efficient DRL convergence for
learning-to-walk problems without using any experimental tracking data.

3. (Chapter 3) Generate a DRL policy that demonstrates close-to-natural walking gait
on musculoskeletal models.

4. (Chapter 4) Formulate the AR-IOC: an efficient IOC framework for natural walk-
ing in detailed musculoskeletal models with a significant computational efficiency
improvement compared to the existing derivative-free optimization method genetic
algorithm (GA).

5. (Chapter 4) Demonstrate the success of the proposed method in recovering cost
functions based on multiple participant-specific reference data.

6. (Chapter 4) Investigate the change in optimal cost functions with respect to the
walking speed.

7. (Chapter 5) Develop a realistic human-exoskeleton system in simulation.

8. (Chapter 5) Evaluate the tracking controller performance on a human participant
using the optimal reference trajectories obtained from the human-exoskeleton system
assuming identical CNS cost function structure for both natural and assistive walking
(explained in section 5.2).
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Chapter 2

Background

2.1 Gait Analysis

In human movement studies, trajectories of lower-limb joint angles and ground reaction
forces are the most common information used to analyze the gait behaviour [54, 32]. In cer-
tain cases, surface electromyography (EMG) signals are also collected to identify activated
muscles during locomotion [9]. To obtain joint angle trajectories, reflective markers are first
attached to anatomical landmarks on human body segment [13]. Motion capture systems
(e.g., Vicon Motion Systems, UK) are then used to capture the 3D marker positions. Tools
such as conventional gait models [4, 51] are developed that uses DK (i.e., directly calculate
kinematic profiles from marker trajectories) to reconstruct the joint angle trajectories. To
obtain the gait kinetics such as joint torque and energy, ground reaction forces are collected
to enable ID analysis on the gait. Different from DK, IK requires a predefined rigid skeletal
model where the degrees of freedom (DoF) of each joint is predefined. The joint angle tra-
jectories are then reconstructed by tracking the marker positions. Detailed and accurate
rigid skeletal models for biomechanical analysis are provided by the dynamic simulation
software including MapleSim [80, 81], AnyBody [12], and OpenSim (open-source) [15, 79].
These skeletal models also include detailed muscle connections with realistic muscle dy-
namics which makes analysis of muscle control (e.g., muscle excitation and activation) and
energistics (e.g., metabolic energy consumption) possible [87, 86].
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2.2 Dynamic Walking Simulation

With the experimentally obtained joint kinematics, ground reaction forces and a predefined
rigid skeletal model, researchers are able to replay the recorded locomotion and perform
analysis for both normal and pathological gait [41]. However, this simulation method has
three major limitations. First, experiment replay in simulation is constrained to the ex-
perimental conditions and cannot be easily extrapolated to different skeletal models with
different anthropometric parameters or different walking conditions. Second, the human
rationale for walking cannot be explained by the experimental data alone as the walking
kinematics and kinetics do not directly explain why human converges to such gait pat-
terns. Last, replaying recorded kinematic data does not guarantee the dynamic feasibility
in the simulation environment as it ignores the ground contact mechanisms. Simulating
ground contact is important as it not only provides hard constraints to the foot positions,
but also generates dynamically feasible ground support. Due to the marker position er-
rors, reconstructed foot positions in simulation sometimes fail to maintain contact to the
ground during stance which is not possible in reality. To address this issue, some studies
performed forward simulations using reflex-based controllers for natural walking [31] and
trajectory tracking-based controllers for both natural walking and assistive walking with
the exoskeletons [82].

One approach to address the aforementioned limitations is to formulate the walking
simulation problem as an optimization problem. An optimization problem tries to find
a best state and control sequence (i.e., gait patterns in this case) by minimizing an cost
function that serves as a high-level abstraction of the task to be optimized (i.e., human
rationale during walking). In this section, we discuss two main frameworks for formulating
the optimization problems for walking including OC and reinforcement learning (RL).
Challenges of these two frameworks are also discussed.

2.2.1 Optimal Control

A general OC problem can be formulated in the following form:

min
T,x,u

Jb(t0, T,x(t0),x(T )) +

∫ T

t0

Ji(t,x(t),u(t))dt, (2.1)
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subject to: g(T,x(t0),x(T )) ≤ 0, h(T,x(t),u(t)) ≤ 0,

tlow ≤ T ≤ tup, ẋt = f(t,xt,ut),

x0,low ≤ x(t0) ≤ x0,up, xlow ≤ x(t) ≤ xup,

xT,low ≤ x(T ) ≤ xT,up, ulow ≤ u(t) ≤ ut.

The goal of the optimization is to find the optimal state x, control signals u, and
final time T such that the cost function is minimized. The cost function consists of
boundary cost Jb and integral cost Ji along time t. The optimization is also subjected
to constraints including boundary constraints g, path constraints h, system dynamics,
and variable bounds on the states and controls where low, up represents the lower and
upper bounds of the variables. This general formulation of the optimal control problems
involve differential equations and works in continuous time which is difficult to handle in
numerical optimization. To address this, the problems are discredited and transcript to a
non-linear program (NLP) that only involves algebraic equations [44]. A general form of
the non-linear program can be seen as follows:

min
z

J(z), (2.2)

subject to: g(z) ≤ 0,

h(z) = 0,

where z represents all the variables from after the problem discretization; J(z) is the cost
function of the discretized variables; g(z) and h(z) are a set of inequality and equality con-
straints of the discretized problem. The NLP is then solved using non-linear optimization
methods such as the Interior Point OPTimizer (IPOPT) [94]. OC techniques are consid-
ered to be model-based as it requires a known dynamic model of the system to perform
numerical integration.

For locomotion tasks that generally have high-dimensional state space and complex
controls, methods such as multiple shooting (MS) and direct collocation (DC) are used to
perform the problem discretization and transcription. For torque-driven humanoid robots,
MS has been widely experimented [61, 10, 25]. Although, DC is also used for humanoid
robots [18, 36, 35], it is more common for solving trajectory optimization problems with
musculoskeletal systems due to its ability to handle non-linear and redundant muscle ac-
tuation [93, 64, 90, 2, 67, 23, 24]. Common performance measures (i.e., description of Ji
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in (2.1)) include metabolic energy [64, 90, 24], muscle activation [2, 23, 24], joint hyper-
extension [64, 90, 23, 24], stability [67], foot sliding [64], motion smoothness [67, 24], and
norm of tracking error [23]. These cost functions provide an abstraction of the walking task
optimality that can be used in different scenarios such as assistive walking with prostheses
[68].

With the development of tools such as OpenSim Moco [16], researchers are able to
formulate the DC problems for complex musculoskeletal models efficiently. Due to the
complexity of the musculoskeletal systems, the transcribed NLP for the OC problem often
gets large and takes long time to solve. Thus, existing studies often work with relatively
short trajectories and small number of discretized points [90, 2, 67, 23, 24]. In addition,
MS and DC only generate open-loop solutions which does not guarantee stability in a
control scenario. The long computational time (i.e., much slower than real time) on the
musculoskeletal models makes neither MS nor DC suitable as the real-time model-predictive
controller (MPC).

2.2.2 Reinforcement Learning

Figure 2.1: Agent-environment interaction in DRL [97]

RL [85], as a subcategory of machine learning, addresses the optimal control problem
through agent-environment interaction. A general RL problem consists of an agent and an
environment in interaction with each other. Taking musculoskeletal control as an example
shown in Fig. 2.1, the environment includes the dynamic description of a musculoskeletal
model. The agent represents a neuromuscular controller that has its policy πθ (i.e., some
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function that represents the control strategy) parameterized by θ. Given some state ob-
servation st (e.g., coordinate position and velocity), the policy generates an action (i.e., a
control command such as muscle excitation) at that drives the environment to the next
state st+1 constrained on the system dynamics st+1 = f(st,at) where f can be stochastic
or deterministic. The environment also provides a reward signal rt = R(st,at) (opposite
to cost) that evaluates the goodness of the previous action at at state st. The goal of RL
is to find an optimal policy such that the expected cumulative reward is maximized.

Given a policy π, a sequence of state-action pairs can be obtained. The goodness of
the sequence at time t is captured by the discounted accumulative reward

Gt =
∞∑
k=0

(γkrt+k+1), (2.3)

that sums over individual reward values from time t + 1 onward to the terminal state,
where γ ∈ [0, 1] is a discount factor. If the environment is stochastic (i.e., st+1 has its own
probability distribution given st,at), we need to compute the expectation of all possible
future sequences which is given by the return

Qπ(s,a) = Eπ[G|s,a]. (2.4)

If the policy is stochastic (i.e., the agent can select different actions given the action
probability distribution), we can then formulate the objective of the reinforcement learning
problem to the following:

max
π

J(θ) = max
π

∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s,a), (2.5)

where S, A are sets of all possible states and actions, respectively; dπ(s) is the distribution
of all possible states under π; πθ(a|s) is the probability of a given s.

One common approach to solve for the optimal policy is called the policy gradient (PG)
method [85] which computes the gradient of the objective function J(θ):

∇θJ(θ) = Eπ[Qπ(s,a)∇θ lnπθ(a|s)]. (2.6)

However, such gradient estimates experience high variance which can lead to learning
inefficiency. Actor-critic algorithm addressed this issue by replacing Qπ(s,a) with the
advantage term A(s,a) [77, 50]:

A(s,a) = Qπ(s,a)− V (s) (2.7)
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where V (s) is the value function that estimates the expected cumulative return over all
possible a at s. In practice, Qπ(s,a) is computed from the agent’s collected experience,
whereas the V is a estimator to be optimized. For complex problems with high dimensional,
continuous state-action spaces, representing π and V is difficult. DRL addresses this issue
by representing π and V by deep neural networks whose parameters are iteratively updated
using the collected batch sequences.

Different from previously mentioned methods (i.e., MS and DC) where only open-
loop solutions are generated, DRL aims to learn a feedback policy that gives optimal
solutions at any states within the scope of the problem. This makes solving DRL problems
difficult. Solving locomotion problems with DRL is particularly challenging due to the
high dimensional state-action spaces (i.e., the curse of dimensionality based on realizing
the Bellman’s optimality using dynamic programming [21]) and expensive simulation of
the musculoskeletal systems. The recent advances in DRL algorithms [78, 76, 55, 33,
30] have shown success in controlling complex robotic system such as humanoids. This
encouraged researchers to consider learning based methods for studying and simulating
natural locomotion behaviour [83]. In computer graphics, reference motion is often used
when developing DRL agents [70, 53] since generating natural behaviour is the primary
goal. However, the underlying optimal criteria that lead to the desired motion is not
considered. In the machine learning research community, DRL has been used to realize
high level motor control on accurate musculoskeletal models without reference motion
[45, 46, 47, 83] but failed to obtain natural behaviour. Some studies showed realistic
walking [14] and running gait [45, 46] learned by DRL agents but with imitation learning
or manual agent selection during the learning process. Other studies developed a walking-
capable DRL agent [47, 83] but with abnormal gait. In these studies, the reward functions
are often simpler than those in optimal control studies with primarily task specific rewards
such as target moving speed and directions. Neuromechanical cost terms that contributes
to the naturalness of the behaviour are often neglected.

