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Abstract

It is ideal for triangulated terrains to have characteristics or properties that are realistic.
In the imprecise terrain model, each vertex of a triangulated terrain has an imprecise eleva-
tion value only known to lie within some interval. Under some objective function, the goal
is to compute a precise terrain by assigning a single elevation value to each point, so that
the objective function is optimized.

This thesis examines various objectives, such as minimizing the number of local extrema
and minimizing the terrain’s surface area. We give algorithms in some cases, hardness results
in other cases. Specifically, we consider four objectives: (1) minimizing the number of local
extrema; (2) optimizing coplanar features; (3) minimizing the surface area; (4) minimizing
the maximum steepness.

Problem (1) is known to be NP-hard, but we give an algorithm for a special case. For
problem (2) we give an NP-hardness proof for the general case and a positive result for a
special case. Meanwhile, problems (3) and (4) can be approximated using Second Order
Cone Programming. We also consider versions of these problems for terrains one dimension
down, where the output is a polyline. Here we give very efficient algorithms for all objective
functions considered.

Finally, we go beyond terrains and briefly consider the distant representatives problem,
where the goal is to choose precise points from segments to be as far from each other as
possible. For this problem, we give a parameterized algorithm for vertical segments, prove
NP-hardness for unit horizontal segments, and show hardness of approximation for vertical
and horizontal segments.
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Chapter 1

Introduction

In computational geometry, a “terrain” is a surface that is intersected at most once by any
vertical line. A natural problem that arises in Geographic Information Systems is to compute
a triangulated terrain in 3D space that has “nice” or “realistic” properties. There is no
correct or best property, as it will depend on context. In the study of erosion and hydrology,
it is generally accepted that pits in a triangulated terrain are artifacts of imprecision, due
to the unrealistic occurrence of water accumulation in flow simulations [22]. Meanwhile,
flat terrains better represent certain real life landscapes, like plains, shields, while smooth
terrains better represent landscapes like dunes.

There are certain features of a terrain we can measure that are relevant in GIS, such
as the quantity or size of peaks or valleys, or the steepness of part of the terrain. Gray
et al. [21] explore another feature: “Measures on spatial angles, in particular the angle
between the surface normals of adjacent triangles, are known to be important for several
GIS applications. In particular, they have been shown to be good for improving the quality
of the approximation, for achieving good slope characteristics and for flow modeling”.

A triangulated terrain is often computed from real elevation data. It is usually assumed
that the data is accurate, however data acquisition can be complex and potentially prone
to errors. It may be appropriate to model the input data as coming from a possible range
of values to account for this uncertainty. This uncertainty motivated Gray et al [21] to
formulate the imprecise 2.5D terrain model. In this model, the z,y-coordinates of points
are given as input, in addition to a triangulation of the points when projected to the zy
plane, but, the z-coordinate (elevation) of each point is only known “imprecisely” within
some interval of possible values. The z,y data could also be considered to be imprecise, but
it is a simplification to only have the elevation values to be imprecise. One justification for
this model is that allowing inaccuracy in the z-coordinate can compensate for inaccuracy in
the x-y coordinates.

A precise 2.5D terrain can be computed by choosing a precise elevation from each un-
certainty interval and connecting the points together according to the input triangulation.
In order to determine whether one choice is better or nicer than another, one should come



up with a “niceness” objective function to optimize over all possible choices of the elevation
values. Multiple criteria have been considered in the past such as minimizing the number
of local extrema [22], or minimizing the length of the shortest path along the terrain from
one point to another [21] [30]. Many of these formulations lead to NP-hard problems. When
these problems are NP-hard or have unknown computational complexity for 2.5D terrains,
researchers have gone down a dimension and considered terrains in 1.5D, see Gray et al. [2/]
for example. Here, the x-coordinates are precise, and the elevations are the y-coordinates,
which are given imprecisely.

The main goal of this thesis to explore various niceness objective functions in the imprecise
terrain model. There are four objective functions we will consider. One of these has been
studied before, and to the best of our knowledge, the other problems have yet to be explored.
We will state the four objectives, and briefly discuss the properties and applications.

Objective #1: Minimizing the number of local extrema. A local extremum is a
local maximum or minimum compared to its neighbours in the triangulation. In a terrain
these correspond to peaks or valleys. The problem of minimizing the number of local extrema
was considered by Gray et al. [22]. As mentioned by Gray et al., local extrema do not appear
frequently in terrains, they usually suggest some form of elevation error. For instance, in the
study of hydrology, pits are unnatural since water always flows downhill and erodes the land.
The definition of extrema used by Gray et al. counts all minima (similarly maxima) that
are connected together and are all at equal elevation as one minimum (similarly maximum),
which they justify for applications. We will use this definition of extrema as well.

Objectives #2a and #2b: Optimizing coplanar features. In order to have a terrain
that is smooth, ideally we would like triangles to be coplanar to adjacent triangles if possible.
This idea results in two similar objectives.

Objective #2a: Minimizing the number of patches (links). The intention of this
objective is to have as many large and smooth patches on the terrain as possible. A patch
is defined to consist of a maximal set of connected triangles that are all coplanar. This is
natural in cases where the data is obtained from smooth or flat real-life terrains, such as
plains or dunes. Note that a 1.5D terrain does not consist of triangles, so this definition does
not apply in the imprecise 1.5D terrain model. Instead, we define a lank to be a maximal
set of edges of the terrain that are connected and are collinear.

Objective #2b: Minimizing the number of bends. Minimizing the number of patches
is similar to the objective of minimizing the number of bends at edges, where an edge is
a bend if the dihedral angle between the two triangles sharing this edge is not equal to .
In 1.5D, minimizing the number of links is the same objective as minimizing the number
of bends. In 2.5D, if the triangulation of the points gives an outerplanar graph, then these



objectives are also equivalent. These are not equivalent objective function in general, as we
will see in Section 4.2. But, they both have a similar goal of returning a terrain that has
lots of connected coplanar triangles, so we will explore both objectives.

Objective #3: Minimizing the total surface area (length). Minimizing the total
surface area is a very natural objective function. This is similar to the topic of minimal
surfaces, which is a well studied topic in mathematics. However, a 2.5D terrain is only a
piecewise approximation of an actual minimal surface. Optimizing our objective can ensure
that the 2.5D terrain we compute approximates a minimal surface as best as possible. In
1.5D, we instead look at the total length of the 1.5D terrain. In a similar vein, approximation
algorithms for computing a minimal surface from a set of points have been considered [38].

Objectives #4a and #4b: Optimizing steepness. We look at two objectives for
optimizing steepness.

Objective #4a: Minimizing the maximum steepness. This objective prefers the
segments of the 1.5D terrain to have a slope as close to 0 as possible, so the goal is not
only to have a smooth terrain, but to have a terrain that is as flat as possible. There is a
standard notion for the steepness of a plane (or triangle) in 3D space, which is the Ly norm
of the gradient of the plane. This is a very natural objective for real life terrains that are
flat. This is similar to the third objective function, which also ends up trying to keep the
triangles flat.

Objective #4b: Maximizing the minimum steepness. We can also look at the prob-
lem of maximizing the minimum steepness. The resulting terrain is not flat, and may have
sharp bends, so it is not a very good niceness objective. The main reason we will consider
this problem is because it ties in nicely to another class of problems in the imprecise points
model, known as dispersion problems [2], which try to place points as far from each other
as possible.

1.1 Overview of results

In Chapter 2, we start with a warm-up and explore these objectives one dimension down. In
the imprecise 1.5D terrain model, the z-coordinates of the points are specified, and each y-
coordinate may be chosen from some given interval. After their elevations have been chosen,
connecting points consecutive in the x order gives a precise 1.5D terrain, i.e., an z-monotone
polyline. This is an easier setting than in 2.5D, but it is still interesting to examine the
objectives in this model. A summary of these results is given in the first column of Table
1.1.



Objective function 1.5D terrain 2.5D Path 2.5D General

#1 minimize number of O(n) [§2.1] O(n*) [§4.1] NP-hard [22]

extrema

#2a.b coplanar features 2-approx [§2.2] 5-approx™ [§4.2.2] NP-hard [§4.2.3]

#3 minimize length (1.5D) | O(n) [§2.3] SOCP SOCP [§4.3]
/ surface area (2.5D)
#4a minimize max O(n) [§2.4.1] SOCP SOCP [§4.4]
steepness
#4b maximize min O(n®) [§2.4.2] Unknown Unknown
steepness

Table 1.1: Algorithm or hardness results for problems involving imprecise points. Results for
1.5D terrains are given in the first column, and results for 2.5D terrains are given in the last
column. The middle column gives results for 2.5D restricted to path triangulations. Bold
results are original to this thesis.

*The terrain is assumed to lie in a strip for this algorithm. See Section 4.2 for more details.

In Chapter 4, we focus on the imprecise 2.5D terrain model. See the last two columns
of Table 1.1 for a summary of our results. For the problem of minimizing the number of
extrema (Objective #1), Gray et al. [22] have shown that it is NP-hard in the general case.
In hopes of obtaining a positive result, we considered a special case based on the type of
input triangulation. We will look at inputs where the triangulation is a path of triangles,
and give a polynomial time algorithm for this problem. See Section 4.1.

For Objectives #2a and #2b, we show that they are both NP-hard in the general case
(Section 4.2.3), but there is a constant factor approximation algorithm when the triangula-
tion is restricted to a path of triangles within a strip (Section 4.2.2). For the problems of
minimizing the total surface area (Objective #3) and minimizing the maximum steepness
(Objective #4a), we provide Second Order Cone Programs (SOCPs) that solve the prob-
lems. Second Order Cone Programming is a type of convex optimization problem that can
be solved quite efficiently (though not in polynomial time). See Sections 4.3 and 4.4.

In Section 3, we take a detour from terrains and look at another imprecise points problem
for line segments. The problem we will look at is a type of dispersion problem called the
distant representatives problem [18]. The goal is to choose one point per input object in
order to maximize the minimum pairwise distance between the points. We look at a special
case where the objects are segments, which makes the problem similar in flavour to imprecise
1.5D terrains—and is also a dispersion problem that is similar to Objective #4b.



1.2 Background

Imprecise points model

The imprecise points model has been explored for other objectives unrelated to terrains. In
particular, given a class of objects in the plane as input, one can ask for a set of points
(one per input object) that optimizes some objective function. For example, for classes like
line segments or squares, Loffler and Kreveld [33] give algorithms or hardness results for
the objectives of minimizing/maximizing the area or perimeter of the convex hull of the
points. Other optimization objectives for imprecise points have been explored, including
minimizing/maximizing the width, the area of the bounding box, and the diameter of the
points [28] [34]. Another optimization objective is to compute the best Euclidean weight
of a spanning tree [11], over all possible placement of points and over all possible trees
of the points. A non-optimization objective was considered by Loffler and Snoeyink [32],
which asks to compute a data structure to efficiently compute the Delaunay triangulation
for any possible precise realization of the imprecise points. Even more general is the study
of how imprecision affects the accuracy of geometric computations, which is called “epsilon
geometry” [12].

Previous results for imprecise 1.5D and 2.5D terrains

Gray and Evans [21] were the first to consider the imprecise terrain model. The problem
they considered was finding the shortest path from one point to another over all precise
realizations of the terrain. This problem is shown to be NP-hard in 2.5D. Kholondyrev [30]
also looked at the same problem, but the path must be restricted to edges of the terrain.
This has a polynomial time algorithm.

Various other objective functions have been explored for imprecise 1.5D and 2.5D ter-
rains. The problem of minimizing the number of extrema was explored by Gray et al. [22].
In the general 2.5D case, they showed that minimizing the number of extrema is NP-hard,
and there is no O(loglogn) approximation algorithm unless P = NP. We can instead ask
to just minimize the number of minima. They give an O(nlogn) algorithm, but this relies
on counting groups of adjacent points with the same elevation as a single minimum. Oth-
erwise, the problem is shown to be NP-hard. Driemel et al. [16] considered the problem of
determining whether water can flow between two points of an imprecise 2.5D terrain. Here,
the assumption is water flows down the path of steepest descent. The problem is NP-hard
in 2.5D.

Gray et al. [21] considered a few objectives that result in “smooth” terrains. The results
are all for imprecise 1.5D terrains, however the objectives can be explored in the imprecise
2.5D terrain model. One of their objectives for imprecise 1.5D terrains is to minimize the
total turn angle, that is, the sum of the turn angles between adjacent edges of the terrain.
This is very similar to minimizing the number of bends, as we can simply apply a binary



indicator to each term of the sum to get our objective from theirs. Our objective function
is more strict, because small bends are just as bad as large bends, where as the size of
each bend matters for their objective. As a result, there may be very sharp turns with
our objective, but regardless there will still be many coplanar triangles within the terrain.
The benefit of our objective is that minimizing the number of bends is a discrete objective
function, so it will be easier to deal with. For instance, we will see that our problem is in
NP, but precision issues prevent their objective from being placed in NP. Additionally, Gray
et al. [21] considered the objectives of maximizing the total turning angle, minimizing the
largest turning angle, maximizing the smallest turning angle and minimizing the maximum
slope change.

Comparing curve simplification with the links problem

The problem of minimizing the number of links/bends for an imprecise 1.5D terrain is related
to curve simplification. Tmai and Iri [27] provide an algorithm that, given as input an z-
monotone polygonal line and € > 0, computes another polygonal line that is within vertical
distance ¢ of the input polyline, while containing as few (bend) points as possible. Although
there is no input polyline for the links problem, the output will also be a polyline, and it
will consist of as few points as possible. However, in the links/bends problem, the points are
limited to the n possible z-coordinates given as input, but Imai and Iri’s problem does not
require the bend points to be at any specific locations. Other polyline distance metrics for
simplification have been considered, see [16] for a recent result for the Fréchet and Hausdorff
metrics. For a recent result on curve simplification under uncertainty, see [7]. For a nice
survey about curve simplification, see Section 4.1 of [1].

Distant representatives

Distant representatives is a well-studied studied problem in the imprecise data model. It

was first discussed by Fiala et al. [18], for input discs and squares. In the plane, various
versions of the problem for different classes of objects are shown to be NP-hard [19] [11].
For line segments, Roeloffzen [11] looked at unit horizontal segments in the plane as input.

He showed the problem is NP-hard, but did not take care of bit complexity issues in the
reduction. See Section 3.2 for our reduction and how we handle bit complexity issues. We
also give a similar argument to show the problem is NP-hard for the L, L., norms. There
are some known approximation algorithms as well, see [4,8, 17].

Uncertainty over the triangulation

There are other ways to model uncertainty, such as the model where the points in 3D
are precisely known, but the triangulation is not specified. This model has been explored
with Objective #1 [13], and the problem is NP-hard. Outside of terrains, researchers have



considered problems of computing a triangulation with nice properties for a set of points in
the 2D plane. Computing the Delaunay triangulation is a very famous example. Another
problem is to find the triangulation with minimum weight (where weight is the sum of the
edge lengths). This problem is NP-hard [36]. Famously, there is a dynamic programming
algorithm for triangulating a simple polygon in the plane with minimum weight [20]. There
is a Fixed Parameter Tractable algorithm when the boundary of the triangulation is given,
and there are few points in the interior [26]. (The number of points is the parameter in
this case.) Another problem in 2D is to minimize the maximum area over all triangles in a
convex polygon, which can be solved in O(n?logn) time [29].

This model relates to the topic of surface reconstruction, which asks to construct an
approximation of an unknown surface from a sample of points. See Chapter 35 of [15] for an
extensive overview of this topic.



Chapter 2

1.5D Terrains

In this section we consider the problem of constructing a 1.5D terrain from imprecise data.
Each point is given by a precise z-coordinate but with a range of possible y-coordinates. Our
goal is to choose precise y-coordinates to optimize some objective function of the resulting
terrain. More precisely:

Input: A set of intervals Iy = [by,t1], ..., I, = [bn,ts], and z-coordinates z1 < x93 < -+ <
x, which determine line segments ¢; = {x;} x I;. This input is called an tmprecise 1.5D
terrain. The line segments are often called imprecise points [33].

Output: A set of coordinates y; € I1,...,y, € I,, determining points p; = (z;, ;). Adding
line segments from p; to p;r1,2=1,...,n — 1 gives a precise 1.5D terrain.

Objective function: Return a 1.5D terrain that optimizes some objective function.

The model for 1.5D terrains with imprecise elevations was introduced by Gray et al. [2],
and has been solved for problems like minimizing the maximum turn angle, minimizing the
total turn angle, and minimizing the maximum slope change. We examine our objectives for
the imprecise 1.5D terrain model.

In Section 2.1, we explore the problem of minimizing the number of extrema (Objective
#1), and give a linear time algorithm for the problem. In Section 2.2, we explore the problem
of asking for a 1.5D terrain that takes as few links to describe as possible (Objective #2a).
We will give a 2-approximation algorithm for this problem. This algorithm is also a 2-
approximation algorithm for the problem of minimizing the number of bends (Objective
#2b). In Section 2.3, we explore the problem of minimizing the total length (Objective #3),
and give a linear time algorithm.

In Section 2.4.1, we explore the problem of minimizing the maximum (lexicographic)
steepness (Objective #4a), and give a linear time algorithm. For this problem, lexicographic



Problem Runtime

#1 minimize number of extrema O(n) [§ 2.1]
#2 minimize number of links/bends | O(n) (2-approx) [§ 2.2]
#3 minimize total length O(n) [§ 2.3]

#4a minimize maximum steepness | O(n) [§ 2.4.1]
#4b maximize minimum steepness | O(n®) [§ 2.4.2]

minimize maximum turn angle O(Z log 1) with additive error ¢ [24]
minimize total turn angle O(n) [24]
maximize total turn angle O(n) [21]
minimize maximum slope change O(n?) [24]

Table 2.1: Runtimes for various objectives for an input of n vertical segments. Bold results
are original to this thesis.

means we minimize the maximum steepness, and subject to this, we minimize the second
largest steepness, and so on. In Section 2.4, we look at the problem of maximizing the
minimum (lexicographic) steepness (Objective #4b), and give a cubic time algorithm. For
this problem, lexicographic means we maximize the minimum steepness, and subject to this,
we maximize the second smallest steepness, and so on. Lexicographic objective functions
have previously been explored for dispersion problems [3], as well as resource allocation [35]
and facility location [37] problems.

Notation and Definitions. Here we will state some common notation and definitions
used throughout the four subsections.

1. Let £L; = ¢4, ...,¢; denote the subproblem containing the first ¢ vertical line segments.
2. Let £;; = {;,...,{; denote the subproblem containing the vertical line segments from
110 7.

3. We define a polygon containing the segments as follows.

Definition 2.0.1. Let P, ; denote the simple polygon, where the vertices are the top
and bottom endpoints of the line segments ¢;,...,¢;, and for edges, we have the two
edges /(;,(;, edges connecting adjacent top endpoints, and edges connecting adjacent
bottom endpoints.

