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Abstract

Models of cognitive architecture can be used to simulate and forecast human perfor-
mance in complicated human-machine systems. The current work demonstrates a pilot
model capable of performing and simulating pre-flight preparation and take-off duties. The
model was developed using the Queueing Network-Adaptive Control of Thought-Rational
(QN-ACTR) cognitive architecture and can be connected to flight simulators like X-Plane
to create various data types such as performance and mental workload. Declarative knowl-
edge chunks, production rules, and a collection of parameters all contribute to the model’s
output. A human experiment involving pre-flight and take-off tasks was conducted to
acquire the data required for the model’s development. At the moment, the model can
generate flight operation behaviors that are comparable to that of human pilots. By com-
paring model data to human data, it was demonstrated that QN-ACTR may be utilized
to develop a multi-task model that accurately simulates pilot behavior. With further re-
finement, including support for situational awareness simulations, such models may help
to evaluate interfaces and competency-based pilot training, complementing human-in-the-
loop (HITL) experiments in aviation research and development.
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Chapter 1

Introduction

1.1 Background and Motivation

With the rapid growth of the economy and rising living standards, civil aviation passen-
ger planes play an increasingly essential role in our everyday lives as a modern mode of
transportation. Simultaneously, civil aviation safety has taken precedence. Even though
passenger aircraft service is the safest kind of public transportation, it has the highest
average single accident mortality of any mode of public transportation [34].

Weather, human error, Air Traffic Control (ATC), and mechanical or electrical system
failures are the most common causes of civil aviation passenger aircraft accidents [51]. The
majority of aviation accidents, particularly fatal ones, are caused by human causes. Ac-
cording to the data, human causes were responsible for 80 percent of all aviation accidents
in 2012. This figure increased to 83 percent in 2013 and 94 percent in 2016 [30]. Numerous
studies demonstrate that, as the aircraft operator, the pilot’s demeanor and professionalism
have a significant impact on the plane’s flight safety.

With a growing awareness of the impact of human factors on flight safety, an increasing
number of scientists and psychologists are analyzing pilots’ cognitive processing and behav-
ioral operations and developing theoretical and practical cognitive and behavioral models.
Simultaneously, an increasing number of national governments and organizations recognize
the critical nature of aviation safety, and aircraft manufacturers are constantly enhancing
existing control and warning systems and incorporating new technologies. The Federal
Aviation Administration (FAA) and the European Aviation Safety Agency (EASA) have
begun developing a variety of new civil aviation management systems aimed at adapting to



the rapidly growing number of aircraft and passengers in order to improve aviation safety,
including NextGen [22] and Air Traffic Management (ATM) Master systems [20]. As a
result, validating and ensuring the safety of these technologies has become critical.

Pilot training is another critical human factor in aviation. Pilot training, as it is now
practiced, is highly reliant on human instructors and the usage of real aircraft. Human
evaluators assess pilot skill and training progress, which is quantified in terms of flight time
[38]. A dearth of computational models capable of simulating pilot performance and skill
development exists. These models can aid in the construction of intelligent tutors for pilot
training by providing skill tracing and scheduling optimization.

Additionally, if validated, simulation models can be used to aid in aviation research
and interface design evaluation by generating simulated pilot performance data without
HITL trials. Numerous what-if scenarios and potentially dangerous circumstances can be
analyzed and anticipated using model simulation [10].

In summary, by simulating and analyzing pilot cognition and behavior, these models
contribute significantly to the prediction and reduction of flight accidents, the enhancement
of flight safety, the development of autopilot systems, the assistance of pilot training, and
the post-analysis of flight accidents.

1.2 Research Contribution

Over the last few decades, some research has been undertaken on pilot behavior and per-
formance. This includes the Human Performance Model (HPM) developed on the basis
of Air Man-Machine Integrated Design and Analysis System (Air-MIDAS) [19], which is
used to analyze and predict human pilot error; the cognitive model developed on the ba-
sis of the Adaptive Character of Thought-Rational (ACT-R) structure [12], which is used
to analyze possible pilot error when controlling an aircraft during taxiing; a model de-
veloped on the basis of Traffic Organization and Perturbation Analyzer (TOPAZ) and
Air-MIDAS to investigate the relationship between pilot behavior and aircraft accidents
[15]; an Sociotechnical GOMS (SGOMS) model for analyzing pilot behavior [19]; and a
Cognitive Architecture for Safety Critical Task Simulation (CASCaS) model for analyzing
the interaction between pilots and the cockpit and how that interaction can effect pilot
performance [29]. The relevance of these models is primarily to reduce pilots’ human er-
ror through behavior analysis, hence increasing flying safety. Additionally, similar models
such as the Improved Performance Research Integration Tool (IMPRINT) model [26], the
Airport Surface Detection Equipment, Model X (ASDE-X) model [53] and the SimPilot



model are used to evaluate pilot behavior [13]. These models create a variety of data kinds
by simulating pilot behavior and comparing it to experimental data collected from human
pilots in order to determine their performance.

Although several prior research reported on the construction of pilot behavior simula-
tion models, the majority of these studies were funded by the military, and the models are
not publicly available. There are insufficient recent data and reports to assess the present
state of earlier models, and no open sources of computer simulation models exist to facili-
tate public research and analysis in the field of civil aviation. According to the information
that can currently be accessed, the majority of models are incapable of being compared
to and analyzed against human experimental data. They do not perform in-depth study
on situation awareness and cognitive structure, such as the links between visual attention,
memory, and motion in pilots. All models fall short of proposing a demonstrable mecha-
nism of production. Additionally, only a few can be connected to a flight simulator. As
a result, I intend to address this research gap by designing a model to aid in public civil
aviation research, with a particular emphasis on the pilot’s cognitive process and situation
awareness.

To summarize, I intend to employ QN-ACTR to develop a pilot behavior model that
will fill a vacuum in this field of research. QN-ACTR has been shown in earlier studies
to construct human-like models and replicate situational awareness as a mature cognitive
architecture. Simultaneously, the model will be enhanced to handle a variety of missions
and aircraft types.

1.3 Outline

Chapter 2 analyzes and summarizes many existing pilot behavior models, which serve as
a guide for our research.

Chapter 3 introduces a human experiment for pre-flight and take-off operations. Mul-
tiple human data sets are acquired in order to create the model. Additionally, situational
awareness and mental workload are measured briefly.

Chapter 4 discusses the model’s details for the pre-flight and take-off procedures. It
describes the cognitive structure and production principles upon which the model is based,
as well as its performance in comparison to acquired human data.

Chapter 5 discusses the model’s performance and limitations, as well as future work
that could be done to improve it.



Chapter 2

Previous Human Performance
Models 1n Aviation

This chapter covers and reviews recent research on pilot behavior and human performance
models that are aimed at enhancing flight safety and minimizing human error. More
precisely, this review introduces several models of pilot behavior and performance. It
presents their findings regarding the prediction and prevention of human errors at various
stages of flight using a variety of model architectures and frameworks, including ACT-R,
Man-machine Integrated Design and Analysis System (MIDAS), TOPAZ, and IMPRINT.
The majority of these systems are aimed at simulating all human tasks and have been
utilized to imitate pilot performance in aviation. Additionally, some models are connected
to a flight simulator and are used to operate the aircraft by modeling the pilot’s actions,
thereby providing theories and methods for minimizing human error. To begin, several
well-known and widely-used model architecture will be discussed.

2.1 The Nature of Human Performance Model

The HPM is a technique for assessing human behavioral and cognitive characteristics.
It is typically used to replicate human behavior in a specific environment in order to
conduct human factors research [15]. Today, HPM is widely employed in a variety of
disciplines due to its effectiveness when sufficient knowledge and data are available [15].
HPM has played a critical role in civil aviation, particularly in the research of the impact
of human factors on flight safety. Due to the exceedingly low likelihood of flying accidents,



researchers often struggle to collect significant data when analyzing pilot errors in the field
and laboratory. Nonetheless, with a sufficiently accurate HPM simulation, findings and
data can be gathered that are congruent with reality. Additionally, while HITL simulations
can provide more realistic data, they can be costly and time consuming, and they cannot
test large-scale behaviors [53]. However, HPM has a number of important drawbacks.
For instance, airplane operation is quite complicated, since numerous elements must be
addressed, which is not easy to perform. Thus, the majority of HPMs can model only a
portion of the flight process, but not all. National Aeronautics and Space Administration
(NASA) selected five modeling teams in 2005 to build human performance models for
taxi operations and runway instrument approaches with and without enhanced displays
[18]. Each team made use of a unique modeling architecture. NASA expects that these
models will be able to forecast and prevent human error, hence increasing flight safety.
The majority of models are built on top of cognitive architectures such as ACT-R and
CASCaS. However, models are also constructed using predefined predictive methods that
incorporate perceptual and cognitive features, such as Human Information Processor Model

with Goals, Operators, Methods, and Selection Rules (GOMS), SGOMS, and MIDAS.

2.2 Previously used cognitive architectures and frame-
works

2.2.1 ACT-R

J. R. Anderson pioneered the ACT-R concept in 1993 [2]. It is currently widely used as a
high-level cognition model in a variety of modeling fields, including memory and attention
control, cognitive neuroscience, and other difficult activities [5]. It has since established
itself as one of the most well-known cognitive architectures. As a computational cognitive
architecture, it has been demonstrated that it is capable of modeling human cognition
through the interaction of lower-level psychological processes when applied to pilot and
driver behavior models [10], [10]. ACT-R excels at interacting with the external world in
real time to evaluate performance models, such as those generated by other HITL simula-
tions or field testing. ACT-R is often composed of declarative knowledge and particular
procedural knowledge acquired through external input [5]. For pilot performance models,
these data are typically provided by pilots, aviation specialists, aircraft manufacturers,
or airline firms. Chunks are utilized in the ACT-R paradigm to store declarative knowl-
edge and objects in the environment. Procedural memory, on the other hand, is expressed



through production rules. Changes in mental state, visual movement, and motor movement
are all examples of common production laws.

2.2.2 CASCaS

The CASCaS, developed as part of the Model-Based Analysis of Human Errors During
Aircraft Cockpit System Design Project (HUMAN Project), is a novel cognitive struc-
ture for simulating human (or, more precisely, pilot) cognitive processes [31]. As with
prior cognitive architectures such as ACT-R, this design is built of two components: a
general cognitive architecture unrelated to the current activity and a formal architecture
connected to the current activity (such as flight procedures and traffic laws). I will not
reiterate the model’s other components, which are comparable to those of other widely
used cognitive models. This slightly modified version of the ACT-R model is capable of
predicting probable errors caused by routine learning (Learned Carelessness) and attention
allocation (Selective Attention) [32]. I shall return to these two sections in greater detail
later. CASCaS classifies human behavior into three categories: skill-based, rule-based, and
knowledge-based.