One reason that makes the use of DRL for locomotion difficult is that DRL is prone
to convergence to local optima especially in high-dimensional setting. CL aims to improve
learning progress by decomposing a challenging objective into multiple intermediate steps
that are easier to learn [5]. The environment-based curriculum alters the difficulty of a
parameterized environment to achieve better agent performance and generalization over a
wide range of conditions [102, 52]. The goal-based curriculum distinguishes intermediate
learning steps by providing different reward functions. This strategy has been used in both
NeurIPS Learning to Run and AI for Prosthetics challenges [46, 47, 104, 83]. Although
these curriculum designs help agent convergence to some walking capability, the locomotion
still appears to be unnatural.
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2.2.3 Cost Function Tuning

A well-posed cost function (or a reward function for RL) is essential to solve the corre-
sponding problem effectively. However, having such a cost function is challenging for both
OC and RL. IOC addresses the problem of recovering the underlying cost function given
the desired state trajectories such as human demonstrations [63]. IOC problems are of-
ten formulated as bilevel optimization problems with a parametric cost function given a
priori. The inner-loop problems find optimal state trajectories given the cost function,
whereas the outer-loop problems tune the parameters of the cost function so that the
inner-loop solutions resemble the desired state trajectories. For problems that only in-
volve kinematics such as motion path prediction (e.g., obstacle avoidance during walking),
Karush–Kuhn–Tucker (KKT) conditions have been imposed to optimize the weights with
high computational efficiency [20, 71]. However, for more complex cost functions that in-
volve system dynamics (e.g., joint torques), derivative-free optimization techniques such
as COBYLA [11], BOBYQA [62] and CMA-ES [19] are used. These techniques are based
on strategic cost weight sampling (local approximation of the optimization problem or
population-based search) coupled with internal evaluations of the sampled cost functions.
In practice, only IOC problems with efficient internal evaluations and a few cost weights
can be solved within a reasonable time frame. However, for locomotion problems that
utilize musculoskeletal models, the internal optimization problems (usually in the form
of trajectory optimization problems) are challenging to solve as the musculoskeletal mod-
els have many DoFs and redundant muscle actuators. In the existing locomotion studies
with musculoskeletal models, the cost function weights are often manually tuned based on
the researcher’s domain knowledge [90, 24, 23]. With a reasonable simplification of the
musculoskeletal models by constraining sagittal-plane motion and reducing the number of
muscles, researchers formulated the IOC problem for natural walking using GA for optimal
cost weight search [67], but it still requires a long computational time. On the other hand,
structured classification (SC) treats the IOC problem as a structured prediction problem
(i.e., a multi-class classification problem with an extremely large number of classes) and
allows gradient-based update to the cost function weights, which can be more efficient than
derivative-free methods [73, 74]. Direct loss minimization (DLM), which is the successor to
the vanilla structured prediction, achieves better performance by using a loss-adjusted cost
function for lower-level optimization (i.e., adding an additional domain-specific loss term
to push the optimized trajectories towards the preferred region of search) during weight
update [59]. This marks the DLM a good candidate for solving the IOC for complex
locomotion problems.

Similar to IOC, inverse reinforcement learning (IRL) tries to recover the expert’s reward
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function while solving the expert policies in the inner-loop optimization instead of specific
trajectories. Maximum margin IRL solves the optimal cost function by increasing the
distance between expert policies and all other policies [1, 73, 74]. Maximum entropy IRL
[105, 28], on the other hand, finds the optimal cost function that matches the expectation of
the expert behaviour while maximizing the entropy of the policy. All these IRL approaches
require solving a forward RL problem (i.e., learning an expert policy through the agent’s
interaction with the environment) either fully or partially which is non-trivial by itself.
This makes the extension of these methods to continuous and high-dimensional settings
(i.e., muscle actuated human locomotion) difficult [46, 47].

In some applications (e.g., computer graphics) where the control policy is the primary
need, imitation learning methods are used to solve the IRL problem where the cost function
tuning is absorbed into the policy optimization and not explicitly defined [38]. These
methods provide little insight into important factors that shape human locomotion and
therefore are unsuitable for this study.

IOC problems with parametric cost functions can also be seen as a hyperparameter
tuning problem [6] commonly found in machine learning field [26]. While naive optimization
methods, including grid search and random search [7], can be used for IOC with easy
parallelization, they usually suffer from high computational costs when the number of
weights is large. Sequential model-based optimization (SMBO) is an alternative approach
that utilizes a surrogate model (i.e., an approximation model that mimics the observed
input-output relationship; often obtained through data-driven approaches) to estimate the
relationship between the total cost values and the cost function weights [40]. Bayesian
optimization is a common SMBO method that uses probabilistic models (e.g., Gaussian
processes) to locate the good weight candidates during weight search [99]. Similar to other
derivative-free methods, SMBO can be slow for human locomotion study as the inner-loop
optimization problem is difficult to solve.

2.3 Lower-limb Exoskeleton

One main purpose of developing accurate walking simulation is to facilitate the design of
assistive robotic devices such as lower-limb exoskeletons. The walking simulation with a
cost function that represents CNS role in optimizing the gait (can be obtained by cost
function tuning methods mentioned in section 2.2.3) can help design controllers that bet-
ter align with human intention and perform exoskeleton controllers within the simulation
environment without the risk of involving real humans.
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In the past two decades, Many lower-limb exoskeleton control strategies for walking have
been proposed [103]. Predefined gait trajectory control is a common control method for re-
habilitation exoskeleton which often uses experimentally obtained joint angles from healthy
subjects as the reference for the feedback controller [95]. As humans modify gait trajecto-
ries for different physiological parameters and walking conditions, various gait adaptation
methods have been proposed. For example, A data-driven personalized reference trajec-
tory generator was developed for walking without exoskeleton [101] to account for various
body geometries and walking speed. However, this approach does not consider the in-
teraction between the human and the exoskeleton which can potentially alter the human
gait. Some adaptation methods identify the human intended trajectories directly from the
subjects which requires the subject to have partial mobility (i.e. one fully functional leg)
[92, 56]. For online adaptation, the healthy reference trajectories are often modified based
on optimization criteria such as interaction force [42, 82] to better align with the human
intended gait trajectories. However, such methods often apply constraints on the modified
trajectories that either maintain the overall gait trajectory shape and only apply scaling
and shifting, or apply the gait deviation penalty. These constraints can improve the sta-
bility of gait adaptation, but may limit the controller from adapting different but more
optimal gait strategies for the human-exoskeleton system. In addition, using sub-optimal
initial gait trajectories in the exoskeleton controller may impose safety issues as the conflict
between the initial gait trajectories and the human gait can initiate falling [42]. Thus, a
close-to-optimal initial gait trajectory for the human-exoskeleton system is preferred.

To obtain an optimal gait trajectory for the human-exoskeleton system, one must con-
sider the human intention, passive dynamics from the exoskeleton, and the exoskeleton
assistance. For example, predictive simulation has been used to optimize passive prosthe-
sis [27, 84] to improve performance such as reducing joint force and metabolic energy rate.
OpenSim is used to analyze the impact of ideal torque assistance devices to running [89]
and walking with heavy loads [17]. It is noted in [89] that the optimal assistive torque
may differ from the human’s biological torque, and the benefit of assistance can occur at
a location different from where the assistance is applied. This indicated the complexity of
analyzing assisted human locomotion. For walking, predictive simulation has been used to
simulate the impact of ideal ankle exoskeleton [?] and knee exoskeleton [49]. However, the
passive dynamics of the exoskeleton such as the inertia and joint friction is often ignored,
which can greatly reduce the reliability of the simulation results when the exoskeleton is
heavy. Predictive simulation studies involving exoskeleton dynamics have been performed
for walking [48] to obtain optimal control torques given reference motion data, and other
movement tasks (e.g., lifting) [58] to obtain both optimal control torque and lifting mo-
tions. A case study from Franks et al. [29] also showed the limitations of applying results
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from simulated assistive walking to experiments due to inaccurate modelling of the ex-
perimental scenario. Therefore, there is a need to improve the predictive simulation by
including accurate human cost functions and proper exoskeleton dynamics. Walking gait
optimization for the human-exoskeleton system is also desired.

2.4 Concluding remarks

Both OC and DRL suits the purpose of developing an predictive simulation environment
for natural walking. These two methods generate optimal gait using cost functions and
have the the capability for gait extrapolation in unseen virtual environments. However,
obtaining the accurate cost function that reveals human rationale is challenging. Although
existing OC studies for locomotion generate realistic open-loop motion trajectories, there
is a lack of efficient methods for systematic cost function tuning. Existing DRL studies
for locomotion produces more capable feedback policies for control, but lack the focus on
naturalness of the motion emerged from the cost function, or directly use imitation learning
from reference motion data. Hence, there is a need to develop efficient cost function tuning
methods for both OC and DRL to achieve more close-to-natural gait patterns.

Accurate simulation of walking can facilitate the development of human-in-the-loop
controllers for assistive robotic devices. Predefined gait trajectory control, being one of
the most common control strategies for lower-limb exoskeletons, often fully or partially
relies on the healthy gait. This neglects the change in system dynamics after the addition
of the exoskeletons. On the other hand, predictive simulations have been used to ana-
lyze the optimal gait trajectories for an altered musculoskeletal system by prostheses or
exoskeletons, but often lacks the consideration of the optimal human cost function or ex-
oskeleton dynamics. Therefore, a high-fidelity simulation that considers these two aspects
is required.
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Chapter 3

Simulating Natural Walking Using
DRL

This chapter describes a novel reward function tuning methods within the DRL formulation
for efficient learning of close-to-natural human walking without reference motion. The con-
tent of this chapter is published by J. Weng, E. Hashemi and A. Arami in IEEE Robotics
and Automation Letters Vol. 6(2): 4156-4162, 2021 and in the IEEE International Con-
ference on Robotics and Automation, Xi’an, China, 2021. The proposed method aims to
bridge the gap between collocation-based analysis and DRL-based locomotion study by ap-
plying neuromechanically-inspired reward functions. It also improves the learning progress
using our goal-based CL strategy that resembles the human’s natural learning progress.
We first discuss the agent observation, reward shaping, and network architecture, followed
by the goal-based curriculum formulation and training strategy.

3.1 Environment Formulation

The learning environment consists of a musculoskeletal model adopted from the OpenSim
RL package used in the NeurIPS Learning to Run challenge [45]. The model includes
trunk, pelvis, and leg segments (i.e., femur, tibia and talus-calcaneus-toes segments) with
18 muscles at the lower extremity and 9 DoF which allows only sagittal-plane motion. The
18 muscles (9 for each side) includes Hamstrings (HAM), Biceps Femoris short head (BFsh),
Gluteus Maximus (GM), Iliopsoas (IL), Rectus Femoris (RF), Vasti (VA), Gastrocnemius
(GAS), Soleus (SOL), and Tibialis Anterior (TA). The 9-DoF musculoskeletal model has
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three global coordinates (x translation, y translation, and z rotation at the pelvis) and six
local coordinates (one rotation for each hip, knee, and ankle joint). The musculoskeletal
model uses a Hill-type muscle model and Hunt Crossley contact spheres at heel and toes
for foot-ground interaction.

The state observation of the DRL agent has 33 dimensions: five at pelvis (vertical
position and velocity, horizontal velocity, and rotational angle and velocity); 12 at lower
limb joints (joint angle and velocity at hip, knee, and ankle); 12 at different body segments
(vertical and horizontal position of head, torso, left and right toes, left and right talus
relative to pelvis); two for vertical ground reaction forces; and two for center of mass
(CoM)’s vertical and horizontal velocity. All velocity related observations are scaled down
by 10. The vertical ground reaction forces are scaled down by 1000. However, unlike DC
approaches and some DRL-based studies [47, 24, 67, 23], muscle activation is not included
to ensure small observation space.

The reward function R in (3.1) consists of seven performance measures including muscle
activation penalty Ra, hyperextension penalty Rh, instability penalty Rs, jerk penalty Rj,
forward reward Rf , footstep reward Rfs, and survival reward terms Ruh

, Ruo .

R =ωaRadt + ωhRhdt + ωsRsdt + ωjRjdt+ (3.1)

ωfRfdt + ωfsRfs + ωu(Ruh
+ Ruo)dt,

where the reward/penalty function components are

Ra = −0.1
∑

ma
3
m (3.2)

Rh = −0.1
∑

j|τ jp | (3.3)

Rs = −
(
pcx + pcyg

−1acx − pfb
)2

(3.4)

Rj = −10−4
(
αj2x + (1− α)j2y

)
(3.5)

Rf =

{
−(vcx − vrefx)2 + 1, pcx ≤ 1m,

exp(−8(vcx − vrefx)2), else
(3.6)

Rfs = clip(tfs, none, 1) (3.7)

Ruh
= 102clip(phy − 1.45, none, 0.02) (3.8)

Ruo = 102clip(−2(phx − ppx)2,−0.02, none) (3.9)

The first four terms in (3.1) are inspired by existing trajectory optimization studies
[90, 2, 64, 67, 24, 23]. Ra in (3.2) computes the sum of cubed normalized muscle activation,
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denoted by a ∈ [0, 1]. Rh in (3.3) computes the sum of absolute passive joint torque τp
at hip, knee, and ankle provided by rotational spring-damper actuators in the OpenSim
[45]. Rs in (3.4) penalizes the deviation of the actual position of the front foot, pfb, from
the expected front foot position, computed using zero-moment point (ZMP) [43]. The
expected front foot position is (pcx + pcyg

−1acx) where pcx and pcy are the forward and
vertical position of the CoM, acx is the forward acceleration of CoM, g is −9.81ms−2. Rj

in (3.5) computes the jerk along the x and y directions with weighting factor α ∈ [0, 1]
which is set to 0.11 based on [67].

