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Abstract

Diabetes is a chronic condition that occurs when the levels of glucose are high in the
blood because the body cannot produce any or enough insulin or use insulin effectively.
According to the International Diabetes Federation (IDF), 537 million people are currently
living with diabetes. It is very important for people with diabetes to regularly check their
blood glucose levels to keep track of any increase or decrease in these levels, and adjust the
amount of medication accordingly. This process is called Continuous Glucose Monitoring
(CGM). CGM techniques can be categorized based on invasiveness as invasive, minimally
invasive, and non-invasive. In the non-invasive there is no need for any blood sample
extraction or any implantation of electrodes in the body.

First, a review of the non-invasive CGM techniques in the last ten years is conducted
in order to understand the current status of the CGM and highlight the challenges that
face every technique in order to come up with a better solution. The techniques used
for non-invasive CGM can be classified into six major categories: optical, microwave,
thermal, transdermal, hybrid and other. In order to overcome the shortcomings of the
invasive and minimally-invasive methods of CGM, such as pain, discomfort, and risk of
infection, non-invasive CGM is needed. However, due to the multiple challenges such as
accuracy, usability and applicability, contemporary non-invasive glucose monitors are still
not sufficiently reliable.

In this thesis, a non-invasive glucose monitoring system is developed using microwave
sensor with machine learning techniques. The system has two parts: hardware, which
is the microwave sensor, and software, which is the machine learning algorithms. The
physical sensor is microwaves-based using inexpensive printed circuit board technology.
Electrically-small dipole and another spiral microwave sensor were designed and used in
this thesis taking into account different factors like frequency range, penetration and safety
of the human. Machine learning techniques were used to select the most distinguish features
in order to predict the actual glucose level in the human. Different feature engineering types
were used to extract the discriminate features that will be inputted to different regression
algorithms to predict the glucose levels.

The main idea of the thesis is based on studying dielectric properties (permittivity and
conductivity) of the human body tissues in order to find a relation with the corresponding
glucose level in those tissues. This is done using CST simulation along with experiments.

Experimental results on aqueous solutions (water-glucose solutions) used as a proof of
concept and to check the ability of the microwave sensors to detect the different concen-
trations of these simple water- glucose solutions.
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In simulation, a hand model system was designed with different tissues/layers to sim-
ulate the effects of the microwave sensor with respect to changing in dielectric properties
(permittivity and conductivity) of those tissues/layers. Different systems (corresponding
to different hand layers/tissues) were trained and tested using cross validation, and the
Root Mean Square Error (RMSE) was acceptable.
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Chapter 1

Introduction

1.1 Overview

Glucose (C6H12O6) is a simple sugar and one of the most abundant carbon-based molecules
in nature. It is a primary source of energy in the human body. Glucose is occurred naturally
in the form of D-Glucose and also called dextrose.

Diabetes mellitus, or diabetes for simplicity, is a chronic condition that occurs when
the levels of glucose are high in the blood because the body cannot produce any or enough
insulin or cannot use insulin effectively [4].

There are three main types of diabetes, Type-1 Diabetes (T1D), Type-2 Diabetes (T2D)
and Gestational Diabetes (GDM). In T1D, the body does not produce insulin as the
immune system attacks and destroys the cells in the pancreas that secrete insulin. This type
of diabetes may be appeared since birth or developed later in life. With the more common
T2D, the body does not make or use insulin well because the cells’ glucose receptors are
malfunctioned. Combination of factors may cause T2D such as lack of exercises, eating
habit and genetic factors. GDM is a form of diabetes that occurs during pregnancy and
most women no longer have it after the baby is born. According to the IDF, 537 million
people are currently living with diabetes [5]. Countries at all income levels suffer from high
human, social and economic costs for diabetes in all forms. Energy is very important to
the human body and it comes in the form of glucose. When glucose transported via blood
stream, cells process and absorb the glucose via a process called Glycolysis.

The normal glucose levels in the human blood are between 4.0 and 7.0 mmol/L (72
and 126 mg/dL) on an empty stomach, and between 5.0 and 10.0 mmol/L (90 and 180
mg/dL) two hours after a meal [6]. Hyperglycemia occurs when the blood glucose level
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is above normal values. Whereas Hypoglycemia occurs when the blood glucose level is
below normal values. It is very important for people with diabetes to regularly check their
blood glucose levels to keep track of any increase or decrease in these levels, and adjust
the amount of medication accordingly. This process is called CGM.

CGM techniques can be categorized as invasive, minimally invasive, and non-invasive.
Invasive techniques are the most widely used blood glucose measurement because they
have the highest accuracy. In the invasive, a blood sample is needed to be extracted using
a lancet and the fingertip is the most widely used human body part. The blood sample
is given to a glucometer to measure the glucose level. Due to the pain and inconvenience,
caused to the people with diabetes, by the frequent finger prick, minimally invasive tech-
niques are introduced to help in reducing the pain. In the minimally invasive, measuring
the glucose level is done by subcutaneously needle-type electrodes implanted in the body.
However, these techniques are still not recommended for most of the people with diabetes
because it involves direct interaction with tissues and needed to be replaced from time to
time. In addition, minimally invasive devices’ results are not as accurate as the invasive
techniques ones. The last and most recent category is the non-invasive CGM techniques in
which there is no need for any blood sample extraction or any implantation of electrodes
in the body.

There is a desperate need for a simple, non-invasive and pain-free CGM method, which
will make a major improvement in the field of diabetes care. Many research groups and
companies are nowadays working on developing non-invasive CGM methods using different
body fluids. The main fluid is the blood; however, other fluids can be used as an alternative
to measure glucose levels instead of extracting blood. Those fluids include saliva [7, 8],
sweat [9, 10, 11, 12], urine [13], tears [14, 15, 16, 17, 18], breath [19] and Interstitial Fluid
(ISF) [20]. In addition, some research used skin oxygen saturation [21].

However, on the other hand, there are a lot of challenges facing the development of non-
invasive CGM devices such as accuracy, usability, and applicability. Clearly accuracy is a
primary consideration since the insulin dosage directly depends on the measured glucose
value.

This research will shed the lights on some of the past and current non-invasive CGM
techniques (in the period 2009-2021) and the major challenges facing these techniques, to
build a solid understanding of the nature of the problem in order to have good non-invasive
techniques for CGM which will help improving the field of diabetes technology. First of
all, in this thesis what is considered to be non-invasive is that any techniques that doesn’t
involve any drawing of any human body sample or any electrode implantation in the body.
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1.2 CGM Classifications

Based on the nature of non-invasive CGM techniques, we can classify them into five major
categories: optical [22, 23], microwave [24], thermal [25], transdermal [26], and hybrid
[27, 28]. In addition, some research use ECG as a measure for glucose in T1D [29, 30].
The classification in this thesis is different from other research where they classified based
on the properties of glucose, blood-tissues, and breath acetone [31].

Multivariate calibration methods for spectral analysis are used to establish a regression
model that will map or relate the measured input signal (depending on the technique used)
with the corresponding glucose level. This quantitative model will be used later to predict
the glucose levels based on the reading signals. There are many methods such as principal
component regression (PCR), partial least squares (PLS), multiple linear regression (MLR),
support vector machine (SVM) and artificial neural network (ANN).

1.3 Non-invasive Optical-based Glucose Monitoring:

It is known that light interacts with molecules based on the molecule’s chemical structure,
which makes light a good choice for detection. When light is incident on a sample, one of
four scenarios take place: the light is either absorbed, transmitted, reflected or scattered.
The advantages of using optical-based methods are that influence of pH and temperature
fluctuations are not critical for the measurement. In addition, the optical measurements
are flexible and, in general, the optical signals’ power used is harmless to the human body
when taking into account both wavelength and radiant power [32].

In this section, I will discuss different types of optical-based techniques used for CGM
and any associated devices using these techniques:

1.3.1 Vibrational Spectroscopy:

Vibrational Spectroscopy can characterize and identify the molecules. It gives a dynamic
picture of the molecule while X-Ray gives a static picture [33]. In glucose detection, glucose
anomers can be clearly identified and distinguished using vibrational spectroscopy due to
small differences in the spectra [32]. There are two types of vibrational spectroscopy:
Infrared and Raman.
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i. Infrared Spectroscopy: Infrared (IR) is the most widely used vibrational spec-
troscopy. In IR spectroscopy, the absorption of electromagnetic radiation between the
wavelengths of 700 nm to 1 mm is investigated [32]. Near Infrared (NIR) (750nm – 2500
nm) allows the measurement of glucose in the blood under the skin to a depth of few mm
in range. NIR has the advantage of high sensitivity of the photoconductive detectors, and
there is a reasonable transparency of water to the signal bandwidth used by NIR. In addi-
tion, NIR has a low cost which makes it a widely used technique in the field of non-invasive
monitoring [34].

Despite the fact that NIR is simple and harmless, there are many limitations when
using it for glucose detection. Factors like body temperature, skin thickness and hydration,
blood pressure and fatty tissues affect the accuracy of the results because they affect light
absorption.

Dantu et al [35] developed a non-invasive NIR CGM technique using a smartphone.
A laser beam is directed to the fingertip and the smartphone camera captures the light
from the other side. MATLAB is used to analyze the result and by using a modified
Beer–Lambert law, a linear proportionality between the results and the actual glucose
concentration is extracted. The device is still not sufficiently reliable and is affected by
light conditions.

In [36], a hybrid algorithm using NIR spectroscopy is proposed to improve the pre-
diction performance of blood glucose concentration. The algorithm is a combination of
wavelet prism modified uninformative variable elimination approach (WP-mUVE) and
least squares support vector machine (LSSVM). Data is collected from the human tongue,
which eliminates the effects of skin thickness and fat and provides high Signal to Noise Ra-
tio (SNR). Results provided improvement in accuracy and adaptability of the prediction.
The system may be affected by environmental parameters such as temperature, humidity
and pressure.

Another NIR technique is the one with aqueous solution experiment in [37] which used a
light beam of 1310 nm wavelength. The results showed a direct proportionality between the
output power and glucose concentration. However, to verify the accuracy of the method,
it needs to be tested using real human blood instead of an aqueous solution only.

The second type of IR is Mid Infrared (MIR) spectroscopy, which is based on light
in the 2500-10000 nm spectrum. MIR has the physical principle of NIR; however, due
to higher wavelengths, MIR increased the absorption. On the other hand, penetration of
light in tissues can reach a few micrometers [38]. As a result, the reflected light can only
be considered because there is no light transmitted through the body [34]. Due to this
penetration problem, MIR is less studied for glucose detection compared to NIR.

4



The biggest challenges for glucose detection with IR are the high scattering and low
glucose concentrations. Moreover, the glucose signal is masked by a large peak caused by
water [32]. Researcher at CADIPT [39] used a pair of laser beams instead of a needle
with wavelength-modulated differential photothermal radiometry (WM-DPTR). One of
the beams is absorbed by both water and glucose, while the other only by water so that
the water absorptions cancel each other out. Unfortunately, there is no update about the
current status of this technique.

One of the devices developed using NIR technology is Combo Glucometer [40, 41].
Cnoga Medical Ltd. developed a device with LCD display for non-invasive capillary blood
glucose measurement. The Combo Glucometer can be connected using a USB interfaced
with PC, smart-phone or web, it has rechargeable battery and it weighs less than 100
gr. However, for good accuracy, the Combo Glucometer requires measuring glucose levels
invasively and non-invasively simultaneously usually for 3 days calibration to personalize
the device. The device is currently CE approved while FDA approval is pending.

ii. Raman Spectroscopy: Raman spectroscopy is another vibrational technique that
uses a single wavelength laser source (from visible to MIR) to excite the electrons and
detecting the Raman shifted (inelastic scattered) light as shown in Figure 1.1. Raman is an
analogous technique to IR, but with a less intuitive physical background [32, 38]. Compared
to NIR spectroscopy, Raman spectroscopy has the advantage of providing sharper and less
overlapped spectra. In addition, there is a proportionality between the intensity of spectral
features and the concentration of particular species. In addition, the temperature change
does not have much effect on the spectra because of the small sensitivity.

The main drawbacks of Raman spectroscopy are that the laser wavelength and intensity
are instable, and the spectral acquisition times are too long. Moreover, SNR ratio is
significantly reduced because of the low power of the light source. Finally, as with NIR,
there is the problem of interference from other compounds [34].

C8 MediSensors was a non-invasive CGM device developed using Raman spectroscopy
technology. The device received a CE-approval, but it is no longer available and the
company went out of business in 2013 [42], which rises a lot of questions about CE-approval.

1.3.2 Photoacoustic Spectroscopy:

Photoacoustic Imaging (PAI), or photoacoustic spectroscopy, is based on the principle
of thermal expansion of an object caused by the absorption of light (Figure 1.2). An
oscillating movement in the tissue is induced by the emitting light, which results in pressure
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Figure 1.1: Raman Spectroscopy

waves that can be interpreted as a sound signal. This principle is called the photothermal or
photoacoustic effect [43]. PAI benefits from the advantages of both optical and ultrasound
imaging, as it combines high contrast of light absorption with the high resolution of ultra-
sound imaging. In addition, PAI has a high SNR. The drawbacks of PAI are the limit on
the imaging depth and the relatively long time needed for data collection [43].

In [44], photoacoustic spectroscopy aqueous glucose monitoring was used. The glucose
concentration in aqueous solution was estimated by the change in the optical absorption
coefficient and the change in pressure. The system used a 1550-nm laser light and a mi-
crophone in a photoacoustic cell to acquire the photoacoustic signal samples. Different
glucose concentrations were used to collect photoacoustic signals, and these signals showed
a linear proportionality with the glucose concentrations. There is no dependency between
the photoacoustic signal acquisition process and the light scattering in tissues. The draw-
back of the system is the high cost in terms of energy and time and the sensitivity of the
photoacoustic signal acquisition process to pressure and temperature variations.
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Figure 1.2: Simple diagram for acoustic waves

1.3.3 Optical Coherence Tomography (OCT):

Optical Coherence Tomography (OCT) is an optical signal acquisition system consisting
of a low coherence light, an interferometer, and a photo detector to measure the inter-
ferometric signal [34]. The interferometer consists of a sample arm and a reference arm
with moving mirror. The interferometric signal is the result from the combination of light
backscattered from tissues and light returned from the reference arm of the interferometer.
The signal is detected by the photo detector [38].

