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Abstract

The continued advancements in material development and design require understanding
the relationships between microstructure and flow behaviour. Crystal plasticity (CP) is
a high-fidelity computational method that helps unravel these relationships and assist in
the development of high-performance materials. CP can capture the material behavior
subjected to any applied loading as well as the local stress and strain partitioning and
localisation in a given microstructure. The high-fidelity of the crystal plasticity models
comes at the cost of computational demand. This research addresses the significant com-
putational demand of CP simulations and uses machine learning methods to achieve rapid
and accurate predictions of material plastic behaviour. This research project uses two dif-
ferent crystal plasticity models: the CP model under a fully constrained Taylor assumption
and the crystal plasticity finite element model. This thesis covers two different machine
learning applications to high-fidelity predictions of model behaviour.

The first application presents a machine learning- and crystal plasticity-based frame-
work to predict stress-strain behaviour and texture evolution for a wide variety of materials
within the face-centred cubic family (FCC). First, the process of the framework design is
described in detail. The proposed framework incorporates an ensemble of artificial neural
networks (ANN) and a crystal-plasticity based algorithm. Next, the dataset constituent of
crystal plasticity simulations was collected. The dataset consisting of examples of mono-
tonic deformation cases, was prepared for training using mathematical transformations, and
finally used to train ANNs used in the framework. Then, the framework was demonstrated
to predict full stress-strain and texture evolution of different FCC single crystals under uni-
axial tension, compression, simple shear, equibiaxial tension, tension- compression-tension,
compression-tension-compression, and, finally, for some arbitrary non-monotonic loading
cases. The proposed framework predicts the stress-strain response and texture evolution
with high accuracy. The results demonstrated in this research show that the proposed
machine learning- and crystal plasticity-based framework exhibits a tremendous computa-
tional advantage over the conventional crystal plasticity model. Finally, one of the most
important contributions of this work is to show the framework’s feasibility. The work
demonstrates that machine learning methods can help predict complex strain paths with-
out training machine learning models on the extremely large set of possible non-monotonic
loading scenarios. This part of the thesis presents a macro-level model that allows predic-
tions for single and polycrystals.

The second part of this research project presents a micro-level type of model and uti-
lizes convolutional neural networks (CNNs) in conjunction with the crystal plasticity finite
element method (CPFEM). The inputs to the CNN model are material hardening param-



eters (initial hardness and initial hardening modulus), a global tensile strain value, and
microstructure with varying number of grains, grain size, grain morphology and texture.
This input selection allows performing simulations for a wide range of materials, as de-
fined by microstructure and flow curves. The outputs of the CNN are the local stress and
strain values. The proposed framework involves the following stages: feature engineering,
generation of synthetic microstructures, CPFEM simulations, data extraction and prepro-
cessing, CNN design and selection, CNN training, and validation of the trained network.
The trained CNN was successfully demonstrated to predict local stress and strain evolu-
tion for the completely new dataset (test set) containing synthesised microstructures. The
test set predictions were evaluated, and the median-, highest-, and lowest-error predictions
were presented and discussed. Overall, the CNN demonstrated excellent agreement with
CPFEM simulations, thus validating its accuracy. Then, the CNN was applied to predict
the stress and strain evolution for AA5754 and AA6061 microstructures obtained using
electron backscatter diffraction. These two microstructures were entirely new for the CNN
and displayed size and grain morphology different from the synthesised microstructures.
For both microstructures, the obtained stress and strain evolution predictions demon-
strated excellent agreement with CPFEM simulations, thus confirming the flexibility of
the trained CNN model. Then, the framework was extended to predict strain localisa-
tion and was evaluated on an AA6061 microstructure. The results demonstrate a clear
computational advantage of CNN without losing accuracy.
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crystal plasticity predictions, the second row displays convolutional neural
network predictions, and the third row shows the error map, which displays
the absolute element-wise difference error between the crystal plasticity and
convolutional neural network predictions. The intensity of stress localisation
is underpredicted, as highlighted with red ellipses. Local stress relaxation
is captured well by the CNN, as well as the averaged stress response, as
demonstrated by the arrows. . . . . . . .. ..o o oL
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6.22 Runtime comparison between CPFEM and CNN. Vertical axis is displayed
using logarithmic scale to emphasize the time difference between the models. 143
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Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) is a data-driven approach and is a powerful function approxima-
tion tool. The function approximation process is called training, and it is employed on
prepared datasets. The advantage is that the ML algorithm does not need to be explic-
itly programmed for specific tasks since the training approach is similar regardless of the
application. ML methods’ extensive functionality and practicality are widely explored in
various fields of business and research, and these methods have been accruing significant
attention in the past few decades.

A growing body of literature describes the usability of ML for multitudes of tasks, in-
cluding: imagery analysis, such as medical imaging analyses |13, 14, 15] or object detection
[16, 17]; personalised medicine [18, 19]; sequence analysis, such as speech recognition [20];
fault diagnostics and anomaly detection |21, 22|; generative applications [23]; applications
for self-driving cars |24, 25|, and other applications. The ML models are highly applicable
in the fields where the explicitly implemented algorithm application is nearly impossible
but can also provide a flexible alternative to numerical methods. This work addresses the
ML applications to high-fidelity material modelling methods, which are essential to the
automotive industry for product development.

The automotive industry is one of the largest industries in the world. 74.9 million
vehicles were sold globally in 2019, and 63.8 million were sold in 2020 [26]. To produce
a vehicle, an automotive manufacturer should develop a sound design. Designing may
require a physical prototype or can be done with computer-aided engineering tools. Safety



must be kept at the forefront of the design. Crash tests on the physical models can
be employed to ensure passenger safety, but this method is costly. One crash dummy
can cost up to 1,000,000 GBP (or approximately 1,700,000 Canadian dollars), according
to research in Cranfield University, GB [27]. From a long-term perspective, it is much
cheaper to use computer aids to create a modelling tool capable of designing a safe vehicle.
However, advanced high-fidelity modelling tools are required to substitute the experimental
testing. The crystal plasticity finite element method (CPFEM) is an advanced high-fidelity
modelling tool that accurately predicts material performance, but its accuracy comes at
a high computational cost. Even for a modern, powerful supercomputer, it would be not
feasible to perform the computations required for component-scale CPFEM modelling.

Scalability is a significant problem in crystal plasticity (CP), as the description of the
deformation behaviour occurs on the microscopic level. In the Taylor-type homogenous CP
theory, the deformation behaviour is obtained for each grain (single crystal), and the aver-
aged result describes the macro deformation behaviour. The CPFEM is a full-field model
that requires even more computational resources, and for this model, the computational
time increases exponentially with the increase of elements in the FE mesh. CPFEM mod-
els are able to output the stress and strain partitionings for the input microstructures and
provide crucial information on localisation formation that is not accessible in the Taylor-
type CP models. For instance, in modelling a car’s front rail crash, the deformation of
millions of individual crystals must be considered. Such simulation is not feasible due to
computational limitations of both the Taylor-type and the CPFEM models. To make it
easier to understand the scale of the problem, figure 1.1, (a) illustrates the dimensions of
individual crystals and figure 1.1, (b), represents an example of what is used for a front
rail of a car.
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Figure 1.1: (a) Through thickness microstructure of the extruded AA6063-T6 material,
shown on the next picture [1]; (b) Extrusion profile of AA6063-T6 material [1]



Crystal plasticity models can capture the material behaviour subjected to any applied
loading and the local stress and strain partitioning and localisation in a given microstruc-
ture. The high fidelity of the crystal plasticity models comes at the cost of computa-
tional demand. The major challenge in implementing those models at the coupon- or
component-level scales comes at the high computational cost. However, while it would be
time-consuming to run specific simulations, it is feasible to collect extensive data on crystal
plasticity simulations over a period of time. Therefore, it is viable for ML models to learn
from this data, enabling rapid and high fidelity material behaviour predictions. ML models
could supersede CP models when adequately trained and help obtain accurate predictions
with lesser computational efforts. Moreover, ML methods are promising in terms of the
scalability of such computationally expensive tools as CP. This research addresses gaps in
ML applications to crystal plasticity and proposes new applications that help achieve rapid
and high fidelity material modelling.

1.2 Scope and Objectives

The automotive and aerospace industries focus on adopting lightweight materials such as
aluminium alloys to lower fuel expenditure and reduce carbon emissions. Addressing such
optimisation can be achieved by advancing high-strength alloys or further developing ex-
isting designs and processes. An essential step in new alloy development and structural
component design is to perform computer-aided engineering simulations, which generate
optimised designs exhibiting superior crashworthiness and forming behaviour. In this re-
gard, an accurate prediction of material deformation response is essential for optimising
the impact performance and formability of designed components.

The use of CP models allows the calculation of accurate material deformation behaviour.
However, it can only be used on the microscopic scale due to computational limitations.
For that reason, these models are not implemented in commercial applications. This re-
search hypothesises that machine learning algorithms can achieve rapid and high-fidelity
microstructure-based predictions of material deformation behaviour. The possibility to
scale up then emerges, and rapid high-fidelity microstructure-based material behaviour
predictions on a macroscopic scale become feasible. This research addresses the significant
computational demand of high fidelity simulations and uses machine learning methods to
achieve rapid and accurate predictions of material plastic behaviour. The selected ML
models are trained on datasets generated using crystal plasticity simulations to achieve
that goal. Crystal plasticity models are advanced high fidelity microstructure based mod-
elling tools applied for a wide range of mechanical problems. This research project uses



two different crystal plasticity models: the CP model under a fully constrained Taylor as-
sumption (macro-level model) and the crystal plasticity finite element model (micro-level
model). The main advantage of the Taylor-type homogenisation framework is the abil-
ity to solve polycrystal mechanical problems without using finite elements. Such models
provide better accuracy than phenomenological models, and their computational time is
much faster than crystal plasticity finite element applications. However, the Taylor-type
assumption of homogeneous strain within grain aggregate disregards the factors of grain
morphology and grain neighbour effects in polycrystals. Crystal plasticity finite element
method models can account for these factors. Such models draw particular attention in
research as they can capture fine deformation phenomena as orientation dependant strain
localisation.

The main objectives for this work are the following:

1. Development of a machine learning-based framework to predict stress-strain be-
haviour and texture evolution for FCC single crystals and polycrystalline materials.

2. Development of a machine learning-based framework for predicting local stress and
strain evolution for FCC polycrystalline materials.

1.3 Thesis Outline

This thesis consists of seven chapters. The current chapter is the first chapter, and it
introduced the motivation for this research and set scope and objectives.

Chapter two presents the general background knowledge related to crystal plasticity
and machine learning methods employed in this research. Crystal plasticity background
includes material aspects (crystal structure, dislocation, crystallographic slip, texture rep-
resentation and characterisation) and constitutive model. Machine learning background
reviews artificial neural networks used in this research and the training process background:
optimisation algorithms, activation functions, evaluation of neural networks, preparing and
storing data for training and evaluation.

Chapter three presents a literature review. It includes a brief review of plasticity mod-
elling, methods to accelerate computations in material science, database applications in
computational material science, review of the significance of datasets and feature engi-
neering in machine learning applications, machine learning applications in computational
material science, and machine learning application to crystal plasticity. This section also
identifies and summarises the gaps present in the literature.
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Chapter four provides an overview of the research plan to achieve the thesis objectives.

Chapter five develops a machine learning-based framework to accurately predict stress-
strain behaviour and texture evolution for complex strain paths for a wide range of face-
centred cubic materials. The proposed framework comprises an ensemble of artificial neural
networks and a crystal plasticity-update algorithm to allow accurate predictions of material
behaviour for complex strain paths. The framework was successfully implemented and
validated against the Taylor-type crystal plasticity model for monotonic and non-monotonic
strain paths for single crystal and polycrystalline aggregates.

Chapter six develops a machine learning-based framework to achieve accurate local
stress and strain evolution predictions for a wide range of face-centred cubic microstruc-
tures. The framework incorporates a single convolutional neural network trained to predict
stress and strain partitionings of an aluminium microstructure under a proportional loading
condition similar to uniaxial tension. Crystal plasticity finite element simulations for syn-
thetically generated microstructures with defined material parameters were employed as a
learning base for the convolutional neural network model. The framework was successfully
implemented and validated against the crystal plasticity finite element model for a new
set of synthetic microstructures. The flexibility of the convolutional neural network was
demonstrated by its validation for two microstructures of AA5754 and AA6061 aluminium
alloys.

Lastly, chapter seven presents the summary of the thesis, draws conclusions of the
presented studies, and presents opportunities for future work.



Chapter 2

Background

2.1 Crystal Plasticity

Crystal plasticity models are a computational tool used to predict the loading behaviour of
anisotropic crystalline materials, as well as texture evolution throughout the deformation
process at finite plastic strains. This behaviour is anisotropic due to the crystallographic
orientation dependence of deformational mechanisms. The CP methods were successful in
modelling single-phase cubic metals where the dominant mechanism of plastic deformation
was represented by crystallographic slip on specific slip systems of crystalline solids.

2.1.1 Microstructure

The CP models predict the elastic-plastic deformation and texture evolution of anisotropic
heterogeneous crystalline solid matter. Crystalline materials consist of one or, usually,
many crystals made of atoms. The arrangement of atoms into a regular, repeatable lattice
characterises crystal structure. A lattice unit cell is the smallest possible subdivision of
a crystal structure. The CPFEM often consider metals in its simulations. The crystal
structure of most of the metals is either body centred cubic (BCC), face centred cubic
(FCC), or hexagonal closest packed (HCP). For instance, aluminium has an FCC crystal
structure. In the FCC crystal structure, atoms are located at all outer corners of a unit
cell and in each centre of the cube faces.

Real crystalline solids very rarely have a perfect lattice. Usually, they contain lattice
imperfections or defects. One can describe these imperfections geometrically. This descrip-
tion would depend on the type of imperfection: whether it is at the point, line, or surface



Figure 2.1: Crystal structures of some metals (left to right): Body Centred Cubic (e.g.
Ferritic steels, Potassium, Molybden, etc.), Face Centred Cubic (e.g. Aluminum, Brass,
Copper, Nickel, etc.), Hexagonal Closed-Packed Lattice (e.g. Magnesium, Titanium, Zir-
conium, etc.) [2]

imperfection. The most common point imperfections are vacancies, interstitial atoms, and
substitutional impurity atoms. The most significant types of line and surface imperfections
are a dislocation and grain boundaries, respectively.

Plastic deformation in polycrystalline materials is associated with the movement of dis-
locations within the crystal lattice. Taylor originally described dislocations as the shearing
of different rows of atoms in the crystal lattice in the small regions and then yielding their
growth though the crystal [28]. The shear stress along the slipping direction on the slip
plane of dislocation is called the resolved shear stress (RSS) (figure 2.2). Critical resolved
shear stress (CRSS) is required to initiate crystallographic slip. CRSS provides the force
which causes dislocation motion to occur and that motion changes a material’s geometry.
There are other known mechanisms of plastic deformation in the material (twinning, grain
boundary sliding, and diffusion); however, the slip is the prime one in the process of plastic
deformation of FCC metals. Only this mechanism will be considered in the CP models
related to this research.

Mechanism of crystallographic slip is anisotropic. That indicates that the movement
of dislocations occurs along particular crystal planes in specific directions; these are called
slip planes and slip directions respectfully. By definition, the slip system describes the
set of symmetrically identical slip planes and associated family of slip directions. These
slip planes and directions are almost always of maximum atomic density and conform to
those slip systems in which dislocations are most likely to move. For an FCC metal, e.g.
Aluminum, slip occurs along < 110 > slip directions (there are three unique directions
within each plane) and in the [111] slip plane (there are four of them). Consequently, given
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Figure 2.2: Visual representation of resolved shear stress 3]

the permutations of possible the slip planes and directions, there are twelve unique slip
systems for materials with FCC crystal structure.

Assume that a unidirectional force F' is applied to single crystal cylindrical morphology
(figure 2.2). Then, for the dislocation to move in its slip system, a resolved shear stress
produced by the applied force must reach its critical value. This value is called critical
resolved shear stress and is an initial microscopic yield criterion for single crystals [29]. It
is a parameter that depends on the material.

Schmid’s law is used to find the resolved shear stress 7,:

F
T, = —— COS A\ COS ¢ (2.1)
Ao
In equation 2.1, F'is the applied force, Aq is the initial cross-sectional area, A is the
angle between the direction of slip and the applied force, and ¢ is the angle between the
normal to the slip plane and the applied force.

Deformation textures

Commonly, when metals undergo medium to large deformations, the grains tend to orient
themselves into preferred configuration 30, 4]. The resulting texture is the direct outcome
of the manufacturing process.



Textures significantly affect mechanical properties of materials, i.e. their performance
during fabrication and after, as the final products. The post deformation texture could
unveil the production history of a polycrystal. It is very desirable to predict and simulate
texture developments: many forming operations are conducted on rolled materials, and
the performing capability of these materials is very closely associated with their textures.
Being able to predict texture evolution for any applied strain path is significant for control
purposes in industrial practices.

Texture representation

Polycrystalline aggregate constituent grains are characterised by their orientations. Ori-
entation of a crystal describes the relationship between the coordinate frame of a crystal
lattice and the coordinate frame of a sample. Crystallographic texture can be represented
in multiple forms, including Euler angles, pole figures, inverse pole figures, and others [30].

Euler angles in the Z — X — Z convention can be used to present crystal orientation.
In this notation, an orientation is represented by a set of three angles (1, ®, p2), where
1 € [—180°, 180°] is the first rotation and is performed about z—axis , ® € [0°, 180°] is the
second rotation and is performed about z—axis, and ¢y € [—180°, 180°] is the third rotation
and is performed about z—axis, where (z,y, 2) is a reference base coordinate system. These
angles can also be used to describe the orientation with rotation matrices. The rotation
matrix representation depends on the Euler angles and is expressed as:

COS (01 COS g — sin ¢y sin g cos Sin 1 cos g + Cos @1 sin g cos @ sin @y sin @
a(p1, P, p9) = | —cospysin gy — sin g cos pacos P — sin @y sin s + cos 1 cos Yo cos ®  cos o sin @ (2.2)
sin g sin ® — cos 1 sin @ cos

In addition to a numerical representation of texture, the angular distribution of ori-
entations in a polycrystalline solid can be graphically represented with pole figures [31].
The schematic representation of the pole figure projection sphere is depicted in figure 2.3.
A pole figure represents a two-dimensional stereographic projection of crystallographic
directions of all crystals.

Experimental Characterisation Methods

This thesis uses AA5754 and AA6061 microstructures to validate one of the proposed
frameworks. These microstructures were obtained using the electron backscatter diffraction
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Figure 2.3: The schematic representation of pole figure projection sphere [4]

(EBSD) method. The EBSD method is a modern approach to extract crystallographic
information about the microstructure with the use of a scanning electron microscope [32].
To perform an EBSD analysis of a sample, a stationary electron beam is directed at a tilted
(at approximately 70°) sample surface, and the diffracted electrons arrange in a pattern
that is detected by a fluorescent screen. The resultant pattern characterises the examined
crystal orientation and structure. The EBSD analyses provide important microstructure
characteristics such as texture orientation, grain size and morphology, grain boundary
analysis, and phases of the analysed sample.

2.1.2 Crystal Plasticity Formulation

Schmid’s law serves as the basis for activation of plastic deformation within the current
crystal plasticity formulation. The law displays a relationship between the applied stress
and the RSS on a slip system. It serves as a yield criterion for a for crystals within
a polycrystalline solid. When RSS reaches its critical value, a crystal undergoes plastic
deformation.

The total deformation is expressed as a function of two physics-based phenomena. The
phenomena are the crystallographic slip due to motion of dislocations on the active slip
systems, and the elastic distortion of the lattice. The deformation gradient F is:

F = F*FP (2.3)

10



In equation 2.3, F* denotes elastic stretching and rigid body rotations of crystal lattice.
FP denotes the deformation due to plastic shearing on crystallographic slip system. Slip
systems are denoted by the pair (s, m) where s is a unit vector co-directed with the direction
of slip, and m is a unit vector co-directed with a normal direction to a slip plane.

The rate of change of FP, FP, is associated with the slip rate 4@ of the o’ slip system
according to:

P pr-1 — Zf'y(a)s(a)m(a) (2.4)

In equation 2.4, the summation is over all activated slip systems. Accordingly, the
vectors s and m® are the (s, m) vectors related to the o' slip system. The formulas of
these vectors are defined as follows:

s @ = pr.gl@) @) = @) prt (2.5)
For each deformation stage, the velocity gradient is defined by:

L=F-F'=D+W (2.6)

In equation 2.6, the tensor D is symmetric and defines the strain-rate. The tensor W
is skew-symmetric and defines the spin.

In its turn, the strain-rate tensor, D, is decomposed into elastic, D*, and plastic, DP
strain-rates. Then, equivalent decomposition is performed for spin W:

D=D"+DP, W=W*+WP (2.7)

Then, plastic parts of strain-rate and spin could be defined as:
DP — Z D@54 WP = Zw(a);y(a) (2.8)
For each slip system «, strain rate is defined as:

D(a) — (S*(a) ® m*(a) + m*(a) ® S*(a)) (29)

1
2
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For each slip system «, spin is defined as:

W(a) _ (S*(a) ® m*(oz) o m*(a) ® S*(O‘)) (210)

The elastic strain rate of the lattice and the Jaumann rate of Kirchoff stress are related
as:

v
T'=7 — W*'r +7W* = LD* (2.11)

v
In equation 2.11, 7* is the Jaumann rate of Kirchoff stress. L is a tensor of the elastic
moduli.

Equation 2.11 can be also defined in terms of the Jaumann rate of Cauchy stress 5 by
defining a tensor R(®):

R@ = £D@ L WWgs — g W@ (2.12)

Using equations 2.7 to 2.12, the constitutive equation can be presented in the form of

v
the Jaumann rate of Cauchy stress, o:

o=LD—¢"—otrD (2.13)

In equation 2.13, ¢° is a term of a visco-plastic stress. It is defined as:

60 = R4 (2.14)

a

The term 7(® is the RSS on the slip system a. It is related to the Cauchy stress, o, as
follows:

+@) _pl@ . 4 (2.15)

In the rate-dependent formulation, the slip rate of the slip system a, (%, is dependant
on the corresponding RSS, 7():

12
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4@ s f@) (g(a)) (2.16)

In equation 2.16, the constant ﬁ(()a) is the reference strain rate on the slip system «a.

1@ is a general function that describes the relation of the slip strain-rate to RSS. Defining
@ as a power-law expression, equation 2.16 becomes:
1/m

@)

g(a)

(a) (a)

A = Ay sgn T (2.17)

In equation 2.17, m is the parameter of strain-rate sensitivity. The function ¢(® defines
the strain-hardening of the slip system «. A single crystal work hardening is characterised
by the evolution of strain hardening according to the incremental relationship:

9= " hagy? (2.18)
B

In equation 2.18, h,p is a tensor that determines the hardening rate on slip system o
due to shearing on slip system . Every element of h,g is dependant on the history of
deformation. The hardening moduli are chosen to incorporate the effects of slips on all the
systems on the active hardening of each system, h,,, and in the latent hardening of each
system, h.p (a # ). The tensor h,s can be represented as:

hop = qaghs (n0 sum on f3) (2.19)

In equation 2.19, hg is a single crystal hardening, and the tensor ¢, represents the
latent hardening behaviour of a crystalline solid. The form of this tensor is the following:

A qA qA A
| gA A gA ¢A
gA qA gA A

In equation 2.20, the term ¢ is the ratio of latent hardening rate, and As are the 3 x 3
matrices fully populated with ones.
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2.1.3 General Introduction to Polycrystal Deformation Models

A polycrystal deformation model should exhibit beneficial advantages in addition to the
general capabilities of phenomenological models. It should be able to model phenomena
that are out-of-reach of macroscale phenomenological theories. Crystallographic textures
prediction is an example of such phenomena. Generally, a single crystal deformation model
could be used to derive a model capable of that. Then, the following question arises:
how can one define the relationships between microstructural mechanisms of deformation
operating on the single crystal level and overall polycrystal behaviour?

To relate the deformation of a polycrystalline aggregate to that of constituent individ-
ual grain, something that must be known or assumed about the stresses and strains of
individual crystals. Usually, a polycrystal’s stress and strain distribution assumptions are
made. Polycrystal response is identified with average (weighted or not) of the response
of its constituent grains. Multiple models have been proposed, and they provided signifi-
cant insight into texture development and hardening response. Some of these models are
described below. All of them are based on the concept of plastic deformation due to slip
in FCC metals’ single crystals. Other deformation mechanisms are not considered in the
scope of this work.

Sach’s Model

Sach’s model is one of the earliest in the history of modelling polycrystal deformation. An
assumption of this model is that each constituent crystal is subjected to the same stress,
which is the same as macroscopic stress. Sach considers the grains as an array of free single
crystals that deform independently. Texture and deformation are deducted from a stress
state. In 1941 Kochendorfer [33] updated the model with the assumption of each grain
being subjected to the same stretch.

Due to the assumption that each constituent crystal is subjected to the same stress as a
macroscopic, the stresses arising from constraints necessary to satisfy an imposed strain are
neglected. This results in a violation of strain continuity across a grain boundary [34, 35].
Numerical deviation from an experiment is existent in this model [36]. Notably, this theory
was not accurate in predicting deformation textures.

Taylor’s Model

Taylor’s assumption was different from Sach’s: he proposed that all the grains are sub-
jected to the same strain as a polycrystal [37]. He deduced that from his experimental
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observations. An examination of a cross-section micrograph of a drawn wire showed that
all the grains were elongated in the direction of extension. Additionally, they were con-
tracted in the two perpendicular directions. Consequently, the conclusion of a strain field
being homogeneous was drawn. This assumption linked the behaviour of a deformation
of a polycrystalline solid and its single constituent crystals. Moreover, this assumption
has a benefit of satisfying the condition of continuity of the strain rate across the grain
boundaries, which implies that no voids are created. Since the strain on all the constituent
crystals is the same as the macro strain of the polycrystal, it was evident that stress state
would not be continuous, and therefore it varies from grain to grain abruptly. As it was
pointed out by Bishop and Hill [34, 35| each grain satisfies the relation:

o, dvy
P M (2.21)
Where o0, and de are the axial stress in the grain and the macroscopic aggregate strain
increment, respectively. 7 and dv are the shear strength and slip-system shear strain
increment, respectively. M is an orientation factor, depending only on the lattice geometry
and the relationship between the loading axis and the slip system of a crystal. The uniaxial
tension of aluminium polycrystals was studied by Taylor in 1923 [38]. Taylor assumed that
each grain is at the same stage of strain hardening; he predicted that the yield stress of
a random aggregate would be 3.06 7,, where 7, is the yield strength in shear of a single
grain. A very similar result was obtained when Taylor tested this theory by comparing the
tensile stress-strain relation (0,4, "¢) measured on the aggregate with that deducted from
the shear stress-strain (7 — ) curve of a single crystal where

Oaggre — MT, (222)

€= —=T, 2.23
L (223)

where M represents the Taylor factor, and its value is dependent on the texture of
polycrystalline material. For isotropic polycrystalline aggregates, its value is approximately
3.06. Two main points of the Taylor theory with regards to the deformation relation of
single crystals and polycrystals can be summarized as follows:

1. A single crystal’s and macroscopic deformations are the same; however, there is no
morphological consideration made.
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2. The macroscopic stress of a polycrystal is the average of the stress states of its
constituent single crystals.

These concepts are adopted for analysis and modelling in the thesis.

2.1.4 Finite Element implementation

For the CNN-based framework, the crystal plasticity model was incorporated into a two-
dimensional FE framework [39, 40, 41|. The Lagrangian formulation of the field equations
was used in the basis of the FE algorithm with the usage of convected coordinates [40]. Let
0; be the base vectors in the undeformed configuration of the material corresponding to the
convected coordinates y;. Let the initial volume of the undeformed configuration of body be
V', and the surface area be S. Next, the deformed base vectors will be ©; = F'x;, where F
is a deformation gradient. Then, the equilibrium equations for quasistatic deformations can
be expressed using the virtual work condition for arbitrary variations of the displacement
components u; and corresponding variations of the components 7;; of the Lagrangian strain
tensor:

\% S

where 79 are the component of the undeformed basis of the second Piola-Kirchhoff,
and and T" are the corresponding traction vectors. Then, equation 2.24 can be expanded
with Taylor series to determine equations for the field quantity rates:

|4 S |4 S

This step is required as the problem is considered to be linear-incremental, and the
current state of equilibrium must be known for any time ¢. The last term of the right hand
side of equation 2.25 allows correction of equilibrium correction to prevent any drift away
from the true equilibrium path during the incremental procedure [40].

The elements of the FE mesh used in this research were akin to those presented by
[42]. These elements have quadrilateral shape. Each element contains four linear veloc-
ity triangular sub-element in order to employ a higher order integration scheme. The
CPFEM model is incorporated using a parallel computing [39, 40| algorithm to accelerate
computational procedure for data collection.
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2.2 Machine Learning Background

Al is a fast-developing and vast field. Its history finds its beginning in myths and stories
of an ancient world, e.g. giant automation of bronze, Talos, who protected Crete from its
enemies, stories of which dated to around 400 BCE. However, the field of Al as a research

field was established long after, in summer of 1956 at a campus’ workshop of Dartmouth
College [43].

Machine learning is a sub-field of Al which aims to perform a task of interest without
using explicit instruction and using a set of given data prepared by a human. The end prod-
uct of training a model is a computational scheme (or a complex multivariable function),
but not an explicitly programmed algorithm. In other words, ML is an application that
provides systems with the ability to learn and improve automatically from finding patterns
and inference from data, without being explicitly programmed. Deep learning is a sub-filed
of ML, where the word “deep” refers to a number of successive layers in the model. The
essential parts of a successful application include a proper set of data accompanied by a
appropriate feature design, selection of a machine learning method, optimal parameters
and hyperparameters tuning, choice of the right training algorithm and evaluation scheme.