In almost all reviewed studies that used DC, the walking speed, stride frequency, and
gait symmetry or periodicity are enforced through hard constraints [64, 90, 2, 67, 24, 23].
This is usually done by specifying the trajectory time and initial/terminal states. In the
DRL setting, these constraints are difficult to impose. Instead, the walking speed constraint
is transformed into the forward reward, Rf in (3.6), which is computed using the forward
speed of CoM, vcx, and some target forward speed, vrefx. We use a quadratic form for
Rf during the initial standing-to-walking transition to intensify the forward reward. After
stabilizing the forward motion, Rf is evaluated using a Gaussian function with sharper
attraction around vrefx. No constraint is implemented on the stride frequency and gait
symmetry. Instead, a simple footstep reward, Rfs in (3.7), is provided based on step time
tfs to encourage alternating stepping behaviour during the initial learning phase. Besides,
survival reward terms, Ruh in (3.8), and Ruo in (3.9) are used to maintain height and
upward pose, where ph, pp are the head and pelvis positions. The clipping operation limits
Ruh and Ruo within the defined boundaries to avoid undesired agent behaviour such as
vertical jumping and unwillingness to move forward.

3.2 Training Strategies

Agent-environment interaction for our DRL problem formulation is shown as in Fig. 2.1.
The learning-to-walk problem is decomposed into two phases. The first phase aims to
efficiently generate a walking-capable agent with two requirements: relatively symmetric
gait behaviour and no joint hyperextension. This walking-capable agent is then used as
the starting point in the second phase which focuses on gait fine-tuning.

To efficiently generate the walking-capable agent in the first phase, we formulate a
curriculum that resembles the natural learning progress of humans: learning to stand,
learning to step, and learning to move forward as shown in table 3.1. The changing
objectives of these three courses are realized by targeting different reward components
in the reward function. During course transition, we maintain the same reward weights
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from the previous course, and enable additional reward weights for the next course. Upon
completion of each course, the DRL agent is directly used as the initial point of the next
course.

Table 3.1: Target reward weights during phase one CL

Courses Target Weights Description

Learn to stand ωh, ωu survival, hyperextension

Learn to step ωh, ωu + ωfs +footstep

Learn to move ωh, ωfs, ωu + ωf +forward

After the first learning phase, we investigate the ideal reward weight composition of the
remaining penalty terms, including instability, jerk, and muscle activation. Intuitively, the
agent is expected to minimize these three penalty terms while still maintaining forward
motion at a desired speed. We formulate the learning process as a constrained penalty max-
imization problem as shown in Algorithm 1. The learning process follows the goal-based
CL scheme with the penalty weights being gradually increased as defined by c between the
courses. The gradual changes in penalty weights facilitate a smooth transition between
behaviours. After each course, the agent’s episodic forward reward

∑
Rf is evaluated to

ensure no degradation of walking capability beyond p which is set to be 5%. A significant
drop in forward reward might indicate the policy convergence back to standing or early
termination caused by falling that violates the constraint of maintaining forward motion.
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Algorithm 1: Penalty Maximization With Primary Performance Constraints

Initialize: Pretrained agent π, V ; target speed; initial weight vector ω; weight
steps c

for reward term index i ∈ {a, s, j} do
log initial forward performance Pini =

∑
Rf ;

while True do
ωi := ωi + ci;
Get πnew, Vnew by optimizing π, V using PPO;
if converge then

log final performance Pf =
∑

Rf ;
if Pf > (1− p)Pi then

Pini := Pf , π := πnew, V := Vnew;
else

ωi := ωi − ci;
break;

end

end

end

end

3.3 Gait Validation

Gait bilateral symmetry is important in achieving close-to-natural behaviour, but difficult
to learn in the DRL setting [46, 47]. To validate the efficiency of learning bilaterally
symmetric behaviour during phase one learning, the symmetry index (SI) is used [75] as
shown below:

SI =
XR −XL

0.5(XR + XL)
× 100% (3.10)

where XR, XL are the spatiotemporal parameters of the gait including step length and step
time. In addition, We evaluate the gait symmetry of two additional comparative experi-
ments without curriculum learning. One experiment directly uses the reward function from
the last course of the phase one CL. The other experiment further simplifies the reward
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by dropping the joint hyperextension penalty and the step reward terms. All the compar-
ative experiments were run for the same number of time steps during all CL courses for
consistency.

To evaluate the naturalness of the emerged gait after phase two learning, the agent gait
is compared to the experimental overground gait data adopted from [67] and solutions from
DC method. The DC method uses the same musculoskeletal model described in section 3.1
and generates optimal trajectory over half a gait cycle by minimizing muscle activation.
We formulate the problem constraints to ensure gait symmetry and the same target average
walking speed as the DRL agent. Pearson correlation analysis is then used to compare the
agent gait, optimal gait from DC, and experimental overground gait data [67]. In addition,
spatiotemporal gait parameters including stride length, walking speed, step time, swing
time, and stance time are compared between the agent and human experimental data [54].
The walking speed and stride length are normalized as below:

Normalized speed =
speed√
H ∗ g

(3.11)

Normalized stride length =
stride length

H
(3.12)

where H is the height of the musculoskeletal model which is set to 1.63m, and g is
−9.807ms−2.

3.4 Results and Discussion

In this section, we first show the impact of our goal-based CL on generating symmetric
behaviour based on the results from phase one learning. We then validate the agent’s
behaviour against existing solutions in the running scenario. Last, we discuss the fine-
tuned walking gait patterns of the agent after the second phase learning and benchmark
it against DC results and experimental human gait data.

3.4.1 Phase one - Initial Gait Learning

During phase one learning, the agent followed the goal-based CL scheme in Table 3.1 with
a target speed of 1.2m/s and a max simulation time of 3s (300 time steps). Detailed weight
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values for each course are listed in Table 3.2. All three courses were run for 1.5 million time
steps which transferred to about 1.5 hours of training on a Ryzen 3600 6-core CPU with
16GB of RAM. After the first course, the agent successfully learned to stand with knee
joint angles at −8.5± 10.2 degrees. After the second course, the agent learned to tap both
feet alternately at high frequency. After the third course, the agent was able to walk at
target speed with ∼ 4 steps/s (see the supplementary video). This curriculum formulation
significantly reduced the difficulty during initial policy search for close-to-symmetric gait.

Table 3.2: The reward weight values for phase one courses

ω1 ω2 ω3 ω4 ω5 ω6 ω7

Learn to stand 0 1 0 0 0 0 1

Learn to step 0 1 0 0 0 1 1

Learn to move 0 1 0 0 4 1 1

We ran two comparative experiments without CL as stated in section 3.3. For all three
experiments, we collected 100 trajectories and calculated SI using mapped step length
and step time for each trajectory. The step length was mapped using a logistic func-
tion with close to linear behaviour within the domain of [−1, 1] to account for possible
negative step length (foot-dragging behaviour). The signs of all SI values were corrected
to account for different dominant legs across different agents. This ensured the positive
mean values for step length and step time SIs. The SI values for all three agents were ob-
tained and statistically compared using the Friedman test followed by Wilcoxon Rank Sum
test with Bonferroni correction, which is summarized in Fig. 3.1. Both step length and
step time showed group-level significant difference according to Friedman test (p≪ 0.05).
The CL trial showed significantly lower SI magnitude compared to no CL trials for step
length (Wilcoxon p ≪ 0.0083) indicating more symmetric gait behaviour. Both no CL
trials showed dragging foot behaviour with no significantly different step-length SI values
(Wilcoxon p = 0.61). The SI values for step time are statistically different across all three
agents (Wilcoxon p≪ 0.0083).

20



Figure 3.1: Evaluation of agent gait symmetry using SI; * indicates significant difference
with p < 0.0083.

3.4.2 Learning to Run

To evaluate the agent capability in running tasks, we adopted the last reward function
from phase one CL, but replaced Rf in (3.1) with R′

f = vcx. We trained the agent for
20 million time steps with a max simulation time of 10s without reward function fine-
tuning. The running gait generated by the agent is summarized in Fig. 3.2. Our learned
solution showed good alignment with existing solutions from NeurIPS Learning to Run
challenge and similarities with experimental data [45]. The reduced hip extension and
ankle dorsiflexion of our solution relative to existing solutions were partially caused by the
joint hyperextension penalty during phase one learning which was not given in NeurIPS
Learning to Run challenge [45]. In addition, NeurIPS Learning to Run challenge required
ground obstacle avoidance which encouraged hip extension and ankle dorsiflexion [45].
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Figure 3.2: Comparison of the running gait of our DRL agent at 3.2m/s ± SD (in blue),
the experimental data at 4m/s ± SD from [45] (in orange), and average gait of 47 existing
solutions at 2.5-4.6m/s from [45] (in grey).

3.4.3 Phase Two - Gait Fine Tuning

Unlike running where realistic gait can emerge by simply maximizing forward distance per
unit time [46], realistic walking at relatively low speed is more difficult to achieve due to
many local optima [47]. In phase two learning, we fine tuned the walking-capable agent
from phase one learning using Alg. 1 with a max simulation time of 10s. We chose large
weight update steps by setting the weight step vector to c = [5, 0, 10, 4, 0, 0, 0] in Alg. 1 and
listed detailed weight values during each course in Table 3.3. This choice is to reduce the
number of courses in Alg. 1 mainly due to computational limitations. The episodic reward
plot along with the individual forward reward is summarized in Fig. 3.3. We demonstrated
the the consistent walking capability of the agent even with gradually increased penalty in
the reward function (see the supplementary video). The entire gait tuning process took less
than 50 hours on a Ryzen 3600 6-core CPU. This is on par with off-policy methods, and
more computationally efficient than other on-policy methods which often requires large
CPU clusters with days of training [46, 47]. The final agent was tested 20 times for a
total of 400 seconds of simulation time and walked without falling for all tests. The agent
behaviour is shown in Fig. 3.4 which is close to human behaviour.
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Table 3.3: The reward weight values for phase two courses

ω1 ω2 ω3 ω4 ω5 ω6 ω7

Iter. 1 0 1 10 0 4 1 1

Iter. 2 5 1 10 0 4 1 1

Iter. 3 10 1 10 0 4 1 1

Iter. 4 15 1 10 0 4 1 1

Iter. 5 20 1 10 0 4 1 1

Iter. 6 20 1 10 4 4 1 1

Iter. 7 20 1 10 8 4 1 1

Figure 3.3: Reward plot of phase two learning consisting seven iterations; Iteration 1
penalizes on instability; Iteration 2-5 penalizes on muscle activation; Iteration 6-7 penalizes
on jerk.
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Figure 3.4: Behaviour after the phase two learning at ∼ 2 steps/s.

Observing close-to-natural agent walking behaviour, we then extracted kinematic data
for 925 steps and analyzed the gait patterns in comparison to human gait trajectories as
shown in Fig. 3.5. The extracted gait exhibits variations from stride to stride due to the
stochasticity of the policy. However, the naturalness of such variation requires further
analysis. The mean of the agent gait showed high correlation, greater than 0.92, with the
optimal trajectory from DC at all three joints with a downward shift for the ankle angle
plot. The agent gait also showed high correction with the experimental gait at hip and
knee with slightly delayed knee extension during the swing phase (see the supplementary
video). Despite the similarities, we identified two main differences between the agent and
the experimental gait behaviour. First, the agent did not present enough knee extension
before foot strike as shown in the middle plot in Fig. 3.5 which also occurred in the running
case shown in Fig. 3.2. Second, the agent demonstrated toe-walking behaviour or early
ankle plantar flexion prior to push-off as shown in the right plot in 3.5 which is similar
to many other DRL-based musculoskeletal control experiments [47]. The agent spatiotem-
poral gait parameters were in the same range as human data as summarized in table 3.4,
the agent showed similar walking speed and stride length to humans with slightly faster
step frequency. The swing time and stance time percentage are also close to humans. No
direct gait comparison to other DRL approaches for walking with musculoskeletal mod-
els [47, 83] is included since these studies either addressed different problems, or did not
provide biological analysis of the gait.
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Figure 3.5: Agent gait patterns ± SD after the second phase learning compared to DC
result and experimental gait patterns ± SD [67]. The Pearson correlation of hip, knee,
and ankle joint angles are 0.99, 0.98, and 0.93 between agent and DC, and 0.95, 0.83, 0.39
between agent and experimental data.