See Figure 2.1 for an example. We observe that any precise 1.5D terrain for the
subproblem ¢;, ..., ¢; lies within the polygon P, ;.

For the polygon P, ;, we will use various algorithms which involve finding paths inside
the polygon. These algorithms need a triangulation of the polygon. Thankfully, we
do not need Chazelle’s impractical linear time algorithm [9], since P, ; is composed of

trapezoids each of which can be cut into two triangles.



(a) The input segments.

-~

(b) Polygon P j,.

Figure 2.1: Constructing a simple polygon containing all of the vertical line segments.

2.1 Minimizing the number of local extrema

For our first problem, we will look at minimizing the number of local extrema along the 1.5D
terrain. The definition we will use was first given for 2.5D terrains by Gray et al. [22].

Definition 2.1.1. Given elevations ¥, ...,¥,, a plateau is a collection of points p;,...,p,
from intervals ¢;,...,¢; so that y; = --- = y;.

Definition 2.1.2. Given elevations yi,...,y,, a local minimum (symmetric for local
maximum) of a 1.5D terrain is a plateau whose points are lower than the points that are
outside but adjacent to the plateau. That is, it is a collection of points p;,...,p; so that

Yi=- =Y, ¥ <yi—1if 1 £ 1, and y; < yj41 if § # n.

This definition means we will count adjacent points that have the same elevation only
once. In 1.5D, we can identify each extremum by its rightmost point.

Definition 2.1.3. Given elevations yi,...,y, and the resulting 1.5D terrain, p; is a local
minimum [mazimum/ identifier if p; is the rightmost (maximum index) point of the
local minimum |[maximum| p; belongs to.

Objective #1: Minimizing the number of local minima and maxima (identifiers).

See Figure 2.2 for a potential input and a sample solution. The first and last points are
always part of an extremum by definition, and the last point is always its own extremum’s
identifier. The first and last point may in fact be part of the same extremum if there is
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123 4 5 6 7 8 9 10 11 12

Figure 2.2: A 1.5D terrain with 5 local extrema. We associate each extremum with its
rightmost point (the filled-in squares). Points represented with hollow triangles are not part
of an extremum. This solution is optimal: because t, < by > t5 < by > t11, we require 5
extrema by Claim 2.1.1.

a single plateau solution covering all of the segments. The extremum is considered both a
local minimum and maximum in this case, but we only count it as one extremum.

Our result for this problem is:

Theorem 2.1.1. There exists an O(n) time algorithm to minimize the number of extrema
for an imprecise 1.5D terrain.

Gray et al. [22] showed that the problem of minimizing the total number of extrema is
NP-hard for 2.5D terrains. One can also ask to minimize the total number of minima instead
of asking to minimize the total number of extrema. Gray et al. [22] show that this problem
can be solved in O(nlogn) time, even for 2.5D terrains. Because the extrema alternate
between minima and maxima in a 1.5D terrain, it is not too hard to use this algorithm to
solve the problem of minimizing the total number of extrema in O(nlogn) time. Of course
as we will see, we can improve the time complexity.

Preliminaries. First, we will prove a claim that helps establish a lower bound on the
minimum number of extrema.

Claim 2.1.1. Let k > 1. Let Iy,...,l; be a subsequence of [n] where t;, | < b, >t for
all even j < k. Then the number of extrema is lower bounded by k.

The statement is also true if instead we assume b, _, > t;; < by, for all even j < k.

+1
Proof. The claim is trivial for £ = 1. For k = 2, since ¢;, < by,, it is not possible to make
a single plateau solution, so there must be at least two extrema. Let k > 3. Let y be an
arbitrary solution. See Figure 2.2 for a running example. We note that t5 < by > t5 < by > t1;
for this input.

Because t3 < by > t5, we must have ys < y4 > y5, therefore we must have a local
maximum strictly between points p, and ps. The figure above illustrates one example of

11



this, where py4 is the maximum, although there are alternatives (for instance, ps, py can both
be part of a maximum, or p3 could be the maximum). In general, we have y;,_, <y, > .,
for all even j < k, so there is at least one maximum strictly between [;_; and [;;;. So there
are at least [k/2| — 1 extrema. Crucially, given the maximum from when j = 2, we see that
this maximum is not the first extremum, because it is strictly between [; and I3, so there is
at least one extremum before this maximum.

Also, since bi,_, >t <by,, forallodd j > 1, we have that y;,_, >y, < y,,,. Therefore,
there is at least one minimum contained strictly between indices [;_; and l;;;. Going over
all odd j, we have found at least [k/2] — 1 new extrema. We also count the extremum
containing the last point, which comes after the one that exists strictly between [;_o and [.

So in total, we have found |k/2] + |k/2] = k distinct extrema. O

Greedy algorithm. We will now provide a linear time greedy algorithm for this problem.
The solution computed by the algorithm will be denoted by y. Let m denote the number of
extrema of y, and let iy,...,1,, be the identifiers of y.

The intuition behind the algorithm is starting from left to right, we place the current
local extremum’s identifier as far right as possible. This way, we ensure in the long run the
total number of local extrema is minimized. See Algorithm 1 for the pseudocode.

We will now give an overview of the algorithm. On line 1, we place the first extremum
identifier at iy = max{i € [n| : min{ty,...,t;} > max{by,...,b;}}. This is as far right as
we can place the first identifier. We declare a binary variable dir, which denotes whether to
choose the elevation of the next points in an increasing or decreasing fashion. We initially
define dir to be decr (decreasing) if the point p;, 11 has to be below p;, (condition on line
2), or define dir to be incr (increasing) if the point p;, 11 has to be above p;, (condition
on line 4). We continue to place points in a decreasing (or increasing) fashion until it is
no longer possible. At this time, we find where to place the next identifier i5. As long as
we choose points to increase as little as possible (when increasing) or to decrease as little
as possible (when decreasing), we can guarantee that iy is as far away from i; as possible.
We continue to place identifiers in this greedy fashion, alternating between maximum and
minimum identifiers. Also throughout the algorithm we declare variables [y, ..., [,, that will
be used when we appeal to Claim 2.1.1 for correctness.

We see variable dir flips from incr to decr when we switch from placing points in an
increasing fashion to a decreasing fashion (and visa versa). Also, j increases by 1 during
these flips. In particular, the conditions for when variable dir flips are given on lines 15 and
22. What do these conditions mean?

Consider an iteration ¢ between i; + 1 and 7;1;, and assume dir=decr without loss of
generality. On line 14, we set y; to be as high as possible, so long as it is less than or equal
to the previous point ;1 (hence y; = min(y;_1,¢;)). On line 15 during iteration i;,;, we see
that y;. , < bi,,,+1, and so it is not possible to set y;.., 41 to be below y;,_,, despite the fact

12



Algorithm 1 Minimizing the number of extrema

1:
2:

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

3
4
5:
6:
7
8
9

fori=1u+1,i<n;1+=1do
if dir = decr then
Y; < min(yi,l, tz)
if ¢ 7£ n and Y < bi+1 then
dir = incr
Jj+=11=1

Let I; € {ij_1 +1,...,i;} such that y;, =t

end if
else if dir = incr then
y; < max(y;_1, ;)
if i #n and y; > t;;1 then

i1 < max{i € [n| : min{ty,...,t;} > max{b,...,b;}}
if t;, 11 < max{by,...,b; } then
dir < decr
. else if b;, .1 > min{ty,...,t;, } then
dir < incr
end if
: for i =1 up to ¢7; do
y; < min{ty, ..., t;, } if dir = incr, otherwise y; <— max{by,...,b; }
: end for
Let I3 € {1,...,41} such that y;, = ¢;, if dir = incr, otherwise [; € {1,...,4;} such that
Yip = bll
j=1

> Invariant: y; = min{t; 41,..., %}

J

> Invariant: y; = max{b;41,...,b;}

Let I; € {ij_1 +1,...,4;} such that y;, = by,

dir = decr
JH+=114=1
end if
end if
end for
i Mn,m<J
return y

>y has m local extrema
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we placed y;,,, as high up as possible. Therefore, we must flip variable dir before starting
the next iteration.

Correctness. First, we elaborate on comments made in the algorithm (lines 14 and 21):

Invariant 2.1.1. Assume b;, 11 > min{tq,...,t; } without loss of generality. Then

® Y, — max{biﬁl, ey bl} for all ¢ S {ZJ + ]., .. ,ij+1} lfj odd.

® Y = min{ti].Jrl, . ,tz} for all 7 € {7/] + 1, . ,’L'j+1} lfj even.

If instead t;, 11 < max{by,...,b; }, we swap the odd and even cases. This is a pretty
simple proof by induction. The invariant itself is not too important, but the main takeaway
is that what is done on lines 18 and 25 makes sense. We now give the proof of correctness
for the algorithm.

Proof of correctness. Consider iy, 1y, ..., in, l, computed by the algorithm. Clearly, y has m
extrema. We will use Claim 2.1.1 to prove this is optimal.

Assume with loss of generality that b;, 11 > max{ty,...,t;}. So the parity variable dir
starts off being equal to incr, and dir = incr if and only if the variable j is odd. By lines 10,
18 and 25, y;; = t;, if j is odd, and y;, = by, if j is even, and clearly I} <ly < -+ <lp,.

It is also clear the algorithm chooses y;,, ¥i,, - - ., ¥i,, as the extrema identifiers, so y;, <
Yip > Yis < Yi, > -+, and so &, < by, >, < b, >---. By Claim 2.1.1, there are at least m
extrema for this input. Hence, y is optimal. n

2.2 Minimizing the number of links/bends

On any 1.5D terrain, we have n — 1 segments connecting the n points of the terrain. If a
subsequence of the segments all lie on a line, we can really think of them as one long segment.
We will refer to such a subsequence as a link of the terrain.

Objective function #2a: Minimizing the number of links.
Note: we will later generalize the notion of a link to a patch (see Section 4.2).

An equivalent way to phrase this objective function is to minimize the number of turn
angles that are not equal to 0. We call the points where such turn angles happen bends.
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Objective function #2b: Minimizing the number of bends.
For a precise 1.5D terrain, the number of links is equal to the number of bends plus one.

We will prove the problems are in NP. See Section 2.2.1. The problems appear simple
enough that they do not appear to be NP-hard, however efforts to find an exact algorithm
were not successful. However, it is easy to provide a 2-approximation algorithm.

Theorem 2.2.1. There exists a linear time 2-approximation algorithm for the problem of
minimizing the number of links (or bends).

The first problem is similar to the problem of finding a minimum link distance path in a
polygon, for which Suri [141] gave a linear time algorithm. In Section 2.2.2, we will use Suri’s
algorithm to give a linear time 2-approximation algorithm. In Section 2.2.3, we will provide
another 2-approximation (greedy) algorithm, which will inspire a similar approach for a
special case in the 2.5D model (Section 4.2.2). We will prove both algorithms 2-approximate
the optimal number of bends, which also proves that the algorithms 2-approximate the
optimal number of links. In Section 2.2.4, we briefly compare the two algorithms. We give
two example inputs where one algorithm returns a better solution than the other algorithm.

Preliminaries. Both algorithms build upon an algorithm by Suri [14]. The problem pro-
posed by Suri is the following: given a simple polygon, compute a path between vertices u
and v with as few links as possible. Given the polygon has n vertices, the runtime of this
algorithm is O(n) time.

Before we discuss how we use his algorithm, we will give a brief summary of how Suri’s
algorithm works. First, the algorithm finds the visibility polygon V(u) of u. If v is not
visible from wu, then more than one link is needed. Next, an edge of V(u) is computed,
which is a chord of P, denoted the window w(u). In successive steps his algorithm finds the
visibility polygon of the window of the previous visibility polygon to get a new window. The
algorithm stops when the current visibility polygon includes the vertex v.

Observation 2.2.1. Suri’s algorithm can be modified to work with starting and ending
segments e, eo of P, instead of vertices of P.

In particular, we will use this modification to compute the shortest link path from ¢; to
(, in Py ,. We will now prove this result. After proving this observation, we found a result
from Imai and Ira [27] that (implicitly) provides an algorithm to compute the path with the
minimum link distance between two vertical edges of a polygon. They prove this result from
scratch, but we will simply modify Suri’s algorithm.

Proof. Because e; is a chord of P, and because the algorithm iteratively computes visibility
polygons from chords of P, the algorithm can start with the chord e; instead of some vertex
a. Furthermore, we can easily check whether ey intersects the current visibility polygon
instead of whether some point b intersects the visibility polygon. O]
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We have a second algorithm, which needs to compute one link paths efficiently.

Observation 2.2.2. Let i < n. We can compute the largest index j > ¢ such that we can
connect ¢; to ¢; with a line segment through P, ,, in O(j — ) time.

Proof. We take a similar approach to Suri’s algorithm. We simply compute the visibility
polygon starting from /¢; within polygon F;,, and find the largest ¢; that intersects the
visibility polygon. As discussed by Suri: “Instead of spending O(n) time for computing each
V (e;) [the i’th visibility polygon] we spend only O(n;) time, where n; is the total number of
triangles of T' [the triangulation] that are intersected by V(e;)”. Therefore, the runtime of
computing a one link solution is O(j — 7). O

2.2.1 A decision algorithm when the bend locations are known

If we know the indices of where we want the bends, then there is a simple linear program
that computes a feasible solution. Assume we are told that there are k£ links with the &£ — 1
bends at indices i1, 19, ...,i_1 Where ig =1 < i1 < --- < 1p_1 < 7, = n. This can be solved
by finding a feasible solution to a linear program. Let v, .., y, be variables. We add variables
mai,C1, ..., My, to capture the equations of the lines of the links. A precise 1.5D terrain is
a feasible solution to the following linear program:

o b, <y; <t foralliée [n]

o y=myr; + ¢ forallist. iy <i<ijandforal j=1,... k

This can be helpful for deciding whether there is a solution with at most k links, assuming
k=0O(1) or k=n— O(1). We simply try all (kﬁl) possible places for the bends, and solve
the LP, and return any feasible solution.

Additionally, this linear program can be used to show that the problem lies in NP. The
bend locations can be computed non-deterministically, then the y-values are computed using
the linear program.

2.2.2 The polygon algorithm

We will now examine a linear time 2-approximation algorithm for this problem. It is a simple
3-step algorithm. First, construct the polygon P, ,. Next, compute the minimum link path
between the first vertical line segment and the last vertical line segment that is contained
within this polygon. We will use the modified version of Suri’s linear time algorithm (as
discussed in Observation 2.2.1). There is no guarantee that the links obtained from this
algorithm bend at the vertical segments, which means it does not necessarily translate to a
1.5D terrain.
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The final step is to convert this path into a proper 1.5D terrain. From left to right,
replace every bend that is strictly in-between two segments with two new bends, one at
each intersection between the piecewise linear curve and the two vertical segments. If there
already is a bend at either of those points, we do not need to add new bends, just use the
ones already there. This ensures all bends occur at vertical intervals. We at worst double
the number links on Suri’s path. Since every 1.5D terrain is a feasible solution to Suri’s
problem, then the number of links in the optimal solution to Suri’s problem is a lower bound
to our optimal solution, and therefore, we clearly have a 2-approximation. This approach
clearly takes O(n) time.

2.2.3 The greedy algorithm

We will now give a second 2-approximation algorithm. This algorithm will inspire another
algorithm used in Section 4.2.2.

This is a simple greedy algorithm. We choose the first link so that it covers as many
segments as possible. Let us say we can cover the first ¢y segments ¢4, ..., ¢;, with one link.
We compute the y values y1, ..., y;, within the first ¢; intervals Iy, ..., I;, in linear time (see
Observation 2.2.2).

We continue this process starting at segment ¢; ;1 to determine the remaining n — 4,
elevations. (Note that once y;, 11 has been decided, we need p;, 11 to connect to p;,, so we
add a link connecting the two points. Potentially we can merge this short link with the next
link, but that may not always be possible). From ¢;, .1, we compute the farthest index iy
we can reach with one link from segment 7; + 1. We then start from segment i5 + 1 to find
the farthest index i3 we can reach, and so on and so forth. We keep going until we reach an
iteration k where 7, <n — 1.

If i = n — 1, we place a point p, anywhere on /¢, and connect a link from p,,_; to p,.
This case results in at most 2k links. The other case is i, = n, in which case we do not need
to add an extra short link, so there is at most 2k — 1 links.

Claim 2.2.1. Let i = 1. Let iq,...,47,_1,%; denote the indices from the description of the
algorithm. Then the problem requires at least k& — 1 bends (k links). (If iy, # n, then an
additional bend is required).

Proof. Consider an arbitrary solution y. Let j = 1,...,k — 1. Since it is not possible to
cover line segments £;,_,,...,¢;; with one link, then there must be at least 1 bend between
tj—1 + 1 and ¢;. Therefore, the input requires k — 1 bends, so the problem requires at least k
links. If i, = n — 1, we require an additional bend between ix_1 + 1 and . O

Let OPT denote the optimal number of bends. If ¢, = n, then there are at most 2k — 2
bends, and the input has at least £k — 1 bends by Claim 2.2.1. If i, = n — 1, then there are
at most 2k — 1 bends, and the input has at least & bends by Claim 2.2.1. In both cases it is
clearly a 2-approximation algorithm for minimizing the number of bends.
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Runtime: The step that involves computing a one link solution between /;,_, and /;; can
be done in O(i; —i;_1) time (see Observation 2.2.2). Therefore in total, this algorithm takes
O(n) time.

2.2.4 A brief comparison between the two algorithms
Both algorithms are guaranteed to return a 2-approximation of the optimal terrain. For

some inputs, the polygon algorithm (from Section 2.2.2) returns a better solution than the
greedy algorithm (from Section 2.2.3), see Figure 2.3 for an example input.

Figure 2.3: An example input where the polygon algorithm achieves a better solution than
the greedy algorithm. The solid purple terrain is the solution returned by the polygon
algorithm, which is the optimal solution. The dashed blue terrain is the solution returned
by the greedy algorithm. The two terrains overlap at the start and end, but are drawn
slightly apart for better visualization.

Meanwhile, there are inputs where the greedy algorithm achieves a better solution than

the polygon algorithm. See Figure 2.4.

2.3 Minimizing the length of the terrain

A very natural objective function is to minimize the sum of the lengths of the segments of
the 1.5D terrain.

Objective #3: Minimizing the total length of the terrain.

Theorem 2.3.1. There is a linear time algorithm to compute a 1.5D terrain that minimizes
the total length.

We reduce this problem to finding a shortest path between two edges in a polygon.
Chiang and Tamassia [10] solve a more general problem of finding a shortest path between
two convex polygons inside a bigger simple polygon. In fact, they give an algorithm for a
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1 2 3 4 5 6 7 8 9 10

(a) A sample input. The first and last two segments are 0 length.