OCT is used to measure the glucose concentration by the correlation of the delay
between the backscattered light in the sample arm and the reflected light in the reference
arm. A time-domain OCT system was used in [45]. The system images the diffusion of
glucose in the skin of anesthetized monkeys. After calculating the permeability rate, the
results suggest that OCT might be utilized for non-invasive monitoring of blood glucose in
the multilayered biological tissues in vivo.

In another study [23], glucose concentration is measured by an OCT signal amplitude
using tissue phantom and human blood samples. Results showed a cyclic correlation be-
tween signal intensity and glucose concentration, however, the research concluded that
using OCT in glucose measurement is unfaithful because some parameters may affect the
OCT signal intensity such as the size of RBC and the presence of creatinine and other
materials in the blood.
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One recent study used OCT for non-invasive glucose monitoring [46]. In this study,
changes induced by glucose in the optical properties of the dermis were measured. The
study showed a correlation between the blood glucose concentration in the dermis and the
OCT signal slope.

Another recent study explored the changes in OCT signal slope (OCTSS) with the
variation of blood glucose concentration (BGC) [47]. The results calculated the correlation
coefficient R between OCTSS and BGC in both volunteers with diabetes (R= 0.91) and
healthy volunteers (R= 0.78).

The advantages of using OCT for CGM include higher SNR, good penetration, and
high resolution. However, there are some limitations to OCT such as sensitivity to the
motion of individuals and skin temperature. Moreover, there is no clear comparison of the
OCT method with other similar methods for non-invasive CGM [34].

1.3.4 Fluorescence Spectroscopy:

Fluorescence is the emission of absorbed light by a substance. Fluorescent molecules are
called fluorophores, which absorb energy of a specific wavelength and reemit energy at a
different wavelength (Figure 1.3). A fluorescence glucose-sensing molecule is constructed
by changing fluorescence from baseline according to the glucose concentration [22]. Glucose
does not fluoresce, therefore, it must be combined with a fluorophore for detection [32].

In [48], a glucose sensor is proposed using the fluorescence labeled i-motif DNA as a
probe. The pH value of the system is decreased by the enzymatically generated gluconic
acid. The proposed method can detect glucose effectively in human serum and urine. The
advantages of using fluorescence-based CGM are higher sensitivity to low glucose concen-
tration, less need for calibration, and no need for implanted transmitter or power source
for wireless transfer of glucose data [22]. On the other hand, there are some drawbacks of
using fluorescence-based CGM such as: the scattering phenomena, the short life times and
biocompatibility of the devices [34].

1.4 Non-invasive Microwave-based Glucose Monitor-

ing:

Microwaves are electromagnetic waves with frequencies between 100’s MHz and 100’s GHz.
The antenna, which is the source of radiation, is affected by the electrical property in its
environment. This affect manifest itself by a change in the antenna’s input impedance
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Figure 1.3: Illustration of fluorescence spectroscopy

(which is related to the antenna’s resonance). Therefore, studying the change in the elec-
trical properties of blood as a function of glucose concentration is the main idea behind most
of the glucose detection modalities that employ microwaves, or microwave spectroscopy in
general [49].

Microwave spectroscopy, has the advantage that the molecular structure of the bio-
logical samples remains unaltered because microwave sensors (antennas) do not produce
ionizing radiation [50]. It is worthy mentioning that microwave is not the only waves that
produce non-ionizing radiation.

There are some factors affecting the design of a microwave-based CGM technique.
These factors include: the frequency of the sensor, the sensor type and the type of the
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signal to be analyzed in order to calculate the glucose level.

Table 1.1 summarizes the different research using microwaves, while highlighting the
primary factors in designing any microwave-based CGM technique.

One of the recent techniques proposes adaptability to different measurement conditions
through the learning process by applying techniques of artificial intelligence and machine
learning [51].

GlucoWise is a device designed using radio wave spectroscopy for CGM. The target
area of the device is the skin between the thumb and forefinger or the earlobe. The device
is in development and will be available once clinical trials are completed.

1.5 Non-invasive Thermal-based Glucose Monitoring:

Non-Invasive thermal-based CGM includes techniques like thermal emission [52], Metabolic
Heat Confirmation (MHC) [42]. Thermal emission spectroscopy utilize the energy emitted
naturally from the human body as a heat in the band between 8 µm and 14 µm (far-
IR band). Glucose molecules absorb this radiation at 9.4 µm wavelength, so it provides a
measure for glucose concentration. However, factors like temperature, motion and thickness
of the tissues affects the thermal emission technique.

In MHC, the amount of heat produced by the metabolic oxidation of glucose corre-
lates with the amount of glucose and oxygen levels in the body. It is relatively easy to
measure physiological parameters in the body such as the blood oxygen saturation, blood
flow velocity and heart rate, however, MHC technique is highly affected by environmental
parameters like temperature and sweat.

The method used in [25] combines the conservation of energy method with a sensor
integration module to collect physiological parameters, such as the blood oxygen satura-
tion, blood flow velocity and heart rate. After collecting the sample experimentally, a
classification model based on decision tree and back propagation neural network was used
to classify the glucose level into three categories reaching an accuracy as high as 88%.

Most of the thermal-based research I found in the literature was done before 2009, so
they are out of our scope.
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Table 1.1: Summary of microwave non-invasive CGM techniques
Reference Frequency Used Sensor Type Signal Type

[49] 500 MHz-20 GHz Microstrip Patch relative permittivity and conductivity
[53] 4-5 GHz Probe-tip S11
[54] 0.5-2 GHz Circular Spiral S21
[55] 23MHz-12GHz Microstrip Impulse response
[56] 1-10 GHz Rectangle antenna Specific Absorption Rate (SAR)
[57] 0-4 GHz Microstrip S11 and S21
[58] 0-40 GHz Reflectometer Reflection- and transmission
[59] 0-3 GHz Spiral S11 and S21
[60] 500 MHz-8 GHz Planar dipole Input Impedance
[61] 0.3-20 GHz Patch resonator Input Impedance, S parameters
[62] 1-3 GHz Ring resonator, S21

single and double spiral resonator
[63] 1.3-1.7 GHz Split-ring resonator S-parameters
[64] 300MHz-2GHz Spiral microstrip resonator S11
[65] 3 GHz Double split-ring resonator S21
[66] 1.4-1.8 GHz Two spatially separated split-ring resonators S21
[13] 0.2-50 GHz Open-ended coaxial probe Dielectric constant and loss factor
[67] 1-3 GHz A microstrip antenna S11
[68] 0-4 GHz Square-shaped spiral inductor S-parameters

with rounded corners
[69] 1.4-2.2 GHz Split ring resonator S21
[70] 3-7 GHz Four-arm spiral microstrip S11
[71] 50-65 GHz Two facing microstrip patch antennas S-parameters
[72] 0-6 GHz Planar Ring Resonator S21
[73] 3.2-12 GHz A pair of small UWB UWB pulse signal

microstrip patch antennas
[74] 1.4 GHz Split-ring resonator Microwave data and temperature data
[75] 5.41 GHz Complementary split-ring resonator (CSRR) S21
[76] 1-3 GHz ENG unit-cell resonator S11 and S21

(in the shape of ring and horn)
[77] 2.4-2.5 GHz 4-cells complementary S21

split ring resonators (CSRRs) hexagonal
[78] 1-6 GHz Triple-Pole complementary S21

split ring resonators (CSRRs)
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1.6 Non-invasive Transdermal-based Glucose Moni-

toring:

Impedance spectroscopy, Reverse Iontophoresis (RI) and ultrasound techniques can be
classified as transdermal-based techniques [42].

Cadduff’s group published the first non-optical non-invasive CGM system using impedance
spectroscopy [79]. Pendra (Pendragon Medical) was a non-invasive device developed in 2000
using impedance spectroscopy to monitor glucose in the blood continuously. However, the
device is no longer available. Frequent calibrations and poor accuracy were two of the
major reasons for the failure of the device despite its CE approved in May 2003 [80].

RI is based on the flow of a low electrical current through the skin, between an anode
and a cathode positioned on the skin surface [34].

In [81], the transdermal extraction of glucose and potassium using RI was investigate.
Two ethanol enhanced skin gel electrodes were developed and used with a small current
to extract those molecules from nine healthy volunteers for two separate 60 min periods.
The extraction methodology was sensitive to relatively small changes in analyte levels
within the blood. The results show a correlation between blood and transdermal glucose
measurements. However, there is a need for an alternative calibration approaches for good
accuracy needed in clinical application.

In RI, the electrodes are easily applied to the skin. However, there are some drawbacks
such as the effect of electrodes on the skin, and the need for the electrodes to be placed for
at least one hour before the measurement, which introduces a significant inconvenience.
Additionally, the measurement suffers from accuracy especially when there sweat is present.
Because of these limitations, GlucoWatch (Cygnus Inc., USA) was withdrawn from the
market. SugarBEAT (Nemaura Medical, UK) [82] is expected to overcome these challenges.
SugarBEAT is in the first phase of a commercial launch and was expected to be available
commercially in 2020, however, it did not.

In order to design a calibration-free non-invasive CGM device using ISF, a path-
selective, non-invasive, transdermal CGM system based on a miniaturized pixel array
platform was developed [26]. The system is based on the fact that hair follicles have
low-resistance and preferential pathways for most of the electroosmotic flow during ion-
tophoresis. The system removed the dependency on inter- and intra- individual fluctuations
in skin characteristics on the measurement of glucose.

Ultrasound technology is based on low-frequency sensors which can penetrate the body.
The advantages of ultrasound are the good skin and tissues penetration, and the immunity

12



to skin color variation. However, ultrasound are sensitive to temperature. Recent studies
used modulated ultrasound with other optical techniques such as IR [83, 84, 85], therefore,
these researches will be explained under the next hybrid section.

1.7 Non-invasive Hybrid-based Glucose Monitoring:

Based on the survey above, not a single technique has succeeded to accomplish non-invasive
CGM with an acceptable level of accuracy and reliability. Therefore, researchers developed
hybrid techniques to harvest the benefit of multiple techniques while at the same time
minimizing their drawbacks.

In general, combining various techniques frees the device from being restricted by the
limitations of one technique, on the other hand, it increases the complexity and cost of the
proposed solution. However, hybrid non-invasive CGM may become promising strategy if
it overcomes the accuracy and selectivity challenge.

In [83], a modulated ultrasound is used with infrared (940-nm wavelength) to monitor
blood glucose on human subjects. The performance of the system is based on two tests:
oral glucose tolerance test and random blood glucose level test. The results obtained
from this technique is paired and compared with readings from invasive method. The
mean absolute error for both tests were 15.92 mg/dl and 17.76 mg/dl, and MARD was
0.11 and 0.10 respectively. The advantages of the system include safety and tolerance.
Results suggest that the modulated-ultrasound with optical is a promising technique for
non-invasive CGM because it utilizes the best features of every technique and avoids the
drawbacks. For example, 40 kHz central frequency based ultrasonic transmitters has a very
good tissue penetration, while the absorption spectrum of molecules can be distinguished
in the range of 900-1000 nm.

Since factors such as temperature, sweat, blood perfusion and body movements affect
the contact between the sensor and the skin, a multi-sensor system combining dielectric
and optical characterisation of skin was proposed in order to reduce the perturbation of the
reading of BGC [86]. In this method, results were derived from only 10 patients with Type
1 diabetes, where a linear regression was used to model the system. Their results were
derived from only 10 patients with Type 1 diabetes, where a linear regression was used to
model the system. 10 samples only are not enough for generalization of any system, so,
they need more samples.

Another study developed a microwaves-based sensor and microfluidics for glucose con-
centration quantification in aqueous samples [87]. However, such a system needed to be
verified using real clinical trials to check its accuracy and reliability.
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Recently, a non-invasive lab on-a-chip microwave biosensor system for CGM was de-
signed using complementary split-ring resonator (CSRR) sensor integrated with the mi-
crofluidic channel [75]. The results indicate a promising low profile, cost-effective and
compact system. However, the system uses glucose-in-water solutions.

A multi-sensor non-invasive CGM system using IR sensor and ultrasonic micro-electro-
micro mechanical (MEMS) technology is proposed in [28]. According to the simulation
results, the proposed system has potential to enhance accuracy, easiness and comfort for
better assistance to monitor and manage diabetes. Only multiple Matlab regression models
were applied to determine the glucose levels. In addition, there was no explanation about
the nature of the samples used (i.e., in-vivo or ex-vivo, and type of diabetes). The system
has yet to be tested using real-world clinical data.

Another hybrid system [88] is proposed using impedance, optical multi-sensors and
time series analysis for CGM by using physiological parameter changes. Results from
three volunteers with diabetes and six healthy volunteers showed that the average corre-
lation coefficient between the estimated and reference glucose profiles was 0.8314, with a
normalized root mean squared error (NRMSE) of 14.6064. For the system to be commer-
cially viable, more clinical trials are needed to eliminate any restrictions and for enhanced
reliability.

GlucoTrack is a non-invasive CGM device, which can be considered as a hybrid device
as it combines thermal, ultrasonic and electromagnetic techniques in one device. The algo-
rithm calculates the weighted average of the three measurements and returns the glucose
level. The device is intended for people with T2D and prediabetes [27, 89, 90]. More
evaluations for GlucoTrack performance and user acceptance are needed.

1.8 Other Non-Invasive Glucose Monitoring

1.8.1 ECG

ECG is the process of recording the electrical activity of the heart. ECG can be used
to monitor the level of hypoglycemia in people with T1D [29, 30]. In these studies, a
non-invasive CGM using the physiological parameters of ECG signal along with extreme
learning machine (ELM) and Neural Networks (NN) is proposed to recognize the presence
of hypoglycemia.
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1.9 The Sensitivity and Selectivity

The sensitivity and selectivity of glucose are major factors in every non-invasive CGM
technique. Table 1.2 highlights those factors to take into consideration when choosing the
appropriate technique.

Table 1.2: Sensitivity and Selectivity of non-invasive CGM techniques [1, 2]

Technique Sensitivity Selectivity

NIR High Good
MIR High Good, better than NIR

Raman Low Excellent
PAI High Good
OCT High Poor

Fluorescence High Excellent
Microwave High Poor
Thermal Low Good

Transdermal Low Good

1.10 Body Fluids Considerations

As I have mentioned earlier, non-invasive CGM can use different body fluids such as blood,
ISF, tears, saliva, sweat and even breath. There are some considerations need to be
addressed in order to have a clear picture of the relation between glucose concentrations
and the fluids.

