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Abstract

Incomplete life history data can arise in study designs, coarsened observations, missing
covariates, and unobserved latent processes. This thesis consists of three different projects
developing statistical models and methods to address problems involving such features.

Statistical models which facilitate the exploration of spatial dependence can advance
scientific understanding of chronic diseases processes affecting several organ systems or
body sites. Motivated by the need to investigate the spatial nature of joint damage in
patients with psoriatic arthritis, we develop a multivariate mixture model to characterize
latent susceptibility and the progression of joint damage in different locations in Chapter 2.
In addition to a large number of joints under consideration and the heterogeneity in risk, the
times to joint damage are subject to interval censoring as damage status is only observed
at intermittent radiological examination times. We address computational and inferential
challenge through use of composite likelihood and two-stage estimation procedures. The
key contribution of this chapter is the development of a convenient and general framework
for regression modeling to study risk factors for susceptibility to joint damage and the time
to damage, as well as spatial dependence of these features.

The design and analysis of two-phase studies have been investigated for biomarker
studies involving lifetime data. Two-phase designs aim to guide the efficient selection of
a sub-sample of individuals from a phase I cohort to measure some ”expensive” markers
under budgetary constraints. In a phase I sample information on the response and inex-
pensive covariates is available for a large cohort, and in phase II, a subsample is selected in
which to assay the marker of interest through examination of a biospecimen. The design
efficiency is measured in terms of the precision in estimating the effect of the biomarker
on some event process (e.g. disease progression) of interest. Chapter 3 considers two-
phase designs involving current status observation of the failure process; here individuals
are monitored at a single assessment time to determine whether or not they have experi-
enced a failure event of interest. This kind of observation scheme is sometimes desirable
in practice as it is more efficient and cost-effective then carrying out multiple assessments.
We examine efficient two-phase designs under two analysis methods, namely maximum
likelihood and inverse probability weighting. The former tends to be more efficient but
requires additional model assumptions involving the nuisance covariate model, while the
latter is more robust but yields less efficient estimators since it only analyses data from
the phase II subsample. The optimal designs are derived by minimizing the asymptotic
variance of the coefficient estimators for the expensive marker. To circumvent the com-
putational challenge in evaluating asymptotic variances at the design stage, we consider
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designs involving sub-sampling based on extreme score statistics, extreme observations, or
via stratified sub-sampling schemes. The role of the assessment time is highlighted.

Research involving progressive chronic disease processes can be conducted by synthesiz-
ing data from different disease registries using different enrolment conditions. In inception
cohorts, for example, individuals may be required to not have entered an advanced stage of
the disease, while disease registries may focus on individuals who have progressed to a more
advanced stage. The former yields left-truncated progression times while the latter yields
right-truncated progression times. Chapter 4 considers the development of two-phase de-
signs when the phase I sample contains data pooled from different registries launched to
recruit individuals from a common population with different disease-dependent selection
criteria. We frame the complex data structure by multistate models and carefully outline
model assumptions such as the independence of disease progression and time to death.
General likelihood constructions are presented using intensity-based models and we derive
a partial likelihood restricted to the failure time of interest under special model assump-
tions. Both recruitment (phase I) and sub-selection (phase II) biases are accounted for to
ensure valid inference. An inverse probability weighting method is also developed to relax
or weaken assumptions needed for the likelihood approach. We investigate and compare
the performance of various two-phase sampling schemes under each analysis method and
provide practical guidance for phase II selection given budgetary constraints.

The contributions of this thesis are reviewed in Chapter 5 where we also mention topics
of future research.
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Chapter 1

Introduction

1.1 Overview and introduction of statistical methods

1.1.1 Overview

This thesis is concerned with the development of statistical methods for the design and anal-
ysis of life history studies involving incomplete data. Chronic diseases are considered which
can be characterized by failure time and more general multistate processes (Klein et al.,
2014; Cook and Lawless, 2018). In registry studies involving failure time processes, data
are often incomplete because of censoring and truncation (Klein and Moeschberger, 2003).
The former may correspond to, for example, right-censored data due to loss to follow-up,
or interval-censored data if failure status is only observable at periodic assessment times.
Truncation differs from censoring as it relates to inclusion criteria. For example, left trun-
cation arises in settings where individuals are only included if they have not yet developed
the event of interest at a recruitment time (Turnbull, 1976). Problems considered include
the development of latent variable models to study spatial dependence of susceptibility
to disease progression at several body sites. Another theme of this research is the use of
two-phase designs in setting involving heavily censored or truncated data.

The first research project is devoted to the analysis of dependent failure time processes
under intermittent observation. The model is generalized to accommodate the fact that
some processes may not be nonsusceptible to failure event of interest. It is often unknown
whether processes not observed to fail are susceptible or not and mixture models can be
useful in such settings (Farewell, 1982). In Chapter 2 we develop spatial dependence models
for susceptibility and failure times among jointly susceptible processes. The likelihood
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is evaluated and composite likelihood methods are proposed to simplify the necessary
computing.

Two-phase design problems in life history analysis often arise in biomarker studies where
serum samples are collected and stored at study entry for future use. It is usually expensive
and inefficient to assay all stored biosamples for one biomarker study and in such cases, two-
phase designs offer a cost-effective solution. In phase I inexpensive information on responses
and some auxiliary covariates are collected; in phase II a subsample of individuals is selected
to measure marker values in biospecimens through an expensive ascertainment process.
It is conventional to partition the phase I sample into several exclusive and nonempty
strata and to conduct phase II stratified subsampling (Prentice, 1986; Borgan et al., 2000;
McIsaac, 2012; Espin-Garcia et al., 2017). More recently, there has been increasing interest
in developing asymptotic or approximate optimal designs that aim to achieve the highest
precision in estimating the marker effect on some event process of interest (Reilly, 1996;
McIsaac and Cook, 2014, 2015; Tao et al., 2020; Chen and Lumley, 2020; Yang et al.,
2021). The last two projects of this thesis focus on the cost-effective design of studies
aiming to estimate the association between an expensive biomarker and a disease process
of interest. Much work on two-phase studies has been carried out for continuous and
binary responses, as well as failure processes under right-censoring (e.g. Prentice, 1986;
Chen and Lo, 1999; Breslow and Wellner, 2007; Borgan and Samuelsen, 2014; Lawless,
2018; Tao et al., 2020). The current work on two-phase study design considers i) failure
time processes under current status observation schemes (Chapter 3), and ii) the analysis
of two-stage disease processes when interest lies in estimating the effects of biomarkers on
the risk of progression from one disease stage to the next (Chapter 4). In the second setting
the use of data from different disease registries creates a phase I sample with sub-samples
acquired according to different state-dependent selection processes.

This thesis is written with relatively self-contained chapters with the first section of
the chapters devoted to a review of the relevant background literature, followed by an
introduction to the notation and methods, reports on the results of simulation studies,
and applications to the motivating studies. The last chapter reviews the contributions of
this thesis and outlines several topics for future research. In the next section, the relevant
statistical models and methods employed for this thesis are briefly reviewed, following
which three motivating studies are discussed. The three problems addressed are then
briefly described.
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1.1.2 Modeling multivariate failure times via Gaussian copulas

With K types of events, we write the failure time vector as T “ pT1, T2, . . . , TKq1, with Tk

being a non-negative variable of the time to event k. Given the marginal survival function
Fkpt;θkq “ P pTk ě tq, k “ 1, . . . , K, the joint survival function P pT ą tq can be specified
through a K-dimensional copula function (Sklar, 1959; Joe, 1997) indexed by a vector of
dependence parameters ρ, such that

CpU1 ě u1, . . . , UK ě uK ;ρq “ P pU1 ě u1, . . . , UK ě uK ;ρq

where Uk are uniform r0, 1s random variables, k “ 1, . . . , K. If we set Uk “ FkpTk;θkq,
then the multivariate survival function for T is

P pT1 ą t1, . . . , TK ą tKq “ CpF1pt1;θ1q, . . . ,FKptK ;θKq;ρq. (1.1.1)

There are a variety of copula functions available to model the dependence structure
among the failure times. For example, with K “ 2, Chatterjee and Shih (2001) studied
the Clayton model (Clayton, 1978), the Frank model (Frank, 1979) and the positive stable
model (Hougaard, 1986) in the context of familial disease; Jiang and Cook (2020) utilized
the class of Archimedean copulas (Nelsen, 2006) for modeling bivariate interval-censored
failure time data with dependent susceptibility. Zhong and Cook (2016) used a Gaussian
copula to model multivariate failure times in family studies.

Gaussian copula models accommodate a flexible pairwise association specification through
a correlation matrix. It also enjoys many properties similar to the multivariate normal dis-
tribution; a most appealing one is the reproducible property in the sense that any subvector
retains the same form of distribution as the full vector (Song, 2000). The Gaussian cop-
ula function for the multivariate failure time distribution corresponding to (2.2.5) can be
expressed as

Cpu1, . . . , uK ;ρq “ ΦKpΦ´1pu1q, . . . ,Φ´1puKq;ρq

where Φ´1p¨q is the inverse cumulative distribution function of a standard normal random
variable and ΦKp¨;ρq is the cumulative distribution function of a Kˆ1 multivariate normal
random variable with mean zero and K ˆ K covariance matrix Σpρq with off-diagonal
entries ρkk1 . The association between Tk and Tk1 can be measured by Kendall’s tau, given
by τkk1 “ 2 arcsinpρkk1q{π, k, k1 P t1, . . . , Ku. The joint distribution for T is indexed in
general by ϑ “ pθ1,ρ1q with θ “ pθ1

1, . . . ,θ
1
Kq1.
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1.1.3 Analysis of incomplete covariates in two-phase designs

The idea of two-phase sampling was first introduced by Neyman (1938) as a cost-effective
solution to a field survey problem. In a classic two-phase design, one collects relatively
cheap information for a cohort of individuals and then randomly draws subsamples from
pre-specified strata to ascertain further costly information. This framework is widely used
in epidemiological studies when one or more of the risk factors of primary interest are
expensive or infeasible to measure on the full cohort due to limited resources (Prentice,
1986; Borgan et al., 2000; Lawless et al., 1999).

We let X be a p ˆ 1 vector of covariates collected at t “ 0 and suppose the goal is to
evaluate the association between X and a scalar event time of interest T . We let Y denote
the observed version of T . For illustration we take an example of current status data where
Y “ pIpT ď Aq, Aq1 with A denoting the (single) inspection time. We consider the case
in which a scalar covariate X1 in X is an expensive biomarker and it is cost-prohibitive to
measure it for all individuals. Scientific interest often lies in examining covariate effects
on the hazard for the event of interest. We partition X as pX1,X1

2q1 where X2 represents
a vector of discrete inexpensive auxiliary covariates. We write the conditional hazard as

hpt|Xq “ lim
∆tÑ0

P pt ď T ď t ` ∆t|t ď T,Xq

∆t
.

Let θ index the distribution function for T |X and we write Fpt|X;θq “ P pT ą t|Xq as
the conditional survival function.

We let R “ IpX1 is observedq denote the variable indicating that the individual i is
selected into the phase II sub-cohort (or sub-sample). With ρ indexing the selection model
we write it as

P pR “ 1|Z;ρq “ πpZ;ρq,

where Z “ pY,A,X1
2q1. For a sample of N observations from independent processes we

introduce the subscript i, i “ 1, . . . , N . The phase I sample is tYi,Xi2, i “ 1, . . . , Nu. If
individual i is chosen to measure Xi, we let Ri “ 1 and let Ri “ 0 otherwise. Following
phase II subsampling we write the available data as tYi,X˝

i , Ri, i “ 1, . . . , Nu, where X˝
i “

Xi if Ri “ 1 and Xi2 otherwise. A observed data likelihood (Lawless et al., 1999) is given
by

N
ź

i“1
rπpZi;ρqP pYi|Ai,Xi;θqP pXi1|Ai,Xi2qs

Ri
“

p1 ´ πpZi;ρqqEX1|A,X2rP pYi|Ai, X1,Xi2;θqs
‰1´Ri ,

where P pY |A,X;θq “ FpA|X;θqIpT ąAqp1 ´ FpA|X;θqqIpT ďAq.
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A simple alternative to maximum likelihood for dealing with the incomplete covariate
data is to restrict the analysis to the phase II subsample in which case inverse probability
weighting (Robins et al., 1994) is required. A consistent estimator of θ is obtainable by
using an inverse probability weighted (IPW) estimating function restricted to the phase II
data given by

N
ÿ

i“1

Ri

πpZi;ρq

B

Bθ
logP pYi|Ai,Xi;θq,

where the phase II selection probability πpZ;ρq is bounded away from zero. Use of IPW
estimating function is more robust since it does not require specifications of this nuisance
model, but it yields less efficient estimators; it does require specification of the selection
model but in the context of two-phase designs this is set by the investigator and so is
known.

A variety of other approaches have been developed for dealing with incomplete covari-
ate data which feature different degrees of robustness and efficiency (Robins et al., 1994;
Lawless et al., 1999; Chatterjee et al., 2003; Lumley et al., 2011). In Chapters 3 and
4, we focus on inference based on (partial) conditional likelihood and inverse probability
weighted (IPW) estimating equations.

1.1.4 Multistate processes

Multistate processes offer an intuitive and appealing framework to model the lifetime
dynamics concerning a disease process of interest (Cook and Lawless, 2014, 2018). A
multistate model involving 2J states can be adopted for progressive disease processes, as
show in Figure 1.1, with finite state-space S “ t0, 1, . . . , J ´ 1, D0, D1, . . . , DJ´1u, where 0
represents the disease-free state and states 1, 2, . . . , J ´ 1 represent the worsening disease
stages; the set D “ tD0, . . . , DJ´1u contains all absorbing death states, where Dj denotes
the death state transiting from state j, j “ 0, 1, . . . , J ´ 1.

Omitting covariate information for the time being we let HpAq “ tZpuq, 0 ď u ă A,Bu

denote the history of disease process over age interval r0, Aq for an individual born at time
B. We consider Markov intensity of the form

lim
∆aÝÑ0

P pZpa ` ∆a´q “ j ` 1|Zpa´q “ j,Hpaqq

∆a
“ λjpa|Bq, j “ 0, 1, . . . , J ´ 2

for disease progression and

lim
∆aÝÑ0

P pZpa ` ∆a´q “ Dj|Zpa´q “ j,Hpaqq

∆a
“ ηjpa|Bq, j “ 0, 1, . . . , J ´ 1
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0 1 2 . . . J ´ 1

D0 D1 D2 . . . DJ´1

λ0 λ1 λ2 λJ´2

η0 η1 η2 ηJ´1

Figure 1.1: A multistate diagram with J disease states and J states representing death from
each disease state.

for transitions into death states. We take it as understood in what follows that λJ´1pa|Bq “

0 because J´1 is the most advanced disease state. The transition probabilities P pZpauq “

j1|Zpalq “ j,Hpalqq “ Pjj1pal, au|Bq can be expressed in terms of the transition intensities.
For example, if the disease process is independent of calendar time (i.e. λjpa|Bq “ λjpaq

and ηjpa|Bq “ ηjpaq), then

P0jpal, auq “

ż au

al

P0,j´1p0, tqλj´1ptqPjjpt, auqdt, for j “ 1, . . . , J ´ 1,

where Pjjpal, auq “ exp
´

´
şau

al
rλjptq ` ηjptqsdt

¯

.

1.2 Motivating studies

1.2.1 Seroconversion following orthopedic surgery

There is an increasing risk of developing thrombosis in patients undergoing orthopedic
surgery (White et al., 1998) and prophylaxis with anithrombotic heparin-based therapies
is considered as standard practice. Four multicenter randomized trials were conducted to
to compare enoxaprin and fondaparinux for thromboprophylaxis (Eriksson et al., 2001;
Lassen et al., 2002; Bauer et al., 2001; Turpie et al., 2002). Patients undergoing orthopedic
surgery were randomly assigned to receive one of the antithrombotic drugs (enoxaprin
and fondaparinux) and many were seen to develop antibody responses. The development
of antibodies may begin any time after surgery. Following recovery from surgery and just
prior to discharge from hospital, a blood sample is taken to check the antibody status. This
leads to current status data; see Figure 1.2. Interest lies in the identification of genetic
markers for the risk of seroconversion. A biobank was collected containing tissue samples

6



from the four trials. The challenge of how to best select individuals for measurement of
the biospecimens under budgetary constraints motivates the work in Chapter 3.

Surgery Antibody formation Blood test

Y “ IpT ď Aq

t “ 0 T A

Figure 1.2: Timeline diagram for seroconversion and testing process in thromboprophylaxis
trials.

1.2.2 Canadian Longitudinal Study on Aging

To better understand the dynamics of aging in Canadians and hence to improve the health
and quality of life as they age, a large, national, 20-year prospective study, the Canadian
Longitudinal Studies on Aging (CLSA), was designed to recruit over 50,000 individuals
aged 45 to 85 years and follow them every three years until study termination or death
(Raina et al., 2009; CLSA, 2015). Upon recruitment, the participants were asked to pro-
vide information including the demographic, social, physical/clinical, psychological, eco-
nomic, and other measures. Additionally, over thirty thousand of 50,000 participants (i.e.
the CLSA Comprehensive) are selected to provide in-depth information through periodic
physical examinations and biospecimen (blood and urine) collection. It is too expensive
to process all biospecimens for all individuals in the CLSA Comprehensive cohort. It is
therefore of interest to efficiently select a sub-sample of individuals for biomarker testing
when studying the relationship between biomarkers and disease onset or progression - this
is both to meet budgetary constraints and to preserve the biospecimens for future studies.

1.2.3 Research programs in psoriasis and psoriatic arthritis

Approximately 2.5% of the North American population have psoriasis (Ps), a chronic
immune-mediated dermatological skin disease that causes red raised patches of skin over
various body locations including the neck, wrists, lower back, knees, ankles, fingernails and
toenails (University Health Network, 2019). Around one third of patients with psoriasis
will develop psoriatic arthritis (PsA), a type of inflammatory arthritis with considerable
joint pain and stiffness which ultimately decreases functional ability and can even lead to
disability due to joint destruction (Gladman et al., 1987, 2005). Such a critical disease
condition can significantly impact the quality of life — it can be treated but not cured so
understanding risk factors for disease onset and progression are important.
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Researchers at the Center for Prognosis Studies in Rheumatic Disease at the University
of Toronto created multiple disease registries to study the course of psoriasis and psori-
atic arthritis. In particular, the University of Toronto Psoriasis Clinic (UTPC) registry
was established in 2006 to enrol patients who have psoriasis but who have not yet devel-
oped psoriatic arthritis (Eder et al., 2011). All recruited individuals are assessed carefully
upon recruitment and then at scheduled followed-up visits intended to take place every six
months according to a standardized protocol. Biospecimens (blood and urine samples) are
also collected upon entry to the clinic for future genetic testing.

Another registry, the University of Toronto Psoriatic Arthritis Clinic (UTPAC) reg-
istry, was launched much earlier in 1978 (Gladman and Chandran, 2010). Screened pa-
tients identified with psoriatic arthritis are recruited in this registry. Participants are
monitored prospectively to assess the inflammatory nature of the disease activity and the
rates of progression of joint damage. As in the UTPC, patients undergo a detailed clinical
assessment to collect retrospective information on disease history (e.g. ages at diagnosis
of Ps and PsA) and to provide samples for genetic testing.

These cohort studies motivate two projects in this thesis discussed in Chapters 2 and
4. In general, we consider methodology for assessing the effect of genetic markers on (i)
the incidence of psoriatic arthritis among patients with psoriasis; and (ii) the incidence of
damage in joints among patients with psoriatic arthritis. Specifically, Chapter 2 considers
a framework of spatial dependence modeling of the damage processes in joints over human
body among patients with psoriatic arthritis. Chapter 4 consider two-phase study designs
under budgetary constraints in genetic marker analysis.

1.3 Outline of the thesis
The outline of this thesis is as follows.

Important scientific insights into chronic diseases affecting several organ systems can
be gained from modeling spatial dependence of sites experiencing damage progression. The
work in Chapter 2 is motivated by the prospective study of joint damage in patients with
psoriatic arthritis using data from the UTPAC registry. We describe models and meth-
ods for studying spatial dependence of joint damage in psoriatic arthritis (PsA). Since a
large number of joints may remain unaffected even among individuals with a long disease
history, spatial dependence is first modelled in latent joint-specific indicators of suscepti-
bility. Among susceptible joints, a Gaussian copula is adopted for dependence modeling
of times to damage. Likelihood and composite likelihoods are developed for settings where
individuals are under intermittent observation and progression times are subject to type
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K interval censoring. Two-stage estimation procedures help mitigate the computational
burden arising when a large number of processes (i.e. joints) are under consideration.
Simulation studies confirm that the proposed methods provide valid inference, and an ap-
plication to the motivating data from the University of Toronto Psoriatic Arthritis Clinic
yields important scientific insight which can help physicians distinguish PsA from arthritic
conditions with different dependence patterns.

Current status data are often encountered in epidemiological or biomedical studies (e.g.
the motivating example on seroconversion following anticoagulation therapy described in
Section 1.2.1). They arise from an extreme form of interval censoring in which individuals
are monitored at a single assessment time to determine whether or not they have experi-
enced a failure event of interest (Sun, 2006). In Chapter 3 we develop methods to guide
the efficient selection of individuals for genetic marker testing based on current status data
of progression. We consider the design and analysis of two-phase studies aiming to assess
the relationship between a genetic marker and the time of disease onset only using the
baseline data available at the time of study recruitment. Phase I data is comprised of
current status data on the disease onset time and inexpensive covariates, where the design
challenge involves the selection of individuals to have their biospecimens assayed follow-
ing phase II sub-sampling; the role of the assessment time is highlighted. Likelihood and
inverse probability-weighted estimating functions are considered for the basis of inference
with designs based on sub-sampling individuals with extreme score statistics, extreme ob-
servations, or via stratification and sub-sampling with various stratum-specific selection
probabilities.

In Chapter 4, attention is directed at the development and study of two-phase de-
signs for pooled lifetime data from multiple disease registries; the registries are considered
to have been launched to recruit individuals from a common population with different
disease-dependent selection criteria. This work is motivated by the research programs in
psoriasis and psoriatic arthritis conducted by researchers in two different clinics in the
University of Toronto; see Section 1.2.1) for a brief introduction of the motivated studies.
Multistate processes are adopted as they offer an intuitive and appealing framework to
model life courses concerning a disease progression of interest. General likelihood con-
structions are presented under a multistate framework and under some model assumptions
we derive partial likelihoods restricted to the parameters of interest. As in Chapter 3, we
propose designs based on sub-sampling individuals with extreme score statistics, extreme
observations or via stratification and sub-sampling with various stratum-specific selection
probabilities. Approaches based on inverse probability weighting are also developed and
associated optimal designs are explored on the basis of a pre-specified stratification of the
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phase I sample.

Finally, Chapter 5 concludes the thesis with a review and outlines some topics for
further research.
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Chapter 2

Spatial dependence modeling for
interval-censored processes with
non-susceptibility

2.1 Introduction

2.1.1 Background

Psoriasis is a skin disease affecting roughly 2.5% of the North American population (Gelfand
et al., 2005) with some countries reporting higher prevalence (Karmacharya et al., 2021).
Approximately one third of psoriasis patients go on to develop psoriatic arthritis (PsA),
a more serious inflammatory musculoskeletal disease involving joint inflammation, pain
and damage which can reduce functional ability and quality of life (Gladman et al., 2005).
There is considerable heterogeneity in the joint damage process across individuals with
PsA, as well as between different joint types within individuals. Some individuals experi-
ence rapid joint destruction in many joints, while others may remain damage-free despite
a long disease duration (Gladman et al., 1987). Moreover some individuals may experi-
ence very rapid joint destruction for a small number of joints, while other joints remain
relatively unaffected. Relatively little work has been carried out to characterize joint types
and locations most affected by PsA, or the spatial association of affected joints. Insights in
this regard will help distinguish PsA from rheumatoid arthritis, osteoarthritis, and other
arthritic conditions, and thereby aid in clinical diagnosis (Ruderman and Tambar, 2004).
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Helliwell et al. (2000) and Bukhari et al. (2002) used cross-tabulation of damaged joint
counts to assess presence of a symmetric pattern in patients with PsA. Cresswell and
Farewell (2011) proposed use of generalized linear mixed models for the development of
joint damage over consecutive clinic visits among patients in a PsA registry. Chandran et al.
(2018) used this framework to investigate ray, row, and symmetric dependence patterns in
the hand and foot joints of PsA patients in the same registry. A ray dependence pattern
was considered predominant if the strongest association is between joints on the same digit,
a row dependence is present if joints in the same distance from the center of the body are
most highly associated, and a symmetric dependence pattern is featured if joints in the
same location on the opposite side of the body exhibit the highest dependence. These
authors found evidence of a symmetric and row dependence in hand and foot joints, but
not ray dependence. Importantly Chandran et al. (2018) conducted their investigation
based on tests of the null hypotheses of an exchangeable dependence pattern. Previous
work has therefore relied on strong assumptions (Helliwell et al., 2000; Bukhari et al.,
2002), or has not fully modeled the dependence of the joint damage process (Cresswell and
Farewell, 2011; Chandran et al., 2018). We address this challenge here.

Appropriate models must accommodate a high proportion of joints that do not become
damaged despite long follow-up, as well as a flexible dependence structure. Mixture models
(Farewell, 1982), often called cure rate models in the failure time context, are useful for
addressing the first feature. Random effect models can be adopted to address dependence
in correlated failure times with nonsusceptibility (Yau and Ng, 2001; Xiang et al., 2011;
Peng and Taylor, 2011), but copula models (Nelsen, 2006) are appealing as they allow
separate model specification for marginal processes and dependence structures. Su and Lin
(2019) used Archimedean copulas (AC) to model the association for both the susceptibility
indicators and failure times with clustered survival data. Chatterjee and Shih (2001) and
Jiang and Cook (2020) use models for bivariate binary response for the susceptibility
model and copula functions for dependence modeling among the bivariate failure times.
The present problem involves a high dimensional response, however, and the dependence
structure is of central importance. We therefore adopt a Gaussian copula to model the
association between failure times among susceptible joints because it i) accommodates
different pairwise associations through specification of a general correlation matrix, ii)
provides interpretable measures of pairwise association in failure times of susceptible joints
through Kendall’s τ , and iii) enjoys many appealing properties like those of the multivariate
normal distribution (Song, 2000). To avoid a heavy computational burden from the high
dimensional setting, we develop a pairwise composite likelihood (Cox and Reid, 2004; Varin,
2008) and describe an innovative two-stage estimation procedure.
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The remainder of this chapter is organized as follows. In sub-Section 2.1.2 we describe
the University of Toronto Psoriatic Arthritis Cohort and the disease process of interest
motivating this work. In Section 2.2, we define notation and formulate models for the mul-
tivariate vector of latent susceptibility indicators and the failure times. These component
models are marginal in the sense that dependence parameters are functionally indepen-
dent of the parameters indexing the marginal models for susceptibility or failure given
susceptibility. In Section 2.3, we derive the likelihood and propose estimation and infer-
ence procedures based on a pairwise composite likelihood to mitigate the computational
burden due to the large number of joints under consideration; this burden is further re-
duced through the use of a two-stage estimation procedure we describe. Empirical studies
carried out in Section 2.4 demonstrate excellent finite sample behaviour of estimators for
the marginal and dependence parameters. In Section 2.5 we fit the model to data from
the University of Toronto Psoriatic Arthritis Clinic, assess model fit, and describe the
important insights gained. Concluding remarks are provided in Section 2.6.

2.1.2 The University of Toronto Psoriatic Arthritis Clinic

The University of Toronto Psoriatic Arthritis Clinic (UTPAC) maintains a registry of PsA
patients which was formed in 1978 (Gladman and Chandran, 2010) and is now comprised of
almost 2000 patients. The Lexis diagram (Keiding, 2011) of Figure 2.1a depicts information
for 15 patients from this PsA registry. The lines emanate from the horizontal axis at birth
dates but do not become visible as dotted lines until the onset of psoriasis. These change to
solid lines upon the onset of psoriatic arthritis and terminate at loss to follow-up or death,
with the latter event denoted by a circle. The vertical hatch mark on each line denotes
the recruitment date, at which point blood samples are drawn and stored for future use in
genomic and proteomic studies. Recruited individuals are scheduled to attend the clinic
annually and to undergo radiographic examination every two years to assess the extent of
damage in 28 hand, 12 foot, and 2 sacroiliac (SI) joints; Figure 2.1b contains a homunculus
depicting the location of the joints that are assessed. The extent of radiological damage of
each joint is measured by the modified Steinbrocker scoring system which assigns a score
of 0 for a normal joint, 1 for the presence of soft tissue swelling, 2 if there is evidence of
surface erosions, 3 for presence of joint space narrowing, and 4 for the most severe form of
damage (Rahman et al., 1998). Since soft tissue swelling is reversible we consider a joint
as damaged if a score of 2 or higher was assigned.

Patient characteristics for a subsample of 660 patients providing multiple radiological
assessments are summarized in Table 2.1 where it can be seen that about 79.6% of the
hand joints were not observed to develop damage even after as much as 40 years with the
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Figure 2.1: Illustrative figures showing the data collected at the University of Toronto
Psoriatic Arthritis Clinic: (a) A Lexis diagram for a sample of 15 PsA patients
from the UTPAC; lines depicts the age of psoriasis onset (start of dotted line), the
onset of PsA (where the line becomes solid) and ending upon death (closed circle)
or last contact; the vertical hatch mark denotes the age of recruitment to the PsA
registry; (b) A homunculus shows the nature of the data collected at the UTPAC.

14



Table 2.1: Characteristics of 660 patients from the University of Toronto Psoriatic Arthritis
Clinic.

No. of patients 660
% of damaged hand joints (damage-free) 20.4 (79.6)
No. female (male) 278 (382)
Mean age at clinic entry (range) 43 (14-86)
Mean age at onset of arthritis (range) 36 (6-86)
Mean no. of visits (range) 4 (1-16)

disease – this motivates formulation of the mixture model in the next section.

2.2 Notation and model formulation
In what follows we discuss the model formulation in terms of joints in PsA. To accommodate
the fact that joints in different locations may develop damage at much different rates,
we consider J distinct types of joints and let Kj denote the number of type j joints,
j “ 1, . . . , J ; K “

řJ
j“1 Kj is the total number of joints. To label a particular joint we

use a double index pj, kq for joint k of type j, and define a binary variable Zjk such that
Zjk “ 1 if joint pj, kq is susceptible and Zjk “ 0 otherwise. Let Zj “ pZj1, . . . , ZjKj

q1 and
Z “ pZ1

1, . . . ,Z1
Jq1. Let Tjk be a nonnegative random variable denoting the time to damage

for joint pj, kq with Tjk taken as infinite if Zjk “ 0, we write Tj “ pTj1, . . . , TjKj
q1 and

T “ pT1
1, . . . ,T1

Jq1. Covariate information specific to joint pj, kq is denoted by Xjk, and we
let Xj “ pX1

j1, . . . ,X1
jKj

q1, j “ 1, . . . , J , and X “ pX1
1, . . . ,X1

Jq1.