Table 3.4: Comparison of spatiotemporal parameters between agent and human gait from
[54]

DRL agent Human

Dimensionless
stride length

0.60± 0.08 0.73± 0.09

Dimensionless
walking speed

0.28± 0.04 0.27± 0.04

step time (s) 0.43± 0.06 0.56± 0.05

swing time (s) 0.34± 0.08(39%) 0.45± 0.03(40%)

stance time (s) 0.53± 0.08(61%) 0.68± 0.07(60%)

Based on the gait results from phase two learning, we believe there are two main factors
that may contribute to the missing knee extension before foot strike and the toe walking
behaviour of the agent. The first factor is the limitation of the OpenSim model. The
constrained sagittal-plane simulation of the musculoskeletal model may limit the model
flexibility in generating frontal plane motion which can be important to maintain foot-
ground clearance. The toe-walking behaviour can be seen as the alternative strategy of
keeping foot-ground clearance given the variation of gait from the stochastic policy. Ad-
ditional experiments with reduced jerk penalty showed less ankle plantarflexion during
walking at the expense of more delayed knee extension and more hip flexion to main-
tain foot-ground clearance. The predefined ground contact model may also influence the
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emerged agent gait due to potentially inaccurate contact properties for the walking sce-
nario. The second factor is the limitation from the DRL agent. After phase two learning,
the muscle excitation command from the control policy is highly sparse. When coupled
with the first-order activation dynamics [15], the sparse muscle excitation command could
not reproduce relatively smooth muscle activation profiles that are usually seen from DC
studies, which makes the fine-tuning of detailed agent behaviour difficult. In addition, the
composition of the reward function in this study may not fully capture the rationale of
walking. For example, the benefit of the energy dissipation during foot strike with the
heel-sole-toe walking [91] is not considered in our analysis.
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Chapter 4

Cost Function Optimization using
IOC

Although CL-based reward function tuning is powerful in recovering the expert policy for
close-to-natural walking behaviour in the DRL environment, it requires a long training
time which makes subject-specific gait simulation difficult. In this chapter, we explored
an alternative formulation of the cost function tuning problem using predictive simulation
for individual participants. We first discuss the customization of the subject-specific mus-
culoskeletal models, followed by the formulation of the inner-loop optimization using DC,
and last the outer-loop AR-IOC algorithm inspired by SC and DLM [74, 59]. In this study,
we first test our AR-IOC algorithm on synthetic walking data generated by a known cost
function. Then, we perform IOC analysis on two treadmill walking datasets. The first
dataset is publically available [57] which includes ten healthy participants walking at self-
selected speeds (i.e., the most comfortable speeds for daily walking) and stride lengths.
The second dataset is collected at the Neuromechanics and Assistive Robotics Lab (Arami
Lab) at the University of Waterloo. This dataset includes five healthy subjects walking at
four prescribed speeds and two different stride lengths. Note that a part of this chapter will
appear soon in the IEEE Transactions on Neural Systems and Rehabilitation Engineering
(J. Weng, E. Hashemi, and A. Arami. “Adaptive Reference Inverse Optimal Control for
Natural Walking with Musculoskeletal Models,” under review).
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4.1 Subject Specific Musculoskeletal Models

Natural gait patterns vary across individuals due to their diverse body geometries, muscle
fibre type proportions, strength, and possible variations in neural control. When perform-
ing cost function optimization for individual participants, a personalized musculoskeletal
model is required to better represent the physical characteristics. Here, we first construct
a baseline musculoskeletal model, then scale it to match the anthropometric parameters of
each participant.

The baseline musculoskeletal model is customized based on the gait10dof18musc model
from OpenSim [15] which is shown in Fig. 4.1. The model allows sagittal-plane (2D)
motion with 11 DoF, including 8 DoF at the hip, knee, ankle, and metatarsophalangeal
(toe) joints, and 3 DoF for global translation and rotation at the pelvis. The full system
configuration is described using a 40-dimensional state vector, including the position and
velocity of all 11 DoF and 18 muscle activation signals. The 18-dimensional control signals
specify muscle excitation, which is linked to muscle activation using first-order activation
dynamics [15]. Lower limb muscles include HAM, BFsh, GM, IL, RF, VA, GAS, SOL,
and TA. Unlike other locomotion related IOC studies that uses full-body humanoid [11,
64, 24], this model ignores upper-limb segments such as arms and hands for simplicity.
We choose this simplified model as a starting point for its computational-efficiency when
solving the gait optimization problems discussed in section 4.2. The utilization of the
full-body musculoskeletal model is remained as a future research direction. The hip, knee,
and ankle joints are softly constrained using passive joint torque actuators with double
exponent formulation [3] to simulate the effect of ligaments. The metatarsophalangeal
joints are passively actuated using linear passive spring-damper actuators. The default
muscle fibre lengths and pennation angles are obtained from [96]. The default tendon
slack lengths are obtained from [66]. Six Hunt Crossley contact spheres at the heel, first
metatarsal head (MH), third MH, fifth MH, hallux, and middle toe are added for each foot
to cover all high-pressure zones during walking [69].

The subject-specific musculoskeletal models are obtained by scaling the baseline model.
The body geometries, contact sphere locations, and optimal muscle fibre lengths are scaled
based on the marker tracking data. The model mass is also scaled to the reported subject’s
body mass while maintaining the same mass distribution as the baseline model. The
maximum isometric muscle force is calculated using the method explained in [66]. First,
the subject’s body mass and height are taken as input to estimate the individual muscle
volumes using the experimental results from [34]. The muscle volumes are then used along
with the scaled optimal muscle fibre lengths and the muscle-specific tension from [72] to
estimate the maximum muscle isometric forces.
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Figure 4.1: The musculoskeletal model has 11 DoFs and 18 muscles.

4.2 Optimization Formulation

4.2.1 Inner-loop Trajectory Optimization

The inner-loop trajectory optimization assumes a given cost function and finds the opti-
mal trajectory that minimizes the given cost using DC. We used OpenSim Moco [16] to
formulate the DC problem with musculoskeletal models. The inner-loop cost function for
generating the walking motion consists of six terms with four variable weights:
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which can be seen as the integral of a dot product of the weight vector ω and the cost
vector C. As experimental data from multiple participants is used in our study, non-
dimensionless quantities including torque, acceleration, force, position, and velocity exhibit
different ranges across the participants due to factors such as segment length and body
mass (can be seen in Table 4.2). These quantities are scaled to the equivalent dimensionless
forms [39] using the following equations:

τ̂ =
τ

mglleg
, F̂ =

F

mg
, v̂ =

v√
llegg

, p̂ =
p

lleg
, (4.2)

where m is the subject mass, lleg is the leg length, g is 9.81m/s2. Such scaling improves the
cost function generalization across different body sizes. The first term penalizes the cubed
muscle excitation u where i is the muscle index, and n is the total number of muscles.
This term has been widely used in previous studies to capture the CNS effort to minimize
energy expenditure and muscle fatigue [23, 24, 90, 2, 67]. The second term penalizes the
use of scaled passive ligament torque τ̂j similar to [90, 23, 24] to keep joint angles within
the limits of the physiological range of motion, where j is the index of the passive joint
actuators at hip, knee, and ankle joints. The third term penalizes the deviation of torso
angle θtorso from the upright position similar to [67] as an approximation of upper-limb
energy expenditure. The fourth term penalizes the scaled acceleration of the CoM inspired
by [24] to encourage motion smoothness. The fifth term penalizes the foot sliding similar to
[64] to ensure proper foot clearance. This is evaluated based on the scaled vertical ground
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reaction force (GRF) F̂ y and the scaled horizontal foot velocity v̂fx, where lf, rf represent
left and right feet. The last term encourages the stability by penalizing deviation of the
scaled forward CoM position p̂CoMx from the center of the base of support (BoS) p̂midBoS

similar to [67]. Coefficients of the cost terms scale the cost values to the same order of
magnitude given the desired motion trajectories from the experiment. After integration,
the final cost is divided by the total forward distance d measured at the CoM. In addition,
we also experimented metabolic cost based on [8] as an alternative to the muscle excitation
cost. The weight of the metabolic cost is set to 0.35 which results in a similar cost value
as the muscle activation term in (4.1) while maintaining other weights the same (i.e., all
weights (4.1) are set to 1). The resultant optimal gait by using the metabolic cost is almost
identical to the one by using the muscle excitation cost with mean joint angle deviation of
0.6, 1.4, and 1.3 degree and Pearson correlation of 0.999, 0.999, and 0.998 for hip, knee,
and ankle joint angles, respectively. However, the metabolic calculation introduced 20%
more computational time when solving the direct collocation problem. As a result, we only
use muscle excitation penalty for higher computational efficiency.

The first two terms in the cost function are designed with fixed constant weights due
to two reasons. First, uniformly scaling the multipliers of all cost terms does not change
the optimal solution. To prevent uniform scaling, the muscle activation multiplier is set to
a constant so that the weight updates ensure relative weight changes between cost terms
and, consequently, changes in the solution. Second, the passive joint torque term is fixed
to improve the stability of the optimization. During natural walking, the lower-limb joints
rarely reach extreme angles resulting in small cost values (i.e., close to zero). This can
cause the weight update to the passive joint torque term to be unreliable due to poor
numerical precision. In some cases, the weight may converge to zero, which may cause
the inner-loop optimization to generate abnormal walking with knee hyperextension and
subsequently lead to a large rebound of the cost weight. Therefore, the weight of passive
joint torque term is fixed to prevent its convergence to zero and ensure the stability of the
optimization program.

To reduce the complexity of the DC problem, the optimized walking trajectory is lim-
ited to half a gait cycle with gait symmetry constraints. These symmetry constraints
ensure mirrored state values (i.e., position and velocity of all DoF except the global for-
ward distance, and all muscle activation signals) about the sagittal plane at the trajectory
start and end. After solving the DC problem, the full gait cycle is reconstructed by con-
catenating the trajectories from the left and the right leg. Several equality and inequality
constraints are imposed on the state and control variables. Muscle excitation and activa-
tion are constrained to [0, 1]. Joint angles and global body positions are constrained to
feasible ranges (i.e., [−15◦, 60◦], [−70◦, 5◦], [−15◦, 25◦], for hip, knee, and ankle angles,
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respectively; [0m, 1m], [0.75m, 1.25m], [−20◦, 20◦] for global forward distance, height, and
orientation at pelvis, respectively). The average walking speed and the final trajectory
time are constrained to the experimental values to maintain the same walking task. Last,
the trajectories are discretized to only 15 nodes which are shown to be sufficient by [67]
and our investigations.

4.2.2 Outer-loop Cost Function Tuning

The outer-loop optimization aims to optimize ω in the cost function Jinner such that
the inner-loop solution matches the reference trajectories from the experiments. With
the inspiration from SC [74] and DLM [59], we formulate the AR-IOC for the outer-loop
optimization shown in Alg. 2 and Fig. 4.2. AR-IOC consists of three main steps. First, the
experimental gait data is collected and pre-processed to ensure dynamic feasibility. Next,
two DC problems are solved in parallel with one generating predictive gait trajectories
given the current cost weights, and the other one generating adaptive reference trajectories
by adding experimental data tracking to the current cost function. Last, the converged
trajectories from these two DC problems are compared to update the cost weights. Steps
2 and 3 are repeated until the convergence criteria are satisfied.