The blood has the highest glucose concentration comparing to all other fluids, then
comes ISF followed by the remaining fluids. There is a time lag in measuring glucose con-
centrations from all the fluids other than the blood. It varies between 5-45 minutes. Saliva
can be easily collected, however, it has many interfering impurities and a low correlation
and sensitivity to glucose. Tears have less interfering impurities, however, they are of low
comfort, low volume, and their pH level is not stable but varies between 6.5 and 7.6. Sweat
can be easily collected too, however, it is not suitable for people with diabetes, and its pH
level varies between 4.5 and 7. ISF has a high glucose concentration and a high sensitivity,
but usually needs micro-needles which may cause skin irritation [32, 91].

Finally, I summarized the advantages and disadvantages of all the techniques for non-
invasive CGM in Table 1.3.
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Table 1.3: Advantages and Disadvantages of non-invasive CGM techniques

Technique Advantages Disadvantages

NIR
1. Harmless to the body.
2. Flexible
3. Low cost
4. Water absorbs less NIR.

1. Affected by Body temperature,
Skin thickness, Blood pressure and
Fatty tissues.

2. High scattering

MIR
1. Increased absorption (higher wave-

length).
2. Decreased scattering phenomena.

1. Tissue penetration: a few microm-
eters.

2. Water absorbs more MIR.

Raman
1. Providing sharper and less over-

lapped spectra.
2. Less sensitivity to temperature and

water.

1. Laser wavelength and intensity are
instable.

2. Spectral acquisition times are too
long.

3. Low SNR.
4. Not tested in Human.

PAI
1. High contrast and resolution.
2. High SNR.

1. Sensitive to fluctuation of temper-
ature.

2. Data collection takes too much
time.

3. High cost.

OCT
1. High SNR and resolution.
2. Good Penetration.
3. High resolution.

1. Very sensitive to motion.
2. Affected by skin temperature.

Fluorescence
1. High sensitivity.
2. Less need for calibration.

1. Scattering phenomena.
2. Short life times.
3. Not Bio-compatible.

Microwave
1. Harmless to the body.
2. Non-ionizing.
3. Can be easily miniaturized.
4. In-expensive

1. Poor glucose selectivity.

Thermal
1. Good selectivity.
2. Easy to measure.

1. Affected by temperature, motion
and thickness of the tissues.

Transdermal 1. Low frequency: good penetration
1. Needs frequent calibrations.
2. Poor accuracy.
3. Sensitive to temperature
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1.11 Problem Statement

In order to overcome the shortcomings of the invasive method of CGM, such as pain,
discomfort, and risk of infection, non-invasive CGM is needed. However, due to the multiple
challenges such as accuracy, usability and applicability, contemporary non-invasive glucose
monitors are still not sufficiently reliable. This research is to develop a non-invasive CGM
system using microwave sensor with machine learning techniques to improve the accuracy,
usability and applicability of non-invasive techniques in predicting glucose levels.

1.12 Objectives and Contributions of the research

The main objective of this research is to develop a non-invasive CGM system using mi-
crowave sensor with machine learning techniques. The system will make it easy to regularly
check the blood glucose levels and adjust the medication as needed. The system should
take into account the following considerations:

• A non-invasive, and low-cost to enable over-the-counter availability.

• The device has to be small and easy to use by a wide population especially children.

• The results have to be accurate and robust.

• The system has to be comfortable to use and does not interfere with daily human
functions.

The main contributions of this research are as follows:

• Understanding the problem of non-invasive CGM and its challenges.

• Building the microwave sensors and taking into account factors such as safety to the
human body, penetration depth and high sensitivity.

• Starting with aqueous solutions (i.e., water-glucose solutions) as a proof of concept
and to check the ability of the sensors to detect the different concentrations of these
simple water- glucose solutions.

• Designing a hand model system with different tissues/layers and simulating the effects
of the microwave sensor with respect to changing in dielectric properties of those
tissues/layers.
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• Collecting the experimental and simulation data and analyzing them using machine
learning techniques, starting from feature engineering techniques and ending with
predicting the glucose levels and the dielectric properties values.

• Calculating the accuracy of the system when predicting glucose levels and dielectric
properties using different tissues/layers.

• Finalizing the system setup to be suited for collecting data from humans.

1.13 Research Methodology

In this section, I will show the methodology of the research as shown in Figure 1.4.

Figure 1.4: The Methodology of The Research

The details of the methodology will be shown in the next chapters. The main idea
behind the research is based on measuring the glucose levels based on the dielectric prop-
erties of the tissues using the reflected signals (S11) coming from the interaction of the
sensors with the tissues, as shown in Figure 1.5.
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Figure 1.5: The research Idea

1.14 Dielectric Properties of materials

As we know that electrically charged protons and electrons, and non-charged neutrons
form the building blocks of any matter. Therefore, any material or substance has electrical
properties based on the arrangement of these building blocks.

Understanding how a given material reacts under specific circumstances will helps know-
ing the properties of the material. Dielectric properties describe the interactions of electric
fields with material and defined by Maxwell equations. Permittivity and conductivity are
two types of dielectric properties of materials.

Permittivity (ε) [92], is a measure of proportionality that relates the electric field in a
material to the electric displacement in that material. It is a measure of electric polariz-
ability of a dielectric, i.e. a material with high permittivity will have more polarization
(larger tendency for charge distortion) than a material with low permittivity, thereby more
energy will be stored in the material. Permittivity is measured in Farad per meter (F/m)
unit and it is a frequency-dependant. The permittivity of free space (vacuum) is denoted
by (ε0) and is equal 8.85x1012 F/m. Relative permittivity (ε0) of a material is a the ratio
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of material’s permittivity to the permittivity of free space

εr = ε/ε0 (1.1)

The dielectric Properties of the materials can be expressed as complex relative permittivity
(ε̂) [93]:

ε̂ = ε
′ − jε′′ (1.2)

where the real part (ε
′
) is the relative permittivity and is called dielectric constant. The

imaginary part (ε
′′
) is the energy loss of the electric field when passing through a material

and can be expressed as:
ε
′′

= σ/ε0$ (1.3)

where σ is the conductivity, which is the reciprocal of the resistivity. $ is the angular
frequency of the field. The unit for the conductivity is Siemens per meter (Sm−1) assuming
that ε0 is in (F/m), and $ in in radians per second. To conclude, in order to obtain
dielectric properties of a material, we can calculate ε

′
and ε

′′
or ε

′
and σ values as a function

of frequency. Dielectric Assessment Kit (DAK) system is used for dielectric properties
measurements over specific frequency ranges.

1.15 Thesis outline

The thesis consists of five chapters. The first chapter contains introduction and motiva-
tions of the research. The remaining chapters are organized as follows:

Chapter Two discusses the process of designing the microwave sensors which will be
used to collect the glucose data. It represents the hardware part of the system.

Chapter Three explains the machine learning techniques and how to apply those
techniques to predict the glucose levels. It shows the performance metrics in order to eval-
uate the accuracy o the system. It represents the software part of the system.

Chapter Four shows the experimental and simulation results using the microwave
sensors with machine learning techniques. It gives the practical details of the steps of the
methodology of the system.

Finally, Chapter Five concludes the achieved work in the thesis and shows a plan for
future work.
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Chapter 2

Microwave Sensors Design

2.1 Introduction

In general, microwave sensors (MWS) utilize electromagnetic fields and operate at frequen-
cies in microwave regime starting from 100’s MHz up to 100’s GHz. There are many types
of microwave sensors including planar MWS, resonator MWS, non-resonators MWS etc.
Resonator MWS are constructed to have a resonator frequency or oscillation phase based
on the measured parameters [94]. Designing of resonator sensors is based on choosing a
suitable operating or resonance frequency which is based on the parameters of emission or
on electrical length parameters of the proposed sensor. Selecting the operating or the reso-
nance frequency always based on the type of application that need to apply the microwave
sensors on it.

The microwave sensor emits electromagnetic waves that significantly formed by the
unique vibrations take place between the magnetic field and the electric field. The res-
onance frequency occurs in electromagnetic waves (EM) as a result of typical oscillating
between both electric and magnetic fields. Both the fields are typically perpendicular to
each other and with the wave direction too. The microwave sensor emits electromagnetic
waves that have their particular frequency and wavelength.

Resonator sensors are of two kinds: passive resonator sensors and active resonator
sensors. The sensing configuration of the passive resonator sensors is based on naturally
emitted or reflected microwave radiation from the object or material under test (MUT),
whereas the sensing configuration of the active resonator sensors is based on the sensor
itself where the sensor emits microwave radiation and then senses reflected microwaves
from the object or material under test (MUT) [95, 96].
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Recently, active resonator sensors have played a fundamental key role in many applica-
tions, such as materials characterization, and biomedical applications. There is a growing
interest in developing active resonator sensors that lead to high sensitivity and accuracy
of measured parameters of material under test (MUT). The active resonator sensors are
used to sense the dielectric properties of any materials such as solid, powder and aqueous
solutions based on the complex permittivity extraction of the materials [97].

In this chapter, I will discuss the process of designing the microwave sensors which will
be used to collect the glucose data in order to analyze and predict the glucose levels. To
design a microwave sensor, you need to consider many factors carefully, depending on the
type of application. Some of those factors include: the operating or resonance frequency
of the sensor, the penetration depth and the size of the sensor.

The size of the active resonator sensors is based on the wavelength of the operating
frequency, where the relationship between the wavelength and the operating frequency is
based on the following equation:

λ =
c

f
(2.1)

, where λ is the wavelength, f is the operating or resonance frequency and c is the speed
of light (3 ∗ 108m/s2). As described in the above equation, the wavelength and operating
frequency have an inverse relationship; when the operating frequency increases, the wave-
length decreases which also decreases the electrical length of the sensor. In addition, the
measurement location will place a size constraint on the sensor. Since this sensor may one
day be used in an off the-shelf glucometer, choosing the operating or resonance frequency
as a low frequency (in terms of microwave frequencies range) is recommended. Penetra-
tion depth is a major parameter in microwave sensor design. If the fringing fields of the
sensor do not extend deep enough into the tissue before returning to the ground plane, the
sensor is useless. Since lower frequencies have longer wavelengths than higher ones, lower
frequencies penetrate deeper into tissues. Thus, the selected frequency range also benefits
the penetration depth of the sensor. In addition, the relationship between the penetration
of the active resonator sensors and the operating frequency of the proposed sensor is based
on the following equation:

depth = δ =

√
ρ

πfµ
(2.2)

, where ρ is the resistivity of the material under test (ohm-meter), µ is the permeability
of the material, and f is the operating frequency. We noticed from the above equation 2.2
that the penetration and the operating frequency are inversely related. The sensitivity and
accuracy of the proposed sensor is depending on the penetration of the electromagnetic
field or radiation inside the material under test (MUT) [98].
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2.2 Microwave Sensor Design for CGM

Microwave sensors are critical and fundamental part in designing an intelligent system for
CGM. Knowledge of the dielectric properties of human body tissue such as skin, blood or
muscle and understanding the interactions between the electromagnetic fields and these
tissues is essential for the design of microwave sensors. The dielectric properties of tissues
are represented by a complex permittivity where the real part represents the ability of the
material to store microwave energy, whereas the imaginary, or the loss factor, indicates the
ability of the material to absorb microwave energy [99].

Microwave-based CGM modalities are mainly based on the observations of the vari-
ation in the dielectric properties caused by changing in the glucose levels in the tissues.
Microwaves, reflected off or scattered from, these tissues are then expected to help in mea-
suring the glucose levels in these tissues. The main keys of designing an effective microwave
sensor for non-invasive CGM system are including:

• Fast Measurement

• Accurate Results

• easy to wear and portable

• small sensor size

In this thesis, two microwave sensors were used: spiral and dipole sensors.

2.2.1 Spiral Sensor design and simulation

In this subsection, I will show the design and simulation of the microwave spiral sensor. To
improve the efficiency of the proposed system for CGM, a novel microwave spiral sensor
is designed. The proposed spiral sensor is an electrically-small enough to confine most
of the near-field energy into the human tissue to increase its sensitivity to variation in
the dielectric properties of the human tissues, such as blood properties due to changes
in the glucose levels. For sufficient electromagnetic power penetration into the human
tissues, such as skin tissue, the operating frequency must be chosen carefully to ensure
enough penetration level inside these human tissues. Without loss of generality, I select
the frequency of operation to be 1000-1500 MHz which ensures sufficient energy penetration
in the human hand tissues.
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Designing the proposed spiral sensor is based on many factors, such as inner and outer
radius, spacing between the turns, number of turns, and the angle which is calculated by
using the following equations:

r = aω + b (2.3)

Where, r- is the distance from the origin, b- the initial point and a- the growth rate. Each
arm of the sensor spiral is linearly proportional to the angle, ϕ , and is described by the
following equation:

r = r0(ϕ) + r1 (2.4)

r = r0(ϕ− π) + r1 (2.5)

,where r1 is the inner radius of the spiral and it is the proportionality constant getting
from

r0 = (s+ w)/π (2.6)

,where s is defined as the value of the spacing between each turn N and w is the width of
each arm. The width of the arm can be calculated by the following equation:

s = (r2 − r1)/2N − w (2.7)

,where r2 is the outer radius of the spiral sensor and N is the number of turns.

The sensor was designed as a printed spiral antenna of length and width of 44 mm and
trace width w is 0.5 mm hosted on a RO4003 Rogers material with a thickness of 1.52
mm, inner radius r1 is 1.2 mm , outer radius r2 is 3 mm, spacing between turns s is 1 mm,
number of turns is 5, and a dielectric substrate of a relative permittivity of εr=3.38 as
shown in Figure 2.1. The electrical length of the spiral is λ/3, (where λ is the wavelength
in free space) which makes it with high penetration of energy into the human hand tissues,
which in turn, makes it highly sensitive to tissue material changes because of glucose. To
enable the sensor to be highly sensitive, the sensor must made an efficient radiator which
leads to a highly defined ultra-narrow response by using many turns. The sensor was
designed using the full-wave numerical simulation tool CST Microwave Studio [100].