2.2.1 Machine Learning: Supervised and Unsupervised Learning

Machine Learning methods can be generally split into two classes: supervised learning and
unsupervised learning. Supervised learning is a task of fitting (or “learning”) a function
that maps an “input” (features, or some parameters of interest) to an “output” (a target of
interest) based on example pairs (input-output) that were predefined by a human [44|. The
example of supervised learning task could be a cat vs dog classifier: a model which, given
a picture, could “classify” it as a “cat” or “dog” or “neither” of those. Supervised learning
models are trained on a “labelled” data. Labelling data means creating input-output pairs,
for example, marking a picture of a cat with a “cat” label. Unsupervised learning is a
task of automatically finding previously unknown patterns of given data [44]. In this
scenario, the data was not previously labelled by a human. It is fed to a model after it
was correspondingly processed. An excellent example of unsupervised learning application
would be splitting the market into several categories (“clusters”). Figure 2.4 represents an
example of K-means clustering for K = 3. Another known application of unsupervised
learning is a dimensionality reduction method [45]. Unsupervised learning models are also
used to model probability densities of the given input. Nowadays, supervised learning
applications are more common than unsupervised learning applications.
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Figure 2.4: An example from K-means clustering [5]

2.2.2 Machine Learning: Regression and Classification

There are two basic types of ML problems: classification and regression. As for classifi-
cation, it is a process of determining to which class given input corresponds. The classes
could either be predefined (e.g. supervised learning) or not (e.g. splitting the given data
to K different classes: the case of unsupervised learning). Let us get back to a previously
discussed example. An ML model trained on the proper data can classify pictures into “a
cat pictures” and “not a cat picture”; in this case, there will only be two classes. ML model
that was trained to distinguish for two classes is called a binary classifier.

The ML framework developed within this research will focus on a regression-type ap-
proach. Regression is the type of ML method that predicts continuous data, meaning that
there is no limited amount of classes, but the method can predict the continuous (not
discrete) number or a tensor consisting of continuous quantities. Some of the examples of
regression models applications are the prediction of prices of a stock market, quantitive
prediction of parameters of interest, image generation.

2.2.3 End-to-end Learning

End-to-end (E2E) learning refers to training a possibly complex machine learning model
for a system as a whole [46]. In the E2E learning, a training set would consist of just input
audio files and outputs of transcripts. In the case of a non-E2E approach, there would be
one or many of intermediate steps within the model such as, for example, Mel frequency
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Cepstral coefficients (MFCC) algorithm [47, 48] to extract specific voice low-level features
from the audio clip. In the proposed research, a non-E2E learning approach is considered.

2.2.4 Artificial Neural Networks: Review

Numerous types of artificial neural networks exist, and researchers proceed developing new
types and advances to existing types regularly. Training a NN can also be referred to
as “deep learning”. Generally, deep learning is a powerful tool for obtaining a non-linear
real-valued function. This function is an approximation mapping of input to the desired
output. Training occurs under the smoothness assumption: the sought-for mapping can
be represented as a Lipschitz-continuous function.

Artificial Neural Networks: Feed Forward Neural Network

Feed Forward Neural Network (FFNN) is a most basic type a neural network. One can
refer to them as “perceptrons”. Connections within the FFNNs do not form cycles. FFNNs
are described as having successive layers. This description is common for many network
types but originates from FFNNs. The first layer is a input layer, then a series of hidden
layers and an output layer (see figure 2.5). FEach layer consists of the nodes or unit cells.
One can think of a layer as a data-processing module that filters data according to a defined
mathematical law [45]. The hidden layer has a name of “hidden” because the values for
hidden unit cells (“weights”) are not observed, unlike the values of input and output cells.
After training a desirable network, its architecture, hyperparameters, and the weights (and
biases) values are saved for using the model, and training and testing sets are nor longer
needed. A basic neural network cell is shown in the figure 2.6. An explanation of what are
parameters and hyperparameters will be provided later in this chapter.

One can call neural networks shallow or deep. An example of a shallow NN is a 2-layer
network: it consists of an input layer, one hidden layer, and an output layer. The example
of a deep neural network could be a 100-layer network (with 99 hidden layers). A shallow
neural network can refer to a neural network with one hidden layer and a small amount
of nodes [49]. Nevertheless, there is no strict line drawn between how many hidden layers
shallow and deep networks would have. In general, training a network with more than two
hidden layers can refer to deep learning.
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Artificial Neural Networks: Convolutional Neural Network

Convolutional neural networks (CNNs) is another class of artificial neural networks. The
advantage of CNNs is their ability to take two- and three-dimensional tensors as an in-
put and also output tensors of such dimensions. In this research, a CNN constituent of
convolutional and deconvolutional layers is employed.

Convolutional and deconvolutional layers are formed by implementing a direct convo-
lution and a transposed convolution operations on square neuron layers of CNNs. The
operation of direct convolution can be described with the following equation:

m—1m—1
i _ L-1)
g = 2 D Oty (2.26)
€20 (=0

where x is the pre-nonlinearity square layer of a filter, L is a positive integer number
and denotes the number of the layer (L € [0,¢], where L = 0 is the index of an input
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and L = / is the index of an output layer), and 6 is the filter matrix of the dimension
(kernel size) m x m and it is populated with trainable parameters. Direct convolution
results in downsampling of an input layer. The transposed convolution operation is similar
to direct convolution, and is implemented by swapping the forward and backward passes
of a convolution and serves as a trainable upsampling.

Padding parameter can be applied to control dimensions of output of convolution oper-
ations. The term “padding” refers to adding zeros to the borders of filters prior to applying
a convolution operation. Two type of paddings are used in this research: “same” and “valid”.
“Valid” padding refers to no padding, and “same” results in dimensions of filters of input
and output of convolutions being equal.

2.2.5 Optimisation

Training is an optimisation procedure. It is a process of minimising the parameters of
NN so that the loss function value on these parameters is minimised. Using optimisation
algorithms, parameters are updated in the opposite direction of the gradient of the cost
function. Gradient descend (GD) lies in the foundation of the most optimisation algo-
rithms and originates from a stochastic approximation method by Robbins and Monro
[50]. GD-based algorithms often referred as a “black-box” optimisers since it is hard to
mathematically explain their advantages and drawbacks [8].

Batch Gradient Descend

Batch gradient descend (BGD) is the most basic GD-based algorithm. It computes the
gradient of the cost function VyJ(6) with respect to the parameters for the entire dataset:

0=0—a- VeJ(0) (2.27)

The drawback of this methods is that it will take too long per iteration in the case of
large dataset.

In equation 2.27 and in all subsequent equations, a refers to a hyperparameter of
learning rate and it will be discussed further in this chapter.
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Stochastic Gradient Descend

Some dataset are so large so it becomes impractical and sometimes not even possible to
optimise on the entire set. In contrast to BGD, one can update parameters for each training
example using stochastic gradient descend (SGD):

0=0—a-VyJ (Q;x(i); y(i)) (2.28)

But it happens that if the dataset is very large, SGD algorithm will perform too many
redundant computations and will be very slow.

Mini-Batch Gradient Descend

The middle ground between BGD and SGD is a mini-batch gradient descend (MBGD).
Mini-batch is a portion of the entire dataset; it typically consist of my, = 2" training
examples where n is a natural number from 2 to 16. Nevertheless, this number could
vary for different applications. MBGD calculates an update for each mini-batch of mypuscn
training examples

9 frnd 9 — Q- VGJ (6’ x(i:i+mbatch); y(i:i+mbatch)) (229)

Despite the computational benefit with regards to the processed amount of data, MBGD
does not guarantee good convergence [8]. Few improvements have been proposed for this
algorithm as discussed next.

Momentum in Gradient Descent

One of the biggest challenges for MBGD is navigating thru “hills” and “valleys” of the
hyperplane of a cost function [51]. This could yield optimising towards a local minimum
instead of a preferred global minimum. In some cases, the algorithm will oscillate back
and forth on a surface of hyperplane without making noticeable optimisation progress. The
concept of momentum [52| addresses this issue.

The momentum stimulates GD-based algorithm to accelerate optimisation in the rel-
evant direction. Visual interpretation of the previous statement is shown in figure 2.7.
Momentum concept is relevant to a concept of an exponentially weighted moving average
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[53]. Momentum accelerates GB by adding a ratio § of the new update vector of the
previous iteration to the current update vector:

Vs = ﬁfUt,1 + OJVQJ(Q)
0=606-— V¢

Figure 2.7: SGD without momentum (on the left) and SGD with momentum (on the right)

8]

(2.30)

Nesterov accelerated gradient

Nesterov accelerated gradient (NAG) [54] gives a better “sence” of direction towards a
performed update. It will better approximate future values of the parameters:

Vs = /6’075_1 + OéV@J (9 — /B'Ut_l) (2 31)
0=0-— V¢ ‘

Adam

Adaptive Moment Estimation (Adam) [55] is one of the recently developed (2014) opti-
misation algorithms. It computes adaptive learning rates for each parameter. It stores
an exponentially decaying average of past squared gradients v, like other algorithms. Yet,
what is does differently, is that it keeps an exponentially decaying average of past gradients
my, similar to momentum:

my = Pimy—1 + (1 — B1) g4

vy = Bovy—1 + (1 — Ba) 9,52 (2:32)

m; and v, are approximations of the first moment (the mean) and the second mo-
ment (the non-centered variance) of the gradients. Bias-corrected first and second moment
estimates are computed to counter moments being biased towards zero:
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1—pt
oy ! (2.33)
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Eventually, parameters are updated according to:
« A
0t+1 = Qt - my (234)

Vor + €

Other Algorithms

There is a set of existing optimisation algorithms, and many of them are based on gradient
descend with an incorporated concept of momentum. The list includes but is not limited to:
Adagrad [56], Adadelta [57], RMSProp (unpublished, proposed by Geoff Hinton), Adamax
[55], Nadam [58], MaxProp [59]. Figure 2.8 shows a visualisation for possible variations of
the training process on a cost function surface.

No optimiser fits all the problems better than others. Training an ANN model requires
many iterations of trial and error based on a different combination of algorithms and
hyperparameters.

X — sGD
- Momentum
- NAG
— Adagrad
Adadelta
._. - Rmsprop
="
|2

Figure 2.8: Visual comparison of optimisation paths for different algorithms on a loss
surface contours |[§]
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2.2.6 Activation Functions

Activation functions are used in NNs are the functions that transform a value in a unit
cell in, the most usually, a non-linear way. Applying such functions to the layer of a
neural network will not only transform the values of the weights within layers but will also
typically constrain the range that output can take.

There are many different activation functions with various properties (e.g. differen-
tiable, monotonic, smooth, with monotonic derivatives, and have different ranges). Ex-
pectedly, there is no best one-fits-all activation function, and different applications could
require the use of specific functions. Let us consider the most common types of activations
functions: sigmoid, tanh, and ReLU.

Sigmoid activation function

o(x) = (2.35)

An activation function with a range of [0, 1]. Usually used alongside the normalisation
between zero and one.

Hyperbolic tangent activation function

(=)

tanh(z) = Eren

(2.36)

An activation function with a range of [—1, 1]. Usually used alongside the normalisation
between negative one and one.

ReLU activation function

0 forz<O0
flz) = { z forax >0 (2:37)

ReLU is an abbreviation for “rectified linear unit”. An activation function with a range
of [0, +oc]. Usually used alongside the normalisation by standard deviation.
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2.2.7 Evaluation of Neural Networks

Loss function is a function that measures the performance of the model on the training data.
The loss function is a function that is being optimised (i.e. minimised) by an optimisation
algorithm. It is used to guide the optimisation of parameters to “right” direction [45]. Loss
function measures how well is the model’s performance on one training example.

There is also a cost function. It measures how well the parameters § and b do on the

training set. In this work, loss function will be denoted by £ (yl(,i,)e 4 y1§2w> and cost function,

defined as a sum of all losses over the set, will be denoted by J(6,b). Cost function depends
on the loss function as follows:

1 - % %
JO.5) = — 3L (48 viiee) (2.38)
=1

Different models prefer different loss functions for their training. Loss functions vary
for classification and regression problems. The simplest example of loss function for a
classification problem is a logistic regression loss function:

L (?ﬁm) =y logyy+ (1—y") log (1 - y§?6d> (2.39)

The most popular pick for a regression problem loss function is a mean squared error.
It is preferable because it is easy to compute its gradient, and it provides an adequate
error measure. An example of inadequate error measure is an absolute percentage error
(APE). APE has lots of drawbacks and is not recommended (for both loss and metrics)
for applications with fluctuating values. For example, it cannot be used when zero values
are part of the output (due to division by zero). In addition, APE is not a very consistent
metrics. Let us compare two cases: (1) Yirye, = 0.001 and ypreq, = 0.101, and (2) Yipue, =
100 and ypreq, = 100.1. In the both cases the difference between the results is 0.01, and
APE; = 10000% and APE; = 0.1%, and MAPE = 5000% (mean APE). While the error
itself could be not critical for calculations, it can yield misinterpretation of the results,
which could have happened in the presented work according to the error comparison. The
same rules applies to metrics: different metrics formula should be chosen for different
cases. Mean squared error (MSE), equation 2.40, is a common loss function for regression
problems. MSE could also be used as a metric. For regression, it is also common to use
mean absolute error (MAE), equation 2.42.

The formulae for MSE, MAPE, and MAE are:
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2.2.8 Improving Neural Networks

Training an accurate ML is an iterative process and has its own workflow. It all starts
with creating a baseline model. Baseline line model is a naive approach: basically, the first
idea should be implemented as fast as possible, and the results should be observed. In
rare cases, the results could be satisfactory, and as such the ML model can be employed.
However, these cases usually require a lot of experience and expertise. There is no rule
of thumb for which model should be tried at first. The next step is to use error analysis
to determine the next most promising steps and iteratively improve the accuracy of the
model.

Training, Development, and Test sets

To train and validate a baseline model an ML engineer requires a training dataset, devel-
opment dataset and test dataset. Training dataset is a set used to training a ML learning
model. Development set is also used while training, but it is not being trained on. It
is used to assess the error while training occurs. When both training and development
errors are satisfactory, error on the test set can be computed to evaluate and validate a
performance of machine learning model.

What is the split for training, development, and test sets? It depends on the amount of
data available. For relatively small data sets (~ 100—1, 000 examples), it is common not to
have a development dataset at all and employ a K-fold cross-validation [60] method on the
whole training set. For the moderate amount of data (~ 10,000 examples) it is common
to see a 70%/15%/15% split for training/development/test data. It gets individual for a
large amount of data. For example for ~ 10,000,000 examples it could be adequate to
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use ~ 150,000 examples for each development and test sets. In this case, the split will be
97%/1.5%/1.5%. It is important to note that all three sets should come from the same
distribution. Development and test sets’ domain should be similar to the domain of the
training set.

Shuffling Data

Before training a model, one has to load the data and shuffle it. Shuffling the data is
usually very important before training a NN because it improves the predictive performance
of a model. When using such optimisation methods as mini-batch gradient descent it is
beneficial to have heterogeneous examples from the same distribution as the whole dataset
in one batch.

Parameters and Hyperparameters

Parameters of the neural network are the weights 6 and biases b. They are common to
be denoted just by the Greek letter §. Each layer of a network has weights and biases
associated with it - optimiser updates these values such that the loss function takes on
its optimal values. In contrast, hyperparameters are the values that are set by a machine
learning engineer before training. They include learning rate, how many epochs (fitting
iterations) of gradient descend, the depth of a neural network, how many hidden units are
there in the neural network, momentum term, mini-batch size, regularises. One can refer to
hyperparameter optimisation as tuning. Some hyperparameters are unique for each model,
and some of them have preferred values (though they can be tuned as well).

Overfitting and Underfiting: Bias and Variance problem

Overfitting is a tendency of an ML model to perform significantly worse on a new data
in comparison to its performance on training data. As for underfitting, it is when an ML
model cannot determine the fundamental trend of the data at all. The phenomena of over-
and underfitting are closely related to a bias-variance trade-off. High bias can cause an
algorithm to miss the relevant relations between features and target outputs (underfitting).
High variance can cause an algorithm to model the random noise in the training data, rather
than the intended outputs (overfitting).

The methods of reducing bias (underfitting) include: adding more of training data,
making a deeper neural network, feature engineering, changing a normalisation method

28



(and/or activation functions), modifying the model architecture. As for the methods of
reducing variance (overfitting), they include: adding more of training data, reducing the
size of the neural network, adding regularisation, employing early stopping, feature en-
gineering, changing a normalisation method (and/or activation functions), modifying the
model architecture. As can be seen, many methods are similar, but they require individual
approaches in each case. Feature engineering is the process of using the expert knowl-
edge about the data and about the machine learning algorithm at hand. This process is
employed to make an algorithm learn better. Proper feature engineering typically allows
solving the problem with fewer resources and/or less data.

However, even after the feature set was optimised to its best, when training a machine
learning model one can run into the problem of overfitting. It happens always when
using deep neural networks, and met as a challange much more often than running into a
problem of underfitting. Regularisation techniques address the problem of overfitting and
help a model to achieve better accuracy. The regularisation techniques discussed is the
next section, and they adress neural networks applications. Overfitting generally could be
explained by the fact that the range of the possible hypotheses too large. When the neural
network is very deep, it has numerous parameters. Hence, the space of possible solutions
could be excessively broad. When there is not enough data to constrain the hypothesis,
the hypothesis that performs well on the training data can be chosen. However, this does
not guarantee us the hypothesis working well on the development and test data. One of
the ways of conquering overfitting is to reduce the parameter space. When there are too
many features and a relatively small amount of data, overfitting can become a problem.
Reducing the number of features has its disadvantages and doing so yields elimination of
meaningful the data, which could be useful for a problem.

Regularisation

Regularisation is an extra alternative that could be used to reduce overfitting. L; or Lo
regularisation techniques [61] are frequently adopted for applications in neural networks.
When applying these regularisations, the parameters are left in place, but the values of
the parameters 6 are penalised. The modification of the cost function achieves the goal
of reducing the values of weights by addition of a penalising term. Therefore, when using
gradient descent, the cost function becomes a sum of all losses of the individual predictions
over all the training examples, plus the regularisation term.

For L regularisation, the cost function would be the following:
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As for the L, regularisation:

J (0[” b l] Z E (ytrueﬂ yp;"ed> To Z HH l] HF (244)

In equations 2.43 and 2.44, )\ is a regularisation parameter. The regularisation param-
eter is the other hyperparameter that needs to be tuned while training a neural network.
The objective of training the neural network when using regularisation is to minimise the
cost function with the additional regularisation term.

For L, regularisation, the term ||f||; denotes the L; norm:

161, = 14l (2.45)

J

For L, regularisation, the term [|4||% denotes squared Frobenius norm, the sum of all
squared elements of a weight tensor:

16]]5 = 292 (2.46)

It has been shown that with the implementation of regularisation, sample complexity
grows smaller with the amount of given features [62]. Hence, less amount of data need to
be provided for successful training. As a note for the intuition of how the hyperparameter
A must be tuned: if the parameter A is too high, then it would penalise the parameters
f so much, that their values are going to be close to zero. Since it is widespread to use
activation functions that are linear-like near-zero (say, ReLU or tanh), if the parameters are
close to zero, then the neural network would be similar in behaviour to a linear function.
However, the neural network, similar to a linear function, would result in underfitting.
Ly regularisation technique is the most used in the deep learning applications and is also
referred to as a “weight decay” [63] regularisation method.

Dropout [64] is another known regularisation technique used to prevent overfitting
in neural networks. The term “dropout” is self-explanatory. It refers to probabilistic
elimination of unit cells (both hidden and not hidden) out of the network while training.
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Figure 2.9: Visualisation of a network with implemented dropout on the first hidden
layer; in this case, the dropout probability parameter is 2/3. The parameter is referred as
“keep prob” and corresponds to the probability of keeping a unit cell in the layer.

When implementing dropout, a dropout parameter is set for each layer in the network.
This parameter defines a probability of keeping each unit cell: whether it is going to be
kept or dropped out of the network. If a unit cell is excluded, then all the in-going and
out-going connections are eliminated as well, and their associated weights are not being
updated at the current iteration. At each iteration of the optimisation algorithm, the
dropped out unit cells are re-chosen. The dropout parameter is the other hyperparameter
that needs to be tuned while training the network. The most used dropout regularisation
technique is an “inversed dropout”. The “inverse” refers to the face that updated activation
functions &[Tf]l are being adjusted by their division on the dropout parameter. The division
assures that the expected value of the activation function in the layer remains the same

through training.

The batch normalisation method is another common regularisation methodology. In
[65], the authors proposed this method to help neural networks learn faster and in a more
stable fashion. The essence of batch normalisation is normalising the activation layers by
standard deviation, i.e., subtracting the mean activation (re-centring) and dividing the
re-centred activations by their standard deviation value. Batch normalisation is a common
regulariser and is often used in deep neural networks; it allows higher learning rates, makes
neural networks less sensitive to the choice of trainable parameters’ initial values and makes
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the learning process “smoother” [66].

Finally, the other important regularisation technique is called “early stopping” callback.
Early stopping is a callback parameter able to terminate training when a particular condi-
tion is met. When the neural network is very deep, it will (most likely) overfit on a training
set. Besides, some neural networks take much time to be trained. Often, it can take not
just hours, but days, weeks, or even months. In this case, early stopping could prevent
overfitting when the early stopping terminates on a specific iteration (machine learning
engineer must be already experienced with a network to know when it generally starts
overfitting). Another condition could be an achievement of a set error on a training set.
Keras [67] allows to save the best-achieved result on the training set using this callback,
or stop training when the monitored quantity stopped improving. All the parameters that
are related to the early-stopping setup are the hyperparameters that need to be tuned.

Adjusting the Learning Rate

The appropriate learning rate must be selected to achieve excellent model performance.
Learning rate « is responsible for how large the step of parameter updates it. A common
practice to set a learning rate to a specific value and train the network using it. However, on
some loss surfaces, it is often beneficial to decay the learning rate (setting it to the smaller
value for each training epoch or specific intervals of training epochs) while training. The
rate of decay of a learning-rate is also one of the hyperparameters that need to be tuned.

low learning rate

high learning rate

good learning rate

epoch

Figure 2.10: Visual presentation of how different learning rates affect learning curves [9]
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Adjusting mini-batch sizes

Often a training dataset is very large and as such it is “fed” in relatively small portions to the
NN during training. In deep learning, models often do not process an entire dataset at once
because it does not fit into a memory slot assigned for this purpose. While training, data is
split into mini-batches, and the batch-size could affect how fast and accurate optimisation
would converge [68]. Instead of the decaying learning rate, one could increase the batch-size
while training to improve the accuracy of a neural network.

2.2.9 Preparing and Storing Data for Machine Learning Projects

Regardless of how much data machine learning engineer has, the data alone is not enough.
Feature engineering, structure and preprocessing of data plays a crucial role in successful
model design. Before training, the data needs rearrangement to a shape that the network
expects. Then, data needs to be normalised for training to be efficient.

Normalisation

Normalisation by standard deviation originates from the field of statistics and refers to
adjusting data to bring the entire probability distributions into specific alignment.

When training, it could be problematic to feed data of values that take extremely dif-
ferent ranges and distributions. The network possibly is capable of fitting to heterogeneous
data, but it would make optimisation more difficult. Let us take into consideration the
case when training features are taking up very different values. For example a feature
(M € [0,10] and another feature, » € [100,10000]. Then the corresponding parameters
0 will take on very different values as well. In this case, cost function J(f,b) will be much
more complex than in the case when parameters have similar values. Thus, normalisation
speeds up training. Two most common practices of normalisation are: by standard devia-
tion (in the case of using ReLU-types activation functions), and an interval [a,b]. In the
second case, the interval is usually [0, 1] (in the case of using sigmoid activation function
used in the network) or [—1, 1] (in the case of using tanh activation function). The nor-
malisation of a feature by standard deviation sets the mean of the data to zero and makes
the variance equal to one.

Calculating the mean:

33



Original data

80
(]
Y
20
u T T T T T
o 20 40 60 80
X
Data normalised by standart deviation (SD)
1
. 0
-1
-z
-15 -1.0 -0.5 00 05 10 15
X
Data
80
(]
=40
20 «  Original
0 . « Normalised by 5D

0 20 40 &0 &0
x

Figure 2.11: Visual comparison of original data with data normalised by standard deviation
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Standard deviation of a discrete random variable:

o= | & > (@) — p)? (2.48)

i=1

Finally, normalisation of each feature (¥ by standard deviation:
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To conclude, for each feature independently, one should first normalise it to have a mean
of zero. Then, one should normalise it to have a standard deviation of one. Visualisation
of how the normalised values change can be seen on the figure 2.11.

Normalise a feature in [a, b] occurs according to a equation:

() @ — min 2

=(b—a)

normed ~

x +a (2.50)

max (" — min z()
One should normalise training, development and test set in the same way, using same
coefficients (u, o, a, or b from the examples above).

Storing Data

There are many ways to store data in scientific applications. When the available data is
small in size, it is often convenient to use standard formats such as text (.txt) files, comma-
separated values (“.csv”) files, or excel (“.xIsx”). Small data files in such formats are easy
to open, modify, access, and they fit in memory when working with them. However, when
the data gets more substantial in size, one can hit a roadblock of fitting it into the memory
and doing calculations on that data.

HDF5 technology suite [69] can be used as an efficient method of compression and
storage of scientific data that is too large to store in memory. With the help of the HDF5
scientific suite, one can not only efficiently organise the data, but also dynamically write
in the file, and dynamically read the data out of the file. HDF5 technology suite is a
great environment to operate with substantial data matrices of high dimensions, that are
typically hard to keep in memory. Working with the HDF5 data formats allows to fastly
retrieve exactly the required at the moment part of the data. The data is stored in the
“.hb” file format. The data format allows unlimited variations of data types, compliant and
efficient I\ O, and is suitable for very high volume and complex data. The data stored in
this format is transferable, extensible, and can be accessed in many frameworks or by the
aid of programming languages which include Python, R, FORTRAN, C++. The HDF5
technology suite also includes means for handling and inspecting data stored in the HDF5
format.

The architecture of the HDF5 scientific suite consists of HDF5 datasets (array of vari-
ables), HDF5 groups (groups of arrays of variables), and HDF5 data types. The HDF5

35



datasets are an essential part of the file. It consists of the data elements that are logically
structured and are represented as a multidimensional array or arrays. The data arrays
could be presented contiguously, as a whole sequence, or following a “chunked” option. In
the second case, array elements are laid out as a collection of fixed size regular sub-arrays.
Chunked HDF5 datasets may significantly improve data accessibility. However, chunk sizes
must be tuned depending on the application. The HDF5 suite allows parallelism to achieve
better performance for inputting and outputting data.

Apart from above-mentioned advantages, it allows very efficient data compression. This
is one of the most important benefits for the research proposed in this document. The
comparison of two files storing the same numerical data is the following: text data file had
the size of 25.1 GB (gigabytes), and HDF5 data file had the size of 4.0 GB. Loading data
time was also significantly improved: it took 18.5 minutes to access the data from text file,
and only 590 us to access data stored in HDF5 format. The numerical data stored in both
files as an array with dimensions of (100000000, 10).

The library addresses the most major data-related challenges. It allows efficient or-
ganisation and long-term preservation of complex scientific data, provides tools for easy
access. Files are extendable and allow dynamical input and output, which is essential for
the application related to this research.
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Chapter 3

Literature Review

Historically, advancing in the modelling methods of deformation of solids has led to sig-
nificant technological growth. Up to nowadays, advancements to these methods remain
an important objective. The accurate modelling approaches are widely used in various
fields of science, e.g. mechanical, structural, material, civil, or aerospace engineering, as
well as in many areas of business: automotive industry, material production lines, additive
manufacturing advances and other types of manufacturing processes. In particular, solid
mechanics involves many challenges of the experimental and computational kind. Per-
forming extensive physical testing can be very expensive and time-consuming. Solving
mathematical and computational problems may involve computationally demanding oper-
ations such as solving sets of highly non-linear partial differential equations with numerical
methods or finding inverses of large tensors. Therefore, the computational procedures may
be sensitive to scalability, making some analyses unfeasible. Machine learning applications
are known to be successful at such challenges. This section reviews existing approaches
in material modelling and applications of machine learning computational material science
and, in particular, in crystal plasticity.

3.1 Brief Review of Plasticity Modelling

Numerous approaches have been developed for modelling of deformation processes, from
macro- to microscale. On the macro level, one of the approaches to describe deforma-
tion behaviour is with the use of yield functions. These functions are represented by
five-dimensional surfaces in the six-dimensional space of stresses. Their projections can
graphically represent these surfaces onto two- or three-dimensional spaces. When the state
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of stress is inside of the yield surface, the material is considered to be undergoing elastic
deformation, and, correspondingly, plastic when the state is on the surface itself. With
increasing plastic deformation surface expands, so that the stress state cannot be outside
of the yield surface. The Von Mises yield criterion is a very well-known yield criterion for
defining plasticity of metals and alloys [70]. The criterion states that when the material’s
equivalent stress (represented by the equation 3.1) reaches a specific value o, called yield
stress (which is a material parameter), plastic deformation occurs. This function was ex-
tended to many different forms, e.g. Hershey [71] yield function of non-quadratic form
(equation 3.2). However, in some cases, isotropic yield criteria like the last mentioned
do not meet accuracy requirements for some specific applications or materials of higher
complexity (i.e. orthotropic or fully anisotropic materials).