Similarly, these three behavioral categories are induced by three distinct levels of cogni-
tive processing: autonomous, associative, and cognitive [32]. Independent level processes,
on the other hand, are often thought to create the most particular behavior, but any
complicated behavior or novel task requires cognitive level processes. According to this
hypothesis, CASCaS first evaluates the job objective and determines the processing level
based on parameters such as knowledge memory and perception of the external environ-
ment, and then processes and triggers various motors based on different rules.

2.2.3 IMPRINT

The US Army created the IMPRINT for modeling human performance. IMPRINT is
typically used to model the cognitive effort of persons doing a complex task or event and to
assess their performance [39]. An IMPRINT model is constructed from a modest amount of
data that can be accessed publicly on the US Army’s official website. It incorporates tasks,
nodes, entities, control flow, and other variables. Although the vast majority of published
research projects utilizing the IMPRINT paradigm are applied to military applications,
there are a few notable exceptions, such as civil aviation. In the civil aviation industry, an
IMPRINT model is frequently coupled with an ACT-R model. The IMPRINT model can
be used to represent the external environment, the state of the aircraft, and other aircraft



components. The ACT-R model is used to replicate a pilot’s cognitive state [15]. Due to
the fact that IMPRIN'T is built of various modules and parameters, the state of the aircraft
can be easily altered by simply adding and deleting modules and parameters in order to
determine the effect of these variables on human cognitive state and performance [15].

2.2.4 MIDAS

Since 1986, NASA Ames Research Center has used the MIDAS to forecast human-system
performance in a variety of research disciplines [17]. MIDAS is a dynamic, integrated
modeling and simulation environment for human performance that enables the design, vi-
sualization, and computational evaluation of complex human-machine system concepts in
simulated operating contexts [21]. MIDAS simulates human behavior by receiving and
comprehending data from the external environment, storing it in memory, matching it to a
known procedural representation of the relationship between human behavior and external
data, and finally executing it [22]. A MIDAS is typically comprised of three components:
input, output, and processing. The external environment, tasks, and behavior models com-
prise the input portion. The processing section consists of a task management model and a
procedural model of basic human behavior. The output section contains information about
the model’s current state of operation and quantifiable performance metrics. By modeling
the operator, operating system, and external environment, the MIDAS model can perform
a quantitative and visual analysis of a series of complicated interaction events. MIDAS has
been demonstrated in the aviation industry to be capable of designing systems, simulat-
ing hypothetical occurrences, evaluating human performance, forecasting pilot behavior,
simulating pilot cognitive processes, and conducting other sophisticated experiments [15].

2.2.5 SGOMS

SGOMS, presented by West and Roberts in 2011, is a methodology for establishing a hier-
archical control structure within ACT-R to address agent performance in macro-cognitive

tasks [50]. As an expansion of GOMS, SGOMS employs a hierarchical control framework,
which includes modules for production, motor, visual, and auditory processing. Control
is implemented hierarchically via planning unit, unit task, and operator buffers [50]. Op-

erators represent low-level cognitive processes and motor commands, and motor operators
can be triggered when the output of the motor module matches the output of the operator
buffer [50]. On the other hand, the unit task exerts the most influence over the scheduling
of sub-methods and sub-operators; a unit task can be a collection of actions that are either



not interruptible or are intended to be interrupted [50]. A planning unit is a collection of
multiple-unit tasks with their own dedicated buffer, which will be executed in the sequence
determined by the buffer [50]. Due to the properties of SGOMS, it is easier to construct
an expert or macro threaded cognition model based on SGOMS compared to the threaded
cognition model introduced by Salvucci and Taatgen [50], [12].

2.2.6 TOPAZ

The TOPAZ is a stochastic analysis framework for assessing the safety of ATM. It supports
stochastic models with discrete and continuous variables that change in real time [3].
This model can be used to describe the effect of variables that may cause deviations or
uncertainty on the overall system’s performance and to forecast potential mishaps. A
TOPAZ model may include several critical agents, such as the pilot’s perception, flight
status, and current mission; the relationship between different agents, such as the effect
on other agents when one agent’s status changes; and the mode and other characteristics
of agents, such as the status and duration of a task. By running the model with the
Monte Carlo approach and providing a large number of random agent-agent interactions,
the chance of accidents can be determined under various situations based on the result
[8]. Due to this property, the TOPAZ model is capable of simulating highly rare events.
TOPAZ is primarily used to determine the likelihood of an aircraft colliding in specific
conditions (such as runway incursions). Numerous investigations have established that
some variables have a significant role in collision accidents when a TOPAZ model is used.

2.3 Models focused on reducing human error

The majority of currently funded research focuses on the impact of human factors on the
aircraft taxiing and approach/landing phases. Verma et al. proposed an HPM based on
Air-MIDAS in 2003 that emphasized human error analysis and prediction [19]. Due to
the model’s foundation in the Air-MIDAS, it is capable of assessing pilot performance in
terms of human memory, attention, and conduct. However, because the original MIDAS
model is incapable of analyzing the current state of affairs in real time, the authors made
adjustments. Simply put, they assign a value to each task and prioritize them depending
on the sum of the values assigned to current tasks. Assume that the resources necessary to
complete the current jobs are unavailable, or that the overall number of tasks exceeds the
operator’s processing capacity, the work will be postponed or suspended in this scenario.
Each time unit has a predefined amount of executable tasks (usually one second). The
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authors utilized this model in the experiment to simulate two planes attempting to take
off and invading the runway. They used GOMS to dissect the captain’s and co-pilot’s
behavior during the two planes’ takeoffs and landings. Simultaneously, the pilot’s present
visibility and any variables affecting his or her eyesight are established. When neither
aircraft detects the other, it is assumed that an error has occurred. Experiments indicate
that in the majority of circumstances, the taxiing aircraft can detect an airplane taking
off or responding to ATC directions in a timely manner. Only 10 percent of the time does
the aircraft abort take-off due to reaching take-off speed in other conditions [19]. Due to
a dearth of HITL simulations, the model’s accuracy relative to the fundamental human
reaction is unclear, but the author remains optimistic [19].

Bryne et al. published a computational model of a closed-loop, pilot-display-plane
system in 2004 to assess the influence of a Synthetic Vision System (SVS) on approach
and landing stages in a commercial aircraft, which had a significant impact on a number
of later studies [12]. The experiment as a whole was separated into two sections. To begin,
they instructed the pilots to perform a flight simulator simulation of the plane’s landing.
They recorded their eye movements both with and without the SVS system to determine
their attention distribution during the landing procedure. Then, in the second half, they
replaced the human pilot with the created ACT-R model and repeated the experiment on
the flight simulator. The experimental results indicate that when the SVS is turned on
and off, the pilot’s attention distribution changes dramatically in both the HITL simulation
and the ACT-R model simulation experiment. Regardless of whether the pilot’s attention
is focused on the SV'S or on the world outside the window, professional pilots’ performance
does not vary significantly [19]. In other words, the SVS system has no impact on the
pilot’s performance during the landing procedure or on the aircraft’s ability to land safely.

Brune and Kirlik developed another closed-loop pilot model in 2005. It is a pilot-
aircraft-visual-scene-taxi-way system that is focused on various sources of taxi error and
implemented using ACT-R [I1]. Once the pilot-related knowledge is imported into the
ACT-R model, the model can make real-time decisions depending on the external en-
vironment and operate the simulated aircraft in the flight simulator under the Taxiway
Navigation And Situation Awareness (T-NASA) scenario. This experiment follows the
same procedure as the SVS experiment stated previously and is similarly separated into
two parts. To begin, each of the 18 crews was evaluated in this scenario through three
distinct routes, totaling 54 trails. At Chicago O’Hare Airport, pilots conducted an ap-
proach and landing procedure before taxiing to the gate. The model then replicated the
process under the identical scenario. Due to ACT-R’s lack of multitasking capabilities, this
model emphasizes decision making, with control performance being a secondary objective
[11]. In this situation, twelve decision mistakes were identified. The research discovered



that the choice error made by pilots in the T-NASA scenario while taxiing after landing
is primarily due to a complicated external environment, including as weather, timing, and
ATC communication [11].

Corker et al. (2006) proposed a method for evaluating the probability of aircraft acci-
dents in 2006 by merging the Air-MIDAS and TOPAZ models [15]. As I previously stated,
the MIDAS model is an HPM that, by modeling human behavior, can quantify and visu-
ally assess a complicated interaction event. In comparison, the TOPAZ model can mimic
a difficult interaction event by randomly modifying the event variables, and the resulting
simulation results can be utilized to determine their influence. By combining these two
models, the impact of the pilot’s individual operations on the aviation accident may be
evaluated in greater detail, in this case, the aircraft collision caused by the runway invasion.
The experiment detailed in this article used two planes on two parallel runways, one at-
tempting to take off and the other attempting to taxi. Due to the properties of Air-MIDAS
and TOPAZ, they were utilized in the experiment to replicate pilot behavior and cognitive
processes, as well as the effect of numerous external environment variables on the runway
incursion accident. By recording and analyzing whether the pilot can abort take-off or
stop taxiing in time, as well as the corresponding reaction time, the results demonstrate
that the TOPAZ model based on Air-MIDAS can reduce collision risk by twofold compared
to the original TOPAZ model, demonstrating that coupling these two models is effective
and feasible [15]. Additionally, because the presence of Air-MIDAS lessens the likelihood
of collision and Air-MIDAS more precisely simulates the pilot’s conduct and ATC orders,
this experimental result can be used to highlight the crew’s and ATC’s impact on the crash
from the side [15].

Frische et al. introduced a novel methodology in 2009 for detecting possible pilot
errors during flight [19]. By comparing the pilot’s actual performance to the projected
performance, this model can evaluate if the pilot’s operation can be regarded a mistake.
To analyze the expected performance, the current task is divided into many subtasks
depending on time and hierarchical linkages. This model is structurally similar to the
GOMS model (refer to SGOMS section). To determine whether the pilot accurately detects
his or her own errors, a considerable amount of human pilot data must be provided. Based
on real-time human data and synchronously simulated flight state, an error type checking
unit will determine whether the pilot’s actions were missed or delayed. If this activity fits
specific criteria, such as being required to complete the current task, it may be considered
an error. However, some low-level faults are impossible to identify correctly, and it is
insufficient to cover all parts of standard flight operations [19].