The spiral sensor is operated at frequency 1000-1500 MHz, and resonated at 1200 MHz
as shown in Figure 2.2 which shows the simulation result of the proposed spiral sensor.
The sensor was fabricated and tested and it resonated at 1170 MHz.The experimental
results are shown in Figure 2.2. As we can see in Figure 2.2, there is a shift in the
resonance frequency due to the fabrication. I attribute the difference due to the non-ideal
behavior of the elements and particularly the dispersive nature of all material involved in
the fabrication of the sensor (for instance, the inductance of real inductors is frequency
dependent whereas the simulated ones have frequency independent inductance).
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Figure 2.1: The Spiral Sensor

Figure 2.2: Response of the spiral sensor over the 1000-1500 MHz frequency band
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2.2.2 Dipole sensor design and simulation

The sensor was designed as a printed dipole of length 92 mm and trace width of 2 mm
hosted on a RO4003 Rogers material with a thickness of 1.52 mm and a dielectric substrate
of a relative permittivity of εr=3.38 as shown in Figure 2.3. The electrical length of the
dipole is λ/12, (where λ is the wavelength in free space) which makes its radiation efficiency
very low implying a flat, or near unity reflection coefficient (S11) response. To enable the
sensor to be highly sensitive, the sensor must be made an efficient radiator which lead to a
highly defined ultra-narrow band-stop filter response by using a loss-less matching network.
The network was designed using the full-wave numerical simulation tool CST Microwave
Studio [100]. The optimized matching network consisted of a series and parallel inductors
having inductances of 0.36 µH and 0.49 µH, respectively with specific placement of the
elements as shown in Figure 2.3(a) [3]. I emphasize that both the values of the inductors
and their location and orientation were optimized using CST.

L1

L2

Matching 
network

(a) (b)

9.2 cm

2 mm

Probe

Matching 
network

Substrate

Figure 2.3: The printed electrically-small sensor hosted on a dielectric substrate. (a)
Schematic showing sensor and the location of the matching network elements. (b) Photo
of the fabricated sensor and the matching network.[3]

The dipole sensor is operated at frequencies 100-300 MHz which makes it an electrically-
small sensor and have the ability to penetrate more in the human body. The dipole is
resonated at 200 MHz. The sensor was fabricated and tested yielding strong agreement in
the resonance frequency between the measurements and the simulations as can be observed
from Figure 2.4.

Specifically, the agreement was very strong for the resonance frequency but I observe
a deviation in the bandwidth which I attribute to non-ideal behavior of the elements and
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Figure 2.4: Response of the dipole sensor over the 100-300 MHz frequency band

particularly the dispersive nature of all material involved in the fabrication of the sensor
(for instance, the inductance of real inductors is frequency dependent whereas the simulated
ones have frequency independent inductance).

As both microwave sensors working in the near-filed, there is no need for radiation
pattern as it is not relevant.

2.3 Permittivity and S-parameters

When the electric field passing through the dielectric medium its transmission is governed
by a phenomenon called permittivity ε. The relative permittivity (εr) of a material is also
called the dielectric constant and is an experimentally measurable parameter. The relative
permittivity of a material is a ratio of its permittivity to the permittivity of free space (ε0)
[54].

Scattering parameters or S-parameters (the elements of a scattering matrix or S-matrix)
describe the electrical behavior of linear electrical networks when undergoing various steady
state stimuli by electrical signals. The parameters are useful for several branches of elec-
trical engineering, including electronics, communication systems design, and especially for
microwave engineering. The 2-port S-parameters have the following generic descriptions:
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• S11, is the input port voltage reflection coefficient

• S12, is the reverse voltage gain

• S21, is the forward voltage gain

• S22, is the output port voltage reflection coefficient.

Figure 2.5 shows a schematic description of the s parameter of a two-ports network. The
relationship between the reflected, incident power waves and the S-parameter matrix is
given by: (

b1
b2

)
=

(
S11 S12

S21 S22

)
.

(
a1
a2

)
(2.8)

Figure 2.5: A schematic description of the S parameters of a two-ports network

2.4 Conclusion

In this chapter, I discussed the process of designing the spiral and the dipole microwave
sensor, which is the hardware component of the non-invasive CGM system. The design
process is governed by different factors such as the frequency of the sensor, the penetration
depth and the size of the sensor. The frequency of the spiral sensor is 1000-1500 MHz and
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it resonates at about 1200 MHz. Whereas, The frequency of the dipole sensor is 100-300
MHz and it resonates at about 200 MHz. I showed the response of both microwave sensor
over their range of frequencies in both experiment and simulation, and I found a strong
agreement between the experiment and simulation with some shifts due to fabrication.
S-parameters are used to describe the interactions between the microwave sensors and the
material under test (MUT).

29



Chapter 3

Machine Learning for Glucose
Monitoring

3.1 Introduction

In this chapter, first I will give a general information about machine learning and its
different types along with some of the very important algorithms and techniques. then, I
will show how we can apply machine learning for CGM application and how we can calculate
the performance metrics. More emphasis will be on the machine learning algorithms that
will be used for CGM.

3.2 Machine Learning definition and Algorithms

Machine Learning (M.L.) is defined as a set of methods that can first automatically detect
patterns in data, and then using those detected patterns in building a model that can
classify or predict future data, or to perform other kinds of decision making under some
uncertainty [101]. M.L is actually a sub field or type of Artificial Intelligence (A.I.).

There are four types of M.L.: supervised, semi-supervised, unsupervised and reinforce-
ment learning. In supervised learning, the machine is taught by examples. Given a set
of labeled input-output pairs D = {(xi, yi)}Ni=1, the goal is to find a mapping from input (x)
to output (y), where D is called the training set, and N is the number of training samples.
Each training input xi is a vector of d-dimension where vector elements are called features,
attributes or variables. Input xi can be an image, a transaction, an email message, a DNA
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sequence, a graph, etc. Output yi or response variables can be categorical or nominal vari-
ables from some finite set C, or it can be a real-valued scalar. When yi is categorical, the
problem is known as classification or pattern recognition, and when yi is real-valued,
the problem is known as regression [101].

The second type of M.L. is semi-supervised, in which we have some labeled example
(generally a small portion) and the remaining are unlabeled. The goal is to try to learn
a mapping as in supervised M.L. Constrained clustering is an example of semi-supervised
M.L.

The third type of M.L is unsupervised, in which inputs are only given D = {(xi)}Ni=1,
and the goal is to mine for patterns in the data. This type is sometimes called knowledge
discovery. Clustering is an example of unsupervised learning such as clustering fishes into
different species.

The fourth type of M.L is reinforcement learning where the machine learns from
a series of rewards and punishments and adapts its behaviour based on these series, for
example, playing chess.

Now, I will give some details about classification, regression and clustering.

Classification

Classification is one of the types of supervised learning used to assign an unknown data
sample to one of the predefined classes based on some features. A classifier is modeled using
data with known classes. This process consists of two phases: training phase and testing
phase. In the training phase, the system is learning to find a mapping (classifier or model)
between the features extracted from the samples in the training set and their classes. In
the testing phase, the system uses the learned model and the features extracted from new
samples (i.e. testing set) to assign them to classes. The purpose of a training phase is to
produce a model, which is able to predict target values of data instances in the testing
phase. In the dataset to be tested, only the attributes are known. It is required to produce
a classifier that is not only able to separate the different classes by a function induced from
available training data, but also generalizes well (works well on unseen instances) [102].

The goal is to find a mapping from inputs (x) to outputs (y), where y ∈ {1, ..., C},
where C is the number of classes and it defines the type of classification, either binary
(C = 2) or multiple (C > 2). Function approximation is one way to formalize classification
problems. We assume y = f(x), where f is some unknown function, the goal is to estimate
the function f using a labeled training set, and then to make predictions using ŷ = f(x̂)
(hat symbol denoting estimation). The accuracy of the classifier is measured by the number

31



of correct predictions on new input data and this is called generalization [101]. Classifiers
are of different types, and one of the distinguished characteristic between them is the
number of parameters. When the classifier has a fixed number of parameters, it is called
parametric, whereas, classifiers that has non-fixed number of parameters where their
parameters depends on the dimension of the data are called non-parametric classifiers.

Regression

Regression is another type of supervised M.L. and is just like classification except the
output values are continuous. It allows us to estimate/predict the value of one or more
quantities based on the values of other quantities, for example, predicting stock market
prices, predicting temperature at specific location, etc. Regression analysis is an important
tool for modelling and analyzing data. Here, a curve/line is fitted to the data points, in
such a way where the differences between the distances of data points from the curve or line
is minimized. There are different types of regression: linear, multiple, logistic, polynomial
etc...

Clustering

Clustering is the common type of unsupervised M.L. and it is about grouping data elements
into groups or clusters based on their attributes without any given labels or even number of
groups (clusters). The first goal is to estimate the number of clusters K, and then estimate
to which cluster each point belongs. Here are two common examples of clustering:

• Document clustering: in which we group similar documents. For example news
reports can be clustered to politics, sports, fashion, arts, etc.

• Image compression: in which we assigns pixels with similar colors to the same color
to reduce image size.

Next, I will highlight the most common and popular machine learning algorithms which
will be relevant to my research.

Näıve Bayes Classifier Algorithm

The Näıve Bayes classifier is used for classification and is among supervised learning. It is
based on Bayes’ theorem so every value is classified independently of any other value. It
uses probability to predict a class/category, based on given set of features.
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Despite its simplicity, the Näıve Bayes classifier performs surprisingly well and is often
used due to the fact it outperforms more sophisticated classification methods.

Support Vector Machine and Support Vector Regression Algo-
rithms

Support Vector Machine (SVM) and SVR algorithms are among the best supervised learn-
ing models for solving classification and regression problems. The main idea for classifica-
tion using SVM is to build a model to have a decision boundary between different classes
with maximum margin. SVR for regression is following the same theory of SVM and the
objective is to find the points (for the function that approximates mapping from an input
domain to real numbers) that are within the decision boundary line [103].

A SVM classifier defines a hyperplane that separates the data into different classes. To
find the separating hyperplane there are two possibilities: the classes are linearly separable
or nonlinearly separable (as shown in Figure 3.1).

Figure 3.1: The Classes Separability Possibility: a) Linear. b) Non-Linear

Linearly separable case:

There are infinite numbers of hyperplanes that separate the samples of two different linearly
separable classes. The optimal hyperplane that enhances the generalization of the classifier
is the one with maximum margin, (i.e. maximum distance between the hyperplane and
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the closest samples). In Figure 3.2, direction2 hyperplane is greater than direction1. The
samples that are closest to the hyperplane are called support vectors. In general, the
goal of SVM is to find the best orientation of the hyperplane that maximized the margin
between support vectors.

Figure 3.2: An example of a linearly separable two-class problem with two possible linear
classifiers

Non-linearly separable case:

In addition to performing linear classification, SVM can efficiently perform a non-linear
classification using what is called the kernel trick. The kernel functions map the samples
to a higher dimension space where the classes become linearly separable (See Figure 3.3).
Many kernel functions have been used, but the most popular ones are Radial Basis Function
(RBF), Sigmoid and polynomial [104].
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Figure 3.3: SVM kernel for Non-linearly separable classes

Now I will talk about SVR, it uses the same principle as SVM. The main idea behind
SVR is to find a function that approximates mapping from an input domain to real numbers
on the basis of a training samples. Let’s consider the two black lines in Figure 3.4 as the
decision boundaries and the red line as the hyperplane. SVR objective is to basically
consider the points that are within the decision boundary line, and the best fit line is the
hyperplane that has a maximum number of points. The SVR algorithm try to find the
best fitted objective function, however, what to do if there are some points still fall outside
the margin? (i.e. the error is greater than ε). We can do this with something called slack
variables. for any value that falls outside of ε, slack variable is the deviation of that point
from the margin. We want to minimize those deviation as much as possible, and we do
that by adding this constraint to the objective function which add a new hyperparameter,
C, that we can tune. When we increase the value for C, the tolerance for points outside of
ε also increases. The best value for C can be obtained using grid search.

Nearest Neighbours Algorithm

The K-Nearest-Neighbour (KNN) algorithm is one of the supervised learning algorithms
used for both classification and regression. The input consists of the k closest training
instance in the data set (k is a positive integer, typically small). The output depends
on whether KNN is used for classification or regression: In classification, it is the class
membership which estimates how likely a data point is to be a member of one group or
another. Whereas, in regression, it is the property value for the object, which is the average
of the values of k nearest neighbors. Assign weights to the contribution of the neighbours
is very helpful in this algorithm and the weights can be expressed as the inverse of the
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Figure 3.4: Illustrative Example of Simple SVR

distance. Different types of distance measures can be used such as Euclidean, Manhattan,
or Minkowski ...etc. The algorithm is very simple and easy to implement, however, it gets
significantly slower as the number of examples increase.

Decision Trees

Decision tree algorithm is a supervised learning algorithm used for both classification and
regression. It is a hierarchical model in which the local region is identified in a sequence
of recursive splits in smaller number of steps. A decision tree can be expressed as a flow-
chart-like tree structure that uses a branching method to illustrate every possible outcome
of a decision. Each node within the tree represents a test on a specific variable – and
each branch is the outcome of that test. Each leaf node has an output, which is the class
label (for classification) and is a numeric value (for regression). Decision trees are easy
to interpret, in fact they can be expressed as IF-THEN statements. On the other hand,
decision tress training is costly and complex in time and effort.

Random Forests

Random forests algorithm is a supervised learning algorithms used for both classification
and regression. It is an ensemble learning method, combining multiple algorithms in order
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to generate better results than individual algorithm. The algorithm starts with a decision
tree and an input at the top. It then travels down the tree, with data being segmented
into smaller and smaller sets, based on specific variables. It is a very good way to reduce
the variance of decision trees, make them more stable to different inputs. On the other
hand, Random forests are harder to interpret than decision trees.

K Means Clustering Algorithm

The K Means Clustering algorithm is a type of unsupervised learning, which is used to
categorise unlabelled data, i.e. data without defined categories or groups. The algorithm
works by finding groups within the data based on similarity metrics, with the number of
groups represented by the variable K. It then works iteratively to assign each data point
to one of K groups based on the features provided. It starts with a first group of randomly
selected centroids, which are used as the beginning points for every cluster, and then
performs iterative (repetitive) calculations to optimize the positions of the centroids. It
halts creating and optimizing clusters when either: the centroids have stabilized (no more
change), or it reached the defined number of iterations.

3.3 Applying Machine Learning for CGM

Predicting the glucose level can be represented as a regression task. In Machine Learn-
ing, the most common types of regressions are: Linear, Multiple, Logistic, Polynomial,
Stepwise, Ridge, Lasso and ElasticNet.