We first represent the walking task-related parameters (e.g., walking speed and stride
time) as x, and the walking trajectories (including both states and controls) as y. If the
cost weight ω is optimal (i.e., ω = ω∗), then the cost of yref as the dot product of ω and
cost vector C is smaller than all other choices of y ∈ Y , where Y is the superset of all
possible trajectories. such a relationship can be represented as:

ωTC(x,yref (x)) ≤ ωTC(x,y(x)) + ζ, (4.3)

where ζ ≥ 0 (i.e., a slack variable) deals with possible violation of the inequality when ω is
sub-optimal. Intuitively, we want ζ to be small to ensure the optimality of ω. In addition,
the following inequality holds for any arbitrary ω:

ωTC(x,yref (x)) ≥ min
y∈Y

ωTC(x,y(x)). (4.4)

The inequality in (4.4) reduces to equality when ω is optimal (i.e., ω = ω∗). As (4.3)
holds for all y, we can substitute ωTC(x,y(x)) in (4.3) by its minimum over y. We then
obtain:

32



ζ ≥ ωTC(x,yref (x))−min
y∈Y

ωTC(x,y(x)) ≥ 0. (4.5)

Since we want small ζ, we have to minimize its lower bound. Therefore, the problem
becomes:

min
ω

Jouter = min
ω

[(ωTC(x,yref (x))−min
y∈Y

ωTC(x,y(x))]. (4.6)

The gradient of the objective function with respect to ω can then be calculated as follows:

∇Jouter = C(x,yref )−C(x,y′) (4.7)

y′ = argmin
y∈Y

ωTC(x,y(x)), (4.8)

where yref is the reference trajectory from experiments, y′ is the optimal inner-loop DC
solution given ω. As C(x,yref ) relies on clean control signals (muscle excitation) which
are nearly impossible to collect during experiments, we estimate the control signals by
solving a tracking DC problem using the cost function Ĵt:

Ĵt =Jinner +
1

d

∫ tf

0

ctdt (4.9)

ct =ωk||sk − srefk ||
2
2 + ωf ||(sf − sreff )||22, (4.10)

where sk, sf are the kinematic and GRF trajectories to be optimized in this tracking DC

problem, and srefk , sreff are the reference trajectories from experiment. Weights ωk and ωf

control the trade-off between the kinematic and the kinetic tracking which are set to 0.01
and 0.005 for all experiments to allow deviations from the tracking data. Such deviation
allows the adaptive reference trajectory to be closer to the trajectories obtained using the
current cost weights, which avoids large gradient updates and smooths out the gradient
history. The difference between ωk and ωf ensures an approximately similar magnitude of
the kinematic tracking cost and the ground reaction tracking cost for subjects. As Jinner

33



is a function of ω, Ĵt varies during the weight optimization. This requires the tracking
DC problem to be re-solved after each weight update. Intuitively, we allow the estimated
reference trajectory yref to adapt to the optimized weight vector while moving towards the
reference motion. This modification nicely results in the DLM for structured prediction
which was originally proposed in [59]. Consequently, we replace C(x,yref ) in (4.7) with
C(x, ŷref ) where ŷref is the adaptive reference generated by the tracking DC problem
using (4.9). Then gradient descent is used for the weight update. Comparing to using a
static reference yref (further away from y′), the adaptive reference ŷref (closer to y′) also
reduces the inaccuracy in calculating the cost value differences in (4.7) due to numerical
errors from the direct collocation problem (e.g., trajectory reconstruction errors), and
improve the stability of the cost update. The resulting algorithm for learning optimal
weights (that indicates the optimal cost function) for natural walking, called AR-IOC, is
summarized in Alg. 2, and Fig. 4.2 shows the connection among different components of
this algorithm.

Algorithm 2: AR-IOC

Initialize: desired trajectories srefk , sreff from solving DC problems using Jt;
initial weight vector ω; learning rate η

while max iter. not reached do

ŝref , ûref = argmin
s,u

Ĵt(ω);

compute cost vector Ĉref = C(ŝref , ûref ) ;
s′,u′ = argmin

s,u
Jinner(ω) ;

compute cost vector C ′ = C(s′,u′) ;

ω ← ω + η(C ′ − Ĉref ) ;

end
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Figure 4.2: Block diagram of the AR-IOC algorithm. The tracking DC problem outside of
the outer-loop IOC module generates feasible trajectories sref . The inner-loop predictive
DC problem generates state trajectories s, control trajectories u, and the cost vector C
subject to stride time and average speed constraints, as well as state and control bounds.
The tracking DC problem inside the outer-loop IOC module provides adaptive reference
trajectories for the weight update. All DC problems are solved with the scaled muscu-
loskeletal models using methods described in 4.1.

In actual experiments, the experimental data srefk , sreff in (4.10) is pre-processed by
solving a tracking DC problem with the cost function Jt:

Jt =
1

d

∫ tf

0

(
ct + ||u||22

)
dt. (4.11)

This is to convert treadmill walking to level ground walking in simulation and ensure
dynamic feasibility of the reference trajectory. The simple gradient descent update rule
is replaced with the momentum update to accelerate convergence. The learning rate η is
tuned using grid search during the experiment with synthetic data (explained in section 4.1)
to achieve stable and efficient convergence. The tuned η is then applied to all other
experiments. A dynamically adjusted weight lower bound (set to 1/10 of the initial weights,
and reduced by half if the bound is activated for more than 5 consecutive iterations)
and gradient clipping are also used to avoid the weight speedy drop to zero due to the
momentum update which can cause significantly different inner-loop DC solutions and
outer-loop weight oscillations.
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4.3 Results and Discussion

4.3.1 IOC on Synthetic Data

To test the convergence of the proposed algorithm, we used a synthetic reference trajectory
by solving a DC problem with known weights in (4.1). The DC problem used the scaled
musculoskeletal model for the first participant in the dataset [57]. The walking task is
configured to be at 1.2m/s with a stride frequency of 1Hz. The synthetic known weights
in (4.1) are all configured to 0.5 for demonstration. To test the robustness of the AR-IOC
algorithm against the weight initialization, we used three different sets of initial weights to
represent different initialization conditions (i.e., smaller / larger than the known weights,
and mix of both) as shown in table 4.1. All three trials were run in parallel and converged
after 100 weight updates which took about 3 hours of total computation using AMD Ryzen
7 3700X CPU at 3.6GHz. The final converged weights and the weight errors are shown in
Table 4.1 and Fig. 4.3, respectively. The final converged weights are similar to the desired
values for all three trials, and the weight error progress showed a nice reduction over the
inner-loop evaluations. Trial 1 and 2 required more inner-loop updates as the initial weights
are further away from the reference weights. Some oscillations exist in the weight error
plot which are primarily caused by the weight overshoot from the momentum update. The
final weight errors stabilized slightly above 0 after iteration 80 for all three trials. This is
because the adaptive reference trajectories ŝref , ûref in Fig. 4.2 allows small deviation from
the reference trajectories in exchange for a slightly easier outer-loop optimization problem.
This deviation is small and can be neglected as shown in Fig. 4.4.

Table 4.1: Weight comparison after solving the synthetic IOC problem

Initial Weights
[ω1, ω2, ω3, ω4]

IOC solutions
[ω1, ω2, ω3, ω4]

Trial 1 [2.5, 2.5, 2.5, 2.5] [0.57, 0.49, 0.54, 0.46]

Trial 2 [0.1, 0.1, 0.1, 0.1] [0.56, 0.48, 0.55, 0.46]

Trial 3 [0.1, 0.1, 2.5, 2.5] [0.57, 0.49, 0.55, 0.46]

Desired weights [0.50, 0.50, 0.50, 0.50]
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Figure 4.3: Weight vector error reduction plot using synthetic reference trajectories. Initial
and final weights for all three trials are listed in Talbe 4.1.

Figure 4.4: Comparison of gait kinematics and GRFs between the IOC solution and the
synthetic reference gait.
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4.3.2 IOC on Walking data with Self-selected Speed

In this section, treadmill walking data of ten healthy participants [57] were used. The initial
weight vector [ω1, ω2, ω3, ω4] in (4.1)is set to [1, 1, 1, 1] for all subjects. The IOC problems
were solved with 193 weight updates on average (i.e., about 10 hours of computation per
problem using AMD Ryzen 7 3700X CPU at 3.6GHz). Comparing to other derivative-free
methods for cost function determination with similar setup [67], the AR-IOC significantly
reduces the number of inner-loop evaluations. The subject information, walking config-
urations, and the optimized weights are summarized in Table 4.2. The converged CoM
acceleration weights ω2 (0.605± 0.325, mean ± standard deviation (SD) computed across
subjects), foot sliding weights ω3 (1.175± 0.460), and stability weights ω4 (0.337± 0.175)
are considerably larger than zero for all participants. This behaviour can indicate the
significance of these cost terms in capturing natural walking behaviour. In contrast, the
torso orientation weights ω1 for five participants (participant 2, 4, 5, 9, and 10) converge
to small values (either 0.001, 0.01, or 0.027). This may be due to poor estimation of the
desired torso orientation in the reference trajectories. As the motion tracking data only in-
cludes lower limbs, the estimation of the torso orientation solely depends on reconstructed
pelvis orientation, which can have excessive forward tilt due to marker placement errors.
Such inaccuracy leads to a large torso orientation cost for the reference trajectories, which
essentially pushes ω1 to zero. In addition, potential redundancy in the cost function may
also cause some cost weights to converge to zero.

Given the optimized weights in Table 4.2, the optimal joint kinematic and GRF tra-
jectories are computed and compared to the reference trajectories. Fig. 4.5 shows the gait
comparison of a typical participant (participant 1 in [57]). Overall, the joint angles and
GRFs from IOC match closely with the tracking solution. The ankle joint angles from IOC
have a smoother profile than the reference during the stance phase.
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Table 4.2: Subject mass, height, leg length, speed, stride time and optimal weights by
solving IOC problems.

#
M
kg

h
m

lleg
m

v
m/s

ts
s

ω1 ω2 ω3 ω4

1 64.9 1.71 0.87 1.31 1.08 0.112 0.241 1.634 0.589

2 57.7 1.58 0.82 1.26 0.99 0.010 0.329 1.638 0.606

3 70.7 1.77 0.94 1.05 1.30 0.521 0.142 1.466 0.088

4 70.2 1.77 0.95 1.10 1.18 0.001 0.514 0.757 0.202

5 79.2 1.79 0.97 1.05 1.17 0.027 0.787 1.180 0.330

6 73.5 1.78 0.98 1.16 1.22 0.714 0.584 0.717 0.445

7 73.0 1.61 0.86 0.95 1.06 0.788 0.845 1.116 0.226

8 73.1 1.76 0.93 1.05 1.26 0.988 1.077 0.958 0.324

9 94.3 1.85 1.02 1.00 1.25 0.001 1.045 1.833 0.160

10 59.5 1.54 0.79 1.10 1.08 0.010 0.488 0.452 0.404

Figure 4.5: Comparison of joint angles and GRFs between the IOC solution and the
experimental reference gait from the first participant in [57]; GRFx and GRFy are along
the forward and vertical directions, respectively.
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Fig. 4.6 shows the muscle activation plots obtained from the optimal cost function
(through IOC) of the same participant. The EMG signals of four lower-limb muscles,
which were measured and available in [57], are overlaid in Fig. 4.6. The EMG signals are
scaled to best match the magnitude of the muscle activation from the optimal cost function
for visualization. The EMG signals of HAM, GAS, and TA showed good alignment to the
obtained muscle activation trajectories. The EMG signal of RF shows good alignment to
the combined muscle activation from two knee extensors (i.e., RF and VA). There may
be two explanations for the aforementioned observations. First, surface EMG sensors
only measure lumped muscle action potential at the location of measurement which can
cause inaccuracies in individual muscle measurement when sensor placement is sub-optimal.
Second, the individual muscle weights in the muscle activation penalty term may not be
optimal, which may favour activating VA over RF. The obtained GAS activation is slightly
delayed compared to the EMG signal similar to [67]. This may be caused by the problem
reduction from 3D to the sagittal plane where delayed toe push-off is required to facilitate
the delayed knee extension for proper foot clearance.

Figure 4.6: Comparison of muscle activations from IOC and average EMG signals of four
measured muscles of the first participant in [57]. EMG signals for the other five muscles
were not measured in [57].