2.2.1 Dependence modeling of latent susceptibility indicators

The spatial dependence of the vector Z of latent susceptibility indicators is of primary
interest as it reflects the pattern of joint involvement in psoriatic arthritis. Interest also
lies in relating genetic and other covariates to the marginal probabilities of susceptibility.
To this end, we consider first-order regression models for the marginal mean and second-
order models for the pairwise associations (Qaqish and Liang, 1992).
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2.2.1.1 Marginal models

Let Xp´j,´kq represent the covariate vector X excluding Xjk term. We assume Zjk K

Xp´j,´kq|Xjk and let
πjk “ EpZjk|Xq “ EpZjk|Xjkq, (2.2.1)

so πjk denotes the marginal mean of Zjk given X. Let πj “ pπj1, . . . , πjKj
q1 and π “

pπ1
1, . . . ,π

1
Jq1. Suppose that g1p¨q is a specified one-one differentiable link function mapping

r0, 1s onto the real line such that g1pπjkq “ ηj0 ` X1
jkηj1, where ηj “ pηj0,η

1
j1q1 is a vector

of joint type-specific coefficients. Since Zjk is binary, the logistic link is natural in this
setting, giving the marginal model g1pπjkq “ logpπjk{p1 ´ πjkqq.

2.2.1.2 Second-order dependence modeling via the odds ratio

Let S2 “ tpj, k, j1, k1q : pj, kq ă pj1, k1q, pj, kq, pj1, k1q P Su represent a set of size KpK´1q{2
containing all pairwise combinations of elements in the individual joint index set S, where
ă indicates that j ă j1 or k ă k1 if j “ j1. Without loss of generality, we consider
two distinct joints labeled pj, kq and pj1, k1q with pj, kq ă pj1, k1q in the following. Let
Vjkj1k1 “ pX1

jk,X1
j1k1q1 and Xp´j,´k,´j1,´k1q denote the covariate vector X excluding Xjk and

Xj1k1 . Suppose that
pZjk, Zj1k1q K Xp´j,´k,´j1,´k1q|Vjkj1k1 , (2.2.2)

then ωjkj1k1 “ EpWjkj1k1 |Xq “ EpWjkj1k1 |Vjkj1k1q with Wjkj1k1 “ ZjkZj1k1 and the condi-
tional covariance covpZjk, Zj1k1 |Vjkj1k1q “ ωjkj1k1 ´ πjkπj1k1 . If ζjkj1k1 denotes the odds ratio
characterizing the association between Zjk and Zj1k1 given Vjkj1k1 , then

ζjkj1k1 “
ωjkj1k1p1 ´ πjk ´ πj1k1 ` ωjkj1k1q

pπjk ´ ωjkj1k1qpπj1k1 ´ ωjkj1k1q
.

Let g2p¨q denote a one-one differentiable function mapping r0,8q onto the real line and set

gZ
2 pζjkj1k1q “ V1

jkj1k1γ, (2.2.3)

where γ is a vector of regression coefficients characterizing the dependence. In the sim-
ulation studies of Section 2.4 the log link is used giving gZ

2 pζjkj1k1q “ log ζjkj1k1 . For the
conditional distribution of the multivariate binary variable Z given covariate X, the func-
tion g1p¨q in (2.2.1) determines the mean structure and gZ

2 p¨q in (2.2.3) characterizes the
pairwise dependence structure. We assume higher-order dependence parameters are zero in
which case we let P pZ|X;φq denote the conditional distribution for Z|X where φ “ pη1,γ 1q1

and η “ pη1
1, . . . ,η

1
Jq1.
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2.2.2 Dependence modeling for failure times in susceptible joints

2.2.2.1 Marginal models

Let Zp´j,´kq represent the vector of susceptibility indicators excluding the Zjk element.
We assume that Tjk is independent of the full covariate X and Zp´j,´kq given Zjk, so
Tjk K pX,Zp´j,´kqq|Zjk. For a nonsusceptible joint pj, kq, the survival probability P pTjk ą

t|Zjk “ 0q “ 1 for any finite t ě 0 since Tjk “ 8. For a susceptible joint pj, kq the
conditional survival probability P pTjk ą t|Zjk “ 1q is a function of t with range r0, 1s. If
Fjp¨q represents the survivor function for joint pj, kq, we have

P pTjk ą t|Z,Xq “ P pTjk ą t|Zjkq “

"

Fjptq if Zjk “ 1
1 if Zjk “ 0, (2.2.4)

for any t ě 0. The subscript j of Fj indicates that type-specific marginal models are
assumed for Tjk|Zjk “ 1, which includes as a special case, common marginal models for all
joints with F1p¨q “ ¨ ¨ ¨ “ FJp¨q “ Fp¨q. Joint-specific marginal models can be identified
by letting P pTjk ą t|Zjk “ 1q “ Fjkptq, but here we focus on joint type-specific survivor
functions with the survivor function for type j joints indexed by θj and was written Fjpt; θjq.

2.2.2.2 Dependence modeling with the Gaussian copula

Let S “ tpj, kq : k “ 1, . . . , Kj, j “ 1, . . . , Ju be the set of size K containing indices of
all joints for each individual. Furthermore let m “

ř

j

ř

k Zjk be the total number of
susceptible joints for an individual (0 ď m ď K) and S̄ “ tpj, kq : Zjk “ 1u be the set of
size m containing the labels of all susceptible joints where S̄ is the null set if m “ 0.

We assume T K X|Z. Note if m “ 0, then Z “ 0 and P pT ě t|Z “ 0q “ 1. If
0 ă m ď K, we let T̄ “ pTjk, pj, kq P S̄q represent the failure time vector T excluding Tjk

terms for pj, kq R S̄; and T̄ “ T if m “ K. We therefore have P pT ě t|Zq “ P pT̄ ě t̄|Zq if
0 ă m ď K, or P pT ě t|Zq “ 1 if m “ 0, where t̄ is a mˆ 1 vector with finite nonnegative
elements corresponding to the susceptible joints.

If m ě 2, the joint survival function P pT̄ ą t̄|Zq can be specified through an m-
dimensional copula function (Sklar, 1959; Joe, 1997) indexed by ρ, such that

CpUjk ě ujk, pj, kq P S̄;ρq “ P pUjk ě ujk, pj, kq P S̄;ρq

where Ujk are uniform r0, 1s random variables. If we set Ujk “ FjpTjk;θjq, then the
multivariate survival function for T̄|Z is

P pTjk ą tjk, pj, kq P S̄|Zq “ CpFjptjk;θjq, pj, kq P S̄;ρq. (2.2.5)
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Gaussian copula functions accommodate a flexible pairwise dependence structure (Nelsen,
2006) and models based on them enjoy many appealing properties – any subvector, for ex-
ample, retains the same distributional form as the full vector (Song, 2000). We adopt a
Gaussian copula to model the multivariate failure times among susceptible joints so that
(2.2.5) can be expressed by

Cpujk, pj, kq P S̄;ρq “ ΦmpΦ´1pujkq, pj, kq P S̄;ρq (2.2.6)

where Φ´1p¨q is the inverse cumulative distribution function of a standard normal random
variable and Φmp¨;ρq is the cumulative distribution function of a mˆ1 multivariate normal
random variable with mean zero and m ˆ m covariance matrix Σpρq with off-diagonal
entries ρjkj1k1 , pj, kq, pj1, k1q P S̄. For joints pj, kq and pj1, k1q and given susceptibility status
pZjk, Zj1k1q “ p1, 1q1, the association between Tjk and Tj1k1 can be measured by Kendall’s
τ given by τjkj1k1 “ 2 arcsinpρjkj1k1q{π, pj, kq, pj1, k1q P S̄. A second-order model can be
proposed to describe the within-cluster association by gT

2 pτjkj1k1q “ X1
iξ, where gT

2 p¨q is a
one-to-one differentiable link function mapping Kendall’s τ onto the real line. For example,
the Fisher transformation gT

2 pτq “ logpp1 ` τq{p1 ´ τqq is a popular choice. The joint
distribution for T|Z is indexed in general by ϑ “ pθ1,ρ1q1 with θ “ pθ1

1, . . . ,θ
1
Jq1, but a

subset of the parameter in θ may appear in the joint survival model depending on the
realization of Z.

2.3 Methods for estimation and inference
In Appendix A.2 we recast the data and model in terms of counting processes and intensity
functions and explicitly state the assumptions required for a conditionally independent visit
process (CIVP) defined by Cook and Lawless (2018). Under CIVP assumptions (A.2.1)
and (A.2.4) given in Appendix A.2.2, the partial likelihood based on the specified model
is of the form

L9P pT P B|Xq “
ÿ

ZPZ
P pT P B|ZqP pZ|Xq,

where Z is the sample space of Z and the size of Z is 2K ; B “
ś

pj,kqPS Bjk denotes the
censoring region of all joints with Bjk “ pa0jk, a1jks ( 0 ď a0jk ă a1jk ď 8) indicating the
interval within which Tjk occurs. But we note that when the total number of joints K is
large, joint modeling becomes more challenging due to the higher dimensional model. Since
the parameter of interest, ψ “ pϑ1,φ1q1, involves at most pairwise associations, we consider
a pairwise composite likelihood (Lindsay, 1988; Cox and Reid, 2004) for the settings where
q, the length of ψ, is less than the sample size N .
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2.3.1 The pairwise composite likelihood

Under the pairwise conditional independence visiting conditions (A.2.5) and (A.2.8) given
in Appendix A.2.4 and that the observation process is noninformative, the partial likelihood
contribution from a pair of joints pj, kq and pj1, k1q is equivalent to the probability of
pTjk, Tj1k1q falling in the censoring region Bjk ˆBj1k1 given covariates Vjkj1k1 associated with
this pair of joints, that is, P pTjk P Bjk, Tj1k1 P Bj1k1 |Vjkj1k1q. Here we assume Tjk, Tj1k1 K

tX,Zp´j,´k,´j1,´k1qu|Zjk, Zj1k1 , where Zp´j,´k,´j1,´k1q is the Z vector excluding the Zjk and
Zj1k1 entries. If ϑjkj1k1 “ pθ1

j,θ
1
j1 , ρjkj1k1q1 and φjj1 “ pη1

j,η
1
j1 ,γ 1q1, the pairwise composite

likelihood contribution arising from tBi,Xiu is

Li2pψq9
ź

pj,k,j1,k1qPS2

Lijkj1k12, (2.3.1)

where Lijkj1k12, indexed by ψjkj1k1 “ pϑ1
jkj1k1 ,φ1

jj1q1, equals
ÿ

Zjk,Zj1k1

P pTijk P Bijk, Tij1k1 P Bij1k1 |Zjk, Zj1k1 ;ϑjkj1k1qP pZjk, Zj1k1 |Xijk,Xij1k1 ;φjj1q.

Note P pTijk P Bijk, Tij1k1 P Bij1k1 |Zjk, Zj1k1q can be expressed in terms of marginal survivor
functions Fjp¨q, Fj1p¨q and a bivariate Gaussian copula function indexed by a dependence
parameter ρjkj1k1 ; see Appendix A.1 for more detailed derivations.

2.3.2 A two-stage estimation algorithm

To estimate ψ we adopt a computationally convenient two-stage estimation procedure
for ψ in the spirit of Shih and Louis (1995). We first re-partition ψ “ pψ1

1,ψ
1
2q1 where

ψ1 “ pθ1,η1q1 is the vector of parameters associated with marginal regression models to
failure times and susceptibilities, and ψ2 “ pρ1,γ 1q1 contains parameters associated with
pairwise dependence. Under the working independence assumption needed for two-stage
estimation, a stronger CIVP assumption is required than was necessary under the pairwise
conditional independence conditions; see (A.2.10) and (A.2.11) of Appendix A.2.4. Under
this stronger CIVP assumption we derive the working independence composite likelihood
for ψ1 arising from intermittent assessments:

Li1pψ1q9
ź

pj,kqPS
P pTijk P Bijk|Xijk;ψ1jq (2.3.2)

for estimation in ψ1 “ pψ1
11, . . . ,ψ

1
1Jq1 with ψ1j “ pθ1

j,η
1
jq1, where

P pTijk P Bijk|Xijk;ψ1jq “
ÿ

z

P pTijk P Bijk|Zijk “ z;θjq ¨ P pZijk “ z|Xijk;ηjq.
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Stage I involves constructing and maximizing the marginal composite likelihood L1pψ1q “
śN

i“1 Li1pψ1q is labeled as stage I. The corresponding score vector is S1pψ1q “
řN

i“1 Si1pψ1q,
where Si1pψ1q “ B log Li1pψ1q{Bψ1 and let Ii1 “ ´BSi1pψ1q{Bψ1

1. We let ψ̆1 denote the
value of ψ solving the composite score equation S1pψ1q “ 0. Under suitable regularity
conditions (Varin et al., 2011),

?
Npψ̆1 ´ψ1q

d
ÝÑ MVNp0, Ā´1

11 B̄11Ā´1
11 q (2.3.3)

where Ā11 “ ErIi1pψ1qs and B̄11 “ EtSi1pψ1qS 1
i1pψ1qu. In practice, these matrices can be

estimated empirically by ˆ̄A11pψ̆1q “ N´1 řN
i“1 Ii1pψ̆1q and ˆ̄B11pψ̆1q “ N´1 řN

i“1 Si1pψ̆1qS 1
i1pψ̆1q.

The nlm function in R can be used for the optimization; by specifying hessian=TRUE in this
function, ˆ̄A11pψ̆1q is specified through the Hessian matrix obtained by finite differencing
of the observed data log-likelihood function.

In stage II, the estimation forψ2 is carried out by maximizing L2pψ̆1,ψ2q “
śN

i“1 Li2pψ̆1,ψ2q,
where Li2pψ̆1,ψ2q is given in (2.3.1) but withψ1 set at ψ̆1. If Si22pψ2;ψ1q “ B log Li2pψq{Bψ,
we set S22pψ2; ψ̆1q “

řN
i“1 Si22pψ2; ψ̆1q “ 0 and obtain an estimator of ψ2, denoted by

ψ̆2. We then let ψ̆ “ pψ̆1, ψ̆2q denote the estimator of ψ obtained from this two-stage
procedure. Under suitable regularity conditions (Boos and Stefanski, 2013),

?
Npψ̆2 ´ψ2q

d
ÝÑ MVNp0, Ā´1

22
“

B̄22 ´ Ā21Ā11Ā1
21
‰

Ā´1
22 q,

where Ā21 “ Er´BSi2pψq{Bψ1
1s, Ā22 “ Er´BSi2pψq{Bψ1

2s, and B̄22 “ ErSi22pψqS 1
i22pψqs.

The empirical estimates of these expectations are

ˆ̄A21pψ̆q “ ´N´1
N
ÿ

i“1

BSi2pψq

Bψ1
1

ˇ

ˇ

ˇ

ψ“ψ̆
, ˆ̄A22pψ̆q “ ´N´1

N
ÿ

i“1

BSi2pψq

Bψ1
2

ˇ

ˇ

ˇ

ψ“ψ̆
,

and ˆ̄B22pψ̆q “ N´1
N
ÿ

i“1
Si22pψ̆qS 1

i22pψ̆q.

Again, the general-purpose optimization function such as nlm or optim in R can be applied
to facilitate estimation and computation of the corresponding standard error.

2.4 Simulation studies
Two sets of simulation studies are conducted to examine the finite sample properties of
the two-stage pairwise composite likelihood estimator for the complex spatially corre-
lated interval-censored data. In the first set of studies, we considered three joint types
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(J “ 3) comprised of pK1, K2, K3q “ p2, 2, 2q or p2, 6, 6q joints for each type. For il-
lustrative purpose a 2 ˆ 1 binary covariate vector X “ pX1, X2q1 is considered and X1

and X2 are generated by independent Bernoulli distributions with successful probability
p1 and p2, respectively. We set p1 “ 0.45 and p2 “ 0.05 or 0.1. The susceptibility in-
dicator Z is simulated from a joint distribution in which d-order dependencies are zero
(d ě 3) and the marginal models for Zjk conditional on X is given by P pZjk “ 1|Xq “

exp pηj0 ` η1X1 ` η2X2q{p1 ` exp pηj0 ` η1X1 ` η2X2qq, where ηj0 is a type-specific inter-
cept and pη1, η2q1 is a vector of regression coefficients. When pK1, K2, K3q “ p2, 2, 2q,
the marginal susceptibilities pπ1, π2, π3q1 “ p0.2, 0.15, 0.15q1; when pK1, K2, K3q “ p2, 6, 6q,
the marginal susceptibilities within each joint type pπ1, π2, π3q1 “ p0.2, 0.05, 0.05q1, where
πj “ P pZjk “ 1q, j “ 1, 2, 3. By setting η1 “ ´0.2 and η2 “ 0 or 0.1, we then can
solve ηj0. Moreover, we consider type-specific pairwise association between Zjk and Zj1k1

parameterized by odds ratios ζjkj1k1 “ ζjj1 “ exppγjj1q. We set ζjj “ 1.2, j “ 1, 2, 3 and
ζjj1 “ 1.05, j ‰ j1. For the nonsusceptible joints (i.e. Zjk “ 0), we set Tjk “ 8; and
for those susceptibles, we generate T̄ from the multivariate survival function of the form
(2.2.5), where we consider a piecewise constant hazard function for the marginal model
P pTjk ě t|Zjk “ 1q “ expp´αjtq, and type-specific pairwise association between failure
times of Tjk|Zjk “ 1 and Tj1k1 |Zj1k1 “ 1 is measured by Kendall’s τ with τjkj1k1 “ τjj1 . We
set τjj “ 0.15, j “ 1, 2, 3 and τjj1 “ 0.05, j ‰ j1. We set P pT1k ď 1|Z1k “ 1q “ 0.9,
P pT2k ď 1|Z2k “ 1q “ 0.85 and P pT3k ď 1|Z3k “ 1q “ 0.85 and solve αj. To generate the
censoring intervals, we simulate individual clinical visits by using a Poisson process with
rate λ over p0, 1s and we set λ “ 5. The results for the first set of studies are summarized
in Table 2.2 and Table A.1. We find that empirical biases (BIAS) of all estimates are neg-
ligible for the parameter of interest and decrease as the sample size N (and) or the total
number of joints K increases, as expected. The empirical coverage probabilities (ECP) are
close to the nominal 95% level, which indicates a good agreement between the empirical
(ESE) and model-based standard errors (ASE).

In the second set of simulation studies, we set up marginal models and pairwise as-
sociations for the susceptibility indicator while left the d-order dependencies unspecified
(d ě 3). We obtain a joint distribution of Z via the iterative proportional fitting pro-
cedure by calling ObtainMultBinaryDist function from R package mipfp (Barthelemy
and Suesse, 2018). For simple illustration, we considered two joint types (J=2) com-
prised of pK1, K2q “ p2, 2q or p4, 4q joints for each type. We set p1 “ 0.5 and p2 “ 0.05
or 0.1. By setting pπ1, π2q1 “ p0.65, 0.75q1 and pη1, η2q1 “ p0.45, 0.5q1, we can solve for
ηj0. Two-piece piecewise constant hazard models are considered for marginal failure times
P pTjk ě t|Zjk “ 1q “ exp p´pαj1Ipt ă bjq ` αj2Ipt ě bjqqq, where αj “ pαj1, αj2q1 is a 2ˆ1
vector of constant hazards with a cutpoint bj “ 0.55. We set P pT1k ď 1|Z1k “ 1q “ 0.85,
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P pT2k ď 1|Z2k “ 1q “ 0.9, and α11 “ α12, α22 “ 1.1α21. For pairwise associations among
susceptibilities and failure times of suceptibles, we set pζ11, ζ12, ζ22q1 “ p1.15, 1.1, 1.05q1 and
pτ11, τ12, τ22q1 “ p0.1, 0.15, 0q1. The results for the second set of studies are summarized
in Table 2.3. When either the total number of joints K or the visit rate λ increases, the
estimating efficiency in parameters is improved with smaller bias and reduced standard
errors as expected.

2.5 Hand joint damage in psoriatic arthritis
We apply the proposed method to the data on 28 hand joints (14 in each hand) in 660
patients from the University of Toronto Psoriatic Arthritis Clinic. Some of the Human
Leukocyte Antigen (HLA) markers have been identified as important risk factors for the
development of the disease (Gladman and Farewell, 1995). For the marginal (joint-level)
model for susceptibility we therefore consider gender (female versus male), age at the diag-
nosis of PsA, and a set of HLA markers that have previously been shown to be associated
with PsA including HLA-A2, B13, B27, B37, B38, B39, Cw6, DR4, DR7 (Gladman and
Farewell, 1995).

Patients with an earlier age of disease onset had a higher risk of susceptibility to damage
(OR “ expp0.035q “ 1.04; 95% CI: 1.02-1.05, p ă 0.001). Among the HLA markers,
individuals who are HLA B37 positive had a lower risk of susceptibility to damage in hand
joints (OR “ expp´0.874q “ 0.42; 95% CI: 0.18-0.97, p “ 0.022), while those with HLA
B39 positive appeared to be more susceptible to damage (OR “ expp1.399q “ 4.05; 95%
CI: 1.23-13.39, p “ 0.042).

Plots of the cumulative probability of damage in the left (left panel (a)) and right
hand joints (right panel (b)) are provided in Figure 2.2 based on models with piecewise
constant hazards with two pieces arising from a single cutpoint at 11.47 years post-onset
(the median of finite value of a1jk), while empirically averaging over the latent susceptibility
indicator and covariates. Overlaid on these plots are nonparametric Turnbull estimates
of the marginal failure time distributions from the interval-censored times to damage,
obtained by the ic_np function in the R package icenReg (version 2.0.5) (Turnbull, 1976;
Anderson-Bergman, 2017) under a working indepedence assumption. The plots show that
the marginal features of the fitted model are well calibrated to the raw data as represented
by the nonparametric estimates.

Interest lies in modeling the spatial dependence in joint involvement among patients
with PsA in order to assess the similarities or differences with the patterns of other arthritic
conditions (Chandran et al., 2018). As mentioned in Section 2.1.2 we explore the strength of
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Table 2.4: Regression coefficient estimates from second-order dependence models in stage II
for susceptibility and failure times are given joint susceptibility based on data from
the University of Toronto Psoriatic Arthritis Clinic.

Susceptibility Failure Time

EST ASE p-VAL EST ASE p-VAL
Intercept 2.637 0.182 ă0.001 2.074 0.092 ă0.001
Iray 0.139 0.077 0.074 0.048 0.074 0.256
Irow 0.692 0.526 0.188 0.119 0.145 0.205
Isym 1.143 0.341 ă0.001 ´0.071 0.134 0.298

the symmetric, ray, or row-type associations for susceptibility and the time to joint damage
using second-order models for the latent susceptibility indicators and copula functions
for the time to damage among susceptible joints. We adopt the two-stage estimation
approach using a composite pairwise likelihood. For each pair of hand joints we define
three binary indicators with Iray “ 1 if two joints are on the same digit, Irow “ 1 if the
two joints are at the same knuckle location of different digits, and Isym indicating whether
the two joints are in the same location of the opposite hands; note that we have Iray “ 1
if Isym “ 1. Table 2.4 displays estimates of the parameters in the second-order models
given by gZ

2 pζjkj1k1q “ κ0 ` κ1
1W and gT

2 pτjkj1k1q “ ι0 ` ι1
1W for susceptibility indicators

and failure times, respectively, where W “ pIray, Irow, Isymq1, gZ
2 p¨q and gT

2 p¨q are one-to-one
differentiable link functions mapping to the real line; here we consider gZ

2 pxq “ logpxq,
and gT

2 pxq “ tanp.5π sinp.5πxqq. Left column of the table contains the results of using a
logarithm link function for the odds ratio (OR) of susceptibility for a pair of hand joints.
By incorporating the estimated intercept, it is apparent that any pair of hand joints appear
to be naturally and significantly associated (log OR “ 2.64; 95% CI: 2.28 ´ 2.99). While
susceptibility features neither ray-type (log OR “ 2.78; 95% CI: 2.47 ´ 3.08) nor row-type
association (log OR “ 3.33; 95% CI: 2.48´4.18) beyond this within-individual association,
there is significant evidence for a stronger symmetric dependence in susceptibility with
log OR “ 4.47 (95% CI: 3.99 ´ 4.95). Table 2.4 also reports on the findings regarding
the pairwise association in the failure times among susceptible joints, parameterized by a
second-order model based on Kendall’s τ . There is strong evidence for the existence of
natural pairwise association in failure times (τ “ 0.472, 95% CI: 0.43 ´ 0.51), but little
suggestion of anything beyond an exchangeable dependence pattern for the failure times
among susceptible joints.

To assess the adequacy of second-order models we plot the estimated concordance func-
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tions P pmaxpTjk, Tj1k1q ď tq and the estimated bivariate cumulative probabilities P pTjk ď

t1, Tj1k1 ď t2q based on the fitted models along with their nonparametric estimates. Plots
for symmetric pairs of joints are displayed in Figure 2.2 and Figures A.2-A.4 for joints
with other pairwise associations given in Appendix A.4. Specifically, the bivariate non-
parametric estimates of P pTjk ď t1, Tj1k1 ď t2q are obtained by using ICNPMLE function in
the R package icenReg (version 1.2.8) (Anderson-Bergman, 2017). Again there is good
agreement between the parametric and nonparametric estimates which suggests the model
is fitting these aspects of the data reasonably well.

2.6 Discussion
We propose a flexible and general framework for modeling multivariate interval-censored
failure times which accommodates nonsusceptibility and flexible spatial dependence mod-
elling. We therefore extend the approaches for modeling dependent interval-censored failure
times with latent nonsusceptibility indicators, develop composite likelihood and two-stage
estimation methods to facilitate analyses involving large cluster sizes, and provide software
for implementation of these methods. A strength of this model is that it enables depen-
dence modeling for susceptibility, and for failure times given joint susceptibility, based
on parameters which are functionally independent of the parameters characterizing the
marginal processes; marginal models for correlated binary data are used for the suscep-
tibility indicators and a Gaussian copula is used for dependence modeling of the failure
times among susceptible joints. These yield pairwise dependence models for susceptibility
in terms of odds ratios for pairwise association in failure times among susceptible joints in
terms of Kendall’s τ . Application of these methods has lead to important scientific insights
into the nature of the spatial dependence structure of joint damage in PsA.

We use a composite likelihood as our objective function, a weighted product of likelihood
functions corresponding to lower dimensional events (Lindsay, 1988; Varin, 2008). Working
independence and pairwise composite likelihoods are specified and a two-stage estimation
procedure is adopted for computational efficiency and robustness in the sense of Varin
et al. (2011). We implicitly set all weights equal so that they can be ignored but Varin
et al. (2011) notes that unequal weights can be chosen to improve efficiency. We consider
settings in which the dimension of the parameter vector of interest, q, is fixed and less
than the sample size N . The results of the simulation studies show that the estimators
have small finite sample bias and the empirical standard errors closely track the robust
standard errors.

There was excellent agreement between the parametric and nonparametric estimates
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Figure 2.2: Estimation of the marginal probability of damage in the left (a) and right (b)
thumb or finger joints based on the fitted two-piece piecewise constant hazard
(smooth line) and a nonparametric Turnbull estimate (nonsmooth line) along with
95% CI band (dashed line) using a resampling technique; and the estimated
marginal concordance function (c) and bivariate cumulative probability (d) of
damage in symmetric pairs based on the fitted second-order models for
susceptibility and failure times of the susceptibles (solid line) and nonparametric
estimates (dashed line). 27



of the marginal and bivariate failure time distributions suggesting that the model provides
reasonable fit to the data and inferences can be drawn. The fitted model gave strong ev-
idence of a symmetric dependence pattern in the susceptibility indicators for hand joints
in PsA. These finding can provide insights which can help in the clinical diagnosis of PsA.
The model accommodates regression on covariates for the marginal latent susceptibility
indicators which can be used to investigate the relation between HLA markers and sus-
ceptibility for joint damage; if interest lies in assessing whether covariates might affect the
hazard of damage among susceptible joints it would be straightforward to extend the model
to incorporate this. In applications estimability challenges can arise with such expanded
models when the same covariates appear in the susceptibility and failure time models (Li
et al., 2001; Hanin and Huang, 2014) but we do not pursue that here. Finally we note that
our dependence modeling was confined to the spatial association, but the framework we
describe for the susceptibility indicators allows regression modeling of covariate effects on
the dependence parameters.

For illustration, the proposed method was applied to data on hand joints in patients
from the UTPAC to gain insights into the nature of the spatial dependence in joint involve-
ment among PsA patients (Chandran et al., 2018); extending the model to incorporate data
on different types of joints (e.g. foot joints or spinal joints) is relatively straightforward.
The methods can also be applied to disease processes in which multiple organ systems
can be affected. Examples of these include systemic lupus erythematosus, another au-
toimmune disease, in which patients experience disease activity in the heart, lung, kidney,
central nervous system, and many other locations. Likewise in diabetes individuals may
experience vascular disease, nephropathy and retinopathy. Characterizing which kinds of
patients are at risk of the different types of complications, and which complications tend
to occur together can help optimize patient care.
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Chapter 3

Two-phase designs with current
status data

3.1 Introduction
Current status data arise when interest lies in a time to an event but when the failure
status of each individual in a sample is determined at an assessment time resulting in
either right- or left-censored observations (Groeneboom and Wellner, 1992; Sun, 2006).
Such data are often encountered in demography, epidemiology and biomedical studies.
We consider a cohort study where interest lies in modeling the relationship between a
biomarker and a failure time under current status observation. In many large cohort stud-
ies blood or tissue samples are collected and stored in a biobank upon recruitment, but
it is often too costly to assay all biospecimens to measure the biomarker in all individ-
uals. The phase I data is comprised of the current status observations and inexpensive
covariates that are readily available. The challenge in two-phase designs is to develop sta-
tistically efficient and cost-effective selection strategies to create a phase II subsample of
individuals in which the biomarkers are complete. For excellent surveys of the literature
on outcome-dependent sampling see Lawless et al. (1999) and Ding et al. (2017). Much
work on two-phase designs has been carried out for the failure time setting accommodating
right-censoring (Prentice, 1986; Chen and Lo, 1999; Breslow and Wellner, 2007; Lawless,
2018; Tao et al., 2020). Relatively little work has been carried out for two-phase designs
involving interval-censored data, but recent developments include Li et al. (2008), Zhou
et al. (2017) and Zhou et al. (2020). For the more extreme form of current status data,
the relevant literature has mostly been confined to the development of analytical methods
for dealing with incomplete covariates (Li and Nan, 2011; Wen and Lin, 2011; Wen and
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Chen, 2013). In this paper we consider design issues of two-phase studies involving current
status observation of a failure time, in the phase I sample. A key feature of current status
data is the time of assessment, which is neither a response nor an auxiliary covariate –
it provides key information which aids in the interpretation of the status indicator. That
is, individuals who are assessed very early and are found to be event-free, and individuals
who are assessed very late and are found to have failed, do not convey much information
about the covariate effect of interest. We explore two-phase design problems with a view to
investigating this intuition under proportional hazards modeling. Specifically we develop
efficient phase II sub-sampling strategies based on current status data in the likelihood
and estimating function frameworks. The former yields more efficient estimators but relies
on modeling assumptions regarding the nuisance biomarker distribution given auxiliary
covariates. Correct specification of this model is challenging when the auxiliary covariates
include continuous variables or are high dimensional. Inverse probability weighting does
not require modeling the biomarker distribution and so is more robust, but it yields less
efficient estimators.

The remainder of this chapter is organized as follows. We introduce notation and
model assumptions for the two analysis frameworks in Section 3.2. In Section 3.3 we
present the information for the maximum likelihood estimator of interest exploiting a
framework developed by Tao et al. (2020) for the current status setting; simulation studies
are also reported on which investigate various two-phase designs using maximum likelihood.
Section 3.4 gives the optimal sampling rule under inverse probability weighted estimating
equations via Neyman allocation and related influential functions in the sense of Breslow
and Wellner (2007) and Chen and Lumley (2020). In Section 3.5 additional simulation
studies are reported to demonstrate the robustness of using piecewise baseline hazards to
approximate continuous distributions. Section 3.6 presents two illustrative applications
of the proposed two-phase designs and estimators and concluding remarks and topics for
further research are mentioned in Section 3.7.