Linear Regression

Linear regression is the most basic type of regression. Simple linear regression allows
us to understand the relationships between two continuous variables. It establishes the
relationship between two variables using a straight line. Linear regression learns a function
to predict a continuous variable output of continuous or discrete input variables. It models
the relationship between a nonrandom, one-dimensional X that is known, and a random,
one-dimensional Y as:

Y = β1X + β0 + ε (3.1)

where β1 and β0 are unknown constants and ε is a random variable which may represent
measurement error or some other source of [105]. Linear Regression is very sensitive to
outliers. It can terribly affect the regression line and eventually the predicted values.
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Multiple Regression

Multiple linear regression is when two or more variables have a linear relationship with
the dependent variable, the regression is called a multiple linear regression. Many data
relationships do not follow a straight line, so statisticians use nonlinear regression instead.
The two are similar in that both track a particular response from a set of variables graphi-
cally. But nonlinear models are more complicated than linear models because the function
is created through a series of assumptions that may stem from trial and error.

Logistic Regression

Logistic regression is used to find the probability of event=Success and event=Failure. It is
used when the dependent variable is binary (0/1, True/False, Yes/No) in nature. Logistic
Regression can be shown as logistic curve which is a common S-shaped curve (sigmoid
curve) as shown in Figure 3.5. Not like normal regression, the parameters are chosen to
maximize the likelihood of observing the sample values rather than minimizing the sum
of squared errors. It is widely used for classification problems and does not require linear
relationship between dependent and independent variables. It applies a non-linear log
transformation to the predicted odds ratio, so it can handle various types of relationships.
Logistic Regression requires large sample sizes because maximum likelihood estimates are
less powerful at low sample sizes than ordinary least square.The independent variables
should not be correlated with each other.

Polynomial Regression

A polynomial regression is the one where the power of independent variable in its equation
equals more than 1. On the other hand, we should be careful from overfitting which will
occur if we try to fit a higher degree polynomial to get lower error. We should always focus
on making sure that the curve fits the nature of the problem not every single detail of it.

Stepwise Regression

Stepwise Regression is used when dealing with multiple independent variables. In this re-
gression, the selection of independent variables does not involve any human intervention, it
is done with the help of an automatic process. Stepwise regression basically fits the regres-
sion model by adding/dropping variables one at a time based on a specified criterion such
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Figure 3.5: Logistic Regression

as statistical values like R-square, t-stats. The following are some of the most commonly
used Stepwise regression methods:

• Standard stepwise regression: it adds and removes predictors as needed for each
step.

• Forward selection: it starts with most significant predictor in the model and adds
variable for each step.

• Backward elimination: it starts with all predictors in the model and removes the
least significant variable for each step.

The goal of this regression technique is to maximize the prediction power with minimum
number of predictor variables. It is one of the useful methods in case of higher dimension-
ality of data set.

Ridge Regression

Ridge Regression is used in case of multicollinearity (a situation in which independent
variables are highly correlated). In multicollinearity, even though the least squares esti-
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mates are unbiased, their variances are large which deviates the observed value far from
the true value. Ridge regression reduces the standard errors by adding a degree of bias to
the regression estimates. this is done by adding shrinkage parameter λ (lambda). Ridge
regression can be expressed as a regularization method and uses L2 regularization.

LASSO Regression

LASSO (Least Absolute Shrinkage and Selection Operator) regression is similar to ridge
regression except that it uses absolute values in the penalty function, instead of squares.
LASSO penalizes the absolute size of the regression coefficients. LASSO is a feature se-
lection technique as it shrinks coefficients to zero (exactly zero), and it is a regularization
method and uses L1 regularization. If group of predictors are highly correlated, LASSO
selects only one of them and shrinks the others to zero.

ElasticNet Regression

ElasticNet Regression is hybrid of Lasso and Ridge Regression techniques. It is trained with
L1 and L2 prior as regularizer. Elastic-net is useful when there are multiple features which
are correlated. ElasticNet encourages group effect in case of highly correlated variables,
and there are no limitations on the number of selected variables, however, it can suffer
with double shrinkage.

3.4 Performance metrics

Performance of the regression is obtained by finding the best fit line/curve of the estimated
function. This task can be easily accomplished by Least Square Method. It is the most
common method used for fitting a regression line. It calculates the best-fit line for the
observed data by minimizing the sum of the squares of the vertical deviations from each
data point to the line. Because the deviations are first squared, when added, there is
no cancelling out between positive and negative values. We can evaluate the model per-
formance using the metric R-square. However, for CGM, there is a special performance
analysis called the Clarke Error Grid Analysis (EGA). Mean Absolute Relative Difference
(MARD) is also another metric used for perfornace in CGM
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The Clarke Error Grid Analysis (EGA)

The Clarke Error Grid Analysis (EGA) [106, 107] was developed in 1987 to quantify clinical
accuracy of estimation of patient blood glucose as compared to the blood glucose value
obtained in their glucometer. It was then used to quantify the clinical accuracy of blood
glucose estimates generated by glucometers as compared to a reference value. Eventually,
the EGA became accepted as one of the “gold standards” for determining the accuracy of
blood glucose meters.

The grid breaks down a scatter plot of a reference glucose meter and an evaluated
glucose meter into five regions (as shown in Figure 3.6):

• Region A are those values within 20% of the reference sensor,

• Region B contains points that are outside of 20% but would not lead inappropriate
treatment,

• Region C are those points leading to unnecessary treatment,

• Region D are those points indicating a potentially dangerous failure to detect hypo-
glycemia or hyperglycemia, and

• Region E are those points that would confuse treatment of hypoglycemia for hyper-
glycemia and vice versa.

MARD

The MARD is based on the comparison between paired measurements of a given CGM
system (predicted) and a reference method. MARD is computed as mean value of the
absolute relative differences (ARD) as follows:

ARDk = 100 · |Ypred(tk)− Yref (tk)|
Yref (tk)

(3.2)

MARD =
1

Nref

Nref∑
k=1

ARDk (3.3)

,where Ypred is the value predicted by the CGM device, Yref is the value measured by
the reference measurement device at tk different times when reference measurements are
available, k = 1, 2, 3, ..., Nref [108].
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Figure 3.6: The Clarke Error Grid

3.5 Conclusion

In this chapter, I discussed different types of machine learning along with some important
algorithms and techniques. I showed how we can apply machine learning for CGM ap-
plication and how we can calculate the performance metrics. The main part of applying
machine learning algorithms for CGM is the regression and I gave more emphasis on the
different regression types and algorithms as I am going to use them in the next result’s
chapter.
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Chapter 4

Results and Discussions

4.1 Introduction

In this chapter, I will show the experimental and simulation results using the microwave
sensors with both aqueous solutions in experiment and the 3-D hand model in simulation.

4.2 Experimental Results:

In this section, I will show the experimental results using both sensors (the dipole and the
spiral) with aqueous solutions with 9 different glucose concentrations prepared in the lab as
a proof of concept and in order to check the sensitivity of the sensor to those concentrations.
For the purpose of accuracy and validation, the experiments were repeated many times in
many different days and the average of the results were conducted. I followed the same
methodology (shown previously in chapter 1, Figure 1.4) in all the models of the results.

4.2.1 Preparing the aqueous glucose solutions

Water is suitable for glucose experiments based on the fact that 50% of the volume of the
human blood is water, and 92% of the blood plasma is made up of water too [109].

In addition, tissues exposed to radiation in the microwave frequency range exhibit prop-
erties strongly dependant on the behavior of water. It is commonly held that percentage
of water content is related to dielectric constant [110]. For example, water is the main
constituent of blood, whereas fat has very little water.

43



In this subsection, I will show how to prepare the aqueous glucose solutions. There are
two different ways of preparing or measuring glucose concentrations: It can either be in
terms of a molar concentration, measured in mmol/L or a mass concentration, measured in
mg/dL. A conversion factor of 1 mg/dL equals to 0.0555 mmol/L can be used interchange-
ably to convert from one unit to another. To prepare the glucose samples, a concentrated
sample (i.e., 30 mg/dL) is prepared first by dissolving pure particles of glucose (molecular
weight (MW)=180.16 g/mol) in distilled water and then other samples can be formed using
a dilution method. For instance, in order to prepare 30 ml of the glucose sample with a
concentration of 30 mg/dL, the amount of glucose particle that will be dissolved in distilled
water should be determined first using the following equation:

MG =
CG ∗ VDI

100
(4.1)

, where MG: mass of pure glucose in mg, CG: desired concentration in mg/dL (30 mg/dL),
VDI : volume of the distilled water in ml (30 ml). Using the above equation 4.1, the amount
of glucose will be 9 mg.

After that, the lower concentrations samples (¡30 mg/dL) can be produced by diluting
the concentrated sample. For example, 10 ml sample that has a mass concentration of 20
mg/dL can be formed after finding the required volume of the concentrated sample (i.e.,
30 mg/dL) that should be mixing with distilled water. The volume of the concentrated
sample can be calculated as follows:

VConcentrated =
Cdesired(diluted) ∗ Vdesired(diluted)

CConcentrated

(4.2)

, where VConcentrated: volume of the concentrated sample in ml, CConcentrated: mass concen-
tration of the highly concentrated sample in mg/dL, Cdesired(diluted): the desired concentra-
tion aimed to prepare in mg/dL, Vdesired(diluted): the desired volume of the diluted sample
in ml [111]. Using equation 4.2, the volume of the concentrated sample (30 mg/dL) will
be 6.67 ml which will be mixed with 3.33 ml (10 ml – 6.67 ml) of distilled water (DI) in
order to form 10 ml of glucose sample with a concentration of 20 mg/dL. In the following
table (Tabel 4.1), I will show some of the values of glucose concentrations in both mg/dL
and mmol/L.

Table 4.1: Some glucose concentrations values in both molar and mass

mg/dL 10 15 20 40 65 80 100 150 200 300
mmol/L 0.6 0.8 1.1 2.2 3.6 4.4 5.6 8.3 11.1 16.7
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4.2.2 The Dipole Sensor

The experimental setup consisted of the electrically-small dipole sensor (the sensor used
is adopted from [3]), a keysight 8.5 GHz VNA (E5071C), glucose-water solutions with nine
different concentrations as shown in Figure 4.1

Figure 4.1: The Experimental Setup

First, I prepared the aqueous glucose solutions and placed the microwave sensor on
top of those solutions to start reading the signals. Then, machine learning is applied by
starting with prepossessing to clean and prepare the data for feature extraction. In the
feature extraction step, I reduce the dimensionality of the feature space and include the
most relevant features only. Next, I train the system to build the regression model which
will be used to predict actual glucose concentrations. In the next subsections, I will give
a brief explanation of the different components and techniques used by the system. The
sensor was placed above the solution with a standoff distance of 5 mm (see Figure 4.2).

Figure 4.2: The Dipole Sensor and its proximity to the solution

45



This standoff distance value was obtained experimentally as the optimal value and has
no relation with the operating frequency.

The aqueous solutions are made up of 9 different concentrations: (0 (i.e. water only),
2, 4, 6, 8, 10, 14, 28, 42 mg\dl). The magnitude and phase of the reflection coefficient
(S11) of the sensor were then recorded via the VNA at 201 uniformly spaced frequencies
spanning the operating frequency range of 100 to 300 MHz.

It is very important to understand the nature of the data and how it looks like before
starting any data analysis. In order to have a clear picture about the nature of the data,
in Figures 4.3 and 4.4, I show the responses of the dipole sensor with the water-glucose
solutions for the nine different concentrations using the (S11) magnitude and phase. I
observe that the range of frequencies that have the most notable discrimination between
the responses due to different glucose levels using S11 magnitude and phase, are 140-240
MHz and 170-200 MHz, respectively, as shown in Figures 4.3(b) and 4.4(b). I observe
that the most notable difference between the nine different glucose concentrations occurs
around 180 MHz. Next, I imported and prepared the data using MATLAB [112] to be in
a suitable form for feature extraction.

Figure 4.3: Magnitude of S11 for different glucose levels (a) Entire frequency range. (b)
Frequency range of interest

Now, I highlighted the step of feature extraction in order to reduce the dimensionality
of the feature space by excluding any redundant or irrelevant features and include the
most discriminative features only. The data consisted of three feature vectors: magnitude,
phase and frequency. Each feature vector contains 201 values, which corresponds to the
201 frequencies and the S11 magnitude and phase values of each frequency. I adopted two
different approaches to extract the feature: a data-driven approach and a domain-
knowledge approach. In the data-driven approach, I used Principle Component Analysis
(PCA) [113] and selected the highest two Principle Components (PCs) as they preserve 95%
of the variance of the whole data. In the domain knowledge-driven approach, I selected the
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Figure 4.4: Phase of S11 for different glucose levels (a) Entire frequency range. (b)
Frequency range of interest

frequency with the minimum S11 magnitude and phase (The resonance area). I extracted
the minimum two values of S11 magnitude and phase. It is worth mentioning here that in
both approaches, only two features have been selected from the entire 201 features. This
selection of reduced features will help to easily train the regression model in the next step.
Therefore, I have four different features: highest 2 PCs using S11 magnitude, highest 2
PCs using S11 phase, minimum two S11 magnitude, and minimum two S11 phase. Figures
4.5 and 4.6 show the values of the nine glucose levels representing by the highest two PCs
using magnitude and phase of S11, respectively.

Figure 4.5: PCA using Magnitude of S11 with different glucose levels

Figures 4.7 and 4.8 show the values of the nine glucose levels representing by the
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Figure 4.6: PCA using Phase of S11 with different glucose levels

minimum two S11 magnitude and phase, respectively. As we can see from all the figures of
representing the glucose levels with the different extracted features, there is a noticeable
difference between the glucose levels, however, this difference is not the main goal of the
model, I need to have a good regression function that will easily map each value to its
corresponding glucose level with a high accuracy.

Now I will show the results of the best regression models using all the different features
approaches (Minimum-two S11 Magnitude and Phase , and Highest-two PCs using both
magnitude and phase). I used 3-folds cross validation as it is more suitable in this case
based on the size of the data. As shown in Table 4.2, results from the Gaussian SVR
algorithm [114] showed the least RMSE with 11.9 using the two-minimum magnitude of
S11. Figure 4.9 shows the response plot of the prediction model by the Gaussian SVR
algorithm using the the minimum magnitude of S11 to predict the actual aqueous glucose
levels. Whereas, the least RMSE using the two-minimum phase of S11 was 12.3 given by
same Gaussian SVR algorithm.