In the same year, Liidtke et al. developed a novel cognitive model for reducing human
error in safety-critical assistance systems, which was ultimately dubbed CASCasS [29]. The
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authors used CASCaS to develop a pilot performance model in order to assess its suitability
for modeling pilot cognitive processes. I will only discuss two relatively new notions in this
section, which I mentioned previously: Learned Carelessness (LC) and Selective Attention
(SA) [29]. During the flight, the pilot may purposefully disregard certain acts on the
checklist to boost his self-esteem, such as neglecting hitting a button at a specified time,
despite the fact that it should be encouraged. This type of surgery is referred to as LC.
While many LCs may not pose a threat to aviation safety, they should nevertheless be
deemed mistakes. The notion of SA was established to avoid the occurrence of LC. The
authors previously discovered that some visual stimuli (such as light flashing) can impair
operators’ cognitive functioning. They discovered that certain types of light effects can
influence the pilot’s cognitive process and lower the amount of LCs [29]. One such effect is
the flashing pattern of the autopilot switch when it is disabled throughout the flight. I feel
that both the LC and SA approaches will be critical in future research on pilot performance
and cognitive models.

Later, Liidtke et al. created an HPM that focuses on simulating the interaction be-
tween the flight crew and the cockpit interface and evaluating the new system’s effect on
pilot performance [28]. NASA’s paper demonstrates that models based on ACT-R, IM-
PRINT, Air-MIDAS, and other structures can be used to forecast and evaluate certain
pilot performance characteristics. They are, nevertheless, insufficient to cover all facets.
The scientists hoped that by enhancing the present CASCaS model, they could more ac-
curately and widely forecast human errors caused by LC and SA. Two distinct scenarios
are developed; each scenario contains a variety of difficult flight duties, such as cruise, ap-
proach, and final approach. The flying time for each scenario is roughly 30 minutes. The
researchers ran hundreds of simulations and collected three types of data from the model:
gaze behavior, such as gaze distribution and duration; temporal behavior, such as task
execution time and reaction time; and human error analysis, such as detection of omission
and commission errors [28]. Similar to most other models, this model cannot be confirmed
to imitate human behavior and cognitive patterns effectively due to the lack of human
data. The authors thoroughly assessed the model’s performance using the recorded data
and concluded that additional HITL simulations should be done in the future to verify the
model.
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2.4 Models focused on simulating or evaluating hu-
man performance

In this section, I will discuss some models that are used to forecast pilot behavior and
simulate human pilot performance.

As another critical component of the NASA HPM effort, Lebiere et al. proposed an-
other HPM technique based on the ACT-R and IMPRINT models in 2003 [26]. The
ACT-R model is primarily responsible for replicating pilot cognition and behavior during
the aircraft’s landing phase. The IMPRINT model mimics the aircraft’s status through-
out the landing phase, as well as the external environment, which includes weather, ATC
instructions, and airport layout. To make this model as universal as feasible, the authors
modularized it extensively, allowing it to be used to various stages of flight [26]. The authors
utilized this model to recreate the complete landing procedure of a Boeing 757 airplane
with or without the SVS system. They evaluated the model’s validity using five parame-
ters: procedural (rule execution) speed, visual (eye movement) speed, aural (hearing and
speaking) speed, manual (hand movement) speed, and activation noise (decision-making
stochasticity) [26]. Due to a lack of pilot data and individual variances in available pi-
lot data, the experimental outcome can only demonstrate that this HPM can do tasks in
the same manner as a human pilot. Nonetheless, it is unable to establish that this HPM
is equivalent to human pilots. Lebiere et al. conducted more large-scale testing on this
model in a subsequent paper released in 2005 [27]. They asked numerous pilots to engage
in the HITL simulation to practice some approach and landing procedures in the T-NASA
scenario, which was discussed before in this review, and used the HPM to mimic the same
state of affairs. They discovered that: the HPM simulation results are consistent with the
HITL simulation in all scenarios; even though the HPM simulation did not complete (or did
so with a delay) some necessary actions during certain stages of the approach and landing
(such as descending), HPM still completes all actions in the majority of scenes; and there
is a significant difference between the eye movement data from the HPM simulation and
the HITL simulation [7]. T concur with the author’s conclusion that an adequate model
may be used to mimic a pilot flying an aircraft and to forecast the pilot’s behavior and
cognition in a particular environment, as well as the aircraft’s flight condition.

Zemla et al. (2011) created an ACT-R model of commercial airplane taxiing in 2011
[53]. This model was originally created to evaluate ASDE-X, a novel integrated positioning
technology for the Next Generation Air Transportation System (NextGen) developed by
the FAA by simulating pilots commanding aircraft in a flight simulator. The purpose of
this model is to demonstrate how NextGen can assist enhance the efficiency of ground
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transportation management while also reducing congestion and airport ground safety [1].
However, following the trial, the author argued that ATC commands may be delivered as
digital data in the future, reducing the pilot’s reliance on working memory and making the
taxiing process safer. The experimental results demonstrate that this ACT-R model can
be employed in place of humans in typical HITL simulations and provide same or similar
experimental outcomes [53].

A highly simulation-based model is required to forecast the performance of pilots taxiing
on the ground from the gate to the runway under a variety of conditions and external
settings [11]. Schoelles and Gray (2011) described a model based on ACT-R 6.0 called
SimPilot [11]. This model is intended to predict and avoid runway incursions, a common
cognitive and situational awareness-based event. This model, which incorporates ACT-
R and multi-threaded cognition, is connected to a flight simulator and replicates multi-
task processing while taxiing on the ground, such as interacting with ATC, managing the
aircraft’s rudder and throttle, and detecting the external surroundings. Following that,
the author discovered that, due to the complexity of the flight simulator, the model was
unable to establish a reliable link with it, rendering it impossible to completely imitate the
behavior and cognition of a human pilot [13].

Klaproth et al. presented an ACT-R model in 2019 to determine if a pilot followed the
proper actions when confronted with aircraft alerts or alarms [25]. Pilots are not always
able to respond to aircraft alerts due to the complexity of aircraft control systems. Even
said, pilots will occasionally purposefully disregard notifications they deem unimportant.
As a result, it is vital to examine whether pilots responded appropriately to signals and to
enhance response effectiveness. In the experiment, the model was connected to the pilot’s
Electroencephalogram (EEG) and a flight simulator. It determines whether an alert exists
by evaluating the pilot’s EEG signals, then retrieves aircraft status data from the flight
simulator (such as airspeed and altitude), and finally replicates a human pilot’s response
to the alert. This trial had a total of 21 senior pilots. Each participant was exposed
to an 18-minute scene comprised of nine to fourteen incidents [25]. Each occurrence is
preceded by an alert or an ATC directive. All human pilots and the cognitive model have
their reactions recorded, including their reaction time and behavior. The authors assessed
the pilot’s and model’s response actions by comparing them to ATC communications and
standard checklists. Experimental results indicate that the cognitive aid model responds
more accurately to ATC directives and alerts than human pilots do [25]. Given that
how well alerts and ATC instructions are implemented has a significant impact on flying
performance and safety, I feel that this research has a profound impact on aviation safety.
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2.5 Other related models

This section examined numerous additional human performances and cognitive models that
were not specifically related to flying. I believe that with modest tweaks, these models can
be used to improve aircraft safety while also serving as a starting point for future study.

In 2004, Ball, Rodgers, and Gluck proposed this paradigm, which is centered on the
development of a language-enabled intelligent agent [6]. On the ACT-R architecture, a
language comprehension system is created, and a Cyc knowledge base offers basic language
knowledge. Although this model is not specifically designed to improve aviation safety, I
believe that by expanding the Cyc knowledge base and adding more flight-related terms, it
can increase the efficiency of non-native English-speaking pilots communicating with ATC
and reduce the possibility of miscommunication, thereby improving aviation safety.

When West and Roberts launched SGOMS in 2011, they combined an SGOMS model
with a commercial airliner’s landing technique [50]. Following the simulation, the author
discovered that, despite the complexity of the landing technique, this model can accurately
imitate the complete process of human pilots managing the plane. They anticipated that
by incorporating additional pilot rules and decision-making processes, the model might be
greatly enhanced.

Somers and West created a new ACT-R model of a single-engine propeller aircraft
take-off technique in 2013 [17]. In comparison to some of the other models discussed
in this article, this model utilizes a Simple Operating System (SOS) vision module and a
Motion Detection Vision System (MDV) to imitate the pilot’s vision system. SOS functions
identically to ACT-R’s declarative memory in that it places the object into the visual buffer
in response to a vision request. Due to the simplicity of SOS, after connecting to the flight
simulator, this model can easily observe the instruments and buttons in the cockpit [17].
Regarding the MDV system, it is based on research on retinal flow and intercepts the
flight simulator’s interface in real time using Python and OpenCV to recreate the pilot’s
observation of the aircraft’s exterior environment [17]. I believe that combining these
two technologies will significantly improve pilot behavior and human performance models’
abilities to gather visual information in the future.

2.6 Discussion

After removing models that were not directly related to human error and aviation safety
from the HPM I studied, I discovered that the majority of models did not properly as-
sess their validity. The experimental results demonstrate simply that they are capable of
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simulating pilot behavior in specified conditions. There are, in my opinion, various vi-
able explanations for this circumstance. To begin, numerous articles have been written to
demonstrate that it is possible to model human behavior and utilize it to anticipate and
analyze pilot performance. At the moment, there is little research aimed at validating or
enhancing the model’s precision. Second, because to a lack of human data, many models
used to examine accidents caused by human error cannot be compared to the real world.
For instance, an aviation collision mishap caused by runway incursion is extremely unlikely
to occur. Obviously, it is impossible to conduct a large number of simulations in the field.
While this is possible, it is also possible that the HITL simulation will be incomplete due
to limited financial support and time. Additionally, several data points about pilot perfor-
mance are difficult to quantify. Until now, there has been no widely accepted structural
system capable of quantifying and evaluating pilot performance. Additionally, certain data
on pilot performance are difficult to quantify. Until now, there has been no widely accepted
structural system capable of quantifying and evaluating pilot performance. Human error
is sometimes trivial but can be fatal in some circumstances; pilots whose native language
is English may understand ATC instructions more quickly and accurately, but this may
also be the case due to ATC’s accent. Finally, while some models replicate the pilots’ total
performance and compare it to human data gathered by HITL simulation or other sources,
they evaluated only a subset of the data, not all of the experimental data. I have cause to
believe that the non-public data may not be adequate.