3.2 Analysis methods

3.2.1 Notation and model assumptions

Let T denote a random failure time of interest corresponding to, say, age of disease onset,
and let X denote a p ˆ 1 covariate vector. Under a current status observation scheme
the failure status of each individual is assessed at an individual-specific assessment time A
giving data pY,Aq where Y “ IpT ď Aq and Ip¨q is the indicator function. Suppose that
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a sample of N independent individuals provides observations tpYi, Ai,Xiq, i “ 1, . . . , Nu.
We consider the partition X “ pX1,X1

2q1 where X2 is a pp ´ 1q ˆ 1 vector of covariates
which are inexpensive to observe and complete, and X1 records the value of a biomarker of
interest which is costly to measure. Biospecimens are stored in a biobank so measurements
of X1 can be made for a subsample of individuals. We let Zi “ pYi, Ai,X1

i2q1 and let
tZi, i “ 1, . . . , Nu denote the data in the phase I sample. Let R “ IpX1 is observedq and
X˝ denote the observed vector so that X˝ “ X if R “ 1 and X˝ “ X2 if R “ 0, respectively.
In the design of two-phase studies, whether X1 is observed or not is governed by a selection
model indexed by ρ and given by

P pR “ 1|Y,A,Xq “ P pR “ 1|Zq “ πpZ; ρq, (3.2.1)

where X1 K R|Z; X1 is therefore missing at random (MAR) (Little and Rubin, 2002). We
also assume T K A|X2.

Primary interest resides in evaluating the effect of an expensive covariate X1 on the
failure process through the proportional hazards (PH) model

hpt|X;θq “ hpt;αq exppβ1X1 ` β1
2X2q, (3.2.2)

where hp¨;αq is the baseline hazard function indexed by α, β “ pβ1,β
1
2q1 and θ “ pβ1,α1q1.

We also let Hpt|X;θq “
şt

0 hps|X;θqds and Fpt|X;θq “ 1 ´ F pt|X;θq “ expp´Hpt|X;θqq.
We adopt a flexible weakly parametric piecewise constant (PWC) form for the baseline haz-
ard, which approximates a reasonably wide range of distributional shapes (Friedman, 1982)
and has proven popular for many applications (Grenfell and Anderson, 1985; Diamond
et al., 1986; Cook et al., 2008; Cook and Tolusso, 2009). If 0 “ b0 ă b1 ă ¨ ¨ ¨ ă bK´1 ă bK “

8 denote a set of prespecified cut points, we set hpt;αq “
řK

k“1 exppαkqIpt P rbk´1, bkqq to
approximate the shape of the baseline hazard function hp¨;αq with α “ pα1, α2, . . . , αKq1.
Guidance on specification of the cut-points for the PWC hazard model for current status
data is given by Zhan (1999).

In sub-Sections 3.2.2 and 3.2.3 we describe estimation and inference for β1 based on
maximum likelihood (Lawless et al., 1999) and inverse probability weighted estimating
functions (Robins et al., 1994) respectively.

3.2.2 Maximum likelihood

Under the condition that the joint distribution of pA,X1
2q1 is non-informative for ϑ “

pθ1,η1q1, the observed likelihood Lpϑq based on tYi, Ai,X˝
i , Ri, i “ 1, 2, . . . , Nu is propor-
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tional to
N
ź

i“1

!

ż

“

1 ´ FpAi|X1,Xi2; θq
‰YiFpAi|X1,Xi2; θq1´YidGpX1|Xi2; ηq

)1´Ri

ˆ

!

“

1 ´ FpAi|Xi; θq
‰YiFpAi|Xi; θq1´YidGpXi1|Xi2;ηq

)Ri

,

(3.2.3)

where GpX1|X2;ηq is the conditional distribution function for X1|X2. The observed data
score vector Spϑq “ B logLpϑq{Bθ can be written as

Spϑq “

N
ÿ

i“1

"

Ri

ˆ

S1pYi|Ai,Xi;θq

S2pXi1|Xi2;ηq

˙

` p1 ´ Riq

ˆ

EtS1pYi|Ai,Xi;θq|Zi;ϑu

EtS2pXi1|Xi2; ηq|Zi;ϑu

˙*

,

where S1pYi|Ai,Xi;θq “ B logP pYi|Ai,Xi;θq{Bθ “ QpZi, Xi1;ϑqB log FpAi|Xi;θq{Bθ with
QpZi, Xi1;ϑq “ ´F´1pAi|Xi;θq rYi ´ F pAi|Xi;θqs and S2pXi1|Xi2;ηq “ B logGpXi1|Xi2;ηq{Bη.
The solution to Spϑq “ 0 is the maximum likelihood estimator ϑ̂ “ pθ̂

1
, η̂1

q1 and under
suitable regularity conditions (Boos and Stefanski, 2013),

?
Npϑ̂´ϑq

d
ÝÑ MVNp0, IpΩ;ρqq,

where IpΩ;ρq “ ERZX1t´BSpϑq{Bϑ1u{N “ ERZX1tSpϑqS 1pϑqu{N is the expected infor-
mation and Ω denotes a parameter vector including ϑ and other nuisance parameters
indexing the distribution of pA,X1

2q1. In the analysis of data the observed information
matrix Ipϑq “ ´BSpϑq{Bϑ1 evaluated at ϑ̂, is used for inference, however the functional
dependence of IpΩ;ρq on ρ is the basis for the optimal design described in later sections.

3.2.3 Inverse probability weighted estimating functions

Restricting attention to individuals with complete data is appealing when the nuisance
covariate distribution GpX1|X2;ηq is challenging to specify, provided inverse probability
weights are used to address the possibility that those with complete data represent a biased
sub-sample (Robins et al., 1994).

In the present setting, provided the phase II selection probability πpZ;ρq in (3.2.1) is
bounded away from zero, the solution to the inverse probability weighted (IPW) estimating
equation

U1pθ;ρq “

N
ÿ

i“1

Ri

πpZi;ρq
S1pYi|Ai,Xi;θq “ 0 (3.2.4)

is consistent and asymptotically normally distributed. Joint estimation of θ and ρ is known
to enhance efficiency of estimation for θ (Robins et al., 1994). A consistent estimator of ρ
is obtained by solving the score equation

U2pρq “

N
ÿ

i“1
tRi ´ πpZi;ρqu{tπpZi;ρqp1 ´ πpZi;ρqqu rBπpZi;ρq{Bρs “ 0.
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Letting ϕ “ pθ1,ρ1q1, we write the full set of estimating functions as Upϕq “ pU 1
1pθ;ρq, U 1

2pρqq1

and denote the solution to Upϕq “ 0 as ϕ̃ “ pθ̃
1
, ρ̃1q1 where we use “„” to distinguish these

estimators from maximum likelihood estimators of Section 3.2.2. Under suitable regular-
ity conditions (Robins et al., 1995),

?
Npϕ̃ ´ ϕq

d
ÝÑ MVNp0,ΣpΩ,ρqq, where ΣpΩ,ρq “

A´1pΩ,ρqBpΩ,ρqA´1pΩ,ρq is of robust sandwich form with ApΩ,ρq “ ERZX1t´BUpϕq{Bϕ1u{N

and BpΩ,ρq “ ERZX1tUpϕqU 1pϕqu{N . We consider phase II sampling schemes based on
this framework for analysis in Section 3.4.

3.3 Design and extreme current status data
In this section, we discuss two-phase designs for estimators of β1 via maximum likelihood.
Following the work of Derkach (2014) and Tao et al. (2020), we first present the infor-
mation for β̂1 and then optimal designs under the setting where β1 “ op1q. This leads
to a theoretical finding supporting the notion that subjects with “extreme current status
responses” should be preferentially sampled in phase II as they are more “informative”
regarding β1.

3.3.1 Phase II selection based on extreme current status data

Following Tao et al. (2020) we let µ “ β1X1 ` β1
2X2 denote the linear predictor and note

that observed score function Sβ1 “ B logLpϑq{Bβ1 for β1 the parameter of prime interest,
can be written as

Sβ1 “ RMµX1 ` p1 ´ Rq

ş

MµX1p1 ´ FpA|XqqY FpA|Xq1´Y dGpX1|X2q
ş

p1 ´ FpA|XqqY FpA|Xq1´Y dGpX1|X2q
,

where Mµ “ B logP pY |A,Xq{Bµ may be viewed as a score-type residual with EpMµq “ 0;
see Appendix B.1 for details. If θ˝ “ pβ1

2,α
1q1, θ “ pβ1,θ

1
˝q1 and

Iβ1β1 “ ´E

ˆ

B2 logLpϑq

Bβ2
1

˙

, Iβ1θ
1
˝

“ ´E

ˆ

B2 logLpϑq

Bβ1Bθ1
˝

˙

, Iβ1η1 “ ´E

ˆ

B2 logLpϑq

Bβ1Bη1

˙

,

Iθ˝θ˝ “ ´E

ˆ

B2 logL
Bθ˝Bθ1

˝

˙

, Iθ˝η “ ´E

ˆ

B2 logLpϑq

BθBη1

˙

, and Iηη “ ´E

ˆ

B2 logLpϑq

BηBη1

˙

.

Moreover N´1{2Sβ1 and N´1{2pβ̂1 ´ β1q converge in distribution to normal random vari-
ables with zero means and variances Vβ1 “ Iβ1β1 ´ Iβ1θ˝I´1

θ˝θ˝
Iθ˝β1 ´ Iβ1ηI´1

ηη Iηβ1 and V ´1
β1

respectively.

In general to compute Vβ1 expectations are required with respect to all random variables
and hence it is not analytically tractable (Bickel et al., 1993; Robins et al., 1995). To
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address this, Tao et al. (2020) showed that Vβ1 can be decomposed as

E tRVarrMµ|R “ 1, A,X2sVarpX1|X2qu (3.3.1)

and a non-negative component independent of the phase II sub-sampling rules under β1 “

op1q; see Appendix B.1 for a sketch of the derivation.

Tao et al. (2020) considered right-censored failure time setting in which case hence
Mµ is a martingale-type residual. Following their argument, an asymptotic optimal (or
approximate optimal when β1 differs from zero) sampling rule for our current status setting
involves selecting subjects with the largest and smallest values of MµVarpX1|X2q1{2, subject
to the constraint

P pR “ 1q “ ErP pR “ 1|Z;ρqs “ γ, (3.3.2)

where γ (0 ă γ ď 1) is the fixed marginal probability of selecting an individual in the
phase II sample.

For right-censored data under the PH models, the computation of martingale residuals
is easy using the coxph function (Therneau, 2020) in R (R Core Team, 2020), but for
current-status data, further simplifications are warranted. We first note that for specified
Y , Mµ is a monotone function of the inspection time A. When Y “ 0, QpZ, X1q “ 1 so
Mµ “ log FpA|Xq is a nonpositive decreasing function in A. When Y “ 1, QpZ, X1q “

´FpA|Xq{F pA|Xq ď 0 and BMµ{BA “ hpA|X;θqQpZ, X1q r1 ` log FpA|Xq{F pA|Xqs ď 0
so Mµ is again a nonnegative decreasing function in A. Hence, extreme values of Mµ are
associated with extreme current status responses corresponding to Y “ 1 with a small
assessment time A (i.e., large positive residuals) and Y “ 0 with a large assessment time
A (i.e., small positive residuals).

The mathematical relation between the design efficiency and extreme current status
responses offers a new perspective. In the recent literature extreme outcome sampling
schemes have been reported to have good properties in time-to-event settings and genetic
studies (Lawless, 2018; Zhou et al., 2020; Espin-Garcia et al., 2017). The essence behind
such sampling schemes can be easily understood and justified in simple linear regression
but it is less obvious with hazard-based models and censored time-to-event data.

3.3.2 Residual and extreme response dependent sampling

The budgetary constraint (3.3.2) is equivalent to imposing a constraint on the size of the
phase II sub-sample which we denote by n with n ď N . Here we describe some two-phase
sampling schemes based on the derivation in Section 3.3.1. We refer to the asymptotically
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optimal designs aiming to minimize (3.3.1) when β1 “ op1q as TAO-OPT, since it exploits
the framework of Tao et al. (2020).

TAO-OPT selects m1 individuals with the highest and m0 “ n ´ m1 with the lowest
values of MµVarpX1|X2q1{2, where m0 and m1 “ n ´ m0 are determined by maximizing
(3.3.1). In particular, the score-type residuals Mµ are estimated based on fitting a PH
model to phase I data conditioning on X2 alone and with a PWC hazard function. Full
implementation of TAO-OPT requires computing VarpX1|X2q, which is not possible with
phase I data alone. To address this we propose several practical designs to approximate
TAO-OPT, including extreme residual dependent sampling (EXT-Mµ), extreme response
dependent sampling (EXT-pA, Y q) and a two-stage adaptive design TAO-OPTA. We de-
scribe these in what follows.
Extreme Residual Sampling (EXT-Mµ), under the assumption X1 K X2 (i.e. treating
VarpX1|X2q as constant), selects m1 individuals with the highest and m0 “ n ´ m1

with the lowest values of Mµ, where m0 and m1 “ n ´ m0 are determined to maximize
EtRVarpMµ|R “ 1,X2qu. Again, the residuals Mµ are estimated using phase I data only
based on a model only conditioning on X2.
Extreme Response Dependent Sampling (EXT-pA, Y q) selects minpn{2, Y¨q individuals who
had experienced events (i.e. Yi “ 1) with the smallest assessment times A and n ´

minpn{2, Y¨q subjects who are censored (i.e. Yi “ 0) with the largest A, where Y¨ “
řN

i“1 Yi.
Adaptive Extreme Residual Sampling (TAO-OPTA) includes a two-stage adaptive proce-
dure in which a preliminary simple random sample of size na (ă n) is chosen to acquire
information on X1 and estimate η in the covariate model GpX1|X2;ηq and VarpX1|X2q.
We then select nb “ n ´ na individuals to maximize (3.3.1). Larger values of na result in
higher precision in estimating VarpX1|X2q but less efficiency gains in the overall design.

3.3.3 Simulation studies

Here we report on simulation studies conducted to investigate the three extreme response
dependent sampling schemes described in Section 3.3.2 under maximum likelihood. We
compare their performance to stratified sampling schemes including balanced, extreme,
optimal and adaptive optimal stratified sampling schemes. We first describe how these are
implemented.

3.3.3.1 Two-phase stratified designs

Phase I samples are often stratified to provide a framework for conventional two-phase
designs. Here we define strata based on phase I data tAi, Yi, i “ 1, . . . , Nu or tZ1

i “
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pAi, Yi,X1
i2q1, i “ 1, . . . , Nu to implement phase II stratified sub-sampling schemes. In

particular we consider discretizing the observed assessment time A into three strata based
on the empirical percentiles pc1, c2q1 (c1 ă c2). This renders a new categorical variable Ā
with a sample space t1, 2, 3u and a total number of strata as J “ 6 or 12 (when a binary X2

is used). Let Z̄ denote a categorical variable indicating the resultant strata and if we let
J represent the total number of strata, then Z̄ P t1, 2, . . . , Ju. Following this stratification
the selection model (3.2.1) used for the phase II sub-sampling scheme can be defined by

πpZ;ρq “

J
ÿ

j“1
ρjIpZ̄ “ jq, (3.3.3)

where ρ “ pρ1, ρ2, . . . , ρJq1 is a J ˆ 1 vector of the stratum-specific selection probabilities.

Balanced Stratified Sampling (BAL) samples subjects evenly across the pre-specified phase
I strata with selection probabilities ρj “ nj{Nj, where nj “ minpn{J ` mj, Njq and mj is
set by iterative balanced sampling among the rest of non-exhausted strata until

ř

j nj “ n

is satisfied.

Extreme Stratified Sampling (EXT-pĀ, Y q) oversamples subjects from strata labeling pĀ, Y q “

p1, 1q and pĀ, Y q “ p3, 0q, and to avoid a near-zero selection probability in some strata, we
set the lower bound of ρj to be 0.05 for each j; for example, nj “ minp0.95n{4 ` mj, Njq

when J “ 12, or minp0.95n{2 `mj, Njq when J “ 6, if stratum j is an “extreme” stratum;
and minpmj ` 0.05Nj, Njq, otherwise.

Optimal Stratified Sampling (OPT) schemes are derived by minimizing the asymptotic vari-
ance of β1 estimators based on the selection model (3.3.3). Though infeasible in practice,
they can be conducted as a benchmark in simulation studies.

Adaptive Optimal Stratified Sampling (OPTA) proposed by McIsaac and Cook (2015) splits
the phase II selection into phase IIa and IIb. In phase IIa a sample of size napă nq

is selected to measure X1 and related parameters are then estimated to guide with the
design components for an optimal selection in phase IIb. Note that though OPTA does
not require knowledge of the true parameters it relies on correct specification of the form
of all distributions. There is a trade-off between the precise estimation in phase IIa and
the approximated optimal selection in phase IIb. The larger the phase IIa sample, the
more precise the estimation; however the final selection may be more distant away from
the optimal design. We set na{n “ 0.5 and carry out balanced phase IIa sub-sampling
throughout the simulation studies unless otherwise specified.
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3.3.3.2 Data generation

For each individual we generate X2 from a Bernoulli distribution with P2 “ P pX2 “

1q and simulate X1|X2 from Gpx1|x2q where P pX1 “ 1|X2;ηq “ exppη0 ` η1X2q{t1 `

exppη0 ` η1X2qu and η “ pη0, η1q1 is set by specifying the marginal probabilities P1 “

P pX1 “ 1q, P2 “ P pX2 “ 1q and the odds ratio φ “ P pX1 “ 1, X2 “ 1qP pX1 “ 0, X2 “

0q{rP pX1 “ 1, X2 “ 0qP pX1 “ 0, X2 “ 1qs. Given X “ pX1, X2q1, T is taken to be
Weibull distributed with cumulative hazard function Hpt|X;θq “ pλtqκ exppβ1X1 `β2X2q,
where θ “ pλ, κ, β1, β2q1. We let τ “ 1 denote the maximum inspection time (or the study
end) and generate the assessment time as A “ minpA:, τq where A: „ GAMpµ, ψq with
µ “ ErA:s and ψ “ VarpA:q. We set the probability of failure by τ as q1 “ P pT ď τq and
the observed event rate q2 “ P pY “ 1q. Without loss of generality, we set τ “ 1.

Let pc1, c2q1 denote the empirical tertiles of tAi, i “ 1, . . . , Nu. We consider the setting
where there is a high probability of failure by the maximum inspection time by setting
q1 “ 0.6 and set the probability of a positive failure status to q2 “ 0.3; we then stratify
the phase I data based on pY, Ā,X2q1 yielding twelve strata. We also consider the setting
in which the probability of failure by the maximum inspection time is low with q1 “ 0.1,
and specify the assessment time distribution here so that q2 “ 0.05; in order to avoid near-
empty strata in this setting we stratify simply on the current status responses pĀ, Y q1. We
consider settings where pβ1, φ, ψq1 take on different values: for the scenarios where X1 K X2

we set φ “ 1 and when X1 M X2 we set φ “ 2. Moreover, we consider β1 “ ´0.2, 0 or 0.2,
β2 “ ´0.2, 0 or 0.2, and ψ “ 0.1, 0.2, or 0.3. The phase I sample size is given by N “ 2000
and we consider phase II sub-sample sizes with n “ 300 or 600.

3.3.3.3 Simulation results

To obtain the maximum likelihood estimators of ϑ “ pθ1,η1q1 described in sub-Section
3.2.2, the general-purpose optimizer optim in R (R Core Team, 2020) is used with the
“limited memory Broyden-Fletcher-Goldfarb-Shanno” (L-BFGS-B) algorithm. Table 3.1
summarizes the simulation results for the estimated log hazard ratio β̂1. The empirical
bias (BIAS) of all estimates are relatively small and the corresponding coverage probabil-
ities are all close to the nominal 95% level, a reflection of the good agreement between
the empirical (ESE) and analytical standard errors (ASE). Among the stratified sampling
schemes, OPT resulted in the smallest standard error for β1 estimators as expected, and
OPTA yielded a better approximation to the OPT design than the alternative stratified
sampling designs (i.e. SRS, BAL and EXT-pĀ, Y q). The derivation of the OPT and OPTA
designs, however, are based on correct specification of the parametric models for pA,X2q1
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and the residual or response-dependent sampling schemes do not have this requirement.
TAO-OPT is the most efficient design among all designs, though only feasible in simulation
studies. As its practical substitute, EXT-Mµ and EXT-pA, Y q provide better approxima-
tions to TAO-OPT than TAO-OPTA with na “ 0.5n. Table B.1 in Appendix B.3 presents
different choices for the proportions of the phase IIa samples na{n for TAO-OPTA and their
comparison to EXT-Mµ and EXT-pA, Y q. TAO-OPTA performs better when na is smaller,
but a sufficient phase IIa sample is necessary to make reliable estimates for VarpX1|X2q.
When VarpX1|X2q is constant (i.e. φ “ 1), EXT-pA, Y q, EXT-Mµ and TAO-OPT appear
to be equally efficient or the difference is trivial; while VarpX1|X2q is not constant (as
φ “ 2) the efficiency gains of TAO-OPT comparing to EXT-pA, Y q and EXT-Mµ is more
substantial however the magnitude seems to be negligible especially when the event rate
is low. These results are consistent with the theoretical derivations in Section 3.3.1.

3.4 Influence functions and Neyman allocation
In this section we provide optimal sampling rules for the inverse probability weighted
estimator discussed in Section 3.2.3. A closed-form expression of the optimal design (OPT)
for IPW estimators is possible under stratification of phase I data and selection model
(3.3.3) (Reilly and Pepe, 1995; McIsaac and Cook, 2015; Chen and Lumley, 2020).

Subject to a constraint on phase II sample size n (ď N) the optimal design for IPW
estimators follows Neyman allocation (Neyman, 1938) to minimize the sampling variance
of the estimator of interest, expressable as a summation of i.i.d. random variables (Breslow
et al., 2009; Chen and Lumley, 2020). Specifically the IPW estimator β̃1 can be written as

?
Npβ̃1 ´ β1q “

1
?
N

N
ÿ

i“1

1
πpZi;ρq

∆ipβ1q ` opp1q,

where ∆ipβ1q is an influence measure of the observation from subject i to the estimation
in β1 (Sasieni, 1993). Chen and Lumley (2020) note that the optimal allocation is

nj9nNjσj (3.4.1)

with
řN

j“1 nj “ n and σj “ Varp∆pβ1q|Z̄ “ jq1{2.

The influence function ∆ipβ1q can be approximated by a case influence dfbeta statis-
tic (Therneau and Grambsch, 2000; Klein and Moeschberger, 2003) β̃1 ´ β̃1piq, where β̃1piq

represents the IPW estimator of β1 when observation i is removed. For computational
convenience we use its first-order expansion proposed in Cain and Lange (1984) to approx-
imate the case influence β̃1 ´ β̃1piq. We first rewrite the IPW estimator of θ as a function of
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a weight wi so the weighted score equation in (3.2.4) becomes U1pθq “ U1pθ̃pwiq, wiq “ 0
such that θ̃p1q “ θ̃ and θ̃p0q “ θ̃piq. Using the first-order Taylor series expansion of θ̃pwiq

at wi “ 1 and taking derivatives on the both sides of the weighted score equation, we have
θ̃ ´ θ̃piq «

“

´BU1{Bθ̃
‰´1

BU1{Bwi. Then β̃1 ´ β̃1piq is approximated by the first element of
the vector θ̃ ´ θ̃piq (Cain and Lange, 1984) which is denoted by ∆̃ipβ1q.

The derivation of OPT and two-stage OPTA using inverse probability weighting rely
on correct specification of all distribution forms and the nuisance integration. Neyman
allocation based on the approximate influence measure ∆̃ipβ1q is expected to yield a similar
design efficiency of OPT while alleviating these constraints. However the computation of
t∆̃ipβ1q, i “ 1, . . . , Nu requires the full cohort information on pY,A,X1q1. In a similar
spirit to the two-stage OPTA design of Section 3.3.3.1, we conduct a two-stage adaptive
Neyman allocation of t∆̃ipβ1q, i “ 1, . . . , Nu with BAL in phase IIa and approximated
Neyman allocation in phase IIb (NEYA). Specifically we proceed as follows. First a phase
IIa subsample of size na is created using a BAL sub-sampling scheme and an estimate of σj

in (3.4.1) is obtained, denoted by σ̃j, using the data from the phase IIa sample. Second a
phase IIb subsample is obtained using approximate Neyman allocation based on estimates
from the phase IIa. Hence NEYA only requires the specification of P pY |A,Xq, which can
be expressed in terms of the hazard model of interest in (3.2.2). See Appendix B.2 for
further details about how NEY and NEYA were implemented here.

We next conduct a set of simulation studies to investigate the performance of three
suboptimal sampling schemes including SRS, BAL, and EXT-pĀ, Y q, two optimal designs
OPT and NEY, and two adaptive optimal designs OPTA and NEYA. Again, the “limited
memory Broyden-Fletcher-Goldfarb-Shanno” (L-BFGS-B) algorithm is used to obtain the
estimators of θ using the general-purpose optimizer optim in R (R Core Team, 2020). The
simulation results summarized in Table 3.2 show that OPT and NEY are the most efficient
and as expected have similar performances. In general OPTA and NEYA offer a good
approximation to OPT or NEY than alternative suboptimal designs. However, when the
event is rare and the phase II sample size is small, BAL performs better than NEYA.
This may be because NEYA requires sufficient selection in phase IIa to ensure reasonable
estimates for σj.

3.5 A study of robustness and practical issues
The simulation studies thus far have involved correct specification of the PH models at
both the design and analysis stage (i.e. κ “ 1). Here we suppose the baseline cumulative
hazard function is of the form pλtqκ with κ “ 1.25 in order to investigate the impact of
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misspecification in design and/or analysis stages. In the models adopted we use PWC
baseline hazards with cutpoints chosen to correspond to the empirical quantiles of the
assessment times tAi, i “ 1, . . . , Nu. In particular, a piecewise constant model with four
pieces (« N1{5.5) set the cutpoints as the 25th, 50th, and 75th percentiles of Ais; and a
PWC model with ten pieces (« N1{3.3) set the cutpoints as the 10th, 20th, . . ., and 90th
percentiles of the Ai. Table 3.3 presents the simulation results of six practical sampling
schemes (three under each analysis method). The sandwich variance (Boos and Stefanski,
2013) is used here. The results indicated that the PWC approximations used in the design
and analysis stages yields a satisfactory approximation to the true model.

3.6 Illustrative applications

3.6.1 Diabetes in patients with psoriatic arthritis

Here we applied the proposed sampling schemes and inference procedures to a current
status data set on diabetes from the University of Toronto Psoriatic Arthritis (PsA) clinic
study (Gladman and Chandran, 2011). Patients with PsA were referred to this clinic since
1978. Demographical information such as gender, education level, lifestyle and so on were
collected at first clinical visit as well as the development of diabetes. Biosamples were
also collected and stored in the biobank at study entry for future studies. It is of great
interest to study the risk of developing diabetes and assessing important human leukocyte
antigens (HLA) markers such as DR4 in patients with PsA. The ascertainment of HLA
markers through biosample testing tends to be expensive for a large cohort. A two-phase
design would offer a cost-effective solution to this problem. Here we used a sample of
1021 patients (43.2% females, 22.6% DR4 positive) for analysis. For illustrative purposes
we treated gender as an “inexpensive” covariate and the marker DR4 as an “expensive”
covariate.

Suppose that the cohort of 1021 patients is the phase I sample and the information on
the marker DR4 was missing. As the event rate is substantially low (around 6.8%), we
stratified the phase I sample into six exclusive and nonempty strata on the status of diabetes
and the discretized inspection time (i.e. age at the first visit to the clinic). We discretized
the inspection times by its empirical 33th and 66th percentiles. In particular, the 33th
and 66th percentiles of the age at inspection in patients are 37 and 50, respectively. We
applied the practical sampling schemes including BAL, EXT-pĀ, Y q, NEYA, TAO-OPTA,
EXT-Mµ and EXT-pA, Y q, to select n “ 200 or 400 patients to collect information on DR4.
We implemented these designs for practical purposes since they do not require additional
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model assumptions other than the PH model of primary interest and (or) the nuisance
covariate model.

Regarding the number of pieces used for the PWC model, we considered the integers
around 10211{5 « 4, 10211{4 « 6 and 10211{3 « 10. The cutpoints bks are chosen such
that each pbk´1, bks contains roughly equal number of inspection times. The estimation
results are very similar and Table 3.4 summarizes the regression results using a piecewise
constant hazard model with six pieces. One can see that (i) the regression coefficients
estimates under the proposed two-phase designs are all pretty close to that under the full
data analysis and indicate that DR4 positive is significantly associated with higher risk
of developing diabetes; (ii) most of the designs select all patients with diabetes however
the selection varies among subjects without diabetes; (iii) under the same allocation rules,
ML estimators are generally more efficient then IPW estimators; (iv) different na renders
different efficiency for adaptive designs. One needs to keep na large enough to obtain
reasonable estimates for σj for NEYA, though estimates for VarpX1|X2q require smaller na;
and (v) the proposed TAO-OPTA, EXT-pA, Y q and EXT-Mµ obtained smaller standard
error when estimating the DR4 marker effect, which is consistent with our theoretical
derivation and simulation results.

3.6.2 Seroconversion after prophylactic anticoagulation therapy

Here we consider an application of the proposed methodology to data from a study of
surgical patients at risk of developing a serological response following surgery. Specifically
interest lies in understanding non-drug factors associated with the development of an an-
tibody response after surgery. Following recovery from surgery and just prior to discharge
from hospital, a blood sample is taken to assess seroconversion status leading to current
status data. Here we focus on a sample of several thousand patients obtained by pooling
data form several surgical studies, of which 3663 were female (59.94%), 5367 underwent
planned orthopedic surgery, 1370 had surgery to repair a fracture. Sixty-three percent
of the individuals were classified as overweighted or obese, by having a body-mass index
(BMI) more than 25 kg/m2.

Genetic samples were collected in these studies but they are not available to us so we
use for illustration we consider BMI as the “expensive” covariate measured only in a phase
II sub-sample. The frequency of antibody formation is rather low (183{6111 « 2.97%) so
to avoid empty strata we discretize the timing of the blood-test using the empirical 33rd
and 66th percentiles (i.e. 5.58 and 6.84 days respectively) and adopted six strata defined
by antibody status and the categorical variable defined by the timing of the blood tests;
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the seroconversion rates during the periods r0, 5.58s, p5.58, 6.84s and p6.84, 10s are 17/2017,
63/2019, and 103/2075, respectively.