Results of the regressions using highest two PCs of magnitude and phase of S11 gave
RMSE = 13.4 and 14, respectively. Those results obtained using linear SVR algorithm
and Rational Quadratic GPR, respectively [115].
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Figure 4.7: Minimum two Magnitude of S11 with different glucose levels

Figure 4.8: Minimum two Phase of S11 with different glucose levels
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Table 4.2: RMSE of some of the regression algorithms using the dipole sensor in experi-
ments

Regression Algorithm Min Mag. Min Phase PCA Mag. PCA Phase

Linear Regression 15.2 22.7 16 20.6
SVR 11.9 12.3 13.4 16.4

Matern5/2 GPR 15.5 13.3 13.5 14.8
Exponential GPR 14.7 13.4 13.5 14.2

Rational Quadratic GPR 15.6 13.4 13.5 14

Figure 4.9: Response plot of the prediction model using minimum magnitude of S11

4.2.3 The Spiral Sensor

In this subsection, I will show the experimental results using the spiral sensor. The
experimental setup is the same as shown in the previous subsection about dipole sensor
except the sensor changed only. Figures 4.10 and 4.11 show the responses of the spiral
sensor with the water-glucose solutions for the nine different concentrations using the (S11)
magnitude and phase. I observed that the range of frequencies that have the most notable
discrimination between the responses due to different glucose levels using S11 magnitude
and phase, are 1150-1200 MHz, as shown in Figures 4.10(b) and 4.11(b). I observed that
the most notable difference between the nine different glucose concentrations occurs around
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1170 MHz.

Figure 4.10: Magnitude of S11 for different glucose levels (a) Entire frequency range. (b)
Frequency range of interest

Figure 4.11: Phase of S11 for different glucose levels (a) Entire frequency range. (b)
Frequency range of interest

In feature extraction, Figures 4.12 and 4.13 show the values of the nine glucose levels
representing by the highest two PCs using magnitude and phase of S11, respectively.

In the same way, Figures 4.14 and 4.15 show the values of the nine glucose levels
representing by the minimum two S11 magnitude and phase, respectively.

Now I will show the results of the best regression models using all the different features
approaches (Minimum-two S11 Magnitude and Phase , and Highest-two PCs using both
magnitude and phase). I used 3-folds cross validation. As shown in Table 4.3, results from
the linear regression algorithm showed the least RMSE with 7.26 using PCA of magnitude
of S11. Figure 4.16 shows the response plot of the prediction model by the linear regression
algorithm using the highest PCs of magnitude of S11 to predict the actual aqueous glucose
levels. On the other hand, the least RMSE using PCA of phase of S11 was 13.5 given by
Matern 5/2 GPR algorithm [115].
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Figure 4.12: PCA using Magnitude of S11 with different glucose levels

Figure 4.13: PCA using Phase of S11 with different glucose levels

Results of the regressions using minimum-two magnitude and phase of S11 gave RMSE
= 8.8 and 13, respectively. Those results obtained using linear SVR algorithm and Expo-
nential GPR, respectively [114].

After that, I train the system using the data from one sensor and test the system using
the data of the other sensor. When I test the system using dipole on the trained spiral
regression model, I got RMSE = 13 despite the different frequencies of the sensors. In the
same way, when I test the system using spiral on the trained dipole regression model, I got
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Figure 4.14: Minimum two Magnitude of S11 with different glucose levels

Figure 4.15: Minimum two Phase of S11 with different glucose levels

RMSE = 13.4

4.3 Simulation Results:

In this section, I will show the results of simulation of the microwave sensor for constructing
a non-invasive CGM system using the full-wave numerical simulation tool CST Microwave

53



Table 4.3: RMSE of some of the regression algorithms using the spiral sensor in experiments

Regression Algorithm Min Mag. Min Phase PCA Mag. PCA Phase

Linear Regression 8.8 15.8 7.26 14
SVR 11.1 13.6 11.7 13.6

Matern5/2 GPR 14.8 13 14.5 13.5
Exponential GPR 14.4 13 14.9 13.6

Rational Quadratic GPR 14.4 13.1 14.7 13.7

Figure 4.16: Response plot of the prediction model using highest PC of magnitude of S11

Studio [100]. The main building blocks of the simulation setup are the microwave sensor
and the hand phantom on which I test the sensor. I already showed how the sensor was
designed in 2. In the next subsection, I will highlight the design of the hand phantom with
different layers.

4.3.1 Hand model design

In order to simulate the effect of the sensors, a hand phantom model is designed as four
layers namely, skin (1.5 mm), fat (2 mm), blood (2.5 mm) and muscle (15 mm) layers as
shown in Figure. 4.17. Those thickness values are adopted from the literate [116, 59, 117].
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I chose the hand part of the human body because of the following reasons:

• One of the easiest place to put the sensor on it.

• Has minimal fat and muscles close to the skin.

• No dangerous because of microwave radiation.

• The goal of the final product is to build a system and wear it like a watch.

Figure 4.17: The Hand Model layers

4.3.2 Dielectric properties of the hand model layers/tissues

The main idea of the simulation results is coming from changing the dielectric properties
(permittivity (ε̂) and conductivity σ) of each layer and saving the reflection coefficient (S11)
of the sensor based on the interaction of the microwave sensor with the tissues having those
dielectric properties. I will have more emphasize on the blood layer because of the reasons
discussed earlier in chapter 1, section 1.10 about the body fluids considerations.
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In the next subsection, I will investigate the change in microwave resonator response
as a result of the variation in dielectric properties (permittivity and conductivity) of one
tissue/layer at a time. At each layer, dielectric properties are varied while other layers
remain constant. By this way, I can make sure that the sensor can see the corresponding
layer/tissue, i.e. the penetration depth of the sensor is enough. Note that I focused first
on the spiral sensor for the simulation.

The dimension of the simulation data is 1001 features corresponding to the 1001 uni-
formly spaced frequencies spanning the operating frequency range of 1000-1500 MHz. Be-
cause I used the magnitude and phase of S11, simulation data consisted of three feature
vectors: magnitude, phase and frequency, each feature vector contains 1001 values.

4.3.3 Blood Layer

In this subsection, I will show the results of applying the detailed steps of the methodology
of the system as shown earlier in chapter 1, Figure 1.4. The steps will be applied for
the results obtained by both changing the permittivity and the conductivity of the blood
tissue/layer of the hand model.

Permittivity(ε)

Here I will show the results of the system by changing the permittivity of the blood layer.
Permittivity values for the blood layer are in the range [40,105], where the base value (60)
are adopted from [118], for the corresponding frequency range of the spiral sensor (1000-
1500 MHz), with some increments and decrements in order to reflect the expected change
caused by glucose molecules in the blood.

In order to see how the simulation data looks like and to have a clear picture about
the nature of these data, Figures 4.18 and 4.19 show the responses of the spiral sensor
to the different permittivity values using magnitude and phase of (S11), respectively. I
observed that the range of frequencies that have the most notable discrimination between
the responses due to different permittivity values using magnitude and phase of S11, are
1410-1470 MHz.

Next, I imported and prepared the data using MATLAB [112] to be in a suitable form
for the next steps. In data-driven feature extraction, Figures 4.20 and 4.21 show the
different values of the permittivity representing by the highest two PCs using magnitude
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Figure 4.18: Magnitude of S11 for different values for Permittivity of Blood (a) Entire
frequency range. (b) Frequency range of interest

Figure 4.19: Phase of S11 for different values for Permittivity of Blood (a) Entire frequency
range. (b) Frequency range of interest

and phase of S11, respectively. As we can see from the figures, PCA using magnitude of
S11 gave us some good patterns that may help in the next step of regression.

After that, I will show the results of the 2nd category of feature engineering, which
is based on domain-knowledge. Figures 4.22 and 4.23 show the different values of the
permittivity representing by the minimum-two magnitude and phase of S11, respectively.
It is very clear that this representation of features can be represented by a linear line as
shown in the figures.

Based on the fact that by increasing the frequency, permittivity decreases [116], I tried
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Figure 4.20: PCA using Magnitude of S11 with different values for Permittivity of Blood

Figure 4.21: PCA using Phase of S11 with different values for Permittivity of Blood

to benefit from the resonance frequency as a feature. Figures 4.24 and 4.25 show the
different values of the permittivity representing by the minimum frequency (resonance)
and minimum S11 magnitude and phase, respectively. In case of the phase of S11, the
resonance frequency is at about 1133.5-1136 MHz which is not in the frequency range of
interest and therefore I can tell that this feature is not a discriminating one.
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Figure 4.22: Minimum-two Magnitude of S11 with different values for Permittivity of Blood

Figure 4.23: Minimum-two Phase of S11 with different values for Permittivity of Blood

After preparing the features, I reached to the final step of the system which is predicting
the values of the permittivity of blood tissue using those feature extracted from the S11
reflected coefficient of the spiral sensor. The goal is to find a regression function to map
between the S11 features and the permittivity of the tissue. Therefore, after selecting the
most relevant features, they were inputted to train the regression model which will be used
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Figure 4.24: Minimum Frequency and Magnitude of S11 with different values for Permit-
tivity of Blood

Figure 4.25: Minimum Frequency and Phase of S11 with different values for Permittivity
of Blood

to predict the blood permittivity. A total of 19 different regression models were trained
using Matlab regression learning App. RMSE is used as the criteria to select the most
accurate regression model (least RMSE) Table 4.4 shows the results of the best regression
models using all the different features approaches (Minimum-two S11 Magnitude and Phase
, and Highest-two PCs using both magnitude and phase). I used 3-folds cross validation.

Results from the Quadratic SVR (QSVR) algorithm showed the least RMSE with 1.98
using PCA of S11 magnitude. Whereas, the least RMSE using Minimum-two magnitude
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Table 4.4: RMSE of some of the regression algorithms using the spiral sensor with Permit-
tivity of Blood

Regression Algorithm Min Mag. Min Phase PCA Mag. PCA Phase

Linear Regression 2.8 9.3 2.1 5.8
SVR 3.7 20.1 1.98 6.7

Matern5/2 GPR 3.9 19.6 3.5 10.6
Exponential GPR 2.7 19.6 2.2 11.2

Rational Quadratic GPR 4.1 20.6 2.2 10.2
Decision Tree 11.5 20.4 10.8 10.5

of S11 was 2.7 given by Matern 5/2 GPR algorithm. In this case, I found that the phase
of S11 did not give us good results using both minimum-two phase and highest-two PCs.

Conductivity (σ)

Now I will show the results of the system by changing the conductivity of the blood layer.
Conductivity values for the blood layer are in the range [0.1,1.9], values are adopted from
[118] for the corresponding frequency range of the spiral sensor (1000-1500 MHz) in order
to reflect the expected change in conductivity caused by glucose molecules in the blood.

In order to see how the simulation data looks like and to have a clear picture about
the nature of these data, Figures 4.26 and 4.27 show the responses of the spiral sensor
to the different conductivity values using magnitude and phase of (S11), respectively. I
observed that the range of frequencies that have the most notable discrimination between
the responses due to different conductivity values using magnitude and phase of S11 , are
1410-1470 MHz, which is the same as in case of permittivity.

Next step is feature extraction following data-driven approach, Figures 4.28 and 4.29
show the different values of the conductivity representing by the highest two PCs using
magnitude and phase of S11, respectively.

After that, the results of domain-knowledge feature extraction category will be shown.
Figures 4.30 and 4.31 show the different values of the conductivity representing by the
minimum-two magnitude and phase of S11, respectively. This representation of features
shows some kinds of linearity as shown in the figures.

Figures 4.32 and 4.33 show the different values of the conductivity representing by the
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Figure 4.26: Magnitude of S11 for different values for Conductivity of Blood (a) Entire
frequency range. (b) Frequency range of interest

Figure 4.27: Phase of S11 for different values for Conductivity of Blood (a) Entire frequency
range. (b) Frequency range of interest

minimum frequency (resonance) and minimum S11 magnitude and phase, respectively. In
case of the phase of S11, the resonance frequency is at about 1134-1136 MHz which is
not in the frequency range of interest and therefore I can tell that this feature is not a
discriminating one.

Next, I will show the results of predicting the values of the conductivity of blood tissue
using those feature extracted from the S11 reflected coefficient of the spiral sensor. The
goal is to find a regression function to map between the S11 features and the conductivity
of the tissue. Therefore, after selecting the most relevant features, they were inputted to
train the regression model which will be used to predict the blood conductivity. A total of
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Figure 4.28: PCA using Magnitude of S11 with different values for Conductivity of Blood

Figure 4.29: PCA using Phase of S11 with different values for Conductivity of Blood

19 different regression models were trained using Matlab regression learning App. RMSE
and R2 are used as the criteria to select the most accurate regression model (least RMSE
and highest R2).

Table 4.5 shows the results of only the best regression models using all the different
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Figure 4.30: Minimum-two Magnitude of S11 with different values for Conductivity of
Blood

Figure 4.31: Minimum-two Phase of S11 with different values for Conductivity of Blood

features approaches (Minimum-two S11 Magnitude and Phase, and Highest-two PCs using
both magnitude and phase). 3-folds cross validation was used to train and test the system.

Results from the Linear Regression algorithm showed the least RMSE with 0.1 and
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Figure 4.32: Minimum Frequency and Magnitude of S11 with different values for Conduc-
tivity of Blood

Figure 4.33: Minimum Frequency and Phase of S11 with different values for Conductivity
of Blood

highest R2 = 0.95 using PCA of Phase of S11.
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Table 4.5: RMSE of some of the regression algorithms using the spiral sensor with Con-
ductivity of Blood

Features Best Regression Algorithm Metrics
RMSE R2

Min Mag. Quadratic SVR 0.4 0.67
Min Phase Linear Regression 0.3 0.66
PCA Mag. Linear Regression 0.2 0.84
PCA Phase Linear Regression 0.1 0.95

4.3.4 Skin Layer

In this subsection, I will show the results of changing the permittivity and the conductivity
of the skin tissue/layer of the hand model.

Permittivity(ε)

I will show the results of the system by changing the permittivity of the skin layer. Per-
mittivity values for the skin layer are in the range [40,300], where the values for the dry
skin and wet skin from [118] are between 40-45 for the corresponding frequency range of
the spiral sensor (1000-1500 MHz).

In order to see how the simulation data looks like and to have a clear picture about
the nature of these data, Figures 4.34 and 4.35 show the responses of the spiral sensor
to the different permittivity values using magnitude and phase of (S11), respectively. I
observed that the range of frequencies that have the most notable discrimination between
the responses due to different permittivity values using magnitude and phase of S11, are
1410-1470 MHz.