To mitigate the influence of the aforementioned issues on HPM, I expect that future
related research will employ many model structures rather than simply one. For example,
SGOMS and MIDAS can more precisely separate and replicate the flight mission and the
pilot’s motions; ACT-R can be used to represent the pilot’s cognitive process, as it has
been extensively validated in the field of cognitive models. In my research, I intend to
model pilot behavior using a large quantity of experimental data in order to assure the
model’s accuracy and applicability, rather than simply remaining at the level of theoretical
analysis. Simultaneously, I will post all data collected on pilot behavior and data generated
by the model, something that has never been done before.

In general, due to the complexity of modern passenger aircraft structures and pilot
cognitive models, it is difficult to completely imitate a human pilot operating a modern
passenger aircraft using HPM. However, it is gratifying to know that by continuously
improving existing models and conducting additional research in this field, it is entirely
possible to develop a useful model for analyzing pilots’ behavior and cognitive patterns
and thereby increasing aviation safety by eliminating any potential human error.
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Chapter 3

Human Experiment of Pre-flight and
Take-off Procedures for Model
Development

Due to a dearth of published research on pilot behavior analysis and a scarcity of relevant
data for the model’s construction, I devised an experiment to collect human data for
critical model parameters. This includes, but is not limited to, the human pilot’s response
to various situations, the amount of time available for thought, observation, and reaction
during various operations, and the status of the aircraft in the flight simulator at various
times. The University of Waterloo’s Office of Research Ethics approved this study.

The Tustin-McRuer model was introduced in this section of the investigation. This
is the most generally used model of human pilot behavior, which Tustin proposed in the
1940s [18]. The model is now described more straightforwardly by the equation 3.1

F(s) =K - (Tls<f21§(;22)+ D ~exp(—Tys), (3.1)

where K is the pilot’s gain defined by the type of control, T, represents the time con-
stantly lead regarding the pilot’s experience, T} means the time lag constant related to the
pilot’s knowledge and routines, T, denotes the time constant of the neuromuscular system,
T, is the pilot response delay caused by brain and muscle, and s means the Laplace oper-
ator [35]. It is modified from another well-known model, McRuer and Krendel’s accuracy
model based on the Crossover law [33]. Typically, T, has a value from 0.1s to 0.5s, 75 has
a value of 0.1s, 7T}, has a value of 0.2s to 6.1s, and 7 has a value of 0.1s to 3.7s [21].
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This feature is beneficial for feedback on single-loop pilot-aircraft interaction in the
majority of studies, as illustrated in Figure 3.1 [33], [9], [23]. It concisely explains the
pilot’s relationship with the aircraft. The aircraft’s state will be displayed on the display
in real time, alerting the pilot via visual cues. After the pilot collects the information,
it passes it through the cognitive system’s processing and then executes the operation
provided to the system. The system output indicates the aircraft’s state.

System _

forcing Error Visual Pilot System

functi ) stimulus ) output output
e Display »  Pilot "5 Controller RN

Figure 3.1: Single-loop pilot-Aircraft interaction.

3.1 Participants

We recruited 18 undergraduate students from the University of Waterloo between the ages
of 18 and 24. They are currently enrolled students with extensive knowledge of the Region
of Waterloo International Airport and the Cessna 172SP aircraft. Participants have an
average of 68 hours of flight experience. Their physical differences were overlooked because
their education and training backgrounds were comparable, and they all passed the civil
aviation medical examination. They already have experience flying small propeller aircraft,
such as the Cessna 172SP, as student pilots. Not only that, due to their inexperience,
student pilots usually exercise extra caution and meticulously adhere to the checklist and
mandatory procedures when flying. It can assist in ensuring the consistency of the outcomes
I acquire. I offered $20 as an incentive for participation in this experiment, which will last
between one and two hours and will consist of two tasks in several circumstances, as well
as post-experiment questionnaires.

3.2 Hardware Devices and Software

The complete simulator system is composed of numerous displays and controllers (see
Figure 3.2), including a Logitech yoke and throttle quadrant, a Logitech rudder paddle,

17



a Logitech flight multi-panel, a Logitech radio panel, a Logitech flight switch panel, and
six Logitech flight instrument panels. Participants replicate real-world aircraft control by
interacting with the virtual cockpit’s components. Three 24-inch monitors are positioned
side by side to display the external surroundings. Volair Sim created the base, as well as
the chair. T attempted to recreate the Cessna 172SP environment as closely as possible,
but due to the compatibility of various devices, this is already the best presentation.

In terms of simulator software, I utilized X-Plane 11, as previously explained. X-Plane
11 works well with the equipment I use and requires less computer components (compared
to other similar software). I used built-in X-Plane’s Dataref function to keep track of the
aircraft’s status. Each 50 milliseconds, X-Plane uploads hundreds of pieces of information
about the aircraft to the record file. I conducted this investigation using a Cessna 172SP. I
utilized the replicated Cessna 172SP plugin produced by Airfoillabs in the flight simulator.
According to our consultations with pilot trainees, this plug-in provides an extremely high
level of simulation for the Cessna 172SP. It is capable of performing the majority of the
functions and capabilities of this model in reality. Additionally, I included a checklist
outlining pre-flight and take-off protocols (Appendix A). Each item is taken directly from
the pilot’s real-world checklist.

Apart from the simulator, I used ForeFlight, the most useful Electronic Flight Bag
(EFB) application in the real world, which runs on the iPad, and distributed it to the
participants. It includes Jeppesen’s most recent charts and navigation data, a source of
real-time flight data. Additionally, I will install the most recent navigation data offered
by Navigraph, a source of flight simulation navigation data based on Jeppesen’s data.
Jeppesen and ForeFlight are both owned by Boeing.

3.3 Experiment Design and Procedures

The experiment is divided into two phases: pre-flight and take-off. These two distinct
scenarios reflect the various stages of aircraft piloting. Before the trial began, participants
were emailed an information letter, consent form, and a pre-experiment questionnaire
containing demographic questions. Due to the COVID-19 problem, an additional COVID-
19 information letter was provided, and all participants underwent another COVID-19
screening to ensure they fit the study’s eligibility criteria.

Participants would be permitted to ask questions and the experiment would begin only
after they signed the consent form properly. Following their agreement to begin the exper-
iment, they were able to rehearse freely for ten minutes in a sample scenario that differed
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Figure 3.2: Devices used in the human experiment.
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from the actual scenario utilized in the experimental task. It assisted participants in be-
coming acquainted with the flight controllers and simulator. Following this preliminary
practice, I gave participants some sample instructions to check they could follow them and
do the task safely and accurately, just as they would if they were flying an actual aircraft.
Following the practice session, participants will complete two tasks sequentially: pre-flight
preparation and take-off procedures. Between those tasks, participants were given a 5-
minute rest. However, the gap may be prolonged or canceled without consequence based
on participant requirements.

All scenarios are based on a 9 a.m. arrival at Region of Region of Waterloo Interna-
tional Airport (CYKF). Two runways intersect approximately in the center of this airport.
Runway 08/26 measures 7003 feet in length, whereas Runway 14/32 measures 4103 feet in
length. Additionally, the airport features seven aprons. The weather is sunny and calm,
with a temperature of 24°C. The runways are completely dry, and visibility is excellent.
The pressure in the air is 29.92 inHg (QNE).

Task 1: Pre-flight preparation. The most crucial element of the trip is the pre-flight
preparation. Pilots must evaluate meteorological and aeronautical information that may
affect the flight, check the flight route, prepare the chart and flight plan, and ensure the
aircraft is ready to taxi and take-off during pre-flight preparation. Participants would
mostly adhere to checklists and take the needed activity. They will be responsible for
operating buttons and switches. The aircraft was initially parked at CYKF’s Apron 3.
Participants were asked to prepare a Cessna 172SP aircraft using the provided pre-flight
checklist (Appendix A), just as they would in real life. Participants were required to
monitor the aircraft’s state in real time and decide when to take the next action based on
their experience.

Task 2: Take-off procedures. The second portion required participants to fly the aircraft
to CYKF. Take-off is another critical component of the flight. Numerous flight disasters
occurred during take-off. Instead of buttons and switches, participants should concentrate
on managing the yoke, rudder, and throttle during the take-off operation. The aircraft was
scheduled to depart from CYKF on runway 08, rise to 4000’, and maintain a heading of 74°.
To ensure that the experimental results are statistically significant, no random events or
unknown variables such as aircraft mechanical or electronic malfunctions occurred during
the experiment. This indicates that individuals were unaffected by irrelevant occurrences
and provided more responses.

Throughout the test, I logged the flight simulator’s different data and condition, includ-
ing the aircraft’s location, airspeed, flap rate, and Euler angles, etc. Simultaneously, the
entire experiment is videotaped to document the start and end times, as well as the time
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interval between each action. Two cameras were used: one focused on the flight control
panel to record the participant’s hand movement, and the other on the overall panel and
displays. Throughout the trial, both video and audio recordings were made to examine
human performance and reaction time. Individually identifying characteristics (e.g., face,
body shape, gender, etc.) will not be intentionally recorded, and no recordings will be
disseminated or broadcast to the public.

Following each activity, I distributed two post-experiment questionnaires to the sub-
jects. One is a post-experiment situational awareness questionnaire (Appendix B), which
is used to assess participants’ situational awareness during the experiments; the other is
the NASA-TLX questionnaire (Appendix C), which is widely used to assess the level of
mental workload experienced by humans. Following the questionnaire, I asked participants
to provide any comments they had on the experiment, and they would receive a feedback
letter after the trial.

3.4 Results

3.4.1 Pre-flight Task

Given that the primary objective of our empirical research is to observe human behavior
and collect relevant data to aid in the model’s development, I recorded the detailed time
intervals during which participants performed checklist items and calculated multiple mean
values for 18 participants, as shown in Table 3.1.

When examining the time required for participants to complete the checklist’s many
parts, I separated each item into four sections: Reading, Checking, Action, and Others.
Reading denotes the time required for participants to read and comprehend the checklist;
Checking denotes the time required for participants to verify the current status of aircraft
components; Acting denotes the time required for participants to actually control aircraft
components; Other denotes the time required for participants to perform certain actions
which are not directly controlling the aircraft (e.g., wait for several seconds).