S ’. -----

A
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(b) The unique shortest link distance path in (c) The output of the greedy algorithm.
Py . Therefore, the polygon algorithm will For this input, this algorithm returns an

return a terrain with 4 bends, 5 links. optimal solution.

Figure 2.4: An example input where the greedy algorithm returns a better solution than
the polygon algorithm.

query version of the problem but we only need the shortest path between two fixed edges.
Given two convex polygons C7, Cy within a simple polygon P, their algorithm computes the
shortest path from C; and Cy within P in O(n + logh) time, where n is the number of
vertices of P, and h is the number of vertices of C; and Cs.

Using this result, we will simply compute the shortest path 7= from ¢; to ¢, within
polygon P, ,, (see Definition 2.0.1) in O(n) time. For all i = 1,...n, the value we return for
pi = (24, y;) is simply the unique point in the intersection of ¢; and 7.

We observe that the shortest path 7 must be made up of O(n) links, whose turns can
only happen at vertices of the polygon, see Chapter 15 of [12] (Lemma 15.1). Therefore, the
1.5D terrain obtained from py,...,p, is exactly 7. Since m is optimal, then the computed
1.5D terrain is also optimal.

2.4 Optimizing steepness

Let the steepness of an edge of the terrain be the absolute value of its slope. We can solve
the problem of minimizing the maximum steepness.
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Objective #4a: (Lexicographically) minimizing the maximum steepness.

We will also explore the problem of mazimizing the minimum steepness, a problem that
has relevance for dispersion problems.

Objective #4b: (Lexicographically) maximizing the minimum steepness.

What does lexicographically mean in these contexts? For a given 1.5D terrain, define the
steepness vector of the terrain to be the vector of n — 1 steepness values obtained from the
n — 1 edges of the curve (note that there might be duplicate values).

For the min-max objective function, the vector will be sorted in decreasing order. For
two different terrains 7', 7" with steepness vectors s, s’, we say that T is lexicographically less
steep than T" if s # s’ and for the first index ¢ where s differs from s, s; < s;. We want to
return the terrain that is lexicographically the least steep.

For the max-min objective function, the vector will be sorted in increasing order. For two
different terrains T, 7" with steepness vectors s, s, we say that T is lexicographically steeper
than 7" if s # s’ and for the first index ¢ where s differs from ¢', s; > s,. We want to return
the terrain that is lexicographically steepest.

The max-min objective is not a very natural measure for the niceness of a terrain, because
the terrain will have sharp turns when switching from steep increasing segments to steep
decreasing segments. However, this problem is relevant to Section 3, which asks to place a
single point on each vertical segment in order to maximize the minimum pairwise distances.

Our results for this section are:

Theorem 2.4.1. There is an O(n) time algorithm to lexicographically minimize the maxi-
mum steepness vector of an imprecise 1.5D terrain.

Theorem 2.4.2. There is a dynamic programming algorithm to lexicographically maximize
the minimum steepness vector of an imprecise 1.5D terrain in O(n?) time.

Theorem 2.4.1 will be proven in Section 2.4.1, and Theorem 2.4.2 will be proven in Section
2.4.2.

2.4.1 Minimize the maximum steepness

We first prove Theorem 2.4.1. The algorithm is quite simple. We return the 1.5D terrain
with the minimum total length. As discussed in Section 2.3, this can be done in linear time.
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(a) The terrain goes straight (b) The terrain turns up at (c) The terrain turns down at
through the segment £j,. the top endpoint (xg, tx). the bottom endpoint (xg, by).

Figure 2.5: The three cases for how a locally shortest path can cross a line segment.

Correctness. Let y be the output to this algorithm. As discussed in Section 2.3, the
terrain with the minimum total length is obtained from the shortest path 7 from ¢; to ¢, in
polygon P, ,,.

Definition 2.4.1. A path is locally shortest if it cannot be made shorter by changing the
path in a small neighbourhood.

Specifically for polygon P, ,, this means that the path is piecewise linear and for each
k=1,...,n, one of the following holds:

1. The terrain goes straight through the segment /.
2. The terrain turns up at the top endpoint (zy, ).

3. The terrain turns down at the bottom endpoint (zy, by).

See Figure 2.5 for an illustration of these three cases.

It is commonly known that shortest between two points in polygon is unique. In our
setting, we are looking at shortest paths between two segments. It is not hard to argue that
the shortest path 7 in P, is unique and is locally shortest—with one exception when the
shortest path is a horizontal line segment, which we might be able to shift up or down.

We will prove the following lemma in order to prove correctness.

Lemma 2.4.1. If a path 7* lexicographically minimizes the maximum steepness vector, then
it is locally shortest path.

Correctness easily follows from this. If the shortest path is unique, then it is the unique
locally shortest path, therefore, only the shortest path lexicographically minimizes the maxi-
mum steepness following Lemma 2.4.1. Otherwise, the shortest path is a horizontal segment
so the steepness vectors is all 0, so the shortest path lexicographically minimizes the maxi-
mum steepness in this case as well.
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(a) Case (a). (b) Case (b). (c) Case (c).

Figure 2.6: Moving point p; up in all cases will improve the steepness vector. The dashed
line represents the straight path from p,_1 to pry1.

Proof. We prove the contrapositive. Assume that 7* is not locally shortest. Consider a bend
that turns up and that can be locally shortened. (The “turning down” case can be argued in
a similar fashion). Let us say the bend is made up of points px_1, px, pr+1 on 7. See Figure
2.6.

We can move p, up by a small amount up to “straighten” the bend, which is a local
adjustment that improves the length of the path. Also, we note that straightening this bend
will cause a change in the slopes of the two edges forming this bend. We denote the two
slopes my, ms, see Figure 2.6. We break down into cases.

(a) If both slopes are positive, then the smaller slope value (m;) will increase while the
larger one (my) will decrease. See Figure 2.6a. By decreasing my by a small amount
(so long as we still have my < my), we will improve the steepness vector, so 7* does
not lexicographically minimize the maximum steepness.

(b) If both slopes are negative, then it is symmetric to case (a), so 7* does not lexico-
graphically minimize the maximum steepness.

(c) If the first slope is negative and the second slope is positive, then the first slope will
increase and the second one will decrease. See Figure 2.6¢c. Both slopes are less steep
than before, so 7* does not lexicographically minimize the maximum steepness.

(d) It is not possible for the first slope to be positive and the second slope to be negative
while “turning up”.

In all cases, 7* does not lexicographically minimize the maximum steepness. O

2.4.2 Maximizing the minimum steepness

We will now prove Theorem 2.4.2 by giving a dynamic programming algorithm to lexico-
graphically maximize the minimum steepness vector.
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J
Figure 2.7: Illustrating how to compute a candidate solution T for Tinc(7). One example

for j is given with this figure, but we must try all possible indices j (for where the last
increasing subsequence starts).

Algorithm overview. This is a dynamic programming algorithm. Any terrain consists
of alternating increasing (non-decreasing) and decreasing (non-increasing) sequences. When
our goal is to maximize steepness, every increasing sequence, say from index j to k, should
go from the bottom endpoint b; to the top endpoint ¢ (formalized as Observations 2.4.1,
2.4.2 below). This motivates solving two subproblems for each i—to compute the optimal
terrain Ti,.(7) from 1 to ¢ that ends with an increasing subsequence, and to compute the
optimal terrain Tye.(7) from 1 to i that ends with an decreasing subsequence.

Going forward, we will focus on how to compute Ti,.(7), the other case is symmetric.
To solve each subproblem T;,.(i), we consider all possibilities j < ¢ for the index where
the increasing subsequence starts. Since the subsequence before this last subsequence is
decreasing, we use the solution Tye.(j) for the first j y-values. Given j, we compute an
increasing set of y-values y;,...,y; from intervals I; to I;. To determine these last i — j
elevation values, we perform a shortest path computation from (x;,b;) to (z;,¢;) and return
the y-values where the path intersects the line segments. In Figure 2.7, we show an example
for one value of j.

Algorithm details. Each T}, (i) will be a tuple. The first entry is y.(7), which is a list
of the i y-values representing the optimal solution for this subproblem. (We could just store
the y-values from j to ¢ for the optimal j, but this makes no difference to the asymptotic
time or space complexity.) The second entry is si,(i), which is the objective value for this
solution, namely an increasing list of the 7 — 1 steepness values for the terrain obtained from
yi (7). In a similar fashion, Tyec(7) is the tuple (y5..(7), Sdec(i)).

For the base case we set y.(2) = (b1, t2). If by > to, then y}.(2) should be set to null, as

—‘tr?l'. Similarly set yj..(2) = (t1,02) and

To—

Sdec(2) = “’%z‘ (or null if ¢; < by). Note that Tine(1) and Tge(1) are not considered because

2

no solution exists with y2 > y1. sinc(2) is simply
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steepness is not well defined when a terrain consists of only one point.

To compute Tin.(7) for i > 3, we iterate over j as suggested in the algorithm overview,

and for each j we generate one candidate solution Tl(njc)(z) For simplicity of notation, we will
instead use the notation T0) = (y(), s()).

The first j y-values of ) are obtained using a lookup to Tye.(j). To lexicographically
maximize the minimum steepness for the last ¢ — j + 1 points, we borrow an idea used by
Biedl et al [3]. We determine the y-values by computing the shortest path from (z;,b;)
to (x;,t;) within the polygon P;; (see Definition 2.0.1), and return the y-values where the
path intersects the line segments. See Figure 2.7 for an example. For this step, we will use
Guibas’ [25] linear time shortest path algorithm. If the y-values of the shortest path are not
non-decreasing, we can conclude it is never possible to make the elevations for these points
non-decreasing, so we do not return a solution 7V) from iteration j.

To compute s, we use the sorted list of steepness values from Sgec (7) and obtain the
remaining ¢ — j steepness values from the shortest path.

After we generate all candidate solutions 7™, ..., TU) we return the one that is the best.
That is, return the one that results in the lexicographically steepest terrain, by comparing
the steepness vectors 3(1), R st=1),

Correctness. We make the following observations about the optimal solution:
Observation 2.4.1. For all i = 2,... n, T},(7) must have its ¢'th y-value equal to t;.

Observation 2.4.2. For all i = 2,... n, for any index j where the terrain Ti,.(i) switches
from decreasing to increasing, the j'th elevation value must be b;.

The proofs of these observations are straightforward. If either observation was not true,
we could easily shift point ¢ up or point j down and improve the steepness vector.

We next prove a lemma for computing the last ¢+ — j + 1 elevations for a given ¢ and
iteration j < 1.

Lemma 2.4.2. Let j < i. Let 7 denote the (unique) shortest path from (z;,b;) to (x;,t;)
in P;;. Then the optimal 1.5D terrain for the subproblem /;,...,¢; with the restriction

y; < --- < y; should have point p; placed on the unique intersection between 7 and ¢, for
all k =7,..., 1.
Proof. The proof of this lemma is similar to that of Claim 2.1 from Biedl et al. [3]. We

will give our own proof because this problem is in a different context than theirs (dispersing
points along a real line).

Let 7* denote the path that is obtained from the optimal terrain for the subproblem
l;,...¢; with the restriction y; < --- < y,. We will prove 7* = 7, which clearly shows the
lemma holds. We will prove it in a similar fashion as Lemma 2.4.1.
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(a) Case (a). (b) Case (b).

Figure 2.8: Pushing point p, down (Case (a)) or up (Case (b)) will straighten the path. The
smaller of the two slopes increases, so the steepness vector improves with the movement of

Dk-

Assume for contradiction 7* is not locally shortest. As in the proof of Lemma 2.4.1, we
consider a bend that turns up and that can be locally shortened. Let us say the bend is
made up of points pr_1, Pk, pry1 on 7, see Figure 2.8. Case (a) is the upward bend case,
and Case (b) is the downward bend case.

We can move py, slightly up or down to try to “straighten” the bend. We note straighten-
ing this bend will cause a change in the slopes of the two edges forming this bend. The slopes
are denoted by mq, ms. By assumption, both slopes are positive, so then the smaller slope
value will increase while the larger one will decrease. By increasing the smaller one by a
small amount (so long as we maintain that the smaller slope is less than or equal to the larger
slope), we will improve the resulting steepness vector, which contradicts 7* maximizing the
minimum steepness.

Therefore, 7* must be locally shortest. Since 7 is the unique shortest path, then it is the
unique locally shortest path, so 7* = 7w, proving the lemma. O

We will now prove Tin.(i) and Tyec(7) are computed correctly by induction.

Base case. The base cases Tin.(2) and Tye.(2) are both clearly correct.

Inductive step. Let 3 < i < n. We will focus on computing T,.(7), computing Tyec()
can be proven in a symmetric fashion. Assume by induction T},c(2), Taec(2), - - -, Tinc(i —
1), Tgec(? — 1) have been computed correctly.

Note that there is some index j where the optimal terrain switches from decreasing to
increasing. Chose the largest such j, unless the terrain is never decreasing, in which case we
let 7 = 1. By Observation 2.4.2, the j'th y-value must be b,.

With this observation, the first 7 — 1 steepness values are independent of the last ¢ — j
steepness values. Therefore, the 7 — 1 steepness values should simply be the steepness values
for the optimum solution Tge.(j), which by induction has been computed correctly. Knowing
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the terrain is non-decreasing from j to 7, the last ¢« — j steepness values should be obtained
from a shortest path from (x;,b;) to (x;,t;) by Lemma 2.4.2. This solution being described
is exactly the solution 7V (defined above, see the Algorithm details section).

Finally, since Tj,.(7) is simply computed to be the best of 7!, ... TG~V then clearly
Tinc(7) has been computed correctly.

Implementation and runtime. We note that there are at most 2n subproblems to solve.
We will show T, (i) takes O(:?) time to compute, which results in the total runtime being
O(n?) time. Recall that Ti,.(4) is set to be one of the candidates T, ... 701,

A straightforward solution is to compute each TV) = (y@) sU)) j =1,...,i — 1, sepa-
rately. We look up the first j elevations from y3..(j) and we use Guibas’ [25] linear time
algorithm to compute the shortest path from (z;,b;) to (x;,t;) in order to obtain the last
1 — J + 1 elevation values. The ¢ elevation values give us the ¢ — 1 steepness values, which we
can then sort in time O(ilogi). Summing over all j gives a runtime of O(i?logi). We claim
that this can be reduced to O(i?) as discussed in the next two paragraphs.

We want shortest paths from each (z;,0;) to (z;,¢;). Since all of the shortest paths end
at (x;,t;), we can simply compute the shortest path tree to all vertices starting from (x;,t;)
in O(7) time. Furthermore, we can compute the sorted steepness vectors of the paths as we
compute the shortest path tree, as follows. Suppose an edge of steepness s is added to the
shortest path tree. The edge passes straight through some number k of the vertical segments,
and we create the steepness vector for the child in the shortest path tree by taking the sorted
steepness vector for the parent and inserting k + 1 copies of steepness value s for the new
edge. This takes O(i%) time overall, since we are creating and storing a steepness vector of
size O(i) at each of the i nodes of the shortest path tree.

Finally, to compute s/), we need the first j — 1 steepness values (which we store sorted)
and the last ©+ — 7 steepness values, which are sorted by the previous paragraph. We merge
these two vectors in linear time to get s¥/). This takes O(i?) time for all j.

Now that we have (sorted) steepness vectors sV, ..., s~ we need to determine the

lexicographically steepest vector. For two sorted steepness vectors, comparing them takes
O(i) time. So, comparing all sorted steepness vectors to find the best solution takes O(i?)
time.

Therefore, computing T, (i) takes O(i?) time. In total, the runtime is Y, O(i%) = O(n?).
BEach Ti,c(2) and Tgec(i) takes O(7) space. Therefore, the space complexity is ) . O(i) =
O(n?).
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Chapter 3

Distant Representatives for Segments
in the Plane

In the previous chapter we considered problems of constructing “optimum” 1.5D terrains by
placing one point in each input vertical line segment. In this chapter we consider another
problem involving the imprecise point model, where one representative point is chosen
within each input object. The problem we will be focusing on is the distant representatives
problem first introduced by Fiala at al. [I8]. The general problem statement asks: given
objects in the plane, place one representative point per object in order to maximize the
minimum distance between any pair of points.

We will examine the case where the input objects are line segments in the plane, which
makes the problem quite similar to those of the previous chapter (Chapter 2). The most
important difference with the distant representatives problem is that we want to have all
points far apart from each other, whereas the problems for imprecise 1.5D terrains are
concerned with properties of the edges of the terrain. Therefore, for this problem, we can
allow the input line segments to overlap.

However, Objective #4b (maximizing the minimum steepness) for imprecise 1.5D terrains
is somewhat similar to this problem (wanting points to be far apart), except there, only
distances between adjacent segments were relevant.

This chapter will be structured differently from the previous chapter. The sections will
involve adding small variations or assumptions to the input, in order to obtain different
and interesting results. See the first column of Table 3.1 for the assumptions on the input.
For instance, in Section 3.3, we will consider a very general case of inputs with horizontal
segments as well as vertical segments, and in Section 3.2, we will restrict to unit parallel
segments.

Overview. We have three results to present. Two of the results (the ones in Sections 3.2
and 3.3) were written for the paper “Distant Representatives for Rectangles in the Plane”
by Biedl et al. [1]. As a major co-author of those results, we will present them in this thesis.
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In Section 3.1, we will present an algorithm to solve the problem for parallel segments.
The algorithm proves the problem belongs to the complexity class XP, where the parameter
is the size of the strip that contains the segments. This approach only works in the L; and
L, norms, building off a lemma from Biedl et al. [1].

It would be nice to have an algorithm that proves the problem is in P and not just XP,
however this is unlikely: in Section 3.2, we show this version of the problem is NP-hard. In
fact, we can show this for the Ly norm as well. Furthermore, the reduction uses unit length
segments. This result appears in Section 4.1 of Biedl et al. [1], also see Appendix D.1 of
the extended version of the paper [5]. An NP-hardness reduction has already been provided
for the Ly norm by Roeloffzen in his Master’s thesis [11, Section 2.3], but we add details
regarding the bit complexity of the segments constructed during the reduction that should
have been addressed in his proof.

Finally, we will look at the more general case of orthogonal segments in Section 3.3. By
allowing both horizontal and vertical segments, we can expand on the previous idea and get
a gap-reduction that shows APX-hardness, that is, we can cannot even approximate within
a constant factor unless P = NP. Our main result is that, assuming P # NP, no polynomial
time approximation algorithm achieves a factor better than 1.5 in L, and L., and 1.4425
in Ly. This result appears in Section 4.2 of Biedl et al. [1], also see Appendix D.3 of the
extended version of the paper [5].

The distant representative problem. The distant representatives problem is defined
as follows:

Input: A set of horizontal and/or vertical line segments £ = {{y,...,¢,}.
Output: A set of points py,...,p, where p; = (x;,y;) placed on line segment ;.