To analyze the gait pattern quality, gait errors are computed with respect to the subject-
specific reference trajectories using root mean square errors (RMSE). After IOC weight
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optimization, hip, knee and ankle RMSEs of 0.041± 0.007, 0.122± 0.017, 0.054± 0.009 in
radians, and GRFx and GRFy RMSEs of 0.020±0.004, 0.064±0.013 in terms of body weight
ratio (i.e., GRF error [N] / body weight [N]) were obtained, respectively. The hip and ankle
joint angles generally align well with the reference after weight optimization. The knee
angles have relatively larger errors due to the delayed knee extension (visible in Fig. 4.5).
The ground reaction forces also align well with the reference. RMSEs of the trajectories
obtained from the initial weights are also computed to confirm the gait improvement from
the weight optimization, which is summarized in Fig. 4.7. Such comparison indicates
that the improvement mainly happens in kinematics features, especially hip and knee
angles. GRF profiles start with small errors and show mild improvement from the weight
modification. The small initial errors for the GRF are potentially due to the constraints
on the task parameters (i.e., walking speed and stride length) during the IOC experiments
(walking speed and stride length can impact GRF features like peak height and stance
duration). In addition, the optimized gait patterns have Pearson correlations of 0.992 ±
0.004, 0.917±0.024, 0.843±0.077 for hip, knee, ankle angles, and 0.957±0.024, 0.990±0.003
for GRFx and GRFy, respectively.

Figure 4.7: RMSE of the joint angles and GRFs before and after solving the IOC problems;
GRFx and GRFy are along the forward and vertical directions, respectively.

Last, a correlation analysis is performed between the optimized weights and parameters,
including body mass, walking speed, and stride time (raw data available in Table 4.2). As
the CNS weighting of different cost terms may vary for different participants (e.g. mass,
height, muscle properties) and walking tasks (e.g. speed, stride time), this correlation
analysis could bring insights into how the cost weights vary as a function of those param-
eters. This is valuable particularly when we need to infer an optimal cost function for a
walking task when we do not have access to its specific reference data. As the correlation
is calculated across participants that have various body geometries, the walking speed and
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the stride time are scaled to their dimensionless forms using the following equations from
[39]:

v̂ =
v√
llegg

, t̂s =
ts√
lleg/g

(4.12)

where lleg is the leg length, g is 9.81m/s2. The Pearson correlation coefficients are sum-
marized in Table 4.3. In terms of participant parameters, the body mass is negatively
correlated to the scaled walking speed meaning slower walking for participants with larger
body mass. The stride time is also negatively correlated to the scaled walking speed. In
terms of weights, the torso orientation weights ω1 and the foot sliding weights ω3 show low
correlations to the resultant scaled walking speed and stride time. The CoM acceleration
weight ω2 has a negative correlation with the scaled walking speed suggesting less demand
on the smooth motion at higher speeds. The stability weight has a positive correlation
with the scaled walking speed, indicating more penalty to stability with faster walking.
However, such an observation is not sufficient to draw a concrete conclusion as the correla-
tion is computed based on only ten participants walking with limited gait speed and stride
length variations. Extending this study to include variable gait data of each participant,
which is covered in section 4.3.4, would better illustrate the existence of such speed-cost
relationships.

Table 4.3: Pearson correlation coefficients between scaled walking parameters and weights.

M v̂ t̂s ω1 ω2 ω3 ω4

M 1 -0.78 0.34 0.07 0.68 0.31 -0.60

v̂ -0.78 1 -0.52 -0.35 -0.67 0.10 0.88

t̂s 0.34 -0.52 1 0.43 0.13 -0.17 -0.63

One main challenge in using the proposed IOC framework to solve optimal locomotion
cost weights is the stability of the inner-loop DC problems. DC transcripts the trajectory
optimization problem (i.e., in the form of differential equations) into constrained param-
eter optimization problems with algebraic equations by discretizing the trajectories and
reconstructing them using function approximations. The discretized optimization program
is then solved by a non-linear solver such as IPOPT [94]. Such an optimization technique
does not guarantee convergence to the global optima and is often sensitive to the initial
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trajectory guesses, especially for high-dimensional complex systems such as musculoskele-
tal models. We found that DC problems sometimes converge poorly if the initial trajectory
guesses are infeasible (e.g. the musculoskeletal model sinks into the solid ground) or far
off from the walking motion (e.g. jumping motion is given with two legs moving together
which also satisfies symmetry constraints). We also observed that the optimized trajec-
tories alternate between two configurations during IOC (e.g. with and without extensive
knee extension during the stance phase). This indicates that the slightly changing weights
cause the DC problem to converge to different local optima, which can cause oscillations
in the outer-loop weight updates. This issue was mitigated by imposing proper coordinate
constraints as explained in section 4.2.1, fixing the weight to the passive joint torque term
in Jinner, and using initial trajectories with feasible walking motion. However, it is im-
possible to consider all edge cases that can lead to inner-loop DC instability. In addition,
improving the expressive capacity of the defined cost function may improve the inner-loop
DC stability. This improvement essentially worsens the other local optima and expand the
convex region around the desired motion.

4.3.3 IOC-GA Performance Comparison

To compare the AR-IOC algorithm with derivative-free optimization methods in optimizing
cost weights for natural walking, we solve the IOC problems for all ten participants using
the GA implementation in MATLAB R2021a and compare the performance in Table 4.4.
The bounds for weight sampling are set to [0, 4]. A population with a size of 40 is generated
with random initial weights uniformly sampled within the weight bounds. The fitness
function for the GA explicitly minimizes the sum of tracking errors for hip angle, knee
angle, ankle angle, GRFx and GRFy. The converged weights from GA are generally
larger than the ones from AR-IOC except for ω1 (AR-IOC exhibits significantly larger ω1

for subjects 6, 7, and 8). When excluding these three subjects, the Pearson correlation
between the obtained weight vectors is 0.930 ± 0.058 (0.731 ± 0.329 when including all
subjects). The high Pearson correlation coefficients for seven subjects indicate that the
ratio between the four cost weights contributes more to the final converged gait than the
weight magnitudes. The small differences in joint angle errors and Pearson correlations
between the AR-IOC and GA for subjects 6, 7, 8 suggest that our cost function formulation
may have redundancy which allows similar converged gait with different cost weights.
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Table 4.4: Comparison between AR-IOC and GA

AR-IOC

(mean±SD)

GA

(mean±SD)

ω1 0.317± 0.392 0.076± 0.068

ω2 0.605± 0.325 1.200± 0.918

ω3 1.175± 0.460 2.142± 0.893

ω4 0.337± 0.175 0.707± 0.290

ehip[rad] 0.041± 0.007 0.042± 0.020

eknee[rad] 0.122± 0.017 0.114± 0.010

eankle[rad] 0.054± 0.009 0.056± 0.010
eGRFx

[weight ratio] 0.020± 0.004 0.018± 0.010

eGRFy

[weight ratio] 0.064± 0.013 0.064± 0.010

rhip 0.992± 0.004 0.993± 0.002

rknee 0.917± 0.024 0.938± 0.011

rankle 0.843± 0.077 0.815± 0.070

rGRFx 0.957± 0.024 0.965± 0.021

rGRFy 0.990± 0.003 0.991± 0.003

# of DC eval. 385± 157 3124± 941

computing time [hr] 10± 4 69± 21

Despite the differences in weights, both methods produce gait patterns similar to the
reference trajectories with no statistical differences for most errors and correlation measures
between the AR-IOC and GA (p > 0.05 using the Wilcoxon Signed Rank test) except rknee
(GA outperforms AR-IOC with p = 0.006) and rankle (AR-IOC outperforms GA with
p = 0.012). Although eGRFx and rGRFx showed statistical differences (p = 0.001 for both
cases), such differences can be neglected as the mean difference is small (i.e., less than 1%).
The subtle differences in converged gait between GA and the AR-IOC can be caused by
their different ways of gait evaluation as GA considers joint angle and GRF errors directly,
whereas the AR-IOC considers the cost values which is the abstraction of the original
gait. The AR-IOC only requires about 12% of the internal DC evaluations and 14% of
the computing time compared to the GA. Besides the computational improvement, the

44



proposed algorithm, unlike GA, has no requirement on the initial bounds for weight vector
sampling.

4.3.4 IOC on Walking data with Prescribed Speed

The experimental data used in section 4.3.2 lacks variation in walking speed and stride
length which makes it not an ideal choice for analyzing the correlation between the walking
tasks and the cost weights. To address this issue, We first collected a dataset of natural
walking at different speeds and stride lengths. During the experiment, body kinematics,
GRF, and EMG data are collected synchronously using the Vicon Vero motion capture
system (total of eight cameras sampled at 100Hz), Bertec split belt instrumented treadmill
(sampled at 1000Hz), and Delsys EMG sensor system (sampled at 2000Hz), respectively.
Fig. 4.8 shows an example of the marker and EMG sensor placement on the human body.
The marker placement is modified based on the Plugin-gait lower limb convention (Vicon,
UK) with sixteen lower-limb markers. Four pelvis markers are placed over the anterior
and posterior superior iliac spine. Four markers are placed over the thigh and shank. Two
knee markers are placed on the lateral epicondyle. Two ankle markers are placed on the
lateral malleolus. Four foot markers are placed on the calcaneous and the second MH.
Two additional shoulder markers on top of the Acromio-clavicular joint are included for
torso orientation tracking. This is to address the issues from the previous experiment in
section 4.3.2 that using only lower-limb markers causes inaccuracy in torso orientation
estimation. Fourteen EMG sensors are placed on major lower-limb muscles for sagittal
plane motion (i.e., GM, RF, Vastus Lateralis (VAl), TA, SOL, and Gastrocnemius Medialis
(GASm)) to record muscle activities. The exact sensor locations and orientations follow the
conventions explained in the Surface Electromyography for the Non-Invasive Assessment
of Muscles (SENIAM) project [37].
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Figure 4.8: Examples illustrating the sensor and marker placement for natural walking data
collection; the left and the middle images show EMG sensor (circled in red) and marker
(circled in blue) placement on the human body; the right image shows a participant walking
on the instrumented treadmill.

The experiment comprises of two phases: the calibration phase and the data collection
phase. During the calibration phase, the participant is instructed to stand on the treadmill
at an upright pose. The marker and GRF data is collected to provide a reference of the
participant’s body geometries and weight. A squat-to-toe-standing motion is performed
to set the reference for maximum muscle contraction. During the data collection phase,
each participant is instructed to walk on the treadmill at eight different configurations
that cover four different walking speeds and two different stride lengths (summarized in
Table 4.5). The walking speed is represented in the scaled form (v = v̂×

√
llegg) to account

for different body geometries [39], where v, v̂ are the actual and scaled speed, respectively,
lleg is the leg length, and g is 9.81m/s2. The trials with slower speeds are performed first to
avoid sweat accumulation (often under the EMG sensor during high-speed walking) which
can influence the accuracy of the EMG measurement. The normal stride length is self-
selected by the participants at their most comfortable gait, whereas the longer stride length
requires the participants to actively enlarge the steps. The amount of the step increases
relative to the normal steps is not controlled due to its practical challenges during the
experiments. The first trial has four minutes of acclimatization period (i.e., the period
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where the subject is walking, but the collected data is ignored) for proper adaptation
to the treadmill walking according to [60]. The later trials reduce the acclimatization is
reduced to one minute to reduce the overall experimental time to avoid muscle fatigue. For
each trial, two minutes of walking data are used for processing. Between each trial, half a
minute break is given for the participants to rest as well as for the experimenter to update
the equipment configurations. The participant’s gender, height, leg length, mass, and four
actual walking speeds are summarized in Table 4.6.

Table 4.5: Experimental setup during the data collection phase

Trial
scaled
speed

stride
length

acclimatization
time (min)

walking
time (min)

rest
time (min)

1 0.2 normal 4 2 0.5

2 0.2 longer 1 2 0.5

3 0.3 normal 1 2 0.5

4 0.3 longer 1 2 0.5

5 0.4 normal 1 2 0.5

6 0.4 longer 1 2 0.5

7 0.5 normal 1 2 0.5

8 0.5 longer 1 2 0.5

Table 4.6: Subject information and walking speeds for natural gait data collection

subject gender Height (m) Mass (kg) Leg length (m) speed (m/s)

1 male 1.80 65.73 0.97 [0.62, 0.93, 1.23, 1.53]

2 female 1.69 65.51 0.89 [0.59, 0.88, 1.18, 1.47]

3 male 1.79 106.95 0.93 [0.60, 0.91, 1.21, 1.51]

4 male 1.83 87.80 0.94 [0.61, 0.92, 1.23, 1.54]

5 female 1.61 58.83 0.84 [0.57, 0.86, 1.15, 1.44]
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Figure 4.9: The pipeline of natural walking data analysis from data preprocessing to IOC.
The raw EMG, marker, and GRF data were sampled at 2000Hz, 100Hz, and 1000Hz
respectively. The interpolated gait data is discretized to 100 points for one gait cycle.