1
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One of the examples of more complex yield functions was recently developed by Yanshan
Lou and Jeong Whan Yoon [72]: they presented anisotropic yield function based on stress
invariants for BCC and FCC metals. They extended Drucker [73] yield function into
anisotropy based on the fourth-order linear transformation tensor. Apart from accuracy
benefits, the contribution of the work was in presenting a “user-friendly” and easy-to-
implement yield function. However, computational methods in deformation modelling of
this sort could include convoluted operations like the inverse of the the fourth-order tensors.
The yield function is constructed as a sum of several components. Numerical coefficients
in those components are specific to a material, and applications of such convoluted yield
functions are limited and require calibration for other materials.

Phenomenological plasticity models are typically not able to capture physics-based phe-
nomena such as crystallographic slip and do not take into account such important material
characterisation as microstructure. The microstructure can influence deformation behav-
ior and the occurrence of strain localisation in specific parts of an investigated materials
[74, 75]. The microstructure can be characterised by the constituent grains, their texture,
size and morphology [76, 77|, as well as a presence of precipitations |78, 79, 80| and multiple
phases within material structure [81, 82, 83]. These aspects can play an important factor
in material deformation behavior. Crystal plasticity can be applied to take into account
those material phenomena in deformation modelling.
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Crystal plasticity theories are developed to predict the anisotropic stress-strain response
and the corresponding change in polycrystalline texture at finite elastic and plastic strains.
Polycrystal deformation models are usually derived from single-crystal deformation models.
Homogenisation schemes have been used to establish the link between the deformation of
polycrystalline material and its constituent grains (single crystals). Sach’s [84] homogeni-
sation approach is one of the earliest approaches proposed (1928), and it assumes that each
grain of a polycrystal undergoes the same stress. In contrast, the Taylor-type homogenisa-
tion scheme [85] assumes homogeneous strain in each constituent grain and the macroscopic
stress is calculated as an average stress response in all grains. However, homogenisation
approaches present simplifying stress or strain homogeneity hypotheses and hence cannot
consider the complex intergranular relationship and their consequent effects on stress and
strain partitionings within a material. Crystal plasticity finite element methods are able
to take into account grain size, morphology and neighbouring effects by discretising the
analysed sample into finite elements and therefore achieve even higher fidelity of material
behaviour predictions. The CPFEM models enable predictions for complex internal (which
are imposed by interactions between grains due to physics of grain mechanics) and exter-
nal boundary conditions [86], which may be critical for virtual material design. CPFEM
models can be built upon different constitutive formulations, allowing applications for dif-
ferent materials. With the complexity involved, crystal plasticity is a state-of-art method
that can help design advanced materials with the exact desired properties for any field of
application, however, its high-fidelity comes at a price of high computational cost.

3.2 Acceleration Methods of Crystal Plasticity Calcula-
tions

Multiple efforts has been made to accelerate crystal plasticity calculations. One of the
earliest, Bunge-Esling approach (1984) [87] used a specific analytical expression for ori-
entation distribution function (ODF). They used the assumption that texture formation
process can be described as a flow or compressible medium in the Euler space (Clement
and Coulomb [88] originally proposed this assumption). Bunge and Esling’s contribution
was in a representation ODF in the form of a series of harmonic functions of orientation.
This approach helped to accelerate the computations of the flow field in the Euler space. A
general methodology based on Bunge’s conservation of texture volume was later developed
and was used to predict texture evolution which showed good predictions for small strains
as compared with predictions generated by Taylor-type crystal plasticity [89]. The study
presented a novel approach to establish a relationship between the rate of change of the
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Fourier coefficients of texture and the initial texture, and was validated for FCC materials
with texture. Later this approach was extended to prediction of stresses, lattice spins and
strain hardening rates for individual crystals [90]. It was suggested that the functions of
predicted properties could be represented using Fourier coefficients and generalised spher-
ical harmonics and be dependent on the crystal orientation. The presented possibility to
reproduce the results of first-order crystal plasticity simulation efficiently resulted in reduc-
tion of computational time. The improved version of this model was also developed and
involved local spectral interpolation method using discrete Fourier transform (DFT). The
essence of this method was in storing the variables on a uniform grid in orientation space
in a database. Then, application of DFT interpolation on that database allowed recovering
the values of interest. This approach was demonstrated to speed up the crystal plasticity
calculations for FCC metals compared to conventional crystal plasticity calculations as well
as generalised spherical harmonics [91].

The other database approaches were employed to accelerate crystal plasticity compu-
tations. Material knowledge systems (MKS) was formulated to construct accurate bidi-
rectional “linkages” designed to predict desired property or response. MKS is extensively
discussed in the series of works by Kalidindi and his co-authors [92, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104, 105, 106, 107, 108|, and finds its applications for various materials
and cases of mechanical processing of those materials. The presented approach allows to
accurately capture critical information related to the microstructure evolution of material
in spatiotemporal multi-scale simulations. There are existent MKS homogenisation and
localisation workflows. For homogenisation workflow, MKS database is established based
on the pre-generated synthetic dataset of representative microstructures. Then mechani-
cal response for each microstructure is obtained with the help of an established numerical
model. These steps yield the formation of structure-property linkages. The structure-
property linkages are the mappings that allow predicting a property of interest based on a
given structure. Linkages are expressed as meta-models or surrogate models. The exam-
ples of other types of linkages include process-structure-property (PSP) linkages, structure-
response linkages [94], linkages for inelastic effective properties [95]. The information en-
capsulated in MKS allows obtaining such desired information as microstructure-sensitive
predictions. For example, PSP relations, or microstructure-response linkages (stress-strain
relationships, microstructure evolution). The properties and characteristics of interest are
predicted orders of magnitudes faster compared to conventional simulation methods while
preserving comparable accuracy.

40



3.3 Machine Learning Applications in Material Science
and Mechanics of Solids

Machine learning (ML) based approaches can be fast once trained and become increas-
ingly accessible. One of the first efforts in ML-based material modelling was proposed by
Ghaboussi et al. in 1991 [109]. The authors suggested using artificial neural networks
as an alternative to mathematical material behaviour models and have put the beginning
to the applications of machine learning in computational material science. In their work,
they presented a two-hidden-layers ANN which was used to model concrete deformation
behavior. The network was trained on the experimental results. The study focused on
two particular applications for path-dependant material behaviour: stress-controlled and
strain-controlled model. In the stress-controlled model, the inputs were the current state
of stress and strain and a stress increment; the outputs were the strain increments. The
network was used incrementally, starting at a known stress-strain state. For the strain-
controlled model the same data was used. Similarly, the stress increments were used as
an output of the model. Due to the incremental approach of the application, the predic-
tions of the network have shown deviation, but the trends of the network predictions were
approximately correct.

One of the recent (2019) studies demonstrated the prediction of path-dependent ma-
terial response in terms of stresses and plastic energy for two-dimensional representative
volume elements (RVEs) with a sequence-learning model [10]. The authors proposed a
recurrent neural network (RNN) for two applications in plasticity modelling. The first
study was performed for an RVE with a curved inclusion. The inputs to the RNN model
included representative volume element descriptors and temporal deformation paths. The
deformation path were sampled as shown in figure 3.1. The outputs were the temporal
stresses and plastic energy values over 100 increments, as well as yield surface evolution.
The model was able to successfully capture mechanical response for an unseen test case
scenarios, as shown in figure 3.2. In the second case study, the RNN model was able to
accurately predict stress and plastic energy for a class of composites. This study have
shown a capability of neural networks to predict complex path-dependant behaviour.

Machine learning methods find their applications in mechanics of solids to predict im-
portant mechanical features related to a material of interest. One of the works suggests
that instead of calibrating a yield function the material hardening law could be predicted
using an ML model [110]. The authors developed a hybrid experimental-numerical ap-
proach to model temperature- and rate-dependent plasticity for fracture analysis. In their
work, the ML-based approach captured a hardening law that allowed to present the yield
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Figure 3.1: “Sampling the temporally varying loads. (A) Three end states are marked in the
strain space spanned by ej; and ess. For each end state, 2 deformation paths that connect
it to the origin are illustrated. The gray area indicates the range of each strain component.
(B) Two examples indicating the temporal evolution of the 3 strain components that,
collectively, determine the deformation path to an en state. The markers on each path
indicate the control points used in interpolation. Paths in B are not related to A.” [10]
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Figure 3.2: “Evaluation results for the trained model in case 1 . The top row demonstrates
the applied average strains (A), the predicted and database average stresses (B), and the
predicted and database plastic energies (C') for a test-set sample (unseen in the training
process). The bottom row depicts the average strains (D), average stresses (£, and plastic
energies (F) for the unidirectional loading test.” [10].

stress as a function of the equivalent plastic strain, strain rate, and temperature. Apart
from the computational benefits of this method, there was no need to look through the
conventional hardening law forms and hence model bias was avoided prior to calibration of
a model. The benefit of such model embedding is in the ability to apply a similar approach
in other models by using transfer-learning techniques and avoid time-consuming calibra-
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tion of a yield function. Another yield-function application used several different ANNs
to replicate the predictions of anisotropic Y1d2000-2d model for various loading conditions
[111]. Excellent predictive capabilities of feed-forward neural networks and gated-recurrent
units network for monotonic and non-monotonic loadings were demonstrated in stress-state
predictions based on the applied strain.

The other ML application was related to mechanical features predictions [112]. MIL-
based model, the “deep material network”, was developed to predict the fourth-order com-
pliance tensor related to a two-dimensional RVE of a specific material. The network was
trained based on the results obtained from offline direct numerical simulation (DNS) re-
sults for four types of heterogeneous materials: uniform, matrix inclusion, amorphous, and
multi-phase anisotropic materials. The trained model served as a multi-scale material mod-
elling method. It accurately predicted non-linear material loading-unloading behaviour for
uniaxial and complex loading-unloading paths. The designed model was built of “mech-
anistic building blocks” which accounted for relevant physics. Besides the computational
benefit indicated by the authors, the model was also valid for unknown materials and load-
ings and hence was applicable to a wide range of applications. ANNs were demonstrated
to predict cold rolling texture of steels [113]. A neural network model was used to predict
fiber texture evolution of steel during cold rolling. The input of texture data: fiber texture
intensities, carbon content, carbide size, and amount of rolling reduction. The model was
trained on a limited dataset of texture data of three different steels with varying carbon
content and carbide dispersion. The work shows the importance of choosing the informa-
tive dataset, as the predictions within training set were accurate and the test set prediction
showed deviation. The main conclusion from this work is that the training set should be
representative of the data regime within chosen application.

A pattern recognition utility of ML is extendable to a generative capability. For ex-
ample, new materials’ discovery becomes possible. In the work on prediction molecular
atomisation energies, machine learning displayed the speed and effectiveness of ML in ab
initio calculations of quantum-chemical analysis of compounds [114]. A conventional ap-
proach for such computations could take hours or days, while the ML-based model can
give the results online. Atomisation energy is a very important feature as it can be mea-
sured experimentally and also determines the molecular stability with respect to its atoms.
Hence, the conclusion can be drawn: given a large chemical compound space in a training
set, the ML model will not only save valuable computation time for known compounds, but
also brings the analysis possibility of unknown ones. There are many other applications
of ML, when essential mechanistic and atomic features are predicted fast and accurately.
Next two paragraphs will feature some notable results. In the recent study, [115] demon-
strated an ML framework utilised to predict the evolution of local strain distribution,
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plastic anisotropy and failure during tensile deformation of 3D-printed aluminium alloy.

A lattice constant (LC) is an important characteristic that helps to determine material
properties and, in some cases, it is very important for taking into account in production
processes. Research has shown that ML methods can be used to predict this parameter
for novel materials accurately. A Support Vector Machine model was demonstrated to
achieve accurate and fast lattice constant predictions for a specific crystalline material
(orthorhombic perovskites). The predictions are based on five atomic parameters [116]. In a
similar research work, an ANN| generalised regression neural network (GRNN) and support
vector regression (SVR) were employed to predict LCs for cubic and monoclinic perovskites
accurately [117]. ML predictions were compared with the results that were obtained with
conventional methods of calculation L.C, such as density functional theory-based model and
chemical stoichiometry based prediction tool. This work was extended to other types of
perovskites, and the improved the performance of computational intelligence models was
demonstrated. The presented model outperformed the relatively computationally cheap
existing tools for LC prediction. The developed ML models were able to accurately predict
LC for the unknown compounds of the same type that the model was trained on. The
lattice constants were predicted based on the sizes of ionic radii of the compounds, electro-
negativity of the specific atoms, and oxidation state. Apart from the computational speed
(in comparison to density functional theory and other methods), there were also other
benefits. Based on the error analysis, it was possible to estimate the lattice distortion
level for structurally known compounds. It was seen that some ML methods performed
better than others in some cases. For a small feature set, it was shown that the methods
of SVR and random forests were more accurate on the test set than linear regression
methods or GRNN [118]. In general, it is a common practice to compare different methods’
performance to see perform better for a given problem. It has been shown that the ML
method could offer to the research not only a computational speed but also the better
accuracy compared to some other methods and provide aid for a new compound design.
Such methods could be transferred to a new material design applications which is vital in
mechanical engineering.

The following research works are focused on predicting characteristics of materials and
compounds. Machine learning methods were applied to a derivation of localisation rela-
tionships for elastic deformation in a high-contrast two-phase composite material [119].
In their work, the authors trained ML model for predictions of a localisation-structure-
property relationship. As an input, a 3D microstructure and a loading condition were
used, and a corresponding elastic strain field throughout was obtained as an output. Lo-
calisation methods, in contrast to homogenisation methods, are usually limited, and this
work highlights the capability of ML to achieve accurate prediction results even in such
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complicated applications. The improved version of the model was presented [120]: it out-
performed previous best results and the possibility to perform parallel computations was
introduced.

All the presented above works body forth a tremendous asset not only for chemical
and pharmaceutical industries but for the industries reliant on advanced high-performance
materials. Crystal plasticity links macroscopic performance of the materials with their
microscopic properties, which can significantly assist in new material design.

3.4 Significance of Data and Feature Engineering in Ma-
chine Learning Applications

One of the fundamental aspects of training a reliable model is creating a dataset that
is enough for a solution to a given problem. This question was considered by Bessa et
al. [121]. The work addresses the “curse of dimensionality”, the phenomenon that occurs
during data analysis in high dimensional space. This phenomenon is encountered in fields
of numerical analysis, sampling, combinatorics, and machine learning. With the increase of
dimensionality of the feature space, the volume of this feature space increases too fast, and
the available data becomes very scattered. This data sparsity phenomenon is problematic
in terms of statistical significance which ML methods heavily account for. To counter the
curse of dimensionality, Bessa and co-workers developed a framework for a data-driven
analysis in design (e.g. predicting global optimum for a material design) and modelling
(e.g. alternative constitutive modelling). In their work a three-step approach was proposed:
(1) Design of experiment (DoE): taking into account material geometry, properties, and
external conditions; (2) performing an efficient computational analysis of each sample,
yielding a material response database; and finally, (3) ML methods applied to a database
to obtain the new optimal design or response model of interest. These are the logical steps
in a data-driven analysis applied in material science. DoE refers to the work that results
in the characterisation of the material and conditional features. These features include
microstructure, material properties, boundary conditions, etc. In the field of applied ML
this process is usually referred as “feature engineering” {122, 123, 124, 125] and describes
a process of selection the most descriptive features from the feature space. The feature
space is formed by all available descriptors for a given problem and is limited by the ranges
of those descriptors. The skills and knowledge in the application field are advantageous
in the process of selecting the most informative descriptors, as well as when assessing the
reliability of the model. Bessa and co-workers provided insightful examples of the process of
feature engineering in applications to material modelling and phenomenological modelling.
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Apart from selecting the most helpful descriptors, it is required to define the domain of each
feature, and by how many examples should each feature be represented. The feature space
can be sampled either using the grid approach or random sampling. However, grid sampling
can cause having unfeasible number of samples in a dataset as the samples quantity will
grow exponentially with increase of feature space dimensions. Random sampling allows
choosing the amount of samples, but can result in uneven coverage of the feature space.
Selecting a strategy for an optimal filling of a feature domain could be beneficial for training
an optimal model.

The optimal filling of a feature domain can be achieved using Sobol sequences method
[126, 127]. Sobol sequence method, also known as LP, sequences, may be advantageous
for filling the feature domain efficiently. The motivation behind utilisation of the Sobol
sequence is to generate a sequence (set of numerical points) that is “well-spaced” in the
s-dimensional unit cube I* = [0, 1]°, such that:

lim 377 () = [ 1 (3.3)
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where f is some real integrable function over I°. The Sobol sequence generation al-
gorithm generates data in the range [0,1]. The benefit of Sobol sequences in its low-
discrepancy meaning that the points in the sequence are almost equidistributed. This fact
ensures that the domain is filled approximately uniformly but yet (quasi-) randomly, hence-
forth the better diversity of examples (rather than yielded by feature domain “gridding”)
delivers increased diversity of information. Figure 3.3 presents the comparison for the
sampling of 343 points in three-dimensional space using: grid sampling, random sampling,
and sampling with Sobol sequences. For better comparison, all the sampled points were
projected onto x —y, y — z, and x — z planes. Grid sampling is an excellent method to sam-
ple data in two-dimensional space. However, the number of samples in a dataset will grow
exponentially with the increase of dimension. In addition, with the grid sampling method,
the data is sampled in a specific pattern, which could potentially interfere with a model’s
learning performance. Random sampling allows choosing the number of samples; however,
it may form clusters of sample points within a sampled space. Alternatively, some regions
of a sampled space could be not included during sampling. Clusters of points could result
in overfitting the model while lacking data points in specific ranges and (or) combinations
could result in a model’s poor generalisation capability. Sobol sequence allows forming a
robust dataset that almost uniformly covers all the regions of a sampled space and does
not result in clustering while sampling.

The size of the used dataset also plays an essential role in training a machine learning
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Figure 3.3: Visual comparison of 343 data points sampled with: sampled with grid sam-
pling, random sampling, and Sobol sequence sampling. All the sampled points were pro-
jected onto x — vy, y — z, and x — z planes. Sobol sequence allows for more optimal space
filling compared to two other methods.

model, and it often is not feasible to create a sizeable dataset in material science. Therefore,
there is also a need for a strategy for machine learning applications with small datasets.
The datasets in material science are known to be relatively small and diverse simultane-
ously. In [128], have addressed the problem of having small datasets in material science
and presented a study on relating the degree of freedom (DoF') of model and the precision
of prediction. They have discovered that precision increases at the cost of a higher degree
of freedom of a model. In their work, they associate this relationship with the effect of the
bias-variance trade-off, the concept of which is closely related to the problem of underfit-
ting and overfitting. When countering this trade-off in ML modelling, it is necessary to
tune the model (adjust the parameters of the model) such that it: (1) accurately captures
the irregularities of a training data; and (2) generalises (interpolates or, sometimes, ex-
trapolates) well on unseen data. Reducing both bias and variance is a common challenge
in designing an ML model based on a small dataset. One of the most decisive actions
that could be done is suitable dataset input-output design (this process is called “feature
engineering”). Adding more inputs for the machine machine learning model, i.e. increasing
its DoF', can lead to better predictability. However, according to the authors, this could
potentially lead to a “highly complex model difficult to interpret the embedded physics”
and increased cost due to additional experiments. Therefore, increasing the DoF makes it
harder to construct an accurate ML model due to the curse of dimensionality, as discussed
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earlier in this subsection.

To counter the curse of dimensionality phenomenon, it has been suggested adding
crude estimation of property (CEP) to a feature space when training an ML model [128|.
CEP is defined as a prediction of a targeted property which is obtained by other methods
than an ML model. This prediction is often less accurate, and the methods used should
require zero or near-zero computational efforts. These methods could be non-expensive
experimental measurements, empirical models, or other estimation methods. In addition,
for small datasets, it would be beneficial to perform k-fold cross-validation (CV) technique.
One of the examples presented by the authors was the prediction of the band-gap of
binary semiconductors. In this case, CEP was band gap simulated at generalised gradient
approximation (GGA) level, which is cheap to compute. The model with CEP had a 33%
reduction in error in comparison to the model without CEP. The performance of the ML
model was benchmarked by comparison with a corresponding GW approximation based on
49 compounds. The ML model showed a smaller error, demonstrating excellent predictive
capability. Another CEP application study have been presented in study which focused on
estimation of a band-gap predictions [129]. In their work, an additional feature of band-
gap CEP was used. The authors implemented a computationally reasonable estimation
of a band-gap using Perdew-Burke-Ernzerhof exchange-correlation functional [130]. Other
efforts to improve learning capabilities when only a small dataset is available include data
augmentations techniques. In [131], the authors implemented cropping and re-scaling of
the input image data of strain profiles for creating more samples for training and validation
of a deep learning model. In addition to data augmentation methods, the transfer learning
can be used for re-training existing models on the limited datasets [132, 133].

To conclude, datasets play an essential role in training accurate machine learning mod-
els. The methods such as adding a crude estimate for the target, data augmentation,
using transfer learning, and employing efficient data sampling techniques can increase the
learning capability during training. Having an abundant dataset with an employed opti-
mal sampling methodology for its features is generally favourable for training an accurate
machine learning model.

3.5 Machine Learning Applications in Crystal Plasticity

Numerous studies have demonstrated machine learning applicability in computational ma-
terial science and conventional phenomenological plasticity. The research has also been
focused on crystal plasticity applications, as covered in this subchapter.
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In [134, 135], the authors used classification ML methods to investigate the formation
of stress hotspots in polycrystalline materials under uniaxial tension. The full-field CP
based deformation model was integrated to gain data-driven insights about microstruc-
tural properties. In these works, they focused on FCC [134] and HCP [135] materials.
A synthesised dataset of three-dimensional polycrystalline microstructures under uniax-
ial tension, including microstructural descriptors for each grain, and the stress and strain
fields resulting from CP simulations, were provided by the researchers [136]. The mi-
crostructures were generated using six representative textures for FCC materials and eight
representative textures for HCP materials. A classification random forests algorithm was
employed to predict the stress-“hot” grains given microstructural and geometrical descrip-
tors such as orientation distribution function, Schmid factor, misorientations, grain shape,
and grain boundary types. As a result, an area under the receiving operating characteristic
curve score of 0.74 was achieved for FCC materials and 0.82 (equal CRSS cases) and 0.81
(unequal CRSS cases) for HCP materials.

The regression model case studies have been presented for crystal plasticity applica-
tions. In [137], an ANN-based framework to predict the flow response and texture evo-
lution of polycrystals subjected to multiaxial and non-proportional loading was proposed.
In their work, authors accurately predicted the constitutive response of AA6063-T6 alloy
under uniaxial tension followed by simple shear, which demonstrated the capability of neu-
ral networks to learn polycrystalline material behaviour under various loading conditions.
Other crystal plasticity applications included: linear regression and neural networks ap-
plied to predict a cyclic stress-strain relation for steels [138], sequence learning methods
were applied to predict microstructural texture evolution for an FCC copper sample under
uniaxial tension [139], ANNs applied to predict the relation between CP parameters and
the microstructural texture for a titanium alloy under uniaxial tension [140], a classifica-
tion ML algorithm using spatial strain correlation to infer and classify prior deformation
history in thin aluminium films [141]. In [142], the authors used ANNs to predict flow be-
haviour and final deformation texture. The predictions could be achieved for four loading
conditions (compression, tension, shear, rolling), twelve initial textures, loading rate, and
a range of Voce hardening parameters. These works have demonstrated the capabilities
of machine learning to predict complex material behaviour, with the following limitation:
the models performing well within the “bounding box” of the dataset available for training.
Furthermore, the models designed for particular materials under specific loading conditions
have restricted applications. Available training datasets are typically split into training and
test constituent parts, and while it is crucial to validate a model’s performance on a test
set, it is also vital to validate the model for real applications.

A limited number of studies show applications of machine learning in crystal plasticity
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to produce finite element (FE) modelling simulation results. These studies adopt convo-
lutional neural networks (CNNs) as they are instrumental in making predictions based
on two- or three-dimensional input values, and (or) making two- or three-dimensional
predictions based on those input values. In [131], CNN with residual connections was im-
plemented as an alternative method of graphical strain analysis for CP predictions. For the
dataset, they performed discrete dislocation dynamics simulations of metal samples with
elastic properties similar to aluminium. In the performed simulations, the specimens were
subjected to uniaxial compression with varying loading orientation at small deformation
levels (under 1%). Each sample had a width ranging from 62.5 nm to 2 ym. The samples
were characterised by low, medium, and high initial prior strain deformation levels. Based
on the strain images as an input to the CNN, the authors were able to classify the initial
strain deformation level of a sample based on three classes (“low”; “medium”; or “high”
strain). Using the hidden layers of the proposed convolutional network, the authors com-
puted the dislocation density measure of a crystal, which allowed to identify a crystal’s
strength and, therefore, find the statistical prediction of a sample’s stress-strain curve. In
their work, the authors used data augmentation techniques on the dataset consisting of 20
simulations for providing enough data for training an accurate model.

The other works analysed the relationships between microstructure and material prop-
erties and behaviour. In [143], the authors used three-dimensional convolutional neural
networks (3D-CNN) to relate a material’s microstructure to material properties of inter-
est. The proposed model analysed relations between microstructure and the material’s
elastic property. The input to the model was the 51 x 51 x 51 voxel microstructure of
two-phase high-contrast composite material, and the output of the model was the effective
elastic property in the form of a C}, component of the effective elastic stiffness tensor.
The authors used the dataset of 5900 microstructures with varying volume fractions of the
constituent thermodynamic phases. The outputs for the dataset were obtained with FEM
simulations. Their work has demonstrated that the effective properties can be predicted
using 3D-CNN with dramatically increased computational speed and nearly no sacrifice in
accuracy.

In [11], the authors used two-dimensional convolutional neural networks for establishing
microstructure-property linkages in a material. In their work, they related a dual-phase
microstructure to a stress value at a strain close to the yield point (£1; & 1 x 1073). This
target quantity was chosen as it is similar to the yield stress. For the dataset, microstruc-
tures with soft and hard phases were generated. Volume fractions of each phase varied
from 5 to 95 per cent. The uniaxial tension simulations were performed for 4, 750 samples,
which were used to train and validate the CNN model. The trained model demonstrated
excellent predictive capabilities and a dramatically improved computational time perfor-
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mance. In addition, the authors compared the local stress response of polycrystal to the
visualised features of the trained network. The visualised features were obtained using
specialised software that highlights the important regions in the input image [144]. Some
degree of correlation between CNN features visualisation and local stress hot-spots of the
deformed microstructure was observed (figure 3.4), which confirms that CNNs can capture
microstructural features that are important for local stress and strain predictions.

(c) 72% volume fraction

Figure 3.4: “Stress localization as predicted by crystal plasticity simulations and predicted
by CNN model. In each set, the image on the left shows initial microstructure, the image
in the center shows stress localization predicted by crystal plasticity model and the image
on the right shows stress heatmap predicted by CNN model.” [11]

In [145], the authors utilised a hybrid of convolutional and recurrent neural networks for
application in oligocrystals of an annealed austenitic stainless steel. Their work utilised the
initial microstructure and the strain values as an input to the machine learning model to
predict the resultant stress corresponding to the input strain, up to 6 per cent strain. The
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model was trained based on the dataset consisting of 6,630 oligocrystalline microstruc-
tures with dimensions of 20 x 20 x 20. Crystal plasticity simulations for the dataset
were performed for a quasi-static uniaxial loading condition. The resultant neural net-
work demonstrated excellent predictive capabilities for stress prediction during the elastic
regime, and the prediction accuracy degraded as the plastic flow occurred. A year later,
the work was extended to predict the local evolution of the dominant stress component
for two-dimensional oligocrystalline microstructures [12]. The convolutional and recurrent
neural networks hybrid was trained based on the dataset of 16,000 samples. The samples
were created using quasi-static uniaxial tension crystal plasticity simulations up to 0.3%
strain. The input to the network was two-dimensional 32 x 32 oligocrystalline microstruc-
ture and a strain value. The grains within each microstructure were characterised with an
orientation angle ¢ € [0,0.57]. The output was a stress partitioning corresponding to the
input strain value. The authors have demonstrated the capability of the CNNs to predict
stress partitioning accurately; figure 3.5 shows an example for a median prediction for a
test set. The CNN demonstrated good agreement with the predictions of CP simulaitons
for oligocrystals.

MICROSTRUCTURE TRUE STRESS

STRESS-STRAIN

TIME

Figure 3.5: “Evolution of stress for three realizations (a, b, ¢) corresponding to the median
total root mean square pixel-wise error. Initial grain structure (left upper panel, using
the same color scale as figure 1 where gray corresponds to an orientation of 0 and 7/2,
and yellow is 7/4), comparison of the oligocrystal average stress-strain response (left lower
panel, CP: blue, NN: red, min-to-max CP range of the stress field: gray), and stress field
evolution (true/CP: upper right panels, predicted/NN: lower right panels) at uniformly
sampled strains ¢ € {0.02,0.06,0.10,0.14,0.18,0.22}% are shown. Note that the blue-
white-red color scale range of the true and predicted stress field at a fixed strain is adjusted
to the minimum and maximum of the true CP stress to show contrast.” [12]
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As seen in the literature, the capability of machine learning applications, particularly
convolutional neural networks and their hybrid models, is yet to be investigated in their full-
field predictions capabilities. The overall summary of deficiencies in literature is discussed
in section 3.6 of this thesis.

3.6 Summary of Deficiencies in Literature

Numerous studies have demonstrated various capabilities of machine learning models in
applications for crystal plasticity. The studies discussed in the section 3.5 presented ap-
plications to specific crystalline materials; however, they have only been limited to these
materials and the loading conditions that they were trained on [137, 138, 139, 140, 142|.
While the computational advantage of ML models have been clearly demonstrated for
many applications, no comprehensive model was demonstrated for high-fidelity predictions
for an exhaustive range of materials under any imposed loading condition. It is important
to have a comprehensive model to make it usable for real applications. Such a model or
framework must meet the following requirements to predict material behaviour for:

e An arbitrary texture of a crystal and must not be limited to a number of specific
textures;
e Materials with different parameters (such as hardening parameters);

e An arbitrary strain path and must not be limited to a number of specific loading
conditions;

e Large strains;
e All stress and strain tensor components evolution, as well as for texture evolution;

e The cases that fall outside of the distribution of the dataset used for training and
validation, i.e. the extrapolation capabilities of the model or framework must be
validated.