Objective function: Maximize the minimum pairwise L., L; or Lo distance between

any pair of points, that is compute 07 = max rr;ém do(pi,pj), 07 = maxn;in di(pi,pj) or
) 17] Yy 1#]
05 = maxmin dy(p;, p;)-
Yy i#g

When there is no need to distinguish between the optimum value for the three norms,
we will simply use 0* to denote the optimum value.

3.1 An XP algorithm for parallel line segments

In this section, we will be looking at inputs with only vertical segments. Building on a lemma
from Biedl et al. [1], we can give an algorithm for the L; and L., norms. The runtime will
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Input Segments Norm ‘ Complexity Class
[§ 3.1] Parallel Segments Ly, L XP

[§ 3.2] Unit Parallel Segments | Ly, La, Lo, | NP-hard

[§ 3.3] Orthogonal Segments | Ly, La, Lo, | APX-hard

Table 3.1: Results of Section 3.

be efficient in terms of n and a parameter h, so long as h is thought of as constant. We will
now formally define our parameter h.

Assume that all input coordinates are integers, and not just rational as was the case for
the segments in Section 2. Because the distant representatives problem is proportional to
scaling and invariant to translation, we can simply take any rational input and transform to
our desired integer coordinate system.

Assume the vertical line segments are sorted in non-decreasing x-order. Let us say ¢; =
{z;} x I;, where I; = [b;,t;]. Let h denote the difference in height between the smallest
bottom endpoint and the largest top endpoint. In fact, without loss of generality we can
assume that min(b;) = 0 and h := max(¢;). The runtime of our algorithm will depend on h.
Since the problem is NP-hard (see Section [§ 3.2]), it is unlikely that there is an algorithm
that is only polynomial in terms of n.

Theorem 3.1.1. There is a n®"*) algorithm for the distant representatives problem for
vertical segments with vertical integer coordinates in [0, h].

This form of runtime (i.e., n®®°¥(")) is known as belonging to the complexity class

XP [15]. The upshot is that for every fixed parameter h, there is a polynomial time algorithm.
It is open if there is a Fixed Parameter Tractable (FPT) [15] or a pseudo-polynomial time
algorithm.

Preliminaries.

First, we take note of an observation made by Biedl et al. [1]. We will restate it as a lemma.

Lemma 3.1.1. There is an O(n?logn) algorithm for the distant representatives problem
when the segments are all on a single line.

They observe that the decision version of the problem can be solved using an algorithm
from the scheduling literature [13]—each representative point is regarded as the centre-point
of a unit length job.

Input assumptions.

Observation 3.1.1. There are at least two distinct xz-coordinates, otherwise the problem
can be solved in O(n*logn) by Lemma 3.1.1.
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Lemma 3.1.2. There are at most h vertical line segments at each z-coordinate, otherwise
the problem can be solved in polynomial time.

Proof of Lemma 3.1.2. Consider the case when there are more than h vertical line segments
at a given z-coordinate. If there were at least £k > h + 1 segments at some coordinate, then
looking strictly at those segments, an upper bound on 6* is the minimum pairwise distance
for those segments. Evenly dispersing the points would be the best we could hope for, which
would give §* < % < 1. We note that points with different z-coordinates have distance at
least 1 > ¢* apart, so the problem can be split up into independent subproblems by looking
at all of the segments at a given z-coordinate. Each subproblem can be solved with the
optimization algorithm for segments on a line. The optimal §* value is the minimum of the
§* over all subproblems. This approach runs in O(n*logn) time by Lemma 3.1.1. O

We use this lemma to prove the following lemma needed for the algorithm:

Lemma 3.1.3. Let f = h? + h. Then every point on interval ¢; is distance at least §* away
from intervals £y, ..., ¢;_s.

Proof. Let p denote an arbitrary set of representatives points. For any j < i — f, we will
show that d(p;,p;) > ¢6*. This will work for both norms with one proof. First, we have
d(pi,p;) > |xi — xi—f|. To lower bound |z; — x;_¢|, we look at the set {z;,_f,x;_fi1,..., 2}
There are f +1 = h? + h + 1 indices listed here, but because elements may be repeated as
many as h times, the size of this set is at least [%1 = h+2. Then clearly |z; — z;_f| >
(h+2)—1)X = (h+ 1)X, where X is defined to be the minimum z distance between
any two distinct = coordinates in the input. From this, we clearly see that |x; — x;_f| >
Xh+1)>Xh+X>h+ X.

Finally, we note that h + X > 6*, because 6* < d(pr, pr—1) < |yp — Yr—1| + |z — 21| <
h + X, where k is defined to be the index where |z, — 21| = X. Putting the inequalities
together, this proves that d(p;,p;) > ¢*. Since p was arbitrary, then the lemma clearly
holds. O

This lemma is very useful for designing a dynamic programming algorithm, as the point
on /; only needs to be concerned with the points on the segments that are close. However,
the challenge that remains is that infinitely many y-values from the interval I; can be used.
We can discretize the problem using results inspired by a technique used by Biedl et al. [4].

Output assumptions.

Claim 3.1.1. There exists a natural number d < n and an optimal solution y* for input £
such that yf € Z/d for all i € [n].
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The consequence of this claim is that we can simply add the constraint that y; € ¢;NZ/d
to our problem, without risk of missing the optimal 6*. This discretizes the problem. This
is assuming we know what d is, but trying all values for d and returning the best solution
will suffice. The following lemmas help prove the claim:

Lemma 3.1.4. There is an optimal solution y so that for every i € [n], either y; = b; or
there exists d; € [n — 1], z; € Z such that y; = d;0* + z;.

Lemma 3.1.5. 0* is a rational number of the form k/d, where d is some natural number
less than or equal to n.

Lemma 3.1.5 is similar to Lemma 11 from [1]. We will borrow some of the ideas from
this proof directly, though it ends up being slightly easier to prove the lemma in the special
case of vertical segments. Their lemma deals with the distant representatives problem in L,
for rectangles in the plane with rational coordinates, which is a more general case than what
we are dealing with. Restricting ourselves to just vertical segments with integer coordinates
lets us prove a result for the L; norm as well. This lemma will not hold in the L, norm,
which prevents us from giving an algorithm that works for the Ly norm.

Proof of Lemma 3.1.4. Consider any optimal solution y to the problem, and over all possible
optimal solutions, take the one with minimum > y; value. Let p; = (x4, ;) foralli =1,... n.
Let 7; denote the index of the point with the j'th smallest y-value, for all 7 =1,...,n.

We know that y;, must be on the bottom endpoint b;,, otherwise we could move it down
without decreasing the minimum pairwise distance, but this would result in a solution with
a better > y; value. For the remaining points, we also should not be able to move them
downwards, which means some point below it is exactly distance 6* away from it, or the
point is at the bottom endpoint. We break into cases by distance metric.

Case: Lo. In Ly, we have that for all j = 1,...,n, either y;, = b;, or duoo(pi;, s,) = 0%
for some k < j. In fact, doo(ps;, piy,) = max(|zs, — x4, |, [ys; — vi,|) = 0% can be simplified to
Yi, — Yi, = 05 (meaning the distance is tight in terms of the difference in y). This is because
decreasing y;, causes the distance between p;; and p;, to become less than §%, otherwise,
> . y; has not been minimized.

We can further generalize this second statement to the following: there are integers
0 <d;; <nandk < jso that y;, = b;, +d;;05,. This can be proven by induction on j. This
proves Lemma 3.1.4 in the L., case.

Case: L;. In Li, we have that forall j =1,...,n,y; = b or |xij — 24, | +¥i; — Y, = 07 for
some k < 7. It is harder to generalize the second expression as we did in the L., case, because
there is a term involving the z; values. However, we know that all of the z-coordinates are
constant integers. So what we can say is: there are integers 0 < d;; < n,k < j so that
i, = by, +d;;67 + X, where X, is some integer value involving the sum and/or difference
of = values. Setting z;; = b;, + X;;, this proves Lemma 3.1.4 in the L; case. O
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We can now prove Lemma 3.1.5.

Proof of Lemma 3.1.5. First, we need to find some point p; that is on its top endpoint and
is distance 0* above some other point p;. From this, we apply Lemma 3.1.4 to p; to prove
Lemma 3.1.5. Assume for contradiction that no such j exists. Let € > 0 be a sufficiently
small number that is less or equal to min{t, — yx : k € [n], yr # tx}.

If all points are on their top endpoints, then ¢ is not well defined. But in this case, we get a
contradiction. At least one point is not at a bottom endpoint, otherwise, all vertical segments
are length 0, which is a completely trivial problem. So this bottom point is ¢* units above
another point, otherwise it could be pushed down, contradicting that y minimizes ), y;.

Given ¢, we will define a new solution as follows: increase every value y;; # t;; up to
Yi; + %6. Meanwhile, the y-values that cannot be increased will remain at their top endpoint.
This is clearly a feasible solution. Note that the distance between the points that move will
increase, so the distance is strictly greater than ¢*. Comparing a point that moves with
a point that did not move (i.e., a point at its segment’s top endpoint), we note that their
distance will remain > 0* if ¢ is sufficiently small. This is assuming the distance between the
top endpoint and the moving point was not exactly 0* before the move, but by assumption,
this was the case. So we have just constructed a new solution where the minimum pairwise
distance is greater than ¢*. This is a contradiction.

Therefore, there must be two points p;,p; that are distance ¢* apart with y; = ¢;.
Applying Lemma 3.1.4 to y;, we see y; = b; or y; = d;0* + z;. In the L, case, either
ti=yj =y +06 =b+, ort; =y, =y + 05 = (d + 1)d, + z;, and rearranging for %,
proves the claim. In the Ly case, either t; = y; = y; + 07 — |x; — x| = b; + 6] — |v; — x4, or
ti=vy; =y + 05 — |z, —xj| = b+ (di + 1)07 + z; — |x; — x|, and rearranging for 07 proves
the claim. O

Finally, we prove Claim 3.1.1.

Proof of Claim 3.1.1. Let 6* = k/d where d is an integer less than or equal to n by Lemma
3.1.5. Take the optimal solution y provided by Lemma 3.1.4. For every i € [n], either
y; = b € Z/d, or y; = d;6* + z;. Since d;0* € Z/d and z; € Z/d, then so is y;. O

The Dynamic Programming Algorithm

We will now prove Theorem 3.1.1. We give a dynamic programming algorithm for fixed h, and
our current guess for the value of the denominator of 6*, denoted d, following Lemma 3.1.5.

Let v be a vector of f elevation values, where each value is restricted to grid points Z/d
between 0 and h (i.e. v € (Z/dN[0, h])?). The idea for this dynamic programming algorithm
is to consider all possible combinations of elevations v for the last f := h? + h segments of
the subproblem £; = {¢y,...,¢;}. That is, for the current combination v, we set y,_s41 to
be the first element of v, and we set y,_r4o to be the second element of v, and so on. For
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every ¢ and for every v, we store the optimum value for £;, assuming we are forced to use the
elevations from v for the last f imprecise points. The notation we will use for this solution
is 0%(i,v).

Only f segments are needed because by Lemma 3.1.3, the only points that could be within
distance 6* of a point on ¢; are the points on ¢;_f1,...,¢;—1. Also, by Claim 3.1.1, the output
points can be restricted to the grid points Z/d, so the number of possible combinations is
finite. The table we store all of these values in is size (n— f) x (dh+1), since |(Z/dN[0, h))/| =
{0, é, %, ..., h}| = dh+ 1. Naturally, because some of the y-intervals may be a strict subset
of [0, h], then not all table entries can or should be filled.

In order to compute 6*(i, v), we first compute the minimum pairwise distance for the last
f points. For the remaining pairwise distances, we will look at the optimal values for the
subproblems in the row 6*(i — 1, -) of the table. To access an entry of this row, we need the
f elevation values for y;_ ¢, y;—f41,...,¥i—1. The vector v determines the elevation values for
Yie f41,- -+, Yi—1. As for y;_¢, we try all possible elevation values, and for each choice, we use
it to index into row 6*(i—1, -). We return the best solution computed over all choices for y;_.
With some additional notation, we can turn the description of the dynamic programming
algorithm into an explicit formula for 6*(i, v).

Let A(i,v) denote the distance between the closest pair of points amongst the last f
points of L£;, assuming the elevation values are determined by v.

The base case is:

0" (f,v) = A(f,v)

Let v(i,v) denote the distance between the point p; € ¢; and the closest point amongst
Di—f+1, - - - » Pi—1, assuming the elevation values y;_s11,...,y; are determined by v. For a €
Z/d N [0, k], let Shift(v,a) denote the vector v but with the last element removed and the
element a added to the front.

The recursive step is:

0" (¢,v) = min{~(7,v), max{d* (¢ — 1, Shift(v,a)) : a € ,_y NZ/d}}

After the table has been fully computed, we return the best solution is ¢* = max{d*(n,v) :
v € (Z/dN[0,h])’}. In order to return an actual set of representative points, each entry
d*(i,v) of the table should also store the best value a for the elevation of y;_.

This approach only makes sense when n > f. If n < f, dynamic programming is not
used, instead we will brute force check for the optimal solution by applying Claim 3.1.1.
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Figure 3.1: How to compute 0*(i,v). The dots (red) are the points we place on seg-
ments ¢;_ri1,...,¢; with elevations determined by v. We can look at §*(¢ — 1,-), where
Yi—f+1,- - -, Yi—1 are determined by v. Since we need to know the placement of points on the
last f segments of £, ; in order to access entries of §*(i — 1,-), we simply try all possible
values a € I;_y NZ/d for y;_;. The purple boxes represent all possible points we can choose

Di—f = (Ii_f,yi_f) to be.

Correctness: The base case is clearly correct. We will show 6*(¢,v) has been computed
correctly in the general case. By Lemma 3.1.3, the placement of p; = (z;,y;) is not affected
by pi1,...,pi—s. Therefore, y1,...,y;—¢ should be chosen optimally only concerned about the
choices y;_s to y;_1 as determined by v. By induction, we should look at entries in §*(i —1, -)
where the last f — 1 values are determined by v. Since we need to know the last f points
of £;_1 to access 6*(¢ — 1,-), we simply try all possible values for y;_;, and take the best
solution from 6*(¢ — 1,-) that we find. In order to correctly compute §*(i,v), we also have to
account for the closest pair involving the last point p;, which is why we also compute (i, v).

Runtime. We first consider when n > f. For the base case, it takes O(f?) time to compute
the closest pair of points for a given v, so computing for all v takes at most O(f?(dh + 1)/)
time. Since d < n and h < f < n, then dh < n?, so dh + 1 < n?, therefore we can simplify
to O(f2(dh + 1)) = O(n?(n?)f) = O(n2*+M+2) = o)

What is the cost of computing §*(i,v) in the general case? Computing (i, v) takes O(f)
time. Trying all values for y,_s takes O(dh + 1) time, so in total, computing §*(i, z) from
§*(i — 1,-) takes O(f(dh + 1)) time. Computing for all v takes O(f(dh + 1)/*!) time, which
is n°"*) time by a similar argument as above.

The time to fill in the table is (n — f)no(hz) = n°"*) . Computing the final answer from
6*(n, -) is simply O(n(dh + 1)7) = n®") time. Accounting for all possible values of d, we
get at most n * nO"*) = pO"?) time.

Finally, we address the case n < f. This was a corner case where dynamic programming
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was not used, but we still need to show that the runtime is nO®*) - For each d, the time
complexity to brute force all solutions is ¢ * (dh + 1)" for some constant c. Since d < n, the
time is at most ¢ * (nh +1)". If h < n < f then c¢(nh + 1)" < ¢(n? + 1)/ = nO*)  The
case when n < h is trickier. We will argue that if we swap the base and the exponent for
the expression (nh + 1)", we get an upper bound for the expression. Note that the function
x/log(z) is an increasing function when z > e = 2.7182.... Asymptotically, we can assume
n > e. Since n < nh+ 1 then n/logn < (nh+ 1)/log(nh +1) = (nh+ 1)" < i
Therefore, c(nh 4+ 1) < en™ ! < en® 1 = nOP*) " Accounting for at most n values for d,
the runtime is n * n®#*) = pO®»*),

3.2 NP-hardness for parallel segments

In this section we show that, even for the special case of unit parallel segments, the decision
version of the problem is NP-complete for L; and L., and NP-hard for L, (where bit com-
plexity issues prevent us from placing the problem in NP). We assume that the segments are
horizontal—this is at odds with the assumption of vertical segments for terrains in Chapter
2 and with Section 3.1, but it matches the earlier work [1]. This L, result was proved previ-
ously by Roeloffzen in his Master’s thesis [11, Section 2.3] but we add details regarding bit
complexity that were missing from his proof.

Our reductions are from the NP-complete problem Monotone Rectilinear Planar 3-SAT [11]
in which each clause has either three positive literals or three negative literals, each variable
is represented by a thin vertical rectangle at z-coordinate 0, each positive [negative| clause
is represented by a thin vertical rectangle at a positive [negative, resp.] z-coordinate, and
there is a horizontal line segment joining any variable to any clause that contains it. See
Figure 3.2(a) for an example instance of the problem. For n variables and m clauses, the
representation can be on an O(m) x O(n + m) grid.

Theorem 3.2.1. The decision version of the distant representatives problem for unit hori-
zontal segments in the L, Ly or L, norm is NP-hard.

The decision problem lies in NP for the L, Lo, norm [1]. Bit complexity issues prevent
us from placing the decision problem in NP for the Ly norm.

For our reduction from Monotone Rectilinear Planar 3-SAT we first modify the represen-
tation so that each clause rectangle has fixed height and is connected to its three literals via
three “wires”—the middle one remains horizontal, the bottom one bends to enter the clause
rectangle from the bottom, and the top one bends twice to enter the clause rectangle from
the far side. See Figure 3.2(b). Each wire is directed from the variable to the clause, and
represents a literal. The representation is still on an O(m) x O(n + m) grid.

To complete the reduction to the distant representatives problem we replace the rect-
angles with variable and clause gadgets constructed from unit horizontal intervals, and also
implement the wires using such intervals.
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Figure 3.2: (a) An instance of Monotone Rectilinear Planar 3-SAT. (b) The modified repre-
sentation used for our NP-hardness proofs, with wires from variable to clause gadgets. (c) A
detail of our NP-hardness construction for clause C; = 1 V x5 V 23 in the L; norm showing
how the truth-value setting x1 = False, x5 = True, x3 = False, permits representative points
(shown as red dots) at distance at least §; = 2.

Our constructions will ensure the following properties.

P1

P2

Each variable gadget has a variable interval whose representative point can only be at
its left endpoint (representing the True value of the variable) or at its right endpoint
(representing the False value of the variable). With either choice, there is a valid
assignment of representative points to all intervals in the variable gadget.