The results, particularly the mean and Standard Deviation (SD) for each segment,
indicate that participants took the longest time checking the status of aircraft components.
The SD of checking is greater than that of other operations. I believe there are two scenarios
in which this could occur. One is that because checking the aircraft components’ status is
the most critical portion of each checklist item, it takes longer for participants. Second, due
to the interface differences between the simulator and the real Cessna 172SP, and despite
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Table 3.1: Mean of human movement time interval for pre-flight task.

Mean of Time Interval (s)

Checklist Item Reading Checking Acting Other

Ignition Switch 1.88 1.88 N/A N/A
Avionics 0.6 1.06 N/A N/A
Master Switch 1.07 1 1.04 N/A
Fuel Level 1.31 2.62 N/A N/A
Flaps 1.32 1.49 1.25 N/A
Throttle 1.78 1.34 1.91 N/A
Mizture 1.26 0.94 N/A N/A
Beacon Light 1.57 1.37 1.14 N/A
Auziliary Fuel Pump 1.76 1.59 1.16 N/A
Mixture 1.75 1.19 0.63 N/A
(Wait 5 Sec) N/A N/A 0.56 5.28
Auziliary Fuel Pump 0.86 0.84 0.74 N/A
Ignition Switch 1.74 1.44 1.58 N/A
Mizture N/A 0.67 1.09 N/A
Ignition Switch Check N/A 3.27 0.67 N/A
Oil Pressure 1.85 3.87 N/A N/A
Awvionics 1.43 1.23 1.1 N/A
Mean 1.43 1.61 1.07 5.28

SD 0.39 0.9 04 N/A
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the fact that participants are allowed to rehearse for a specified length of time prior to the
task beginning, it may take some time for participants to locate aircraft components. I
believe that participants would not spend that much time on a real plane.

In comparison, the participants spent the least amount of time dealing with the airplane
components that had the lowest SD. The primary reason for this is that the overwhelming
majority of interactive items in this study phase are straightforward buttons or switches.
Interactions with non-button or switch-based controls (such as the mixture and throttle)
will take significantly longer.

3.4.2 Take-off Task

The take-off mission is designed to assess the participant’s continuous control of the aircraft,
which includes the yoke, pedal, throttle, and mixture. Because the time required to regulate
the aircraft’s attitude cannot be measured, I study the simulator’s flight data and controller
feedback and extrapolate human behavior from these facts. The most crucial data during
the take-off phase are the aircraft’s attitude, airspeed, and engine RPM. This section is
devoid of buttons and switches.

For task 2, I collected a variety of data from X-Plane, including airspeed, vertical
speed, altitude, controller input, engine RPM, pitch/roll degree, heading, and G load. The
simulator began recording automatically when participants pulled the yoke and stopped
recording when the aircraft reached 4000ft for the first time. To facilitate analysis and
interpretation, I separated the pilot data into four categories: rudder input and heading,
elevator input and pitch degree, aileron input and roll degree, and throttle and engine
RPM. Due to the volume of data collected, not all graphs can be included here. However,
Figure 3.3 illustrates four data sets from participant #1 using example graphs.

As with Task 1, I calculated the mean value of the data collected from X-Plane using
the 95 percent confidence interval for human input, such as elevator, aileron, and redder
(Table 3.2 and Figure 3.4). These data will be used to construct and evaluate subsequent
models.

3.4.3 Situational Awareness and Workload
As previously stated, all participants must complete a post situational awareness and a

mental workload assessment. To compare pre-flight and take-off tasks, a paired-samples
t-test was used (Figure 3.5). Even though there is no planning or design for situational
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Figure 3.3: Participant #1’s data measured and collected by X-Plane 11.

24

50 100 150 200 250
50 100 150 200 250
Time
T T T
50 100 150 200 250
T T T T
. . L L
50 100 150 200 250



Table 3.2: Mean of human airspeed, pitch/roll degree, heading, and total time for take-off
task.

Participants # Mean of Data
Airspeed Pitch Roll Heading Time
1 73.66 895  0.57 79.23 230.41
2 71.51 5.85 0.13 73.88 308.73
3 75.62 792 -0.16 75.15 233.05
4 63.73 7.89 047 84.47 286.62
5 77.04 8.29 0.3 72.43 226.31
6
7
8
9

65.84 7.36  0.08 72.06 309.77
74.84 8.66  0.63 72.93 230.12
68.01 10.38  0.19 73.46 235.07
74.11 8.89  0.02 78.54 229.57

10 69.18 10.08 0.23 73.72 231.21
11 73.97 8.89 0.3 77.23 230.48
12 72.44 5.65 -0.01 74.19 310.67
13 70.36 9.88  0.63 68.62 227.8
14 70.51 6.21 0.2 81.89 302.42
15 71.01 9.56 1.81 71.86 234.41
16 76.17 8.41  -0.05 69.73 223.95
17 70.12 9.92 -0.09 82.7 225.67
18 67.51 9 0.06 72.61 256.74
Mean 71.42 8.43 0.3 75.26 251.83
SD 3.67 142 0.45 4.47 34.11
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awareness at this level of the model’s development, I intend to learn about the pilots’
situational awareness and workload during the pre-flight and take-off processes in our
study.

Post SA Mental Workload
20 T T 50 T

Score

Pre-flight Take-off Pre-flight Take-off
Task Task

Figure 3.5: Human post-experiment situational awareness and NASA-TLX score for pre-
flight and take-off tasks. Error bars represent 95 percent confidence intervals.

The difference in situational awareness scores between pre-flight (M = 51, SD = 12.52)
and take-off (M = 80,S5D = 8.58) tasks was statistically significant; ¢(19) = —9.72,p <
0.001. There was also a significant difference in workload scores between pre-flight (M =
25.17,SD = 6.75) and take-off (M = 44.25,SD = 12.45) tasks; #(19) = —8.83,p <
0.001. These findings imply that the take-off procedure necessitated increased situational
awareness and a greater workload. This could be because pilots devote more time and
effort to take-off than to pre-flight. This, however, requires additional investigation to
establish.
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Chapter 4

Pilot Behavior Performance Model
Design and Development

Piloting an airplane is a difficult endeavor that requires a range of mental abilities, in-
cluding perceptual, cognitive, and motor responses. A complete flight consists of several
stages with varying degrees of complexity, including preparation, taxiing, take-off, cruis-
ing, approaching, and landing. For instance, pilots must pay special attention to current
weather conditions and heed air traffic control directions during take-off. During the take-
off phase, the pilot must manually manipulate the throttle, rudder, and yoke to maintain
the aircraft’s attitude and direction. Cognitive knowledge and abilities are critical com-
ponents of task accomplishment for pilots, and they are also the focus of pilot training.
Because cognitive architecture models are composed of declarative knowledge chunks and
procedural production procedures, they are well-suited for simulating pilot competency
and performance [3].

I created pilot models for the QN-ACTR cognitive architecture in the current study [11],
I called it QN-ACTR-XP. The models may be used in conjunction with flight simulators
(X-Plane 11) to provide a variety of human factors data, including as performance, mental
workload, and situation awareness.
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4.1 Tools and Cognitive Structure

4.1.1 X-Plane 11

The current study’s flight simulation was conducted using X-Plane 11 and a Cessna 172SP
aircraft plug-in, as seen in Figure 4.1. X-Plane is a flight simulator developed by Laminar
Research that runs on Mac OS and Windows computers. X-Plane has traditionally been
regarded as a video game by the general audience. However, as the sole FAA-certified
simulator for pilot training, it is now widely employed in scientific study and commercial
development. X-Plane supports data communication via User Datagram Protocol (UDP)
with external programs at a rate of 99 data packets per second. Through the UDP interface,
a pilot model in QN-ACTR can receive and send data to X-Plane in real time. The data
link enables the model to assess the aircraft’s current status and its external environment
and to provide control directives to the aircraft.

wsww

Figure 4.1: Screenshot of Cessna 1725P in X-Plane 11.
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4.1.2 ACT-R and QN-ACTR

This pilot performance model was developed using QN-ACTR as the cognitive architecture.
QN-ACTR has been demonstrated to be relevant to multi-task scenarios and data-link
connections in earlier work on driving simulation tasks [30]. Because simulated driving
and flight activities are comparable, I believe that QN-ACTR can be perfectly tailored to
the needs.

QN-ACTR blends ACT-R with a queuing network (QN) to manage and process mul-
tiple tasks at the cognitive module level [11]. The QN-ACTR framework is illustrated
below (Figure 4.2). The queuing network enables simulation of multi-task performance,
while the ACT-R component continues to simulate cognitive processes. The queuing net-
work significantly aided cognitive processes in multitasking. For instance, the pilot may
be required to simultaneously operate the flying yoke and the throttle during the entire
mission. While the pilot model’s ACT-R architecture is incapable of handling such concur-
rent activities, the QN-ACTR is. As a result, I chose QN-ACTR as the foundation for our
approach. Recent advancements in QN-ACTR have increased its capability for modeling
and simulating mental workload under time constraints [11], driver take-over performance
in partially automated cars [16], and driver situation awareness [36]. These studies have
broadened the domains and task settings in which cognitive architecture models can be
applied to human factors engineering. The source code and models for QN-ACTR are
available on its website (https://github.com/HOMlIab).

ACT-R represents declarative memory (in chunks) and procedural memory through
the application of production rules. It consists of four major modules and a production
system: a visual/aural module, a goal module, a declarative module, and a manual module
[37]. Additionally, there will be a central system that will coordinate the connection of
each module via production rules and buffers [37]. ACT-R determines whether to take an
action or change the model’s state by accepting external information (often from visual
and aural modules) and declarative knowledge. However, the primary constraint of ACT-
R is that each chunk may only be kept in a single buffer, and each production rule can
only be matched once [1]. Multiple goals can be saved in a single buffer when queuing is
network-integrated. When a busy module receives a large number of requests, QN-ACTR
can sort and execute them sequentially to avoid jamming.

Both QN-ACTR and ACT-R have two distinct types of memory: declarative and pro-
cedural. Procedural memory is constructed from productions and is used to resolve issues.
Declarative memory stores data, and it is typically associated with a certain situation.
When the contents of buffers match existing production rules, actions are taken in accor-
dance with the rules.
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Figure 4.2: Structure of QN-ACTR, adapted from Cao & Liu 2013.