Another literature gap is related to the microstructural effects on the behaviour of
materials. Crystal plasticity models are widely used to describe these effects; however,
crystal plasticity finite element computations can be very computationally demanding [80].
Convolutional neural networks can be instrumental in making fast deformation behaviour
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predictions for microstructures, as they are suitable for two- and three-dimension inputs.
The research in applications of CNN to predict a deformation behaviour of a material
with a specific microstructure is very limited. For dual-phase contrast materials, the ap-
plications included: in [143], microstructures were related to a component of the effective
elastic stiffness tensor; in [11], microstructures were related to stress at a minor strain
value. Stress partitioning evolution prediction was demonstrated only for oligocrystals
with the predictions up to 0.22% of 17 strain [12]. Machine learning models have not been
demonstrated to predict evolution for local stresses and strains, for all stress and strain
tensor components, of polycrystalline microstructures. For some materials, the number of
grains within microstructure could be large for the microstructure to be representative of
the material; e.g. a microstructure with over 200 grains is required to present sufficient
microstructural and textural characteristics of an AA5457DC sheet [41]. Furthermore, a
suitable strategy for data generation should be presented, such that the resulting model is
capable of making predictions for real materials. This thesis addresses the identified gaps
in research.
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Chapter 4

Research Overview

4.1 Research strategy

The research work has been divined into two major parts as discussed in section 1.2. This
section present strategies to address each of the set goal, as outlined next.

4.1.1 Development of a machine learning based framework to pre-
dict stress-strain behaviour and texture evolution for FCC
single crystal and polycrystalline materials.

The goal of this work is to develop a machine learning-based framework that enables
rapid and high-fidelity predictions for stress-strain behaviour and texture evolution. The
framework must be applicable for a wide range of materials characterised by texture (crystal
orientation) and hardening parameters. The machine learning model selection is performed.
The Taylor-type crystal plasticity model simulations act as a learning base for the machine
learning model within the framework. The input and output features of the model and
their corresponding sampling strategies are selected. The data processing methods are
introduced. The proposed model must capture accurate material behaviour under non-
monotonic strain paths. Since the number of possible non-monotonic strain paths is not
limited, an emphasis is put on the dataset design. To achieve accurate stress, strain
and texture evolution predictions for non-monotonic loadings, the proposed framework
incorporates a crystal plasticity update algorithm. The resultant framework is validated
against crystal plasticity simulations for several monotonic and non-monotonic loading
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for a number of different materials. The importance of this work is also highlighted by
its feasibility: the framework can predict complex strain paths without having to train
machine learning models on the infinite set of possible non-monotonic loading scenarios.
The runtime comparison of the proposed framework with the Taylor-type crystal plasticity
model is performed. This part presents a macro-level model that allows predictions for
single and polycrystals.

4.1.2 Development of a machine learning based framework for pre-
diction of local stress and strain evolution predictions for
FCC polycrystalline materials.

The second part of the research is a micro-level model that allows predicting local stresses
and strains for a given microstructure. The goal of this work is to develop a machine
learning-based framework that enables rapid and high-fidelity predictions for local stress-
strain behaviour. The framework must be applicable for a wide range of materials charac-
terised by a microstructure (a number of grains with crystal orientations) and hardening
parameters. The machine learning model selection for this application is performed. The
finite element crystal plasticity model simulations act as a learning base for the machine
learning model within the framework. The input and output features of the model and
their corresponding sampling strategies are selected. The data processing methods are
introduced. The proposed model must capture accurate material behaviour for various
microstructures. To achieve that, the model was trained on crystal plasticity finite ele-
ment model simulation for synthetically generated microstructures. The methodology be-
hind microstructure generation is presented. The resultant model is first validated against
crystal plasticity finite element simulations for the completely new (unseen during train-
ing) synthesised microstructures. To demonstrate the flexibility of the resultant model,
it was validated against crystal plasticity finite element simulations for aluminium alloy
microstructures. The runtime comparison of the proposed framework with the crystal
plasticity finite element model is performed.

4.2 Summary of contributions

The following two chapters of this thesis present the work carried out to meet the research
objectives. Chapter 5 is based on the following published manuscript:
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Ibragimova, O., Brahme, A., Muhammad, W., Lévesque, J., & Inal, K. (2021). A
new ANN based crystal plasticity model for FCC materials and its application to
non-monotonic strain paths. International Journal of Plasticity, 144, 103059.

The authorship contribution statement for this work is following:

Olga Ibragimova: Conceptualisation, Investigation, Methodology, Formal analysis, Soft-
ware, Visualisation, Writing - original draft.

Abhijit Brahme: Conceptualisation, Investigation, Methodology, Supervision, Writing -
review & editing.

Waqgas Muhammad: Conceptualisation, Investigation, Methodology, Supervision, Writing
- review & editing.

Julie Lévesque: Supervision, Project administration, Funding acquisition.

Kaan Inal: Supervision, Project administration, Funding acquisition.
Chapter 6 is based on the following submitted manuscript:

Ibragimova, O., Brahme, A., Muhammad, W., Connolly, D. S., Lévesque, J., & Inal, K.
(2022). A new CNN based crystal plasticity finite element framework and its appli-
cation to polycrystalline metals. Under Review at International Journal of Plasticity.

The authorship contribution statement for this work is following:

Olga Ibragimova: Conceptualisation, Investigation, Methodology, Formal analysis, Soft-
ware, Visualisation, Writing - original draft.

Abhijit Brahme: Conceptualisation, Methodology, Supervision, Writing - review & edit-
ing.

Wagqgas Muhammad: Conceptualisation, Investigation, Methodology, Supervision, Writing
- review & editing.

Daniel Connolly: Conceptualisation, Methodology.

Lévesque: Supervision, Project administration, Funding acquisition.
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Kaan Inal: Supervision, Project administration, Funding acquisition.

In addition to these applications, the research conducted herein also facilitated the
following publications. These published works do not have a direct impact on the overall
research objectives of this thesis and are referenced only as supporting work:

e Muhammad, W., Brahme, A. P., Ibragimova, O., Kang, J., & Inal, K. (2021). A
machine learning framework to predict local strain distribution and the evolution of
plastic anisotropy & fracture in additively manufactured alloys. International Journal
of Plasticity, 136, 102867.
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Chapter 5

Artificial Neural Networks-based
Crystal Plasticity Model for FCC

Materials and its Application to
Non-monotonic Strain Paths

In this chapter, a machine learning framework to accurately predict stress-strain behaviour
and texture evolution for complex strain paths is developed. The proposed framework is
composed of an ensemble of artificial neural networks and a CP-update algorithm to allow
accurate predictions of material behaviour for complex strain-paths. The framework was
successfully implemented and validated against the Taylor-type CP model for monotonic
and non-monotonic strain paths for single crystal and polycrystalline aggregates. The
chapter presents an accepted manuscript of an article published in International Journal
of Plasticity !.

nternational Journal of Plasticity 144 (2021): 103059. https://doi.org/10.1016/j.ijplas.2021.
103059
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Overview

Machine learning (ML) methods are commonly used for pattern recognition in almost any
field one could imagine. ML techniques can also offer a substantial improvement in compu-
tational time when compared to conventional numerical methods. In this research, a ma-
chine learning- and crystal plasticity-based framework is presented to predict stress-strain
behaviour and texture evolution for a wide variety of materials within the face-centred
cubic family (FCC). Firstly, the process of the framework design is described in detail.
The proposed framework was designed to be built of ensemble of artificial neural networks
(ANN) and a crystal-plasticity based algorithm. Next, the dataset constituent of crystal
plasticity simulations was collected. The dataset consisted of examples of monotonic de-
formation cases, was prepared for training using mathematical transformations, and finally
used to train ANNs used in the framework. Then, the ML framework was demonstrated to
predict full stress-strain and texture evolution of different FCC single crystals under uni-
axial tension, compression, simple shear, equibiaxial tension, tension-compression-tension,
compression-tension-compression, and, finally, for some arbitrary non-monotonic loading
cases. The proposed framework predicts the stress-strain response and texture evolution
with a high degree of accuracy. The results demonstrated in this research show that the
proposed machine learning- and crystal plasticity-based framework exhibits a tremendous
computational advantage over conventional crystal plasticity model. Finally, one of the
most important contributions of this work is to show the framework’s feasibility. The work
demonstrates that machine learning methods can help predict complex strain paths with-
out having to train machine learning models on the infinite set of possible non-monotonic
loading scenarios.

5.1 Introduction

Metals are used in a large variety of structural applications and are of high commercial
importance. Any metal part, before its production, is modelled and tested to ensure its
proper performance. Testing is often carried out by computer-aided engineering, which
invokes the usage of complex simulation tools such as finite element (FE) modelling soft-
ware. Depending on a system, the deformation mechanics can be intricate and can include
a large variety of internal state variables in addition to the observable state variables such
as geometry, deformation, or temperature [146]. While the use of internal state variables
can help describe the response mechanisms more clearly [147, 148, 149, 150, it comes at a
price of high computational effort and is, as a result, time-consuming.
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Crystal Plasticity (CP) models are mesoscopic physics-based models and allow excep-
tionally accurate estimations of material mechanical response on multiple lengths of scales:
from single grains in materials to engineering parts [151]. In the last thirty years, CP
modelling has developed into a very versatile tool that predicts deformation for a wide
range of materials such as steel alloys [152], aluminium alloys |79], magnesium alloys [153],
titanium alloys [154|, and other crystalline materials. CP constitutive equations can be
used to incorporate numerous deformation aspects such as dislocation density [155, 79],
grain boundary strengthening [156], and dynamic recrystallisation [157], and account for
material behaviour at elevated temperature conditions [158] and high strain rates [159].
To account for all of the desired effects, one must include all necessary variables and equa-
tions into the constitutive model and then calibrate it for a specific material. Even a basic
uniaxial tension CP simulation can be very time consuming [160|, as the computational
process includes the solution of a number of highly non-linear partial differential equations
via numerical methods for hundreds of thousands of integration points. With the complex-
ity involved, CP is a state-of-art method that can help design advanced materials with the
exact desired properties for any field of application.

The ability to predict metal deformation accurately and swiftly is crucial, especially
when we want to prototype new materials rapidly. Various approaches were investigated
to accelerate crystal plasticity calculations, including parallel computing [161], and the
wavelet transformation algorithm for accelerated CP simulation of cyclic loading [162,
163]. Kalidindi et al. demonstrated a spectral database method to accelerate crystal
plasticity constitutive calculations [164, 165, 166, 167|. The presented database consists of
discrete Fourier transforms coefficients that accurately capture the main solutions of CP
constitutive equations, thereby avoiding direct computation of solutions. Another work of
Kalidindi and co-workers is the Material Knowledge System (MKS) framework — a database
approach to help establish linkages within material properties [92, 168, 169, 103]. MKS
employs methods of data science, machine learning, statistics, and other fields to create
structure-property-processing relationship for different materials and is used for various
applications such as prediction of texture sensitive flow responses [94| and microscale plastic
strain rate fields [107] in composite materials and other multiscale phenomena in material
modelling [105, 106].

Machine learning (ML) based approaches can be fast once trained and become increas-
ingly accessible. They are designed to capture highly non-linear relations and do not require
auxiliary databases for their implementations [45]. Ghaboussi et al. [109] suggested using
artificial neural networks (ANNs) as an alternative to mathematical models of material
behaviour and have put the beginning to the applications of machine learning in computa-
tional material science. ML methods have been demonstrated to accurately predict various
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quantities in material science in the past thirty years. Ghaboussi et al. [170] used ANNs to
model the constitutive behaviour of materials. Lefik et al. [171] used an ANN as an incre-
mental constitutive model implemented in an FE code and demonstrated the predictions
of stress paths for a given strain history. A similar prediction approach for flow response
was utilised later in other studies [172, 173]. Brahme et al. [113] demonstrated the capa-
bility of ANNs to predict cold-rolling fibre texture of steel based on the initial texture data
and rolling reduction parameter. Li et al. [110] presented an ML model that predicted
material hardening; this approach was more efficient than the conventional calibration of
a yield function. One of the significant studies was conducted by Mozaffar et al. [10], who
demonstrated the prediction of path-dependent material response in terms of stresses and
plastic energy for two-dimensional representative volume element (RVE) with a sequence-
learning model. Gorji et al. [111] used several different ANNs to replicate the predictions of
anisotropic Y1d2000-2d model for various loading conditions. Their worked demonstrated
excellent predictive capabilities of feed-forward neural networks and gated-recurrent units
network for monotonic and non-monotonic loadings, predicting stress states based on the
applied strain. In the recent study, Muhammad et al. [115] demonstrated an ML frame-
work utilised to predict the evolution of local strain distribution, plastic anisotropy and
failure during tensile deformation of 3D-printed aluminium alloy.

Numerous studies involved the utilisation of neural networks and other machine learn-
ing algorithms in CP applications. Mangal and Holm [134, 135] used classification ML
methods to predict the formation of stress hotspots in polycrystalline materials under uni-
axial tension for face-centred cubic (FCC) and hexagonal close-packed (HCP) materials. A
dataset of synthetic three-dimensional (3D) microstructures, including microstructural de-
scriptors for each grain, and the stress and strain fields resulting from CP simulations, was
also provided by the researchers [136]. Ali et al. [137] proposed an ANN-based framework
to predict the flow response and texture evolution of polycrystals subjected to multiax-
ial and non-proportional loading. They accurately predicted the constitutive response of
AA6063-T6 alloy under uniaxial tension followed by simple shear. Other applications of
this method included: linear regression and neural networks applied to predict a cyclic
stress-strain relation for steels [138|, sequence learning methods were applied to predict
microstructural texture evolution for an FCC copper sample under uniaxial tension [139],
ANNSs applied to predict the relation between CP parameters and the microstructural tex-
ture for a titanium alloy under uniaxial tension [140], a classification ML algorithm using
spatial strain correlation to infer and classify prior deformation history in thin aluminium
films [141].

The key to the successful training of an ML model for computational material science
applications is to form a meaningful dataset about material behaviour. Most of the men-
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tioned studies highlighted the computational advantage of machine learning models and
high accuracy within the bounding box of a training set. The downside of using those
models is that their accuracy is typically limited to a range and scope of a training set [45]
as ML typically performs poorly in the extrapolation tasks, although being very good at
generalisation. This study will show that it is possible to use machine learning as a tool
to achieve accurate predictions of complex phenomena such as plastic deformation and
texture evolution far beyond the range and scope of a training set.

This paper introduces an approach to couple machine learning and crystal plasticity
modelling method. The framework resulting from this approach enables fast and accurate
predictions for complex loading for a broad range of face-centred cubic materials. The
proposed framework is based on an ensemble of feed-forward neural networks (FFNNs),
namely multi-layer perceptrons, trained on monotonic loading scenarios, implemented with
a CP update-algorithm. This algorithm allows making predictions far beyond the set of
loading conditions included in a training set. It is capable of accurate predictions of stress
and texture evolution for a given crystalline material. In addition, the framework predicts
evolving value of critical resolved shear stress (CRSS) and accumulated shear as internal
variables, which are used to ensure accurate predictions in the cases of non-monotonic
loading scenarios.

The organisation of this paper is as follows. The current section presented an intro-
duction to the proposed work. Section 5.2 introduces crystal plasticity constitutive model
and the development process of the proposed framework. Section 5.3 presents the predic-
tions obtained with the framework and comparing them with crystal plasticity simulations.
Finally, Section 5.4 summarises the work and concludes the obtained results.

5.2 Methods & Development of Machine Learning Frame-
work

The goal of the present work is to develop and implement a machine learning framework to
address the computational drawback associated with crystal plasticity calculations. The
proposed framework uses a machine learning- and crystal plasticity-based method that is
built upon the data of CP simulations to compute the evolution of stress and texture during
deformation under any complex strain path for a wide range of FCC materials. Figure 5.1
illustrates the generalised schematics of the proposed framework. The framework involves:

e selection of necessary variables,
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CP simulations for those variables,

constructing a dataset based on the performed simulations,

data normalisation to achieve better training results,

machine learning model selection, training, and evaluation,

and implementing a CP update algorithm.

The main idea of the implementation of the CP update algorithm, in order, is to a)
identify the evolving parameters in the CP framework, b) use the trained ML algorithm,
calculate the update on the evolving parameters using the obtained predictions, and c¢) use
the updated parameters as inputs to next the iteration of the ML algorithm.

The next subsections provide details on the CP constitutive model used in this work,
dataset generation, the coupling of ML and CP, and artificial neural networks.
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Figure 5.1: Schematic representation of the proposed framework
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5.2.1 Crystal Plasticity Constitutive Model

Flow behaviour of materials can be modelled using various approaches. Phenomenological
plasticity models are most commonly used and are capable of capturing material behaviour
under variety of loading conditions [174, 175]. However, these models are not designed
to predict a texture change within deformed material, in contrast to crystal plasticity
models which use crystallographic slip mechanism in their formulations. The growing
body of literature demonstrates the power of crystal plasticity models for face-centered
cubic [41, 176], body-centered cubic [177, 178, 179], and hexagonal closest packed crystal
structure materials [180, 181].

The rate-dependant CP formulation based on the work by Asaro and Needleman [36]
is employed in this work. In this formulation, the plastic deformation occurs due to the
mechanism of crystallographic slip. For an FCC metal, e.g. Aluminum, slip occurs along
three unique < 110 > slip directions and in the four unique [111] slip plane. Consequently,
there are twelve unique slip systems for materials with FCC crystal structure. The elastic
constitutive equation is expressed as:

o=LD—°—otr D (5.1)

v
where o is the Jaumann rate of Cauchy stress, D is the strain-rate tensor, £ is the
elastic stress tensor, and ¢ is the viscoplastic type stress state.

For each slip system « slip rates are calculated as:

T(O‘) 1/m

g(f")

(a) (a)

A = Ay sgn T (5.2)

where 4y is the reference shear rate, 7(% is the resolved shear stress on slip system «,
m is the index for strain-rate sensitivity, and ¢® is slip system hardness parameter.

The single crystal work hardening is expressed as:
g
where h,s are the hardening moduli described as:

hog = gaphp (n0 sum on f3) (5.4)
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where g,p is the term for latent hardening behaviour of a crystal, and hg is the single
crystal hardening rate. The term for latent hardening expressed as:

A gA qA ¢A

_ | A A gA q¢A
Qs = | 44 g4 A qA
gA gA gqA A

(5.5)

where A is a 3 x 3 matrices fully populated with ones, and ¢ is the ratio of latent
hardening to self hardening and is set to one.

Finally, single slip hardening used in this work is governed by a hardening law proposed
by Chang and Asaro [182] and is expressed as:

Ts — 70

ho — h,
hg = hs + (ho — hy) sech? {( 0 ) 7@} (5.6)

This hardening model depends on the parameters that define material flow behaviour:
the initial hardness 7y, the saturation shear stress 7,, the initial hardening modulus hg, and
the parameter that controls the slope at the saturation regime h;.

Following the framework presented by Rossiter et al. [86], equations 5.1-5.6 are used to
update the stress and the texture. These equations form the core of CP theory and entail
a computational drawback associated with CP simulations. The present work aims to
enable machine learning to eliminate this computational complexity by achieving reliable
predictions comparable to crystal plasticity simulations. The ML framework proposed in
this work is used to compute the stress tensor, texture evolution (i.e. rotation matrix), the
accumulated shear, and the evolving critical resolved shear stress.

A comprehensive description of this CP model can be observed in the works by Inal
et al. [40] and Rossiter et al. [86]. The presented crystal plasticity constitutive model is
used within an in-house crystal plasticity code and was employed to generate the training
dataset presented in the subsection 5.2.2.

5.2.2 Dataset Generation

A training dataset has a strong influence on the accuracy of the ML model [183]. It is vital
that the dataset used to construct an accurate machine learning model contains enough
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information that is representative of a given problem. It could be computationally ex-
pensive to collect such a dataset, especially in the case when the model has many input
features, as the difficulty of the problem increases with the increase of the number of in-
put features [184, 185|. Therefore, the input to the model needs to have the minimum
amount of features that are necessary to perform accurate predictions, and the selection
of those features requires the understanding of the field of application. In this case, con-
structing robust dataset with all necessary information requires understanding of CP and
its computational drawbacks.

The process of selecting features out of available data and transformation of those
features for a machine learning model is referred to as “feature engineering” [122, 123, 124,
125]. Tt is a fundamental process used in ML, as a training dataset has a strong influence
on model accuracy. In this work, the process of feature engineering included a selection
of a subset of variables from available variable space, which should be sufficient to train
an accurate machine learning model f: f(input) = output. The numerical range for each
selected variable was defined and is explained later in this section.

The CP model explained in subsection 5.2.1 was utilized to generate the dataset for
training. The model used the hardening law proposed by Chang and Asaro [182] and
is given in equation 5.6. This hardening law offers the most flexibility in capturing the
flow behaviour for a wide variety of conditions. The input features used for training
the machine learning model include material parameters used in this hardening model viz.
initial hardness, initial hardening modulus, as these parameters have a significant influence
on the material deformation behaviour. In addition, the input included the strain-rate
tensor and initial texture of the crystal. The range on the input parameters is chosen
such that it covers a wide variety of material response within the FCC family. This is
the minimal set of features that could be used for training a machine learning model, as
hardening parameters regulate a material behaviour, and initial texture and the strain path
are the essential descriptors of a single crystal and the deformation that it is undergoing.
Therefore, the feature space cannot be reduced to fewer features. Output features of the
machine learning framework are the CRSS, stress tensor, texture evolution in the form of
rotation matrix, and accumulated shear value. Input and output variables are summarised
in tables 5.1 and 5.2 correspondingly. The data was generated for 50 timesteps with
At = 0.001 which gives a maximum strain equal to 0.05.

Optimal filling of a feature domain is beneficial for training an optimal model. In
this work, no prior knowledge of the feature space is assumed therefore it is advantageous
to sample it uniformly. Using the method of grid-sampling would result in a uniform
and robust dataset, but it would be very large due to the number of input parameters
to the model, and both data-mining and training would be computationally expensive.
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Table 5.1: Input features, their ranges, and description of the feature and the physical
parameters it controls.

Input variable = Range Description

To 100.0...200.0 MPa Initial hardness

hg 70.0...500.0 MPa Initial hardening modulus

Dy,2=1...3 —-1.0...1.0 Diagonal components of a strain-
rate tensor

Dqo —1.0...1.0 12-component of a strain-rate tensor

ag,, 4, =1...3 —1.0...1.0 Initial texture in a form of rotation
matrix

Table 5.2: Output features and their description.

Predicted variable Description

g Critical resolved shear stress (MPa)

gij, 1, =1...3 Stress response (MPa) (6 values, due to
symmetrical nature of stress tensor)

aij, 1,7 =1...3 Texture evolution (9 values of rotation
matrix)

7@ (ashear) Accumulated shear value

To overcome this problem and have a robust dataset, Sobol sequences were employed to
sample the data. Sobol sequences, also known as LP, sequences, have been shown to
sample a domain efficiently [126, 127, 186, 187|. Literature highlights Sobol sequences
for their beneficial space-filling properties [188, 121]. The significant advantage of the
sequences is in their low-discrepancy property, i.e. the points in the sequence are almost
equidistributed. This fact ensures the domain is filled uniformly but yet quasi-randomly,
which is beneficial for training a machine learning model. The algorithm on Sobol sequence
generation is explained in Bratley and Fox [186]. The motivation behind utilisation of the
Sobol sequence is to generate a sequence (set of numerical points) that is “well-spaced” in
the s-dimensional unit cube I° = [0, 1]°, such that:

lim lZf(xi): 1 1, (5.7)
i=1 °

n—oo N,
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where f is some real integrable function over I°. The Sobol sequence generation al-
gorithm generates data in the range [0,1]. Each feature must then be converted to its
range. Figure 5.2 depicts the visual comparisons of three distinct datasets generated for
343 Euler angles (the number was picked for convenience of the grid sampling approach),
and their projections on the coordinate planes phil — Phi, Phi — phi2, and phil — phi2.
The first set was sampled with Sobol sequences, the second — with random sampling from
a uniform distribution, and the third one — with grid sampling. One can observe that the
first sampling approach provides a more equi-distributed set of points as compared to that
generated by the random sampling which may result in clusters of points. These clusters
can results in overfitting during training. Finally, grid search does not provide diversity in
sampling, in comparison to sampling with Sobol sequences or random sampling, especially
in the case of high-dimensional feature space. Therefore, using Sobol sequences in sampling
the input data is beneficial for machine learning tasks.

To summarise, the final dataset included 1,451,161 samples corresponding to unique
loading conditions, and the input parameters were sampled using Sobol sequences. Each
sample consisted of an input-output set and corresponded to a unique monotonic loading.
The total time it took to collect all the data was eight and a half hours for 32 parallel
processes, each running on a separate central processing unit core.

‘With Sobol sequences ‘With random sampling With grid sampling

5

7253
ey

2

Figure 5.2: Visual comparison of sampling with Sobol sequences, random sampling from a
uniform distribution, and grid sampling approaches.

Finally, it is very important to efficiently store large datasets. When the available data
is small in size, it is often convenient to use standard flat formats such as text (.txt) files,
comma-separated values (.csv) files, or excel (.xlsx) files, as such files are easy to open,
modify, and access. However, when the data gets more substantial in size, one can hit a
roadblock of fitting it into the memory and performing calculations on it. The Hierarchical
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Data Format (HDF5, where five stands for the version number) technology suite [69] is an
efficient method of compression and storage of scientific data that is too large to store in
memory. This method helps to efficiently organise the large amounts of data, allows com-
pliant and efficient input and output, makes the dataset easily transferable, extensible, and
accessible in many frameworks or by the aid of various programming languages including
Python (second and third versions), R, FORTRAN, and C++. Within HDF5 data files,
the data is stored hierarchically, in forms of multidimensional arrays. The technology suite
allows very efficient data compression. A comparison of two files storing the same single-
precision floating-point numerical data array of shape (100000000, 10) was performed. The
comma-separated data file storing this array used 25.1 gigabytes (GB) of memory, and the
HDF5 data file used only 4.0 GB. Data loading time was also significantly improved: it
took 18.5 minutes to access the data from comma-separated value file, and only 590 us to
access data stored in HDF5 format. The latter method of dataset storage was used in the
research.

5.2.3 Coupling Machine Learning and Crystal Plasticity

The strength of CP is the ability to predict material response along any complex strain
path once it is calibrated for the given material [137, 189]. As mentioned earlier, its main
drawback is computational cost, especially when one has to account for complex microstruc-
ture with a relatively large number of grains/orientations. Machine learning methods can
help eliminate a computational drawback associated with crystal plasticity. The proposed
framework couples application of machine learning and crystal plasticity. Training a ma-
chine learning model to achieve predictions for any complex strain path, even though
possible, is not feasible due to the infinite number of complex loading conditions that will
have to be generated, and the model has to be trained on that set. Training an ML model
on monotonic loading examples would not result in the model capable of predicting mate-
rial behaviour under complex non-monotonic strain path because non-monotonic loadings
lie in the different distribution of strain paths [190]. The challenge is to devise a framework
that can predict the response using relatively simple/monotonic strain paths and use those
to predict complex strain paths.

In this work, we used the knowledge of CP to develop a framework that is pseudo-
recursive in nature. The design of the framework relies on the correct parameterisation
of the CP model and the selection of a feature set that encompasses the parameter set
presented in table 5.1. To perform the correct parametrisation, the identification of CP
constitutive model evolving features and their ranges of variation were identified. Then, to
predict a result of material deformation under a complex strain path, this complex strain
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path is to be broken into monotonic parts. The ML algorithm was used to predict output
variables for first monotonic part of the strain path and pass them to the CP-update algo-
rithm, receive the updated variables, and repeat the process the needed number of times.
The essence of the CP-update algorithm is in keeping the evolving material parameters up-
dated throughout the deformation process like initial hardness 75 and hardening modulus
ho. The detailed explanation of prediction process is presented below.

(=0
/ il /L> D —D; ... D;... ,Dy - Save ay; T; hy;
Ty hy

v

Save predicted <. Pass [D;,; ag; To; hy;l CP-update:
N 0 stress and texture isitl through ensemble ag; To; hy;

- I 'Y

7/ a 1y hy; g Y@ /;

v
A

Predicted stress tensor and texture
evolution

Figure 5.3: The flowchart describes the process of obtaining the predictions for a given
strain path. Parallelogram units represent the data that is used as input. Rectangle units
show processes in the framework. The diamond unit indicates the decision point. Finally,
the rounded rectangle unit is the terminal process that outputs final stress-strain and
texture evolution predictions.

Figure 5.3 presents the flowchart that describes the process of prediction for stress and
texture evolution for any given strain path. If the strain path of interest is monotonic and
the total deformation is less than 0.05 in strain, then the inputs shown in the top left corner
of the flowchart (figure 5.3) are sufficient to obtain the predictions for the stress and the
evolved texture. The limitation of 0.05 in strain arises from the fact that the implemented
ML algorithm was trained on the dataset consisting of monotonic loadings that were 0.05
in strain. It should be mentioned that, for a monotonic strain path of interest less than 0.05
in strain, the predictions of the evolved quantities like {g,7*)}outpur are inconsequential
and only the stress tensor and the texture outputs need to be preserved.