A wire is constructed as a sequence of intervals. There are two special valid assignments
of representative points to the intervals of a wire which we call the “false setting” and
the “true setting”. Details will be given later on, but for now, we just note that along
the horizontal portion of a wire, the false setting places the representative point of
each interval at the interval’s forward end (relative to the direction of the wire). See
Figure 3.2(c).

The true/false settings for wires behave as follows. If a wire corresponds to a literal that
is false (based on the left /right position of the representative point of the corresponding
variable interval), then the false setting is the only valid assignment of representative
points for the intervals in the wire. If a wire corresponds to a literal that is true, then
the true setting of the wire is a valid assignment of representative points. Note the
asymmetry here—the false setting is forced but the true setting is not.
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P3 Each clause gadget consists of one clause interval. If all three wires coming in to a
clause gadget have the false setting then there is no valid assignment of a representative
point to the clause interval. If at least one of the wires has a true setting then there is
a valid assignment of a representative point to the clause interval.

Lemma 3.2.1. Any construction with the above properties gives a correct reduction from
Monotone Rectilinear Planar 3-SAT to the decision version of the distant representatives
problem.

Proof. We must prove that the original instance, ®, of Monotone Rectilinear 3-SAT is sat-
isfiable if and only if the constructed instance, Z, of the distant representatives problem has
a valid assignment of representative points, i.e., an assignment of representative points such
that any two points are at least distance d, apart.

First suppose that ® is satisfiable. By Property P1 we can choose a a valid assignment
of representative points to the intervals of the variable gadgets such that a variable being
True/False corresponds to using the left /right endpoint (respectively) of the variable interval.
We then choose the true/false settings of the wires according to Property P2—the false
setting for wires of false literals and the true setting for wires of true literals. Since & is
satisfiable, every clause contains a True literal. The corresponding incoming wire has been
given a true setting. Then, by Property P3, the clause interval has a valid assignment of
representative points. Thus Z has a valid assignment of representative points.

For the other direction, suppose Z has a valid assignment of representative points. By
Property P1 this corresponds to a truth value assignment to the variables. By Property P2
the wires corresponding to false literals can only have the false setting (though we don’t know
about the wires corresponding to true literals). By Property P3 every clause has at least
one incoming wire that does not have the false setting, and this wire must then correspond
to a True literal. Thus, every clause is satisfied and ® is satisfiable. O]

In the following subsections we describe the variable gadgets, wires, and clause gadgets
for each of the norms Ly, Ly, L. In each case we prove that the above properties hold.

L{ norm, 6; = 2.

Variable gadget. We use a ladder consisting of unit intervals, called rungs, in a vertical
pile, unit distance apart. See Figure 3.3(a). Number the rungs starting with rung 1 at the
top. Observe that the L; distance between opposite endpoints of two consecutive rungs is
01 = 2. Thus there are precisely two ways to assign representative points to a ladder of at
least two rungs. For Property P1, let the variable interval be rung 1, and associate the value
True [False] if rung 1 has its representative point on the left [right, resp.].
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Figure 3.3: Construction for the L; norm. (a) Variable gadget. Intervals have length 1 and
01 = 2. Variable z; is shown with the False setting where the representative point (the red
dot) on the variable interval (shown in cyan) is on the right end. The two wires heading
right are forced to have the false setting (shown with red dots). The two wires heading left
have the true setting (shown with yellow dots). (b) Wires entering the clause gadget for
clause C' = x1 V x9 V x3. The clause interval ¢ (shown in cyan) is displaced horizontally by
1/2. Valid representative points are shown for the truth-value setting x; = False, 5 = True,
xg = False. (¢) A close-up of the clause interval ¢ showing the L, balls B; of radius §; = 2
centred at p;, = 1,2, 3.

Horizontal wire. For each horizontal portion of a wire, use a sequence of unit intervals
separated by gaps of length 1. Attach the wires to the odd numbered rungs of a ladder in a
variable gadget, with the rung acting as the first interval of the wire. The false setting has
representative points at the forward end of each interval (relative to the direction of the wire).
The true setting has representative points at the other end of each interval. For Property P2
(that the false setting is forced) observe that if a variable is False then its odd-numbered
rungs have their representative points on the right, so any horizontal wire extending to the
right is forced to use representative points on the right (the forward end) of every interval
of the wire. On the other hand, if a variable is True then horizontal wires extending to the
right may use the true setting. Analogous properties hold for the horizontal wires extending
to the left.

Turning wires. We focus on the situation for a positive clause—the situation for a negative
clause is symmetric. The top wire coming in to a clause gadget turns downward via a wire
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ladder as shown in Figure 3.3(b). Note that the false setting of interval 4; in the figure forces
the false setting of interval i5, which then forces the settings down the wire ladder. Note that
the wire ladder can be as long as needed. Since wires emanate from odd-numbered rungs of
variable ladders, the wire ladder has an even number of rungs and the bottom interval of the
wire ladder, at the horizontal line of the middle wire coming in to the clause, has its false
setting on the left (see point ps in the figure). One can verify that the true setting (with
representative points at the opposite end of each interval) is valid.

The bottom wire coming in to a clause gadget turns upward as shown in Figure 3.4(b)
via a wire ladder of intervals that are on the half-grid. This wire ladder has an odd number
of rungs, and we can ensure at least 3 rungs. The false setting of interval i4 is forced because
of the false setting of interval i3 together with the ladder above #4. The topmost interval of
the wire ladder has its false setting on the right. One can verify that the true setting (with
representative points at the opposite end of each interval) is valid.

We have now established Property P2 for wires that turn.

Clause gadget. See Figure 3.3(c). The figure shows the clause interval ¢ together with
the last interval in each of the three wires that come in to the clause gadget, and the false
settings of their representative points at pi, ps, ps. The Lo distance between p; and either
endpoint of ¢ is §; = 2. Let B; be the Ly ball of radius d; centred at p;, © = 1,2,3. We now
verify Property P3. Observe that no point of the interval ¢ is outside all three balls. Thus,
if all three incoming wires have the false setting, there is no valid representative point for
interval c¢. However, if at least one of the incoming wires has the true setting, we claim that
there is a valid representative point on interval c: If p; is at the left of its interval, use the
midpoint of ¢, and if either of py, p3 is at the other endpoint of its interval, use the endpoint
of c on that side. Thus Property P3 holds.

L, norm, d; = %

Consider two unit intervals one above the other, separated by vertical distance d,. The
L, distance between opposite endpoints of the intervals is d = /1 +d2. In order to have
rational values for d,, and d, we need scaled Pythagorean triples, natural numbers a, b, ¢ with
a’? + b* = . We base our construction on the Pythagorean triple 5,12,13. (The triple
3,4,5 causes some interference.) To avoid writing fractions everywhere, we describe the
construction for intervals of length 5, with d, = 13. Scaling everything by % gives us back
unit intervals.

Our construction of variable gadgets and horizontal wires is like the L; case, just with
different spacing.

Variable gadget. Use a ladder with rungs of length 5 spaced 12 vertical units apart.
See Figure 3.4(a). The Ly distance between opposite endpoints of two consecutive rungs is
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dy = 13. Associate the value True [False] if rung 1 has its representative point on the left
[right, resp.]. Property P1 holds.

13 /5, 13

- 513 ,
14 h

(b)

Figure 3.4: Construction for the Ly norm. (a) Variable gadget. Intervals have length 5 and
dy = 13. Variable z; is shown with the False setting where the representative point (the red
dot) is on the right end of the variable interval (shown in cyan). The two wires heading right
are forced to have the false setting (shown with red dots). The two wires heading left have
the true setting (yellow dots). (b) Wires entering the clause gadget for clause C' = x1 Vo Vrs.
The clause interval ¢ (shown in cyan) extends from v — 2.5 to v+ 2.5 at y-coordinate h — 5.2,
where v and h are the grid coordinates as shown. Valid representative points are shown
for the truth-value setting x; = False, 25 = True, z3 = False. (c¢) A close-up of the clause
interval ¢ showing the balls B; of radius 0, = 13 centred at p;, i = 1,2, 3.

Horizontal wire. For each horizontal portion of a wire, use intervals of length 5 separated
by gaps of length 8 (so the right endpoints of two consecutive intervals are distance 13 apart).
Attach the wires to the odd-numbered rungs of the ladder of the variable gadget. The false
setting has representative points at the forward end of each interval, and is forced if the
corresponding literal is False. The true setting has representative points at the other end of
each interval, and is valid if the corresponding literal is True. So Property P2 holds.

40



Turning wires. As for L, we focus on the situation for a positive clause—the situation for
a negative clause is symmetric. The top wire coming in to a clause gadget turns downward
as shown in Figure 3.4(b). As for L;, the false setting of interval i; forces the false setting of
interval i5, which then forces the bottom interval of the wire ladder (coming in to the clause)
to have its false setting on the left (see point p3 in the figure). One can verify that the true
setting (with representative points at the opposite end of each interval) is valid.

The bottom wire coming in to a clause gadget turns upward as shown in Figure 3.4(b)
via a wire ladder of intervals that are on the half-grid, i.e., 74 in the figure is 6 units above
13. This wire ladder has an odd number of rungs, and we can ensure at least 3 rungs. The
false setting of interval i, is forced because of the false setting of interval i3 together with the
ladder above 74. The topmost interval of the wire ladder has its false setting on the right.
One can verify that the true setting (with representative points at the opposite end of each
interval) is valid.

We have now established Property P2 for wires that turn.

Clause gadget. See Figure 3.4(c). The figure shows the clause interval ¢ together with
the last interval in each of the three wires that come in to the clause gadget, and the false
settings of their representative points at p;, po, p3. The clause interval ¢ extends from v —2.5
to v+ 2.5 at y-coordinate h — 5.2, where v and h are the grid coordinates as shown. Then the
Lo distance between p; and either endpoint of ¢ is v/2.52 + 12.82 & 13.04 which is greater
than 6o = 13. Let B; be the ball of radius &y centred at p;, i = 1,2,3. The endpoints of
¢ lie just outside B;. We now verify Property P3. Observe that no point of the interval ¢
is outside all three balls. Thus, if all three incoming wires have the false setting, there is
no valid representative point for interval ¢. We now consider what happens if at least one
incoming wire has the true setting, i.e., if py, ps, or ps were at the other end of its interval.
If p, were at the other endpoint of its interval, then the left endpoint of ¢ would be a valid
representative point. Similarly, if p3 were at the other endpoint of its interval, then the
right endpoint of ¢ would be a valid representative point. Finally, if p; were at the other
endpoint of its interval, then the midpoint of ¢ would be a valid representative point. Thus
Property P3 holds.

Lo, norm, 6, = %

In this case ladders still work, but it is difficult to attach wires to ladders, so we use a
more complicated variable construction. A further difficulty for the L., case is that we were
unable to construct a clause gadget of unit intervals based on choosing representative points
only on the left /right endpoints of intervals. (Although this is easy if the clause interval can
have length 2.) Instead, our construction will place representative points at the endpoints
or at the middle of each interval, which is why we set d,, = % For this norm, we describe
horizontal wires first.
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Horizontal wire. We use a double row of unit intervals spaced 1/6 apart vertically. Specif-
ically, along one horizontal line, we place a sequence of unit intervals with endpoints at each
integer coordinate, and along the horizontal line 1/6 below, we place a sequence of unit
intervals with endpoints at each half integer coordinate. See Figures 3.5 and 3.6. For Prop-
erty P2, note that if two consecutive intervals have their representative points at their right
endpoints, then all intervals further to the right on the wire must also have their repre-
sentative points at their right endpoints. Along a horizontal wire, the true setting places
representative points at the midpoints of the intervals.

Variable gadget. This gadget has eight intervals as shown in Figure 3.5. The three
intervals 4; are coincident (or almost so), as are the three intervals i5. These force the
representative point on interval i3 to the middle of the interval. Then the representative
point on the variable interval (coloured cyan in the figure) must be either the left endpoint
(representing a True value) or the right endpoint (representing a False value).

This eight-interval configuration is expanded to a “double ladder” with intervals spaced
1/6 apart vertically as shown in Figure 3.5. Down the ladder on the false side (which is
the right side in the figure), the representative point for each interval is forced by those on
the two intervals above it. Down the ladder on the true side (the left side in the figure) we
may use the assignment of representative points as shown in the figure. Wires extend to the
right and left of the double ladder as shown in the figure. Any wire corresponding to a false
literal is forced to the false setting. Any wire corresponding to a true literal may have the
true setting. Properties P1 and P2 hold.

Turning wires. The top wire coming in to a positive clause gadget turns downward as
shown in Figure 3.6. The false setting along the wire (see (a) in the figure) forces the bottom
interval of the ladder to have its false setting on the left (see point p3 in the figure). The
ladder can be extended to the appropriate length by adding multiples of three intervals. The
true setting is shown in Figure 3.6(b), and allows the right endpoint of the clause interval
to be used as a representative point.

The bottom wire coming in to a clause gadget turns upward as shown in Figure 3.6. The
false setting along the wire (see (a) in the figure) forces the top interval of the ladder to
have its false setting on the right (see point p; in the figure). The ladder can be extended to
the appropriate length by adding multiples of three intervals. The true setting is shown in
Figure 3.6(b), and allows the midpoint of the clause interval to be used as a representative
point. We have now established Property P2 for wires that turn.

Clause gadget. See Figure 3.6. The figure shows the clause interval ¢ together with the
three wires coming in to the clause gadget. Let pi, po, p3 be the representative points of the
last intervals in the wires entering the clause gadget. Consider the false positions of py, pa, p3.
(Figure 3.6(a) shows the false positions of p; and p3.) The Lo, distance between p; and either
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Figure 3.5: The variable gadget and emanating wires for L.,. Grid spacing is 1/6. The
shaded rectangle at the top shows the variable gadget. The variable interval (shown in cyan)
has a choice of representative point at the left endpoint (True) or the right endpoint (False).
The False choice is shown here. The placement of representative points down the right hand
ladder (shown as red dots) is then forced, and then the wires emanating to the right are
forced to the false setting. The placement of points down the left hand ladder (shown as
yellow dots) is allowed, and the wires emanating to the left are allowed to be in the true
setting.

endpoint of ¢ is d5 = % Let B; be the L., ball of radius d, centred at p;, i = 1,2,3. We
now verify Property P3. Observe that no point of the interval c¢ is outside all three balls.
Thus, if all three incoming wires have the false setting, there is no valid representative point
for interval c. However, if at least one of the incoming wires has the true setting, we claim
that there is a valid representative point on interval c. Refer to Figure 3.6(b). If p; is at
the middle of its interval, use the midpoint of ¢, and if either of py, p3 is at the middle of its
interval, use the endpoint of ¢ on that side. Thus Property P3 holds.

3.3 APX-hardness for orthogonal segments

In this section, we prove hardness-of-approximation results for the distant representatives
problem on horizontal and vertical segments in the plane. Specifically, we prove lower bounds
on the approximation factors that can be achieved in polynomial time, assuming P # NP.

Theorem 3.3.1. For ¢ = 1,2, 00, let g, be the constant shown in Table 3.2. Suppose P #
NP. Then, for the L, norm, there is no polynomial time algorithm with approximation factor
less than g, for the distant representatives problem for horizontal and vertical segments.

We prove Theorem 3.3.1 using a gap reduction. This standard approach is based on the
fact that if there were polynomial time approximation algorithms with approximation factors
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Figure 3.6: The clause gadget and its entering wires for L, for clause C' = z1 Vx5 V x3. The
clause interval ¢ is shown in cyan. (a) Valid representative points for the truth-value setting
xy = False, 9 = True, z3 = False. (b) The true settings on the incoming wires. (These
points are not forced.)

| L Ly Lo
lower bound ‘ g1=15 ¢go=14425 g, =1.5

Table 3.2: Best approximation ratios that can be achieved unless P=NP.

better than g, then the gap versions of the problem (as stated below) would be solvable in
polynomial time. Thus, proving that the gap versions are NP-hard implies that there are no
polynomial time g,-approximation algorithms unless P=NP.

Recall that ¢} is the max over all assignments of representative points, of the min distance
between two points.

Gap Distant Representatives Problem.
Input: A set I of horizontal and vertical segments in the plane.
Output:

o YES if 6:(1) > 1;
o NOif 6:(I) < 1/gs;

e and it does not matter what the output is for other inputs.

To prove Theorem 3.3.1 it therefore suffices to prove:

Theorem 3.3.2. The Gap Distant Representatives problem is NP-hard.

This is proved via a reduction from Monotone Rectilinear Planar 3-SAT, much like in
the previous section. The gadgets are simpler because we can use vertical segments, but we
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must prove stronger properties. Given an instance ® of Monotone Rectilinear Planar 3-SAT
we construct in polynomial time a set of horizontal and vertical segments I such that:

Claim 3.3.1. If @ is satisfiable then ¢;(I) = 1.

Claim 3.3.2. If ¢ is not satisfiable then 6; (1) < 1/gp.

Thus a polynomial time algorithm for the Gap Distant Representatives problem yields
a polynomial time algorithm for Monotone Rectilinear Planar 3-SAT. We give some of the
reduction details, but defer the proofs of the claims to the full version.

Reduction details We reduce directly from Monotone Rectilinear Planar 3-SAT.
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Figure 3.7: (a) A variable gadget for NP-hardness for L,, based on Pythagorean triple
5,12,13. To achieve 6 = 13 the representative point for the variable interval (in cyan) is
forced to the left (true) or the right (false) in which case intervals on the right are also forced.
(b) A clause gadget for the APX-hardness reduction, with three horizontal wires attached.
The small dots represent the 0-length line segments. For clarity, the long segments are not
drawn all the way to their endpoints. Wires x; and x5 are in the false setting and wire x5 is in
the true setting, which allows the representative point for C to be placed where the x5 wire
meets it, while keeping representative points at least distance 1 apart. (c¢) The basic splitter
gadget for APX-hardness for L., placed on the half grid and showing two wires extending left
and two right. The variable segment (in thick cyan) for the variable x; has its representative
point (the large red dot) at the right, which is the false setting. The representative points
shown by large red/yellow dots are distance at least 1 apart in L.

Wire. A wire is a long horizontal segment with 0-length segments at unit distances along
it, except at its left and right endpoints. See Figure 3.7(b). The representative point for
a O-length segment must be the single point in the segment (shown as small red dots in
the figure). As before, a wire is directed from the variable gadget to the clause gadget.
We distinguish a “false setting” where the wire has its representative point within distance
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1 of its forward end (at the clause gadget) and a “true setting” where the wire has its
representative point within distance 1 of its tail end (at the variable gadget).

Clause Gadget. A clause gadget is a vertical segment. Three wires corresponding to the
three literals in the clause meet the vertical segment as shown in Figure 3.7(b). There are
O-length segments at unit distances along the clause interval except where the three wires
meet it.