4.1.3 X-Plane Connect

The simulation is run as a control loop between the cognitive model in QN-ACTR (java
programming language) and X-Plane 11 via a UDP connection. X-Plane will continuously
update the model with aircraft and environment data. The model will adhere to its own
production rules, process data, and issue control commands. Commands such as pressing
a button or turning the yoke are transformed to X-Plane-compatible data and returned
to X-Plane. The simulation of piloting is accomplished by the use of a continuous loop.
When a pilot prepares an airplane, for example, he or she must interact with numerous
buttons and switches in the cockpit and monitor the state of each component. To emulate
this, X-Plane will communicate this data to the model through UDP. The model will
then influence operations such as monitoring the state of those components and making
decisions based on the data. The model will then replicate the pilot’s subsequent actions,
transform them to data commands, and send them back to X-Plane.

To connect the model to X-Plane, I utilized NASA’s X-Plane Connect (XPC). XPC
is an open-source research tool that communicates with the commercial flight simulator
software X-Plane. XPC enables users to operate aircraft and receive status information
from aircraft simulators in real time over a network using C, C++, Java, MATLAB, or
Python functions. This research tool has been used to visualize aircraft pathways, evaluate
control algorithms, simulate active airspace, and produce out-of-the-window visuals for
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in-house flight simulation software. The source code for XPC is available on GitHub
(https://github.com/nasa/XplaneConnect).

Hard-
coded UDP

QN-ACTR-XP |«——» X-Plane Connect |« X-Plane 11

4

Figure 4.3: The connection between QN-ACTR-XP and X-Plane.

The link between QN-ACTR-XP and X-Plane is depicted in Figure 4.3. I verified the
connectivity of the various components and the presence of any probable delay. I discovered
that the delay introduced by each component of connecting is really little, insignificant
enough not to impair the model’s performance or accuracy, and so the delay introduced
by data transmission may be ignored during development and validation.

4.2 Model Development

4.2.1 Basic Design

In general, pilots must monitor the external environment and aircraft status continuously
throughout the flight and communicate with ATC. This requires the pilot model to contin-
uously utilize the visual and auditory modules to process flight-related data and forward
it to cognitive stages for further processing. The procedural module will execute pat-
tern matching using the model’s procedural memory and will consult the model’s existing
declarative memory in order to comprehend the present situation and perform specified
operations. For example, when a small airplane with a single pilot takes off, the pilot
must manually manage the airplane’s attitude and throttle and determine the aircraft’s
present state using the attitude indicator on the dashboard. Simultaneously, the pilot must
check the aircraft’s engine speed as shown by the speedometer and continuously change
the throttle. At this level, because ATC rarely communicates with the pilot, the pilot’s
aural module does not require extensive speech processing. The visual module consumes
the majority of the mental power. The pilot’s manipulation of the plane to take off reflects
the outcome.

I separated the pilot’s cognitive processing and behavior into three stages in a con-
tinuous cycle, namely monitoring, decision-making, and control, in order to analyze them
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(Figure 4.4). The monitoring stage entails attending to external displays, perceiving exter-
nal information via the visual or aural module, such as reading the aircraft’s instruments or
hearing the information communicated with ATC during the flight, and cognitively prepar-
ing the information for the production module. The decision-making stage refers to the
process through which the production module makes decisions and selects replies, before
creating actions via production rule pattern matching. The control stage is the stage in
which the motor module receives action commands and executes motor control operations.
The model determines the amount of time required to finish the mental processing. To be
explicit, I anticipated that ATC would not send any instructions to the pilot at this stage
of the study. I did not refer to the aural module during the model’s development.

Pilot Model
Monitoring
Decision-making

Control

Monitoring Dec1s10n-.n.mk1ng Control
.. : Make decision and .
Perceive information Produce actions
response
Aircraft Status Decision Motor Actions
E.g. Altitude, Airspeed Make decision based on E.g. Push button,
information received Yoke/Throttle/Mixture
control
External Environment
E.g. Cloud, Temperature Response

Perform actions when
pattern mached

Figure 4.4: The structure of the QN-ACTR-XP.
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4.2.2 Control Actions

The model can use several types of control actions to control the aircraft.

Buttons and Switches. The simplest sort of control action is the interaction between the
model and the buttons or switches. When a button is to be pressed or a switch adjusted,
the model simulates the human pilot moving the sight to the target position, then moving
the hand to the target position and operating it. The model will communicate with X-
Plane via UDP in order to manipulate the button or switch. Once X-Plane receives the
command, the modification is immediately implemented.

Steering. When manipulating the aircraft’s steering pedals during taxiing, the pilot
should maintain their gaze on the taxi line directly front of the aircraft to assess the air-
craft’s current location and change the pedal angle accordingly. Additionally, the model’s
steering control is implemented by sending appropriate commands to X-Plane.

Rotation on Longitude/Vertical/Lateral Azis. When manipulating the aircraft’s steer-
ing pedals during taxiing, the pilot should maintain their gaze on the taxi line directly
front of the aircraft to assess the aircraft’s current location and change the pedal angle
accordingly. Additionally, the model’s steering is controlled by sending appropriate orders
to X-Plane.

Throttle. Because throttle control is mostly dictated by the aircraft’s speed and current
flight condition, the pilot’s gaze should be directed onto the speedometer and engine RPM.
The mode of communication between the model and X-Plane is identical to the mode of
steering and rotation.

In general, the many sorts of operations discussed above can be summarized as the
following two activities in the model:

x-plane-button-action. This action is applicable to all pilot button and switch interac-
tions. This is often a one-time action, and the pilot is not required to interface with these
components on a constant basis. When the model needs to perform this action, it simply
needs to transmit a single instruction to X-Plane.

x-plane-continuous-action. This action is applicable to all pilot-yoke, rudder, throttle,
and mixture interactions. This action is often linear and takes time, with the pilot manipu-
lating these controls continuously and altering input values in real time. The model creates
N discrete actions and continually transmits them to X-Plane using the specified execution
time and number of actions. The time interval between discrete actions is typically 50ms,
which is deemed small enough to imitate the actual linear input.
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4.2.3 Pilot Performance Model for Pre-flight Task

In comparison to the take-off task, developing the pre-flight task model is rather straight-
forward. Because the pilot only needs to complete the items on the checklist sequentially
when executing pre-flight task, modeling does not require consideration of multitasking.
Because QN-ACTR calculates the time required for human hand and eye movement based
on the distance between various components, I modified the simulator’s control panel to a
two-dimensional coordinate system. I defined the position and size of the various compo-
nents using coordinates and area (Figure 4.5). The panel is 2000 pixels in height and 1100
pixels in breadth. The checklist is supposed to be located at (1600,500).

0,0
Airspeed | Attitude |Altimeter
810,95 | 1000,95 | 1190,95
Vertical Heading Oil/Fuel/| Display size: 190px x 190px
Speed |1000285| RPM Throttle/Mixture size: 30px x 30px
810,285 ! 1190,285 Ignation Switch size: 50px x 50px
Avionics Switch size: 20px x 30px
\First switch location: 320,490, horizontal offset for each button is 30px
Master /R Avionics Tuel De-lce Pitot
Pum; Heat
Ignation ] D [r D D
‘ Cowl Panel Beacon Nav. Strobe Taxi Landing
160,520 Mixture]
1840920 @ @ |[1920,920
First switch location: 290,550, horizontal offset for each button is 30px Throttle
1cm: 20 px 000,1100

Figure 4.5: The control panel displayed in two-dimensional coordinate system.

I separated each step on the checklist into the following phases for the model that
simulates a pilot executing a flying checklist (Appendix A). The model’s major parameters
are listed in Table 4.1. I did not utilize the default value of QN-ACTR, which is 0.02s,
for the delay when setting or altering the imaginal buffer. The default value is derived
from straightforward objects, such as a word or a symbol. Pilots are typically confronted
with more complex circumstances while studying pilot behavior, such as examining values
from a particular instrument panel. This suggests that 0.02 seconds is insufficient time
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to accurately imitate the pilot’s conduct. I used 1.0s for the time being, and this figure
may need to be examined further. Table 4.2 contains full descriptions of the model’s steps
derived from the checklist, whereas Table 4.3 contains the production rules for each step.
The default settings of the QN-ACTR parameters are utilized to determine the model
parameters. For instance, the duration of time spent by the hand and eyes when pressing
a button or manipulating a switch. Additionally, each production rule takes 0.05 seconds
to execute by default in QN-ACTR.

Table 4.1: Parameter used in QN-ACTR-XP model.

Parameters Value Description
:visual-attention- 0.085 It defines the time it takes when visual atten-
latency ’ tion shifts. The default value is 0.085s.

It defines how long it takes to change or re-
amaginal-delay 1.0s  quest the imaginal buffer. The default value is
0.2s.

. . It defines the time it takes when a motor action
preparation-duration 0.05 is prepared. The default value is 0.05s.
initiation-duration 0.05 It defines the time it takes when a motor action

is initialized. The default value is 0.05s.
cxecution-duration 1.0 It defines the time it takes when a motor action

is performed. The default value is 1.0s.
finish-duration 10 It defines the time it takes when a motor action

is finished. The default value is 1.0s.
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Table 4.2: Model steps and detailed descriptions for pre-flight task.

Procedure

Description

ignition-off

avionics-off

master-off

fuel-level-check

flaps-up

throttle-open

fuel-pump-on

mazture-rich

fuel-pump-off

tgnition-start

mazture-advance

oil-pressure-check

The model moves the gaze to the ignition switch on the
control panel, checks the status, makes sure it is off. If
it’s not, turn it off.

The model moves the gaze to the avionics switch on the
control panel, checks the status, makes sure it is off. If
it’s not, turn it off.

The model moves the gaze to the master switch on the
control panel, checks the status, makes sure it is off. If
it’s not, turn it off.

The model moves the gaze to the fuel level display on the
control panel and the current fuel level.

The model moves the gaze to the flaps controller on the
control panel, checks the status, makes sure the flaps are
up. If it’s not, retract flaps.

The model moves the gaze to the throttle controller on the
control panel, checks the status, opens it to about 10%.
The model moves the gaze to the fuel pump switch on the
control panel, checks the status, makes sure it is on. If
it’s not, turn it on.

The model moves the gaze to the mixture controller on
the control panel, checks the status, makes it rich for 5
seconds, and then cuts it off.

The model moves the gaze to the fuel pump switch on the
control panel, checks the status, makes sure it is off. If
it’s not, turn it off.

The model moves the gaze to the ignition switch on the
control panel, checks the status, switches on, and keeps
holding on to it until the engine RPM is stable.

The model moves the gaze to the mixture controller on
the control panel, checks the status, makes it rich.