In the case when total strain is larger than 0.05 or in the case when the strain path
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is non-monotonic, i.e. the strain-rate tensor, D, changes during loading, the following
procedure is employed. As the first step, the strain path is split into monotonic parts that
are less than 0.05 in strain. For each of the monotonic parts, the prediction procedure is
identical to that of the single strain path, i.e. {79, ho, D, ao,, }input — {9, 045, @i, Sl Y—
It should be mentioned that the input of the initial hardness, hardening modulus, and
initial texture for the first monotonic part is identical to the given initial parameters: 7y,
ho, ao,;. Beside the material parameters, the other input is the initial strain-rate D;.
Passing the above input through the ensemble of ANNs produces the following outputs:
{g1,01,,, a1, %a)}output, updated texture as well as the variables g; and %O‘), which are used
to update CP parameters. Note that this procedure is repeated until the desired strain
levels are reached for each strain path individually (in parts). As for the CP parameter
update, the initial hardness 7y is updated with the predicted value of CRSS, g. The
predicted values of CRSS exceeding the value of the saturation shear stress, 7,, are assigned
to the value of 7,. Finally, the hardening modulus is adjusted according to:

h '7hs « . . @

h0i+l _ h/s + (ho1 - hs) SeCh2 { <—T217_0i ) fY((z—)Q)} lf g; < Ts (Z = ]_ . N and 7((_)1) — )7
hs otherwise

(5.8)

where ¢ represents the number of a pass.

The flowchart for the entire procedure is illustrated in figure 5.3, and the used ensemble
of ANNSs is schematically presented in figure 5.4. Accordingly, an input vector is fed to
each network in the ensemble. Each of the networks computes its own feature. The output
of the ensemble consists of networks’ predictions.

The next subsection presents the details about ANNs used in this framework.

5.2.4 Artificial Neural Networks

There are various ANNs currently being adopted. The list of proposed types of ANNs
includes, but is not limited to, the multilayer perceptron feed-forward neural networks,
convolutional neural networks (CNNs), and recurrent neural networks (RNNs).

Each class of ANNs usually corresponds to a particular kind of problem. For example,
FFNNs are commonly used in any field and are also well-known as “universal approxi-
mators” [191]. FFNNs are typically used with the tabular data and can be applied to a
broad spectrum of supervised machine learning tasks [192]. CNN is a class of ANNs com-
monly used in computer-vision application, object recognition, imagery analysis, and other
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image-related studies [193]. Note that usage of CNNs is not limited to these tasks. CNNs
usually majorly consist of convolutional layers, which are more complex than fully con-
nected layers of FFNNs. RNN is a class of ANNs that is commonly used for the prediction
and classification of sequential data of a varied length (such as text or sound) and is noted
to have the ability to cope with a broad spectrum of temporal dependencies [194]. Note
that the usage of RNNs is not limited to the tasks of sequence learning. There is a number
of different sub-types of RNNs, such as Long-Short Term Memory (LSTM) networks [195]
or Gated Recurrent Unit (GRU) networks [196]. These networks are more complex than
FFNNs in architecture since the connections between the nodes of RNNs form loops, which
allow previous outputs to be used as inputs while having hidden states [197]. In addition,
these networks can have variations such as deep RNNs, and Bi-directional RNNs [198].

In contrast to CNNs and RNNs, FFNNs are simpler in their architecture (only layers
and neurons in hidden layers are subject to variation) and, therefore, easier to be tested
in their variety. The data used in the current research was used in the tabular form and
related initial material parameters to the corresponding stress-strain response and texture
evolution. Hence, the feed-forward neural network with a backpropagation algorithm was
used in this work. From here on, the term “ANN” has been used to refer to feed forward
neural network. Figure 5.5 demonstrates a schematic representation of such neural network.

Ensemble of ANNs

Soe o
.

Figure 5.4: The figure represents a schematic of ensemble of artificial neural networks. An
input vector is fed to each network in the ensemble. Each of the networks computes its
own feature. The output of the ensemble consists of networks’ predictions.

Input — — Output

The result of training the network is a continuous function, that is formed from a set of
interconnected unit cells [199]. The assembly of the unit cells into layers is referred to as
network architecture. Each unit cell performs a mathematical transformation of weights
and biases and produces an output. The forward-propagation through a feed-forward
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Figure 5.5: Schematic representation of a feed-forward artificial neural network with two
input unit cells, two hidden layers and one output unit cell. The network has three unit
cells in the first hidden layer, and one unit cell in the second hidden layer.

neural network can be described as:

ol = g (61 + b))

ol = g (62alV 4 pi2)

. (5.9)

a1 = g (91102 4 pi-1)
y = g1 1 i

Where 0 is a weight matrix in the I** layer, b is a bias vector in the I** layer, al! is
an output vector in the [** layer, ¢ is an activation function, x is an input vector, and y is
an output vector of a neural network. Details about activation functions, normalisation,
evaluation, and training of the neural network, used in this work are discussed in further
subsections.
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Activation Function & Normalisation

Activation functions transform a value in a unit cell, typically in a non-linear way [200].
In this study, the hyperbolic tangent activation function was used:

(5 — )

tanh(z) = 1)

(5.10)

This activation function is continuous and differentiable and has a range of [—1,1]. In
the neural network design, this function is often preferred, as its gradients vary in their
directions. Furthermore, it is zero centred unlike the sigmoid activation function [201]. In
this work the input and output variables were normalized between —1, 1. The hyperbolic
tangent activation function performs better with this normalisation. To normalise the
i'" input or output feature in [—1,1] the following mathematical transformation must be
applied to it:

| © — min 20
@ g T WY g (5.11)

x = : I
normed max (® — min z(®

where min 2 is a minimum and max z® is a maximum value of the i** feature of the
input vector or the output vector in the training (i.e. separate from testing and validation
parts) dataset.

The other normalisation used in this research was normalisation by range adjustment.
This normalisation method is proposed in order to improve the texture evolution (a;;,
i,j = 1...3) learnability. Since all components in the orientation matrix fall within the
range of [—1,1], normalisation is not required. However, the statistical range (i.e. the
difference between the largest and smallest values) of each output curve a;; is very small.
Maximal statistical ranges of each curve do not exceed 0.03. Therefore, to improve the
learnability of texture evolution, it is beneficial to adjust their range by its enlargement. To
enlarge the statistical range for each curve by the factor of 100, the following mathematical
expression was applied:

G = (50 — ym) Y100 + ) (5.12)

~ Ymean mean’

and the backward transformation is described by:

Y™ = (5 — )y /100 + 40 (5.13)

~ Ymean mean’
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where m is a number of samples in a dataset. Note, that the mean value for the
original and the transformed curves will be the same (i.e. 7™ = 4™ for each m). Further
normalisation is not required, as the last layer’s normalisation function is a linear (pass-
through) activation function and can predict the values that lie outside the [—1, 1] range.

Normalisation for input strain rate tensor is not required, as all its values fall within
the [—1, 1] range. Table 5.3 summarises the normalisation methods for each variable.

Table 5.3: Features and their normalisation methods.

Variable Normalisation method

Dy, ¢, =1...3 No normalisation

To Normalisation in —1...1

hy Normalisation in —1...1

g Normalisation in —1...1

oy, 4, =1...3 Normalisation in —1...1

aij, 1, =1...3 Normalisation by range adjustment
(@) Normalisation in —1...1

Evaluation of Artificial Neural Networks

The cost function, J(6,b), and loss function, £ <y1()?ed,y§2w), measure the “goodness” of

the trained network. The cost function measures the performance of the model on the
dataset. The value of the function is minimised by an optimisation algorithm during
training by updating the weights’ and biases’ values in the “right” direction [45]. The loss
function measures how well the model performs on a single training example. Cost function
depends on the loss function as follows:

Z £ (Uhrea irne) (5.14)

where m is a number of samples in an evaluated dataset.

Mean squared error (MSE) is a common loss function for regression problems and is
used as both loss function and evaluation metrics in this research. The formula for MSE
is the following:

76



i i I~/ H 2
‘CMSE (y}(')r)ecb ylSTiL@) = E Z (ylg’l’zte - ;r)ed> ) (515)

1=

where n is a number of elements in an output vector.

Optimisation Algorithm

Adaptive Moment Estimation (Adam) [55] is one of the recently developed gradient descent-
based backpropagation optimisation algorithms and is commonly used. This algorithm
was used for training ANNs. The algorithm computes adaptive learning rates for each
parameter. It stores an exponentially decaying average of past squared gradients v, like
algorithms such as Nesterov’s accelerated gradient method [54|, MaxProp [59]|, AdaDelta
[57], and others. It differs in the way it updates an exponentially decaying average of past
gradients:

my = Brme—1 + (1 — B1) g,

U = 521),5_1 + (1 — 52> th’ (516)

where m; and v; are approximations of the first moment (the mean) and the second mo-
ment (the non-centred variance) of the gradients. Bias-corrected first and second moment
estimates are computed to counter moments being biased towards zero:

N my
e =15t
A v (5.17)
Uy = ——.
L4
Eventually, parameters are updated according to:
« A
9t+1 = Ht — My, (518)

Vo + e

where 1, P2, a, and € are the algorithm hyperparameters and are subject to tuning.
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Artificial Neural Networks Architectures

In order to select ANNs for the proposed framework, several networks with different ar-
chitectures were compared in their performance. The effect of the total number of layers
and the number of neurons per layer on the accuracy of the network was studied. Fig-
ure 5.6 demonstrates the evolution of the mean squared errors for training and validation
dataset during training for different architectures of the model for prediction of a o;-stress
component. The network number, in the legend of the figure, corresponds to a different
architecture which are presented in the table 5.4 along with the corresponding validation
errors. It can be noted, that the ANNs (5) and (6) have the same number of hidden layers
and neurons within hidden layers, but the sequence of hidden layers is different. It can
be observed that the network (6) which has a descending number of unit cells from input
to output is more accurate than the network in which unit cells in hidden layers ascend
from input to output. It is observed that the training and validation error decreases pro-
portionally to the depth on the network. The network (9) is a deep neural network and
has 15 hidden layers, and it is the most accurate out of all other networks. An ANN with
this architecture was chosen for prediction of o1 stress tensor component based on these
observations.

Table 5.4: The architectures used in the architecture search for training an artificial
neural network to predict a 017 component of a stress response

Archi- . Validation
tecture Architecture
MSE

number

(1) [512] 1.09F — 02
(2) [1024] 1.31FE — 02
(3) (1024 — 512] 6.30F — 03
(4) (1024 — 512 — 512 — 26 4.25F — 03
(5) [128 — 256 — 512 — 1024 — 1024 — 2048] 6.25F — 03
(6) (2048 — 1024 — 1024 — 512 — 256 — 128] 2.69F — 03
(7) [4096 — 2048 — 1024 — 1024 — 1024 — 512 — 512 — 512] 2.72FE — 03
(8) (1024 — 1024 — 1024 — 512 — 512 — 512 — 256 2.97E — 03
(9) (2048 — 1024 — 1024 — 512 — 512 — 512 — 512— L37E — 03

—256 — 256 — 256 — 256 — 128 — 128 — 128 — 12§]

For brevity, process of model selection is shown only for o;; stress tensor component.
Similar procedure was performed for all other output variables, and the most accurate
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Figure 5.6: Neural networks learning rates showing the evolution of losses for training and
validation datasets. Each network is numerated, and each number corresponds to unique
network architecture. For each ANN, the architecture and validation error are summarised
in table 5.4.

models were incorporated into the framework. Final architectures for each model are
reported in table 5.5.

To train neural networks, the available dataset was split into three parts: training set,
validation set, and test set. CP simulations were performed to obtain corresponding labels
for the inputs sampled using the Sobol sequence method. This method allows the filling
of the samples’ space gradually and uniformly, as shown in figure 5.7, which demonstrates
the first 10, 50, and 100 points sampled from 2D space with Sobol sequence. Therefore,
additional shuffling of the collected dataset is not required. As discussed in subsection
5.2.2, the dataset consisted of 1,451,161 samples. The last 10% of all samples in the
dataset were used for the test set. The rest of the data was randomly split into training
and validation datasets in proportion of 8:1. Figure 5.8 demonstrates the effect of the
number of samples in the dataset on the performance of the model and confirms that the
amount of the training data was adequate to train an accurate model (for brevity, only
the study for oy is shown). Table 5.5 reports the test set root mean squared error for
each ANN, and each error is converted back to the scale of each variable. The formula for
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Table 5.5: Final architectures for the networks implemented in the framework.
Architecture column displays the number of unit cells in each hidden layer. Test RMSE
columns presented the error on the test set prediction.

Predicted variable Architecture Test RMSE

_ B B o11: 8.78E — 02 [MPa|
(2048 — 1024 — 1024 834 — 02 [MPal

022:
512 — 512 — 512— 0o33: 2.80F — 02 [MPal

0y i j=1...3 512 — 256 — 256— ooor 4.34F — 02 [MPal
256 — 256 — 128— -
128 — 128 — 128)] o13: 5.13E — 02 [MPal]
0923 1.02E — 01 [MPa]
aiy- 287K — 02
a12: 3.06F — 02
a3- 2.21FE — 02
asy: 1.98E — 02
aij, 1,j =1...3 (1024 — 1024 — 1024— agy: 3.14F — 02
g 512 — 512 — 512— ass: 2.72F — 02
(@) 256 — 256 — 256] as: 2.62F — 02
aso: 1.87FE — 02
as3.: 3.09F — 02

g:1.04E — 02 [MPa]
(@) 1.36E — 02

RMSE is demonstrated by the equation 5.19, where N is the number of observations in a

test set, y©T is the prediction by crystal plasticity simulation, and yA¥" is the prediction

by an artificial neural network, and ¢ is the number of the sample in the test set.

N (4CP _
rysE = |3 W -

=1

ANN)2

(5.19)

For the stress-strain, texture, CRSS, and accumulated shear predictions, the test set
prediction errors lies far within the 1% error gap, thus confirming the accuracy of each
ANN.

Each artificial neural network was trained for a maximum of 800 training iterations.
Initial learning rate, o, was 1073, decreasing by a factor of 0.95 in the case of no training
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1.0 ® P ° First 100 points
o ° ® ® ® First 50 points
° ° ® o e First 10 points
0.8 e
® L ¢
° o ¢
° »
e o ¢ L
0.6 . o o
°
> . * ° °
° * ®
0.4 ° ° ®
°
o ¢ i
°
°. >
0.2 o °
® ®
° ° .
° °
° o
0.0 ° U
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 5.7: First one hundred points sampled with the Sobol sequence in 2D space. The
sampled points cover the space evenly.

progress being made over five consecutive training epochs (i.e. number of passes of the
training set). The other optimiser hyperparameters were set to their standard values:
Br = 0.9, By = 0.999, ¢ = 1078, For each training, early stopping was used to stop
training if the change in learning metrics did not exceed 10~® over ten consecutive training
iterations. The batch size (i.e. the number of training examples used in one iteration) of
216 was used for training the networks. An approximate time to train each network was
150 minutes. After test errors validated the accuracy of ANNs, the test and validation set
was also shuffled into training data, and the models were further trained for another 50
epoch. Finally, the obtained ANNs were used in the framework to predict the response
and the computational inefficiency is compared with the CP model.
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The effect of the training set size on training and validation errors
Predicted feature: 011, 800 epochs
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Figure 5.8: The effect of the amount of data on the performance of the network trained for
prediction of 017 feature. The X-axis presents the number of samples in the dataset used
for training. Y-axis presents the MSE after 800 training epochs. Both axes are shown on
a logarithmic scale. The selected dataset was randomly split into training and validation
datasets in proportion of 8:2.

5.3 Results & Discussion

As discussed earlier, this framework is capable of predicting full stress-strain behaviour
for any strain path and for any crystal orientation. This section presents predictions of
the framework and verifies the framework performance against CP simulations. Crystal
plasticity simulations were computed for different strain paths, both monotonic and non-
monotonic, for different single crystal orientations as well as polycrystal ensembles, and
were used to verify the predictions of the framework. In this section, the errors are quan-
tified with the RMSE metrics, as it provides a comprehensive single number performance
evaluation given in the same units as the measured variables. The RMSE was calculated
across all points on each flow curve and then was averaged across all stress components.
The RMSE for texture evolution was calculated using RMSE for each predicted timestep
for each Euler angle, and then was averaged across all Euler angles. All the predictions
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are shown graphically in figures. The subsequent subsections present the results for:

5.3.1 monotonic strain path predictions
5.3.2 non-monotonic strain path framework predictions

5.3.3 polycrystal deformation predictions for monotonic and non-monotonic strain paths

Finally, a runtime comparison between CP and the ANN was performed and is discussed
in subsection 5.3.4.

5.3.1 Predictions for Monotonic Strain Paths

Once trained the ANN framework can be used to predict the flow behaviour for any ar-
bitrary texture for any strain path. This subsection will demonstrate the ability of the
framework to predict the texture evolution and as well stress evolution during monotonic
loading. In addition, this will also demonstrate the ability of the framework to predict the
evolved texture and stress state outside the bounds initial training data set. To illustrate
the predictive capability different single texture components are chosen for each of the
monotonic strain paths. The following single crystal orientations are used: Cube (0°, 0°,
0°) under uniaxial tension and simple shear, Goss (0°, 45°, 0°) under compression, and
Copper (90°, 35°, 45°) under equibiaxial tension. For each strain path the total strain
prescribed was equal to 0.3, except for the case of simple shear where the prescribed strain
was equal to 0.4 for demonstration of texture prediction framework’s capabilities. Note
that the training data was limited to include a maximum of 0.05 strain.

Figures 5.9 and 5.11 show the uniaxial tension and uniaxial compression stress-strain
predictions for a Cube-oriented and for the Goss-oriented crystal for crystal plasticity and
the ANN framework respectively. The framework predictions show excellent agreement
with CP simulation results. The total RMSE for the uniaxial predictions is 1.64 MPa,
while that for the compression predictions is 2.02 MPa which confirms the accuracy of the
framework. The error is also indicated in the table 5.8.

Figures 5.10 and 5.12 show the texture evolution for the cases of uniaxial tension and
uniaxial compression respectively. During uniaxial tension and compression there is no
significant texture evolution [202, 203] and, in both cases, this is accurately captured by
the framework. The texture evolution prediction error is 10~% degrees for both tension and
compression; the error is reported in the table 5.8.
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Figure 5.9: Comparison between crystal plasticity (CP simulation) and machine learning
framework (ML prediction) single crystal stress-strain curves under uniaxial tension.

In order to obtain better understanding of framework capability to predict texture evo-
lution, shear test was performed. Shear deformation adds more complexity in comparison
to uniaxial tension and compression, as it significantly changes the texture throughout the
deformation [204]. In total, 0.4 shear strain was prescribed to Cube single crystal. The
evolution of texture is seen as a clockwise rotation of texture as shown in figure 5.14. The
framework prediction is in excellent agreement with CP simulation. The prediction error
for texture was evaluated at 0.38°, thus confirming the accuracy of the framework.

Stress-strain response prediction for simple shear was also performed and is displayed
on the figure 5.13. The stress-strain predictions are also in good agreement with crystal
plasticity simulation. The overall error of predictions is 1.94 MPa and is reported in the
table 5.8. It is also noted, that simple shear stress-strain behaviour is more complex than in
the case of tension and compression. The applied shear is in 12 direction. The framework
captures sudden changes of stress in the end of the deformation for o1; and g9 components,
as highlighted on the plot. Further, the framework was also able to predict the decrease in
stress for o15. Most importantly, the shear stress 015 was captured exceptionally well. Thus,
the framework accuracy was confirmed as in the cases of uniaxial tension and compression.

The other strain path that has prominent effects on texture evolution is equibiaxial
tension [205], and hence is also used to validate the framework performance. As in other
cases, the predictions for stress-strain behaviour and texture evolution were performed.
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Figure 5.10: Comparison between crystal plasticity (CP simulation) and machine learning
framework (ML prediction) Cube crystal < 111 > pole figures displaying texture evolution
under uniaxial tension. The result comparison is indicated for 0.0 (initial texture), 0.1,
0.2, and 0.3 values of €17 engineering strain.

CP

ML

Figure 5.15 shows the crystal plasticity and the framework equibiaxial tension stress-strain
predictions for a Copper crystal up to 0.3 for €11 and €95. The overall stress-strain prediction
error was evaluated at 2.47 MPa, and is reported in table 5.8. The framework was capable
to capture the sudden stress changes in the beginning of deformation for o, and o3
components of stress. Predictions for o5 and o935 are at zero, as the CP simulations for
these components. The framework also exhibits remarkable accuracy in prediction of subtle
decrease in stress for o1; component and the increase for o33 component, thus confirming
the accuracy of predictions.

The prediction of texture evolution for the case of equibiaxial tension is exhibited on
the figure 5.16. The overall error for predictions was evaluated at 0.63° and is reported
in table 5.8. It can be seen that the texture undergoes some rotation, and is successfully
captured by the proposed framework, thus, confirming its accuracy.
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Figure 5.11: Comparison between crystal plasticity (CP simulation) and machine learning
framework (ML prediction) single crystal stress-strain curves under compression.
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Figure 5.12: Comparison between crystal plasticity (CP) and machine learning framework
(ML) Goss crystal < 111 > pole figures displaying texture evolution under compression.
The result comparison is indicated for 0.0 (initial texture), 0.1, 0.2, and 0.3 values of |e14|

engineering strain.
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Figure 5.13: Comparison between crystal plasticity (CP simulation) and machine learning
framework (ML prediction) single crystal stress-strain curves under simple shear.
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Figure 5.14: Comparison between crystal plasticity (CP) and machine learning framework
(ML) Cube crystal < 111 > pole figures displaying texture evolution under simple shear.
The result comparison is indicated for 0.0 (initial texture), 0.13, 0.26, and 0.4 values of 15
engineering strain.
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Figure 5.15: Comparison between crystal plasticity (CP simulation) and machine learning
framework (ML prediction) single crystal stress-strain curves under equibiaxial tension.
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Figure 5.16: Comparison between crystal plasticity (CP) and machine learning framework
(ML) Copper crystal < 111 > pole figures displaying texture evolution under equibiaxial
tension. The result comparison is indicated for 0.0 (initial texture), 0.1, 0.2, and 0.3 values
of €11 engineering strain.
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5.3.2 Predictions for Non-monotonic Strain Paths

To further verify the framework, non-monotonic strain paths were chosen to demonstrate
the predictive capabilities of the framework. The non-monotonic strain paths included
three different cyclic loadings and an arbitrary non-monotonic loading. The arbitrary
loading was also performed on the arbitrary crystal orientation. Note that, the ANN was
never trained on data that is non-monotonic and the predictions are obtained using the
update of CP parameters as outlined in the manuscript.

Figure 5.17 presents the crystal plasticity stress-strain response and the framework
predictions for three different types of cyclic loadings. For brevity, only the main stress-
strain components are displayed in this work. The results present tension-compression-
tension (T'CT) cycle simulated for Brass (35°, 45°, 0°) single crystal, compression-tension-
compression (CTC) cycle simulated for Taylor (90°, 27°, 45°) single crystal, and cyclic
shear was simulated Cube (0°, 0°, 0°). In all the cases, the results are in good agreement
with crystal plasticity simulations. The overall prediction error for TCT loading was 5.52
MPa, the prediction error for CTC was 6.90 MPa, and for cyclic shear the error was 3.62
MPa. All the errors are summarised in the table 5.8. Despite the fact that the errors
are higher that the errors for monotonic loadings, the stress-strain behaviour is captured
accurately for all cases of cyclic loadings.

600 TCT: 011 600 CTC: 011 Cyclic shear: 0713
400 400 500
__ 200 _ 200 _ 250
[+ <] <]
¥ By =¥
2 0 2 0 2 0 =
o o o ML
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Figure 5.17: Comparison between crystal plasticity (CP simulation) and machine learning
framework (ML prediction) single crystal stress-strain curves under TCT, CTC, and cyclic
shear deformation modes.

The texture evolution predictions were also compared with CP predictions. Figures
5.18, 5.19, and 5.20 presents the texture evolution for TCT, CTC, and cyclic shear cor-
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Figure 5.18: Comparison between crystal plasticity (CP) and machine learning framework
(ML) Brass crystal < 111 > pole figures displaying texture evolution under TCT deforma-

tion mode. The result comparison is indicated for 0.0 (initial texture), 0.05, —0.05, and
0.05 values of €1 engineering strain.
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Figure 5.19: Comparison between crystal plasticity (CP) and machine learning framework
(ML) Taylor crystal < 111 > pole figures displaying texture evolution under CTC defor-
mation mode. The result comparison is indicated for 0.0 (initial texture), —0.05, 0.05, and
—0.05 values of €1 engineering strain.
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Figure 5.20: Comparison between crystal plasticity (CP) and machine learning framework
(ML) Cube crystal < 111 > pole figures displaying texture evolution under cyclic shear
deformation mode. The result comparison is indicated for 0.0 (initial texture), 0.3, —0.3,
and 0.3 values of €15 engineering strain. A reference axis was included in the pole figures
to help better observe texture rotation.

respondingly. In the cases of TCT and CTC the textures do not exhibit drastic change
due to the nature of the strain paths. The predictions were accurate for both cases: the
prediction error for TCT was 0.12°, and the prediction error for CTC was 0.23°. Figure
5.20 displays clearly visible rotation of texture components in the case of cyclic shear. The
texture evolution is observed to rotate clockwise during forward shear, and then rotate
counter clockwise when the shearing is applied in the other direction. These predictions
also agree well with experimental data [204]. To highlight the importance of these results,
it should be noted that no training on non-monotonic loading was performed, and the
CP-update algorithm enables the framework to predict these non-monotonic strain paths.
The error for cyclic shear texture prediction was evaluated at 0.34°, thus, confirming the
accuracy of the framework. Error values for texture and stress are also reported in the
table 5.8.

In order to fully verify the predictive capabilities of the framework, a randomly oriented
crystal was simulated under a random strain path. The initial texture orientation was taken
as (30°, 45°, 45°), and the arbitrary non-monotonic loading consisted of series of different
loading and unloading steps. The applied loading path is summarized in table 5.6. The
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Table 5.6: Strain path for the arbitrary loading (single crystal)

Strain-rate tensor, Number of timesteps
(D11, Daa, D33, Dio] (At = 0.001)
[1.0,—-0.5,—0.5,—0.3] 20
0.7,0.3,—1.0,0.2] 50
[0.5,—0.3, —0.2, —0.25] 50
(0.7, —0.3, —0.4, —0.25] 50
0.4, 0 3,-0.7,0.25] 50
[—0.2,—-0.6,0.8, 0.0] 50
[00000010] 100
Arbitrary non-monotonic loading prediction: 071 Arbitrary non-monotonic loading prediction: 057 Arbitrary non-monotonic loading prediction: 033
—— CP simulation —— CP simulation —— CP simulation
500 ML prediction 500 ML prediction 500 ML prediction
= = 2 o
-500 -500 —500
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Number of timesteps Number of timesteps Number of timesteps

Figure 5.21: Comparison between crystal plasticity (CP simulation) and machine learn-
ing framework (ML prediction) single crystal stress-strain curves under arbitrary non-
monotonic loading.

table shows strain path in the form of strain rate tensor and the number of timesteps with
a fixed At. As can be seen in both table 5.7 and flow curve shown in figure 5.21, the single
crystal is subjected to 7 different strain paths, chosen randomly. For this strain path, the
total amount of equivalent strain during the deformation was equal to 0.3.

The CP simulation was compared with the framework predictions and the comparison
is presented in figure 5.21. For brevity, only the principal stress-tensor components are
displayed on the plot. The proposed framework was fully able to accurately capture all
the subsequent changes in stress values, and results in accurate prediction of final value of
stress. The overall prediction for stress values was equal to 3.56 MPa and is reported in the
table 5.8. As a note, the results were obtained with the help of ML models that were trained
on only monotonic loadings examples, and no additional training was performed. There
is some inaccuracy in prediction, for example for oy; component, but overall the stress-
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Figure 5.22: Comparison between crystal plasticity (CP) and machine learning framework
(ML) < 111 > pole figures for an arbitrary single crystal displaying texture evolution
under arbitrary non-monotonic loading for a single crystal with random texture. The
result comparison is indicated for initial and final equivalent plastic strain.

strain behaviour is captured very accurately. Finally, the texture evolution prediction for
arbitrary strain path were also well-predicted by the framework. The texture evolution
predictions compared with CP simulations can be observed on the figure 5.22. Due to
the imposed shear strain, some rotation is present in the texture evolution, and it is well-
predicted by the framework. The error for texture evolution prediction is 0.62°, thus
confirming the accuracy of the framework.

To conclude, in this subsection different non-monotonic strain path predictions were
performed for different FCC single crystals. The results were in a good agreement with
crystal plasticity simulations and have verified the accuracy of the framework. Therefore,
the framework could be applied to predict the polycrystal behaviour under complex strain
path. The polycrystal application is discussed in the next subsection.
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5.3.3 Predictions for Polycrystals

Results for monotonic and non-monotonic strain paths demonstrated the predictive ca-
pabilities of the proposed framework. In this section, the framework was employed for
prediction of a polycrystal material response. First, two distinct non-monotonic loadings
were compared with CP simulations for a polycrystal constituent of 20% of Cube-oriented
crystals, 10% of Goss-oriented crystals, 45% of S-oriented crystal, 20% of Copper-oriented
crystals, and 5% of Brass-oriented crystals. Such polycrystal was chosen, as it consisted of
common crystal orientations for FCC materials. Then, the framework was used to predict
texture evolution of a polycrystal constituent of 246 randomly-oriented grains subjected
to plane-strain compression. This case allowed to fully verify the predictive capabilities
for texture evolution of the framework. To evaluate the accuracy of the framework, the
corresponding CP simulation were performed and used for result comparison. To obtain
the polycrystal stress-strain response Taylor type approach [161] was used.
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Figure 5.23: Comparison between crystal plasticity (CP simulation) and machine learning
framework (ML prediction) stress-strain predictions for a polycrystal under shear followed
by tension strain path.