Next, is the feature extraction step. Figures 4.36 and 4.37 show the different values
of the permittivity representing by the highest two PCs using magnitude and phase of S11,
respectively. This is the feature extraction following data-driven approach.

Next, I will show the results of the 2nd category of feature engineering, which is based
on domain-knowledge. Figures 4.38 and 4.39 show the different values of the permittivity
representing by the minimum-two magnitude and phase of S11, respectively. It is very
clear that this representation of features produced some interesting patterns as shown in
the figures.
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Figure 4.34: Magnitude of S11 for different values for Permittivity of Skin (a) Entire fre-
quency range. (b) Frequency range of interest

Figure 4.35: Phase of S11 for different values for Permittivity of Skin (a) Entire frequency
range. (b) Frequency range of interest

Figures 4.40 and 4.41 show the different values of the permittivity representing by the
minimum frequency (resonance) and minimum S11 magnitude and phase, respectively. In
case of the phase of S11, majority of the resonance frequency is at about 1100-1150 MHz
which is not in the frequency range of interest and therefore I can tell that this feature is
not a discriminating one.

Now, I reached to the final step of the system, using permittivity of skin, which is
predicting the values of the permittivity of skin tissue using those feature extracted from
the S11 reflected coefficient of the spiral sensor. The goal is to find a regression function to
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Figure 4.36: PCA using Magnitude of S11 with different values for Permittivity of Skin

Figure 4.37: PCA using Phase of S11 with different values for Permittivity of Skin

map between the S11 features and the permittivity of the tissue. Therefore, after selecting
the most relevant features, they were inputted to train the regression model which will be
used to predict the skin permittivity. A total of 19 different regression models were trained
using Matlab regression learning App. RMSE and R2 are used as the criteria to select the
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Figure 4.38: Minimum-two Magnitude of S11 with different values for Permittivity of Skin

Figure 4.39: Minimum-two Phase of S11 with different values for Permittivity of Skin

most accurate regression model (least RMSE and highest R2). Table 4.6 shows the results
of the best regression models using all the different features approaches (Minimum-two S11

Magnitude and Phase , and Highest-two PCs using both magnitude and phase). I used
3-folds cross validation to validate the system.
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Figure 4.40: Minimum Frequency and Magnitude of S11 with different values for Permit-
tivity of Skin

Figure 4.41: Minimum Frequency and Phase of S11 with different values for Permittivity
of Skin

Results from the Rational Quadratic GPR algorithm showed the least RMSE with 11.2
and highest R2 = 0.98 using PCA of Magnitude of S11.
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Table 4.6: RMSE of some of the regression algorithms using the spiral sensor with Permit-
tivity of Skin

Features Best Regression Algorithm Metrics
RMSE R2

Min Mag. Medium Gaussian SVR 60.9 0.68
Min Phase Linear SVR 68 0.55
PCA Mag. Rational Quadratic GPR 11.2 0.98
PCA Phase Linear Regression 14.1 0.98

Conductivity (σ)

Now I will show the results of the system by changing the conductivity of the skin layer.
Conductivity values for the skin layer are in the range [1.5,3.3], values are adopted from
[118] for the corresponding frequency range of the spiral sensor (1000-1500 MHz) in order
to reflect the expected change in conductivity caused by glucose molecules in the skin.

In order to see how the simulation data using the skin conductivity and to have a
clear picture about the nature of these data, Figures 4.42 and 4.43 show the responses
of the spiral sensor to the different conductivity values using magnitude and phase of
(S11), respectively. I observed that the range of frequencies that have the most notable
discrimination between the responses due to different conductivity values using magnitude
and phase of S11 , are 1410-1470 MHz, which is the same as in case of permittivity.

Next step is data-driven feature extraction, Figures 4.44 and 4.45 show the different
values of the skin conductivity representing by the highest two PCs using magnitude and
phase of S11, respectively.

After that, the results of domain-knowledge feature extraction category will be shown.
Figures 4.46 and 4.47 show the different values of the skin conductivity representing by the
minimum-two magnitude and phase of S11, respectively. This representation of features
shows some kinds of linearity as shown in the figures.

Figures 4.48 and 4.49 show the different values of the skin conductivity representing
by the minimum frequency (resonance) and minimum magnitude and phase of S11, re-
spectively. In case of the phase of S11, majority of the resonance frequency is at about
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Figure 4.42: Magnitude of S11 for different values for Conductivity of Skin (a) Entire
frequency range. (b) Frequency range of interest

Figure 4.43: Phase of S11 for different values for Conductivity of Skin (a) Entire frequency
range. (b) Frequency range of interest

1100-1150 MHz which is not in the frequency range of interest and therefore this feature
may not be a discriminating one.

Finally, I will show the results of predicting the values of the conductivity of skin tissue
using those feature extracted from the S11 reflected coefficient of the spiral sensor. The
goal is to find a regression function to map between the S11 features and the conductivity
of the tissue. Therefore, after selecting the most relevant features, they were inputted to
train the regression model which will be used to predict the skin conductivity. A total of
19 different regression models were trained using Matlab regression learning App. RMSE
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Figure 4.44: PCA using Magnitude of S11 with different values for Conductivity of Skin

Figure 4.45: PCA using Phase of S11 with different values for Conductivity of Skin

and R2 are used as the criteria to select the most accurate regression model.

Table 4.7 shows the results of only the best regression models using all the different
features approaches (Minimum-two S11 Magnitude and Phase, and Highest-two PCs using
both magnitude and phase). 3-folds cross validation was used to train and test the system.
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Figure 4.46: Minimum-two Magnitude of S11 with different values for Conductivity of Skin

Figure 4.47: Minimum-two Phase of S11 with different values for Conductivity of Skin

Results from the Quadratic SVR algorithm showed the least RMSE with 0.15 and
highest R2 = 0.94 using PCA of Magnitude of S11.
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Figure 4.48: Minimum Frequency and Magnitude of S11 with different values for Conduc-
tivity of Skin

Figure 4.49: Minimum Frequency and Phase of S11 with different values for Conductivity
of Skin
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Table 4.7: RMSE of some of the regression algorithms using the spiral sensor with Con-
ductivity of Skin

Features Best Regression Algorithm Metrics
RMSE R2

Min Mag. Ensemble Boosted trees 0.77 0.02
Min Phase Squared Exponential GPR 0.64 0.37
PCA Mag. Quadratic SVR 0.15 0.94
PCA Phase Linear Regression 0.28 0.86

4.3.5 FAT Layer

In this subsection, I will show the results of changing the permittivity and the conductivity
of the FAT tissue/layer of the hand model.

Permittivity(ε)

Here, I will show the results of the system by changing the permittivity of the FAT layer.
Permittivity values for the FAT layer are in the range [5.3,95.3].

In order to see how the simulation data using FAT permittivity and to have a clear
picture about the nature of these data, Figures 4.50 and 4.51 show the responses of the
spiral sensor to the different FAT permittivity values using magnitude and phase of (S11),
respectively. I observed that the range of frequencies that have the most notable discrim-
ination between the responses due to different permittivity values using magnitude and
phase of S11, are 1410-1470 MHz.

In feature extraction following data-driven approach, Figures 4.52 and 4.53 show the
different values of the permittivity representing by the highest two PCs using magnitude
and phase of S11, respectively. As we can see from the figures, PCA using magnitude of
S11 gave us some good patterns that may help in the next step of regression.

Next, I will show the results of the 2nd category of feature engineering, which is based
on domain-knowledge. Figures 4.54 and 4.55 show the different values of the permittivity
representing by the minimum-two magnitude and phase of S11, respectively. It is very
clear that this representation of features produced some interesting patterns as shown in
the figures.
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Figure 4.50: Magnitude of S11 for different values for Permittivity of FAT (a) Entire fre-
quency range. (b) Frequency range of interest

Figure 4.51: Phase of S11 for different values for Permittivity of FAT (a) Entire frequency
range. (b) Frequency range of interest

Figures 4.56 and 4.57 show the different values of the permittivity representing by the
minimum frequency (resonance) and minimum S11 magnitude and phase, respectively. In
case of the phase of S11, the resonance frequency is at about 1132-1135 MHz which is not
in the frequency range of interest and therefore this feature may not be a discriminating
one.

Now, I reached to the final step of the system which is predicting the values of the
permittivity of FAT tissue using those feature extracted from the S11 reflected coefficient of
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Figure 4.52: PCA using Magnitude of S11 with different values for Permittivity of FAT

Figure 4.53: PCA using Phase of S11 with different values for Permittivity of FAT

the spiral sensor. The goal is to find a regression function to map between the S11 features
and the permittivity of the tissue. Therefore, after selecting the most relevant features,
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Figure 4.54: Minimum-two Magnitude of S11 with different values for Permittivity of FAT

Figure 4.55: Minimum-two Phase of S11 with different values for Permittivity of FAT

they were inputted to train the regression model which will be used to predict the FAT
permittivity. A total of 19 different regression models were trained using Matlab regression
learning App. RMSE is used as the criteria to select the most accurate regression model.
Table 4.8 shows the results of the best regression models using all the different features
approaches (Minimum-two S11 Magnitude and Phase , and Highest-two PCs using both
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Figure 4.56: Minimum Frequency and Magnitude of S11 with different values for Permit-
tivity of FAT

Figure 4.57: Minimum Frequency and Phase of S11 with different values for Permittivity
of FAT

magnitude and phase). I used 3-folds cross validation to validate the system.

Results from Linear Regression algorithm showed the least RMSE with 7.1 using PCA
of Magnitude of S11.
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Table 4.8: RMSE of some of the regression algorithms using the spiral sensor with Permit-
tivity of FAT

Features Best Regression Algorithm RMSE

Min Mag. Quadratic SVR 12.3
Min Phase Decision Tree 28.8
PCA Mag. Linear Regression 7.1
PCA Phase Linear Regression 9.7

Conductivity (σ)

In this subsection, I will show the results of the system by changing the conductivity of
the FAT layer. Conductivity values for the FAT layer are in the range [0.02,1.4], values are
adopted from [118] for the corresponding frequency range of the spiral sensor (1000-1500
MHz) in order to reflect the expected change in conductivity caused by glucose molecules
in FAT tissue.

In order to see how the simulation data looks like and to have a clear picture about
the nature of these data, Figures 4.58 and 4.59 show the responses of the spiral sensor
to the different conductivity values using magnitude and phase of (S11), respectively. I
observed that the range of frequencies that have the most notable discrimination between
the responses due to different conductivity values using magnitude and phase of S11 , are
1410-1470 MHz, which is the same as in case of permittivity.

Figure 4.58: Magnitude of S11 for different values for Conductivity of FAT (a) Entire
frequency range. (b) Frequency range of interest
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Figure 4.59: Phase of S11 for different values for Conductivity of FAT (a) Entire frequency
range. (b) Frequency range of interest

Next step is feature extraction following data-driven approach, Figures 4.60 and 4.61
show the different values of the conductivity representing by the highest two PCs using
magnitude and phase of S11, respectively.

After that, the results of domain-knowledge feature extraction category will be shown.
Figures 4.62 and 4.63 show the different values of the conductivity representing by the
minimum-two magnitude and phase of S11, respectively. This representation of features
shows some kinds of linearity as shown in the figures.

Figures 4.64 and 4.65 show the different values of the conductivity representing by the
minimum frequency (resonance) and minimum S11 magnitude and phase, respectively. In
case of the phase of S11, the resonance frequency is at about 1134-1136 MHz which is not
in the frequency range of interest.

Next, I will show the results of predicting the values of the conductivity of FAT tissue
using those feature extracted from the S11 reflected coefficient of the spiral sensor. The
goal is to find a regression function to map between the S11 features and the conductivity
of the tissue. Therefore, after selecting the most relevant features, they were inputted to
train the regression model which will be used to predict the FAT conductivity. A total of
19 different regression models were trained using Matlab regression learning App. RMSE
and R2 are used as the criteria to select the most accurate regression model.

82



Figure 4.60: PCA using Magnitude of S11 with different values for Conductivity of FAT

Figure 4.61: PCA using Phase of S11 with different values for Conductivity of FAt
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Figure 4.62: Minimum-two Magnitude of S11 with different values for Conductivity of FAT

Figure 4.63: Minimum-two Phase of S11 with different values for Conductivity of FAT
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Figure 4.64: Minimum Frequency and Magnitude of S11 with different values for Conduc-
tivity of FAT

Figure 4.65: Minimum Frequency and Phase of S11 with different values for Conductivity
of FAT

Table 4.9 shows the results of only the best regression models using all the different
features approaches (Minimum-two S11 Magnitude and Phase, and Highest-two PCs using
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both magnitude and phase). 3-folds cross validation was used to train and test the system.

Table 4.9: RMSE of some of the regression algorithms using the spiral sensor with Con-
ductivity of FAT

Features Best Regression Algorithm Metrics
RMSE R2

Min Mag. Quadratic SVR 0.2 0.83
Min Phase Linear Regression 0.1 0.96
PCA Mag. Rational Quadratic GPR 0.03 1
PCA Phase Linear SVR 0.2 0.81

Results from the Rational Quadratic GPR algorithm showed the least RMSE ever with
0.03 and highest R2 = 1 using PCA of magnitude of S11.

4.3.6 Muscle Layer

In this subsection, I will show the results of changing the permittivity and the conductivity
of the Muscle tissue/layer of the hand model.

Permittivity(ε)

I will show the results of the system by changing the permittivity of the Muscle layer.
Permittivity values for the Muscle layer are in the range [52.7,142.7], where the permittivity
values for the muscle from [118] are between 53-54 for the corresponding frequency range
of the spiral sensor (1000-1500 MHz).

In order to see how the simulation data looks like and to have a clear picture about
the nature of these data, Figures 4.66 and 4.67 show the responses of the spiral sensor
to the different permittivity values using magnitude and phase of (S11), respectively. I
observed that the range of frequencies that have the most notable discrimination between
the responses due to different permittivity values using magnitude and phase of S11, are
1410-1470 MHz.
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Figure 4.66: Magnitude of S11 for different values for Permittivity of Muscle (a) Entire
frequency range. (b) Frequency range of interest

Figure 4.67: Phase of S11 for different values for Permittivity of Muscle (a) Entire frequency
range. (b) Frequency range of interest

In Data-Driven feature extraction, Figures 4.68 and 4.69 show the different values
of the permittivity representing by the highest two PCs using magnitude and phase of S11,
respectively.