We adopt piecewise constant baseline hazards with two (or four) pieces, using the em-
pirical median (or the 25th, 50th, and 75th percentiles) of the blood-test time as the cut-
point(s). Figure 3.1 displays the nonparametric and parametric estimates of the marginal
cumulative distribution function based on the full phase I sample; there is a good agree-
ment among these estimates suggesting that both PWC models provide reasonable fit to
the marginal distribution. To reflect various budgetary constraints, we consider the phase
II sample size n ranging from 366 p“ 183ˆ2q to 2400. Table 3.5 summarizes the regression
results using the PWC PH model with two pieces under these two-phase designs (including
SRS, BAL, NEYA, TAO-OPTA, EXT-pA, Y q, and EXT-Mµ) with n “ 1000 and the full
data analysis. Based on analysis of the full phase I sample (possible since here we have
access to all of the data for the BMI variable) individuals designated as overweight/obesity
(i.e. IpBMI ě 25q) have a significantly elevated hazard for the formation of antibodies
(HR“ expp0.462q “ 1.59; 95% CI: 1.14, 2.23). For the analyses based on the phase II
sub-sampling schemes we note that the stratified sub-sampling schemes ensure budgetary
constraints are met, but the precision of the resulting estimators is greatly reduced. The
point estimates fluctuate about the estimate from the full sample analysis but the confi-
dence intervals are considerably wider and none of the stratified designs yield evidence of a
BMI effect. The proposed residual-based sampling designs (i.e. TAO-OPTA and EXT-Mµ)
along with EXT-pA, Y q all yield phase II samples that give maximum likelihood estimates
with smaller standard errors and confidence intervals that are narrow enough to exclude
the null value. For the TAO-OPTA design we find HR“ expp0.392q “ 1.48 (95% CI: 1.06,
2.08) when na “ 200, for the EXT-Mµ design we obtain HR“ expp0.435q “ 1.54 (95% CI:
1.11, 2.16), and for the EXT-(A, Y ) design we obtain HR“ expp0.416q “ 1.51 (95% CI:
1.08, 2.12).

3.7 Discussion
The key to cost-effective and efficient two-phase design is the identification of the types of
individuals who are collectively the most informative about the parameter of interest. Often
this is done through stratification of a phase I sample and carrying out stratified phase II
sub-sampling (Ding et al., 2017; Zhou et al., 2018; Lawless, 2018). This requires a strategy
for stratification of the phase I sample and it can be unclear what the best strategy is in a
given situation. Tao et al. (2020) provided such guidance in developing optimal two-phase
designs using maximum likelihood approach for a wide range of senarios; we adapt this
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Figure 3.1: Nonparametric and parametric (piecewise constant hazard model with two pieces
(PWC2) and with four pieces (PWC4)) estimates of the marginal cumulative
distribution function for the time to seroconversion in orthopedic surgery.

work for the setting of current status data. We provide a practical and efficient response-
dependent design (i.e., EXT-pA, Y q) which does not require either phase I stratification
or parametric assumptions. Through extensive simulation studies we demonstrated the
merits of EXT-pA, Y q by comparing to both optimal and common suboptimal designs.
This derivation can also provide some insights to efficient sampling in settings of general
type K censoring. But we need to note that the score-type residual Mµ is a function of
both a current status response pA, Y q and a linear predictor µ “ β1X1 `β1

2X2. It is rather
straightforward to show that under a proportional hazards model, Mµ is a nonpositive
decreasing function of µ when Y “ 0, and is nonnegative increasing in µ, when Y “ 1.
Hence, when µ is extreme it may influence the order of Mµ. In such cases, the efficiency
advantage of EXT-pA, Y q may be limited so residual-based designs are preferred.

We also study an important alternative design approach involving inverse probability
weighted estimating functions. As opposed to the extreme sampling fashion favoured under
ML, balanced allocation of phase II samples is preferred under inverse probability weight-
ing. Neyman allocation with related influence functions has been reported to approximate
the optimal stratum-specific selection well (Breslow et al., 2009; Chen and Lumley, 2020).
Our simulation results are consistent with the established findings.
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The expensive covariate X1 we considered and examined in the derivation and sim-
ulation studies is scalar. For multivariate covariate X1, the aimed design efficiency may
no longer depend on one entry in the covariance matrix but a sub-block. Then the opti-
mal criteria we could consider include, trace (“A-optimal”), determinant (“D-optimal”) or
eigenvalues of the block of variance matrix corresponding to β1 estimator. When multivari-
ate X1 comes into consideration, modeling the relationship between X1 and X2 could get
much more complex. Additional challenge arises in the settings where the phase I auxiliary
covariate vector X2 contains continuous components and correlated with the expensive co-
variate X1. Zeng and Lin (2014) proposed an approximation of the conditional density
function P pX1|X2q by kernel smoothing in two-phase cohort studies. Generalization to the
case allowing some components of X to be time-dependent is generally impractical under
the current status observational scheme we considered here. If necessary additional collec-
tion of data is warranted and the maximum likelihood approach can be very challenging
due to the difficulties in estimating GpX1|X2;ηq. The approach based on inverse weighted
estimating equations alleviates this burden but at the price of lower efficiency (Reilly and
Pepe, 1995; Robins et al., 1995; Lawless et al., 1999).

We considered proportional hazards model since it is probably the most commonly used
approach to evaluate covariate effects in regression analysis for time-to-event data. Alter-
native models are needed to provide practical interpretation given specific context, or for
settings where the proportional hazard assumption does not hold. In fact our key deriva-
tions here can be extended to other transformation models such as the proportional odds,
probit, the additive hazard models and so forth. We demonstrated our methods using a
piecewise constant function to approximate the true model and advocated its convenience
and robustness carrying forward the essence of a nonparametric method. Important ques-
tions arise in practical use of PWC models include: how many pieces are appropriate to
estimate the unknown failure time distribution, and where are the locations. For exam-
ple, Goodman et al. (2011) proposed a data-driven method to determine the number and
the placement of change points for PWC model based on a Wald-type test. Piecewise
polynomials, wavelets, B-splines or any other flexible functions can also be employed.

In the simulation study and (or) the illustrative analysis, we didn’t require positive
selection probability for every study subject in some designs including OPT, TAO-OPT,
EXT-pA, Y q and EXT-Mµ under maximum likelihood. It may raise identifiability issues
when, for instance, the interaction effect of X1 and X2 is of interest. Hence, additional
constraints may need to be adopted in the practical use of these designs. Another limitation
of our development is that we required a conditional independence assumption between
the inspection time A and pT,X1q1 given the inexpensive covariate X2, which may not be
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hold in many settings (Rossini and Tsiatis, 1996; Chen et al., 2012). For these occasions
a careful modeling of P pA|T,Xq to ensure valid inference is necessitated and extensions of
our methods warrants further exploration.
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Table 3.4: Regression analysis fitting a piecewise constant hazard model with six pieces to
diabetes data from the University of Toronto Psoriatic Arthritis clinic study.

Maximum Likelihood Inverse. Prob. Weighting Number of Selected with pĀ, Y q

Design n na{n DR4 Gender DR4 Gender (1,1) (2,1) (3,1) (1,0) (2,0) (3,0)
FULL 1021 0.680(0.252) -0.159(0.247) 0.680 (0.252) -0.159(0.246) 9 16 44 328 321 303
Stratified Designs
BAL 200 0.727(0.325) -0.163(0.252) 0.713(0.348) -0.164(0.327) 9 16 43 44 44 44

400 0.714(0.276) -0.161(0.249) 0.698(0.283) -0.158(0.273) 9 16 44 110 110 110
EXT-pĀ, Y q 200 0.752(0.333) -0.166(0.253) 0.713(0.358) -0.175(0.340) 9 16 33 48 48 47

400 0.714(0.276) -0.161(0.249) 0.699(0.282) -0.157(0.271) 9 16 44 111 111 110
NEYA 200 2/4 0.686(0.373) -0.166(0.359) 8 9 24 33 49 76

3/4 0.717(0.360) -0.173(0.347) 9 16 25 39 48 62
400 1/4 0.687(0.281) -0.167(0.271) 8 14 42 53 101 182

2/4 0.698(0.276) -0.164(0.267) 9 16 42 68 105 160
3/4 0.692(0.277) -0.158(0.266) 9 16 44 87 108 135

Non-stratified Designs
TAO-OPTA 200 1/4 0.667(0.307) -0.149(0.251) 9 16 42 16 16 100

2/4 0.789(0.330) -0.170(0.253) 9 16 28 32 31 84
3/4 0.740(0.396) -0.167(0.255) 5 9 20 48 47 69

400 1/4 0.691(0.261) -0.153(0.246) 9 16 44 32 32 267
2/4 0.659(0.266) -0.143(0.248) 9 16 44 64 63 204
3/4 0.719(0.275) -0.163(0.249) 9 16 42 96 94 143

EXT-Mµ 200 0.633(0.298) -0.137(0.249) 9 16 44 0 0 131
400 0.632(0.256) -0.144(0.244) 9 16 44 0 28 303

EXT-pA, Y q 200 0.598(0.295) -0.137(0.248) 9 16 44 0 0 131
400 0.634(0.256) -0.148(0.246) 9 16 44 0 28 303

Note. Estimates of regression coefficients and standard errors (in brackets) under the BAL, EXT-pĀ, Y q, NEYA, TAO-OPTA, and
EXT-pA, Y q are averaged over 1000 replicates; TAO-OPTA implements simple random sampling and NEYA conducts balanced
sampling in phase IIa.
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Table 3.5: Regression analysis fitting a piecewise constant hazard model with two pieces to
data from 6111 patients received orthopetic surgery with the phase II sample size
n “ 1000. Estimated log hazard ratios for overweight/obesity (i.e. BMI ě 25) and
the corresponding 95% confidence intervals in round brackets are presented.

Stratified Designs

Full SRS BAL NEYA

Framework Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI
Likelihood 0.46 (0.13, 0.80) 0.48 (-0.35, 1.31) 0.33 (-0.02, 0.67) - -

IPW1 0.46 (0.12, 0.81) 0.54 (-0.41, 1.48) 0.47 (-0.05, 0.98) 0.47 (-0.04, 0.98)
0.47 (-0.04, 0.98)

Non-Stratified Designs

Full TAO-OPTA2 EXT-Mµ EXT-pA, Y q

Likelihood 0.46 (0.13, 0.80) 0.39 (0.06, 0.73) 0.44 (0.10, 0.77) 0.42 (0.08, 0.75)
0.37 (0.04, 0.71)

1 for NEYA the first row is based on an internal pilot of na “ 400 while the second row is for
na “ 800;
2 first row is for na “ 200 and second row is for na “ 400.

50



Chapter 4

Response-dependent subsampling
involving multiple disease registries

4.1 Introduction
With the development and accumulation of modern epidemiological research, multiple large
prevalent cohorts may have been formed to collect data from patients recruited in differ-
ent clinical stages of chronic disease processes. In time to event analyses, the increasing
availability of different data sources has led to increasing interest in statistical analysis ex-
ploiting data from a combination of cohorts (Wang, 1999; Copas and Farewell, 2001; Saarela
et al., 2009; Wolfson et al., 2019). However, cost-effective design of biomarker studies based
on combined registry data has not received much attention. Often budgetary issues arise
in this context as it is too expensive and inefficient to assess the stored biosamples for
every enrolled patient. Much research has been directed at two-phase designs for failure
time data subject to censoring; see Prentice (1986); Borgan and Samuelsen (2014); McIsaac
and Cook (2015); Ding et al. (2017); Lawless (2018); Tao et al. (2020) among others. In
this article, we address the development of two-phase designs and the associated analysis
for pooled prevalent cohort data under likelihood and inverse probability weighting. Two
types of selection bias arise in this context from i) recruitment procedures implemented by
each disease registry and ii) response-dependent sub-sampling for the combined registries.
To accommodate such a complex data structure and various observation patterns, multi-
state models are employed as they offer an intuitive and appealing framework to model the
lifetime dynamics concerning a disease progression of interest (Cook and Lawless, 2014,
2018).
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To motivate the methodology, we consider two research programs conducted by Uni-
versity of Toronto in psoriasis and psoriatic arthritis; see Section 1.2.3. Psoriasis (Ps) and
psoriatic arthritis (PsA) are often deemed as chronologically-ordered diseases or disorder
conditions and two research programs, led separately by the University of Toronto Pso-
riasis Clinic (UTPC) and the University of Toronto Psoriatic Arthritis Clinic (UTPAC),
have been conducted to investigate these two chronologically-ordered events, respectively.
In particular, UTPC established a registry of patents with Ps in 2006 (Eder et al., 2011);
another disease registry maintained by UTPAC was launched much earlier in 1977 by
enrolling patients in PsA (Gladman and Chandran, 2011). Upon recruitment, patients
went through a detailed interview on disease history and clinical examination, provided
blood or urine samples for genetic testing, and then followed prospectively according to a
standardized protocol. Biomarker studies in identifying human leukocyte antigens (HLA)
associated with the risk of PsA development in Ps patients have been received a lot of
attention (Rahman and Elder, 2005; Eder et al., 2012; Chandran, 2013; Wu and Cook,
2018). With the availability of biosamples from both UTPC and UTPAC registries, we
frame the the pooled registry data as the phase I sample and aim to provide some guidance
in cost-effective selection of a subcohort for the ascertainment of the expensive biomarker
information. The UTPC registry provides Ps-prevalent cohort data and prospective inci-
dence of PsA onsets and the UTPAC registry provide PsA-prevalent cohort data where
retrospective information on the development of PsA from Ps is available.

Multistate models have been employed extensively for Ps and PsA studies (Chandran
et al., 2010; Farewell and Su, 2011; Cook and Lawless, 2018; Zeng et al., 2020) and their
utilization on life history processes subject to biased observation schemes dates back to
Keiding (1991) and Commenges (2002). In this chapter we begin by considering a ho-
mogeneous population (Commenges, 1999) following a six-state data model involving two
disease stages (i.e. Ps and PsA) as in Cook and Lawless (2018) and Zeng et al. (2020).
The state space contains t0, 1, 2, D0, D1, D2u, where state 0 represents disease-free and
alive, states 1 and 2 represent the disease state with state 1 representing an initial phase
and state 2 a more advanced disease state, respectively. States Dj represent an absorbing
state of death from state j, j “ 0, 1, 2; see Figure 4.1. In the later sections we will con-
sider likelihood-based methods and discuss model assumptions for desirable simplifications
based on this general six-state model.

The organization of this chapter is as follows. In Section 4.2, we introduce the notation,
observed data and model formulations. Likelihood construction upon two assumptions on
the intensity models is presented for six-state processes. In Section 4.3, the estimation and
inference procedure base on a simplified partial likelihood is developed. Extreme residual
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and response dependent designs are derived in Section 4.4 and their performance and
comparison to other commonly-used two-phase designs are investigated by a comprehensive
simulation studies conducted in Section 4.5. Section 4.6 returns to a general setting to relax
the nondifferential mortality assumption and discusses the analysis and design problems in
a more general setting; The proposed methods are examined in another set of simulation
studies in Section 4.7 and applied to the motivating example in Section 4.8. This chapter
ends with a discussion of the inverse probability weighting approach in Section 4.9 and
concluding remarks in Section 4.10.

0

Disease-free

1

Ps

2

PsA

D0

Disease-free Death

D1

Post-Ps Death

D2

Post-PsA Death

Figure 4.1: A state space diagram for a six-state two-stage disease process.

4.2 Notation, data, and model

4.2.1 Disease progression under a six-state process model

We consider a birth cohort defined as individuals born in a window of calendar time
B “ pBL, BRs. For a generic individual we let B denote the birth date so that at calendar
time e “ B ` a they are age a, a ą 0. Let AD denote the age of death (or the survival
time) and Aj ă AD the age of a j´1 Ñ j transition if one occurs, j “ 1, 2; if the transition
does not occur before death we set Aj “ 8. Let Zpaq denote the state occupied at age a
with P pZp0q “ 0q “ 1. Let Hpaq “ tZpuq, 0 ă u ď a, Zp0q “ 0, Bu denote the life history
up to age a and H̄paq “ tHpaq,Vu be the expanded history, where V denotes covariates
reflecting demographic characteristics and possibly baseline marker information. In our
motivating example, primary interest lies in studying the effect of a specific new marker
on the Ps to PsA (i.e. 1 Ñ 2) transition.

4.2.2 Two-phase designs with biased phase I samples

Different disease registries will typically impose different disease-related selection condi-
tions, leading to the formation of biased samples from the target population. Analysis
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of data from a combination of registries requires a careful treatment to these recruitment
rules. We next describe a somewhat idealized recruitment procedure to characterize se-
lection into the UTPAC and UTPC respectively. In reality individuals are recruited over
different windows of calendar time and according to a variety of poorly understood and
documented processes. Some individuals are recruited by particular screening efforts but
we assume here that the cross-sectional sampling scheme we describe next is the method
employed for all recruited individuals for convenience. For further simplification we assume
that the recruitment process occurs at a particular date E0.

4.2.2.1 The University of Toronto Psoriatic Arthritis Cohort

The UTPAC registry began to enrol PsA patients in 1977 (Gladman and Chandran, 2011).
In what follows we will refer to this registry as Registry 2 since individuals were recruited
in state 2 of the six-state model described by Figure 4.1. For each individual enrolled in
Registry 2, retrospective life history data are recorded at the time of recruitment including
date of birth B, age at onset of the initial disease A1, age at onset of the advanced disease
A2; the age at recruitment is A0 “ E0 ´B. We suppose that recruited individuals take part
in a follow-up study of C years duration, conducted to learn about the disease course. We
consider C as an administrative or completely random censoring time that is independent
and noninformative for the process of interest. Let AC “ A0 `C denote the age at possible
censoring and A: “ AD ^AC denote the time on study, where a^ b denotes the minimum
of a and b. Let δ1 “ IpA1 ď ADq, δ2 “ IpA2 ď A:q and δD “ IpAD ď A:q indicate the
observation of the 0 Ñ 1 and 1 Ñ 2, to transitions and death, respectively, where Ip¨q is the
indicator function. Those recruited into Registry 2 provide information on tZ0 “ 2, H̄pA:qu,
where Z0 “ ZpA0q and we observe A1 ă A2 ă 8 (retrospectively) so δ1 “ 1, δ2 “ 1.

Often recruitment to a registry or cohort may depend on age, gender and other de-
mographic variables. The Canadian Longitudinal Study in Aging (Raina et al., 2009), for
example, used stratified sampling so survey weights may be used in analyses. We assume
here, however, that the variables governing the complex survey design are contained in
V and so survey weighting is not needed or discussed in what follows. Given interest lies
in the process following entry to state 1, we consider the likelihood contribution from an
individual recruited in Registry 2 based on

P pHpA:q|Z0 “ 2, H̄pA1qq “
P pHpA:q, Z0 “ 2|H̄pA1qq

P pZ0 “ 2|H̄pA1qq
. (4.2.1)

the conditional probability of observing a disease evolution given that an individual re-
cruited in state 2 and H̄pA1q. Since E0 is fixed, here and in what follows we suppress the
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dependence on A0 “ E0 ´B in the conditions for simplicity. A broad class of recruitment
rules can be accommodated by such a likelihood construction - the recruitment procedure
can depend on the state at recruitment, birth time (or age at recruitment), onset of the
initial disease, and covariates V.

4.2.2.2 The University of Toronto Psoriasis Cohort

The UTPC registry was established in 2006 to recruit patients with psoriasis (Eder et al.,
2011). The goal of establishing this cohort was to observe incident cases of PsA and to
study risk factors for its development. In what follows we will refer to this registry as Reg-
istry 1 since individuals were recruited in state 1 of the six-state model described by Figure
4.1. Similar to the data collection procedure assumed for Registry 2, recruited individu-
als undergo an interview to retrospectively record their life history prior to recruitment,
including their dates of birth B and their ages at onset of the initial disease A1. Upon
recruitment, a prospective follow-up study of length C is conducted to monitor the disease
development. An individual in Registry 1 therefore provides data on tZ0 “ 1, H̄pA:qu.
Given H̄pA0q, the conditional probability P pHpA:q|Z0 “ 1, H̄pA1qq equals

P pHpA:q, Z0 “ 1|H̄pA1qq

P pZ0 “ 1|H̄pA1qq
,

where the numerator is the conditional probability of observing a disease path given H̄pA1q,
and the denominator adjusts for the recruitment bias. It is evident that the recruitment
process can depend on the state at recruitment, birth time (or age at recruitment), onset
of the initial disease, and covariates V.

4.2.2.3 Pooled registries, incomplete covariate and two-phase design

We now consider two-phase design problems involving a phase I sample as obtained by
pooling data from Registry 1 and Registry 2. To proceed further, we idealize the recruitment
of individuals to the two registries by assuming that, by screening the birth cohort at E0,
a sample of N1 individuals in state 1 is recruited into Registry 1 and a sample of N2

individuals in state 2 is enrolled in Registry 2. A schematic of possible life history paths
prior to and following recruitment to Registry 1 and Registry 2 is depicted in Figure 4.2.

Let X denote a fixed biomarker of interest which is only observed when a biospec-
imen collected upon recruitment to the respective registry is assayed, giving pX,V1q1 is
the complete covariate vector. Under budgetary constraints, one cannot measure X for
the whole (combined) cohort. An important issue is how to efficiently select a phase II
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Figure 4.2: A schematic of possible life history paths prior to and following recruitment to
Registry 1 and Registry 2.

subcohortsample for the ascertainment of X. Two-phase designs offer a natural framework
to construct a solution. Let ∆ “ IpX is observedq indicate whether the marker value
of interest is available. Here X is missing at random as the selection model, designated
by investigators, is based on observed information (Little and Rubin, 2002). The general
selection model can be expressed as

P p∆ “ 1|H̄pA:q, Xq “

2
ÿ

k“1
IpZ0 “ kqP p∆ “ 1|Z0 “ k, H̄pA:qq (4.2.2)

under the budgetary constraint
P p∆ “ 1q “ τ, (4.2.3)

where 0 ă τ ď 1. Let X˝ “ pX,V1q1 if ∆ “ 1 and otherwise X˝ “ V. The Lexis diagram
(Keiding, 2011) of Figure 4.3 depicts information for two individuals recruited in Registry
1 and Registry 2, respectively. The horizontal axis represents the calendar time indicating
the calendar window pBL, BRs of the target birth cohort, birth dates B1 and B2 for the
two individuals, and the date at screening and recruitment E0. The vertical axes measure
time since birth (age); the left axis reflects the age of events for an individual that could be
recruited to Registry 1 and right axis has the corresponding information for an individual
that could be recruited to Registry 2. Information on transitions over HpA:q can be re-
expressed by the transition indicators pδ1, δ2, δDq1 and the realized sojourn times in states
j, denoted by Sj, j “ 0, 1, 2, where S0 “ A1 ^ AD; S1 “ pA2 ^ A:q ´ A1 if δ1 “ 1, or 0
if δ1 “ 0; and S2 “ A: ´ pA2 ^ A:q. The realized sojourn times in states j, Sj (j=0, 1,
2), and the time elapse T0 from A1 to age at recruitment A0 are also labeled. Note that
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S2 “ 0 for the individual born at B1 as the 1 Ñ 2 disease progression did not occur during
the follow-up.
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Figure 4.3: A Lexis diagram of two diseased individuals recruited into Registry 1 (left) and
Registry 2 (right), with horizontal axis shown the calendar times and the vertical
axis presented corresponding age; and realized sojourn times Sj in state j
(j=0,1,2) are also labeled.

Hence, Registry 1 provides observations tZi0 “ 1, HipA
:
i q,X˝

i ,∆i, i “ 1, . . . , N1u “

tZi0 “ 1, Bi, Ai1, Si1, Si2, δi1 “ 1, δi2, δiD,X˝
i ,∆i, i “ 1, . . . , N1u and Registry 2 contains

data on tZi0 “ 2, HipA
:
i q,X˝

i ,∆i, i “ N1 ` 1, . . . , Nu “ tZi0 “ 2, Bi, Ai1, Si1, Si2, δi1 “

1, δi2 “ 1, δiD,X˝
i ,∆i, i “ N1 ` 1, . . . , Nu, where N “ N1 `N2 is the combined sample size.

The likelihood contribution from the combined registry data is proportional to
N
ź

i“1

2
ź

k“1

#

rP pHipA
:
i q, Xi|H̄ipAi1qqs∆irP pHipA

:
i q|H̄ipAi1qqs1´∆i

P pZi0 “ k|H̄ipAi1qq

+IpZi0“kq

. (4.2.4)

Note that identifiability problems may arise in attempting to maximize this likelihood
without external information; for example, mortality rates among disease-free individuals
will not be estimable – see Appendix C.1. To address this, we next outline several assump-
tions on intensity models under maximum likelihood. These assumptions are subsequently
relaxed in Section 4.6 and 4.9.
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4.2.3 Model, assumption, and likelihood

Let λjpa|H̄pa´q, Xq, j “ 0, 1, and γjpa|H̄pa´q, Xq, j “ 0, 1, 2, denote the general intensity
functions for the j Ñ j`1, and j Ñ Dj transitions. We consider the following assumptions:

Assumption 1. Given the history up to A1 and phase I covariates V, the biomarker X
is not related to the onset disease process, that is, λ0pa|X, H̄pa´qq “ λ0pa|H̄pa´qq

Assumption 2. Given the history up to A1 and phase I covariates V, the biomarker X
is not associated with death (i.e. γjpa|X, H̄pa´qq “ γjpa|H̄pa´qq, j “ 0, 1, 2).

The conditional independence of the death intensities from the biomarker X and the death
processes might be appropriate in many settings. For example, candidate HLA markers
for a disease process may not generally be associated with death. However, the conditional
independence between X and the initial disease progression is somewhat a restrictive as-
sumption. It is more reasonable if we assume that V contains known relevant markers
for the 0 Ñ 1 and 1 Ñ 2 transitions and consider X as a candidate new marker for the
1 Ñ 2 transition. More generally, however, Assumption 1 can be relaxed if inverse proba-
bility weighting (IPW) is applied to score contributions from the subsample with complete
observation on X. We discuss IPW in Section 4.9.

If λ1pt|A1,V, Xq is the intensity for disease progression (i.e. transition from state 1 to
state 2), we assume it takes a multiplicative form of

λ1pt|A1,V, X;θq “ λpt;αq exppβ1X ` β1
2V ` β3 logA1q, (4.2.5)

where θ “ pβ1,α1q1 with α indexing the hazard function λp¨q and β “ pβ1,β
1
2, β3q1 repre-

senting the regression coefficients. This model accommodates a relation between the age of
onset A1 of the initial disease condition and the risk of a 1 Ñ 2 transition. We assume that
there is no trend in the covariate distribution of X|V over calendar time (i.e. X K B|V)
and let η index the covariate model P pX|V;ηq.

Let γjpa|H̄pa´qq “ γjpa|V;ψjq denote j Ñ Dj transition intensities, j “ 1, 2, and
ψ “ pψ1

1,ψ
1
2q1. Let

Lθ “ F1pS1|A1,V, X;θqλδ2
1 pS1|A1,V, X;θq (4.2.6)

correspond to the likelihood contribution relevant to the disease history for the 1 Ñ 2
transition with F1pS1|A1,V, X;θq “ expp´

şS1
0 λ1pt|A1,V, X;θqdtq, Lη “ P pX|V;ηq, and

Lψ “ G1pS1|A1,V;ψ1qrγ1pA:
2|V;ψ1qsδDp1´δ2qrG2pS2|A1, S1,V;ψ2qγδD

2 pA:|V;ψ2qsδ2

(4.2.7)
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with
G1pt|A1,V;ψ1q “ expp´

ż A1`t

A1

γ1pa|V;ψ1qdaq

and
G2pt|A1, S1,V;ψ2q “ expp´

ż A2`t

A2

γ2pa|V;ψ1qdaq.

Given tZ0, H̄pA1qu, the likelihood contribution of a recruited individual in the combined
prevalent cohort in (4.2.4) becomes

ź

j“1,2

«

ˆ

LθLηLψ

P pZ0 “ j|A1, δ1 “ 1,Vq

˙∆

ˆ

ˆ

EX|VrLθ;ηsLψ

P pZ0 “ j|A1, δ1 “ 1,Vq

˙1´∆
ffIpZ0“jq

, (4.2.8)

where the denominator adjusts for the recruitment bias in each disease registry. If T0 “

A0 ´ A1, then P pZ0 “ 1|A1, δ1 “ 1,V;θ,η,ψ1q is expressed as

EX|VrF1pT0|A1,V, X;θq;ηs ˆ G1pT0|A1,V;ψ1q (4.2.9)

and P pZ0 “ 2|A1, δ1 “ 1,V;θ,η,ψq involves a double integral given by
ż T0

0
EX|VrF1pt|A1,V, X;θq;ηs ˆ G1pt|A1,V;ψ1qG2pT0|A1, S1 “ t,V;ψ2qdt. (4.2.10)

4.3 Partial likelihood with independent mortality
In many settings disease processes affect quality of life but have relatively little impact on
mortality. In such cases, we can make the following further assumption.

Assumption 3. Mortality is independent of disease status, that is, γ1pa|Vq “ γ2pa|Vq “

γpa|Vq.

This condition holds typically for relatively benign diseases and may be reasonable for our
motivated psoriasis and psoriatic arthritis example. Assumptions 1-3 will be assumed in
what follows unless otherwise indicated. These assumptions are subsequently weakened
using inverse probability weighting.

Under Assumptions 1-3, we can construct a simplified partial likelihood without spec-
ifying the nuisance mortality models. If Gpa|V;ψq “ expp´

şa

0 γpu|V;ψqduq, we have

P pZ0 “ 1|A1, δ1 “ 1,V, Xq “ F1pT0|A1,V, X;θq ˆ
GpA0|V;ψq

GpA1|V;ψq
(4.3.1)
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and P pZ0 “ 2|A1, δ1 “ 1,V, Xq can be factored as

r1 ´ F1pT0|A1,V, X;θqs ˆ
GpA0|V;ψq

GpA1|V;ψq
. (4.3.2)

The likelihood (4.2.8) then becomes
„

tLθLηu∆pEX|VrLθ;ηsq1´∆

EX|VrF1pT0|A1,V, X;θq;ηs

ȷIpZ0“1q „
tLθLηu∆pEX|VrLθ;ηsq1´∆

1 ´ EX|VrF1pT0|A1,V, X;θq;ηs

ȷIpZ0“2q

ˆ

„

Lψ

GpA0|V;ψq{GpA1|V;ψq

ȷIpZ0Pt1,2uq

.

(4.3.3)

If ψ and ϑ “ pθ1,η1q1 are functionally independent, we can maximize
řN

i“1 logLippϑq to
estimate ϑ, where logLippϑq is a log partial likelihood corresponding to the first line of
(4.3.3), given by

IpZi0 P t1, 2uq
“

∆iplog Liθ ` log Liηq ` p1 ´ ∆iq logEX|Vi
rLiθ;ηs

‰

´IpZi0 “ 1q logEX|Vi
rF1pTi0|Ai1,Vi, Xi;θq;ηs

´IpZi0 “ 2q logp1 ´ EX|Vi
rF1pTi0|Ai1,Vi, Xi;θq;ηsq.