In the first case, the polycrystal was loaded with simple shear up to 30% of shear
strain, followed by uniaxial tension up to 30% of uniaxial strain. The deformation was
simulated in 600 increments, with At = 0.001. The prediction comparison for all stress
tensor components is displayed in figure 5.23. The overall prediction error was evaluated at
6.80 MPa, and is reported in the table 5.8. The predictions are in a good agreement with
crystal plasticity simulations. The o7 component of stress tensor is well-predicted, and the
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Figure 5.24: Comparison between crystal plasticity (CP) and machine learning framework
(ML) < 111 > pole figures displaying texture evolution for a polycrystal under shear
followed by tension strain path. The result comparison is indicated for initial and final

equivalent plastic strain.
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Figure 5.25: Comparison between crystal plasticity (CP simulation) and machine learning
framework (ML prediction) stress-strain predictions for a polycrystal under arbitrary non-

monotonic loading.

95



X X
10
Y Y

a ¥
U 8
6
X X
4
0

Initial texture Final texture

Figure 5.26: Comparison between crystal plasticity (CP) and machine learning framework
(ML) < 111 > pole figures displaying texture evolution for a polycrystal under arbitrary
non-monotonic loading. The result comparison is indicated for initial and final equivalent
plastic strain.

framework captures all the trends correctly. The tension part is predicted exceptionally
accurately by the framework. As for the shear stress component, the predictions are in a
excellent agreement with crystal plasticity: both shear and tension parts of the loading are
predicted correctly. The rest stress components are also well-predicted in their trends and
values.

The texture prediction is shown in figure 5.24. The prediction error for texture is 0.78°,
and excellent agreement between the framework prediction and CP simulation is observed.
Texture rotation is well-captured by the proposed framework, as well as other changes in
texture, as indicated on the plot. The error for texture is also reported in the table 5.8.

In the second case, the arbitrary non-monotonic loading is applied on the same poly-
crystal. The exact loading path, that the polycrystal is subjected to, is summarized in
table 5.7. The polycrystal is subjected to a total of 3 strain path changes with a different
strain rate tensor for 100 timesteps, with each time step having a At = 0.001. Stress-strain
comparison is performed for the framework prediction and CP simulation, and is presented
in figure 5.25. The overall stress prediction error is equal to 5.31 MPa, and is reported in
the table 5.8. The prediction results are in the good agreement with CP simulation. As
indicated on the plot, the framework accurately captured the changes in stresses, result-
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ing in accurate predictions. All the components for stress are captured very accurately,
including the sudden changes in stress values for o1, 012, 013 components, as indicated on
the plot.

Table 5.7: Strain path for the arbitrary loading (polycrystal)

Strain-rate tensor, Number of timesteps
[D11, Dag, D33, D] (At =0.001)
[1.0,—0.5,—0.5,0.0] 100

[0310 —0.7,0.2] 100
[—0.1,-0.9,1.0,0.25] 100

[00000010] 100

Texture prediction for the prediction of arbitrary loading case is also in a good agree-
ment with CP simulation. Figure 5.26 presents the pole figures displaying the predictions.
The texture prediction error was evaluated at 0.75°, and it is reported in the table 5.8. Due
to imposed shear strain during loading, the rotation is visible on the pole figure and is cap-
tured by the framework. As indicated on the plot, the other details are also well-predicted
by the framework.

Finally, texture evolution for a random polycrystal subjected to plane-strain compres-
sion with 50% reduction in thickness was predicted by the framework and compared to the
CP simulation. This strain path was chosen as it is the major strain path during rolling
which is a widely investigated process in sheet metal forming. The simulated polycrystal
consisted of 246 randomly oriented single crystals. Texture prediction using ANN showed
an excellent agreement with the crystal plasticity simulation, as demonstrated by the re-
sults given in figure 5.27. The framework successfully captures the development of two
strong texture components, as pointed at in figure 5.27. The weaker texture band that
can be observed in the middle of the final pole figure is also predicted accurately by the
framework. The RMSE of the framework prediction in comparison to crystal plasticity
simulation was 1.44° and is reported in table 5.8.

To conclude, the framework was validated for polycrystal prediction and has shown
great predictive capabilities for stress and texture evolution prediction. The prediction
were performed for monotonic and non-monotonic strain paths, and were in a good agree-
ment with corresponding CP simulations. The ML models within the framework were
trained on only monotonic loadings, and the implemented CP-update algorithm enabled
the framework to perform accurate calculations for FCC-family crystals under any non-
monotonic strain path.
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Table 5.8: Errors for the proposed framework predictions.

Loading mode

Averaged RMSE for

stress-strain
predictions (MPa)

Averaged RMSE for
texture evolution (°)

Uniaxial tension
Compression

Shear

Equibiaxial tension
TCT

CTC

Cyclic Shear

Arbitrary non-monotonic

loading

Polycrystal (case 1)
Polycrystal (case 2)
Polycrystal (case 3)

1.64
2.02
1.94
247
5.52
6.90
3.62
3.56

6.80
5.31

0.0001
0.0001
0.38
0.63
0.12
0.23
0.34
0.62

0.78
0.75
1.44

Initial texture

Final texture

Figure 5.27: Comparison between crystal plasticity (CP) and machine learning framework
(ML) < 111 > pole figures showing texture evolution for a polycrystal with a random
texture under plane-strain compression, (a) initial texture, (b) and CP and ML comparison
for final texture after 50% thickness reduction.
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5.3.4 Runtime Comparison

The results thus far demonstrated the predictive capability of the proposed framework. In
addition, compared to crystal plasticity formulations, machine learning models are very ef-
ficient computationally. Crystal plasticity simulations, while being accurate in predictions
of material behaviour [206], are computationally expensive due to solving highly-nonlinear
differential equations. As mentioned in the introduction, there is a growing body of liter-
ature addressing different methods regarding acceleration of crystal plasticity. Therefore,
the proposed framework and crystal plasticity runtime comparisons were performed.

Crystal plasticity models could require a substantial number of elements for accurate
predictions [207]. In addition to that, an exponential increase in computational time with
an increase in elements is observed [137]. Due to this fact, to perform the time comparison,
crystal plasticity simulations were performed for 250,000 individual crystal simulations.
The crystal plasticity model simulation time was 1 hour and 20 minutes on 32 parallel
processes, each running in separate central processing unit core. The ANN framework
only required one graphic processing unit, and computation time was 8.5 seconds. Hence,
the proposed framework results in a computational time savings of over than 99.9%.

To conclude, the results presented in this section highlight the high computational ef-
ficiency of the proposed framework. The framework, consisting of an ensemble of artificial
neural networks and crystal plasticity based algorithm, has been shown to produce accu-
rate crystal plasticity predictions of stress-strain properties and texture evolution of the
deformed material, and demonstrated tremendous time savings in comparison to crystal
plasticity model. One of the most important highlights of the demonstrated results was the
ability to predict deformation behaviour on any strain path using the dataset constructed
of monotonic-loading examples of deformation.

5.4 Chapter Conclusions

In this paper, a machine learning- and crystal plasticity-based framework is proposed to
model stress-strain and texture evolution for a wide variety of the FCC family crystals
under non-monotonic strain path. The primary goal of this work is to demonstrate the
possibility to obtain accurate and fast crystal plasticity predictions for non-monotonic
strain path with the aid of machine learning, while not needing to train the machine learn-
ing models on the infinite set of possible loading conditions. The approach of coupling
crystal plasticity and machine learning is feasible for training, accurate, and is computa-
tionally efficient in its application. As far as the authors are aware, this is the first study
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that demonstrates the machine learning-based framework capable of predicting the full
flow stress behaviour and texture evolution of FCC crystals under any strain path for any
initial texture configuration. The important observations and conclusions are as follows:

e Typically, machine learning methods are only useful in building the mappings that
generalize predictions within the bounding box of the available dataset. These meth-
ods usually perform poorly on extrapolation tasks. The proposed framework consists
of an ensemble of artificial neural networks trained only on monotonic loading exam-
ples. The implemented crystal plasticity-based algorithm makes it possible to predict
the complex cases of non-monotonic loadings using those networks. The presented
framework allows accurate material behaviour predictions on any, monotonic or non-
monotonic, strain path. The predictions include full stress-strain predictions and
texture evolution.

e The present application of ML for crystal plasticity involves training features of var-
ied complexity. For instance, certain training features, such as the rotation matrix,
evolve in a linear manner and other features, such as the stress tensor, can exhibit
highly non-linear behaviour. This complexity and non-linearity can be modeled accu-
rately using FFNN’s with the proper choice of the number of layers, unit cells within
each layer, and activation functions. Furthermore, the numerical implementation of
FFNNSs is relatively simpler compared to other complex methods such as recurrent
neural networks.

e The proposed machine learning- and crystal plasticity-based framework has been
demonstrated to accurately predict the stress-strain and texture evolution for differ-
ent single crystals for the a wide variety of strain paths: uniaxial tension, compression,
simple shear, equibiaxial tension, tension-compression-tension, compression-tension-
compression, cyclic shear, and arbitrary non-monotonic loading.

e The framework demonstrated excellent predictive capabilities for polycrystal simu-
lations. The two cases were considered in this research: shear followed by tension,
and arbitrary non-monotonic loading. For the first case, the stress-strain prediction
error was 6.80 MPa and the texture evolution error was 0.78°. For the second case,
the stress-strain prediction error was 5.31 MPa and the texture evolution error was
0.75°. In both cases, the prediction error is acceptable and validates the accuracy of
the framework.

e The framework demonstrated excellent ability to predict texture evolution under
plane-strain compression which is the major strain path during rolling of sheet met-
als. The overall RMSE error between CP and ANN texture predictions was 1.44°,
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confirming the capability and accuracy of the proposed framework to predict texture
evolution during large strain plasticity applications.

In other cases for monotonic and non-monotonic loadings predictions, the overall
RMSE for stress-strain predictions did not exceed 10 MPa, and the overall RMSE
for texture evolution did not exceed 1°. This error is of within acceptable values and,
thus, verifies the accuracy of the proposed framework.

In addition to accuracy, the framework is capable of prediction of subtle changes of
values in stress behaviour. Texture predictions by the framework were in excellent
agreement with CP simulations for most common orientations of FCC family crystals,
and for random textures as well.

The presented approach is computationally efficient and shows up to 99.9% com-
putational speedup over conventional crystal plasticity model. As a direction to
further research, the framework can be used to make predictions for a coupon- or
component-level deformation, which was not feasible in the past due to high compu-
tational demands of the crystal plasticity model.

One of the most important outcomes of the current work is the proof of feasibility:
it is possible to utilize machine learning to capture the crystal plasticity predictions
of stress-strain properties and texture evolution. The presented results suggest that
machine learning methods can be successfully applied to perform crystal plasticity
prediction of material deformation behaviour.
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Chapter 6

Convolutional Neural Network-based
Crystal Plasticity Finite Element Model
for Aluminium Alloys and its
Application for Finite Element
Simulations of Real Material
Microstructures

In this chapter, a machine learning framework is developed to achieve accurate local stress
and strain evolution predictions for a wide range of material microstructures. The frame-
work incorporates a single convolutional neural network trained to predict stress and strain
partitionings of an aluminium microstructure under a proportional loading condition sim-
ilar to uniaxial tension. Crystal plasticity finite element simulations for synthetically gen-
erated microstructures with defined material parameters were employed as a learning base
for CNN model. The framework successfully implemented and validated against CPFEM
for a new set of synthetic microstructures. The flexibility of the CNN was demonstrated
by its validation for two microstructures of AA5754 and AA6061 aluminium alloys. The
chapter presents a submitted manuscript of an article published in International Journal
of Plasticity !

nternational Journal of Plasticity X (2022): In submission.
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Overview

Convolutional neural networks (CNNs) find vast applications in the field of image process-
ing. This study utilizes the CNNs in conjunction with the crystal plasticity finite element
method (CPFEM). This research presents a framework that enables CNNs to make rapid
and high-fidelity predictions for materials under uniaxial tension loading. The inputs to
the CNN model are material hardening parameters (initial hardness and initial hardening
modulus), a global tensile strain value, and microstructure with varying number of grains,
grain size, grain morphology and texture. This input selection allows performing simu-
lations for a wide range of materials, as defined by microstructure and flow curves. The
outputs of the CNN are the local stress and strain values. The proposed framework involves
the following stages: feature engineering, generation of synthetic microstructures, CPFEM
simulations, data extraction and preprocessing, CNN design and selection, CNN training,
and validation of the trained network. The trained CNN was successfully demonstrated to
predict local stress and strain evolution for the completely new dataset (test set) contain-
ing synthesised microstructures. The test set predictions were evaluated, and the median,
worst, and best predictions were presented and discussed. Overall, the CNN demonstrated
excellent agreement with CPFEM simulations, thus validating its accuracy. Then, the
CNN was applied to predict the stress and strain evolution for AA5754 and AA6061 mi-
crostructures obtained using electron backscatter diffraction. These two microstructures
were entirely new for the CNN and displayed size and grain morphology different from
the synthesised microstructures. For both microstructures, the obtained stress and strain
evolution predictions demonstrated excellent agreement with CPFEM simulations, thus
confirming the flexibility of the trained CNN model. Then, the framework was extended
to predict strain localisation and was evaluated on a AA6061 microstructure. The results
presented in this research demonstrate a clear computational advantage of CNN without
loss of accuracy. Finally, the research offers prospects for future advances.

6.1 Introduction

Metals are complex polycrystalline materials. Depending on its characterisation (texture,
shape, size, and neighbours), each grain within a microstructure exhibits a distinct mechan-
ical response. The continued advancements in material development and design require
understanding the relationships between microstructure and flow behaviour. Microstruc-
ture constituents’ effect on material performance remains an active topic of research. The
developing computational simulation tools enable unravelling the impacts of material mi-
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crostructure on behaviour, strength, and resistance to damage [208, 209, 210, 211|, and
allow for virtual design of materials with desired properties. Possible microstructures
widely range in their variability due to the orientations and morphology of the grains.
Therefore, there is a crucial requirement for a feasible simulation tool capable of predicting
the mesoscale properties of metals subjected to a macroscopic loading.

A growing body of literature offers microstructure-based methods for modelling of ma-
terial behaviour. Crystal plasticity finite element (CPFE) based methods are the most
utilised due to their versatility in applications for the prediction of stress and strain parti-
tioning, localisation, and failure for a large variety of materials. The crystal plasticity finite
element method (CPFEM) is a mesoscale numerical tool that accurately predicts material
deformation. CPFEM is a physics-based method that considers the complex nature of poly-
crystals, such as the orientation and morphology of the grains within an aggregate. The
constitutive laws, kinematics, homogenization schemes and multiscale approaches are im-
plemented within the CPFEM and are extended to different materials [151]. The CPFEM
simulation tool can help achieve accurate predictions of materials response to various load-
ing behaviours. Examples of such applications include prediction of shear bands due to
dislocation [212, 213|, twinning shear [214, 215|, or of non-crystallographic nature [216], or
due to transformation-induced plasticity [217, 218]. Shear bands prediction is significant,
as they indicate possible places of damage initiation. The simulations can be performed
in both two- [219, 220| and three-dimensions [221, 222| for different materials, such as
steel [82, 223|, aluminum alloys [224, 225|, magnesium alloys [226, 227] and other materials
[228, 229, 230]. The CP methods have proven to be a high-fidelity material modeling tool,
and it continues to advance.

However, crystal plasticity models can be very computationally demanding. Different
methods were implemented to expedite crystal plasticity simulations, such as: parallel
computing [161], graphics processing unit-acceleration of CP [231, 232|, using the wavelet
transformation-based algorithms [162, 163], and a spectral database method [165, 233]. A
spectral database method is a data-driven approach that uses discrete Fourier transform.
This method helped to improve computational time in crystal plasticity computations sig-
nificantly and have been demonstrated by Kalidindi and co-workers in numerous studies
[234, 233, 167|. Kalidindi and co-workers have also presented another database approach,
“Material Knowledge System”, which enables accelerated establishment of material prop-
erties [97, 235, 236]. New efforts that have been used to expedite CP simulations involve
machine learning (ML) methods. Instead of being explicitly programmed these methods
present a function approximation tool; they capture non-linear dependencies in the datasets
they are trained on [45|. The outstanding property of such methods is that a trained model
is usually not computationally demanding, especially in comparison to numerical methods
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used to solve highly-nonlinear partial differential equations used in CP integration schemes.
Prior to applications in CP, ML methods have been extensively explored in phenomenolog-
ical modeling and computational material science. One of the earliest ML applications in
material modelling was presented in 1991. In [109], the authors enabled an artificial neural
network (ANN), namely multi-layer perceptron, to predict the flow curves of concrete in
the state of plain stress under monotonic biaxial loading and compressive uniaxial cycle
loading. The application demonstrated prominent results and ML has been used in com-
putational material science ever since. For example, in [237|, the authors demonstrated
an ANN-based material model to predict the stress-strain behaviour of composites under
monotonic and cyclic loadings. In [238], the authors used ANNs to predict flow stress of
carbon steel under certain processing conditions. Many other examples of neural networks
applications were found in computational material science, for example for: prediction of
strengthening metal matrix composites [239], prediction of flow behaviour of steel [240],
design optimisation in metal forming [241], flow behaviour of particle-reinforced aluminium
[242], prediction of cold rolling texture in steel [113]. One of the notable recent publications
described the use of machine learning, in particular recursive neural networks, to predict
path-dependant material behaviour [10]. In [111], the authors demonstrated the capability
of feed-forward and recursive ANNs to predict stress-strain behaviour for various strain
paths. ANNs also found their application in the developing field of additive manufacturing
and were demonstrated to successfully predict strain partitioning during deformation in
aluminium alloys manufactured using selective laser melting method [115].

A growing body of literature has investigated ML applications to CP models acceler-
ation. Mangal and Holm demonstrated the power of a random forest classification algo-
rithm to predict stress hotspots development in face-centred cubic (FCC) and hexagonal
close-packed synthetic three-dimensional microstructures {134, 135, 136]. In their work,
the authors determined whether a grain was “hot” or not depending on a number of mi-
crostructural parameters; the significance of the input features was also discussed. ANNs
were applied in CP to predict flow behaviour of an aluminium alloy under complex strain
path of tension followed by simple shear [137]. In [142], the authors used ANNs to predic-
tions flow behaviour and final deformation texture. The predictions could be achieved for
four loading conditions (compression, tension, shear, rolling), twelve initial textures, for
loading rate, and a range of Voce hardening parameters. The other applications presented:
prediction of cyclic stress behaviour in steels [138], relating crystal plasticity variables to
the texture of titanium alloy under uniaxial tension [140], relating microstructure charac-
terisation to yield stress of steel and aluminium [243], prediction of texture evolution of
copper under uniaxial tension [244]. In their recent work, the have utilised a feed-forward
neural network method trained only on single-crystal simulations under monotonic load-
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ings [245]. The trained ML- and CP-based algorithm predicted the stress-strain behaviour
and texture evolution for any complex strain path for any FCC crystal orientation. The
framework was successfully validated against for multiple strain path for individual grains
and a polycrystal. This work was very significant, as it is has shown that having a limited
dataset of monotonic loadings, simulated up to 0.05 per cent of strain, can be utilised to
significantly expedite CP simulations for arbitrary complex strain-paths up to any strain
value. The study has demonstrated the extreme usability of ML tools for computational
time savings, which is vital in modern material design.

A limited number of studies show applications of machine learning in crystal plasticity
to produce finite element (FE) modelling simulation results. Convolutional neural net-
works (CNNs) are instrumental in making two- or three-dimensional predictions or making
predictions based on two- or three-dimensional input values. In particular, in [143], the
authors used three-dimensional convolutional neural networks to identify the relation of
a microstructure of high-contrast composite material to the elastic property in the form
of a component of the effective elastic stiffness tensor. In [131], the authors used a CNN
with residual connections for CP predictions. For their dataset, they performed discrete
dislocation dynamics simulations for samples deformed under uniaxial tension with vary-
ing loading orientations. Their simulations were used to generate a strain map to replicate
digital image correlation. Based on these strain maps, the authors were able to predict the
deformation level of a sample and achieve statistical prediction of a sample’s flow curve
using saliency maps of hidden layers of the trained CNN. In [11], the authors used CNNs
to predict macroscopic stress at a strain close to a yield point based on the input image
of dual-phase microstructure with varying volume fracture of phases. In [145], the authors
utilised a hybrid of convolutional and recurrent neural networks for application in oligocrys-
tals of an annealed austenitic stainless steel. Their work utilised the initial microstructure
and the strain values as an input to the machine learning model to predict the resultant
stress corresponding to the input strain, up to 6 per cent strain. In the other application
for oligocrystalline materials, [12] utilised a similar hybrid model to predict the evolution
of the dominant stress component up to 0.3 per cent strain. The input image represented
the initial undeformed microstructure of synthetically generated oligocrystals. Their work
demonstrated the capability of CNNs to predict overall stress partitioning based on the
microstructure input for up to a limited strain value. As seen in the literature, the capabil-
ity of machine learning applications, particularly convolutional neural networks and their
hybrid models, is yet to be investigated in their full-field predictions capabilities.

This paper proposes a convolutional network model for rapid full-field stress and strain
evolution predictions for FCC polycrystalline materials. Section 6.2 presents the meth-
ods used in this research and describes the proposed framework. The framework in-
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cludes: CPFEM model for generating the simulations used for training, feature engineering,
methodologies for synthetic microstructure generation, the hardening parameters sampling,
and the background behind CNNs. Section 6.3 presents a CNN hyper-parametric study
for finding an optimal architecture. Then the section validates the selected model using
a test dataset with artificially synthesised microstructures that were unseen during train-
ing. Section 6.4 validates the model’s flexibility for applications for real materials. The
CNN was validated for AA5754 and AA6061 microstructures. Next, the CNN was assessed
for prediction of strain localisation. The section also presents the runtime comparison of
CNN and CPFEM models. Finally, section 6.5 summarises the work and presents the
conclusions.

6.2 Methods & Development of Machine Learning Frame-
work

In this work, the CNN-based framework which enables rapid full-field stress and strain
evolution prediction is proposed. The resultant CNN is trained on CPFEM dataset and
accurately predicts local stress and strain evolution for an input microstructure of a given
material with defined hardening parameters. Generalised workflow of the proposed frame-
work is displayed in figure 6.1. This section includes:

Brief description of the CPFEM model used for dataset generation,

Methodology for artificial microstructures synthesis and sampling material hardening
parameters,

Data preprocessing methods,

CNNs and training process background.

6.2.1 Crystal Plasticity Constitutive Model and its Finite Element
Implementation

Crystal plasticity constitute models are high-fidelity models used to simulate material

flow as well as stress and strain partitioning behaviour. The rate-dependant formulation,
first introduced by Asaro and Needleman [36], was used to generate CP finite element
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Figure 6.1: Schematic representation of the proposed framework

dataset for this study. In this formulation, the plastic deformation occurs due to the
mechanism of crystallographic slip. For an FCC metal, e.g. Aluminum, slip occurs along
three unique < 110 > slip directions and in the four unique [111] slip planes. Consequently,
there are twelve unique slip systems for materials with FCC crystal structure. The elastic

. . . . . Vv
constitutive equation is expressed as a function of the Jaumann rate of Cauchy stress, o,
the strain-rate tensor, D, the elastic stress tensor, £, and the viscoplastic stress state ¢

o=LD—¢"—otrD (6.1)
The slip rates for each slip system, «, are found using the equation:

T(a) 1/m

g(a)

2 (@)

o (a)

=3psgn T (6.2)

where 4y is the reference shear rate, 7(%) is the resolved shear stress on the slip system,

m is the strain-rate sensitivity index, and the parameter ¢(®) is related to the slip system
hardness.

The single crystal work hardening is calculated using the equation:
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g(a) — Z haﬁ;y(ﬁ) (6.3)
B
where h,g are the hardening moduli described as:

hag = Gaphs (no sum on f3) (6.4)

where g,3 is related to latent hardening behaviour of a crystal, and hg is the rate of a
single crystal hardening. The latent hardening expressed in a form of a matrix:

A qA qA A

| ¢A A gA ¢A
Qs =1 g4 qA A qA
gA gA gA A

(6.5)

where A is a 3 x 3 matrices fully populated with ones, and ¢ is the ratio of latent
hardening to self hardening and is set to one.

Single slip hardening used in this work is governed by a hardening law is expressed as
a power-law:

h n—1
hs = ho ( a4 1) (6.6)

where hq is the initial hardening rate, 7y is the initial critical resolved shear stress
(CRSS) and n is the hardening exponent. This hardening model was chosen as it is
commonly used in crystal plasticity simulations.

The stress update is formulated with equations 6.1-6.6. The texture evolution is up-
dated using the algorithm presented in [246]. The initial orientation of the crystal is fed
as an input to model, and then updated for each time step, in a form of a rotation matrix:

COS (P1 COS Py — Sin 7 sin Yy cos P sin (o1 COS Y9 + COS 1 Sin Yo cos P sin 9 sin O
a(p1,P,p9) = | —cosp;singy — sin p; cos g cos ®  — sin g sin @y + cos 1 cos g cos P cos g sin G
sin y sin ¢ — cos 1 sin cos ¢
(6.7)

where (1, @, p2) are the Euler angles in Bunge’s notation.
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The presented equations form the essence of the CP model. Their solution is very
computationally demanding, especially when solved for within finite element formulation.
The presented CP model was incorporated into a two-dimensional FE framework [39, 40,
41], and its in-detail description can be found in |40, 86].

The Lagrangian formulation of the field equations was used in the basis of the FE
algorithm with the usage of convected coordinates [40]. The elements of the FE mesh used
in this research were akin to those presented in [42]. These elements have quadrilateral
shape and each element contains four linear velocity triangular sub-element in order to
employ a higher order integration scheme.

For the current application, the example of a sheet of aluminium alloy subjected to
plane stress condition. The dimensions of the FE mesh were set to 100 x 100 elements.
The loading p is imposed on the edges of FE mesh based on the following relationship:

fu_, (6.8)
€22
where €17 and &€, are the logarithmic principal strain rates. The applied loading is
similar to the uniaxial tension applied along rolling direction, and corresponds to p =
—0.5. Plane stress condition was satisfied by assigning o33 to zero. The computations
are performed at a constant timestep At = 0.001 for 2500 timesteps. Figure 6.2 presents
a schematics of a finite element mesh undergoing proportionate loading. The presented
constitutive model and its FE implementation is used within an in-house code and was
employed to generate the training dataset presented in the subsection 6.2.2.

6.2.2 Feature Engineering and Dataset Generation

Dataset plays an essential role in training an accurate ML model, and it is imperative that
it has a sufficient amount of information representative to the set task [183]. To achieve the
goal of prediction full-field stress and strain evolution, the minimum necessary parameters
were selected as an input to the CNN model: global strain value )4, material hardening
parameters, and the microstructure of the analysed material.

Due to the implementation of a constant timestep within the CPFEM model, the
uniaxial macroscopic strain €}{ (volume averaged) evolution is the same for all performed
simulations. After 2500 steps of loading, the value of the macroscopic strain, M, was
approximately 22%, as summarised in the table 6.1.
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Figure 6.2: Schematic representation of unit FEM cell.

Then, the input material parameters were taken as the ones used in the hardening
law (equation 6.6): the initial hardness, 79, and the initial hardening modulus, hg. Their
values were taken in the proximity of the hardening parameters for aluminium alloy AA5754
[206]. The initial hardness, 7y, values were sampled within a range from 10 to 15 MPa,
and the initial hardening modulus, hg, values were sampled within a range 245 to 260
MPa, as summarised in table 6.1. Sampling strategy for these material parameters was
implemented using Sobol sequences [126, 127]. This sampling methodology enables an
optimal filling of the chosen data space. The details about the implementation of this
algorithm can be found in [186]. This sampling method’s main advantage is in its low
discrepancy property, i.e. all the sampled points in a material parameters space are sampled
in an almost equidistributed fashion. In addition, this method samples the data points
uniformly and quasi-randomly across the domain, which ensures that some point in the
finite proximity of each combination of material parameters will be included in the training
data inputs, which is beneficial for training an accurate machine learning model.

Similar to the case of hardening parameters, the microstructures, which is another
input to the CNN, were selected from all possible textures in the direct-chill cast AA5754
aluminium alloy. To achieve this, the orientations within microstructures were sampled
from the experimentally measured textures. The experimentally measured textures were
obtained using electron backscatter diffraction (EBSD) AA5754 map. The obtained set
of individual textures contained 8,750 different grain orientations. The texture data is
presented in figure 6.3 displaying, (a), the extracted EBSD map, and (b) presents the pole
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figure of the experimentally obtained texture. Due to the symmetrical nature of crystals
within FFC materials, the crystal orientation space can be decreased to the fundamental
region [30]. For FCC materials, crystal orientations exhibit full octahedral symmetry, which
means that each crystal orientation can have 48 different texture representations. All the
orientations outside of the fundamental region zone were converted to their corresponding
values within that zone. Therefore, the crystal orientations were only sampled within
the fundamental region, which decreased the diversity of texture representations. The
diversity of the microstructures (i.e. grain size and grain morphology) for training set was
achieved using the Euclidean distance-based Voronoi tessellations algorithm. The resultant
microstructures contained between 220 to 320 grains, which is an adequate number for
information on microstructural and textural characteristics representing the sheet [206].
The obtained grain morphologies were implemented into the FE mesh with the size of 100 x
100 elements. After the grain structure was meshed with N grains, NV texture orientations
were randomly sampled from the set of textures obtained from the AA5754 EBSD map,
assigned to those grains, and stored in the form of rotation matrices. Each rotation matrix
is characterised by nine components (equation 6.7). The material microstructure was used
an input to CNN, as summarised in the table 6.1.
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Figure 6.3: The extracted data for AA5754 aluminium alloy (a) EBSD map (b) pole figure
of the microstructure.