Next, I will show the results of the 2nd category of feature engineering, which is based on
domain-knowledge. Figures 4.70 and 4.71 show the different values of muscle permittivity
representing by the minimum-two magnitude and phase of S11, respectively. It is very
clear that this representation of features produced some interesting patterns as shown in
the figures.

Figures 4.72 and 4.73 show the different values of the muscle permittivity representing
by the minimum frequency (resonance) and minimum magnitude and phase of S11, respec-
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Figure 4.68: PCA using Magnitude of S11 with different values for Permittivity of Muscle

Figure 4.69: PCA using Phase of S11 with different values for Permittivity of Muscle

tively. In case of the phase of S11, the resonance frequency is at about 1130-1145 MHz
which is not in the frequency range of interest.
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Figure 4.70: Minimum-two Magnitude of S11 with different values for Permittivity of Mus-
cle

Figure 4.71: Minimum-two Phase of S11 with different values for Permittivity of Muscle

Now, I reached to the final step of the system which is predicting the values of the
permittivity of muscle tissue using those feature extracted from the S11 reflected coefficient
of the spiral sensor. The goal is to find a regression function to map between the S11
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Figure 4.72: Minimum Frequency and Magnitude of S11 with different values for Permit-
tivity of Muscle

Figure 4.73: Minimum Frequency and Phase of S11 with different values for Permittivity
of Muscle

features and the permittivity of the tissue. Therefore, after selecting the most relevant
features, they were inputted to train the regression model which will be used to predict the
muscle permittivity. A total of 19 different regression models were trained using Matlab
regression learning App. RMSE and R2 are used as the criteria to select the most accurate
regression model. Table 4.10 shows the results of the best regression models using all the
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different features approaches (Minimum-two S11 Magnitude and Phase , and Highest-two
PCs using both magnitude and phase). I used 3-folds cross validation to validate the
system.

Table 4.10: RMSE of some of the regression algorithms using the spiral sensor with Per-
mittivity of Muscle

Features Best Regression Algorithm Metrics
RMSE R2

Min Mag. Linear Regression 27 0.42
Min Phase Decision Tree 30.1 0.0
PCA Mag. Quadratic SVR 6.8 0.95
PCA Phase Fine Gaussian SVR 27.6 0.45

Results from the Rational Quadratic SVR algorithm showed the least RMSE with 6.8
and highest R2 = 0.95 using PCA of Magnitude of S11.

Conductivity (σ)

Now I will show the results of the system by changing the conductivity of the muscle layer.
Conductivity values for the muscle layer are in the range [1.74,3.54], values are adopted
from [118] for the corresponding frequency range of the spiral sensor (1000-1500 MHz) in
order to reflect the expected change in conductivity caused by glucose molecules in the
skin.

In order to see how the simulation data using the muscle conductivity and to have a
clear picture about the nature of these data, Figures 4.74 and 4.75 show the responses
of the spiral sensor to the different conductivity values using magnitude and phase of
(S11), respectively. I observed that the range of frequencies that have the most notable
discrimination between the responses due to different conductivity values using magnitude
and phase of S11 , are 1410-1470 MHz, which is the same as in case of permittivity.

Next step is data-driven feature extraction, Figures 4.76 and 4.77 show the different
values of the muscle conductivity representing by the highest two PCs using magnitude
and phase of S11, respectively.
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Figure 4.74: Magnitude of S11 for different values for Conductivity of Muscle (a) Entire
frequency range. (b) Frequency range of interest

Figure 4.75: Phase of S11 for different values for Conductivity of Muscle (a) Entire fre-
quency range. (b) Frequency range of interest

After that, the results of domain-knowledge feature extraction category will be shown.
Figures 4.78 and 4.79 show the different values of the skin conductivity representing by the
minimum-two magnitude and phase of S11, respectively. This representation of features
shows some kinds of linearity as shown in the figures.

Figures 4.80 and 4.81 show the different values of the muscle conductivity represent-
ing by the minimum frequency (resonance) and minimum magnitude and phase of S11,
respectively. In case of the phase of S11, majority of the resonance frequency is at about
1100-1150 MHz which is not in the frequency range of interest and therefore this feature
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Figure 4.76: PCA using Magnitude of S11 with different values for Conductivity of Muscle

Figure 4.77: PCA using Phase of S11 with different values for Conductivity of Muscle

may not be a discriminating one.

Finally, I will show the results of predicting the values of the conductivity of muscle tis-
sue using those feature extracted from the S11 reflected coefficient of the spiral sensor. The
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Figure 4.78: Minimum-two Magnitude of S11 with different values for Conductivity of
Muscle

Figure 4.79: Minimum-two Phase of S11 with different values for Conductivity of Muscle

goal is to find a regression function to map between the S11 features and the conductivity
of the tissue. Therefore, after selecting the most relevant features, they were inputted to
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Figure 4.80: Minimum Frequency and Magnitude of S11 with different values for Conduc-
tivity of Muscle

Figure 4.81: Minimum Frequency and Phase of S11 with different values for Conductivity
of Muscle

train the regression model which will be used to predict the blood conductivity. A total of
19 different regression models were trained using Matlab regression learning App. RMSE
and R2 are used as the criteria to select the most accurate regression model.
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Table 4.11 shows the results of only the best regression models using all the different
features approaches (Minimum-two S11 Magnitude and Phase, and Highest-two PCs using
both magnitude and phase). 3-folds cross validation was used to train and test the system.

Table 4.11: RMSE of some of the regression algorithms using the spiral sensor with Con-
ductivity of Muscle

Features Best Regression Algorithm Metrics
RMSE R2

Min Mag. Median Gaussian SVR 0.6 0.2
Min Phase Fine Gaussian SVR 0.5 0.43
PCA Mag. Linear Regression 0.24 0.94
PCA Phase Linear SVR 0.3 0.75

Results from the Linear Regression algorithm showed the least RMSE with 0.24 and
highest R2 = 0.94 using PCA of magnitude of S11.

4.3.7 Mapping glucose with dielectric properties and testing of
Regression Systems

In this subsection, I will show the result of testing the regression system, trained using
specific layer/tissue, with the values of other layers/tissues. The goal is to use those
trained regression systems to predict the actual glucose levels after finding a model for
dielectric properties as a function of glucose concentration in the human body.

After training the system using values of permittivity for blood (in the range [40,105]),
FAT permittivity values are used to test the prediction accuracy of the trained system.
The test values was 21 values in the range [4,6.5]. I tested those 21 values using the trained
QSVR as in 4.4. Test RMSE was about 60, however, the ranges of the permittivity values
used for training and testing have big difference.

After using the following equation 4.3 to map the output of the test values into their
corresponding interval, I got RMSE = 0.7

f(t) = c+ ((d− c)/(b− a)) ∗ (t− a) (4.3)

, where t is the value to be mapped from interval [a,b] to [c,d].
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In the same way, I used the trained regression system for conductivity of FAT layer to
test new values of conductivity for all the layers. Table 4.12 shows the RMSE results.

Table 4.12: Test RMSE of all the layers using the trained regression system for conductivity
of FAT layer

Features FAT Blood Skin Muscle

Min Mag. 0.05 0.4 2.1 2.5
Min Phase 0.6 0.6 2.4 2.8
PCA Mag. 0.08 0.5 1.7 2.1
PCA Phase 0.3 1.3 1.8 1.9

When I build the relation between human body glucose concentrations and dielectric
properties (permittivity or conductivity), I just need to map those glucose concentrations to
the trained system in order for the system to predict those glucose concentrations. Finally,
by the help of glucose ground truth created using the best glucometers and the eight
trained regression systems using the dielectric properties (permittivity or conductivity) of
the layers (Skin, Fat, Blood and Muscle), I will find a way to predict glucose concentrations
in the human body by means of the microwave sensor reflected coefficient S11.

4.4 Conclusion

In this chapter, I showed the experimental and simulation results of my research. In
the beginning, experimental results were shown starting from preparing the water-glucose
solutions which were used in the experiments using both microwave sensors, the dipole
and the spiral. Next, the results of the detailed steps of the research methodology were
investigates for every sensor separately. In dipole, results from the Gaussian SVR algorithm
showed the least RMSE with 11.9 using the two-minimum magnitude of S11. whereas, in
spiral, results from the linear regression algorithm showed the least RMSE with 7.26 using
PCA of magnitude of S11. After that, simulation results were shown starting from designing
the hand model with four different layers in order to change the dielectric properties of
those layers and then calculate the sensor’s reflected signals due to the interaction of the
microwave sensor with the tissues having those dielectric properties. Results of each layers
were presented individually by changing of both permittivity and conductivity of each
layer. Following the same research methodology each time, starting from reading sensor’s
signals and extracting the discriminating features from those raw signals to be inputted to
the step of building the regression system, I have got reasonable RMSE. At the end, I have
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eight different system, two per each layer of the four layers of the hand, one for permittivity
and one for conductivity. Those systems will help in predicting the actual glucose levels
after building a model mapping dielectric properties of the human body with the glucose
levels.
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Chapter 5

Conclusion and Future Work

In this chapter, I will summarize the accomplished work and the list of publications. In
addition, some ideas on future work will be shown in order to complete the solution to the
non-invasive CGM problem.

5.1 Accomplished Work

I presented an overview of glucose molecules and their relation with different types of
diabetes in chapter 1. I showed how countries at all income levels suffer from high human,
social and economic costs for diabetes in all forms. CGM is a very important process for
people with diabetes to regularly check their blood glucose levels to keep track of any
increase or decrease in these levels, and adjust the amount of medication accordingly. I
showed the three main categories of CGM and the desperate need for a simple, non-invasive
and pain-free CGM method. Before starting any work, I studied the literature to check
some of the past and current non-invasive CGM techniques and the major challenges facing
these techniques, to build a solid understanding of the nature of the problem in order to
have good non-invasive solution for CGM.

As the proposed system consisted of two parts: hardware part and software one, Chap-
ter 2 showed the hardware part, which is the microwave sensors used to collect the glucose
data. I discussed the process of designing the microwave sensors in order to analyze and
predict the glucose levels. To design a microwave sensor, you need to consider many fac-
tors carefully, depending on the type of application. Some of those factors include: the
operating or resonance frequency of the sensor, the penetration depth and the size of the
sensor. Microwave-based CGM modalities are mainly based on the observations of the
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variation in the dielectric properties caused by changing in the glucose levels in the tis-
sues. Microwaves, reflected off or scattered from, these tissues are then expected to help
in measuring the glucose levels in these tissues. In this thesis, two microwave sensors were
used: spiral and dipole sensors. I showed the details of designing each sensor and their
responses in simulation and experiment. Finally, I explained the S-parameters, which are
used to describe the interactions between the microwave sensors and the material under
test (MUT).

Chapter 3 investigated the software part of the system, which involves machine learn-
ing algorithms and techniques. I gave general information about machine learning along
with some of the very important algorithms and techniques. I showed how we can apply
machine learning for the CGM application and how we can calculate the performance met-
rics. The main application of machine learning algorithms for the CGM is regression and
I gave more emphasis on the different regression types and algorithms.

In chapter 4, I showed the experimental and simulation results of the thesis. First,
experimental results were shown starting from how to prepare the water-glucose solutions
which were used in the experiments using both microwave sensors, the dipole and the spiral.
Next, the results of the detailed steps of the research methodology were investigates for
every sensor separately. After that, simulation results were shown starting from designing
the hand model with four different layers in order to change the dielectric properties of
those layers and then calculate the sensor’s reflected signals due to the interaction of the
microwave sensor with the tissues having those dielectric properties. Results of each layers
were presented individually by changing of both permittivity and conductivity of each
layer.

The main contribution of this research is simplicity. I tried my best in every step of the
methodology of the research to be very simple and with the easiest techniques and tools,
taking into account the final goals of the system which are: a non-invasive, low-cost to
enable over-the-counter availability. The device has to be small and easy to use by a wide
population especially children. The results have to be accurate and robust. The system
has to be comfortable to use and does not interfere with daily human functions.

5.2 List of Publications

1. Saeed M. Bamatraf, Maged A. Aldhaeebi, and Omar M. Ramahi. Non-invasive
continuous glucose monitoring on aqueous solutions using microwave sensor with
machine learning. Progress In Electromagnetics Research Letters, 102:127–134, 2022.
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2. Saeed M. Bamatraf, Omar M. Ramahi and Maged A. Aldhaeebi. Non-invasive
Aqueous Glucose Monitoring using Microwave Sensor with Machine Learning . 2021
IEEE International Symposium on Antennas and Propagation and USNC-URSI Ra-
dio Science Meeting (APS/URSI), 2021, pp. 1875-1876,
doi:10.1109/APS/URSI47566.2021.9704583.

3. Saeed M. Bamatraf and Omar M. Ramahi. Review of Non-Invasive Continuous
Glucose Monitoring Techniques and Challenges. (Under Review by Sensors and
Actuators Reports).

4. Maged A Aldhaeebi, Khawla Alzoubi, Thamer S Almoneef, Saeed M Bamatraf,
Hussein Attia, and Omar M Ramahi. Review of microwaves techniques for breast
cancer detection.Sensors, 20(8):2390, 2020.

5. Maged A Aldhaeebi, Saeed Bamatraf, Thamer S Almoneef, and Omar M Ramahi.
Near-field electrically small sensors array with PCA for microwave breast tumor
detection. In 2019 IEEE International Symposium on Antennas and Propagation
and USNC-URSI Radio Science Meeting, pages 1007–1008. IEEE, 2019.

6. Maged Aldhaeebi, Saeed Bamatraf, Omar Ramahi, and Saeed A Binajjaj. Breast
tumor diagnosis using machine learning with microwave probes. In 2019 First Inter-
national Conference of Intelligent Computing and Engineering (ICOICE), pages1–4.
IEEE, 2019.

7. Maged A Aldhaeebi, Saeed M Bamatraf, and Omar M Ramahi. Challenges with
machine learning for microwave breast tumor detection. Journal of Computational
Vision and Imaging Systems, 5(1):1–1, 2019.

5.3 Future Work

• Build a model which will relate the dielectric properties of the human body with
the glucose levels which will be conducted using human volunteers from different age
groups, females and males.

• Use the trained regression systems to test the data collected from human after map-
ping S11 with glucose levels.

• Finalize the setup of the system to be commercialized by putting all the parts to-
gether in one system taking into considerations the size, cost and safety factors of
the proposed system.
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