Variable Gadget. A variable segment has length 3, with two O-length segments placed 1
and 2 units from the endpoints. A representative point in the right half corresponds to a
false value for the variable, and a representative point in the left half corresponds to a true
value. In order to transmit the variable’s value to all the connecting horizontal wires we
build a “splitter” gadget. The basic splitter gadget for L., is shown in Figure 3.7(c). The
same splitter gadget works for the other norms but we can improve the lower bounds using
modified splitter gadgets as described in the full version.

To obtain our claimed lower bounds, the basic splitter gadget of Figure 3.7(c) must be
modified for the Ly and L; norms. For L, we modify the spacing slightly. In particular (see
Figure 3.9(c)), we overlap successive vertical segments by a small amount ¢. In order to keep
the endpoint of each segment at distance 1 from the nearest O-length segments, we must
have t < t* = 1 —/3/2 ~ .13397 as indicated by the large radius 1 circle in the figure. To
get back on the grid, we increase the gap between the next two 0-length segment to 1 + t.
In order to have rational coordinates, we use t = 2/15 = .1333. (Closer continued fraction
approximations to t* give marginal improvements in gs.)

For L, we construct an alternate splitter gadget with crossing segments as shown in
Figure 3.8. As in the L, case, the gap between a 0-length segment and a segment endpoint
or another 0-length segment is increased in some cases, specifically from 1 to 4/3.

Reduction correctness

Proof of Claim 3.3.1. Suppose the formula ® is satisfiable. We show that there is an assign-
ment of representative points for the intervals in / such that the distance between any two
points is at least 1 in the L, norm. We cannot do better than distance 1 because there are
O-length segments at distance exactly 1. Thus 6; (/) = 1.

For each variable segment, we place its representative point at the right endpoint if
the variable is True in ®, and at the left endpoint otherwise. Representative points for
the other segments in the splitter gadget are placed at the endpoints of the segments as
shown in Figure 3.7. See also Figure 3.9(c) for details of the Ly case. For each wire, we
place its representative point at the forward end (at the clause gadget) if the corresponding
literal is false, and at the tail end (in the splitter gadget) if the corresponding literal is true.
Each clause has a True literal—choose one and place the representative point for the clause
segment at the place where the wire for this True literal meets it. See Figure 3.7 which shows
that in all cases, the distance between any two representative points is at least 1. O
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Figure 3.8: The splitter gadget for L; on a grid subdivided into thirds with two wires
extending left and two right. The variable segment (in thick cyan) for the variable x; has
its representative point (the large red dot) at the right, which is the false setting. The
representative points shown by large red /yellow dots are distance at least 1 apart in L;.

Proof of Claim 3.5.2. Suppose the formula ® is not satisfiable. Consider any assignment of
representative points to the intervals of 1. We will show that there are two representative
points within distance 1/g,. Note that 1/¢g; = 1/go = 2/3 and 1/g, = .69324.... Observe
that finding two points within distance 2/3 suffices for all norms.

The representative points determine a truth value assignment V to the variables as follows:
if a variable segment has its representative point in the right half, assign it True, otherwise
assign it False. Since ® is not satisfiable, there must be some clause C' whose three literals
are all false under the assignment V. Suppose that C' contains three positive literals (the
case of three negative literals is symmetric).

Observe that if the representative point on a segment is placed in the unit gap between
two 0-length segments, then there are two points within distance 1/2, which is less than 1/g,.
In the Ly and L splitters, we created longer gaps between successive 0-length segments. In
the Lo splitter, there are gaps of length 1+4¢; a point in such a gap would cause two points to
be within distance (14 ¢)/2 = .566 which is less than 1/g,. In the L, splitter there are gaps
of length 4/3; a point in such a gap would cause two points to be within distance 2/3 = 1/g;.

Thus we may suppose that every wire and every segment in a splitter gadget has its
representative point “near” (i.e., within distance 1 of) one of its two endpoints, and that
every clause segment has its representative point near an incoming wire. For the clause C' (the
one whose three literals are all false), suppose its representative point is near incoming wire
w, and suppose w is associated with variable x. We now separate into two cases depending
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whether the wire w has its representative point near the forward end or the tail end.

[ %1 ) 5
\ hl . q
C 5 o 1
p) 9 ! & i1
P g ¢ Py P1 Py 53
% 2 ) 93
W Py 11
ql pl
4 512 4
RLEY
2 32

(a) (b) (© (d)

Figure 3.9: (a) A representative point ps on clause segment C' near a representative point
p1 on wire w. (b) Representative points p; and p, on successive vertical segments of the L,
splitter. (c) Representative points p; and p, on successive segments of the Lo splitter. In
this splitter successive vertical segments overlap by amount . The top endpoint of ss is not
inside the unit circle centred at qi, so long as ¢ < t* = 1 —1/3/2. (d) Representative points
p1, P2, P3 on successive segments of the L splitter.

Case 1. The wire w has its representative point near the forward (clause) end. The situation
is as shown in Figure 3.9(a), with representative point p; on the wire w and representative
point pe on the clause segment. If p; is within distance 2/3 from its nearest 0-length segment
i, we are done. Otherwise consider dy(p1, p2), marked d in the figure. We have dy(p1, p2) <

di(p1,p2) < 2/3.

Case 2. The wire w has its representative point near its tail end. Recall that wire w
is associated with variable x which is set False, i.e., the variable segment for z has its
representative point near the right end.

In the splitter gadget there is a sequence of segments from the variable segment for x to
the wire w. Somewhere along the sequence there must be two consecutive segments s; and
s with representative points p; and p, where p; is near the end of s; and ps is near the start
of S9.

If the endpoints of s; and s, meet at a right angle, then the analysis in Case 1 shows
that there are two points within distance 2/3.

We separate the remaining cases by the norm. For the L., norm the segments s; and s
must be vertical, as shown in Figure 3.9(b). If either point p; is within distance 2/3 of its
nearest 0-length segment ¢;, we are done. Otherwise p; and ps lie in a rectangle of size % X %
so their L., distance is at most 2/3.

Next we consider the L; norm. See Figure 3.9(d), which shows segment s; and two
possible following segments sy and s3, together with possible representative points p; on s;
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and the nearest 0-length segment ¢; on s;, i = 1,2, 3. If p; is within distance 2/3 of ¢; we are
done. Otherwise p; and ps lie in a square of side-length 1/3 so their L; distance is at most
2/3. The same is true for p; and ps.

Finally we consider the Ly norm, see points p; and py in Figure 3.9(c). This is the one
case were we do not guarantee two points within distance 2/3 but only within the higher
bound 1/gy = .69324.... There are three distances involved: from p; to the closest 0-length
segment ¢; on sp, from p; to py, and from py to the closest 0-length segment ¢, on s,. To
maximize the minimum, the three distances should all have the same value d.

Then d = \/(5)2 + (2=t —2d)2, 50 3d% — 4(2 — t)d + (2 — 1) + .25 = 0. With ¢ = 2/15
this solves to d ~ .693237 which is < 1/g, = .69324....
This completes the proof of the claim. O
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Chapter 4

Imprecise 2.5D Terrains

This section will explore 2.5D terrains that have imprecise points. The input points are given
imprecisely, as they were in Section 2, but now the points reside in 3-dimensional space. In
particular, the x- and y-coordinates are precise, but the z-coordinates are only known within
an interval range. The formal definition of the tmprecise 2.5 terrain model, first given
by Gray et al. [21] is as follows:

Input: A set of n points {(x1,21),..., (s, yn)} and a triangulation 7 of the points. In
addition, a set of intervals I; = [b;, ;] associated with each (z;,y;). The points and intervals
determine vertical line segments ¢; = {x;} X {y;} X [b;, t;]. This input is called an émprecise
2.5D terrain.

Output: A set of coordinates z; € I4,...,z, € I,, determining points (z1,y1,21), ...,
(Tn, Yn, 2n). By connecting points based on the triangulation 7, one obtains a triangulated
polyhedral surface, which we call a 2.5D terrain.

Objective function: Return a 2.5D terrain that optimizes some objective function.

The goal of this section is to examine our objectives in the imprecise 2.5D terrain model:
Objectives #1, #2a, #2b, #3 and #4a. The algorithms used for 1.5D terrains from Section 2
will not easily extend to 2.5D terrains. In some cases we give new algorithms, or alternatively,
we prove that the problem becomes NP-hard. We will also consider restricted settings where
the triangulation is a path of triangles (i.e., the planar dual graph is a path) or a strip
of triangles. The setting where the triangulation is a tree of triangles (i.e., we have a
triangulated polygon) may also be worth exploring in the future. A summary of the results
of this section can be found in Table 4.1.

In Section 4.1, we examine Objective #1, the problem of minimizing the number of
extrema. We look at triangulations restricted to a path of triangles, and give a polynomial
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time algorithm. In Section 4.2, we look at the objective of minimizing the number of bends
in the triangulation (Objective #2b). We also define a notion of a patch (Objective #2a),
which is a generalization of a link in 1.5D. We give an algorithm for triangulations that
consist of a path of triangles, and give an NP-hardness proof for the general case, which
both work for the two objective functions.

In Section 4.3, we look at Objective #3, the problem of minimizing the total surface area.
And in Section 4.4, we look at Objective #4a, the problem of a minimizing the maximum
steepness. For these last two problems, we reduce to Second Order Cone Programming.

Definition 4.0.1. A Second Order Cone Program (a SOCP) is a optimization problem
of the following form:

Input:

e m,n,ny,...,Nm, k€N
o A, e R"*" b e R" ¢c; e R d; e Rforallt=1,...,m.

o FcRF™ fecRF weR"

Output: z € R

Objective:
minimize w 'z
subject to Az +b]| <cla+d; i=1,....m
Ex=f
where || - || represents the Euclidean (Ls) norm of the given vector.

Second Order Cone Programming lies between Convex Quadratically Constrained Quadratic
Programming (Convex QCQP) [6] and Semidefinite Programming (SDP) [31]. Second Order
Cone Programs can be solved with additive error ¢ in time polynomial in the size of the input
and log(1) using interior point methods [39].

Notation and Definitions.

e Let n denote the number of points, and N denote the number of triangles.

e The path restricted version of the imprecise 2.5D terrain model is when the trian-
gulation consists of a simple path of triangles. Formally, this means the dual graph of
the triangulation graph (without a vertex for the outer face) is a path.
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Objective function Path of triangles General case
#1 minimize number of extrema | O(n*) [§4.1] NP-hard [22]

#2 optimizing coplanar features 5-approx™* [§4.2.2] NP-complete [§4.2.3]

#3 minimize surface area SOCP SOCP [§4.3]

#4a minimize maximum steepness | SOCP SOCP [§4.4]

Table 4.1: Algorithm or hardness results for the imprecise 2.5D terrain model. Bold results
are original to this thesis.
*The algorithm requires the input to lie within a strip, see Section 4.2 for more details.

e

Figure 4.1: A sample input consisting of a path of triangles.

e The strip restricted version of the model is similar to the path restricted version,
except all points lie on one of two planes. Specifically, all of the input y-coordinates
are one of two fixed values. See Sections 4.2 and 4.2.2 for more details.

e For the path/strip restricted version of the model, we enumerate the triangles along
the path T,...,Tx. See Figure 4.1 for an example. In the general case, we will not
enumerate the triangles, instead we use the notation 1" € T.

e For the path/strip restricted version of the model, let £; be the subproblem consisting
of the first i triangles.

4.1 Minimizing the number of local extrema

For our first problem, we will look at minimizing the number of local extrema along the 2.5D
terrain. Recall in Section 2.1, we examined this problem for 1.5D terrains. We will use the
definition given by Gray et al. in [22], which is:
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Definition 4.1.1. In a precise 2.5D terrain, a plateau is a maximal collection of points C'
such that the points of C are connected together by the edges of the triangulation and all
have the same elevation value.

Definition 4.1.2. In a precise 2.5D terrain, a local minimum (symmetric for local maz-
imum) is a plateau where any point connected by an edge to a point of the plateau must
have a higher elevation than the plateau points.

Objective #1: Minimizing the number of local extrema.

Gray et al. [22] show that the problem of minimizing the number of local extrema is
NP-hard for 2.5D terrains. Therefore, the focus of this section will be solving the problem
for path restricted inputs.

Theorem 4.1.1. There is an O(n*) dynamic programming algorithm that solves the extrema
problem for imprecise 2.5D terrains for path restricted inputs.

Preliminaries. We first discretize our problem by only allowing the elevation values to be
chosen from a discrete set E. This is justified with the following claim:

Claim 4.1.1. Let E = {t1,...,tn,b1,...,b,} denote the set of endpoints of the input inter-
vals. Then there exists an optimal solution z* so that 27 € E forallt=1,...,n.

The result of this claim is that we can discretize each interval I; to be I, N E without
worrying about missing the optimal solution.

Proof. Consider any optimal solution z*. Suppose there are k > 0 elevation values not in
E (multiple points can share the same elevation value). Let v be the largest elevation value
that is not in the set . We will show that we can modify the solution to shift all the points
with elevation v to match another elevation value from F (thus reducing k) while keeping
the solution optimal and not changing any other elevation values. Therefore, we can apply
induction on k& in order to obtain an optimal solution with all elevations in F.

Let w denote the smallest elevation value from E that is greater than v. This exists
since v ¢ E. Let D denote the set of points with this elevation (it may be empty). We will
move the points of C' up to have elevation w. Since w is the smallest value, then this new
solution is feasible. We have clearly decreased k, and we claim the number of extrema will
not increase with this move.

To show this, we will prove that any extremum in the new terrain resulted from at least
one extremum from the original precise terrain. The extrema that are not at elevation w
in the new terrain are clearly extrema in the original terrain as well, so we will focus on
the extrema at elevation w. Let M C C'U D be such an extremum in the new terrain. We
will focus on the case that M is a local maximum, M as a local minimum can be argued
similarly.
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Figure 4.2: Labeling edges of the input triangulation, and defining s, s'.
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Figure 4.3: Computing a solution for the first ¢ triangles from solutions for the subproblem
in gray, the first ¢« — 1 triangles.

In the new terrain, every point that is adjacent to M has an elevation value less than or
equal to v. If M only consists of points of C', then M is clearly a local maximum present in
the original precise terrain as well. Otherwise, some points from D N M form at least one
local maximum in the original terrain.

Therefore, for every extrema M in the new terrain, there exists a subset of M representing
an extrema in the original terrain. Therefore, the new terrain has at most as many extrema
as the original one. O

As discussed in the notation and definitions section, we label the triangles T7,..., Ty
along the path. Additionally, for all i = 1,..., N — 1 define e; to be the edge connecting
triangles T; and T;,;. We also define ey to be an arbitrary edge of Ty that is not ey_1. See
Figure 4.2 for an example. In a path triangulation, triangles T} and Ty each have a vertex
that is not shared by any other triangles. Let us call those vertices s and s’ respectively.
The boundary of the triangulation splits into two chains between s and s’. Every edge e;
has one endpoint p; on one chain and one endpoint ¢; on the other chain. Triangles T; and
T;_, will share one vertex of e;: either p; = p;_1 or ¢; = ¢;—1. See Figure 4.3 for an example.

Recall that by Claim 4.1.1, we know we only need to look at a finite number of feasible so-
lutions. A brute force algorithm would take O((2n)") time, but using dynamic programming,
we can improve this to polynomial runtime.

Algorithm. For each ¢, we will solve a set of subproblems where we choose possible ele-
vations in F for each endpoint of edge ¢;, and also choose whether each endpoint is a local
min, local max, or neither. The solution to a subproblem records the number of extrema.
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To capture this more precisely, we introduce some notation. Let X = {1,],—}, where
T indicates a local maximum, | indicates a local minimum, and — indicates neither. Our
subproblems have the form S;(vy, my,ve, ms) where vy € E is the elevation of p;, vy € E is
the elevation of ¢;, m; € X indicates the status of p; and my € X indicates the status of g;.
Thus the number of subproblems is n - |E|* - 3% € O(n?®). Note that not all subproblems are
well defined. For instance, we cannot have m; =7 but v; < v (i.e. cannot have p; be part
of a local maximum but be below ¢;).

We claim that we can solve each of the 9| E|* subproblems for e; in O(|E|) time using the
solutions to subproblems for e;_;.

Base case. The base case consists of one triangle 77. To compute every S (vy, my, ve, ms),
we simply try all possible values for the elevation of point s to generate at most 2n candidate
solutions. For each candidate, we determine the extremum type of points pi,q; and count
the number of extrema, and save the solution in the appropriate S (vy, my, ve, ms).

Inductive step. We will look at how to compute S;(vy, my,ve, my) recursively. The trian-
gle T; consists of vertices p; and ¢;, and the third being either p; 1 (if ¢; = ¢;—1) or ¢;—1 (if
pi = pi—1). Figure 4.3 shows this triangle in white. In this figure, ¢;_; is the third vertex of
T;. We generate candidate solutions by having elevations determined by entries from S;_;.
To access these entries, we need the elevation values and extremum types for points p; 1, q;_1.
We have the elevation value for p;_; (since p;_1 = p; which has elevation v;). Meanwhile,
because ¢; is adjacent to p;_; and ¢; is not a part of the first ¢ triangles, then we cannot
assume p;_1 has the same extremum type for £;_; (the first i — 1 triangles) as it does for £;
(the first 7 triangles). We will therefore try different possibilities for p;_;’s extremum type.
We also try different possible extremum types m and elevation values v for ¢;_;. We will not
have to look at all extremum types and elevation values for p;_1,¢;_1, because not all cases
are well defined for the given vy, mq, vy, msy values.

We combine this recursive partial solution with the elevation value for the point that is
not part of the first i« — 1 triangles (in Figure 4.3, this would be point ¢;). This gives us a
candidate solution.

For every candidate, we need to compute the number of extremum, which we want to do
recursively in constant time. To do this, we take the number of extrema for the recursive
partial solution and add at most 1 to it. What we add depends on whether ¢;: (1) is a
new extremum, (2) is joining an existing one, (3) changes the type of extrema that p;_1, ¢;_1
belong to, or (4) is not part of an extremum. Determining whether to add 0 or 1 can be
done in constant time. It is difficult to succinctly describe all of these cases in detail, but
the basic idea is that ¢; is only adjacent to p;_; = p; and ¢;_; (at least when only the first i
triangles are considered), and so the elevation values and extremum types of p;, ¢;, ¢;—1 are
the only ones that are relevant.

For condition (3), the extrema for p;_1,¢;—1 can only change from a maximum (or a
minimum) to a neither type. The exception is when the total number extremum without
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¢; is one, then p; 1 and ¢;_; are part of one large plateau that is counted as one extremum
(that is considered both a minimum and a maximum). However, this can easily be checked
by seeing if S;_1(v1, T, v, 1) = Si—1(v1,},v,]) = 1. In this case, determining whether to add
plus one or not depends on whether vy # v; or not.