(4.3.4)

Taking the first derivative of logLippϑq with respect to ϑ we write the partial score
vector as Sippϑq “ B logLippϑq{Bϑ is given by

∆IpZi0 P t1, 2uq

ˆ

Siθ

Siη

˙

` p1 ´ ∆iq
IpZi0 P t1, 2uq

EX|Vi
rLiθ;ηs

ˆ

EX|Vi
rSiθLiθ;ηs

EX|Vi
rSiηLiθ;ηs

˙

´
IpZi0 “ 1q

EX|Vi
rF1pTi0|Ai1,Vi, Xi;θq;ηs

ˆ

EX|Vi
rBF1pTi0|Ai1,Vi, Xi;θq{Bθ;ηs

EX|Vi
rSiηF1pTi0|Ai1,Vi, Xi;θq;ηs

˙

`
IpZi0 “ 2q

p1 ´ EX|Vi
rF1pTi0|Ai1,Vi, Xi;θq;ηsq

ˆ

EX|Vi
rBF1pTi0|Ai1,Vi, Xi;θq{Bθ;ηs

EX|Vi
rSηF1pTi0|Ai1,Vi, Xi;θq;ηs

˙

,

(4.3.5)

where Siθ “ B log Liθ{Bθ and Siη “ B log Liη{Bη. The observed information matrix is
then Ippϑq “ ´N´1 řN

i“1 Sippϑq{Bϑ “ Ip1pϑq ` Ip2pϑq, where

Ip1pϑq “ ´N´1 řN
i“1

"

∆iIpZi0 P t1, 2uq B
Bϑ1

ˆ

Siθ

Siη

˙

` p1 ´ ∆iq
B

Bϑ1

„

IpZ0Pt1,2uq

EX|Vi
rLiθ ;ηs

ˆ

EX|Vi
rSiθLiθ;ηs

EX|Vi
rSiηLiθ;ηs

˙ȷ*

, (4.3.6)

and Ip2pϑq is

N´1
N
ÿ

i“1

B

Bϑ1

„

IpZi0 “ 1q

EX|Vi
rF1pTi0|Ai1,Vi, Xi;θq;ηs

ˆ

EX|Vi
rBF1pTi0|Ai1,Vi, Xi;θq{Bθ;ηs

EX|Vi
rSηF1pTi0|Ai1,Vi, Xi;θq;ηs

˙ȷ

´
B

Bϑ1

„

IpZi0 “ 2q

p1 ´ EX|Vi
rF1pTi0|Ai1,Vi, Xi;θq;ηsq

ˆ

EX|Vi
rBF1pTi0|Ai1,Vi, Xi;θq{Bθ;ηs

EX|Vi
rSηF1pTi0|Ai1,Vi, Xi;θq;ηs

˙ȷ

.
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We let ϑ̂ be the estimator of ϑ solving the overall score equation. For parametric
models, under standard regularity conditions (Boos and Stefanski, 2013),

?
Npϑ̂ ´ ϑq is

asymptotically normal with mean 0 and asymptotic variance Ipϑ; Ω,ρq´1, where Ω repre-
sents the full parameter vector, ρ indexes the phase II selection model, and Ipϑ; Ω,ρq “

ErIppϑq; Ω, ρs is the expected information. Note that

Ipϑ; Ω,ρq “ ErIp1pϑq; Ω,ρs ` ErIp2pϑq; Ωs (4.3.7)

suggesting that the phase II selection models will only affect the first term.

4.4 Response-dependent phase II sub-sampling

4.4.1 Review of residual-based designs for right-censored data

We here consider the weighted residual-dependent designs of Tao et al. (2020) in the con-
text of our combined prevalent cohort data. The motivation for considering this stems
intuitively from the form of Ip1pϑq in (4.3.6) and the decomposition of the expected in-
formation Ipϑ; Ω,ρq in (4.3.7). The matrix Ip1pϑq takes similar form to the information
matrix in conventional failure time analysis. For standard right-censored failure time data
under proportional hazards models, Tao et al. (2020) proved that when the incompletely
observed covariate is not a strong predictor for the event process of interest (i.e. β1 “ op1q)
a residual-based two-phase design can be asymptotically optimal for estimating β1. In such
designs, a preliminary proportional hazards model – one not adjusting for the (incompletely
observed) expensive covariate – is fitted to the phase I data, and martingale-type residuals
are computed based on this preliminary model and associated estimates.

4.4.2 Residual-based designs for combined cohort data

Death from state 1 is a competing event for the time to enter state 2; the gap time between
entry times to state 1 and 2 is defined by the sojourn time in state 1 with the occurrence of
disease progression. Standard time-to-event analysis as well as the development of optimal
designs do not directly apply to the combined prevalent cohort data. Moreover, in Registry
1, the sojourn time in state 1 is left-truncated by T0 “ A0 ´ A1, while in Registry 2,
individuals are recruited with PsA so the sojourn time in state 1 is exactly known but
right-truncated by T0.
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The expected information matrix Ipϑ; Ω,ρq defined in (4.3.7) is expressible as
¨

˝

Iβ1β1 Iβ1θ˝ Iβ1η

Iθ˝β1 Iθ˝θ˝ Iθ˝η

Iηβ1 Iηθ˝ Iηη

˛

‚, (4.4.1)

where θ˝ “ pβ1
2, β3,α

1q1 and Iab “ ´ErB2 logLppϑq{BaBb1s. We note that N´1{2pβ̂1 ´ β1q

converges in distribution to a normal random variable with mean zero and variance V ´1
β1

with
Vβ1 “

“

Iβ1β1 ´ Iβ1θ˝I´1
θ˝θ˝

Iθ˝β1 ´ Iβ1ηI´1
ηη Iηβ1

‰

. (4.4.2)
If we let µ “ β1X`β1

2V`β3 logA1 denote the linear predictor of interest, then λ1pt|S0, X,V;θq “

λpt;αq exppµq and Mµpθq “ δ2 ´
şS1

0 λ1pt|A1, X,V;θq. When β1 “ op1q, Vβ1 can be decom-
posed as

EW

!

IpZ0 P t1, 2uqEr∆|WsVarrMµ|W,∆ “ 1sVarpX|Vq

)

. (4.4.3)

and a non-negative component independent of the phase II sub-sampling rules, where
W “ pB,A1, A

:, δ1, δD,V1q1; see Appendix C.3 for a sketch of the derivation.
Following the argument of Tao et al. (2020), an opβ1q optimal sampling rule involves

selecting subjects with the largest and smallest values of MµSDpX|Vq with SDpX|Vq “

VarpX|Vq1{2, subject to the budgetary constraint defined in (4.2.3). In the design stage,
we first fit a preliminary model

λ˚
1pt|A1,Vq “ λpt;α˚q exppξ1

2V ` ξ3 logA1q (4.4.4)

using the phase I data only. When β1 “ 0, the preliminary model (4.4.4) coincides with
the true model (4.2.5) and the estimator p0, α̂1

˚, ξ̂
1

2, ξ̂3q1 approaches to the true θ. By
evaluating Mµ at θ “ p0, α̂1

˚, ξ̂
1

2, ξ̂3q1, we obtain the estimated “residual” M̂µ. As in Tao
et al. (2020), we sample individuals with extreme values of M̂µSDpX|Vq and call such
designs the weighted residual dependent designs (WRES-Mµ). WRES-Mµ samples m1

subjects who experienced disease progression and had the largest values of MµSDpX|Vq

and m0 “ n ´ m1 subjects who has the smallest values of MµSDpX|Vq where m1 is
determined by maximizing (4.4.3). However the evaluation of SDpX|Vq is not possible
based on the phase I sample. Hence we can either i) use an adaptive procedure; or ii)
consider an (unweighted) residual dependent sampling scheme (i.e. by treating SDpX|Vq

as a constant).
We next describe the details of the sub-sampling based on three practical alternatives to

WRES-Mµ, including adaptive WRES-Mµ (AWRES-Mµ), unweighted residual dependent
sampling (RES-Mµ), and extreme response dependent sampling (EXT-(δ2, S1)). To reflect
a budgetary constraint we set the size of phase II sample as n (ď Nq.
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4.4.2.1 AWRES-Mµ

Note that SDpX|Vq is inestimable base on phase I data, so it is natural to conduct a two-
step adaptive design (McIsaac and Cook, 2015). Here we consider a phase IIa subsample of
size na (ă n) selected through simple random sampling where the expensive covariate X is
measured in selected individuals. Then based on this subsample we obtain an estimate of
η, denoted by η̂a, and evaluate SDpX|V;ηq at η “ η̂a for the entire phase I sample. This
enables us to implement WRES-Mµ to guide the selection of the rest of the phase I sample
(excluding the phase IIa subsample already chosen) to construct a phase IIb sample of size
nb “ n ´ na.

4.4.2.2 RES-Mµ

Unweighted residual dependent sampling (RES-Mµ) samples m1 subjects who had experi-
enced disease progression and the largest values of Mµ and m0 “ n´m1 subjects who have
the smallest values of Mµ, where m1 is determined to maximize (4.4.3) given a constant
VarpX|Vq.

4.4.2.3 EXT-(δ2, S1)

While controlling for other variables, Mµ is a non-increasing function of S1. Hence extreme
values of Mµ connects to extreme responses (i.e., δ2 “ 1 with small S1 and δ2 “ 0 with
large S1). As a practical alternative, we consider sampling subjects with extreme responses,
which does not rely on the fit of preliminary models. Under extreme response dependent
sampling (EXT-(δ2, S1)), we select mintn{2,

řN
i“1 δi2u subjects who had experienced the

disease progression with the shortest observed sojourn times and n ´ mintn{2,
řN

i“1 δi2u

individuals who had the longest observed sojourn time in state 1 without disease progres-
sion.

4.5 Simulation studies

4.5.1 Data generation

In what follows we describe data generation for a single individual but the process is
repeated to create the entire sample. Consider a stationary birth process (i.e. no trend over
calendar time in the transition intensities or covariate distributions) with B „ Unifp0, 100q

and set the recruitment date E0 “ 100. For simplicity, we consider both X and V as
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Bernoulli and assume that pX,V q K B. We generate V from a Bernoulli distribution with
success probability P pV “ 1q “ 0.5 and then simulate X|V from a logistic model with

P pX|V ;ηq “
exppη0 ` η1V q

1 ` exppη0 ` η1V q
, (4.5.1)

where η “ pη0, η1q1. By setting the marginal probability of X, P pX “ 1q “ 0.1, and the
odds ratio eη1 , we solve for η0.

We generate possible ages of disease onset and death from a six-state model of Figure
4.1 under proportional intensities with constant baseline intensities λ0pa|V q “ λ for the
0 Ñ 1 transition, λ1pt|A1, X, V q “ α exppβ1X ` β2V ` β3 logA1q for the 1 Ñ 2 transition,
and γpa|V q “ γ for the j Ñ Dj transitions, j “ 0, 1, 2. Psoriasis is a common skin
disease may affect 2 ´ 3% of the general population and about 30% psoriasis patients
develop psoriatic arthritis (Gladman et al., 2005; University Health Network, 2019). The
probability that an individual occupies state j at recruitment time is given by P pZ0 “ jq

and we set P pZ0 “ 0q “ 0.5, P pZ0 “ 1q “ 0.01 and P pZ0 “ 2q “ 0.01 to solve λ, α and γ.

Random censoring times C are generated from an exponential withdrawal time to give
P pδ2 “ 1|Z0 “ 1q “ rˆ100% with r “ 0.1 or 0.3, leading to different observed frequency of
events in Registry 1. We set the size of the birth cohort N “ 106, the sizes of two registries
N1 “ N2 “ 1000, and the size of phase II subsample n “ 600.

4.5.2 Efficiency comparisons

In this section we conduct simulation studies to evaluate the empirical efficiency of WRES-
Mµ, AWRES-Mµ, RES-Mµ, and EXT-pδ2, S1q for estimating β1 under the partial likelihood
given in (4.3.3). To understand their merits, we compare their performance to other
commonly used designs including simple random sampling (SRS) and two-phase stratified
designs such as the balanced stratified sampling (BAL).

4.5.2.1 Two-phase stratified designs

For two-phase stratified designs, different stratification strategies are implemented on the
phase I data leading to different allocation of phase II subsamples. We let S̄1 P t1, 2, 3u

is a categorical variable generated by the continuous variable S1 discretized by a vector of
cutpoints pc1, c2q1 corresponding to the empirical tertiles of tSi1, i “ 1, . . . , Nu and S̄1 “ k if
S1 P rck´1, ckq, k “ 1, 2, 3. We consider five phase I stratification schemes based on (1) Z0;
(2) δ2; (3) Z0, δ2; (4) δ2, S̄1; and (5) Z0, δ2, S̄1. The total number of strata then range from
2 to 9. For ease of reference, let Y denote the label of the phase I strata with Y P t1, . . . , Ju
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and J is the total number of phase I strata. For example, when the phase I data is stratified
on Z0, we obtain two strata with Y “ 1 corresponding to Z0 “ 1 and Y “ 2 corresponding
to Z0 “ 2, respectively. Let Mj “

řN
i“1 IpYi “ jq and nj “

řN
i“1 ∆iIpYi “ jq.

Balanced sampling (BAL) aims to achieve approximately equal numbers per stratum
following phase II selection. Under BAL, we select nj “ mintn{J,Mju ` n˝

j subjects
from stratum j, where n˝

j represents the number of individuals additionally selected from
stratum j and is set by iterative balanced sampling among the rest of non-exhausted strata
until

ř

j nj “ n is satisfied.

When the phase I data is stratified on pδ2, S̄1q and J “ 6, an extreme stratified sampling
scheme, EXT-pδ2, S̄1q, is implemented to oversample subjects from the strata with pδ2, S̄1q P

tp1, 1q, p0, 3qu; these strata are deemed to be “extreme” strata as they contains subjects
who have unusual or “extreme” responses. To avoid extremely small selection probability
in some strata, we set the lower bound of nj to be 0.05n for each j. This gives nj “

minp0.95n{2`n˝
j ,Mjq, if stratum j is one of the “extreme” strata; and minp0.05Nj`n˝

j ,Mjq,
otherwise. Again, n˝

j is obtained by iterative balanced sampling among the rest of non-
exhausted strata until

ř

j nj “ n is satisfied.

4.5.2.2 Results

The “limited memory Broyden-Fletcher-Goldfarb-Shanno” (L-BFGS-B) algorithm is used
to obtain the maximum likelihood estimators of θ using the general-purpose optimizer
optim in R (R Core Team, 2020). Tables 4.1 and 4.2 summarize the estimation results for
the log hazard ratios β “ pβ1, β2, β3q1 under WRES-Mµ, AWRES-Mµ with na{n “ 0.2,
RES-Mµ, and EXT-(δ2, S1). A full data analysis (FULL) is conducted as a benchmark,
which is possible in simulation studies but infeasible in practice. Under partial likelihood
analysis of (4.3.3) the average estimates are all close to the true value of β1 (not shown).
Good agreement is found between empirical standard deviations (ESE) and the average
model-based standard errors (ASE). And the empirical coverage probabilities is close to
the nominal 95% level. Figure 4.4 and Figure 4.5 show the relative efficiency of five BAL
designs (i.e. BAL-Z0, BAL-δ2, BAL-pZ0, δ2q, BAL-pδ2, S̄1q, BAL-pZ0, δ2, S̄1q), EXT-δ2, S1,
RES-Mµ, and WRES-Mµ comparing to SRS with the phase II sample size of n “ 600, as
SRS is probably the most commonly-used design in practice due to its convenience and
simplicity. The relative efficiency (ARE) was defined as 100 times the mean asymptotic
variance of β̂1 under the SRS design divided by that under each alternative design. For
ease of presentation, instead of reporting AREs of all five BAL designs in Figure 4.4 and
Figure 4.5, we only present their highest ARE in each setting of β.
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The general conclusion is that residual-dependent designs yield estimators with the
highest precision for estimating β1. In the presented settings RES-Mµ and AWRES-
Mµ have similar performances and approximate WRES-Mµ well. In particular, RES-Mµ

achieves the efficiency level comparable to that of WRES-Mµ especially when X and V are
non-correlated, as expected. As AWRES-Mµ is implemented through a two-stage adaptive
procedure where larger values of na lead to more accurate estimates of VarpX|V q but less
efficiency gains in the overall design. Hence AWRES-Mµ has better performance with a
smaller phase IIa subsample (not shown) but a sufficient sample size na is necessary to
make reliable estimates for V arpX|V q. EXT-pδ2, S̄1q generally outerperformed BAL de-
signs, but for the settings where the effects of auxiliary covariates (i.e. V and logA1) are
substantially large and the observed frequency of events in Registry 1 is moderate (r “ 0.3).

4.5.3 A sensitivity study: differential mortality

In many settings, the nondifferential mortality assumption (Assumption 3 in Section 4.3)
may be implausible. Here we investigate the impact of violations to this assumption on
estimation based on the partial likelihood approach under different designs, we consider

γ2pa|V q

γ1pa|V q
“ exppνq

and conduct a set of simulation studies with ν “ log 1.2, or log 1.5.

A full data analysis is implemented to investigate the impact of violation of Assumption
3 on the estimation and inference on ϑ using partial likelihood under Assumption 1-3. The
results obtained from 1000 replications are summarized in Table C.1 in Appendix C.2. We
observe bias in the parameter indexing the baseline hazard but minimal bias on covariate
coefficients. The robust sandwich variances (Boos and Stefanski, 2013) are calculated and
the corresponding standard erros agree with the empirical standard deviations well, which
leads to empirical coverage probabilities close to the nominal 95% level.

We then investigate the performance of the two-phase designs implemented in Section
4.5.2. Table 4.3 presents the finite sample properties for β1 under these two-phase designs,
where the sandwich variance is used. Again the empirical bias of all estimates are relatively
small and the corresponding coverage probabilities are all close to the nominal 95% level.
The precision of estimators from those designs is similar to the previous settings where
exppνq “ 1. In particular, residual-dependent designs achieved higher precision comparing
to the alternative designs.
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4.6 Likelihood with differential mortality
We return to the likelihood construction in (4.2.8) for occasions where the independent
mortality assumption (i.e. Assumption 3) is violated because γ1pa|V ;ψ1q ‰ γ2pa|V ;ψ2q.
Under Assumptions 1-2, the log likelihood conditional on tZi0, H̄ipAi1q, i “ 1, . . . , N1, N1 `

1, . . . , Nu is given by

ℓcpφq “

N1
ÿ

i“1
IpZi0 “ 1q

«

!

∆i plog Liθ ` log Liηq ` p1 ´ ∆iq logEX|Vi
rLiθ;ηs ` log Liψ

)

´

!

logEX|Vi
rF1pTi0|Ai1, Vi, X;θq;ηs ´ log G1pTi0|Ai1, Vi;ψ1q

)

ff

`

N
ÿ

i“N1`1
IpZi0 “ 2q

«

!

∆i plog Liθ ` log Liηq ` p1 ´ ∆iq logEX|Vi
rLiθ;ηs ` log Liψ

)

´ log
ż Ti0

0
EX|Vi

rF1pt|Ai1, Vi, X;θq;ηsG1pt|Ai1, Vi;ψ1qG2pTi0|Ai1, S1 “ t, Vi;ψ2qdt

ff

,

(4.6.1)

where φ “ pβ1,θ
1
˝,η

1,ψ1q1. Denote the score vector by Scpφq “ Bℓcpφq{Bφ, and let the
expected information matrix Ic “ ´ErBScpφq{Bφ1s “ ErScpφqS 1

cpφqs be given by
¨

˚

˚

˚

˝

Iβ1β1 Iβ1θ˝ Iβ1η Iβ1ψ

Iθ˝β1 Iθ˝θ˝ Iθ˝η Iθ˝ψ

Iηβ1 Iηθ˝ Iηη Iηψ
Iψβ1 Iψθ˝ Iψη Iψψ

˛

‹

‹

‹

‚

, (4.6.2)

where Iab “ ´ErB2ℓcpφq{BaBb1s.
Let φ̆ denote the estimator of φ defined by solving Scpφq “ 0. The asymptotic variance

of the maximum likelihood estimator β̆1 is given by
“

Iβ1β1 ´ Iβ1θ˝I´1
θ˝θ˝

Iθ˝β1 ´ Iβ1ηI´1
ηη Iηβ1 ´ Iβ1ψI´1

ψψIψβ1

‰´1
, (4.6.3)

the inverse of which can be again decomposed as (4.4.3) and a non-negative component
independent of the phase II designs. This result follows the fact that Iβ1ψI´1

ψψIψβ1 does
not depend on ∆ and a similar derivation outlined in Appendix C.3. Hence the weighted
residual dependent designs (WRES-Mµ) described in Section 4.4 still achieves an opβ1q-
optimal efficiency in this setting with differential mortality. But we note here that such a
decomposition is not hold in general when the intensities of transitions to death depends
on the biomarker X.
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4.7 Simulation studies
Here we report a second set of simulations designed to evaluate the empirical performance
of four non-stratified designs proposed in Section 4.4, simple random sampling and six
stratified designs described in Section 4.5.2 under the general model for differential mor-
tality. For data generation, we use the same procedure described in Section 4.5.1 but
let λ1pt|A1, X, V q “ pαtq1.1 exppβ1X ` β2V ` β3 logA1q for the 1 Ñ 2 transition, and
γ1pa|V q “ pγaq1.1 and γ2pa|V q “ 1.5γ1pa|V q for the j Ñ Dj transitions, j “ 1, 2, respec-
tively. We consider β1 P t0.0, 0.3, 0.7u, β2 “ 0, β3 “ 1, and an administrative censoring
time such that P pδ2 “ 1|Z0 “ 1q “ 0.1.

In practice, the form of the baseline intensities for the 1 Ñ 2 and j Ñ Dj transitions
(j “ 1, 2) are unknown. Hence we adopt piecewise constant functions to approximate
these baseline intensities. In particular, two-piece piecewise constant functions are used
with the empirical medians of tSi1 : δi2 “ 1, i “ 1, . . . , Nu and tA:

i : δiD “ 1, i “ 1, . . . , Nu

as the corresponding cutpoints, respectively. The results obtained from 1000 replications
suggest that the empirical bias of all estimates for β are relatively small and that the
corresponding empirical standard errors agree with the analytical standard errors well,
where the sandwich variance (Boos and Stefanski, 2013) is used. Table 4.4 summarizes
the estimated log hazard ratio of X1 from eleven phase II sub-sampling schemes. The
residual-based designs (i.e. RES-Mµ, AWRES-Mµ and WRES-Mµ) appear to be much
more efficient than the conventional stratified designs in terms of estimating precision in
β1.

4.8 Markers for psoriatic arthritis in psoriasis
In this section, we illustrate the use of the proposed designs to data determined by pooling
samples from the UTPC and UTPAC disease registries. The primary interest is in covariate
effects relating important HLA markers to the development of PsA in patients with Ps.
Some genetic studies have reported that HLA B27 is associated only with PsA and not
with psoriasis (Gladman et al., 1986; Gladman and Farewell, 1995; Hebert et al., 2012;
Chandran, 2013). We consider a phase I sample comprised of 670 Ps patients from the
UTPC and 1146 PsA patients from the UTPAC, who provide complete information on HLA
B27 and dates of birth, recruitment, and Ps onset; see Table 4.5 for a relevant information
summary. For illustrative purposes, we treat the marker HLA B27 as an expensive covariate
where its measurement is subject to a budgetary constraint, reflected by a restricted phase
II sample size n ď 1816. For the Ps to PsA transition, we consider the following intensity
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model

λ1pt|X,S0;θq “

4
ÿ

j“1
exppαjqIpt P rbj´1, bjqq exppβ1X`β2IpS0 P r18, 40q`β3IpS0 P r40,8qq,

where bj are the cutpoints with pb0, b1, b2, b3, b4q1 “ p0, 10, 20, 40,8q1 and X is the binary
HLA B27. The nuisance covariate model is just P pX;ηq “ exppη0q{p1 ` exppη0qq. Hence
the weighted residual-based designs (i.e. WRES-Mµ, AWRES-Mµ) are not considered. In
addition, we assume that the death transitions from Ps and PsA are governed by piece-
wise constant intensities with common cutpoints p0, 60, 80,8q but different parameters.
Therefore we use the likelihood described in Section 4.6 for the estimation and inference
of parameters of interest.

A full data analysis (FULL) in which the known X values are used is conducted as a
benchmark. We consider nine different two-phase designs inclduing, simple random sam-
pling (SRS), five different balanced sampling schemes (BAL-Z0, BAL-δ2, BAL-Z0, δ2, BAL-
p2, S̄1q, BAL-pZ0, δ2, S̄1q), extreme stratified sampling (EXT-pδ2, S̄1q), extreme response de-
pendent sampling (EXT-pδ2, S1)), extreme residual dependent sampling (RES-Mµ). The
results are summarized in Table 4.6. All regression estimates are close to that using the
full data. The standard error estimates of HLA B27 under RES-Mµ and EXT-pδ2, S1q are
smaller than that under other two-phase designs. Among the two-phase stratified designs,
the standard error estimates of HLA B27 under BAL designs fluctuates with different
choices of phase I stratification strategy while EXT-pδ2, S̄1q had the best performance and
achieved comparable efficiency level to the extreme response or residual-dependent designs
as n increases. These observations are consistent with the simulation results.

4.9 Two-phase designs via inverse probability weight-
ing

In this section we briefly outline an alternative approach based on inverse probability of
observing weights.

4.9.1 Inverse probability weighting

An important alternative to maximum likelihood estimation is to use inverse probability
weighted (IPW) complete data score equations. The IPW estimating equation is viewed
as an approximation to the score functions under a full data analysis, which is typically
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not feasible. Hence, information from a subject who gives complete data represents sev-
eral potentially missing subjects. As the IPW method is restricted to individuals in the
phase II subsample, it avoids the need to model the nuisance covariate assumption. More
importantly, the construction of the IPW estimating functions completely relax the condi-
tions Assumptions 1-2 and requires a weaker version of Assumption 3 to use the weighted
partial score function. Therefore, the IPW method is more robust but less efficient than
the partial likelihood method.

Given tZ0, A0, A1, δ1,V, Xu, the weighted score function is
∆
πpρq

!

IpZ0 “ 1q
B

Bϑ
logP pS1, S2, δ2, δD|Z0 “ 1, A0, A1, δ1 “ 1,V, Xq

` IpZ0 “ 2q
B

Bϑ
logP pS1, S2, δ2 “ 1, δD|Z0 “ 2, A0, A1, δ1 “ 1,V, Xq

)

.

Note that πpρq must be bounded away from zero.
The nondifferential mortality assumption required for the IPW approach is weaker

than Aassumption 3 in the sense that X can be related to the mortality rates. Under this
assumption, a consistent estimator of φ “ pθ1,ρ1q1 is obtained by setting

Upφq “ pU 1
1pθ;ρq, U 1

2pρqq1 “ 0 (4.9.1)

where

U1pθ;ρq “

N
ÿ

i“1

∆i

πipρ̂q

!

IpZi0 P t1, 2uqSθpδi2, Si1|Ai1,Vi, Xi;θq

´IpZi0 “ 1q

„

B

Bθ
log F1pTi0|Ai1,Vi, Xi;θq

ȷ

´IpZi0 “ 2q

„

B

Bθ
logp1 ´ F1pTi0|Ai1,Vi, Xi;θqq

ȷ

)

,

with Sθpδi2, Si1|Ai1,Vi, Xi;θq defined as Sθ in (4.3.5), and

U2pρq “

N
ÿ

i“1

∆i ´ πipρq

πipρqp1 ´ πipρqq

„

Bπipρq

Bρ

ȷ

.

Let φ̃ “ pθ̃
1
, ρ̃1q1 denote the solution to (4.9.1) with “„” distinguishing these estimators

from maximum likelihood estimators of Section 4.3. Under suitable regularity conditions
(Robins et al., 1994),

?
Npφ̃´φq is asymptotically normal with mean zero and the variance

ΣpΩ,ρq “ A´1pΩ,ρqBpΩ,ρqA´1pΩ,ρq, (4.9.2)

where A “ Er´BUpφq{Bφ1; Ω,ρs{N and B “ ErUpφqU 1pφq; Ω,ρs{N .
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4.9.2 Phase II selection: prospective vs retrospective informa-
tion

The efficiency of a design rule on ∆ is not only associated with the likelihood contribution
Lθ (or Sθ) of the disease history for the 1 Ñ 2 transition but also related to the truncation
types and levels; we use the term “truncation” here to indicate that T0 measures the
left- or right- truncation times of the sojourn times in state 1 for those recruited in two
registries, respectively. Heuristically, the phase II selection under IPW would have different
preferences from that under ML in terms of the selection between two prevalent cohorts.

To see this, we conduct a set of simulation studies under a simple setting where V is
independent of X and not adjusted in the primary intensity model for the 0 Ñ 1 transition,
i.e., β2 “ 0 in and η1 “ 0 in (4.5.1). The data generation follows the same procedure
described in Section 4.5.1. Given the phase I sample pooled from two disease registries,
as an illustration we consider the phase I strata defined by the state at recruitment Z0

and the status of the event of interest δ2. Then the phase I sample is categorized into
three classes pZ0, δ2q P tp1, 1q, p1, 0q, p2, 1qu. Let Njk “

řN
i“1 IpZi0 “ jqIpδi2 “ kq and

njk “
řN

i“1 ∆iIpZi0 “ jqIpδi2 “ kq denote the sizes of strata in phase I and II samples for
pj, kq “ p1, 0q, p1, 1q, p2, 1q. A simple class of response-dependent phase II selection model
is written as

πpρq “ ρ00IpZ0 “ 1qIpδ2 “ 0q `

2
ÿ

j“1
ρj1IpZ0 “ jqIpδ2 “ 1q, (4.9.3)

where ρ “ pρ10, ρ11, ρ21q1 is a 3 ˆ 1 vector of stratum-specific selection probabilities and
ρjk “ njk{Njk is determined by design.

Figures 4.6 and 4.7 show contour plots of asymptotic standard errors for β1 estimates
under various combinations of pn10, n11, n21q and the phase II subsample size n “ n10 `

n11 ` n21 “ 600. As can be seen ML and IPW the precision of estimators varies according
to phase II allocations in different ways. When the number of events in Registry 1 (i.e.
N11) is small (r “ P pδ2 “ 1|Z0 “ 1q “ 0.1), efficiency gains in the ML estimator β̂1 first
increases as n21 (the number of events from Registry 2) increases, but then decreases after
n21 reaches around 40% of n ´ n11 for a specified n11 (the number of events selected from
Registry 1); while increasing n21 leads to a higher precision for the IPW estimator β̃1.
When r “ 0.3, for a relative small n11 (e.g. ď 0.1n), larger n21 first results in efficiency
improvement then causes efficiency deduction for β̂1, however, an increment in n21 has
much smaller influences on efficiency changes for β̃1. Moreover, when n11 is relatively large
(e.g. ě 0.3n), increasing n21 may enlarge the efficiency loss in β̂1 while improve estimating
precision in β̃1.
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It is apparent in Figure 4.8 that different approaches to estimation lead to different
optimal selection models. Figure 4.8 presents the optimal selection probabilities for each
of three strata defined by pZ0, δ2q versus various constraints on the size of the phase II
subsample under ML and that under IPW. Optimal stratified selection probabilities are
determined by minimizing I´1pΩ,ρqr1,1s defined by (4.3.7) under ML or ΣpΩ,ρqr1,1s in
(4.9.2) under IPW, while respecting the budgetary constraints. Note that the optimal
designs under IPW assign the highest selection probability for stratum pZ0, δ2q “ p1, 1q

(i.e. ρ11 “ n11{N11) among all three strata, however, ρ11 in optimal designs under ML
remains rather small.

4.10 Discussion and topics of future research
In this chapter, we investigate two-phase design problems with combined data from two
prevalent cohorts providing prospective and retrospective disease progression information,
respectively. We start from a six-state model to describe both the disease processes of
interest and different observational schemes. We focused on the likelihood method for
analysis and carefully discussed the assumptions required on intensity models. Two types
of selection bias, recruitment bias in phase I and selection bias in phase II, are adjusted
to ensure the validness of the analysis. When adjusting for the selection bias, the design
efficiency of phase II allocation appears to be independent of recruitment rules but only
related to the likelihood contribution Lθ. Subjects with some unusual observation, includ-
ing responses and (or) covariates, are usually deemed to be more informative about the
event process of interest. This perception has motivated the development of, for example,
case-cohort designs (Prentice, 1986) and outcome-dependent sampling (Ding et al., 2017;
Lawless, 2018; Zhou et al., 2020). The weighted residual dependent sampling proposed
in Tao et al. (2020) is also targeting on those subjects who are unusual in terms of both
responses and expensive covariates. We observed that the extension of Tao et al. (2020)
in our setting still appears to be highly efficient relative to simple random sampling and
two-phase stratified designs in both simulation studies and the data application. And the
unweighted or weighted residual, Mµ or MµSDpX|Vq, can be understood as a summary
measure of the “unusual” extent of an observation in this context.