The dataset contained 12,000 different simulations performed on unique inputs. The
output of the CPFEM model were local stress and strain values (i.e. elemental values)
for FE mesh, which were taken as outputs to the CNN model. Each 100" increment’s
data (of total 2500, as mentioned in subsection 6.2.1) was saved for training, yielding 25
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deformation timesteps saved for each simulation. The collected data was split into input
and output sets. The input features included: material hardening parameters (initial
hardness and initial hardening modulus), initial microstructure, macroscopic strain value
eM. This is the minimal set of features that could be used for training a machine learning
model, as hardening parameters regulate the material behaviour, and initial microstructure
is an essential descriptor of a material under consideration. Therefore, the feature space
cannot be reduced to fewer features. The output features included local stress and strain
partitionings corresponding to the input macroscopic strain value €}4. The input features
are summarised in table 6.1. The output features are summarised in table 6.2. Due to the
plane stress condition, the stress partitionings were presented for o1, 099, and o5 stress
tensor components, and the strain partitioning were presented for e11, €99, €33, and 19
strain tensor components.

Table 6.1: Input features, their ranges, and description of the feature and the physical
parameters it controls. In total, there are 12 distinct features that serve as input to the
CNN model: macroscopic strain value, initial hardness, initial hardening modulus, and a

microstructure.
Input variable Range Description
eM 0.0...0.22 Macroscopic strain
To 10.0...15.0 MPa Initial hardness
hg 245.0...260.0 MPa Initial hardening modulus
ag,, 4,J=1...3 —1.0...1.0 Initial rotation matrix for texture

Table 6.2: Output features and their description. In total, there are 7 distinct features
that serve as output to the CNN model: stress partitioning (each FE element is
characterised by 3 components of stress tensor), and strain partitioning (each FE element
is characterised by 4 components of strain tensor).

Predicted variable Description

oij, 17 = 11,2212 Stress response (MPa) (3 values due to
plane stress condition)

ey, tj = 11,22, 33,12 Strain response (MPa) (4 values due to

plane stress condition)

The distributions of stress and strain values obtained from simulations are presented
by box and whisker plots. The line within a box shows the median, the ends of the box
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represent the lower and upper quartiles, and the end of the whiskers show the overall data
range. Figure 6.4 demonstrates the statistical distribution of the obtained strain values.
Abscissae present the strain value ranges, and ordinates show the variation of the number
of the finite elements characterised with the values in a specific range. Similarly, figure 6.5
demonstrates the statistical distribution of the obtained stress values. These observations
show that data for both stresses and strains are not distributed evenly across the elements
of FE meshes. The distributions differ for different variables. The CNN proposed in this
research is able to capture predictions for local stress and strain evolution, and it was not
required to train separate models for each output variable. The next section presents the
background behind the CNN model, employed activation functions, optimisation algorithm,
and regularisation methods.
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Figure 6.5: Distribution of stress values in the dataset.
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6.2.3 Convolutional Neural Networks

Artificial neural networks are the most common ML models. There are many different
types of ANNs, such as multilayer perceptrons, convolution neural networks, and others.
Previously, the capability of multilayer perceptron models to predict stress-strain evolution
for single crystals, as well as the polycrystal average response, was demonstrated [245].
However, multilayer perceptron models would not be suitable for predicting values such as
local stress and strain partitionings, as the number of trainable parameters would be too
large, especially if the dimensions of a FE mesh are large.

In contrast to multilayer perceptron models, CNN models suitable for two-dimensional
input. Typically, they are applied in the field of visual imagery analysis, such as image
segmentation [247, 248| and recognition tasks [249, 250|. In the current work, the authors
did not use image input to the CNN and instead explored the CNN’s capability as a
regression model to predict the local stress and strain partitionings based on the input of
actual material characteristics.

In this research work, the explored CNNs consisted of: input and output layers, con-
volutional layers, deconvolutional layers, regularisation layers, and activation layers. The
input tensor’s dimension is (100,100, 12). The first two dimensions correspond to the di-
mensions of the FE mesh, and the third dimension (number of channels the of input layer)
corresponds to the number of input variable and includes: a channel fully populated with
the macroscopic strain value £/ two channels fully populated with the material parameters
To and hg, and 9 channels populated with corresponding components of rotation matrices.
The output layer has in total seven channels of size 100 x 100, each corresponds to the
predictions stress and strain partitionings of the mesh. The predictions are made for the
components 011, 02, 012, €11, €22, £33, and e15. Other stress- and strain-tensor components
are equal to zero for all the elements due to plane-stress condition.

Convolutional and deconvolutional layers are formed by implementing a direct convo-
lution and a transposed convolution operations on square neuron layers of CNNs. The
operation of direct convolution can be described with the following equation:

m—1m—1
(L] _ (L—1]
v =, Occiye)iro) (6.9)
£=0 ¢=0

where x is the pre-nonlinearity square layer, and L is a positive integer number which
denotes the number of the layer (L € [0,/], where L = 0 is the index of an input and
L =/ is the index of an output layer), and 6 is the filter matrix of the dimension (kernel
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size) m x m and it is populated with trainable parameters. Direct convolution results in
downsampling of an input layer. The transposed convolution operation is similar to direct
convolution, but serves as a trainable upsampling. In-detail description of convolution
operations can be found in [251].

Padding parameter can be applied to control dimensions of output of convolution opera-
tions. The term “padding” refers to adding zeros to the borders of filters prior to subjecting
them to a convolution operation. Two type of paddings are used in this research: “same”
and “valid”. “Valid” padding refers to no padding, and “same” results in dimensions of filters
of input and output of convolutions being equal. In-detail explanation of the operations in
the convolutional networks can be found in [252].

Activation Function & Normalisation

Activation functions are employed to add non-linear qualities to the neural networks [200].
In this study, two activation functions were used: the hyperbolic tangent activation fuction
(“tanh”) and rectified linear unit (“ReLU”) activation function. The tanh activation is
expressed as:

(" =)

tanh(z) = (=)

(6.10)

The benefits of function is that it a continuous and differentiable zero-centered activa-
tion, with its gradient varying in different directions. This function is defined for all real
numbers and ranges from —1 to 1. The suitable normalisation for this activation function
is a min-max normalisation between —1, 1. This normalisation is achieved by the following
transformation:

. @) — min z®
(4) . T minx _
normed ~— Qmaxx(i) — min z® 17 (611)

T

where min 2 is a minimum and max 2 is a maximum value of the i feature.

The ReLU activation function is piece-wise linear function, and is expressed as:

f(z) =27 = max(0, z) (6.12)

The additional data normalisation was not required for this activation since it was used
after the batch normalisation, which serves to re-centre the weights in the network. The
employed normalisation methods are shown in table 6.3.
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Table 6.3: Features and their normalisation methods.

Variable Normalisation method
eM Normalisation in —1...1
To Normalisation in —1...1
hg Normalisation in —1...1
aij, 1,7 =1...3 No normalisation

oij, 1 = 11,22,12 Normalisation in —1...1
&, 1y = 11,22,33,12 Normalisation in —1...1

Evaluation of Artificial Neural Networks

The cost function, J(6,b), and loss function, £ (y;i)ed,yﬁi@, are used to evaluate the

accuracy of the trained CNN. The cost function is used to compute the accuracy of the
CNN. An optimisation algorithm minimises a cost function during training by correcting
the weights and biases of a network [45]. The loss function is used to calculate the accuracy
of a trained model on one sample. A cost function is calculated by averaging the sum of
losses for m samples in a dataset:

70 = > (s vl (6.13)
=1

Mean squared error (MSE) is used as a loss function in this research. It is expressed
as:

7 7 1 - 7 7 2
£NISE (y]()r)ech ygrlw) = E Z (yzgrle - Z()r)ed> ) (614>

1=
where n is a number of elements in an output vector.
Optimisation Algorithm
Adaptive Moment Estimation (Adam) [55] is used an an optimisation algorithm in this
research. It is a dradient-descent backpropagation algorithm with an adaptive learning

rate. This algorithm preserves an exponentially decaying average of past gradients v; and
updates an then calculates a new value for decaying average of past gradients:
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my = Brme—1 + (1 — B1) g,

Uy = 521),5_1 + (1 — 52> th’ (615)

where m; is the first moments of gradients, and v; is the second moment of gradi-
ents. Then, to avoid these gradients being biased towards zero, their values are corrected
according to:

A my
my = 1 — £
o ! (6.16)
Vs = 1— Bé .
The network weights are then calculated as:
9t+1 = Gt - #mt, (617)
Vo + €

where (1, [, , and € are the algorithm’s hyperparameters that can be tuned during
training.

Regularisation

One of the major objectives of training an accurate neural network is to avoid overfitting.
In deep learning, the models can be very complex, and a large number of trainable param-
eters, while having increased capability to learn complex relations, also have the risk of
overfitting on the training data. Introducing regularisation into a machine learning model
can help accelerate the training process and prevent overfitting. Three different forms
of the regularisation parameters were explored in the optimisation process of the neural
network architecture: dropout regularisation, L, regularisation, and batch normalisation.

In [64], the authors proposed the dropout regularisation method to help machine learn-
ing models prevent overfitting. The essence of the dropout method is in introducing a
probability parameter that accounts for each weight’s probability to be excluded from an
update at each training iteration. For each iteration, the re-selection of trainable param-
eters within the regularised neural network layer is performed according to the selected
probability. This regularisation method was shown to significantly improve training and
thus is included in the current study.
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Another common regularization technique that prevents overfitting in neural networks
is Ly regularisation, which is a type of weight decay technique [63, 62]. This method
introduces a penalty on the cost function by adding a weighted squared magnitude of
the trainable parameters to the loss function. The cost function can be presented by an
equation:

Nweights

JO) = Luss (Vs Vi) + 1 D 02 (6.18)

i=1

where A is the weight parameter for Ly regularisation.

Lastly, the efficiency of the batch normalisation method was studied in this research
[65]. This method was proposed to help neural networks learn faster and in a more sta-
ble fashion. The essence of batch normalisation is normalising the activation layers by
standard deviation, i.e., subtracting the mean activation (re-centring) and dividing the
re-centred activations by their standard deviation value. An in-depth explanation of the
algorithm can be found in [253]. Batch normalisation is a popular regulariser and is often
used in deep neural networks; it allows higher learning rates, makes neural networks less
sensitive to the choice of trainable parameters’ initial values and makes the learning pro-
cess “smoother” [66]. This method has been shown to perform well in convolutional neural
networks applications [254, 255] and was included in the study conducted in this research.

6.3 Convolution Neural Network Model and its Valida-
tion

In this section, an optimal architecture search is performed and is presented. A series of
different CNN models were first trained on a fraction of the CPFEM data and compared.
The best architecture was selected on the basis of those results. Training and test set errors
were compared to assess the model’s performance. Then, the best model is validated
against CPFEM simulations for the completely test set with synthetic microstructures
unseen during training. The model was demonstrated to accurately predict stress and
strain partitionings of FE mesh. The CNN'’s prediction capabilities were demonstrated on
for the median, worst, and best prediction cases.
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6.3.1 Convolutional Neural Networks Architectures

An architecture study was performed to find a suitable network capable of making accurate
predictions. This section analysed and reported the effect of the number of layers, number
of trainable parameters, regularisation, and choice of activations on the training and vali-
dation errors. Ten different CNN models were trained on 5,000 CPFEM simulations and
validated on 1,000 CPFEM simulations. Using 5,000 samples of 12,000 available helped
achieve faster training comparison, as training deep CNNs is time-consuming. The CNNs
were trained for 15 training epochs with the batch size of 4. The initial learning for the
optimisation algorithm was set to 1072, and optimisation algorithm parameters were to
B = 0.9, 8 = 0.999, ¢ = 1078. The best model architecture was selected from all trained
models based on the lowest training and validation errors. The first five of the trained
CNN varied in the number of convolutional layers and filters of convolutional layers. First,
the best performing network was selected out of these five trained networks. Then, this
network was tested with different regularisation layers and activation functions. All the
networks were compared, and the best performing network was selected for training a final
model.

Table 6.4 presents learning results for models (1) —(5). These models are of the encoder-
decoder type, and they only differ by the number of constituent layers and their filters.
They are composed of four different types of the architectural blocks, which are denoted
as C1(n), Ca(n), C¥(n), and CT(n). Architecture block C}(n) is composed of a direct 2D
convolutional layer with the “same” padding parameter and n filters of size 3 x 3, followed
by batch normalisation layer, followed by activation layer with “tanh” activation function.
C(n) is the architecture block composed of two sequential sub-blocks. Each sub-block
comprises the direct 2D convolutional layer with the “valid” padding parameter and n
filters of size 3 x 3, followed by batch normalisation layer, followed by activation layer with
“tanh” activation function. Superscript “7” indicates that a transpose 2D convolutional
layer is used in the place of a direct convolutional layer. This notation is also explained in
table 6.4 in a brief format. The learning curves for training and validation errors of models
(1) — (5) are shown in the figure 6.6. The training results have shown that model (1)
had the most optimal architecture out of the 5 architectures presented above. This model
had 783,271 trainable parameters, which was neither the smallest number nor the largest
number of parameters of all trained models. The comparison of trainable parameters for
other models is following: model (2) had 762,471 trainable parameters, model (3) had
152,103 trainable parameters, model (4) had 1,795,623 trainable parameters, and model
(5) had 5,358,375 trainable parameters. Therefore, it is necessary to search for suitable
architecture as adding parameters and increasing the complexity of architecture do not
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guarantee more accurate predictive capabilities.

Table 6.4: Architectures of the trained models and their corresponding training and
validation errors, part 1. The notation used in the architecture representation is
described after each architecture description.

. Training /
‘:rfr}ll};:i(:ture Architecture Validation
u MSE

C1(32) — C(32) — Co(32) — Cs(64)—
(1) —C5(128) — CT(128) — CT(64) — CL(32)— 0.0010,/0.0010
—C7(32) — C{(32)

C5(32) — Cy(32) — Cy(64) — Cy(128)—
@) —CT(128) — CT(64) — CT(32) — CT(32) 0.0010/0.0013

(3) C1(32) — Cy(64) — CT(64) — CT(32) 0.0013/0.0014

C1(32) — Cy(64) — Co(256)—
(4) _CT(64) — CF(256) — C7(32) 0.0010/0.0025
C1(32) — C(32) — Co(32) — Cy(64)—
_ —C5(128) — C5(256) — C5(256) — CT(256)—
() —CT(256) — CT(128) — CT(64) — CT(32)—
—C5(32) = 01 (32)

0.0012/0.0013

Notation:

Ci(n) = Conv2D(n,“same”) — BN — tanh,
CT(n) = Conv2DT(n,“same”) — BN — tanh,
Cs(n) = (Conv2D(n, “valid”) — BN — tanh)?,
CT(n) = (Conv2DT(n,“valid”) — BN — tanh)?,
where n is the number of 3 x 3 filters,

and BN denotes batch normalisation layer.

The second part of the architecture search studied how different activation functions
and regularisation parameters affect the training results of the network. Table 6.5 presents
the training and validation errors for the networks (6) — (10) and provides descriptions for
architectures. This study investigated how three different regularisation methods and two
activation functions affect learning capabilities. Model (1), as the most accurate of models
(1) — (5), was selected as the basis for architecture. Model (6) was trained without batch
normalisation, and the error was almost seven times larger than the error of model (1),
which indicates that batch normalisation significantly improves the training process. Then,
the batch normalisation regularisation method was compared with the L, regularisation in
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Figure 6.6: Neural networks learning curves showing the evolution of losses for training and
validation datasets. Each network is numerated, and each number corresponds to unique
network architecture. For each ANN, the architecture and validation error are summarised
in tables 6.4 and 6.5

the model (7). The Ls regularisation factor A was taken equal to its standard value of 0.01.
The error was comparable to one obtained for model (6) (no regularisation), which shows
that Ly does not contribute to the error decrease. The training of the model (8) realised the
comparison of “tanh” and “ReLLU” activation functions. In this model, batch normalisation
was kept as in model (1), but all the “tanh” activation functions were replaced with “ReL.U”
activations. The error decay was observed, but with a lower rate when compared with the
“tanh” activation function, and the resultant training error was 1.5 times higher than in
the model (1). Models (9) and (10) introduced dropout regularisation without and with
batch normalisation correspondingly. Using dropout without batch normalisation did not
contribute to the training process, and using dropout and batch normalisation slowed down
the learning process. Therefore, model (1) architecture was chosen for training on the whole
dataset. Figure 6.6 presents the evolution of training and validation errors during training.

To conclude, ten different models were trained to find the optimal architecture. Training
models (1)-(10) took approximately 250 minutes per model, while trained on 5000 samples.
Admittedly, there were limitations to performing an extensive architecture search due to
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Table 6.5: Architectures of the trained models and their corresponding training and
validation errors, part 2. The notation used in the architecture representation is
described in the bottom of the table.

Training /
Architecture Validation
MSE

Architecture
number

C1(32) — C(32) — Ca(32) — Ca(64) — Co(128)—
©) ZCT(128) — CT(64) — CT(32) — CT(32) — CT(32) 0.0068/0.0068
Notation: C}(n) = Conv2D(n,“same”) — tanh,

CT(n) = Conv2DT(n,“same”) — tanh,
Cy(n) = (Conv2D(n,“valid”) — tanh)?,
CT(n) = (Conv2DT(n,"valid”) — tanh)?.

: C1(32) — C5(32) — Cy(32) — Cu(64) — Cy(128)—
() ~CT(128) — CT(64) — CT(32) — CT(32) — CT(32)

0.0068/0.0068

Notation: C(n) = Conv2D(n, “same”) — Ly(0.01) — tanh,
CT(n) = Conv2DT(n,“same”) — L,(0.01) — tanh,

Cy(n) = (Conv2D(n,“valid”) — L,(0.01) — tanh)?,

CT(n) = (Conv2DT(n,“valid”) — L,(0.01) — tanh)?.

< C1(32) — C(32) — Ca(32) — Ca(64) — Co(128)—
®) —CT(128) — CT(64) — CT(32) — CT(32) — CT(32)

0.0015/0.0025

Notation: C(n) = Conv2D(n, “same”) — BN — ReLU,
CT(n) = Conv2DT(n,“same”) — BN — ReLU,

Cs(n) = (Conv2D(n,“valid”) — BN — ReLU)?,

CT(n) = (Conv2DT(n,"valid”) — BN — ReLU)>.

) C1(32) — C3(32) — C5(32) — Co(64) — C5(128)—
©) ~CT(128) — CT(64) — CT(32) — CT(32) — CT(32)

0.0070/0.0068

Notation: C}(n) = Conv2D(n,“same”) — tanh — Dropout(0.2),
CT(n) = Conv2DT(n,“same”) — tanh — Dropout(0.2),

Cy(n) = (Conv2D(n,“valid”) — tanh — Dropout(0.2))2,

CT(n) = (Conv2DT|(n, “valid”) — tanh — Dropout(0.2))2.

C1(32) — C5(32) — C5(32) — Cy(64) — Cy(128)—
—CT(128) — CT(64) — CT(32) — CT(32) — CT(32)

(10) 0.0019/0.0014

Notation: C(n) = Conv2D(n, “same”) — BN — tanh — Dropout(0.2),
CT(n) = Conv2DT(n, “same”) — BN — tanh — Dropout(0.2),

Cs(n) = (Conv2D(n,“valid”) — BN — tanh — Dropout(0.2))?,

C7(n) = (Conv2DT(n,"valid”) — BN — tanh — Dropout(0.2))%.

the large number of hyperparameters that can be changed and compared during training.
The other limitations are the cost of collecting the data and training the models. It would
be reasonable to expect more complex and deep models trained on more data to give more
accurate predictions. However, the data collection and training will require more time and
computational resources. The selected model has been shown to achieve excellent stress
and strain evolution predictions when trained on more data, as shown in the following
subsection.
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6.3.2 Best Model Training and its Evaluation on the Test Set

The best CNN selected in the previous subsection was used for re-training using a larger
dataset, which was split into three parts: training set, validation set, and test set. CPFEM
simulations were performed to obtain corresponding labels for the inputs sampled using
the Sobol sequence method. This method allows the filling of the samples’ space gradually
and uniformly, therefore, additional shuffling of the collected dataset is not required. The
dataset consisted of 12,000 samples. The last 1,000 of all samples in the dataset were
used for the test set. The rest of the data was randomly split into training and validation
datasets in proportion of 10:1. The number of training samples was selected using the
same approach presented in 5.2.4 section: more data was introduced for training until a
target validation error was achieved. The validation set was used for evaluation of the CNN
accuracy after each training epoch, but the information from this set was not explicitly
used for training. The test set was completely unseen during the training. The network
was trained for 100 epochs, and the training process took approximately 37 hours. Figure
6.7 shows the schematics of the architecture of the trained convolutional neural network.
The black block represents the input to the CNN and shows its dimensions. Then, the
input is fed to the series of encoding direct convolutional layers and then to the series of
decoding transpose convolutional layers, after which the output is obtained.

The evolution of the training and validation errors is depicted in figure 6.8. The loss
curves show that the training and validation errors stopped decreasing significantly at
approximately the 60" epoch. At the end of the training, the training error was equal to
6.0 x 1074, and the validation error was equal to 5.8 x 1074, These errors were calculated
for the normalised data and averaged across seven predicted output features, making it
nearly impossible to access the network’s performance for a human. To understand the
predictive performance of the network, the errors for training and test sets were converted
to their original scale for each individual predicted variable and assessed using the root
mean square error (RMSE):

cpP CNN)2

N
RMSE = Z(y" _]\?f’i , (6.19)

i=1

where y¢F is a CPFEM prediction for a given variable, and y&V¥

; its corresponding
prediction made by the neural network, and N = 10, 000 is the number of elements in each
FE mesh. Two types of RMSE errors were calculated: overall RMSE averaged across all

timesteps and RMSE for the final timestep of deformation.
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Figure 6.7: The schematics of the CNN architecture. The black block shows the input to
the model, and the orange block shows the model’s output. The intermediate blocks of the
CNN are the convolutional blocks of the CNN with implemented batch normalisation and
activation layers. The dimensions next to these blocks are the resulting output dimensions.

Training results, best model
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Figure 6.8: The evolution of the training and validation mean squared errors for the selected
CNN model.
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In order to thoroughly compare the predictions of the CNN and the CPFEM models, the
equivalent von Mises stress and strain values were calculated and compared for CNN and
CPFEM predictions. The errors for equivalent von Mises stress and strain were obtained
by taking the difference between the equivalent von Mises values of the two models. The
von Mises strain error can be expressed as eV M == 5OPFEM 55%\,, where el Mepa is
the von Mises strain obtained for CPFEM predictions, and e/ is the von Mises strain
for CNN predictions. The von Mises stress error is calculated similarly. The equivalent
stress and strains were assessed for the training and test set sample. Figure 6.9 displays
that the equivalent stress error values are primarily situated in the range [—10, 10] MPa,
with the median error being close to zero MPa. The error values for the equivalent stress
confirm that the model is accurate for the overall stress predictions. The equivalent strain
errors mainly were situated within the [0, 0.2] range of strain, with median values close to
zero (under 0.01). These results show that the trained neural network model accurately
predicted tensorial strain components.
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Figure 6.9: Best trained model results: root mean squared errors for all variables predic-
tions (left side of the figure) and von Mises difference error for equivalent stress and strain
(right side of the figure).

Further, the median, highest (the “worst” case), and lowest (the “best” case) error cases

were visualised for the test set predictions. Figure 6.10 presents the CPFEM simulation
and CNN prediction results comparison for the median case. The input microstructure is
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shown on the top left of the figure and is coloured using inverse pole figure (IPF) colouring.
The bottom left of the figure presents the stress-strain response averaged across all elements
in the FEM mesh. The averaged stress-strain response RMSE is 1.93 MPa for the median
case, demonstrating the trained network’s excellent predictive capabilities. To the right
of the input texture and stress-strain curve, the figure displays the evolution of the eq;
strain component partitioning. The top row shows the CPFEM predictions compared to
the CNN predictions in the bottom row. Strain partitioning of FEM mesh is compared for
6%, 12%, 17%, and 22% of strain. CP and CNN predictions results look nearly identical
when compared to each other, for all deformation steps, except for minor deviations. The
RMSE errors for all predicted variables are shown in the tables 6.6 and 6.7. Table 6.6
reports the RMSE errors calculated over the whole history of the deformation, and table
6.7 calculated for the last increment of the deformation. The RMSE error for oq; stress
component was equal to 16.14 MPa when calculated for all timesteps, which is equal to
approximately 5% of the maximum averaged stress, and it was equal to 24.32 MPa for
the last timestep which is equal to approximately 8% of the maximum averaged stress.
The corresponding errors for £1; were equal to 0.02 and 0.03, which confirm the excellent
agreement of CPFEM and CNN results. The results for the median error show that the
overall performance of the trained network is very accurate.

(@ (b)

L
l Input texture
4

, ,‘S'_‘;\

CP, ey

41,

[N
RMSE: 1.93 MPa

300
250

- 200
S)

CNN, &1

150
— CP

100 —— CNN

0.0 0.1 0.2

€11

Figure 6.10: Test set prediction with the median error; (a): input microstructure and flow-
curve for crystal plasticity and convolutional neural network predictions averaged across
all elements of the mesh; (b): €1; strain partitioning evolution for four strain levels.

Secondly, the test set prediction with the highest error was analysed. Similarly to
the median case, figure 6.11 shows the input texture, average stress-strain response, and
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strain-partitioning evolution for £;; component. The input microstructure deviates from
most of the textures in the training set, such that the strain localisation occurs during
the deformation. This localisation results in stress unloading, as observed in the average
stress-strain response. The average stress-strain response RMSE had a value of 11.55 MPa.
This error is higher than the error in the median case, as the predicted macroscopic stress
does not capture global softening predicted by crystal plasticity. Even though the network
was not able to predict the exact intensity of €11 strains in the localisation region, the
CNN was able to identify its location accurately, as identified in figure 6.11. The rest of
the strain partitioning is predicted accurately and is in excellent agreement with CPFEM
results. For o117, The RMSE error was equal 22.69 MPa for the values across all timesteps
of the deformation (see table 6.6), and the RMSE for the last timestep was equal to 57.29
MPa (see table 6.7). The RMSEs for other variables are also reported in the tables 6.6 and
6.7. Even though this test example is a test set outlier in terms of stress-strain behaviour,
the CNN predictions were very accurate up to the point of localisation occurrence. Due
to such outliers in the training and test sets, several higher errors can be observed in the
figure 6.9 in training and test set errors for all variables. All the test set outliers (can be
observed in figure 6.9) were the cases similar to the “worst” case. The microstructures of
the outlier samples cause the localisation to occur, which was underpredicted by the CNN.

(®)

npul texture | o
o

!

CP, g1

€11, [mm/mm]

250

200

o1

150

— CP
—— CNN

100

RMSE: 11.55 MPa

0.0 0.1 0.2 &1 =0.06 &3 =0.12

11

Figure 6.11: Test set prediction with the highest error; (a): input microstructure and flow-
curve for crystal plasticity and convolutional neural network predictions averaged across
all elements of the mesh; (b): €11 strain partitioning evolution for four strain levels.

Finally, the test case prediction with the lowest error (i.e. most accurate prediction)
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was visually assessed and the RMSE for all the variables were evaluated for this case.
Similarly to previous cases, figure 6.12 displays the initial microstructure in IPF colouring
scheme. Average stress predictions obtained with CNN show exceptional agreement with
the averaged crystal plasticity response. The RMSE error for the averaged stress response
over the whole deformation was equal to 1.35 MPa. The strain partitioning evolution
predicted by CNN are in an excellent agreement with CPFEM simulation results. All the
strain hot-spots are predicted correctly by the neural network model with exception of slight
intensity underprediction that can be observed in the final timestep of the deformation.
The RMSE errors for o1, stress component across all timesteps was equal to 15.37 MPa
(see table 6.6) which is comparable to the median case. For the last timestep the o1; RMSE
between CNN and CPFEM predictions was equal to 23.58 MPa (see table 6.7) which is also
comparable to the median case error. The errors for £1; are identical for best and median
cases (tables 6.6 and 6.7) confirm excellent predictive capabilities of the CNN model.
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Figure 6.12: Test set prediction with the lowest error; (a): input microstructure and flow-
curve for crystal plasticity and convolutional neural network predictions averaged across
all elements of the mesh; (b): 1; strain partitioning evolution for four strain levels.

To conclude, the results for the test set has demonstrated a good accuracy of the
trained neural network. The test set’s microstructures were synthetically generated using
the same methodology as for training set microstructures. The test set was entirely new for
the CNN model, and the neural network demonstrated excellent accuracy. The following
section validates flexibility of the trained CNN by using actual material microstructures.
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Table 6.6: Element-wise RMSE errors calculated across all timesteps for all predicted

variables.
Case 011, 022, 012, c c c c
MPa MPa MPa 1 = 33 12
Median 16.14 16.14 10.23 0.02 0.02 0.02 0.01
Worst 22.69 20.39 11.42 0.04 0.03 0.03 0.01
Best 15.37 15.61 10.28 0.02 0.01 0.02 0.01

Table 6.7: Element-wise RMSE errors calculated for the last timesteps for all predicted

variables.
011, 022, 012,
Case € € € €
MPa MPa MPa 1 2 33 12

Median  24.32 22.33 15.05 0.03 0.03 0.03 0.02
Worst 97.29 46.46 22.85 0.08 0.03 0.08 0.02
Best 23.58 21.71 14.82 0.03 0.03 0.03 0.02

6.4 Application for Real Materials

This section validates the CNN against CPFEM prediction for two completely new actual
material microstructures: AA5754 and AA6061 aluminium alloys. Then, the extension
of the model to strain localisation and stress softening response prediction was presented.
The limitations and model results were presented and discussed. Finally, the runtime
comparison of CNN and CPFEM models was performed.