We generate all candidates for S;(vy,my, va, ms), and keep the one with the fewest ex-
trema. We also store elevation and extremum types for p;_1, ¢;—1 in order to easily construct
an optimal terrain after the table has been filled in.

Runtime. As stated earlier, there are O(n?) subproblems to compute. For each subprob-
lem S;(vi, my,v9, ms), the number of candidates generated is at most 32 - 2n = O(n). This
is because one of the endpoints of e;_; has a known elevation value, so we only generate
elevation values for only one of z(p;_1) or z(¢;_1). For example, in Figure 4.3, the point
pi—1 = pi, so we already know what its elevation should be. Therefore, for each ¢ the runtime
is O(n), which gives a total runtime of O(n?).

Correctness.

Lemma 4.1.1. For all i = 1,..., N, each entry in S; is correctly computed.

Proof. This will be proven by induction. The bases cases are obviously correct. For each
subproblem S;(vy, my,ve, my) to compute, consider the actual optimal solution z* for this
subproblem. Consider taking off the point that is not in e; ;. Using Figure 4.3 as an
example, then this point is ¢;. This gives a solution for the first 7 — 1 triangles. We know the
endpoints of e;_; are at some elevations vz, v from E, and they are some type of extrema
ms,my from X (the extrema types are with respect to the first i — 1 triangles). Instead of
using the elevation values from z*, we should use S;_; (v3, ms, vy, my) instead. This results in
a solution with no more extrema than z* if we ignore z(¢;) = ve. Let us denote z* without
¢; as Z. We still need to account for ¢; in the count of the number of extrema.

First, note that p;_; has the same type of extrema and elevation in 2 as in S;_; (vs, mg, vy, Mmy).
The same is true for ¢;_;.

The addition of ¢; changes the number of extrema depending on the following conditions
for ¢;: (1) it is a new extremum, (2) it is joining an existing one, (3) it changes the type of
extrema that p;_1,¢;—1 belong to, or (4) it is not part of an extremum. Conditions (1),(2),(4)
depend on the elevation value vy for ¢;, and whether it is above or below points p;_; and
¢i—1, strictly in-between them, or at the same elevation as one of them. For condition (3),
the extremum types of p; 1, q;_1 are relevant. Since the two solutions we are comparing have
the same elevation and extrema values for their p; ;’s (and their ¢;_;’s), then whichever
conditions are true will be true for both solutions.

Therefore, the addition of ¢; changes the number of extrema in both S;_1(vs, ms3, v4, my4)
and Z by the same additive amount. Therefore, we have found a solution that is no worse
than z*. This solution is clearly a candidate that is generated by the algorithm, because it
computes many candidates recursively from S; 1, therefore, the algorithm is correct. O]
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Figure 4.4: Counterexample to prove Claim 4.2.1 (from a bird’s eye view). The central point
(drawn with a big black square) is the only one with a non-trivial interval, viz. [0,1/3].

4.2 Minimizing the number of patches/bends

In this section, we generalize the problem of minimizing the number of links (Objective #2a)
to 2.5D terrains. We define a patch to be a collection of triangles that are connected in
the dual graph (i.e. share edges) and all coplanar. This is similar to the 1.5D link problem,
because the links of the 1.5D terrain consists of multiple segments that are be connected
together and are all collinear.

Objective function #2a: Minimizing the number of patches.

In 1.5D, minimizing the number of links is the same as Objective #2b, minimizing the
number of bends. In 1.5D, bends are points where the turn angle between the two incident
edges is not equal to 0. The generalization to 2.5D is to consider the dihedral angles between
two triangles that share an edge. We say that there is a bend at this edge when the dihedral
angle is not equal to 180°.

Objective function #2b: Minimizing the number of bends.

These two objective functions do not have the same optimum solutions in general. But
they both have a similar goal of returning a terrain that have many adjacent coplanar
triangles.

Claim 4.2.1. If the triangulation is outerplanar i.e., all vertices are on the outer face of the
triangulation, then minimizing the number of patches is an equivalent objective to minimizing
the number of bends. In the general case, the two objectives are not necessarily equivalent.

Proof. To prove the first part of the claim, for a precise 2.5D terrain with an outerplanar
triangulation, let B denote the number of bends and let P denote the number of patches.
We can prove by induction that B + 1 = P, and so the claim clearly follows from this. The
base case is when B = 0, and the whole terrain is one patch, i.e. P = 1. Assume B > 1,
and consider an arbitrary bend. We split the terrain along this edge, resulting in two 2.5D
(outerplanar) terrains. The number of bends in the terrain is By + By + 1, where By, By
are the number of bends in the two smaller terrains. The plus one comes from the bend we
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Figure 4.5: Solution (A) : If we use the top end of the black interval, we get 5 patches
(optimal) and 7 bends. Solution (B) : If we use the bottom end of the black interval, we get
6 patches and 6 bends (optimal).

split at. Similarly, P = P, + P,. By induction, By +1 = P, and By + 1 = P,, therefore,
B + 1 = P, which proves the inductive step.

For the second part of the claim, see Figure 4.4 for a counterexample. There is only one
non-trivial interval in the input. In Figure 4.5, the solution on the left minimizes the number
of patches, and the right minimizes the number of bends.

The proof that these two solutions are optimal for their respective objective functions is
quite simple. Consider any other solution where the one imprecise z value is something in
(0,3). For any two triangles on the bottom portion (that is, below the imprecise point), three
out of the four vertices forming these two triangles are non-collinear points with elevation
0, so the triangles can only be coplanar if the imprecise point is also set to 0. Similarly,
for the top portion, two triangles that share an edge have three fixed non-collinear vertices
in common, so there is a unique plane that could contain those triangles, and that is when
z =1/3. Hence, when z € (0,1/3), we see that there must be 11 patches and 13 bends, i.e.
it is not optimal. O

Results. In Section 4.2.2, we show that there is a 5-approximation algorithm that works
for both objective functions for inputs restricted to a strip (where all input y-values are one
of two fixed values). See Figure 4.7 for an example input within a strip. Before we do this,
we warm up by looking at a special case where there is only a single imprecise point on
one side of the strip, see Section 4.2.1. In Section 4.2.3, we give an NP-hardness reduction
in the general setting. The same reduction works for the decision version of both objective
functions.

4.2.1 An algorithm for fan triangulations

We will first consider a special case where only one point (called the apez point) is on one
side of the strip. For such an input triangulation, we call it a fan. See Figure 4.6 for an
example input. We label the apex a. Every triangle has an edge not incident to a that we
call the base of the triangle. The base edges all have the same y-coordinate so they line in
a plane y = c. This plane is drawn as a thin red box in Figure 4.6.
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Figure 4.6: A bird’s eyeview of an example of a 2.5D terrain with a triangulation consisting
of a fan of triangles.

T.
T T Ty [ T 1

T1 TS T4 T() T7 A Tg T12 T14

Figure 4.7: A path triangulation within a strip, which means the y values take on one of two
values.

Theorem 4.2.1. There is a 2-approximation algorithm for the problem of minimizing the
number of bends/patches when the input is restricted to a fan of triangles in a strip.

The algorithm will build upon the algorithm used in Section 2.2.3. Consider the base
edges of all of the triangles. They form an imprecise 1.5D terrain. In essence, we can solve
a problem in 1.5D by looking at the vertical line segments lying in the plane y = ¢. As far
as the apex is concerned, we note the following observation and its corollary.

Observation 4.2.1. Fix a precise 2.5D terrain for the given fan input. Let T,7T" be two
adjacent triangles. Let s,s’ be the base segments of T, T" (respectively). Then T,T" are
coplanar if and only if s and s’ are collinear.

From this observation we clearly see that:

Corollary 4.2.1. The choice of elevation for the interval at a is irrelevant. That is, whether
two adjacent triangles are coplanar is not affected by the placement at a.

Proof of Theorem 4.2.1. If we want to 2-approximate the number of bends for this input,
we should 2-approximate the 1.5D bends problem that lies in the plane y = ¢. We do this
using the algorithm from Section 2.2.3. O

4.2.2 An algorithm for path triangulations within a strip
In this section we give a 5-approximation when the input consists of a path of triangles within
a strip. See Figure 4.7 for a sample triangulation. Unfortunately, we do not see a way to

solve the problem with the same generality as we did in Section 4.1 (there, the triangulation
was not necessarily in a strip). We note that with this strip restriction, minimizing the
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number of patches and minimizing the number of bends are equivalent objective functions
by Claim 4.2.1.

Theorem 4.2.2. There is a 5-approximation algorithm for the problem of minimizing the
number of bends/patches when the input is restricted to a strip.

Any 5-approximation algorithm for the problem of minimizing the number of bends will
also give a H-approximation for the optimal number of patches. Therefore, we will focus
approximating the optimal number of bends going forward.

The algorithm will be somewhat similar to the algorithm used in Section 2.2.3 to approx-
imate the minimum number of bends in an imprecise 1.5D terrain. In particular, we will
greedily fix elevations to create a maximal sequence of coplanar triangles, then skip ahead
to the next triangle whose elevations are not fixed, and repeat. Unlike in 1.5D, we may need
to skip over more than a constant number of triangles, so we need an extra step to choose
the elevations of the triangles that we skip—as it turns out, those triangles will form a fan,
so we can use the above 2-approximation, but we need some additional steps to account for
vertices that are involved in many triangles.

The algorithm is iterative and each iteration involves two steps.

We start the first iteration from the first triangle. To compute the patch containing 77,
we greedily compute it so that it covers as many triangles as possible. This is illustrated as
a striped blue patch in Figure 4.8. We denote ¢; as the largest index of a triangle in this
patch. To compute this patch, we return a feasible solution to a linear program. Let A, B, C'
be variables representing the plane z = Ax + By + C. Then the linear program is:

o b; < z; <t for all vertices ¢ of triangles T1,...,T;,

e 2; = Ax; + By; + C for all vertices i of triangles T1,...,T;

1

We find the largest value for ¢; using a binary search by running this linear program
multiples times, decreasing i; whenever the linear program is infeasible and increasing i,
whenever the linear program is feasible. This completes step 1 of the first iteration.

Let T}, be the last triangle that shares a vertex with 7;,. Observe that j; > i; + 1 since
T;,+1 shares two vertices with 7;,. In iteration 2, we will repeat step 1 on the triangles
starting from 773 44, since that triangle has none of its vertex elevations fixed. It remains
to choose the elevations for the triangles 7;,11,...,7j,. This is done in step 2 of the first
iteration, which we now describe.

Observe that triangles T; 4o,...,7},—2 form a (possibly empty) fan f; whose apex is
a vertex of T;, and whose other vertices are on the opposite chain and are disjoint from
T;, (whose vertices have already been fixed) and Tj 4, (whose vertices will be fixed in the
next iteration of step 1). See Figure 4.8 for an example, f; is illustrated in dark orange. Use
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6.171'—2 q

Figure 4.8: The first iteration of the algorithm.

Theorem 4.2.1 to choose the elevations of the non-apex vertices for f;, which 2-approximates
the minimum number of bends inside the fan.

In iteration 2, we compute index i, which represents the last triangle in the largest patch
starting from 7}, ;. We then look at the fan f; containing 7,9 up to 7,2, and in a similar
fashion as before, we do step 2 for this fan. We continue iterating to get additional index
values i1, J1,%2, J2, - - -, im, jm and fans fi,..., f,,. Note that after iteration m there may be
an additional partial iteration where only step 1 occurs.

Correctness. We will prove that this algorithm 5-approximates the optimal number of
bends.

Let B* denote the optimal number of bends for the input. Let B denote the number of
bends returned by the algorithm.

For each fan f;, let s, denote the number of bends in the fan f;, using the elevations
computed by the 2-approximation algorithm from Section 4.2.1. Let s} denote the optimal
number of bends that can be achieved in the fan f;. Then s, < 2s; by Theorem 4.2.1. We
will establish a upper bound on B using the s, values, and a lower bound on B* using the
sy values.

Lemma 4.2.1. B <5m+ )_ sy
k=1

Proof. We can formally prove this by induction, but we will simply focus on the first iteration.
Figure 4.8 illustrates the first iteration of the algorithm. There are s; bends strictly within
the fan f;. Outside the fan, there are at most 5 bends obtained from the first j; triangles
(at edges €;,, €i,41, €j,—2, €j,—1, €j,). Applying a simple induction argument over all iterations
gives us this total. O]

Lemma 4.2.2. B* > m+ )_ s;.
k=1

Proof. For all k = 1,...,m, there are at least s}, bends between triangles in each fan subprob-
lem f; that we solve. Additionally, for each patch T},  41,...,T;,, because 7 is maximal,
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we know there must be (at least) one bend somewhere between triangles Tj, | 41,..., T}, 41
Summing over all k =1,...,m proves the lemma. ]

From this, we conclude that:

B <5m+» s <5m+ Y 2s;p <b5bm+5) sp < 5B
k=1 k=1 k=1

This completes the proof that we have a 5-approximation.

4.2.3 NP-hardness for the general setting

We will show that the objectives of minimizing the number of patches and minimizing the
number of bends is NP-hard for the case of a general triangulation, using a reduction from
Monotone Rectilinear Planar 3-SAT. Recall that these are not equivalent objective functions
in general. However, it will not be hard to see that for the imprecise terrains generated by the
polynomial reduction, NP-hardness for either objective follows through with the reduction.

Theorem 4.2.3. Minimizing the number of bends is NP-complete in the general setting.
Using the same reduction, minimizing the number of patches is NP-complete in the general
setting.

Both decision problems are in NP. For minimizing the number of bends, a non-
deterministic algorithm for the decision version of the problem is as follows: Let k be the
maximum number of bends we ask for. First, non-deterministically determine which of the
k edges shall have a bend. For each remaining edge e, define linear programming variables
G, be, co, with the intended meaning that the triangles on both sides of e lie on the same
plane a.x + b,y + 2z + ¢. = 0. Also define linear programming variables z; for all imprecise
points 7. A solution in the feasible region for the following linear program will be a 2.5D
terrain with £ bends.

o b, <z <t for all i

e for all edges e where we do not want a bend, let 1,7, k,l be the resulting indices of
the imprecise points that form the two triangles sharing this edge. Then we want the
points to be coplanar, so:

° aexl-—i—beyi—l—zi—i—ce:O
® a.x; +by;+zj+c.=0
® acT + by + 2 + e =0
° ae:cl—i-beyl—l—zl—i-cezo
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Since linear programming can be solved in polynomial time, then we clearly see that this
is a non-deterministic polynomial time algorithm. For the patches problem, we can similarly
non-deterministically choose the disjoint patches of triangles, and then solve for the z-values
using linear programming.

Reduction details. The reduction will be from the NP-complete problem Monotone Rec-
tilinear Planar 3-SAT [11], which is the same variant of 3-SAT used in the hardness reduc-
tions in Section 3. In Monotone Rectilinear Planar 3-SAT [11], each clause has either three
positive literals or three negative literals, each variable v is represented by a thin vertical
rectangle centered at the point (0, vy, ), each positive [negative] clause is represented by a thin
vertical rectangle at a positive [negative, resp.| xz-coordinate, and there is a horizontal line
segment joining any variable to any clause that contains it. For n variables and m clauses,
the representation can be on an O(m) x O(n + m) grid.

As was done for the reductions in Section 3.2, we first modify the representation of
Monotone Rectilinear Planar 3-SAT so that each clause rectangle has fixed height and is
connected to its three literals via three “wires”—the middle one remains horizontal, the
bottom one bends to enter the clause rectangle from the bottom, and the top one bends
twice to enter the clause rectangle from the far side. See Figure 4.9. Each wire is directed
from the variable to the clause, and represents a literal. The representation is still on an
O(m) x O(n 4+ m) grid.

Given an instance of Monotone Rectilinear Planar 3-SAT &, we will construct an im-
precise terrain, by constructing a set of imprecise points in 3D, and a triangulation of these
points.

Variable gadget and variable component. The variable gadget for a variable v consists
of four triangles. See Figure 4.10a for a bird’s eye view. We call the two triangles in white
the selector triangles. We call the green striped triangle the true triangle and the checkered
triangle the false triangle. These four triangles share one vertex, which has z-coordinate 0
and y-coordinate y,. Therefore, the variable gadget for variable v will be placed inside the
rectangle corresponding to variable v in the input 3-SAT representation.

In the true and false triangles, the 5 vertices of these triangles all have 0 length z-
intervals. Specifically, the intervals are chosen so that every false triangle must lie on the
plane z = 0, and, every true triangle must lie on the plane x — z = 0. See Figure 4.10a for
the exact x,y-coordinates and z-intervals. Note that the two selector triangles are forced
to be coplanar to each other, regardless of what the z-coordinate of the leftmost vertex is
chosen to be. (This is because the three points with z-coordinate 0 are collinear). As it will
become clear later on, these two triangles should either both be coplanar to the true triangle,
or both be coplanar to the false triangle, and these two choices amount to us choosing this
variable to be true or false.

From one of the two leftmost triangles, create chains of triangles going off into horizontal
and vertical directions. Figure 4.10b shows this, and shows how we can split off into multiple
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Figure 4.9: An instance of Monotone Rectilinear Planar 3-SAT, modified so the clauses have
fixed height.

paths (allowing for multiple edges out of the Planar 3SAT vertex corresponding to this
variable gadget). We call these solid grey triangles path triangles. Note all z,y coordinates
are integers. We need to choose the intervals for the imprecise points of the path triangles.
For each point (z,y), choose the z-interval to be [z,0] if x < 0 and [0,z] if x > 0. In
particular, all path triangles can be chosen to be coplanar to the true triangle: since the
plane containing the true triangle is x — z = 0, then the z—coordinates of each point would
need to be set to x. They also all can be chosen to be coplanar to the false triangle, by
setting the z-coordinates of all points to 0. Choosing these triangles to be coplanar to the
false triangle is like choosing the variable to be false (“false assignment”), and coplanar to
the true triangle is like choosing the variable to be true (“true assignment”). After describing
the whole instance, it will become clear that these two assignments for these triangles are
the only ones that can be used in an optimal solution.

Definition 4.2.1. A wvariable component consists of a variable gadget and its corresponding
path triangles.

Definition 4.2.2. The false assignment for a variable component sets the elevations of
every imprecise point in the component to be the endpoint z = 0. The true assignment
for a variable component sets the elevations of every interval in the component to be the
opposite endpoint from the one that is used in the false assignment (for non-trivial intervals,
the opposite is the non-zero endpoint).

Clause gadget. Consider a clause ¢ containing three positive literals. (The case of three
negative literals will be symmetric.) As part of the variable components, we have built
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Figure 4.10: Reduction gadgets

chains of triangles following the edges of the Monotone Rectilinear Planar 3SAT instance,
and three of those chains meet at a clause gadget, as illustrated in the Figure 4.10c. A clause
gadget consists of three triangles (coloured in orange in the figure). Since the clause contains
positive literals, it is to the right of the variable gadgets, and so the intervals assigned to the
three incoming path triangles have intervals with non-negative values.