There are several limitations of our proposed approach. The first limitation is that
we focused on the proportional hazard model with specified baseline hazards due to its
popularity in many applications, although it covers a wide range of settings and the weakly
parametric piecewise constant hazard function provides flexibility. The development of
general semiparametric transformation methods is of interest. Secondly, we assume that
precise disease history is available upon recruitment. However, this is rather unrealistic

72



in many prevalent cohort studies due to, for example, recall bias. In practice, the disease
(both initial and subsequent) onset times are usually subject to various types of censoring,
such as left censoring, interval censoring and so on. Generalizations to accommodate those
settings is a direction of future studies.

Moreover, we developed and compared our designs when X is univariate. However
the extension of our proposed designs to multivariate covariates setting can be rather
straightforward. But multivariate X can bring substantial complexity and challenge in
specifying the nuisance covariate model P pX|V;ηq. Zeng and Lin (2014) proposed a
semiparametric approach to deal with multivariate X through Kernel estimation, however
their method is limited to the settings where X is not large in dimension. To this end, an
inverse probability weighting (IPW) method briefly discussed in Section 4.9, which does
not require specifying the covariate model, may be desirable to pursue (Robins et al., 1994).
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Table 4.1: Simulation results based on 1000 simulated samples with N1 “ N2 “ 1000 and
n “ 600; 100P pδ2 “ 1|Z0 “ 1q “ 10: ESE is the empirical standard deviation, ASE
is the average model-based standard error and ECP is empirical coverage
probability.

β1 β2 β3 Phase II Allocation
pβ1, β2, β3q Design ASE ESE ECP ASE ESE ECP ASE ESE ECP Registry 1 Registry 2

(a) X K V

(0, 0, 0) FULL 0.10 0.10 0.94 0.13 0.13 0.96 0.05 0.06 0.93 1000 1000
WRES-Mµ 0.12 0.13 0.95 0.13 0.13 0.96 0.05 0.06 0.93 299 301
AWRES-Mµ 0.13 0.14 0.94 0.13 0.13 0.96 0.05 0.06 0.93 299 301
RES-Mµ

* 0.12 0.13 0.95 0.13 0.13 0.96 0.05 0.06 0.94 299 301
EXT-pδ2, S1q* 0.13 0.14 0.95 0.13 0.13 0.96 0.05 0.06 0.94 325 275

(0.7, 0, 0) FULL 0.09 0.10 0.94 0.13 0.13 0.94 0.05 0.05 0.94 1000 1000
WRES-Mµ 0.12 0.13 0.94 0.13 0.14 0.95 0.05 0.06 0.94 299 301
AWRES-Mµ 0.13 0.13 0.94 0.13 0.14 0.95 0.05 0.06 0.94 299 301
RES-Mµ 0.12 0.12 0.95 0.13 0.14 0.94 0.05 0.06 0.94 299 301
EXT-pδ2, S1q 0.13 0.13 0.95 0.13 0.14 0.94 0.05 0.06 0.94 326 274

(0.3, 0.4, 1) FULL 0.10 0.10 0.95 0.12 0.12 0.96 0.09 0.10 0.95 1000 1000
WRES-Mµ 0.11 0.12 0.95 0.12 0.12 0.95 0.09 0.10 0.95 272 328
AWRES-Mµ 0.12 0.12 0.95 0.12 0.12 0.95 0.09 0.10 0.95 278 322
RES-Mµ 0.11 0.12 0.95 0.12 0.12 0.95 0.09 0.10 0.94 272 328
EXT-pδ2, S1q 0.15 0.16 0.95 0.12 0.12 0.95 0.09 0.10 0.95 328 272

(b) X M V

(0, 0, 0) FULL 0.10 0.10 0.95 0.13 0.13 0.96 0.05 0.06 0.93 1000 1000
WRES-Mµ 0.12 0.13 0.94 0.13 0.13 0.96 0.05 0.06 0.93 299 301
AWRES-Mµ 0.13 0.13 0.95 0.13 0.13 0.96 0.05 0.06 0.94 299 301
RES-Mµ 0.12 0.13 0.96 0.13 0.13 0.96 0.05 0.06 0.94 299 301
EXT-pδ2, S1q* 0.13 0.14 0.95 0.13 0.13 0.96 0.05 0.06 0.93 324 276

(0.7, 0, 0) FULL 0.09 0.10 0.94 0.13 0.13 0.95 0.05 0.05 0.96 1000 1000
WRES-Mµ 0.12 0.12 0.95 0.13 0.14 0.94 0.05 0.05 0.95 298 302
AWRES-Mµ 0.12 0.12 0.96 0.13 0.13 0.94 0.05 0.05 0.95 299 301
RES-Mµ 0.12 0.13 0.95 0.13 0.13 0.94 0.05 0.05 0.95 299 301
EXT-pδ2, S1q* 0.13 0.14 0.94 0.13 0.14 0.94 0.05 0.05 0.95 324 276

(0.3, 0.4, 1) FULL 0.10 0.10 0.95 0.12 0.12 0.96 0.09 0.09 0.94 1000 1000
WRES-Mµ 0.11 0.11 0.95 0.12 0.12 0.95 0.09 0.09 0.94 268 332
AWRES-Mµ 0.12 0.12 0.95 0.12 0.12 0.95 0.09 0.09 0.94 275 325
RES-Mµ 0.11 0.11 0.95 0.12 0.12 0.95 0.09 0.10 0.94 272 328
EXT-pδ2, S1q 0.15 0.15 0.95 0.12 0.12 0.95 0.09 0.10 0.94 330 270

Note. ˚: the number of failed simulations is greater than 10 (within the first 1000 replications); When X M V , ORpX,V q

is set as 2; AWRES-Mµ selects a phase IIa subsample of size na “ 0.2n.
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Table 4.2: Simulation results based on 1000 simulated samples with N1 “ N2 “ 1000 and
n “ 600; 100P pδ2 “ 1|Z0 “ 1q “ 30.

β1 β2 β3 Phase II Allocation
pβ1, β2, β3q Design ASE ESE ECP ASE ESE ECP ASE ESE ECP Registry 1 Registry 2

(a) X K V

(0, 0, 0) FULL 0.09 0.10 0.94 0.10 0.09 0.96 0.04 0.04 0.95 1000 1000
WRES-Mµ 0.11 0.12 0.94 0.10 0.09 0.96 0.04 0.04 0.95 308 292
AWRES-Mµ 0.12 0.12 0.93 0.10 0.09 0.96 0.04 0.04 0.95 306 294
RES-Mµ 0.11 0.12 0.94 0.10 0.09 0.96 0.04 0.04 0.95 308 292
EXT-pδ2, S1q 0.12 0.12 0.95 0.10 0.09 0.95 0.04 0.04 0.95 353 247

(0.7, 0, 0) FULL 0.09 0.09 0.94 0.09 0.10 0.93 0.04 0.04 0.95 1000 1000
WRES-Mµ

* 0.11 0.12 0.95 0.10 0.10 0.94 0.04 0.04 0.96 308 292
AWRES-Mµ 0.12 0.13 0.94 0.10 0.10 0.94 0.04 0.04 0.96 306 294
RES-Mµ 0.11 0.12 0.95 0.10 0.10 0.94 0.04 0.04 0.95 308 292
EXT-pδ2, S1q* 0.12 0.12 0.94 0.10 0.10 0.93 0.04 0.04 0.96 355 245

(0.3, 0.4, 1) FULL 0.09 0.09 0.95 0.09 0.09 0.94 0.06 0.06 0.95 1000 1000
WRES-Mµ 0.11 0.11 0.95 0.09 0.09 0.94 0.06 0.06 0.95 286 314
AWRES-Mµ 0.11 0.11 0.95 0.09 0.09 0.94 0.06 0.06 0.94 289 311
RES-Mµ 0.11 0.11 0.95 0.09 0.09 0.94 0.06 0.06 0.95 286 314
EXT-pδ2, S1q 0.15 0.15 0.95 0.09 0.09 0.93 0.06 0.06 0.94 359 241

(b) X M V

(0, 0, 0) FULL 0.09 0.10 0.95 0.10 0.09 0.96 0.04 0.04 0.95 1000 1000
WRES-Mµ 0.11 0.12 0.94 0.10 0.09 0.96 0.04 0.04 0.95 309 291
AWRES-Mµ 0.12 0.12 0.95 0.10 0.09 0.96 0.04 0.04 0.95 306 294
RES-Mµ 0.11 0.12 0.95 0.10 0.09 0.96 0.04 0.04 0.95 308 292
EXT-pδ2, S1q 0.12 0.12 0.95 0.10 0.09 0.96 0.04 0.04 0.95 353 247

(0.7, 0, 0) FULL 0.09 0.09 0.95 0.10 0.09 0.95 0.04 0.04 0.95 1000 1000
WRES-Mµ 0.11 0.11 0.96 0.10 0.10 0.95 0.04 0.04 0.95 308 292
AWRES-Mµ

* 0.12 0.12 0.95 0.10 0.10 0.95 0.04 0.04 0.95 306 294
RES-Mµ 0.11 0.12 0.95 0.10 0.10 0.95 0.04 0.04 0.96 308 292
EXT-pδ2, S1q 0.12 0.13 0.96 0.10 0.10 0.95 0.04 0.04 0.96 352 248

(0.3, 0.4, 1) FULL 0.09 0.09 0.94 0.09 0.09 0.95 0.06 0.06 0.94 1000 1000
WRES-Mµ 0.10 0.11 0.95 0.09 0.09 0.95 0.06 0.06 0.94 280 320
AWRES-Mµ 0.11 0.11 0.93 0.09 0.09 0.95 0.06 0.06 0.94 285 315
RES-Mµ 0.10 0.11 0.95 0.09 0.09 0.95 0.06 0.06 0.94 286 314
EXT-pδ2, S1q 0.15 0.16 0.94 0.09 0.09 0.95 0.06 0.06 0.94 359 241

Note. ˚: the number of failed simulations is greater than 10 (within the first 1000 replications); When X M V , ORpX,V q

is set as 2; AWRES-Mµ selects a phase IIa subsample of size na “ 0.2n.
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Table 4.4: Comparison of two-phase designs in terms of estimated log hazard ratios β̂1 under
models accommodating differential mortality: BIAS is 100ˆthe empirical bias, ESE
is the empirical standard deviation, ASE is the average robust standard error and
ECP is 100ˆthe empirical coverage probability, nsim = 500 with N1 “ N2 “ 1000
and n “ 600; ORpX,V q “ 2, β2 “ 0, β3 “ 1, 100P pδ2 “ 1|Z0 “ 1q “ 10.

β1 “ 0.0 β1 “ 0.3 β1 “ 0.7

DESIGN BIAS ASE ESE ECP BIAS ASE ESE ECP BIAS ASE ESE ECP
SRS 0.07 0.17 0.17 95.5 -0.75 0.17 0.16 93.1 0.81 0.16 0.16 93.8
BAL-Z0 0.67 0.18 0.17 94.1 <0.01 0.16 0.16 95.1 1.50 0.16 0.16 93.2
BAL-(δ2) 0.27 0.18 0.17 93.7 1.08 0.16 0.16 93.9 1.92 0.16 0.16 93.3
BAL-(Z0, δ2) 1.03 0.18 0.17 93.0 0.59 0.17 0.16 93.5 1.64 0.16 0.16 93.9
BAL-(δ2, S1) 0.25 0.18 0.18 93.6 0.94 0.18 0.17 93.9 1.09 0.17 0.16 93.3
BAL-(Z0, δ2, S1) 0.97 0.17 0.18 95.4 0.67 0.17 0.17 94.8 1.63 0.17 0.16 93.4
EXT-(δ2, S̄1) 1.08 0.15 0.15 95.5 1.74 0.15 0.15 94.2 1.43 0.16 0.15 94.2
EXT-(δ2, S1) 1.04 0.14 0.14 95.4 1.24 0.15 0.15 94.0 1.89 0.16 0.16 94.0
RES-Mµ 0.31 0.10 0.10 94.6 0.15 0.11 0.11 95.1 2.09 0.12 0.12 94.9
AWRES-Mµ 0.48 0.11 0.10 95.0 0.36 0.11 0.10 95.0 1.79 0.12 0.11 93.5
WRES-Mµ 0.17 0.11 0.11 94.9 -0.05 0.11 0.11 95.1 1.38 0.12 0.12 95.8

Note. An internal pilot of na “ 200 chosen by SRS is used for AWRES-Mµ.

Table 4.5: Summary of analysis data from UTPC and UTPAC as of July 2019.

UTPC UTPAC UTPC + UTPAC
aNo. of patients 670 1146 1816
No. of Ps Ñ PsA conversions 59 1146 1205
No. of Ps Ñ Death conversions 9 0 9
No. of PsA Ñ Death conversions 1 109 110
No. HLA B27 (positive) 24 194 218
No. Female 295 490 785
bAge at recruitment (year) 16, 35, 46, 57, 82 14, 34, 43, 53, 87
Age at Ps onset (year) 0, 18, 28, 42, 76 0, 18, 26, 38, 84
Length of follow-up (month) 2, 100, 124, 146, 228 4, 100, 180, 273, 498

a discrete variables are summarized with frequency;
b continuous variables are summarized with five quantiles at the minimum, lower quartile, median,
upper quartile and the maximum.
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Table 4.6: Estimates of parameters associated with the hazard model for the Ps to PsA
transition, with average robust standard errors in parentheses, using the combined
registry data from UTPC and UTPAC as the phase I sample.

Covariate PWC log Hazard Phase II Allocation

Design B27 Age at Ps Onset α1 α2 α3 α4 UTPC UTPAC
r18, 40q r40,8q r0, 10q r10, 20q r20, 40q r40,8q

FULL 1.46(0.17) 0.94(0.30) 1.78(0.36) -6.96(0.28) -6.26(0.28) -5.53(0.27) -4.18(0.26) 670 1146
Phase II Sample Size n “ 600
SRS 1.65(0.31) 0.92(0.32) 1.80(0.38) -6.98(0.29) -6.27(0.29) -5.52(0.28) -4.19(0.27) 222 378
BAL-Z0 1.53(0.28) 0.93(0.32) 1.78(0.38) -6.97(0.30) -6.27(0.29) -5.52(0.28) -4.20(0.27) 300 300
BAL-δ2 1.49(0.27) 0.95(0.32) 1.78(0.38) -6.99(0.30) -6.28(0.29) -5.54(0.28) -4.21(0.27) 315 285
BAL-(Z0, δ2) 1.50(0.29) 0.91(0.31) 1.76(0.38) -6.94(0.29) -6.24(0.29) -5.50(0.28) -4.17(0.27) 330 270
BAL-(δ2, S̄1) 1.67(0.30) 0.91(0.31) 1.81(0.38) -6.97(0.29) -6.27(0.29) -5.52(0.28) -4.18(0.27) 270 330
BAL-(Z0, δ2, S̄1) 1.66(0.32) 0.89(0.31) 1.80(0.38) -6.95(0.29) -6.24(0.28) -5.49(0.28) -4.15(0.27) 285 315
EXT-(δ2, S̄1) 1.28(0.22) 0.95(0.32) 1.71(0.38) -6.98(0.30) -6.27(0.29) -5.53(0.29) -4.22(0.27) 290 310
EXT-(δ2, S1) 1.28(0.22) 1.01(0.32) 1.69(0.38) -7.00(0.30) -6.3(0.30) -5.55(0.29) -4.25(0.27) 304 296
EXT-Mµ 1.29(0.20) 0.99(0.32) 1.75(0.38) -7.02(0.30) -6.32(0.29) -5.57(0.28) -4.24(0.27) 300 300
Phase II Sample Size n “ 900
SRS 1.54(0.24) 0.92(0.31) 1.78(0.38) -6.96(0.29) -6.26(0.29) -5.52(0.28) -4.18(0.27) 333 567
BAL-Z0 1.44(0.22) 0.93(0.31) 1.76(0.37) -6.96(0.29) -6.26(0.29) -5.52(0.28) -4.19(0.27) 450 450
BAL-δ2 1.43(0.21) 0.96(0.31) 1.78(0.37) -6.99(0.29) -6.29(0.29) -5.54(0.28) -4.21(0.27) 471 429
BAL-(Z0, δ2) 1.42(0.22) 0.92(0.31) 1.75(0.37) -6.95(0.29) -6.25(0.29) -5.50(0.28) -4.18(0.27) 480 420
BAL-(δ2, S̄1) 1.59(0.24) 0.90(0.31) 1.80(0.37) -6.96(0.29) -6.26(0.28) -5.51(0.27) -4.17(0.26) 402 498
BAL-(Z0, δ2, S̄1) 1.59(0.25) 0.89(0.30) 1.80(0.37) -6.95(0.28) -6.25(0.28) -5.50(0.27) -4.16(0.26) 402 498
EXT-(δ2, S̄1) 1.26(0.18) 0.97(0.31) 1.70(0.38) -6.98(0.29) -6.28(0.29) -5.53(0.28) -4.22(0.27) 411 489
EXT-(δ2, S1) 1.34(0.18) 0.99(0.32) 1.73(0.38) -7.02(0.30) -6.32(0.29) -5.58(0.28) -4.25(0.27) 454 446
EXT-Mµ 1.41(0.18) 1.00(0.32) 1.78(0.38) -7.04(0.30) -6.34(0.29) -5.6(0.28) -4.26(0.27) 450 450

Note. Estimates and corresponding standard errors in parenthesis are averaged over 1000 replications
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Figure 4.6: Analytical standard error (ASE) of the estimated log hazard ratio for expensive
covariate X under maximum likelihood (β̂1: (a) and (c)) and inverse probability
weighting (β̃1: (b) and (d)), based on 500 samples of N “ 2000 (N1 “ N2 “ 1000)
in phase I and n “ 600 in phase II; pβ1, β2, β3q “ p0.2, 0, 0.2q, X K V ;
n11 “

řN1
i“1 ∆iδi2 and n21 “

řN
i“N1`1 ∆i; P pδ2 “ 1|Z0 “ 1q “ r.
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Figure 4.7: Analytical standard error (ASE) of the estimated log hazard ratio for expensive
covariate X1 under maximum likelihood (β̂1: (a) and (c)) and inverse probability
weighting (β̃1: (b) and (d)), based on 1000 samples of N “ 2000
(N1 “ N2 “ 1000) in phase I and n “ 600 in phase II; pβ1, β2, β3q “ p0.2, 0, 0q,
X K V ; n11 “

řN1
i“1 ∆iδi2 and n21 “
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(c) β3 “ 0.2, 100P pδ2 “ 1|Z0 “ 1q “ 10
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Figure 4.8: Optimal stratum-specific selection under maximum likelihood and inverse
probability weighting, averaging over 100 phase I samples of N “ 2000
(N1 “ N2 “ 1000); Phase I sample is stratified on pZ0, δ2q hence consists of 3
strata: p1, 1q, p2, 1q and p1, 0q; pβ1, β2, β3q “ p0.2, 0, 0q, X K V .
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Chapter 5

Review and Future Work

5.1 Overview
This thesis has presented new statistical methods addressing challenging problems in the
design and analysis of life history studies. In Chapter 2 we concentrate on spatial de-
pendence modeling of multivariate failure time processes subject to nonsusceptibility and
intermittent observation. Chapters 3 and 4 deal with two-phase design problems motivated
by biomarker studies in life history analysis.

The developments in Chapter 2 are motivated by the need to study patterns of joint
damage data in patients with psoriatic arthritis enrolled in University of Toronto Psoriatic
Arthritis (PsA) Clinic. To accommodate the fact that most joints do not go on to develop
damage, we introduce a binary susceptibility indicator for each joint. To model the spatial
dependence patterns of interest, we consider two types of spatial dependencies, one among
the susceptibility indicators and the other for failure times given the joint susceptibility.
Overall we propose a flexible framework that allows for separate specifications of marginal
susceptibility models and damage processes at the joint level, and two types of spatial
dependence structures. We adopt a Gaussian copula to describe the dependence struc-
ture of failure times and obtain interpretable measures of pairwise associations through
Kendall’s τ . Composite likelihood is utilized for computational efficiency and robustness
in the sense of Varin et al. (2011). Important insights were gained in the nature of the
spatial dependence to help in the understanding and diagnosis of psoriatic arthritis.

The next two chapters consider quite different problems related to the design of two-
phase studies for incomplete life history data. In Chapter 3 we study two-phase designs with
current status data. Maximum likelihood and inverse probability weighting are considered
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to deal with missing covariates arising from two-phase designs. Under maximum likelihood,
we adapt a small opβ1q optimal design proposed by Tao et al. (2020) to the current status
setting and propose three alternative designs for practical implementation. In particular,
we note the mathematical relation between score residuals and extreme current status
responses, which provides a new perspective to understand the good property of extreme
outcome dependent sampling in the current status setting.

In Chapter 4 we consider two-phase design problems when a phase I sample is formed
by pooling data from multiple disease registries. Multistate models are adopted to describe
the data structure and accommodate various observational patterns including truncation
and censoring. Both recruitment (phase I) and selection (phase II) biases are addressed to
ensure valid inference. We consider several assumptions regarding the associated intensity
functions to construct partial likelihoods for estimation and inference purposes. Under
the likelihood framework we develop extreme residual and extreme response dependent
designs to improve efficiency over standard stratified designs in the spirit of Tao et al.
(2020). We also discuss an alternative inverse probability weighting approach to relax
those assumptions and explore related efficient designs.

In the following sections we outline several topics for future research.

5.2 Future research on Chapter 2

5.2.1 Generalized score tests for spatially dependent interval-
censored processes

In Chapter 2 we develope a flexible framework to allow regression analysis in 1) susceptibil-
ity to damage at the joint level; 2) the hazard for the time-to-damage at joint level; and 3)
the spatial dependence structure of the susceptibilities and of the failure time processes of
the susceptible joints. Scientific interests may especially reside in screening and identifying
the genetic risk factors related to the marginal susceptibilities. Wald and likelihood ratio
tests require fitting a full model under the alternative hypothesis, however, score tests only
require model fitting under the null. Here we discuss about generalized score test based
on the pairwise composite likelihood, for the identification of genetic risk factors in the
marginal susceptibility model.

Let G be a p2 ˆ1 vector of genetic markers and X̄jk “ pX1
jk,G1q1 represent the extended

covariate vector. Let X̄ “ pX̄1
jk; j “ 1, . . . , J, k “ 1, . . . , Kq1 and X̄p´j,´kq represents the

full covariate vector excluding the X̄jk term. We assume that Zjk K X̄p´j,´kq|X̄jk and the
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marginal model for Zjk|X̄jk is given by

P pZjk “ 1|X̄jk;ηjq “
exppηj0 ` X1

jkηj1 ` G1ηj2q

1 ` exppηj0 ` X1
jkηj1 ` G1ηj2q

,

where ηj0 is the baseline joint-type-specific effect, ηj1 is a vector of covariate effect of Xjk

and ηj2 is a p2 ˆ 1 parameter vector of genetic effect on the susceptibility of joints of type
j, j “ 1, . . . , J . A common genetic effect across joint types is identified when ηj2 “ ηj12,
j ‰ j1 “ 1, . . . , J .

We let η2 be a p ˆ 1 vector containing all ηj2 with p “ J ¨ r if the genetic effect is
joint-type-specific and then η2 “ pη1

12, . . . ,η
1
J2q1; and p “ r if the genetic effect is common

across joint types. We consider the null hypothesis of no genetic effect as H0 : η2 “ 0
and the alternative H1 : η2 ‰ 0. Two versions of pseudo-score statistics are naturally
constructed and have the usual asymptotic χ2

p distribution where the degree of freedom p

(Molenberghs and Verbeke, 2006).

5.2.1.1 An independence composite generalized score test

We partition ψ1 “ pψ1
1˝,η

1
2q1, where ψ1˝ “ pθ1,η1

0,η
1
1q1 is a q1 ˆ1 subvector of ψ1 excluding

η2. Let Upψ1q “ pU 1
ψ1˝
, U 1

η2
q1, derived from the first derivative of the log of pairwise

composite likelihood
ř

i

ř

pj,kq log Lijk with respect to ψ1 “ pψ1
1˝,η

1
2q, where

Uψ1˝
“

B

Bψ1˝

ÿ

i,j,k

log Lijk

and
Uη2 “

B

Bη2

ÿ

i,j,k

log Lijk,

where the summation is over k “ 1, . . . , Kj, j “ 1, . . . , J , and i “ 1, . . . , N .
To derive a generalized score test statistic, we follow the guidance of Boos (1992). First

we need to find the asymptotic covariance matrix of Uη2 . Without model misspecification,
we can derive a score statistic under H0 as

TU “

´

U 1
ψ1˝
,0pˆp

¯

„

Iψ1˝ψ1˝
Iψ1˝η2

Iη2ψ1˝
Iη2η2

ȷ´1 ˆ
Uψ1˝

0pˆp

˙

“U 1
ψ1˝
AU pψ1q´1Uψ1˝

,

where AU pψ1q “ Iψ1˝ψ1˝
´ Iψ1˝η2I

´1
η2η2

Iη2ψ1˝
with Iψ1˝ψ1˝

“ ´N´1BSψ1˝
{Bψ1

1˝, Iψ1˝η2 “

I 1
η2ψ1˝

“ ´N´1BUψ1˝
{Bη1

2, and Iη2η2 “ ´N´1BUη2{Bη1
2. And under suitable regularity

conditions, TU
d
ÝÑ χ2

p.
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To add additional robustness, we construct a generalized score test TGU statistic fol-
lowing Boos(1992)’s approach, where AU pψ1q is replaced by ΣU pψ1q “ CUBU pψ1q´1C 1

U of
a sandwich form with

BU pψ1q “ N´1
N
ÿ

i“1
rUipψ1qUipψ1qs

and
CU “ pIq1ˆq1 ,´Iψ1˝η2I

´1
η2η2

q,

where Iq1ˆq1 is a q1 ˆ q1 identity matrix.

5.2.1.2 A pairwise composite generalized score test

As an alternative to the two-stage estimation procedure, a simultaneous procedure can
theoretically improve some estimation efficiency for the stage I parameters ψ1 in a two-
stage estimation procedure. Based on pairwise composite likelihood, another pseudo-score
test statistic can be derived as follows.

For ease of exhibition, we change the order of the elements in ψ such that ψ “ pψ1
˝,η

1
2q1,

where ψ˝ “ pθ1, ρ1, γ1,η1
0,η

1
1q1 is a q2 ˆ 1 subvector of ψ excluding η2. Let Spψq “

pS 1
ψ˝
, S 1

η2
q1, derived from the first derivative of the log of pairwise composite likelihood

N
ÿ

i“1

ÿ

pj,kq,pj1,k1qPS̄
pj1,k1qąpj,kq

log Lijkj1k1

with respect to ψ “ pψ1
˝,η

1
2q, where

Sψ˝
“

B

Bψ˝

N
ÿ

i“1

ÿ

pj,kq,pj1,k1qPS̄
pj1,k1qąpj,kq

log Lijkj1k1 ,

and

Sη2 “
B

Bη2

N
ÿ

i“1

ÿ

pj,kq,pj1,k1qPS̄
pj1,k1qąpj,kq

log Lijkj1k1 .

Again, we follow the guidance of Boos (1992) to derive a generalized score test statis-
tic. First we need to find the asymptotic covariance matrix of S2pψq. Without model
misspecification, we can derive a score statistic under H0 as

TS “

´

S 1
ψ˝
,0pˆp

¯

„

Iψ˝ψ˝
Iψ˝η2

Iη2ψ˝
Iη2η2

ȷ´1 ˆ
Sψ˝

0pˆp

˙

“S 1
ψ˝
ASpψq´1Sψ˝

,
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where ASpψq “ Iψ˝ψ˝
´ Iψ˝η2I

´1
η2η2

Iη2ψ˝
with Iψ˝ψ˝

“ ´N´1BSψ˝
{Bψ1

˝, Iψ˝η2 “ I 1
η2ψ˝

“

´N´1BSψ˝
{Bη1

2, and Iη2η2 “ ´N´1BSη2{Bη1
2. And under suitable regularity conditions, we

have TS
d
ÝÑ χ2

p.

Again, to provide additional robustness, one can construct a generalized score test TGS

statistic following Boos (1992), where ASpψq is replaced by ΣSpψq “ CSBSpψq´1C 1
S of a

sandwich form with

BSpψq “ N´1
N
ÿ

i“1
rSipψqS 1

ipψqs

and
CS “ pIq2ˆq2 ,´Iψ˝η2I

´1
η2η2

q.

5.2.2 Weighted second-order estimating equations for spatial de-
pendent interval-censored processes with nonsusceptibility

The composite likelihood approach employed in Chapter 2 was adopted to avoid the need
to work with the full likelihood. Another strategy is to consider second-order generalized
estimating equations (GEE2) as these offer a convenient framework for estimation and
inference for regression analysis of marginal responses and pairwise associations (Prentice
and Zhao, 1991). In the spirit of Jiang and Cook (2020), we consider an adaptation of GEE2
to the present setting involving a latent vector of spatially correlated binary susceptibility
indicators Zi for individual i in sample with i “ 1, . . . , N . Here, we present weighted
second-order estimating functions that are constructed as a weighted sum of estimating
functions one would use if Zi were observed. The weights are dependent on distributional
assumptions and specific models for both the failure times and the vector of susceptibility
indicators.

Recall that ψ “ pφ1,ϑ1q1 denotes the set of all parameters with φ “ pη1,γ 1q1 the
set of regression coefficients associated with the first- and second-order models for Z and
ϑ “ pθ1,ρ1q1 for T, defined based on all pairs of joints. We consider an estimating function
of the form

U1pφ;ψq “

N
ÿ

i“1

ÿ

pj,k,j1,k1qPS2

Uijkj1k11pφ;ψq

for a sample of size N , where S2 “ tpj, k, j1, k1q : pj, kq ą pj1, k1q, k “ 1, . . . , Kj, j “

1, . . . , Ju is an index set of size KpK ´ 1q{2 containing all pairwise combinations of the
indices of individual joints, with ą indicating that j ă j1 or k ă k1 if j “ j1. The specific
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constructions are of the form

Uijkj1k11pφ;ψq “
ÿ

zijkj1k1 PZ2

ϱ1pzijkj1k1 ;ψq

„

H 1
ijkj1k11pφqD´1

ijkj1k11pφq

ˆ

Zijkj1k1 ´ πijkj1k1

Wijkj1k1 ´ ωijkj1k1

˙ȷ

,

(5.2.1)
where Zijkj1k1 “ pZijk, Zij1k1q1 is the pair of indicators for joints pj, kq and pj1, k1q and
Wijkj1k1 “ ZijkZij1k1 is the product. Recall πijk “ ErZijk|Xijks and let πijkj1k1 “ pπijk, πij1k1q1.
Moreover, if Vijkj1k1 “ pXijk,Xij1k1q1 then let ωijkj1k1 “ ErWijkj1k1 |Vijkj1k1s. The derivative
matrix is given by

Hijkj1k11pφq “

ˆ

Bπijkj1k1{Bη1 0
Bωijkj1k1{Bη1 Bωijkj1k1{Bγ 1

˙

,

and

Dijkj1k11pφq “

ˆ

covpZijkj1k1 |Vijkj1k1q covpZijkj1k1 ,Wijkj1k1 |Vijkj1k1q

covpWijkj1k1 ,Zijkj1k1 |Vijkj1k1q varpWijkj1k1 |Vijkj1k1q

˙

,

which may be viewed as a complete data 3 ˆ 3 covariance matrix. The term in square
brackets in (5.2.1) is derived as in Prentice and Zhao (1991) for correlated binary data.
Let

ϱ1pzijkj1k1 ;ψq “ P pZijkj1k1 “ zijkj1k1 |Oijkj1k1 ;ψq (5.2.2)

be the conditional expectations of Zijkj1k1 given the observed dataOijkj1k1 “ tBijk,Bij1k1 ,Vijkj1k1u.
This estimating function has the same spirit of the observed data score in missing data
problems that can be reformulated as the conditional expectations of the complete data
score. To compute (5.2.2) however we require estimators of all elements of ψ, so to address
this we specify a second set of estimating functions.