The collected marker and GRF data require pre-processing before being used in the
IOC analysis. The pipeline for data analysis is summarized and shown in the top portion of
the Fig. 4.9. First, Savitzky-Golay filters are used on the marker and GRF data to reduce
noise. Then, individual gait data is split into gait cycles by identifying heel strikes using
the smoothed vertical GRF data with the threshold of 50 N. Then, the individual gait
trajectories are interpolated to a fixed length. Finally, the interpolated data are averaged
and formatted to be used in the OpenSim environment.

To solve the IOC problem, the subject-specific musculoskeletal models are constructed.
The baseline musculoskeletal model is mostly identical to the one used in section 4.1 but
with one additional lumbar joint which allows rotation between the torso and the pelvis.
An ideal torque actuator with 200Nm of maximum torque is added at the lumbar joint
(similar to the OpenSim sample model formulation) to simulate the actuation from the
upper body. Same body scaling procedures are performed as explained in section 4.1 to
ensure accurate estimation of the participant’s body geometries and muscle strengths. To
further improve the generalization of the cost function (i.e., the torso orientation cost
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in (4.1) is sensitive to the marker errors from the experimental data), the torso orientation
penalty in (4.1) is replaced with the torso effort penalty as shown in (4.13). The torso
torque is scaled to its dimensionless form using (4.2).

Jinnermod
=

1

d

∫ tf

0

(ωTC)dt

=
1

d

∫ tf

0

[
10

∑
i

(
u3
i

n

)
+ 10−2

∑
j

τ̂ 2j

+ ωtorsoef × 1010(τ̂torso)
2

+ ωCoM × (âCoM)2

+ ωslide × 102

[(
F̂ y
lf v̂

fx
lf

)2

+
(
F̂ y
rf v̂

fx
rf

)2
]

+ ωstability × 10(p̂CoMx − p̂midBoS)2

]
dt, (4.13)

After the modification to the cost function, a total of 40 IOC problems (i.e., four speeds
and two stride length conditions for five subjects) are solved using the AR-IOC. The values
of the final cost weights under different walking speed and stride length conditions are
summarized in Fig. 4.10. Several observations can be made from the normal walking cost
weights. First, both the CoM acceleration weights and the stability weights show upward
trends with respect to the walking speed. On the other hand, the foot sliding weights
reduce when the walking speed increases. The torso effort weights show no significant
change with respect to the walking speed. For walking with longer strides, the cost weight
trends show similarities to the ones from normal walking, but with a larger spread in weight
values which may be potentially due to the uncontrolled amount of stride length increase
during the experiments. The Pearson correlation between the final weight values for all
participants (i.e., ωCoM , ωslide, ωtorsoef , and ωstability) and the walking task parameters (i.e.,
scaled walking speed and stride time) are summarized in Table 4.7 for normal stride lengths
and Table 4.8 for longer stride lengths.
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Figure 4.10: Comparison between cost weights and scaled walking speed for both normal
and longer stride lengths.

Table 4.7: Pearson correlation coefficients between scaled walking parameters and cost
weights for five subjects walking with normal stride lengths.

v̂ t̂s ωCoM ωslide ωtorsoef ωstability

v̂ 1 -0.90 0.57 -0.75 -0.03 0.53

t̂s -0.90 1 -0.44 0.75 0.046 -0.41
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Table 4.8: Pearson correlation coefficients between scaled walking parameters and cost
weights for five subjects walking with longer stride lengths.

v̂ t̂s ωCoM ωslide ωtorsoef ωstability

v̂ 1 -0.94 -0.04 -0.58 0.28 0.33

t̂s -0.94 1 0.01 0.59 -0.35 -0.29

For both normal and longer stride lengths, the torso effort weight ωtorsoef shows a rel-
atively small correlation to the walking speed and stride time. As the muscle excitation
cost term is fixed in (4.13), it indicates that there is no significant shift in effort mini-
mization between the lower and the upper bodies. The foot sliding weight ωslide shows a
large negative correlation with respect to the scaled velocity for both normal and longer
stride lengths. This behaviour aligns with the experimental observation that participants’
feet slided against the treadmill during swing more often at higher walking speeds. As the
walking speed increases, larger steps are required which effectively reduces the height of the
CoM during walking. To maintain ground clearance during foot swing, more knee flexion is
required which is against the muscle excitation cost term. As a result, participants reduce
the foot sliding weight and tolerate more foot sliding during the swing phase. For normal
walking, both the CoM acceleration weight ωCoM and the stability weight ωstability have
positive correlations with respect to the scaled walking speed. As the muscle excitation
cost term is fixed in 4.13, increases in other weight (i.e., ωCoM and ωstability) indicate an
equivalent reduction in the weight of muscle excitation. This aligns with the intuition as
more energy is required for higher-speed walking, and consequently a reduction in weights
for the energy-related terms (i.e., the muscle excitation term and the torso effort term).
Different from normal walking, the CoM acceleration weight ωCoM for longer stride lengths
shows no correlation to the walking speed. This is evident from the top-left plot in Fig. 4.10
as the weights reduce at the scaled speed of 0.5. When participants walk with increased
stride lengths as instructed, more push-off force is required (consequently increase the CoM
acceleration cost) especially at higher walking speed to maintain the walking motion. To
tolerate this, the weight of the CoM is reduced at high walking speed. CoM acceleration
weights at low speeds (i.e., 0.2 and 0.3) also include some large values. We observed that
during the experiment, participants’ longer-stride walking styles vary significantly at low
speeds with some walking very carefully and some being more relaxed. Such differences
in walking styles may contribute to the large difference of CoM acceleration cost at low
walking speed.

51



Chapter 5

From Simulation to Exoskeleton
Control

In this chapter, we explore the possibilities of using the AR-IOC developed in Chapter 4
to assist exoskeleton controller design. We first construct a realistic exoskeleton model
and attach it to the musculoskeletal model (section 5.1). Then, we use DC along with
the optimal human cost function and the exoskeleton cost to obtain physics-informed op-
timal reference trajectories for the human-exoskeleton system (section 5.2). Last, we use
a spatial-temporal tracking controller with the obtained optimal reference trajectories on
one participant to evaluate the exoskeleton performance (section 5.3 and 5.4).

5.1 Human-exoskeleton Modeling

The human-exoskeleton model includes a musculoskeletal model and an exoskeleton model
which is shown in Fig. 5.1. The musculoskeletal model is customized based on a baseline
OpenSim model described in section 4.3.4 which allows sagittal-plane motion. The model
mass, body geometries, and muscle properties are scaled (methods also described in sec-
tion 4.1 ) to match a healthy male subject with a height of 1.80m, mass of 65.2kg, and age
of 25.
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Figure 5.1: The 12-DoF 18-muscle msculoskeletal model is combined with an exoskeleton
system that has 4 powered motors.

The exoskeleton is modelled based on the Indego Explorer exoskeleton (Parker Han-
nifin, USA). It contains five segments with powered motors at hip and knee joints. These
segments are connected to the pelvis, thigh, and shank of the musculoskeletal model using
fixed joints. Pin joint constraints are not included between the exoskeleton segments to
avoid over constraints of the human-exoskeleton system. The joint friction is modelled as
a combination of viscous damping and a constant kinetic friction term. The exoskeleton
segments are assumed to be solid bodies where their inertial properties are identified to-
gether with the frictional properties of the joints by exciting the exoskeleton using chirp
torque. As the effect of inertia is attributed to both the segment and the motor during
motion, the identification results in larger segment inertia to include the motor effect. This
simplification allows easier implementation of the exoskeleton systems in OpenSim. The
motor actuation is modelled as ideal torque actuators with 200Nm of maximum torque
between exoskeleton segments. As the exoskeleton does not have powered ankle joints, we
add two passive joint actuators to simulate the constraints imposed by the exoskeleton’s
foot support. We also experimented with a more realistic version of the exoskeleton model
where the interaction between the exoskeleton and the musculoskeletal model is formulated
as bushing forces at all contact locations. This better represents the compliance due to soft
body tissues. Although we were able to generate animation by running model forward dy-
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namics, we encountered challenges during the optimization stages (e.g., optimization time
increased from 5 minutes to 3 hours) due to significantly more complex dynamic system
description. In addition, obtaining realistic impedance for the bushing forces is challenging.
Thus, we decide to use the former formulation instead.

5.2 Gait Optimization

In this work, we formulated the gait optimization problem as a DC problem which is solved
using OpenSim Moco [16]. The objective function for the direct collocation problem is
modified based on (4.13):

J =
1

d
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[
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α

( τα
200

)2
]
dt. (5.1)

The first six terms of the objective function are adopted from (4.13). The first term
penalizes the cubed muscle excitation. The second term penalizes the sum of all passive
ligament torques. The third term penalizes the torso actuation. The fourth term penalizes
the acceleration at the CoM. The fifth term penalizes the foot sliding behaviour. The sixth
term penalizes deviation of the CoM position away from the middle point of the BoS. The
last term is added for the exoskeleton which penalizes the sum of squared motor torques
scaled by 200 (scaling the maximum torque to 1). This captures the energy consumption of
the exoskeleton and relates to the interaction force between the human and the exoskeleton.
The scaling is applied to the torque values so that the exoskeleton control signal has a
relatively small magnitude, which we found to be beneficial for the numerical optimization
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of the DC problem. Finally, the integral of the cost function is divided by the total forward
distance d measured at the CoM.

The weight values [ωtorsoef , ωCoM , ωslide, ωstability] are tuned to accurately match the
simulated gait to the reference gait collected from the experiment. We first obtain the
natural walking data without exoskeleton from the participant and optimized these weights
using the AR-IOC described in Alg. 2. We assume that the CNS cost function structure for
walking does not have significant changes after wearing the exoskeleton. In reality, the CNS
cost function adapts in interacting with the exoskeleton and may vary based on how long the
subject interacts with the exoskeleton, and how the exoskeleton controller is implemented.
if the exoskeleton controller is adaptive, co-adaptation between the user and the exoskeleton
can also occur which is challenging to model in simulation. To simplify the problem, we
assume that the human has a static cost function in our study. Besides the objective
function, additional constraints (i.e., symmetry and coordinate ranges) are applied to the
optimization program similar to section 4.3.2. The walking speed is constrained to the
desired speed while the trajectory final time allows modification to achieve the lowest cost
of transport. Last, the trajectories are discretized to 50 nodes during optimization.

The optimal joint angle and feedforward torque trajectories are obtained by solving
DC problems for the human-exoskeleton system. Considering that humans generally walk
slowly when wearing the exoskeleton, we constrained the DC problem to 0.2 scaled speed
(i.e., 0.59m/s for the participant). ωe in (5.1) is set to be 0.1 so that the assistive torques
from the exoskeleton have roughly the same magnitude as the natural human torque during
walking (obtained from DC as well). To compare the change in the optimal trajectories for
the human-exoskeleton system, we obtained the DC solutions for three cases: natural walk-
ing without the exoskeleton, walking with the passive exoskeleton, and walking with the
powered exoskeleton. The obtained joint angle and the GRF trajectories are summarized
in Fig. 5.2.
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Figure 5.2: Comparison of the joint angle (hip, knee, and ankle) and GRFs (not normalized,
horizontal as x, and vertical as y) trajectories between natural walking without exoskeleton
(blue), walking with passive or unpowered exoskeleton (orange), and walking with active
or powered exoskeleton (green).

The obtained joint angle and GRF trajectories for the human-exoskeleton system show
significant differences from the natural walking trajectories. First, the knees do not flex
during the stance phase (i.e., 0% to 60% of the gait cycle). This is caused by the user’s
compensatory strategy in response to the additional weight from the exoskeleton (can be
seen from the vertical GRF plot in Fig. 5.2) as flexing knees during the stance face signif-
icantly increases the muscle excitation cost. Second, the ankle angle showed a reduction
in range of motion due to the passive ankle constraints from the exoskeleton formulation.
Consequently, the hip angles exhibit early hip extension to account for the ankle’s reduc-
tion in mobility. On the other hand, the joint angle and GRF trajectories between the
passive and the active exoskeleton conditions do not differ significantly except the hip an-
gle having a larger range of motion and the horizontal GRF having more oscillation in the
active case. However, there is a significant reduction in large muscle activation from the
simulation as shown in Fig. 5.3. In addition, the change in the muscle activation patterns
between the natural and passive/active case is likely due to the change in gait patterns as
shown in Fig. 5.2.
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Figure 5.3: Comparison of simulated muscle activation between natural walking without
exoskeleton (blue), walking with passive or unpowered exoskeleton (orange), and walking
with active or powered exoskeleton (green).