6.4.1 Application to AA5754 and AA6061

This subsection presents the CPFEM and CNN predictions comparison for microstructures
of AA5754 and AAG6061 alloys. These results show the full predictive capability of the
proposed framework and prove that training the CNN on the synthesised microstructure
data can help achieve accurate machine learning predictions for the microstructures of real
materials. For each material, the input microstructure is presented and the predictions
are visualised for 1 strain and oy stress components. The strain and stress partitionings
evolution were compared for CPFEM simulation result and CNN prediction for 6%, 12%,
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17%, and 22% macroscopic strain, €4, values. Stress and strain responses averaged across
all grains are presented. Two error metrics are used to estimate accuracy of the predictions.
The first error metric is an element-wise difference between CPFEM and CNN predictions
and it was visualised using the histogram method. This difference error (DE) is calculated
using the equation:

DE = y“7 — yONN, (6.20)

where y“F is the CPFEM prediction and y“" is the prediction by the neural net-
work. Then, an error map is employed to visualise the error between CPFEM and CNN
predictions. The error map displays the absolute value of difference error in the form of a
heat map for €17 strain and oq; stress values. The white colour in error maps represents
no error, and the black represents the maximum error of a given prediction. The absolute
difference error (ADE) was calculated using the following equation:

ADE = [y — y“N] (6.21)

where 4% is the CPFEM prediction and y“™¥ is the prediction by the CNN. Finally,
the RMSE error metric was employed to calculate the error across all timesteps and for the
last timestep. The RMSE were calculated for all tensorial components of strain and stress
and are presented in the tables 6.8 and 6.9. The CPFEM and CNN predictions for oo,
012, €22, €33, and €19 were compared visually for the last timestep, and the RMSE errors
for all timesteps and for the last timesteps are reported in the tables 6.8 and 6.9.

First, the AA5754 aluminium alloy microstructure was used to test the flexibility of
predictive capabilities of the CNN. Figure 6.13 shows: (a) the initial microstructure of the
material, comparison of the averaged 1, strain, histogram of element-wise difference errors
at four different deformation levels, and (b) comparison of the strain evolution predicted
by CPFEM and CNN for the same different deformation levels and the error map. It is
important to notice that the microstructure of AA5754 aluminium alloy is very different
from the texture generated for the dataset. The typical examples of the texture in the
dataset were presented in figures 6.10, 6.11, 6.12. Despite that the morphology of the
grains in the AA5754 microstructure is different from those found in training set, the
predictions of the CNN are in excellent agreement with crystal plasticity simulations. The
CNN successfully predicted the strain hot spots, except for minor underpredictions of the
strain intensity in the late stage of the deformation. The error map in the third row of
the figure 6.13, part (b), displays that the prediction errors are overall close to zero. The
error histogram also demonstrates that most errors are concentrated around zero and are
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mostly less than 0.1 in their value for all deformation steps. Overall RMSE between CNN
and CPFEM predictions for £1; is equal to 0.02 (reported in table 6.8) and the RMSE for
the last time step is 0.03 (reported in table 6.9) and is less than 5% of the maximum strain
value in the mesh. The results for strains are in excellent agreement with CPFEM, which
confirm the accuracy of the neural network model and its flexibility to predict deformation
for various heterogeneous microstructures.
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Figure 6.13: Predictions for an AA5754 microstructure; (a): input microstructure, £y
predictions for crystal plasticity and convolutional neural network predictions averaged
across all elements of the mesh, and histogram showing the difference error distribution;
(b): e17 strain partitioning evolution for four strain levels. The first row displays crystal
plasticity predictions, the second row displays convolutional neural network predictions,
and the third row shows the error map, which displays the absolute element-wise difference
error between the crystal plasticity and convolutional neural network predictions.

Figure 6.14 displays the evolution of o; stress during deformation process for the
same initial microstructure. The second row of the figure’s part (a) shows the average
stress-strain curve. It was obtained by averaging the stress response across all elements in
the mesh for each timestep. The RMSE error for average stress was equal to 3.18 MPa,
which confirms the accuracy of overall predictions. For the element-wise comparison of
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predictions, figure’s first row of the part (b) shows the CPFEM predictions; then, the
second row shows the CNN predictions, and the third row shows the element-wise absolute
difference error for CPFEM and CNN predictions. The stress hot-spots are predicted for
each timestep with excellent accuracy. The ADE heatmap displays that most of the errors
are close to zeros, which confirms the accuracy of the CNN model. Histogram plot for
the predictions (figure 6.14, (a), third row) also confirm that the CNN predictions are
in excellent agreement with CPFEM simulations. Most of the difference errors are close
to zero, and the great majority of the errors are less than 100 MPa in their absolute
value. Overall RMSE between CNN and CPFEM predictions for 17 is equal to 15.96 MPa
(reported in table 6.8) and the RMSE for the last time step is 24.75 MPa (reported in table
6.9), which is less than 8% of the maximum stress value in the mesh. The results for strains
are in excellent agreement with CPFEM, which confirm both accuracy and flexibility of
the proposed CNN model.

To fully verify the predictive capabilities of the convolutional neural network, another
actual material microstructure was used for prediction. The microstructure under consid-
eration is of the AA6061 aluminium alloy [80]. The pole figures of AA5754 and AA6061 mi-
crostructures are compared in figure 6.16, demonstrating the significant difference between
textures presented in these two materials. The other substantial difference between the
materials’ microstructures is the grain morphology. The input microstructure of AA6061
can be observed in the first row figure 6.17, (a). The grains in the AA6061 exhibit overall
shapes and sizes that are different from grains of AA5754 microstructure (figure 6.13, (a),
first row). The grains vary in size, unlike in artificially generated grains in the training
data, and unlike in AA5754 microstructure, where grains are similar in their area. Some of
the grains in the AA6061 microstructure exhibit different degrees of elongation and grain
morphology in this specimen is more heterogeneous than in AA5754. For this microstruc-
ture, €17 strain and oy, stress CPFEM and CNN predictions are compared in detail, and
all other components are compared visually for the last timestep.

The average strain predictions £1; for CPFEM and CNN are shown on the figure 6.17,
(a), second plot. The CNN model displays excellent predictive capabilities, and the error
for the averaged predictions is negligible. The third plot in the (a) part of the figure shows
the histogram for the difference error between predictions for four strain levels. The errors
are majorly situated close to zero and the majorly are less than 0.1 in their absolute value.
Strain partitioning comparison is shown on the (b) part of the figure and the error map
showing absolute difference error. The red ellipse highlights the only hotspot that the
machine learning model did not capture. The rest of the strain hotspots are captured
with exceptional accuracy, which is confirmed by the error plot in the third row. The blue
arrows highlight some of the successfully predicted strain hotspots within the partitioning.
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Figure 6.14: Predictions for an AA5754 microstructure; (a): input microstructure, oyy
predictions for crystal plasticity and convolutional neural network predictions averaged
across all elements of the mesh, and histogram showing the difference error distribution;
(b): 017 stress partitioning evolution for four strain levels. The first row displays crystal
plasticity predictions, the second row displays convolutional neural network predictions,
and the third row shows the error map, which displays the absolute element-wise difference
error between the crystal plasticity and convolutional neural network predictions.

Overall RMSE for eq; strain is equal to 0.02 (reported in table 6.8) and the last timestep
error for €17 is equal to 0.03 (reported in table 6.9), which confirm the consistency in the
accuracies of the predictions. These results have demonstrated the excellent capability
of the trained model to predict €1 strain component mesh partitioning across the whole
history of deformation.

The average stress predictions o1; for CPFEM and CNN are shown on the figure 6.18,
(a), second plot. CNN displays excellent predictive capabilities, and the RMSE for the
averaged flow curve is equal to 6.46 MPa. The third plot in the (a) part of the figure shows
the histogram for the difference error between predictions for four strain levels. The errors
are majorly situated close to zero in their absolute value. Stress partitioning comparison
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Figure 6.15: Prediction for an AA5754 microstructure; the first row displays the crystal
plasticity finite element predictions for the last timestep of the deformation, and the second
row the convolutional neural network predictions for the last timestep of the deformation.
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Figure 6.16: (a) Pole figure for AA5754 microstructure and (b) pole figure for AA6061

microstructure

is shown on the (b) part of the figure and the error map showing absolute difference error.
The blue ellipses highlight the major stress hotspots that evolved during the deformation,
which were captured accurately with the network. This accuracy is also confirmed by the
absolute difference error plot in the third row. Overall RMSE for oy; stress is equal to
17.49 MPa (reported in table 6.8) and the last timestep error for oq; is equal to 26.84 MPa
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Figure 6.17: Predictions for a AA6061 microstructure; (a): input microstructure, €17 pre-
dictions for crystal plasticity and convolutional neural network predictions averaged across
all elements of the mesh, and histogram showing the difference error distribution; (b): £1;
strain partitioning evolution for four strain levels. The first row displays crystal plastic-
ity predictions, the second row displays convolutional neural network predictions, and the
third row shows the error map, which displays the absolute element-wise difference error
between the crystal plasticity and convolutional neural network predictions.

(reported in table 6.9), which confirm the consistency in the accuracies of the predictions.
These results have demonstrated the excellent capability of the trained model to predict oq;
strain component mesh partitioning across the whole history of deformation for AA6061
alloy and validate the framework’s capability to predict deformation behaviour for a wide
range of materials.

The predictions for the other stress and strain tensor components were evaluated. As
previously, only the last time step of the deformation process is visualised (figure 6.19). The
overall accuracy of prediction is also clear from the visual representation. The predictions
for 095 component has a slight underprediction across the mesh. Overall RMSE for o5, is
equal to 18.46 MPa, and the RMSE for the last time step is 25.72 MPa. The prediction
is visibly 015 very accurate, and all the stress hotspots are predicted correctly within the
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Figure 6.18: Predictions for a AA6061 microstructure; (a): input microstructure, oyq
predictions for crystal plasticity and convolutional neural network predictions averaged
across all elements of the mesh, and histogram showing the difference error distribution;
(b): 017 stress partitioning evolution for four strain levels. The first row displays crystal
plasticity predictions, the second row displays convolutional neural network predictions,
and the third row shows the error map, which displays the absolute element-wise difference
error between the crystal plasticity and convolutional neural network predictions.

partitioning. Overall RMSE for 015 is equal to 9.86 MPa, and the RMSE for the last
time step is 14.41 MPa. The rest of the strain partitionings, the predictions are performed
exceptionally accurately. The overall RMSE for €99 and e33 is equal to 0.02, and overall
RMSE for 15 is as small as 0.01. For the last timestep, the RMSE for €55 and £33 is equal
to 0.03, and the last timestep RMSE for €15 is equal to 0.02. The overall RMSE for each
of the variables is reported in the table 6.8 and the last timestep RMSE for each variable
is reported in the table 6.9. The visualisation of the results and the error values confirm
the capability of the convolutional neural network to achieve accurate crystal plasticity
predictions for real materials.

To conclude, the CNN was validated for AA5754 and AA6061 microstructures. Despite
the fact that the network was never trained for the grain morphology in AA5754, the
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Figure 6.19: Prediction for AA6061 microstructure; the first row displays the crystal plas-
ticity finite element predictions for the last timestep of the deformation, and the second
row the convolutional neural network predictions for the last timestep of the deformation.

Table 6.8: Application to AA5754 and AA6061 aluminium alloys: element-wise RMSE
errors calculated across all timesteps for all predicted variables.

011, 022, 012,

Case MPa MPa MPa fu £22 £33 c12
AA5754  15.96 15.78 10.06 002 002 002 001
AAG061  17.49 18.46 9.86 002 002 002 001

CNN predictions were in excellent agreement with the predictions of CPFEM simulations
for this microstructure. The microstructure of AA6061 exhibited a completely new grain
morphology as well as an overall texture. The CNN predictions were also accurate for
AA6061, which demonstrated the flexibility of the proposed CNN for predictions for a
wide range of materials.

6.4.2 Extension to Strain Localisation Prediction

In addition to the work presented above, the convolutional neural network’s capability to
predict strain localisation was investigated. The CPFEM data was simulated up to 44% of
macroscopic {7 strain, and the CNN was retrained on this data. Similarly to the previous
training approach, the network was trained on 10, 000 samples, validated on 1,000 samples,
and tested on 1,000 samples. Final training and validation errors (normalised data) were
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Table 6.9: Application to AA5754 and AA6061 aluminium alloys: element-wise RMSE
errors calculated only for the last timesteps for all predicted variables.

Case 011, 022, 012, c c c c
MPa MPa MPa 1 2 33 12

AA5754 2475 22.73 14.91 0.03 0.03 0.03 0.02

AA6061  26.84 25.72 14.41 0.03 0.03 0.03 0.02

equal to 1.3 x 1073 after 60 training epochs, and the test error was equal to 1.2 x 1073. A
low training error confirmed that the CNN learned the local strain distributions. However,
CNN could not predict the correct intensity of the strain localisation formations. The
average predictions were fairly accurate. For brevity and discussion purposes, only the
example of predictions for AA5754 microstructure are presented. In detail, predictions
for €11 strain and o;; stress components are analysed visually, and the rest components
predictions were assessed with RMSE across all timesteps and for the last timestep of the
deformation.

Aluminium alloy AA5754 microstructure was used to assess the predictive capabilities
of the CNNs to predict strain localisation. Figure 6.20, (a), shows the input microstructure,
averaged strain response, and the difference errors for four strain levels in the form of a
histogram. The averaged €;; strain predicted with neural network is predicted exceptionally
accurately and has a minor error. The difference error plot also displays that most of the
errors are situated in the proximity of zero, with the majority of the errors being less than
0.3 in their absolute value. However, the visualisations of the FE meshes (figure 6.20,
(b)) reveal that the neural network, while captures the localisation formation location,
does not predict the correct intensity of hot spots, as highlighted by red ellipses on the
plot. Outside of the localisation region, local 1 strains are accurately captured by the
convolutional neural network. The overall RMSE for £1; component is equal to 0.16, and
the last timestep RMSE is 0.26. Both of the errors are reported in the table 6.10.

The analysis of the o7 stress component prediction is demonstrated in figure 6.21.
Part (a) of the figure displays the input microstructure, averaged stress error and the
difference errors in the form of histogram. The averaged stress is captured well by the neural
network, and the RMSE of the averaged predictions is 3.38 MPa. The CNN has successfully
captured local stress relaxation, resulting in highly-accurate predictions of the averaged o1,
stress. Histogram confirms confirms the accuracy of the CNN by demonstrating that great
majority of local stress prediction errors are close to zero. The majority of the difference
errors is less than 250 MPa in their absolute value. As in the case with the prediction
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Figure 6.20: Predictions for an AA5754 microstructure (extension to localisation predic-
tions); (a): input microstructure, e1; predictions for crystal plasticity and convolutional
neural network predictions averaged across all elements of the mesh, and histogram show-
ing the difference error distribution; (b): 1 strain partitioning evolution for four strain
levels. The first row displays crystal plasticity predictions, the second row displays convo-
lutional neural network predictions, and the third row shows the error map, which displays
the absolute element-wise difference error between the crystal plasticity and convolutional
neural network predictions. Strain localisation intensity is underpredicted by the CNN, as
highlighted by red ellipses. The predictions outside the localisation region and the aver-
aged e1; strain are captured accurately.

of the 11 strain component, the predictions of the stress hotspot location is correct, but
the intensity of the predicted value is not captured accurately, as highlighted with red
ellipses on the figure. The other areas of the FE mesh are in excellent agreement with
crystal plasticity simulations. Notably, that the local stress relaxation is predicted quite
well by the CNN, as highlighted with blue arrows on the figure. This is also reflected on
the averaged flow curve: the stress decreases after the material’s maximum resistance to
loading was achieved. The error map validates the observations: most of the errors are
close to zero, apart from the localisation spots. The overall RMSE for the o1, predictions
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was equal to 80.8 MPa, and the last timestep RMSE was equal to 166.39 MPa. The errors
are reported in the table 6.10.
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Figure 6.21: Predictions for an AA5754 microstructure (extension to localisation predic-
tions); (a): input microstructure, o1 predictions for crystal plasticity and convolutional
neural network predictions averaged across all elements of the mesh, and histogram show-
ing the difference error distribution; (b): oy; strain partitioning evolution for four strain
levels. The first row displays crystal plasticity predictions, the second row displays convo-
lutional neural network predictions, and the third row shows the error map, which displays
the absolute element-wise difference error between the crystal plasticity and convolutional
neural network predictions. The intensity of stress localisation is underpredicted, as high-
lighted with red ellipses. Local stress relaxation is captured well by the CNN, as well as
the averaged stress response, as demonstrated by the arrows.

The errors for the other variables are reported in the table 6.10. Similarly to the re-
sults for €17 and o011, the RMSEs for o9y, 012, €22, €33, and &1 are higher than in the
cases where deformation is predicted up to 22%. The authors attempted to train deeper
networks, adding more data to the training set, which did not help achieve better local-
isation predictions. The other types of networks that can be considered for application
of the localisation predictions could be convolutional long short-term memory networks
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(CNN-LSTM), a type of recurrent neural network. They could be beneficial for predic-
tions of spatial-sequential data such as deformation evolution of finite element mesh. These
networks were not considered in this research as they are out of the scope of this work.

Table 6.10: Element-wise RMSE errors calculated across all timesteps for all predicted
variables (extension to localisation predictions).

011, 022, 012,

Case MPa  MPa  MPa ! =22 =33 c12
All

. 80.8 60.36 37.51 0.16 0.12 0.11 0.07
timesteps
Last

. 116.39 77.71 53.77 0.26 0.19 0.16 0.12
timestep

6.4.3 Runtime Comparison

The results have demonstrated the predictive capabilities of the proposed CNN to pre-
dict stress and strain partitioning of FE mesh. Besides the predictive accuracy, CNNs
have another beneficial quality: computational efficiency. Crystal plasticity simulations
are computationally demanding [206], especially when it comes to finite elements applica-
tions. Crystal plasticity finite element models computational time increases exponentially
with the increase of elements in the FE mesh [137]. The exponential increase in com-
putational time would not be the case for neural networks due to the relative simplicity
of the performed computations in the networks. CNN computations include operations
such as matrix multiplication, addition, and application of non-linearity to the weights in
a layer, while crystal plasticity methods require solving highly non-linear computational
equations. Therefore the usability of the networks becomes evident for such problems
as material design, as multiple microstructures’ deformation behaviour can be evaluated
by neural networks simultaneously in a matter of seconds or minutes. Crystal plasticity
simulations would require computationally demanding simulations, usually performed on
high-performance computing clusters. If the number of microstructures requiring deforma-
tion behaviour evaluation is large, crystal plasticity simulation may not be feasible due to
computational limitations, while machine learning methods are fast and becoming more
and more accessible nowadays.

A number of studies compared the runtime of crystal plasticity compared to machine
learning models [134, 135, 137, 140, 245| and highlighted the computational time superiority
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of machine learning models to crystal plasticity models. The computational time compar-
ison has also been conducted in this study and confirmed the computational efficiency
of the neural networks compared to crystal plasticity methods. Figure 6.22 demonstrated
runtime comparison for CPFEM and CNN models. The compassion in seconds for 1 and 10
simulations is demonstrated for predictions up to 22% and 44% of €4 strain. A logarithmic
scale was used to highlight the magnitudes of difference in the runtime. For example, to
predict local stress and strain values up to 22% strain, the CPFEM model takes 30 minutes
for one simulation and 300 minutes for 10 simulations, while the CNN model takes 56.3
ms and 470 ms correspondingly. For 1 and 10 simulations for localisation predictions, the
CPFEM model requires 71 minute and 710 minutes correspondingly, while CNN requires
71 ms and 650 ms correspondingly. Therefore, machine learning enables enormous time
savings and results in over 99.9% faster predictions.

Runtime comparison

104

103

10?

10!

Runtime (seconds)

100

10!

1 simulation 10 simulations 1 simulation 10 simulations
(up to E"lwl 22%) (upto ETl 22%) (upto E’f’l 44%)  (upto E’f’l 44%)

Figure 6.22: Runtime comparison between CPFEM and CNN. Vertical axis is displayed
using logarithmic scale to emphasize the time difference between the models.

6.5 Chapter Conclusions

In this paper, a CNN-based framework to achieve high-fidelity predictions of local stress and
strain evolution is proposed. The proposed framework resulted in training an optimal CNN
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on a CPFEM dataset and included: feature engineering, synthesis of microstructures, data
preprocessing, dataset design, and optimal architecture search. The important summary
points, observations, and conclusions are as follows:

e The result of the framework was a deep convolutional neural networks which enabled
accurate crystal plasticity finite element predictions for materials.

e The training dataset consisted of synthetically generated microstructures and two
material parameters: initial hardness and initial hardening modulus. The microstruc-
tures were generated using Voronoi tessellations; each microstructure was unique and
contained varying number of grains. The material hardening parameters were sam-
pled using Sobol sequences. The orientations for generated microstructures were
randomly sampled from the dataset of orientations. The orientation dataset was
generated using AA5754 EBSD scan, and contained 8, 750 orientations.

e The CNN architecture was selected based on the ten different architecture trial train-
ing on partial dataset (5,000 samples) for 15 epochs. Then, the best performing
neural network was trained on the full dataset for 100 training epochs. The training
consisted of 10,000 samples, the validation and test sets consisted of 1,000 samples
each.

e The CNN’s predictive capabilities were validated using a test set containing com-
pletely new synthetically generated microstructures. Then the CNN was validated
for two actual material microstructures (AA5754 and AA6061). The grain morphol-
ogy within the AA5754 microstructure was different from the typical synthetically
generated microstructure. The texture and the grain morphology of the AA6061
microstructure were also completely new to the CNN.

e The network has demonstrated excellent agreement with crystal plasticity simulations
for test sets and for both real material samples.

e Test set median prediction error (RMSE across all timesteps) for o1; was 16.14 MPa
and for 17 was 0.02. Test set worst prediction error (RMSE across all timesteps) for
011 was 22.69 MPa and for £1; was 0.04. Test set best prediction error (RMSE across
all timesteps) for oy; was 15.37 MPa and for €1; was 0.02. The other components
errors were also reported. In the worst prediction case, the CNN could not predict
the localisation which appeared earlier during the deformation process due to specific
texture morphology. The cases with localisation formations were not common within
the dataset. Therefore the network did not learn the localisation behaviour, resulting
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in higher error. The median and best errors were close in values, which confirm the
accuracy of the neural network. Visually, the meshes also confirm the excellent
agreement between CPFEM and CNN predictions.

The network demonstrated excellent predictive capabilities for real AA5754 mi-
crostructure. The orientation distribution was similar to the orientation distribu-
tions in microstructures from the synthesized dataset, but the grain morphology was
different. The real AA5754 grain morphology was rather distorted than a smooth
and similar size and shape of grains in the synthetically generated material. De-
spite that microstructural difference, the network predictions demonstrated excellent
agreement with crystal plasticity results. The predictions were compared visually for
four strain levels, and the agreement between the results was evident. The prediction
error (RMSE across all timesteps) for 017 was 15.96 MPa and for £;; was 0.02. The
other components for strain and strain were also reported. The error results were
comparable to the best test cases predictions, thus confirming the accuracy of the
neural network.

The network also demonstrated excellent predictive capabilities for real Al 6061 mi-
crostructure. For this microstructure, the orientation distribution was different com-
pared to the orientation distributions present in the synthesised dataset. The grain
morphology differed from both the synthesised dataset and AA5754 microstructure.
Despite that microstructural difference, the network predictions demonstrated excel-
lent agreement with crystal plasticity results. The predictions were compared visually
for four strain levels, and the agreement between the results was evident. The predic-
tion error (RMSE across all timesteps) for o1; was 17.49 MPa and for €1; was 0.02.
The other components for strain and strain were also reported. The error results
were comparable to the best test cases predictions, thus confirming the accuracy of
the neural network and its applicability outside of the training dataset.

The network was tested to predict localisation prediction. The proposed CNN suc-
cessfully captured stress and strain responses averaged across most of elements of a
mesh. Overall, except for predictions for localisation intensity, the predictive perfor-
mance of the CNN showed good agreement with CP simulations, including unloading
behaviour predictions.

The presented approach to CPFEM predictions has been computationally efficient
compared to the crystal plasticity finite element model. The trained convolutional
neural network has shown up to 99.9% computational speedup: up to 65 ms versus up
to 11 hours and 50 minutes for ten simulations. As a direction to further study, such

145



machine learning models can be applied to the microstructural design problems and
save a considerable amount of time on crystal plasticity simulations, as conventional
crystal plasticity models are very computationally demanding.
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Chapter 7

Conclusions and Future Work

7.1 Summary & Key Conclusions

The goal of this research was to develop a machine learning-based framework to enable
high-fidelity predictions of material deformation. The work was divided into two major
parts. The first goal was to develop a machine learning framework that can serve as
a single-crystal deformation model to accurately predict stress-strain behaviour and tex-
ture evolution for complex strain paths. The constituents of the framework included an
ensemble of artificial neural networks and a CP-update algorithm to accommodate for com-
plex strain-paths deformation behaviour predictions while having ANNs trained only on
monotonic loading scenarios. The framework was successfully implemented and validated
against the Taylor-type CP model for monotonic and non-monotonic strain paths for single
crystal and polycrystalline aggregates. The second goal was to develop a machine learn-
ing framework to achieve accurate local stress and strain evolution predictions for a wide
range of material microstructures. A single convolutional neural network was implemented
and trained to predict stress and strain partitionings of an aluminium microstructure un-
der a proportional loading condition similar to uniaxial tension. The CNN was trained
on crystal plasticity finite element simulations for synthetically generated microstructures
with defined material parameters. The resultant CNN was successfully implemented and
validated against CPFEM for a new set of synthetic microstructures. The flexibility of
the CNN was demonstrated by its validation for two microstructures of actual materials
(AA5754 and AA6061). Both frameworks demonstrated substantial reductions in compu-
tational time compared to CP models without significant sacrifice in accuracies. The thesis
key conclusions are as follows:
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7.1.1 A new ANN based crystal plasticity model for FCC materi-

als and its application to non-monotonic strain paths

A machine learning- and crystal plasticity-based framework is proposed to model
stress-strain and texture evolution for a wide variety of the FCC family crystals
under non-monotonic strain path.

The proposed framework consists of an ensemble of artificial neural networks trained
only on monotonic loading examples. The implemented crystal plasticity-based algo-
rithm makes it possible to predict the complex cases of non-monotonic loadings using
those networks. The presented framework allows accurate material behaviour pre-
dictions on any, monotonic or non-monotonic, strain path. The predictions include
full stress-strain predictions and texture evolution.

The proposed framework was validated for a wide variety of strain paths: uniaxial
tension, compression, simple shear, equibiaxial tension, tension-compression-tension,
compression- tension-compression, cyclic shear, and arbitrary non-monotonic loading.

The framework demonstrated excellent predictive capabilities for polycrystal simula-
tions. The two cases were considered in this research: shear followed by tension, and
arbitrary non-monotonic loading.

The framework demonstrated excellent ability to predict texture evolution under
plane-strain compression which is the major strain path during rolling of sheet metals.

One of the most important outcomes of the current work is the proof of feasibility:
it is possible to utilize machine learning to capture the crystal plasticity predictions
of stress-strain properties and texture evolution. The presented results suggest that
machine learning methods can be successfully applied to perform crystal plasticity
prediction of material deformation behaviour.

The presented approach is computationally efficient and shows up to 99.9 % compu-
tational speedup compared to Taylor-type crystal plasticity model.

7.1.2 Convolutional neural networks applications to crystal plas-

ticity finite element predictions

In this work, the CNN-based framework which enables rapid full-field stress and
strain evolution prediction is proposed.

148



The training dataset consisted of synthetically generated microstructures and two
material parameters: initial hardness and initial hardening modulus.

The microstructures were generated using Voronoi tessellations; each microstruc-
ture was unique and contained varying number of grains. The material hardening
parameters were sampled using Sobol sequences. The orientations for generated
microstructures were randomly sampled from the dataset of orientations. The orien-
tation dataset was generated using AA5754 EBSD scan, and contained 8, 750 orien-
tations.

The CNN’s predictive capabilities were successfully validated using a test set con-
taining completely new synthetically generated microstructures.

The CNN was successfully validated for two actual material microstructures (AA5754
and AA6061). The grain morphology within the AA5754 microstructure was different
from the typical synthetically generated microstructure. The texture and the grain
morphology of the AA6061 microstructure were also completely new to the CNN.

The network was tested to predict localisation prediction. The proposed CNN suc-
cessfully captured stress and strain responses averaged across most of elements of a
mesh. Overall, except for predictions for localisation intensity, the predictive perfor-
mance of the CNN showed good agreement with CP simulations, including unloading
behaviour predictions.

The presented approach is computationally efficient and shows up to 99.9 % compu-
tational speedup compared to crystal plasticity finite element method model.

7.2 Future Work

The frameworks presented in this research provide an excellent tool for rapid and accu-
rate high-fidelity predictions of the deformation behaviour of polycrystalline solids. The
framework presented in chapter 5 can be extended for using more material parameters,
e.g., strain rate, and other parameters related to chosen hardening models.

The framework presented in chapter 6 had a limitation in predictions of strain locali-
sation. Logically, this limitation should be addressed. The ways to resolve this limitation
include implementing time-dependent neural networks, such as recurrent convolutional neu-
ral networks, or creating other strategies for localisation prediction. Once this limitation
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is addressed, the next step would be to extend the model to other strain paths, monotonic
and non-monotonic, and incorporate texture evolution prediction into a model.

Finally, the logical extension of both presented frameworks is the design and incorpora-
tion of a machine learning model into finite element software to produce rapid predictions
of material deformations.
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