The model moves the gaze to the oil pressure display on
the control panel and checks the current oil pressure.

Continued on next page.

37



Table 4.2 Continued: Model steps and detailed descriptions for pre-flight task.

Procedure Description
The model moves the gaze to the avionics switch on the
avionics-on control panel, checks the status, makes sure it is on. If

it’s not, turn it on.
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Table 4.3: Production rules and detailed descriptions for pre-flight task.

Production Rule

Description

visually-attend-
checklist

visually-encode-
checklist-item

form-checklist-item-
representation

visually-attend-
aircraft-component

IF goal phase is 1, the visual module is free, and the
imaginal module is free,

THEN set visual location to (1600,500), and change goal
step to x, goal phase to 2.

The model simulates pilots moving their gaze to the check-
list. This stage can be shared with all steps.

IF goal phase is 2, visual location is found, and the visual
module is free,

THEN move visual attention to the visual location to
encode the information, store the coordinate of the visual
location to the goal buffer, and change goal step to x, goal
phase to 3.

The model simulates pilots reading the checklist. This
stage can be shared with all steps.

IF goal step is x, goal phase is 3, the information from the
visual module is found, and the imaginal module is free,
THEN create an imaginal buffer representing the infor-
mation from the goal buffer, and change goal step to x,
goal phase to 4.

The model simulates pilots’ understanding from what they
read from the checklist. This stage is individually set based
on the checklist and can’t be shared.

IF goal step is x, goal phase is 4, and the information is
the same as in imaginal buffer,

THEN set visual location to the component’s location
saved in imaginal buffer, and change goal step to x, goal
phase to 5.

The model simulates pilots moving their gaze to the com-
ponent they are required. This stage is individually set
based on the checklist and can’t be shared.

Continued on next page.
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Table 4.3 Continued: Production rules and detailed descriptions for pre-flight task.

Production Rule

Description

visually-encode-
checklist-item

form-aircraft-
component-status-
representation

take-control-action

no-action-needed

IF goal phase is 5, visual location is found, and the visual
module is free,

THEN move visual attention to the visual to encode the
information, store the coordinate of the visual location to
the goal buffer, and change goal step to x, goal phase to
6.

The model simulates pilots reading the current status of
the component. This stage can be shared with all steps.
IF goal step is x, goal phase is 6, the information from the
visual module is found, and the imaginal module is free,
THEN create an imaginal buffer representing the infor-
mation from the goal buffer, and change goal step to x,
goal phase to 7.

The model simulates pilots” understanding from what they
read from the component. This stage is individually set
based on the checklist and can’t be shared.

IF goal step is x, goal phase is 7, the information in imag-
inal buffer matches the condition, and the motor module
is free,

THEN acting by calling either x-plane-button-action or
x-plane-continuous-action, and change goal step to x+1,
goal phase to 1.

The model simulates pilots” acting based on what they got
from the previous stage. This stage is individually set
based on the checklist and can’t be shared.

IF goal step is x, goal phase is 7, and the information in
the imaginal buffer doesn’t match the condition,

THEN do nothing, and change goal step to x+1, goal
phase to 1.

The model simulates pilots not acting based on what they
got from the previous stage. This stage is individually set
based on the checklist and can’t be shared.
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4.2.4 Pilot Performance Model for Take-off Task

As previously said, take-off procedures are more difficult than pre-flight. When pilots com-
plete take-off operations, they spend less time checking the aircraft’s state and external
surroundings and more time controlling the aircraft in real time using the yoke and rudder.
Simultaneously, the pilot has little to no interaction with buttons and switches in this ac-
tivity, preferring to use the yoke and rudder continuously. The model represents the pilot’s
continual movements in this task by rapidly transmitting commands to the simulator. As
a result, simulating the pilot’s judgment of the aircraft’s current state and performing ac-
tions has become critical. To begin, a model replicating the driver’s control of the vehicle’s
steering is presented in order to address this issue. In 2004, Salvucci and Gray created
this approach, which enables drivers to center their automobiles around two points: near
point and far point [11]. The term "near point” refers to the distance between the vehicle
and the road’s center. The far point represents the driver’s estimated value for the current
curvature of the road. The following equation 4.1 can be used to represent the function:

A = kAO; + k,AB, + k0, At, (4.1)

where Ap means the change of steering angle. k¢, k,,, and k7 represents three constants.
Afy and Ab, are the change of far point and near point. 6, means the current near point,
and At is the control cycle. The typical default value of the control cycle is 0.15s.

Because prior study has demonstrated that the model stimulates the driver’s steering
and centering of the vehicle [30], T attempted to adapt this formula to the pilot’s behavior
when operating the plane’s pitch/roll/yaw axis. To begin, unlike when driving a vehicle,
pilots do not have an external visual reference to assist them in identifying the current flight
route. As a result, I believe the distant point does not apply to the pilot’s control model.
In comparison to the distance between the car and the road’s midpoint, the difference
between the plane’s present state and expected state serves a similar role in the control
model as the distance between the automobile and the expected state. For instance, if the
expected direction at the moment is 80 degree and the actual heading is 75 degree, the
difference is 5 degree. Thus, on the pitch/roll/yaw axis, the pilot’s control model can be
written as the following equation 4.2:

A = kA0 + k0AL, (4.2)

where Ay means the change of control input on the pitch/roll/yaw axis. k and k;
represents two constants. A# is the change of the difference between the current state of
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the airplane and the expected state. # means the current difference between the current
state of the airplane and the desired state, and At is the control cycle.

After identifying the control function, the constants must be determined. Due to the
fact that I modified Salvucci & Gray’s code, I did not utilize their default values of k =
13.5, k; = 35. 1 did numerous tests and discovered that, when k is maintained constant,
the bigger the value of kj, the faster the aircraft attitude recovery time. When k; remains
constant, the larger the value of k, the greater the aircraft attitude swing. Technically, we
would have three distinct equations, one for each axis operation, which means that I would
need to determine three sets of £ and k;. However, after conducting several experiments,
I discovered that employing three distinct sets of constants had a negligible effect on the
model’s performance. As a result, the current study’s k£ and k; values are identical for the
three groups, which are 35 and 15, respectively.

As with the pre-flight work, I breakdown the take-off checklist elements (Table 4.4).
The pre-flight task reuses all production rules. Nevertheless, certain new production rules
have been added (Table 4.5). All parameters from the pre-flight task model are retained.

Table 4.4: Model steps and detailed descriptions for take-off task.

Procedure Description

The model moves the gaze to the throttle controller on
the control panel, checks the status, sets it full.

The model moves the gaze to the mixture controller on
mizture-rich the control panel, checks the status, makes it rich for 5
seconds, and then cuts it off.

The model moves the gaze between the aircraft attitude
indicator on the control panel and the outside to check
the current aircraft status, then controls the rudder and
yoke to take-off.

The model moves the gaze to the throttle controller on
the control panel, checks the status, makes sure it’s full.
The model moves the gaze to the control panel’s fuel level
display and checks the current fuel level.

The model moves the gaze to all necessary instruments
and check their status.

The model moves the gaze to the throttle controller on
the control panel, checks the status, and adjusts it.

throttle-full

pilot-control

throttle-full
fuel-level-check
istruments-check

throttle-adjust
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Table 4.5: Production rules and detailed descriptions for take-off task.

Production Rule

Description

pilot-control-attend-
outside

pilot-control-perceive-
attitude

pilot-control-action

IF goal step is 1,

THEN set visual location to (20,20), and change goal
step to 2.

The model simulates pilots moving their gaze outside and
checking aircraft status.

IF goal step is 2, and visual location is found,

THEN move visual attention to the visual location to
encode the information, store the coordinate of the visual
location to the goal buffer, and change goal step to 3.
The model simulates pilots getting the aircraft’s current
pitch/roll/yaw.

IF goal step is 3, the information from the visual module
is found, and the manual module is free,

THEN perform an action by x-plane-do-pitch-control,
x-plane-do-yaw-control, and x-plane-do-roll-control, and
change goal step to 1.

The model simulates pilots controlling the aircraft on the
pitch/roll/yaw azis.
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4.3 Results

Along with the dataref included with X-Plane, QN-ACTR additionally records data gen-
erated by the model individually. Following the model’s execution, QN-ACTR reports the
name of each task and the time at which each production rule was executed. Additionally,
the model outputs the required workload on a second-by-second basis. After developing the
model, T utilized it to replicate the pre-flight and take-off procedures independently. The
model carried out pre-flight and take-off activities sequentially and 10 times each. Each
piece of data was captured and compared to previously collected human data. For the
simulator setup, I used the same settings as in the human tests. Please refer to Chapter 3
for details on the essential stages of scenarios, the aircraft, and the data output mechanism;
I am not repeating them here.

4.3.1 Pre-flight Model

The time required to perform each step and stage can be determined using the data output
from the model, as shown in Table 4.6, similarly to Table 3.1.

To verify the model’s correctness, I calculated the Root Mean Squared Error (RMSE)
and Mean Absolute Percentage Error (MAPE) for the model data and human data. The
RMSE indicates the difference in data between model and human experiments, whereas
the MAPE indicates the model’s prediction accuracy. Both equations 4.3 and 4.4 can be
expressed as follows:

1
MAPE_NO%Z" Thi = Tmi (4.4)
on T | '

i=1

where X}, represents the human data, X,, means the model data, ¢ is the index, and n
is the sample size.

The model’s entire running time is 69.84 seconds. In comparison to the average human
total time of 64.13 seconds, this is a difference of 8.18 percent. In general, the model
is capable of simulating human behavior in task 1. Figure 4.6 depicts the overall model
fitness based on the mean value of each stage in task 1 for both human and model data.
The RMSE is 0.65 seconds, the MAPE is 40 percent, and the coefficient of determination
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Table 4.6: Mean of model behavior time interval for pre-flight task.

Checklist Ttem Mean of Time Interval (s)

Reading Checking Acting Other

Ignition Switch 1.65 1.70 N/A N/A
Avionics 1.65 1.70 N/A N/A
Master Switch 1.65 1.65 1.15 N/A
Fuel Level 1.75 1.55 N/A N/A
Flaps 1.65 1.70 1.20 N/A
Throttle 1.65 1.65 1.15 N/A
Mizture 1.70 1.65 N/A N/A
Beacon Light 1.70 1.60 1.15 N/A
Auziliary Fuel Pump 1.70 1.60 1.15 N/A
Mixture 1.65 1.49 1.35 N/A
(Wait 5 Sec) N/A N/A 1.20 5.05
Auziliary Fuel Pump 1.65 1.65 1.15 N/A
Ignition Switch 1.70 1.60 2.10 N/A
Mizture N/A 1.65 1.60 N/A
Ignition Switch Check N/A 1.60 1.15 N/A
Oil Pressure 1.65 1.55 N/A N/A
Awvionics 1.65 1.55 1.15 N/A
Mean 1.67 1.62 1.29 5.05

SD 0.032 0.062 029  N/A
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(r-squared) is 0.06. Both MAPE and RMSE indicate that the model cannot accurately
imitate human behavior in task 1, and the model also has a significantly smaller SD than
the human data.