Let ai0 “ 0 ă ai1 ă . . . ă airi
be the ri assessment times defining ri ` 1 intervals

Ail “ rai,l´1, ailq, l “ 1, . . . , ri`1 where ai,ri`1 “ 8, for individual i, i “ 1, . . . , N . For the
failure time process, let Yijk “ pYijk,1, . . . , Yijk,ri`1q1 be an pri ` 1q ˆ 1 vector with elements
Yijk,l “ Nijkpailq´Nijkpai,l´1q indicating that the failure time occurred in Ail for joint pj, kq,
where tNijkpsq, 0 ă su is the counting process for failure of joint pj, kq, l “ 1, . . . , ri ` 1.
Let δijk be an pri ` 1q ˆ 1 vector with elements δijk,l “ ErYijk,l|Zijk;θjs.

The set of estimating functions for ϑ “ pθ1,ρ1q with θ1 “ pθ1
1, . . . ,θ

1
Jq1 is constructed

as

U2pϑ;ψq “

N
ÿ

i“1

ÿ

pj,k,j1,k1qPS2

Uijkj1k12pϑ;ψq
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with elements

Uijkj1k12pϑ;ψq “
ÿ

zijkj1k1 PZ2

ϱ1pzijkj1k1 ;ψq

„

H 1
ijkj1k12pϑq∆ijkj1k1D´1

ijkj1k12pϑq

ˆ

Yijkj1k1 ´ δijkj1k1

Mijkj1l1 ´ σijkj1k1

˙ȷ

,

where Yijkj1k1 “ pY1
ijk,Y1

ij1k1q1, δijkj1k1 “ pδ1
ijk, δ

1
ij1k1q1 and Mijkj1k1 “ Yijk b Yij1k1 “

pYijk,1Y1
ij1k1 , . . . , Yijk,ri`1Y1

ij1k1q1 is a pri ` 1q2 ˆ 1 vector with b denoting the Kronecker
product. The parameterized matrices are the derivative matrix

Hijkj1k12pϑq “

ˆ

Bδijkj1k1{Bθ1 0
Bσijkj1k1{Bθ1 Bσijkj1k1{Bρ1

˙

, (5.2.3)

and the pri ` 1qpri ` 3q ˆ pri ` 1qpri ` 3q covariance matrix

Dijkj1k12pϑq “

ˆ

covpYijkj1k1 |Zijkj1k1q covpYijkj1k1 ,Mijkj1k1 |Zijkj1k1q

covpMijkj1k1 ,Y1
ijkj1k1 |Zijkj1k1q varpMijkj1k1 |Zijkj1k1q

˙

.

We let

∆ijkj1k1 “

¨

˝

ZijkIri`1 0pri`1qˆpri`1q 0pri`1qˆpri`1q2

0pri`1qˆpri`1q Zij1k1Iri`1 0pri`1qˆpri`1q2

0pri`1q2ˆpri`1q 0pri`1q2ˆpri`1q Zijkj1k1Ipri`1q2

˛

‚, (5.2.4)

where Ir is an identity matrix of rank r; the off-diagonal entries of ∆ijkj1k1 are zero.
Let Uipψq “ pU 1

i1pφ;ψq, U 1
i2pϑ;ψqq1 denote the estimating functions, we then can obtain

an estimate for ψ by setting Upψq “
řN

i“1 Uipψq “ 0 and we denote it as ψ̃. Under correct
specification of the conditional moments, Upψq is an unbiased estimating function for ψ
and under suitable conditions (Boos and Stefanski, 2013),

?
Npψ̃ ´ψq ÝÑ MVNp0, Ā´1B̄

“

Ā´1‰1
q,

where Ā “ Er´BUipψq{Bψ1s and B̄ “ ErUipψqU 1
ipψqs.

5.3 Future research on Chapter 3 and 4

5.3.1 Two-phase designs with cross-sectional samples

In large-scale epidemiological and public health studies, it is resource-intensive and im-
practical to recruit a random sample in the hope of forming an inception cohort. Other
sampling schemes often used include cross-sectional sampling of individuals from the pop-
ulation (Van Es et al., 2000), but it is prohibitively expensive to process biosamples for an
entire cohort constructed in this way thus motivates the development and study of two-
phase designs (Neyman, 1938). The phase I sample we consider here involves individuals
sampled cross-sectionally from a population and followed until the end of study or death.
Biosamples are collected and stored in biobanks at the study entry for future studies.
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5.3.1.1 A four-state illness-death model and the phase I sample

0 1

D0

D1

DISEASE-FREE DISEASED

DEATH
DISEASE-FREE

DEATH
POST-DISEASE

Figure 5.1: A state space diagram for a four-state illness-death model.

We consider a birth cohort of individuals with each generating an irreversible four-state
illness-death model involving an initial healthy state 0, a state representing the disease of
interest (state 1) and states Dj, representing death from states j, j “ 0, 1, respectively;
see Figure 5.1. Suppose that N individuals are sampled from a birth cohort of size N
(N ą N) defined by a window of calendar time B “ pBL, BRs at recruitment date S0

pS0 ě BRq. Let ∆1 be an indicator of recruitment. For a recruited individual born at time
B, we denote the age at recruitment by A0 “ S0 ´B. Suppose that information on the life
path prior to A0, denoted by ZpA0q “ tZpaq, 0 ă a ă A0u, is available; in the context of
the illness-death process, when it is required that selected individuals be alive, this would
be the disease status and A1, the age of disease onset among individuals with ZpA0q “ 1.
Suppose follow-up is planned for CA years to acquire information on the disease course.
Let CR denote a random time from recruitment to withdrawal and C “ mintCA, CRu.
For simplicity we assume that the censoring process is non-informative and independent
of the disease process. In terms of age, the prospective follow-up period of an individual
is pA0, A

:q, where A: “ mintAD, A0 ` Cu and δD “ IpA: “ ADq indicates that death was
observed. To accommodate censoring we let Z̄p8q “ tZpaq, 0 ă a ă A:, A:, δDu denote the
observed life history process where the overbar “´” denotes the fact that follow-up may
be incomplete due to censoring, and the argument 8 reflects that we are considering all
information that is ultimately available. The Lexis diagram in Figure 5.2 gives a graphical
representation indicating the life course of an individual recruited from the birth cohort in
state 1 and observed to make a 1 Ñ D1 transition during follow-up.
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Calendar time

Age

B

state 0
state 1
death

BL BR B ` A1

A1

AD

B ` ADS0

A0

follow-up

Birth Disease Onset Recruitment Death

birth
cohort

C

Figure 5.2: A Lexis diagram of a generic individual selected at state 1 with the horizontal axis
depicting the calendar times of birth, disease onset, and death; the ages of disease
onset are represented on the vertical axis; the administrative follow-up time is also
identified.

In counting process notation, let Njj1ptq indicate a j Ñ j1 transition occurred over p0, ts
and dNjj1ptq “ Ipa j Ñ j1 transition occurs at time tq. And let Ȳ ptq “ Ip0 ă t ď A:q,
dN̄jj1ptq “ Ȳ ptqdNjj1ptq and N̄jj1ptq “

şt

0 dN̄jj1psq denote the corresponding counting process
for j Ñ j1 transitions. Then N̄¨Dp8q “

ř1
j“0 N̄jDj

p8q “ 1 if the individual was observed
to die and N̄01p8q “ 1 if they made the 0 Ñ 1 transition (i.e. developed the disease) while
under retrospective or prospective observation.

We consider a partition of X “ pX1,X1
2q1, where X1 denotes a fixed biomarker which

may be ascertained through assay of the stored biological specimens, and X2 represents the
inexpensive auxiliary covariates. This will be the case in many biomarker studies which
may rely on biobanks of stored serum to obtain proteomic or genomic data. We assume that
X1 K B|X2 and denote the conditional density for X1|X2 as P pX1|X2q. Hence, the phase I
data contain information on the recruitment age A0 (or equivalently on the birth date B),
the auxiliary covariate information X2, and the observed life process tZpaq, 0 ă a ă A:u.
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5.3.1.2 Incomplete covariate data arising from a two-phase design

Two-phase designs offer an appealing framework to facilitate efficient selection of a sub-
sample from recruited individuals to further ascertain X1 while satisfying budgetary con-
straints. We let ∆2 “ IpX1 is observedq indicate whether the individual is selected for
the phase II subsample to have their covariate X1 measured. As in all two-phase designs,
the sampling probabilities can be controlled through specification of the phase II selection
model

π2pρ2q “ P p∆2 “ 1|Z̄p8q, A0,X2,∆1 “ 1q;

see Cook and Lawless (2018, Section 7.2). Note that the covariate X1 is missing at random
(Little and Rubin, 2002) and this selection model is expressed in a compatible way in the
sense that it covers various phase II sub-sampling schemes. For example, π2pρ2q “ P p∆2 “

1|∆1 “ 1q “ τ corresponds to phase II simple random sampling, where τ p0 ď τ ď 1q is
fixed.

Let X˝ “ X “ pX1,X1
2q1 if ∆2 “ 1 and X˝ “ X2, otherwise; so data from a recruited

individual is denoted by O “ tZ̄p8q, A0,X˝,∆1 “ 1,∆2u. When considering the data from
all N individuals in the phase I sample, we let i index individuals and write the observed
data following phase II sampling as tOi, i “ 1, . . . , Nu.

5.3.1.3 Maximum Likelihood

Given the observed data tOi, i “ 1, . . . , Nu, efficient estimation for ϑ can be approached
based on the partial likelihood Lpϑq9

śN
i“1 Lipϑq with

Lipϑq “Lipϑq∆i2

„
ż

LipϑqdXi1

ȷ1´∆i2

, (5.3.1)

where
Lipϑq “

P pZ̄ip8q, ZpAi0q P t0, 1u|Ai0,Xi;θq ¨ P pXi1|Xi2;αq
ş

P pZipAi0q P t0, 1u|Ai0,Xi;θqP pXi1|Xi2;αqdXi1
.

The score function based on (5.3.1) is Spϑq “
řN

i“1 Sipϑq where Sipϑq “ B logLipϑq{Bϑ

and the observed information matrix is

Ipϑq “ ´N´1BSpϑq{Bϑ1.

The ML estimate ϑ̂ may be found by solving the score equation Spϑq “ 0 directly or via
an EM algorithm (Dempster et al., 1977) adopting a Turnbull-type likelihood (Turnbull,
1976). The limiting distribution of ϑ̂ is asymptotically

?
Npϑ̂´ ϑq

d
ÝÑ MVNp0, I´1pΩqq
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(Boos and Stefanski, 2013), where Ω “ pϑ1,ρ1
2, ξ

1q1 denotes the full parameter set for
P pZ̄p8q, A0,X,∆2q with P pA0,X2q indexed by ξ, and IpΩq “ ErIpϑq; Ωs denotes the
expected information. Note that the functional dependence of IpΩq on ρ2 provides the
basis for two-phase designs. In practice, we usually use an empirical estimate to approxi-
mate the expected information IpΩq by evaluating the information matrix Ipϑq at the ML
estimator ϑ̂.

5.3.1.4 IPW estimating equations with estimated weights

It can be undesirable to specify the nuisance covariate model when X1 is continuous or
high dimensional (Lawless et al., 1999), so a more robust alternative is achieved by re-
stricting attention to individuals with complete data. When π2pρ2q is bounded away from
zero, a consistent estimator of θ can be achieved through the use of the following inverse
probability weighted (IPW) estimating function

U1pθ;ρ2q “

N
ÿ

i“1

∆i2

πi2pρ2q
S1pθq,

where

S1pθq “
B

Bθ

”

logP pZ̄ip8q, ZpAi0q P t0, 1u|Ai0,Xi;θq ´ logP pZpAi0q P t0, 1u|Ai0,Xi;θq

ı

.

Note that it is not necessary to model the nuisance covariate distribution for X1|X2 to
construct U1pθ;ρ2q, so the analysis via IPW estimating equations is potentially more robust
however less efficient than analysis via parametric ML.

If ρ2 is treated as known, we can set U1pθ;ρ2q “ 0 and obtain an IPW estimate of θ.
However, the estimation efficiency can be improved if we estimate the weights even when
they are known a priori (Robins et al., 1994; Lawless et al., 1999). We therefore extend
the inverse probability weighted estimating functions with another score function for ρ2,
denoted by U2pρ2q, giving

Upφq “ pU 1
1pθ;ρ2q, U 1

2pρ2qq1

(Robins et al., 1994), where φ “ pθ1,ρ1
2q1. If φ̃ is the IPW estimator of φ, the limiting

distribution of φ̃ is asymptotically
?
Npφ̃´φq

d
ÝÑ MVNp0,A´1pΩqBpΩqA´1pΩqq,

where ApΩq “ ´ErBUpφq{Bφ1; Ωs and BpΩq “ ErUpφqU 1pφq; Ωs. The empirical estimates
of these expectations are

Ãpφ̃q “ ´ N´1 BUpφq

Bφ1

ˇ

ˇ

ˇ

φ“φ̃
and B̃pφ̃q “ N´1UpφqU 1pφq

ˇ

ˇ

ˇ

φ“φ̃
.
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5.3.2 Augmentation with incomplete cross-sectional data

5.3.2.1 Identifiability issue with pooled prevalent data

Here we consider the problem of Chapter 4 and the challenge of estimating the full six-state
model depicted in Figure 4.1 under the sampling schemes discussed there. Specifically with
the data pooled from Registry 1 and Registry 2, there is an identifiability problem that
arises if interest lies in estimating the 0 Ñ 1 intensity or the 0 Ñ D0 intensity in the
absence of observations on disease-free individuals. Current status data on the disease
state are available from the National Psoriasis Foundation (NPF) survey data (Gelfand
et al., 2005) and can be utilized for this purpose, provided data on the phase I covariates
V (e.g. gender, ethnic, etc.) are available. In addition, population mortality data can be
used as well if it is available for strata defined by V. Here we discuss such an extension to
augmented likelihood incorporating an auxiliary cross-sectional sample.

5.3.2.2 Auxiliary cross-sectional data with incomplete biomarker

Suppose a sample of N0 individuals are recruited under cross-sectional sampling from the
base population; let R˝ denote the sample of recruited individuals. Upon recruitment,
current status and inexpensive covariate information are collected from these individuals.
The data collected from a recruited individual include tHpA0q,V, ZpA0q P t0, 1, 2uu. Let
i P R˝ index a recruited individual, the likelihood contribution from this cross-sectional
sample is L0pξq “

ś

iPR˝
Li0pξq with elements

Li0pξq9
P pHipAi0q|Ai0,Viq

ř2
j“0 P pZipAi0q “ j|Ai0,Viq

.

5.3.2.3 The augmented likelihood

Let Rj denote the set of individuals selected into registry j with Nj “ ||Rj|| the size
of the sample (j “ 1, 2), the conditional likelihood based on the pooled registry data
tHipA

:
i q, ZipAi0q “ j,X˝

i ,∆i, i P Rj, j “ 1, 2u is

Lpξq “

2
ź

j“1

ź

iPRj

Lijpξq.

The augmented likelihood becomes

ALpξq9
ź

iPR˝

Li0pξq
ź

iPR1

Li1pξq
ź

iPR2

Li2pξq.
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The mortality rates are best dealt with by using population mortality data if it is available
for different strata; otherwise model assumptions in this regard are necessary.
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Appendix A

Appendix to Chapter 2

A.1 Derivation of Ljkj1k12

By definition of Zjk, if a1jk ă 8 were observed, P pTjk P Bjk|Xjkq “ πjkpFjpa0jkq ´

Fjpa1jkqq. Let ξjk “ Ipa1jk ă 8q, we then have

Ljkj1k12 “P pTjk P Bjk, Tj1k1 P Bj1k1 |Vjkj1k1q

“

”

ωjkj1k1P11
jkj1k1

ıξjkξj1k1
”

ωjkj1k1P11
jkj1k1 ` pπjk ´ ωjkj1k1qP10

jkj1k1

ıξjkp1´ξj1k1 q

ˆ

”

ωjkj1k1P11
jkj1k1 ` pπj1k1 ´ ωjkj1k1qP01

jkj1k1

ıp1´ξjkqξj1k1

ˆ

”

ωjkj1k1P11
jkj1k1 ` pπj1k1 ´ ωjkj1k1qP01

jkj1k1`

pπjk ´ ωjkj1k1qP10
jkj1k1 ` p1 ´ πjk ´ πj1k1 ` ωjkj1k1q

ıp1´ξjkqp1´ξj1k1 q

,

where

P11
jkj1k1 “Φ2pΦ´1pFjpa0jkq;θjq,Φ´1pFj1pa0j1k1q;θ1

jq; ρjkj1k1q

´ Φ2pΦ´1pFjpa0jkq;θjq,Φ´1pFj1pa1j1k1q;θ1
jq; ρjkj1k1q

´ Φ2pΦ´1pFjpa1jkq;θjq,Φ´1pFj1pa0j1k1q;θ1
jq; ρjkj1k1q

` Φ2pΦ´1pFjpa1jkq;θjq,Φ´1pFj1pa1j1k1q;θ1
jq; ρjkj1k1q,

P10
jkj1k1 “ Fjpa0jk;θjq ´ Fjpa1jk;θjq, P01

jkj1k1 “ Fj1pa0j1k1 ;θj1q ´ Fj1pa1j1k1 ;θj1q,

and P00
jkj1k1 “ 1 since Tjk and Tj1k1 are taken to be infinite.
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A.2 Intermittent assessments and conditionally inde-
pendent visit process conditions

Here we review the ideas of Cook and Lawless (2021) with a view to the current setting and
to formulate pairwise and working-independence composite likelihoods. We first introduce
some notation in counting process and then specify the independence conditions analogous
to but stronger than a conditionally independent visiting process (CIVP) assumption,
introduced by Cook and Lawless (2018).

A.2.1 Intermittent assessments and counting process notation

Instead of continuous inspection, status of all joints is assessed intermittently over a period
of fixed length CA, where CA is the administrative censoring time from the time of disease
onset. Let CR represent the random censoring time which leads to a potential premature
loss to follow up if CR ă CA. The observed censoring time is then C “ mintCA, CRu. In
many settings the visit times are either assumed to be pre-specified (i.e. fixed) at the study
entry, or governed by a random visit process. In the former case, a missing data problem
arises if subjects miss some visits; a common assumption for the missing pattern is the
sequential missing at random (SMAR) assumption introduced by Hogan et al. (2004). For
the latter, a conditionally independent visiting process (CIVP) assumption, introduced
by Cook and Lawless (2018), is required as a continuous-time analogue to the SMAR
assumption to use the simplified partial likelihood of interest.

We restrict our attention to the later setting and discuss the conditions needed to sim-
plify the construction of likelihood from intermittent observation of a multivariate failure
time process. For clarity of exposition, counting process notation is employed here. Let
Njkptq “ IpTjk ď tq indicate the occurrence of damage in joint pj, kq over p0, ts, where if
Zjk “ 0 then Njkptq “ 0 for any finite t ą 0. Let ∆Njkptq “ Njkpt ` ∆t´q ´ Njkpt´q

and dNjkptq “ lim
∆tÑ0

∆Njkptq indicate whether the damage occurred at time t in joint
pj, kq; dNjkptq “ 1 if so, and dNjkptq “ 0 otherwise, and Njkptq “

şt

0 dNjkpsq. We let
Njptq “ pNj1ptq, . . . , NjKj

ptqq1 and Nptq “ pN1
1ptq, . . . ,N1

Jptqq1. We can also write the full
vector Nptq “ pNjkptq; pj, kq P Sq1. Similarly, we define dNjptq “ pdNj1ptq, . . . , dNjKj

ptqq1

and dNptq “ pdN1
1ptq, . . . , dN1

Jptqq1.
Let 9Aptq count the number of follow-up visits over p0, ts and Y ptq “ Ipt ď Cq indicate

whether the individual is still under observation at time t. The observed visit process
hence has increments dAptq “ Y ptqd 9Aptq for t ą 0 and we let Aptq “

şt

0 dAptq count
the number of observed follow-up visits over p0, ts and tAptq, t ě 0u denote the observed
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Figure A.1: A state space diagram for joint consideration of the visiting and random
censoring processes with CR representing an absorbing state of being censored.

visit process. Thus, to observe Nptq, the individual must not have withdrawn from the
study before t and must have a visit at time t. We let dCRptq “ Y ptqIpCR “ tq be the
indicator of whether random censoring occurred at time t, CRptq “

şt

0 dC
Rpsq, and denote

the corresponding counting process as tCRptq, t ě 0u. A state space diagram for joint
consideration of tCRptq, Aptq, t ě 0u is portrayed in Web Figure A.1.

Let Hjkpt´q “ tdCRpsq, dApsq, dNjkpsq, 0 ď s ă t;Xjku contain the complete history
joint pj, kq and the covariate Xjk, and let Njkpt´q “ tNjkpsq, 0 ď s ă tu be the history of
the counting process for joint pj, kq. Let the observed histories be denoted by Hjkpt´q “

tdCRpsq, dApsq, 0 ď s ă t;Njkpalq, l “ 0, 1, . . . , Apt´q, Xjku and N ˝
jkpt´q “ tNjkpalq, al, l “

0, 1, . . . , Apt´qu.

A.2.2 A conditionally independent observation scheme

Following the construction of the CIVP conditions in Cook and Lawless (2018), we present
the conditionally independent visit process conditions here as having two components. Let

H pt´q “ tdCRptq, dApsq, dNpsq, 0 ď s ă t,X u

contain the complete history of the observation and failure time processes and the full co-
variate information. Note that the history H pt´q contains information on the failure time
process in continuous time which is not available. We let Hpt´q “ tdCRpsq, dApsq, 0 ď s ă

t,Npalq, l “ 0, 1, . . . , Apt´q,Xu denote the observed history and N ˝pt´q “ tpNpalq, alq, l “

0, 1, . . . , Apt´qu denote the observed history of the multivariate counting process alone.
We first assume that

tdCRpsq, dApsq, s ą al´1u K tdNpsq, s ą al´1u|Hpal´1q, (A.2.1)
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which implies that the random censoring and visit processes from al´1 onward does not
depend on the failure process beyond al´1 given the observed history at al´1.

We consider the likelihood contribution from the time of the visit at al´1 for the case
in which a visit occurred at al. The conditional likelihood over pal´1, als based on joint
consideration of the failure time, censoring and visit processes is given by

!

P pNpalq|CRpalq “ 0, dApalq “ 1, Apa´
l q “ l ´ 1, Hpal´1qq

ˆ P pCRpalq “ 0, dApalq “ 1, Apa´
l q “ l ´ 1|Hpal´1qq

)p1´CRpalqqdApalq

ˆ P pCRpalq “ 1, dApalq “ 0, Apa´
l q “ l ´ 1|Hpal´1qqCRpalqp1´dApalqq.

(A.2.2)

Note that under (A.2.1) and the assumption that the observation process is non-informative,
we can focus on the partial likelihood contribution of the first line in (A.2.2),

P pNpalq|CRpalq “ 0, dApalq “ 1, Apa´
l q “ l ´ 1, Hpal´1qq. (A.2.3)

To write (A.2.3) in terms of the multivariate failure time process of interest, we further
require the assumption

P pNpalq|CRpalq “ 0, dApalq “ 1, Apa´
l q “ l ´ 1, Hpal´1qq “ P pNpalq|N ˝pal´1q, al,Xq.

(A.2.4)
This condition ensures that a particular observation scheme does not alter the evolution
of the underlying multivariate failure time process and enables expression of the partial
likelihood in terms of the model of interest. The partial likelihood is then proportional to

P pT P B|Xq,

where B “
ś

pj,kqPS Bjk denotes the censoring region of all joints with Bjk “ pa0jk, a1jks

denote the interval within which Tjk occurs (0 ď a0jk ă a1jk ď 8). In particular, a0jk “

al´1 and a1jk “ al, where

l “

"

mintl : Npalq “ 1; l “ 2, . . . , ru if
řr

l“1 Npalq ą 0;
r ` 1 otherwise.

A.2.3 A pairwise conditionally independent visit process

In the following we present the pairwise conditionally independent visit conditions to write
down a pairwise composite likelihood. We first assume that

tdCRpsq, dApsq, s ą al´1u K tdNjkpsq, dNj1k1psq, s ą al´1u|Hjkpal´1q, Hj1k1pal´1q. (A.2.5)
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Note that the history presented in the condition of (A.2.5) contains information only on
joints pj, kq and pj1, k1q. The fact that this condition needs to hold for every pair of joints
pj, kq and pj1, k1q means it is a very strong condition approaching that of a completely
independent visit process.

We consider the likelihood contribution from the time of the visit at al´1 for the case in
which a visit occurred at al. For a generic pair of joints pj, kq and pj1, k1q, the conditional
likelihood over pal´1, als based on joint consideration of the failure time, censoring and visit
processes is given by

!

P pNjkpalq, Nj1k1palq|CRpalq “ 0, dApalq “ 1, Apa´
l q “ l ´ 1, Hjkpal´1q, Hj1k1pal´1qq

ˆ P pCRpalq “ 0, dApalq “ 1, Apa´
l q “ l ´ 1|Hjkpal´1q, Hj1k1pal´1qq

)p1´CRpalqqdApalq

ˆ P pCRpalq “ 1, dApalq “ 0, Apa´
l q “ l ´ 1|Hjkpal´1q, Hj1k1pal´1qqCRpalqp1´dApalqq.

(A.2.6)

Note that under (A.2.5) and the assumption that the observation process is non-informative,
we can focus on the partial likelihood contribution of the first line in (A.2.6),

P pNjkpalq, Nj1k1palq|CRpalq “ 0, dApalq “ 1, Apa´
l q “ l´ 1, Hjkpal´1q, Hj1k1pal´1qq. (A.2.7)

To write (A.2.7) in terms of the bivariate failure time process of interest, we further
require the assumption

P pNjkpalq, Nj1k1palq|CRpalq “ 0, dApalq “ 1, Apa´
l q “ l ´ 1, Hjkpal´1q, Hj1k1pal´1qq

“P pNjkpalq, Nj1k1palq|N ˝
jkpal´1q,N ˝

j1k1pal´1q, al,Vjkj1k1q.

(A.2.8)

This condition ensures that a particular observation scheme does not alter the evolution
of any underlying bivariate failure time process and enables expression of the pairwise
composite likelihood in terms of the model of interest. In summary, the observation process
beyond al´1 cannot depend on

i) the multivariate counting process Np´j,´k,´j1,´k1qpsq, s ą al´1 where tNp´j,´k,´j1,´k1qpsq, s ą

0u contains the counting process for all joints except pj, kq and pj1, k1q, or

ii) the observed history Hp´j,´k,´j1,´k1qpal´1q which is given by

tdCRpsq, dApsq, 0 ď s ď al´1; Np´j,´k,´j1,´k1qpahq, h “ 0, 1, . . . , l ´ 1,Xp´j,´k,´j1,´k1qu.
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Under the conditions (A.2.5) and (A.2.8), the partial likelihood contribution from the
information collected at the lth observed visit for joints labeled pj, kq and pj1, k1q is

P pNjkpalq, Nj1k1palq|N ˝
jkpal´1q,N ˝

j1k1pal´1q, al,Vjkj1k1q.

Letting ψ “ pϑ1,φ1q1 denote the parameter indexing the joint distribution of the failure
time processes of interest given covariates, the composite likelihood for ψ concerning the
joint process of Njkptq and Nj1k1ptq over r0, CAs is

r
ź

l“1
P pNjkpalq, Nj1k1palq|N ˝

jkpal´1q,N ˝
j1k1pal´1q, al,Vjkj1k1q. (A.2.9)

The pairwise composite likelihood contribution expressed in counting process notation
in (A.2.9) is equivalent to the probability of pTjk, Tj1k1q falling in the censoring region
Bjk ˆ Bj1k1 given covariates Vjkj1k1 associated with this pair of joints, that is

P pTjk P Bjk, Tj1k1 P Bj1k1 |Vjkj1k1q.

A.2.4 A working-independent conditionally independent visit pro-
cess

In this section we present a working-independent version of CIVP conditions to enable
the utilization of a working independent composite likelihood in stage I of the two-stage
estimation procedure. Similarly to the formulation of (A.2.5) and (A.2.8), we assume

tdCRpsq, dApsq, s ą al´1u K tdNjkpsq, s ą al´1u|Hjkpal´1q, (A.2.10)

and

P pNjkpalq|CRpalq “ 0, dApalq “ 1, Hjkpal´1qq “ P pNjkpalq|N ˝
jkpal´1q, al, Xjkq, (A.2.11)

and that the observation process is non-informative about the parameter to be estimated
in stage I. These are even stronger assumptions then the pairwise conditionally indepen-
dence conditions (A.2.5) and (A.2.8) given above, but enable us to derive the working-
independence composite likelihood L1 arising from intermittent assessments, given by

ź

pj,kqPS
P pTjk P Bjk|Xjkq.
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A.3 Simulation results with specified higher-order de-
pendencies for the susceptibility indicator

Web Table A.1 contains additional simulation results for the first set of simulation studies
where we consider three types (J “ 3) comprised of pK1, K2, K3q “ p2, 2, 2q or pK1, K2, K3q “

p2, 6, 6q joints for each type. The details on data generation and model formulation are
described in the main paper.

A.4 Application to hand joint data from the UTPAC
Here we explain the details in obtaining the nonparametric estimates of cumulative proba-
bilities for damage times of, for example, symmetric hand joints; and estimations for other
kind of joint pairs can be similarly obtained.

(a) Prepare the n ˆ 4 matrix dt_cen containing 4 columns collecting left and right
censoring points of Bjk the censoring interval for Tjk and left and right censoring
points of Bj1k1 the censoring interval for Tj1k1 , where n “ 14 ˆN is the total number
of symmetric pairs;

Note: Due to the constraints for computing time and storage space memory, the
entries in dt_cen corresponding to ray, row and other joint pairs are rounded to
year.

(b) Obtain NPMLE of the joint distribution function of Tjk and Tj1k1 along with the
regions or rectangles of possible support for the joint distribution function through
calling ICNPMLE(dt_cen) function;

(c) Obtain empirical estimate of the bivariate cumulative probabilities P pTjk ď t1, Tj1k1 ď

t2q by summing over the probability masses (NPMLE) on the rectangles that are
completely covered by r0, t1s ˆ r0, t2s.