Fig. 5.4 also compares the hip and knee joint torque trajectories between natural walk-
ing without the exoskeleton, and the optimized feedforward assistive torque from the ex-
oskeleton. Due to the different dynamics of the human-exoskeleton system from the hu-
mans, the obtained assistive joint torque differs from the human torque during walking.
This indicates the disadvantage of using human torque as the feedforward torque during
exoskeleton assistance.
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Figure 5.4: Comparison between the simulated human joint torque during natural walking
without the exoskeleton (blue), and the simulated exoskeleton torque (exluding the human
torque) during assistive walking with the exoskeleton (orange).

5.3 Experimental Setup

The goal of the exoskeleton control experiment is to evaluate the performance of exoskele-
ton assistance using different reference trajectories with a simple spatial-temporal tracking
controller. The simple spatial-temporal tracking controller consists of two components:
feedback control and feedforward control. The feedback component consists of four indi-
vidual proportional-derivative (PD) controllers at hip and knee joints that minimize the
tracking errors between the reference joint angles and the actual angles measured from the
exoskeleton. The proportional gain kp and the derivative gain kd are tuned manually for
the user comfort (kp = 3 and kd = 0.25 at hip, and kp = 0.9 and kd = 0.08 at knee). The
feedforward component applies the predefined open-loop torque profile directly. Besides
kp and kd for the feedback control, two scaling factors kfb, kff are applied to the feedback
and feedforward components respectively. These two scaling factors control the overall
assistance levels which are also tuned based on the user comfort (0.2 and 0.3 for kfb and
kff respectively for all cases). Due to potential different reference angles between the ex-
oskeleton and the simulation, and the compliance between the exoskeleton and the human
body, the amplitude and the offset of the reference trajectories are also tuned by trial and
error and the user feedback during the experiments to ensure comfort and proper level of
assistance.

The experimental setup is summarized in Table 5.1 including one trial (Trial 1) with ex-
oskeleton powered off and four trials (Trial 2-5) with exoskeleton powered on. Among trial
2-5, two sets of reference trajectories and two controllers are tested. First, The reference
trajectories include the optimized gait from solving the DC problem using the exoskeleton-
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human system (i.e., green trajectories in Fig. 5.2 and orange trajectories in Fig. 5.4), and
the natural walking gait from solving the DC problem using only the musculoskeletal model
(i.e., the blue trajectories in Fig. 5.2 and Fig. 5.4). Two controllers include only feedback
control and a combination of feedback and feedforward control. For each trial, the par-
ticipant is instructed to walk for 4 minutes but only the data from the last 2-min period
is used for analysis (the first 2-min walking is for proper acclimatization to the walking
condition). The trial information is not disclosed to the participant during the experiment.

Table 5.1: Different trials for the exoskeleton control experiment for comparing the perfor-
mance of using different reference trajectories and control schemes.

Trials
Exoskeleton

power
controller Reference Time [min]

Trial 1 OFF N/A N/A 4

Trial 2 ON Feedback Human + Exoskeleton 4

Trial 3 ON Feedback + feedforward Human + Exoskeleton 4

Trial 4 ON Feedback Human 4

Trial 5 ON Feedback + feedforward Human 4

The performance of the exoskeleton assistance is evaluated based on the reduction of
muscle activities which requires measurement of muscle EMG signals. Fig. 5.5 shows the
overall experimental setup with the EMG sensor placement. The amount of muscle activity
is calculated by integrating the rectified EMG signals. The muscle activity ratio (shown
in (5.2)) is then computed which compares the amount of muscle activity from Trial 2-5
to the baseline from Trial 1.

muscle activity ratio =

∫
|EMGtrial|dt∫
|EMGbaseline|dt

(5.2)
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Figure 5.5: Experimental setup of the exoskeleton control experiments. The subject is
instructed to wear a powered exoskeleton with actuated hip and knee joints. Eight EMG
sensors are placed at RF, BF, TA, and GASl (circled in blue) so that the sensors do not
interfere with the exoskeleton. During the experiment, the EMG, GRF, and exoskeleton
data (kinematic and torque signals) are recorded.

5.4 Results and Discussion

The experiment was performed with the same participant that we used to model the
musculoskeletal model. To visualize the change in muscle activities, the average EMG
signals for all five trials over one gait cycles are provided in Fig. 5.6. The individual
gait cycles were sectioned based on the GRF data recorded from the treadmill with a 50-
N threshold on the filtered vertical GRF for heel strike detection. The RF activities in
Fig. 5.6 showed good peak alignment with the two close-by knee extensors VA and RF in
Fig. 5.3. The Biceps Femoris (BF) activities in Fig. 5.6 showed good peak alignment with
two close-by knee flexors HAM and BFsh in Fig. 5.3. TA and Gastrocnemius Lateralis
(GASl) activities also showed close match to the simulated muscle activation profiles at
TA and GAS in Fig. 5.3. Comparing to the passive exoskeleton walking (Trial 1), muscle
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activities for RF, TA, and GASl showed significant reduction for all assistive trials (Trial
2-5), whereas BF showed no reduction in activities when exoskeleton assistance is applied.
Table 5.2 quantifies the change in muscle activities with respect to the reference trial (Trial
1) using (5.2). Comparing Trial 3 to Trial 2, the optimized feedforward torque profile from
the exoskeleton-human system reduced the thigh muscle activities (i.e., RF and BF) while
maintaining the shank muscle activities at the similar levels. This indicates the potential
of using feedforward control to improve the exoskeleton assistance. Comparing Trial 5
to Trial 4, the optimized feedforward torque profile from only the muscukosleletal model,
however, increased the muscle activities at all muscles except BF.

Figure 5.6: Average EMG signals at RF, BF, TA, and GASl over one gait cycles for 5
different trials.
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Table 5.2: muscle activity ratio of experimental trials with powered exoskeleton.

Trial 2 Trial 3 Trial 4 Trial 5

RF 0.81 0.70 0.77 0.97

BF 1.29 1.15 1.11 0.96

TA 0.28 0.27 0.31 0.40

GASl 0.67 0.69 0.69 0.71

The differences in change of muscle activities when introducing the feedforward torque
assistance between two sets of the reference trajectories can be potentially caused by the
difference in overall assistive torque profiles. Fig. 5.7 and Fig. 5.8 visualize the total torque
as well as the feedback / feedforward torque breakdown for Trial 2 to 5. The feedforward
torque profiles modified the feedback torque profiles for both reference trajectory sets.
The feedback torque modifications at the knee are similar between the two feedforward
torque profiles which increase the knee’s range of motion during stance. For hip joints,
the feedforward torque in Trial 3 added more modifications to the feedback torque around
the stance phase which may contribute to the reduction in thigh muscle activities. When
comparing the feedback and feedforward components for Trial 3 and 5, the feedback com-
ponents counteract the feedforward component during the swing phase (i.e., feedforward
and feedback torques showed opposite signs). This is undesirable as such offset indicates
the conflict between the two control components. This conflict may be caused by the
naive implementation of the time-dependent feedforward control. As feedforward control
requires an accurate match between the human gait phase and the target gait phase from
the reference trajectories, any small amount of time shift will cause incorrect assistance
to the walking motion and even cause disturbances. We noticed this during the exper-
iment when we experimented with high feedforward control with low feedback, and the
participant failed to maintain the walking motion.

For future experiments, gait phase-based or time-independent feedforward controller
[65] will be more desirable for evaluating the feedforward assistance as they provide better
assistance timing. The proposed modelling approach for the exoskeleton-human system
can also enable future research about personalized reference trajectories for impaired sub-
jects (through musculoskeletal modelling), special rehabilitation setup (e.g., walking with
external support such as weight compensation), and specific rehabilitation needs (e.g.,
optimizing gait and assistance to reducing activation of targeted muscles).
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Figure 5.7: Average assistive torque applied by the exoskeleton over one gait cycle for Trial
2 and 3. The reference trajectories are optimized for the human-exoskeleton system; The
first two plots show the total torque; the last two plots show the breakdown of the feedback
(FB) and the feedforward (FF) torque in Trial 3.

Figure 5.8: Average assistive torque applied by the exoskeleton over one gait cycle for Trial
4 and 5. The reference trajectories are optimized for the human musculoskeletal model
only; The first two plots show the total torque; the last two plots show the breakdown of
the feedback (FB) and the feedforward (FF) torque in Trial 4.
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Chapter 6

Conclusion

The main goal of this thesis is to recover the optimal cost function for natural walking,
which would improve our understanding of the criteria that the CNS uses to optimize the
gait patterns, and assist the design of controllers for assistive devices. The primary objec-
tives established for this main goal are to 1) construct a predictive simulation environment
for natural walking using musculoskeletal models, 2) formulate efficient optimization prob-
lems for solving optimal gait trajectories given cost functions, 3) develop efficient inverse
methods for cost function tuning to recreate natural walking in simulation, 4) and validate
the obtained optimal cost functions in assisting lower-limb exoskeleton controller design.

Prior to these objectives, a thorough understanding of the existing gait simulation and
analysis work using humanoids and musculoskeletal models was established which covered
two main optimization-based methods: OC and RL. These two methods suit the purpose
of developing predictive simulation environments for natural walking. However, existing
studies that used both these methods for musculoskeletal simulation lacked systematic
approaches for cost function tuning due to high complexity of the optimization problem.
DRL-based locomotion studies experienced additional challenges of generating realistic
walking motion due to a larger optimization scope than OC.

As the first attempt to address the cost function tuning problem for natural walk-
ing, a novel DRL learning method, which generates a control policy with close-to-natural
walking behaviour, was developed. The proposed neuromechanically-inspired cost function
contributes to the effective learning of the realistic gait by the DRL agent. The nature-
inspired CL scheme leads to efficient convergence to natural and bilateral symmetric gait
by adaptively tuning the cost function weights while maintaining the agent’s walking capa-
bility. With the proposed DRL approach, we identified two differences between the agent
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and experimental gait patterns, including lack of knee extension before foot strike, and toe
walking. Potential causes of such differences are also discussed.

Although DRL approaches generated closed-loop feedback policies for generating walk-
ing motion, its requirement for long computational time hinders its extension to subject-
specific cost function tuning. As the second attempt to address the cost function tuning
problem, an efficient IOC algorithm named AR-IOC is proposed. We showcased the effi-
ciency of the proposed algorithm in tuning cost functions and matching gait trajectories
using both synthetic data and experimental data. The optimized cost weights and the
corresponding optimal gait trajectories from our algorithm were also compared with the
solutions from GA. With the AR-IOC, the correlation between the walking tasks (i.e.,
walking speed and stride time) and the cost function weights were studied. We also dis-
cussed the limitation of the proposed algorithm in terms of stability of the inner-loop DC
problems and limitation of the experimental data.

With the efficient AR-IOC algorithm, we explored the potential for using predictive
simulation to generate physics-informed reference trajectories for lower-limb exoskeleton
tracking controllers. This is to address the issue of existing tracking controllers that often
neglect the personalized human cost functions and the altered dynamics due to the addition
of the exoskeleton systems. By combining the optimal human cost function obtained using
AR-IOC and the exoskeleton cost, we obtained the optimal gait trajectories different from
the natural walking trajectories. These trajectories were then tested in real exoskeleton
systems using a spatial-temporal controller and their performances in reducing muscle
activities are compared to using nominal natural walking trajectories. The limitation of
the controller design is also discussed.

With the predictive simulation environments and the efficient cost function tuning
methods, this thesis serves as a catalyst for enabling personalized rehabilitation design
based on a more accurate musculoskeletal modeling and simulation pipeline. The pre-
sented frameworks, that cover from data collection and post-processing, to simulation and
experiments, serve as a guidance and reference to future development in this field, such as
extending the musculoskeletal simulation to impaired subjects, different locomotion tasks,
different rehabilitation systems and control schemes.
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