The vertical line segment in the centre of the clause will have its bottom endpoint be
much higher than the surrounding segments. Let us say the top left corner of this clause
gadget is at coordinate (z,y). The line segment in the center of the clause is set to be:
(x4 1/3,y —1/3, (32,2 + 1/3]). We will claim that if we use the true assignments for (at
least) one of the three variable components of this clause, then the point on the centre line
segment can be chosen so that the triangles of the clause gadget are all coplanar. However,
for the one truth-value assignment when all three literals are false, every possible placement
on the centre segment will result in the three triangles of the clause gadget not being coplanar
to each other. See Lemma 4.2.5 in the correctness section for more details.

We design the clause gadget for three negative literals in a similar fashion. The centre of
the clause gadget will instead use the line segment (z —1/3,y — 1/3,[2/3x — 1/3,0]), where
(x,y) are the coordinates of the top right corner of the gadget.

Completing the triangulation. We combine all of the variable components and clause
gadgets together. The final result is not yet a triangulation, as there may be some polygonal
faces (i.e., “holes”). To fix this, place a point at every integer x,y coordinate inside a face,
and set the corresponding z-intervals to be [0,0]. We will then add the half-integer points
(14 0.5,7 + 0.5) for i, j € Z that are within a polygonal face. For these points, we assign
them a very low z-interval. Specifically, let Z > 0 be the largest absolute value of an interval
endpoint created so far. Set the corresponding intervals of the half-integer points to be
[—4Z,—4Z]. There are polynomially many new points, because they have only been added
in the closed faces which have polynomial size. Triangulate in an X-pattern, see Figure 4.11.
These newly added triangles are shaded blue in the figure and have dotted edges.

However, we triangulate in a slightly different way near the variable and clause gadgets,
see Figure 4.11. For those points inside an integer grid square, they are chosen to have a
fixed z-values that is very low, in a similar fashion to the half-integer points.
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Figure 4.11: The resulting imprecise 2.5D terrain constructed from the instance of 3-SAT in
Figure 4.9.
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 4.12: Proving Lemma 4.2.3. The general idea is to show the triangles sharing the
thick dark edge cannot be coplanar. In Cases 1 and 2, we prove this by showing the four
points labelled in Figure 4.12a and 4.12b cannot be made coplanar. In Case 3, we prove this
by showing the two red vectors cannot be made collinear.

We call these blue triangles with dotted edges spike triangles. While many of the spike
triangles have precise vertices, the ones that share an edge with a path triangle have imprecise
vertices. Observe that for any precise terrain, all the points have a z-value between —Z and
7, except the points we added at half-grid points, which are forced to have z value —4Z7.
We call the spike triangles that are not right angled special.

Lemma 4.2.3. A spike triangle cannot be coplanar with an adjacent triangle.

Proof. We consider all cases, depending on the type of the triangle that the spike triangle
is adjacent to. A few of the cases are illustrated in Figure 4.12. Case 4 deals with the
special spike triangles, while the remaining cases deal with the non-special (right-angled)
spike triangles.

Case 1. First, consider two neighbouring spike triangles within the same “square” (that
is, the shared edge is one of the edges that make up the X in the X-pattern). Without loss of
generality, we will compare the bottom right edge between the bottom triangle and the right
triangle. See Figure 4.12a. Suppose the 2 triangles are coplanar (so the 4 points illustrated
in Figure 4.12a are coplanar). Then the middle point would lie on the line segment (in 3D)
from the bottom left point to the upper right point, which is impossible since the middle
point is the only global minimum at elevation —47.

Case 2. We also can compare spike triangles that are part of different X’s, as illustrated
in Figure 4.12b. We can easily argue the four points in Figure 4.12b are not coplanar. The
argument for this case is quite similar to the argument for Case 1, so it is omitted.

Case 3. We compare an edge between a spike triangle and a non-spike triangle. Consider
the example Figure in 4.12¢, which shows an edge between a path triangles and a spike
triangle. (The other triangle need not be a path triangle for this argument to work). To
verify these triangles are not coplanar, we will compare the slopes of the two red horizontal
vectors lying on the two triangles. If they are not collinear, then we have proven the triangles
are not coplanar.

67



The change in x and y between the two endpoints of the vector are the same for both
vectors (taking the value of the right endpoint minus the left endpoint, we get Az = 0.5, Ay =
0). We will look at the change in z for both segments. For the one on the path triangle,
recall the intervals of the triangle are contained in [—Z, Z], and in particular, that means
any point any path triangle will have an elevation between —Z and Z. Therefore, the change
in z for the first vector is at least —7Z — (Z) = —2Z.

For the second vector, its right endpoint has z-coordinate exactly —4Z. Since the left
endpoint is also on the path triangle, it must have elevation at least —Z (since —Z is the
lowest possible elevation for path triangles). So the change in z is at most —3Z. Therefore,
the change in 2z for the two vectors cannot be equal, so the two vectors are not collinear.
Therefore, the triangles are not coplanar.

Case 4. The cases above handle the majority of spike triangles, which all have the same
shape. A similar argument can be made for the special spike triangles. Proving this lemma
for these triangles is not really any more difficult than the previous cases, but it would be
repetitive, so the proof is omitted. O]

Useful lemmas for correctness. Before we state the lemmas we need, we introduce some
preliminary notation and definitions. Recall that there are n variables and m clauses. Recall
that a variable component is the variable gadget plus its corresponding path gadgets.

For each wvariable component v, let b, [p,] be the number of bends [patches| inside the
variable component for v. For each clause ¢, let b, [p.] be the number of bends [patches]
inside the clause gadget for ¢. Note that boundary edges of variable components are always
bends by Lemma 4.2.3, so b, only counts interior edges of variable components. Note that
the values b, p,, b., p. depend on the placement of elevations z.

Observe that every triangle in a component only shares edges with other triangles in
the same component, and potentially some spike triangles. Thus by Lemma 4.2.3, all spike
triangles have a bend at each of its edges and all spike triangles are in their own patch. This
results in the following claim.

Claim 4.2.2. Let B [P] denote the number of bends [patches] for the given precise terrain.
Then B=) b, +> .be+Sand P =3 p,+ > .p.+ s, where S denotes the number of
edges where at least one incident triangle is a spike triangle, and s denotes the number of
spike triangles.

We will look at each individual gadget independently in order to determine how many
bends and patches there are in total.

Lemma 4.2.4. The following two statements are both equivalent and true.

1. Every variable component needs at least two patches i.e., p, > 2, and the true and false
variable component assignments are the only two assignments where this is achievable.
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2. Every variable component needs at least one bend i.e., b, > 1, and the true and false
variable component assignments are the only two assignments where this is achievable.

Proof. First, we note that the two claims are exactly equivalent, because p, = b, + 1 (this
is a result of the variable component being outerplanar and by Claim 4.2.1). Therefore, two
patches means there is exactly one bend, and three or more patches means there are two or
more bends.

We will prove the first version of the claim. The true triangle and false triangle cannot
be coplanar to each other, and as a result, there will be at least two patches. It is obvious
that using the true or false assignment for this variable component will gives us exactly two
patches.

For any other assignment, we will show it must have at least three patches. We can
break into two cases. If the entire variable component without the true and false triangles
are all one patch, then this patch will not be coplanar to the true triangle or to the false
triangle, because that would be the true or false variable assignments. Therefore, there will
be three patches in this case. On the other hand, if the entire variable component without
the true and false triangles is not one patch, then consider one of these patches that does not
have either of the selector triangles in them. This must exist: in particular, the two selector
triangles that are part of the variable gadget are always in the same patch together, so there
must be a different patch without these two triangles, and so this patch is not connected
to the true and false triangles. This patch, plus the patch containing the true and false
triangles gives us three distinct patches, therefore, there are at least three patches in this
case as well. O

Next, we consider an individual clause gadget. For its three corresponding variable
components, we consider the 8 combinations of true/false assignments for the three variables,
and then consider the choice for where to place the centre point of the clause gadget.

Lemma 4.2.5. Let b, [p.] denote the number of bends [patches] used inside the clause
gadget for clause ¢, assuming ¢ has positive literals.

1. Assume the variable components that are connected to the clause gadget of ¢ all use
the false variable assignment. Then the three triangles of the clause gadget will never
be coplanar to each other, therefore b. = 3 [p. = 3] for all placements of the centre
point.

2. Assume at least one of the variable components that are connected to the clause gadget
of ¢ uses the true variable assignment. Then the three triangles of the clause gadget
can be chosen to coplanar to each other, i.e. b. =0 [p. = 1].
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(a) A birds eyeview of a clause gadget. (b) The same clause gadget in 3D.

Figure 4.13: Visualizing the vertical line segments of near the clause gadget. Variable
components u, v, w meet up at the three triangles forming the clause gadget.

We can make a similar claim for a clause with negative literals: for every clause ¢ with
negative literals, b. = 3 [p. = 3] when all of the incoming variable components use the true
assignment (i.e. all literals are false). Otherwise, we can choose the elevation of the point
on the center segment so that the three triangles are coplanar to each other, i.e. b. = 0

[pc - 1]

Proof. A clause gadget can be visualized in 3D, see Figure 4.13. All of the points in this figure
have a z-interval with bottom endpoint 0 and top endpoint being the point’s x-coordinate,
except the point in the centre of the clause gadget, whose bottom endpoint is slightly higher
than 0.

When all three of the variable components u, v, w use the false variable assignment, then
the z-values for all of the vertices of these components are to equal 0. The point we place on
the centre line segment must have an elevation greater than 0, so the three triangles forming
the clause gadget cannot be made coplanar to each other. See the top left figure in Figure
4.14.

Meanwhile, when at least one of the variable component uses the true variable assignment,
then the z-values for the vertices of this component are set to the top endpoint value. There
are seven cases to consider where at least one variable component uses the true variable
assignment. These are visualized with the remaining figures of Figure 4.14. As the figures
illustrate, the three triangles making up the clause gadget can be made coplanar to each
other, if the point on the centre line segment is chosen properly. O

Correctness. We will now prove correctness of the reduction. The two lemmas that follow
prove correctness for the two objectives.

Lemma 4.2.6. Let k = n+ 5. Then there is a satisifiable assignment 7 for ® if and only if
there is a selection of elevations z where B < k.
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Figure 4.14: Eight cases for the clause gadgets. In all but the top-left figure, the three
triangles of the clause gadget (in orange) are coplanar to each other. Therefore, choosing the
three incoming variable gadget to all use the false assignment causes extra patches/bends.
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Proof. Tf there is a satisfiable assignment for @, then for each true [false] variable, use the
true [false] assignment for its corresponding variable component, which gives > (1) = n
bends by Lemma 4.2.4. By Lemma 4.2.5, we can choose the centre point of each clause
gadget so that the clause gadget uses zero bends. The remaining edges must be part of at
least one spike triangle. By Lemma 4.2.3, all of these edges are bends, so we get .S additional
bends from these edges. Therefore, we have a solution with n + S = k bends.

Assume that there is a solution with B < k. First note that B > k for any choice
of precise points, because by using the lower bounds for b, obtained from Lemma 4.2.4,
B=3 b,+>.b.+S5>>,1+5=n+S5 =k Therefore the solution with B < k must
have b, = 1 and b. = 0 for all variables v and clauses c¢. By Lemma 4.2.4, we must use
one of two variable assignments for each variable component, which we can translate into a
variable assignment 7 for ®. And since b. = 0, by Lemma 4.2.5, this shows each clause is
satisfied under this variable assignment. O

Lemma 4.2.7. Let k = 2n + m + s. Then there is a satisifiable assignment 7 for ® if and
only if there is a selection of elevations z where P < k.

Proof. 1f there is a satisfiable assignment for ®, then for each true [false| variable, use the
true [false] assignment for its corresponding variable component, which gives > (2) = 2n
patches by Lemma 4.2.4. By Lemma 4.2.5, we can choose the centre point of each clause
gadget so that the clause gadget uses one patch (for a total of m patches). By Lemma
4.2.3, spike triangles are always in their own patch, so we get s patches from these triangles.
Therefore, we have a solution with 2n + m + s = k patches.

Assume that there is a solution with P < k. First note P > k for any choice of precise
points, because by using the lower bounds for p, obtained from Lemma 4.2.4, and since
clearly all p. > 1, we get P = > p,+ > .pc+s>> 2+> 1+s=2n+m+s=k.
Therefore the solution with P < k must have p, = 2 and p. = 1 for all variables v and
clauses c. By Lemma 4.2.4, we must use one of two variable assignments for each variable
component, which we can translate into a variable assignment 7 for ®. And since p. = 1, by
Lemma 4.2.5, this shows each clause is satisfied under this variable assignment. [

4.3 Minimizing the surface area

The objective function for this section is very intuitive:

Objective #3: Minimizing the surface area.

We will show this problem can be solved using Second Order Cone Programming (see
Definition 4.0.1).

Theorem 4.3.1. There is a Second Order Cone Program (a SOCP) that solves the problem
of minimizing the total surface area.
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The z values will be variables used in the SOCP. We add the linear constraints that
b; <z <t;forall 7 =1,...,n to ensure that each elevation value is within its interval.

For each triangle T, we introduce a variable s; which represents the area of 7. The
constraint area(7") < sy ensures sy is an upper bound to the area. This is the only constraint
for sp. The objective function is to minimize ) ;.. sy, so in the optimal solution to this
SOCP, clearly the s will be chosen to be equal to area(T'). Therefore, the optimal solution
to this SOCP will return an optimal value z for the problem of minimizing the total surface
area.

Constants: 1, y1,b1,t1,...,Zn, Yn, bn, tn

Variables: 21,...,2,,{sr: T €T}

minimize ) sy
TeT
subject to b <z <t, 1=1,...,n

area(T) <sr TeT

We will now prove the constraints area(7")< sp are valid SOCP constraints. Let us say T’
has imprecise vertices p;,, pi,, pi,- Then the area of this triangle is 3 ||(pi, — iy ) X (Pis — i) |,
where x denotes the cross product between two vectors, and || - || represents the Euclidean
(L) norm of the given vector.

ZZ‘1
We claim that ||(piy, — piy) X (Pis — piy)|| = || M7 |2, | + Er||, where
Zisg
Yio = Yis  Yis = Yir  Yin = Yiz
MT = ZEZ'Q — ZEZ'3 Iig — .Z’il ZEZ'I — ZL’Z'2

0 0 0

and

0
ET = 0
(xi2 - xil)(yiS - yil) - (yi2 - yil)('riB - xil)

This easily follows from the definition of cross product. According to the definition of
SOCP, area(T) < sr is clearly a SOCP constraint.
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4.4 Minimizing the maximum steepness

The goal of this section will be to generalize the objective of minimizing the maximum
steepness for 1.5D terrains. A commonly used notion of steepness of a plane or triangle in
3D is the magnitude of its gradient.

Definition 4.4.1. The steepness of triangle T lying on the plane z = f(x,y) = Arx+ Bry+
Cr is the Ly norm of the gradient of f, i.e., /A% + B2.

Note that in 1.5D, this sort of definition amounts to taking the absolute value of the
slope of the line that the edge of the terrain lies on, which is exactly the definition we used
in Section 2.4.

Objective function #4a: Minimizing the maximum steepness over all triangles.

Theorem 4.4.1. There is a Second Order Cone Program (a SOCP) that solves the problem
of minimizing the maximum steepness.

We introduce variables Ar, By, Cr for each triangle T', with the goal of having the triangle
T lie on the plane z = Apx + Bry + Cr. In particular, the three vertices of the triangle

uniquely define the plane, so we will simply add the constraint that each vertex i € T lies
on this plane.

Constants: 1, y1,b1,t1,...,Tn, Yn, bn, tn

Variables: zy,...,2,, F,{Ar,Br,Cr:T €T}
minimize F

subject to  b; < z; < t;, 1=1,...,n
zi:ATxi—I—BTyi—l—CT TeT,ieT

VA% + B34 <F TeT

This shows that this problem can be solved using a SOCP.
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Chapter 5

Conclusion

5.1 Concluding remarks

We started by discussing four objectives for the imprecise terrain model and how they exhibit
realistic and nice properties. We explored these objectives in the imprecise 1.5D terrain model
and obtained positive results: polynomial time algorithms for all objectives. For Objectives
#2a and #2b, we settled for a 2-approximation, however this algorithm is very efficient
(linear time).

Thinking about line segments in the plane proved to be quite interesting, so we explored
the distant representatives problem for segments in the plane, and obtained new results.

For the imprecise 2.5D terrain model, we showed that each problem has some positive
algorithmic result, even if it is only in a restricted setting. We also gave an NP-hardness
reduction that works for both Objectives #2a, #2b in the general case.

5.2 Future work

There are a couple of interesting questions left from this thesis. First, we could not give an
exact algorithm for Objectives #2a and #2b. Is there an exact algorithm for minimizing
the number of links/bends in 1.5D, or is the problem NP-hard? How about minimizing
the number of patches/bends for path triangulations in 2.5D? Can the algorithm for a strip
be extended to a more general path triangulation? For the extrema and patches/bends
problems, what can be said about outerplanar triangulations, which are slightly more general
than path triangulations? Or in the general case, are there approximation algorithms? What
approximation ratio can be achieved? For the problem of maximizing the minimum steepness
in 2.5D, is there an algorithm, or is the problem NP-hard?

This thesis explored problems where the elevations of points are imprecise, but there
is a fixed triangulation. We now suggest a few alternatives. First, the points are precise,
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but the triangulation is not given. De Kok et al. [13] explored the Objective #1 for this
model, for which they showed this problem is NP-hard. Are any of the other objectives
NP-hard in this model? This model becomes significantly easier when the boundary of the
terrain is known and no point lies in the interior of the polygon. We conjecture that dynamic
programming algorithms would be quite easy for all of the objectives in this restricted model.
These algorithms would take a similar approach to the dynamic programming algorithm
for triangulating a simple polygon with minimum weight [20]. Are there parameterized
results for any of the objectives explored in this thesis? A recent result by Hoffman and
Okamoto [26] counted the number of interior points to the input polygon as a parameter,
and gave a parameterized result for their problem.

Second, consider the model where the elevations of points are imprecise, and the trian-
gulation is not given. Without a fixed triangulation forced upon us, this model allows us to
ask more advanced questions about the input points. For instance, what if the input points
are a large sample, but too many points were collected to feasibly save? Instead, we could
triangulate a subset of points, and then we return a precise terrain where all the points we
excluded still lie on the 2.5D terrain. This suggests that we have chosen a good sample to
represent the points. Formally, the objective is to pick a subset and a 2.5D terrain of these
points that ensures all the points lie on the terrain, and to choose the subset as small as
possible (or, choose the subset and the triangulation so that the terrain has as few triangles
as possible). This is an interesting problem in this model that might be worth exploring,.
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