Web Figures A.2, A.3, and A.4, referenced in Section 5 of the main manuscript, present
distributional characteristics for ray/row/other pairs of hand joints.
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Figure A.2: Plots of parametric and non-parametric estimates for ray pairs: (a) estimation of
the marginal concordance function of damage based on the fitted second order
models for susceptibility and failure times of susceptibles (solid smooth line) and
nonparametric estimates (solid nonsmooth line) with a 95% CI band (dashed
lines); and (b) bivariate cumulative probability of damage based on the fitted
second order models for susceptibility and failure times of susceptibles (solid line)
and nonparametric estimates (dashed lines).
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Figure A.3: Plots of parametric and non-parametric estimates for row pairs: (a) estimation of
the marginal concordance function of damage based on the fitted second order
models for susceptibility and failure times of susceptibles (solid smooth line) and
nonparametric estimates (solid nonsmooth line) with a 95% CI band (dashed
lines); and (b) bivariate cumulative probability of damage based on the fitted
second order models for susceptibility and failure times of susceptibles (solid line)
and nonparametric estimates (dashed lines).
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Figure A.4: Plots of parametric and non-parametric estimates for other pairs: (a) estimation
of the marginal concordance function of damage based on the fitted second order
models for susceptibility and failure times of susceptibles (solid smooth line) and
nonparametric estimates (solid nonsmooth line) with a 95% CI band (dashed
lines); and (b) bivariate cumulative probability of damage based on the fitted
second order models for susceptibility and failure times of susceptibles (solid line)
and nonparametric estimates (dashed lines).
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Appendix B

Appendix to Chapter 3

B.1 Derivation of the score-type residual Mµ

Following Tao et al. (2020), we let Mµ “ B logP pY |A,Xq{Bµ which can be expressed as

Mµ “

ˆ

´Y
FpA|Xq

1 ´ FpA|Xq
` 1 ´ Y

˙

B log FpA|Xq

Bµ
“ QpZ, X1q log FpA|Xq, (B.1.1)

where QpA|Xq “ ´F´1pA|XqrY ´ F pA|Xqs. Since ErQpZ, X1q|A,Xs “ 0 it follows that
ErMµs “ 0. Next we note that

Mµµ “
BMµ

Bµ
“

B

Bµ

"ˆ

1 ´
Y

1 ´ F

˙

log F
*

“ Mµ `
Y F

p1 ´ Fq2 log F2, (B.1.2)

giving

B2 logLpϑq

Bβ2
1

“RMµµX
2
1 ` p1 ´ Rq

#

ř

X1
MµµX

2
1 p1 ´ FqY F1´Y P pX1|X2q

ř

X1
p1 ´ FqY F1´Y P pX1|X2q

`

ř

X1
M2

µX
2
1 p1 ´ FqY F1´Y P pX1|X2q

ř

X1
p1 ´ FqY F1´Y P pX1|X2q

´

ˆ

ř

X1
MµX1p1 ´ FqY F1´Y P pX1|X2q

ř

X1
p1 ´ FqY F1´Y P pX1|X2q

˙2 +

which under β1 “ op1q is

RMµµX
2
1 ` p1 ´ Rq

”

MµµErX2
1 |X2s ` M2

µV arpX1|X2q

ı

.

This gives

Iβ1β1 “ EZtMµµErX2
1 |X2s ` M2

µVarpX1|X2qu ` ERZtRM2
µVarpX1|X2qu.
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Letting θ˝j denote the jth element of θ˝, we have Mθ˝j
“ B logP pY |A,X;θq{Bθ˝j, Mθ˝jθ˝k

“

BMθ˝j
{Bθ˝k, and Mµθ˝j

“ BMµ{Bθ˝j. Moreover

B logLpϑq

Bβ1Bθ˝j

ˇ

ˇ

ˇ

θ“p0,θ1
˝q1

“
␣

RMµθ˝j
X1 ` p1 ´ RqMµθ˝j

ErX1|X2s
(

,

and
B logLpϑq

Bθ˝jBθ˝k

ˇ

ˇ

ˇ

θ“p0,θ1
˝q1

“Mθ˝jθ˝k
.

Hence under β1 “ op1q, neither Iβ1θ˝ nor Iθ˝θ˝ depend on the phase II subsampling schemes.

Following the projection method in Tao et al. (2020), we have

Iβ1ηI´1
ηη Iηβ1 “ E

#

pErRMµ|A,X2sq
2

ErR|A,X2s
VarpX1|X2q

+

. (B.1.3)

so under β1 “ op1q, Vβ1 can be expressed as

Σ1 ` E

#«

ErRM2
µ|A,X2s ´

pErRMµ|A,X2sq
2

ErR|A,X2s

ff

VarpX1|X2q

+

“Σ1 ` E

#

ErR|A,X2s
´1VarrMµ|R “ 1, A,X2sVarpX1|X2q

+

,

(B.1.4)

where

Σ1 “ EZtMµµErX2
1 |X2s ` M2

µVarpX1|X2qu ´ Iβ1θ˝I´1
θ˝θ˝

Iθ˝β1

does not depend on the phase II sub-sampling rules. Tao et al. (2020) derived this for right
censored data and replaced Mµ by martingale-type residuals in (B.1.4). Here we make use
of this same general result to gain insights into efficient phase II sub-sampling with current
status data in Section 3.1.

B.2 Neyman and adaptive approximate Neyman allo-
cation

Steps of implementing NEY:

1. compute the approximate influence functions t∆̃ipβ1q, i “ 1, . . . , Nu using (4.3) and
true θ;
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2. compute σ̃j, the standard deviation of t∆̃ipβ1q, i P stratum ju obtained in step 1;

3. select nj9nNjσ̃j subjects from stratum j using an integer-valued algorithm (Wright,
2017), with

řN
j“1 nj “ n.

Steps of implementing NEYA:

1. select nj
a from stratum j using balanced sampling with na “

ř

j n
a
j ă n in phase IIa

and obtain θ̃a an IPW estimator of θ;

2. compute the approximate influence functions t∆̃ipβ1q, i P phase IIa sampleu using
(4.3) and θ̃a;

3. compute σ̃j, the standard deviation of t∆̃ipβ1q, i P stratum j X phase IIa sampleu

obtained in step 2;

4. select nb
j9pn ´ naqpNj ´ na

j qσ̃j subjects from the rest of stratum j (i.e. those not
selected in step 1) using an integer-valued algorithm (Wright, 2017), with

řN
j“1 n

b
j “

n ´ na.

Therefore nj “ na
j ` nb

j subjects are selected from stratum j and n “
ř

j nj.

B.3 TAO-OPTA to EXT-Mµ and EXT-pA, Y q

Table B.1 presents different choices for the proportions of the phase IIa samples na{n for
TAO-OPTA and their comparison to EXT-Mµ and EXT-pA, Y q. The relative efficiency of
each other design compared to TAO-OPT is calculated as the ratio of the mean asymptotic
variance of β̂1 under TAO-OPT to that under other designs. TAO-OPTA performs better
when na is smaller, but a sufficient phase IIa sample is necessary to make reliable estimates
for VarpX1|X2q. The details on data generation and model formulation are described in
Section 3.3.2.
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Table B.1: Relative efficiency (%) to TAO-OPT for the estimated log hazard ratio in X1
under maximum likelihood based on 1000 samples of size 2000; β2 “ ´0.2.

X1 K X2 (i.e. constant VarpX1|X2q) X1 M X2 (i.e. non-constant VarpX1|X2q)

Non-adaptive Design TAO-OPTA (na{n) Non-adaptive Design TAO-OPTA (na{n)

ψ β1 n EXT-Mµ EXT-pA, Y q 0.2 0.4 0.6 EXT-Mµ EXT-pA, Y q 0.2 0.4 0.6
(a) Nonrare event: q1 “ 0.6, q2 “ 0.3
0.1 -0.2 300 99.6 98.9 88.1 79.6 69.1 95.0 96.3 88.3 80.0 69.2

600 100.0 99.6 92.5 85.8 77.0 97.2 97.5 92.6 85.9 77.0
0 300 99.9 99.0 88.3 80.0 69.1 95.9 96.8 88.2 79.8 69.1

600 99.9 99.5 92.5 86.0 77.1 97.8 98.0 92.6 86.0 77.1
0.2 300 100.1 99.0 88.2 80.0 69.1 96.9 97.5 88.5 80.3 69.3

600 100.1 99.6 93.0 86.6 77.8 98.3 98.4 93.0 86.5 77.8
0.3 -0.2 300 99.7 99.2 86.6 76.9 65.0 95.7 96.6 86.1 77.0 65.5

600 99.9 99.6 92.5 85.2 75.0 98.6 98.3 92.3 85.3 75.1
0 300 99.8 99.3 86.2 76.6 64.4 96.5 97.4 86.0 76.8 65.2

600 100.0 99.6 92.8 85.3 75.1 98.7 98.5 92.5 85.4 75.2
0.2 300 100.0 99.1 86.3 76.2 64.1 97.3 97.7 86.2 76.7 65.0

600 100.0 99.6 92.9 85.7 75.3 99.1 98.7 92.6 85.8 75.3
(b) Rare event: q1 “ 0.1, q2 “ 0.05
0.1 -0.2 300 99.9 99.5 96.5 88.9 70.9 99.3 99.5 96.6 89.7 72.8

600 100.0 99.8 99.2 98.2 96.8 99.7 99.8 99.1 98.2 96.8
0 300 100.0 99.4 96.4 89.0 71.5 99.5 99.6 96.5 89.9 73.7

600 100.0 99.8 99.1 98.0 96.4 99.8 99.8 99.1 98.1 96.5
0.2 300 100.0 99.4 96.2 89.3 72.0 99.6 99.6 96.3 90.0 74.2

600 100.0 99.7 99.0 97.8 96.1 99.9 99.8 99.0 97.9 96.1
0.3 -0.2 300 99.9 99.4 96.2 88.9 70.5 99.4 99.5 96.6 89.7 73.3

600 100.0 99.8 98.8 97.3 95.4 99.8 99.8 98.8 97.4 95.5
0 300 99.9 99.3 96.1 88.9 71.3 99.4 99.5 96.5 89.8 73.8

600 100.0 99.8 98.7 97.0 94.9 99.8 99.8 98.7 97.1 94.9
0.2 300 99.9 99.3 95.9 88.9 71.7 99.5 99.5 96.3 89.7 74.1

600 99.9 99.8 98.6 96.7 94.3 99.8 99.8 98.6 96.8 94.4

Note. The relative efficiency to TAO-OPT is computed by ratio of mean asymptotic variance of β̂1 under
TAO-OPT to that under other designs; TAO-OPTA selects a simple random sample of size na in phase IIa;
ψ “ VarpA:q; When X1 M X2, the odds ratio between X1 and X2 is set by φ “ 2.
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Appendix C

Appendix to Chapter 4

C.1 Derivation of the general likelihood
Following Phase II sub-sampling a single individual in Registry 1 provide would provide
data tZ0 “ 1, HpA:q, X˝,∆u, or equivalently, tZ0 “ 1, B,A1, S1, S2, δ1 “ 1, δ2, δD,X˝,∆u

where X˝ “ pX,V1q1. The likelihood contribution relevant for the life history process from
such an individual is then proportional to

P pS1, S2, δ2, δD, X|ZpA0q “ 1, A0, A1, δ1 “ 1,Vq∆

ˆ P pS1, S2, δ2, δD|ZpA0q “ 1, A0, A1, δ1 “ 1,Vq1´∆,
(C.1.1)

where

P pS1, S2, δ2, δD, X|ZpA0q “ 1, A0, A1, δ1 “ 1,Vq

“
P pS1, S2, δ2, δD, |A0, A1, δ1 “ 1,V, Xq

P pZpA0q “ 1|A0, A1, δ1 “ 1,V, Xq
ˆ P pX|ZpA0q “ 1, B,A0, A1, δ1 “ 1,Vq

(C.1.2)

The sample distribution X in this registry is P pX|ZpA0q “ 1, B,A0, A1, δ1 “ 1,Vq,
given by

P pA1, δ1 “ 1, ZpA0q “ 1|V, Xq

P pA1, δ1 “ 1, ZpA0q “ 1|Vq
P pX|Vq

“

„

λ0pA1|V, XqP00p0, A1|V, XqP11pA1, A0|V, X,A1q
ş

λ0pA1|V, xqP00p0, A1|V, xqP11pA1, A0|V, x, A1qP px|Vqdx

ȷ

P pX|Vq,

(C.1.3)

where Pjjpa1, a2|¨q “ P pZpa2q “ j|Zpa1q “ j, ¨q denotes the probability of no transition
determined by λjp¨q and γjp¨q. The bracketed term in (C.1.3) is rather complex and its
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evaluation relies on the specification of λ0p¨q, γ0p¨q and γ1p¨q. Identifiability issues arise
when trying to estimate γ0p¨q without additional information or imposing an assumption
on the mortality rates among disease-free individuals (Cook and Lawless, 2018, Chapter
7). While under Assumption 1 and Assumption 2, (C.1.3) can be simplified to be

„

F1pA0 ´ A1|V, X,A1q
ş

F1pA0 ´ A1|V, X,A1qP px|Vqdx

ȷ

P pX|Vq, (C.1.4)

where F1pA0 ´ A1|A1,V, Xq “ expp´
şA0´A1

0 λ1pt|A1,V, Xqq, and we informally write
P pX|Vq as the conditional probability model for X|V.

The sample distribution P pS1, S2, δ2, δD|A0, A1, δ1 “ 1,V, Xq in Registry 1 is given by

F1pS1|A1,V, Xqλ1pS1|A1,V, Xqδ2

ˆG1pS1|A1,V, Xqγ1pA1 ` S1|HpA1 ` S1q,V, Xqp1´δ2qδD

ˆ
“

P22pA2, A2 ` S2|A1, S1,V, Xqγ2pA2 ` S2|HpA2 ` S2q,V, XqδD
‰δ2

,

(C.1.5)

where G1pS1|A1,V, Xq “ expp´
şA1`S1

A1
γ1pa|Hpa´q,V, Xqdaq.

If only data from Registry 1 are available for analysis, we do not need Assumption 2
and Assumption 3 for proceeding via partial likelihood. However, the sample distribution
P pS1, S2, δ2, δD, X|A0, A1, δ1 “ 1,Vq in the PsA cohort (Registry 2) can only be simplified
to

λ1pS1|A1,V, Xqγ2pA:|HpA:´q,V, XqδD
P11pA1, A2|V, X,A1qP22pA2, A

:|A1, S1,V, Xq
ş

P12pA1, A0|V, x, A1qP px|Vqdx
P pX|Vq

(C.1.6)
under Assumption 1 and Assumption 2. With Assumption 2 and Assumption 3, it becomes

λ1pS1|A1,V, XqF1pS1|A1,V, Xq

1 ´
ş

F1pA0 ´ A1|A1,V, xqP px|Vqdx
P pX|Vq ˆ C˚, (C.1.7)

where C˚ only involves the intensity models for mortality which, assumed to be non-
informative about ϑ.

C.2 Impact of violations of Assumption 3
Here we present simulation results of the full data analysis in the sensitivity study in sub-
Section 4.5.3. The purpose is to investigate the impact of violations to the nondifferential
mortality assumption (Assumption 3 in Section 4.3) on estimation based on the partial
likelihood approach in the absence of the missing covariate problem. Table C.1 summarizes
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the finite sample characteristics of the maximum partial likelihood estimators of ϑ under
a full data analysis, where γ2pa|V q{γ1pa|V q “ exppνq ‰ 1 such that Assumption 3 is
violated. For the settings considered there is modest bias in the estimated coefficients but
larger biases for the parameter indexing the baseline hazard when ν “ log 1.2 or log 1.5.

C.3 Information for β̂1 when β1 “ op1q

Here we first present the information bound for β̂1 under the partial likelihood assuming
Assumptions 1-3 and then note the efficiency for our proposed weighted residual-dependent
designs of Section 4.4 under the setting where β1 “ op1q.

Let θ index the 1 Ñ 2 transition intensity and η index the covariate distribution
P pX|Vq; we write λ1pt|A1,V, X;θq and P pX|V;ηq. To estimate ϑ “ pθ1,η1q, we consider
a partial likelihood

Lppϑq9

„

tLθLηu∆pEX|VrLθ;ηsq1´∆

EX|VrF1pT0|A1,V, X;θq;ηs

ȷIpZ0“1q „
tLθLηu∆pEX|VrLθ;ηsq1´∆

1 ´ EX|VrF1pT0|A1,V, X;θq;ηs

ȷIpZ0“2q

,

where Lθ “ F1pS1|A1,V, X;θqλδ2
1 pS1|A1,V, X;θq and Lη “ P pX|V;ηq.

Let Sppϑq “ B logLppϑq{Bϑ denote the partial score vector. We consider a partition of
Sppϑq “ pS 1

θ, S
1
ηq1 with Sθ “ B logLppϑq{Bθ given by

IpZ0 “ 1q

„

∆Sθ ` p1 ´ ∆q
EX|VrSθLθ;ηs

EX|VrLθ;ηs
´
EX|VrBF1pT0|A1,V, X;θq{Bθ;ηs

EX|VrF1pT0|A1,V, X;θq;ηs

ȷ

` IpZ0 “ 2q

„

∆Sθ ` p1 ´ ∆q
EX|VrSθLθ;ηs

EX|VrLθ;ηs
`
EX|VrBF1pT0|A1,V, X;θq{Bθ;ηs

1 ´ EX|VrF1pT0|A1,V, X;θq;ηs

ȷ

and Sη “ B logLppϑq{Bη equaling

IpZ0 “ 1q

„

∆Sη ` p1 ´ ∆q
EX|VrSηLθ;ηs

EX|VrLθ;ηs
´
EX|VrSηF1pT0|A1,V, X;θq;ηs

EX|VrF1pT0|A1,V, X;θq;ηs

ȷ

` IpZ0 “ 2q

„

∆Sη ` p1 ´ ∆q
EX|VrSηLθ;ηs

EX|VrLθ;ηs
`
EX|VrSηF1pT0|A1,V, X;θq;ηs

1 ´ EX|VrF1pT0|A1,V, X;θq;ηs

ȷ

with Sθ “ B log Lθ{Bθ and Sη “ B log Lη{Bη. The expected information matrix is
I “ ´ErBSppϑq{Bϑ1s “ ErSppϑqS 1

ppϑqs, giving
¨

˝

Iβ1β1 Iβ1θ˝ Iβ1η

Iθ˝β1 Iθ˝θ˝ Iθ˝η

Iηβ1 Iηθ˝ Iηη

˛

‚
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where θ˝ “ pβ1
2, β3, α

1q1. The asymptotic variance of the maximum (partial) likelihood
estimator β̂1 is given by V ´1

β1
with

Vβ1 “ Iβ1β1 ´ Iβ1θ˝I´1
θ˝θ˝

Iθ˝β1 ´ Iβ1ηI´1
ηη Iηβ1 . (C.3.1)

Next we show the detailed expressions of each component when β1 “ op1q.

Let µ “ β1X ` β1
2V ` β3 logA1 denote the linear predictor of interest and Mµ “

δ2 ´ ΛpS1;αq exppµq, where Λpt;αq “
şt

0 λpu;αq. For ease of presentation, let Z0 “ ZpA0q,
W “ pB,A1, A

:, δ1, δD,V1q1, Λ0 “ ΛpT0;αq and F1 “ F1pT0|A1,V, Xq in what follows.

C.3.1 Derivation of Iβ1β1

When β1 “ op1q, we have Sβ1 “ B log Lθ{Bβ1 “ MµX and Sβ1pϑq “ B logLppϑq{Bβ1 is
given by

Sβ1pϑq “IpZ0 “ 1q

ˆ

∆Sβ1 ` p1 ´ ∆qEX|VrSβ1s ´ EX|V

„

B log F1pT0|A1,V, Xq

Bβ1

ȷ˙

` IpZ0 “ 2q

ˆ

∆Sβ1 ` p1 ´ ∆qEX|VrSβ1s `
F1pT0|A1,V, Xq

1 ´ F1pT0|A1,V, Xq
EX|V

„

B log F1pT0|A1,V, Xq

Bβ1

ȷ˙

“IpZ0 P t1, 2uqr∆MµpX ´ ErX|Vsqs ` IpZ0 “ 1q rMµ ` Λ0 exppµqsErX|Vs

` IpZ0 “ 2q

„

Mµ ´
F1

1 ´ F1
Λ0 exppµq

ȷ

ErX|Vs

and

S2
β1pϑq “IpZ0 P t1, 2uq∆M2

µpX ´ ErX|Vsq2

`

"

IpZ0 “ 1q rMµ ` Λ0 exppµqs ` IpZ0 “ 2q

„

Mµ ´
F1

1 ´ F1
Λ0 exppµq

ȷ*2

ErX|Vs2

` 2 ˆ ∆MµpX ´ ErX|Vsq ˆ ErX|Vs

!

IpZ0 “ 1q rMµ ` Λ0 exppµqs ` IpZ0 “ 2q

„

Mµ ´
F1

1 ´ F1
Λ0 exppµq

ȷ

)

“K1 ` K2 ` K3

with Kj corresponding to the term in the jth line.

Since under β1 “ op1q, P pX|∆,W, S1, δ2, Z0q “ P pX|Vq we have

Iβ1β1 “ ErS2
β1pϑqs “ I∆

β1β1 ` I0
β1β1 ,

where I∆
β1β1 “ ErK1s is given by

E
”

∆IpZ0 P t1, 2uqM2
µVarpX|Vq

ı

“ EW

”

Er∆|WsErIpZ0 P t1, 2uqM2
µ|∆ “ 1,WsVarpX|Vq

ı

,

(C.3.2)
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withEr∆|W, Xs “ Er∆|Ws andErIpZ0 P t1, 2uqMµ|∆ “ 1,W, Xs “ ErIpZ0 P t1, 2uqMµ|∆ “

1,Ws. We also have I0
β1β1 “ ErK2s given by

E

«

"

IpZ0 “ 1q rMµ ` Λ0 exppµqs ` IpZ0 “ 2q

„

Mµ ´
F1

1 ´ F1
Λ0 exppµq

ȷ*2

ErX|Vs2

ff

and ErK3s “ 0 since EX|VrK3s “ 0.

C.3.2 Derivation of Iβ1θ˝
and Iθ˝θ˝

When β1 “ op1q, we have Sθ˝ “ B log Lθ{Bθ˝ and Sθ˝pϑq “ B logLppϑq{Bθ˝ given by

IpZ0 “ 1q

„

Sθ˝ `
B log F1

Bθ˝

ȷ

` IpZ0 “ 2q

„

Sθ˝ ´
F1

1 ´ F1

B log F1

Bθ˝

ȷ

.

Hence, Iθ˝θ˝ “ ErSθ˝S
1
θ˝

s does not rely on the design rules of ∆. In addition, we have
Iβ1θ˝ “ ErSβ1pϑqS 1

θ˝
pϑqs given by

E
!”

IpZ0 “ 1q rMµ ` Λ0 exppµqs ` IpZ0 “ 2q

„

Mµ ´
F1

1 ´ F1
Λ0 exppµq

ȷ

ı

ErX|VsSθ˝pϑq

)

` E
!

IpZ0 P t1, 2uq∆MµSθ˝pϑqpX ´ ErX|Vsq

)

and the second component equals zero, so Iβ1θ˝ does not rely on ∆ either.

C.3.3 Derivation of Iβ1ηI´1
ηηIηβ1

We use a projection approach to find Iβ1ηI´1
ηη Iηβ1 . First, when β1 “ op1q,

Sηpϑq “IpZ0 “ 1q

”

∆Sη ` p1 ´ ∆qEX|VrSηs ´ EX|VrSηs

ı

` IpZ0 “ 2q

”

∆Sη ` p1 ´ ∆qEX|VrSηs ` EX|VrSηs
F1

1 ´ F1

ı

“∆IpZ0 P t1, 2uqSη.

as EX|VrSηs “ 0. We aim to project Sβ1 onto the linear span of all possible Sη (Tao et al.,
2020). Note that given W, IpZ0 P t1, 2uq is known. Let

S˚
η “ ∆IpZ0 P t1, 2uqJpX,Wq

with Sβ1 ´ S˚
η orthogonal to this linear span, JpX,Wq is solved by

ErSηSβ1s “ ErSηS
˚
η s.
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Specifically,

SηSβ1 “∆Sη ˆ

!

IpZ0 P t1, 2uq∆MµpX ´ ErX|Vsq

`

ˆ

IpZ0 “ 1q rMµ ` Λ0 exppµqs ` IpZ0 “ 2q

„

Mµ ´
F1

1 ´ F1
Λ0 exppµq

ȷ˙

ErX|Vs

)

.

We also have

ErSηSβ1s “EW,X

!

IpZ0 P t1, 2uqErMµ|∆ “ 1,WspX ´ ErX|VsqEr∆|WsSη

)

` EW

!

«

IpZ0 P t1, 2uqErMµ|∆ “ 1,Ws ` E

„ˆ

IpZ0 “ 1q ´ IpZ0 “ 2q
F1

1 ´ F1

˙

Λ0 exppµq

ˇ

ˇ

ˇ
W

ȷ

ff

ˆ ErX|VsEr∆|WsErSη|Ws

)

“EW,X

!

IpZ0 P t1, 2uqEr∆|WsErMµ|∆ “ 1,WsSηpX ´ ErX|Vsq

)

.

(C.3.3)
And

SηS
˚
η “ IpZ0 P t1, 2uq∆SηJpX,Wq.

We have

ErSηS
˚
η s “E

!

IpZ0 P t1, 2uq∆SηJpX,Wq

)

“EW,X

!

Er∆|WsSηIpZ0 P t1, 2uqJpX,Wq

)

.
(C.3.4)

By comparing formulas (C.3.3) and (C.3.4), we obtain

JpX,Wq “ErMµ|∆ “ 1,WspX ´ ErX|Vsq.

Therefore,

Sβ1S
˚
η “∆JpX,WqSβ1

“∆JpX,Wq

!

IpZ0 P t1, 2uqMµX `

ˆ

IpZ0 “ 1q ´ IpZ0 “ 2q
F1

1 ´ F1

˙

Λ0 exppµqErX|Vs

)

Then Iβ1ηI´1
ηη Iηβ1 “ ErSβ1S

˚
η s is given by

EW,X

”

IpZ0 P t1, 2uqEr∆|WsJpW, Xq2
ı

“EW

#

IpZ0 P t1, 2uqEr∆|WsErMµ|∆ “ 1,Ws2VarpX|Vq

+ (C.3.5)
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C.3.4 Design efficiency when β1 “ op1q

We rewrite Vβ1 defined in (C.3.1) as I∆
β1β1 ` I0

β1β1 ´ Iβ1θ˝I´1
θ˝θ˝

Iθ˝β1 ´ Iβ1ηI´1
ηη Iηβ1 . The

components I0
β1β1 and Iβ1θ˝I´1

θ˝θ˝
Iθ˝β1 does not depend on ∆. Given formulas (C.3.2) and

(C.3.5), I∆
β1β1 ´ Iβ1ηI´1

ηη Iηβ1 , the component depending on ∆, is given by

EW

!

IpZ0 P t1, 2uqEr∆|WsVarrMµ|W,∆ “ 1sVarpX|Vq.
)

. (C.3.6)

An optimal sampling rule of ∆ would maximize (C.3.6) so to minimize the variance of β̂1,
“

I∆
β1β1 ` I0

β1β1 ´ Iβ1θ˝I´1
θ˝θ˝

Iθ˝β1 ´ Iβ1ηI´1
ηη Iηβ1

‰´1
.

With the combined prevalent cohort data, formula (C.3.6) suggests we select subjects with
the largest and the smallest values of MµVarpX|Vq

1{2.
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Table C.1: Full data analysis using partial likelihood when Assumption 3 is violated:
estimation results, including empirical bias (BIAS, ˆ 100), empirical standard
deviation (ESE), average sandwich standard error (ASE) and covarage probability
(ECP), are summarized over 1000 replicated samples with N1 “ N2 “ 1000,
β2 “ 0.4, and ORpX,V q “ 2.

100P pδ2 “ 1|Z0 “ 1q “ 10 100P pδ2 “ 1|Z0 “ 1q “ 30

exppνq TRUE BIAS ESE ASE ECP BIAS ESE ASE ECP
pβ1, β3q “ p0, 0q

1.2 α0 -3.55 -9.08 0.17 0.18 0.95 -5.92 0.14 0.13 0.94
β1 0 0.38 0.10 0.10 0.94 0.17 0.09 0.09 0.93
β2 0.4 1.11 0.13 0.13 0.96 -0.08 0.09 0.09 0.97
β3 0 1.00 0.05 0.05 0.96 1.01 0.04 0.04 0.96

pβ1, β3q “ p0, 1q

α0 -6.51 -15.38 0.34 0.33 0.94 -4.13 0.21 0.21 0.95
β1 0 1.16 0.10 0.10 0.93 0.61 0.09 0.09 0.94
β2 0.4 0.68 0.11 0.11 0.95 -0.11 0.09 0.09 0.92
β3 1 3.05 0.09 0.09 0.94 0.50 0.06 0.06 0.96

pβ1, β3q “ p0.7, 0q

α0 -3.61 -10.14 0.18 0.17 0.93 -6.6 0.13 0.13 0.92
β1 0.7 2.21 0.10 0.09 0.94 1.42 0.09 0.08 0.94
β2 0.4 1.55 0.13 0.13 0.95 0.36 0.09 0.09 0.94
β3 0 1.15 0.05 0.05 0.94 0.98 0.04 0.04 0.95

pβ1, β3q “ p0.7, 1q

α0 -6.58 -14.02 0.32 0.32 0.94 -4.34 0.20 0.20 0.95
β1 0.70 2.09 0.10 0.09 0.95 1.08 0.09 0.09 0.96
β2 0.4 0.93 0.12 0.11 0.94 -0.05 0.09 0.09 0.92
β3 1 2.67 0.08 0.08 0.95 0.60 0.06 0.06 0.95

pβ1, β3q “ p0, 0q

1.5 α0 -3.35 -17.5 0.17 0.18 0.88 -11.81 0.12 0.13 0.90
β1 0 0.18 0.10 0.10 0.95 -0.09 0.09 0.09 0.94
β2 0.4 1.82 0.12 0.13 0.95 -0.29 0.09 0.09 0.97
β3 0 1.49 0.05 0.05 0.96 1.64 0.04 0.04 0.95

pβ1, β3q “ p0, 1q

α0 -6.29 -34.09 0.32 0.32 0.84 -11.25 0.20 0.20 0.92
β1 0 0.11 0.09 0.10 0.95 0.14 0.09 0.09 0.95
β2 0.4 2.72 0.11 0.11 0.94 1.00 0.09 0.08 0.95
β3 1 6.81 0.08 0.09 0.9 1.51 0.05 0.06 0.95

pβ1, β3q “ p0.7, 0q

α0 -3.42 -17.43 0.18 0.17 0.82 -11.7 0.14 0.13 0.86
β1 0.7 4.57 0.09 0.09 0.93 2.39 0.08 0.08 0.94
β2 0.4 1.86 0.13 0.12 0.95 -0.67 0.10 0.09 0.94
β3 0 1.41 0.05 0.05 0.94 1.60 0.04 0.04 0.94

pβ1, β3q “ p0.7, 1q

α0 -6.35 -28.55 0.3 0.3 0.87 -9.74 0.20 0.20 0.92
β1 0.7 3.38 0.10 0.09 0.93 1.50 0.09 0.09 0.95
β2 0.4 1.73 0.11 0.10 0.96 -0.01 0.09 0.08 0.94
β3 1 5.42 0.08 0.08 0.91 1.28 0.06 0.05 0.93
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