4.3.2 Take-off Model

As in Chapter 3.4.2, I estimated the mean of several values from the output data of the
model. The average airspeed is 75.20 knots, the average pitch angle is 7.95 degree, the
average roll angle is 0.03 degree, the average heading is 73.92 degree, and the average
running duration is 196.11 seconds. Then I made a comparison between those ideals and
human values. The RMSE is 24.93 percent, while the MAPE is 24.13 percent. The mean
value of elevator/aileron/rudder input is shown in Figure 4.7, together with the 95 percent
confidence interval and human values, to demonstrate the model’s fitness. Each graph’s
final value represents the model’s data. The aircraft’s height change from the ground to
4000 feet is depicted in Figure 4.8. The solid line reflects the data for the model, while the
other lines indicate the data for the participants.

Both the RMSE and MAPE values demonstrate that the model accurately predicts the
pilot’s behavior during take-off tasks. The model’s input values and altitude change also
fall within the range of human data. Similar to the model’s performance in the pre-flight
job, the model’s standard deviation is similarly smaller than that of human data.

4.3.3 Workload

QN-ACTR estimates mental workload by examining overall server use [13]. The average
utilization per second shows the mental workload each second, ranging from 1.0 (very
busy) to 0.0. (idle). T computed the workload of the model executing pre-flight and take-
off operations using the workload data collected by QN-ACTR. Pre-flight task workload
is 0.22 and take-off task workload is 0.13 for the model. Due to the fact that the units of
the data output by QN-ACTR and the human data I obtained are significantly different,
and there were only two tasks, the data cannot be compared directly, and I was unable to
perform regression. If, however, a score of zero in NASA-TLX indicates that the workload
is zero, then the human workload in the take-off task is approximately 1.75 times that of
the pre-flight activity (see Chapter 3.4.3). According to the model’s output, the model’s
workload during take-off is approximately 1.7 times that of the pre-flight task, which
indicates that the model accurately forecasts human effort.

46



Mean Time Interval for Different Stages

6 I T T
B Human
N Model

5

4

Time Interval [s]
w

N

Reading Checking Acting Other
Stage
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4.4 Discussion

Again, based on the data above, the model is capable of performing well in pre-flight and
take-off tasks and is consistent with data from human experiments. More precisely, the
model’s fitness for take-off task is superior to that for pre-flight task.

In my opinion, the higher RMSE and MAPE results for the pre-flight task are primar-
ily due to the usage of QN-ACTR’s default parameters. Additionally, when executing a
pre-flight activity, the model will rigorously adhere to the pre-programmed stages. When
participants complete tasks, they may take specific actions based on their own experi-
ence rather than the checklist, which results in shorter execution times for certain stages.
Simultaneously, participants may be unfamiliar with the simulator interface, resulting in
a lengthier execution time for some actions. I may conclude that more complex factors
influence when humans do task 1 steps, which will be examined further in future studies.

In terms of take-off tasks, the model is capable of completing the task and obtaining
human-like data. The reduced RMSE and MAPE values further demonstrate the model’s
fitness. However, it is worth noting that the model’s output is excessively smooth and
lacks the large fluctuations observed in human pilots. This demonstrates that the control
function I employed is functional but not flawless. Additional variables should be added
to the function to better simulate human behavior in future studies—for example, the
aircraft’s current speed, vertical speed, and wind speed.

The model is far from complete. The primary cause for this could be that I utilized
the default QN-ACTR values. The default parameters of QN-ACTR, on the other hand,
are suitable for performing some simple human tasks, such as reading a word or typing a
letter. In light of the unique characteristics of pilot behavior and the complexity of flight
duties, I modified certain parameters, such as imaginary-delay and execution-duration,
which remain constants. Modifying these values will merely raise the overall duration of
jobs, which will still fall short of accurately simulating pilots performing time discrepancies
between separate steps.
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Chapter 5

Conclusion

In the current study, QN-ACTR was employed as a cognitive architecture to develop a pi-
lot behavior model that was used to replicate pilot behavior during pre-flight and take-off
activities. The model includes human-like thinking patterns and knowledge reservoirs as
a result of the incorporation of cognitive architecture. I design two sets of human exper-
iments concurrently to gather relevant data for learning and comprehending the logic of
human operation and applying it to the model. QN-ACTR defines the majority of param-
eters by default during model construction. I utilized the model to replicate two human
experiments: pre-flight and take-off. Following data analysis, I believe that the model
can accurately imitate human pilots performing the aforementioned duties. Although the
generated data is comparable to human data, it still need development.

While I recorded participants’ post-situational awareness during human studies, I did
not simulate post-situational awareness during the model’s development. At the moment, I
am unable to conclude whether the model can accurately imitate human situational aware-
ness. Nonetheless, earlier publications on models constructed using QN-ACTR, such as the
driver behavior model [30], indicate that QN-ACTR is capable of completely simulating
human situational awareness.

I am not considering any external aspects that may have an effect on humans in my
present development. Additional human experiments in a variety of circumstances, includ-
ing varying weather and temporal conditions, are required to further refine and test the
model. T had documented only the participants’ hand behavior in a previous experiment.
In future investigations, researchers could incorporate other monitoring techniques, such
as eye movement and EEG examinations. These tests will generate additional data.

Additionally, because the cognitive model and the flight simulator communicate via
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UDP, numbers represent perceptual and motor information. This form of abstract sim-
ulation has trouble simulating actual display elements such as contrast ratio, glare, and
layout. Computer vision modules can be integrated directly into cognitive architectures to
recognize various items on the visual display.

Due to budget constraints, the simulator I've developed so far is relatively inexpensive,
costing around $5000. As a result, the interactive interface and operation mode of the
simulator are considerably different from those of the genuine Cessna 172SP. This has the
ability to have an effect on the participants’ performance. In future studies, researchers
could use ALSIM AL250 simulator from the Waterloo Institute for Sustainable Aeronautics
Sim Lab. ALSIM AL250’s innovative features, such as actual tactile force feedback and a
dynamic sound system, are easily adaptable to suit different aircraft.

In future study, researchers could incorporate situational awareness simulation into
the model and further improve it, especially by adding other factors that will allow it to
adapt to human behavior in a variety of settings. Additionally, researchers could continue
to construct models for additional missions, including approach, landing, and taxiing.
Additionally, if practical, researchers could apply this concept to other aircraft types such
as multi-engine piston planes and jets.

In conclusion, this work offers a model based on QN-ACTR that may imitate some
of the behavior of pilots managing a Cessna 172SP aircraft, with satisfactory results. It
establishes the groundwork for the application of cognitive models in civil aviation research.
The distinction between this study and earlier ones is that this is one of the few published
human behavior models in the field of civil aviation that includes thorough development
methodologies and human trial data. Simultaneously, the model’s adaptability is enhanced
by the QN-ACTR cognitive architecture, which enables it to be applied to more flight tasks
and aircraft types in future study. I expect that this model will be expanded and enhanced
further in future study and that it will serve as a reference for other studies examining the
use of cognitive models to simulate human behavior and other studies of civil aviation.
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C172SP CHECKLIST

FOR EXPERIMENT PURPOSE ONLY. DO NOT USE IN REAL LIFE!

STAGE 1
PRE-FLIGHT
Ignition Switch..............o OFF
AVIONICS. ..t OFF
Master Switch...............co ON
Fuel Level......c.coooiviiiiiiiiiiii . CHECKED
Flaps. ..oovoeii UP

Throttle. ..o Open % IN
MIXEUTE. . e CUTOFF
Beacon Light.............ooooiiiiiii ON
Auxiliary Fuel Pump................co ON
MIXtUI€. ...oevinieiiniiiecieeeee, FULL 5 SEC/IDLE
Auxiliary Fuel Pump..............cocoiiin. OFF
Ignition Switch..............c.o START
MIXtULE. .o ADVANCE
Oil Pressure. ......c..oviviiiiiiiniiineeen CHECK

STAGE 2

TAKEOFF

Throttle..........coovviiiiiea,
MIXtUTE. ..o
Lift-off Speed...........c.cooeiiiiiin.

Initial Climb Speed.....................

Fuel Level/Temp..............c.ooenee

Engine

Instruments.............................

CRUISE

Recommended: 75%

......... ADJUST
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Post Situational Awareness Questionnaire (Pre-flight)

1. What was the initial position of fuel selector?

2. What was the fuel quantity (left tank and right tank)?

3. What was the fuel temperature and pressure?

4. What was the initial active NAV1 frequency?

5. What was the initial standby NAV1 frequency?

6. What was the initial active COM1 frequency?

7. What was the initial standby COM1 frequency?

8. What was the initial standby squawk code?

9. What was the initial altitude setting?

10. Is there any aircraft on your left/right side?



Post Situational Awareness Questionnaire (Take-off)

1. What was the fuel quantity (left tank and right tank)?

2. What was the engine RPM?

3. Were there any annunciators on the annunciator panel?

4. What was the active NAV1 frequency?

5. What was the active COM1 frequency?

6. What was the departure time?

7. What was climb speed?

8. When you received the ATC instruction, what was your altitude and heading?

9. What was your cruise speed?

10. What was the engine RPM when you cruised?



Appendix C

NASA Task Load Index
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NASA Task Load Index Questionnaire

Mental Demand How mentally demanding was the task?
[ I T I O | [ T I I O
Very Low Very High
Physical Demand How physically demanding was the task?
I T T I I | I O I O
Very Low Very High
Temporal Demand How hurried or rushed was the pace of the
task?
I T T T I I | I I O O
Very Low Very High
Performance How successful were you in accomplishing

what you were asked to do?

NN

Perfect Failure

Effort How hard did you have to work to
accomplish your level of performance?

IIIIIIIIII|IIIIIIIIII
Very Low Very High

Frustration How insecure, discouraged, irritated,
stressed, and annoyed were you?

IIIIIIIIII|II|IIIIIII
Very Low Very High
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